1
|
Wagner M, Zhu G, Khalid F, Phan T, Maity P, Lupu L, Agyeman-Duah E, Wiese S, Lindenberg KS, Schön M, Landwehrmeyer GB, Penzo M, Kochanek S, Scharffetter-Kochanek K, Mulaw M, Iben S. General loss of proteostasis links Huntington disease to Cockayne syndrome. Neurobiol Dis 2024; 201:106668. [PMID: 39284372 DOI: 10.1016/j.nbd.2024.106668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/13/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024] Open
Abstract
Cockayne syndrome (CS) is an autosomal recessive disorder of developmental delay, multiple organ system degeneration and signs of premature ageing. We show here, using the RNA-seq data from two CS mutant cell lines, that the CS key transcriptional signature displays significant enrichment of neurodegeneration terms, including genes relevant in Huntington disease (HD). By using deep learning approaches and two published RNA-Seq datasets, the CS transcriptional signature highly significantly classified and predicted HD and control samples. Neurodegeneration is one hallmark of CS disease, and fibroblasts from CS patients with different causative mutations display disturbed ribosomal biogenesis and a consecutive loss of protein homeostasis - proteostasis. Encouraged by the transcriptomic data, we asked whether this pathomechanism is also active in HD. In different HD cell-culture models, we showed that mutant Huntingtin impacts ribosomal biogenesis and function. This led to an error-prone protein synthesis and, as shown in different mouse models and human tissue, whole proteome instability, and a general loss of proteostasis.
Collapse
Affiliation(s)
- Maximilian Wagner
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany; Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Gaojie Zhu
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | - Fatima Khalid
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | - Tamara Phan
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | - Ludmila Lupu
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | - Eric Agyeman-Duah
- Unit for Single-Cell Genomics, Medical Faculty, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Katrin S Lindenberg
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Michael Schön
- Department of Anatomy, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | | | - Marianna Penzo
- Department of Medical and Surgical Sciences and Center for Applied Biomedical Research (CRBA), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Stefan Kochanek
- Department of Gene Therapy, University of Ulm, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | - Karin Scharffetter-Kochanek
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | - Medhanie Mulaw
- Unit for Single-Cell Genomics, Medical Faculty, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany.
| | - Sebastian Iben
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany.
| |
Collapse
|
2
|
Costanzo F, Paccosi E, Proietti-De-Santis L, Egly JM. CS proteins and ubiquitination: orchestrating DNA repair with transcription and cell division. Trends Cell Biol 2024; 34:882-895. [PMID: 38910038 DOI: 10.1016/j.tcb.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024]
Abstract
To face genotoxic stress, eukaryotic cells evolved extremely refined mechanisms. Defects in counteracting the threat imposed by DNA damage underlie the rare disease Cockayne syndrome (CS), which arises from mutations in the CSA and CSB genes. Although initially defined as DNA repair proteins, recent work shows that CSA and CSB act instead as master regulators of the integrated response to genomic stress by coordinating DNA repair with transcription and cell division. CSA and CSB exert this function through the ubiquitination of target proteins, which are effectors/regulators of these processes. This review describes how the ubiquitination of target substrates is a common denominator by which CSA and CSB participate in different aspects of cellular life and how their mutation gives rise to the complex disease CS.
Collapse
Affiliation(s)
- Federico Costanzo
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona 6500, Switzerland; Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Illkirch-Graffenstaden 67400, Strasbourg, France.
| | - Elena Paccosi
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, Viterbo 01100, Italy
| | - Luca Proietti-De-Santis
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, Viterbo 01100, Italy
| | - Jean Marc Egly
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona 6500, Switzerland; Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Illkirch-Graffenstaden 67400, Strasbourg, France; College of Medicine, Centre for Genomics and Precision Medicine, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
3
|
Zhang X, Xu J, Hu J, Zhang S, Hao Y, Zhang D, Qian H, Wang D, Fu XD. Cockayne Syndrome Linked to Elevated R-Loops Induced by Stalled RNA Polymerase II during Transcription Elongation. Nat Commun 2024; 15:6031. [PMID: 39019869 PMCID: PMC11255242 DOI: 10.1038/s41467-024-50298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/04/2024] [Indexed: 07/19/2024] Open
Abstract
Mutations in the Cockayne Syndrome group B (CSB) gene cause cancer in mice, but premature aging and severe neurodevelopmental defects in humans. CSB, a member of the SWI/SNF family of chromatin remodelers, plays diverse roles in regulating gene expression and transcription-coupled nucleotide excision repair (TC-NER); however, these functions do not explain the distinct phenotypic differences observed between CSB-deficient mice and humans. During investigating Cockayne Syndrome-associated genome instability, we uncover an intrinsic mechanism that involves elongating RNA polymerase II (RNAPII) undergoing transient pauses at internal T-runs where CSB is required to propel RNAPII forward. Consequently, CSB deficiency retards RNAPII elongation in these regions, and when coupled with G-rich sequences upstream, exacerbates genome instability by promoting R-loop formation. These R-loop prone motifs are notably abundant in relatively long genes related to neuronal functions in the human genome, but less prevalent in the mouse genome. These findings provide mechanistic insights into differential impacts of CSB deficiency on mice versus humans and suggest that the manifestation of the Cockayne Syndrome phenotype in humans results from the progressive evolution of mammalian genomes.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Jun Xu
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Genetics and Metabolism Department, The Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Hu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Sitao Zhang
- National Institute of Biological Sciences,7 Science Park Road, Beijing, China
| | - Yajing Hao
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dongyang Zhang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Hao Qian
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dong Wang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Xiang-Dong Fu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences and School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Polinski JM, Castellano KR, Buckley KM, Bodnar AG. Genomic signatures of exceptional longevity and negligible aging in the long-lived red sea urchin. Cell Rep 2024; 43:114021. [PMID: 38564335 DOI: 10.1016/j.celrep.2024.114021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
The red sea urchin (Mesocentrotus franciscanus) is one of the Earth's longest-living animals, reported to live more than 100 years with indeterminate growth, life-long reproduction, and no increase in mortality rate with age. To understand the genetic underpinnings of longevity and negligible aging, we constructed a chromosome-level assembly of the red sea urchin genome and compared it to that of short-lived sea urchin species. Genome-wide syntenic alignments identified chromosome rearrangements that distinguish short- and long-lived species. Expanded gene families in long-lived species play a role in innate immunity, sensory nervous system, and genome stability. An integrated network of genes under positive selection in the red sea urchin was involved in genomic regulation, mRNA fidelity, protein homeostasis, and mitochondrial function. Our results implicated known longevity genes in sea urchin longevity but also revealed distinct molecular signatures that may promote long-term maintenance of tissue homeostasis, disease resistance, and negligible aging.
Collapse
Affiliation(s)
| | | | | | - Andrea G Bodnar
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA.
| |
Collapse
|
5
|
Sartorelli J, Travaglini L, Macchiaiolo M, Garone G, Gonfiantini MV, Vecchio D, Sinibaldi L, Frascarelli F, Ceccatelli V, Petrillo S, Piemonte F, Piccolo G, Novelli A, Longo D, Pro S, D’Amico A, Bertini ES, Nicita F. Spectrum of ERCC6-Related Cockayne Syndrome (Type B): From Mild to Severe Forms. Genes (Basel) 2024; 15:508. [PMID: 38674442 PMCID: PMC11050085 DOI: 10.3390/genes15040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Cockayne syndrome (CS) is an ultra-rare multisystem disorder, classically subdivided into three forms and characterized by a clinical spectrum without a clear genotype-phenotype correlation for both the two causative genes ERCC6 (CS type B) and ERCC8 (CS type A). We assessed this, presenting a series of patients with genetically confirmed CSB. (2) Materials and Methods: We retrospectively collected demographic, clinical, genetic, neuroimaging, and serum neurofilament light-chain (sNFL) data about CSB patients; diagnostic and severity scores were also determined. (3) Results: Data of eight ERCC6/CSB patients are presented. Four patients had CS I, three patients CS II, and one patient CS III. Various degrees of ataxia and spasticity were cardinal neurologic features, with variably combined systemic characteristics. Mean age at diagnosis was lower in the type II form, in which classic CS signs were more evident. Interestingly, sNFL determination appeared to reflect clinical classification. Two novel premature stop codon and one novel missense variants were identified. All CS I subjects harbored the p.Arg735Ter variant; the milder CS III subject carried the p.Leu764Ser missense change. (4) Conclusion: Our work confirms clinical variability also in the ERCC6/CSB type, where manifestations may range from severe involvement with prenatal or neonatal onset to normal psychomotor development followed by progressive ataxia. We propose, for the first time in CS, sNFL as a useful peripheral biomarker, with increased levels compared to currently available reference values and with the potential ability to reflect disease severity.
Collapse
Affiliation(s)
- Jacopo Sartorelli
- Unit of Neuromuscular and Neurodegenerative Disease, Bambino Gesù Children’s Hospital, IRCCS, P.zza Sant’Onofrio 4, 00165 Rome, Italy
| | - Lorena Travaglini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, P.zza Sant’Onofrio 4, 00165 Rome, Italy
| | - Marina Macchiaiolo
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Giacomo Garone
- Neurology, Epilepsy and Movement Disorder Unit, Bambino Gesù Children’s Hospital, IRCCS, P.zza Sant’Onofrio 4, 00165 Rome, Italy
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Davide Vecchio
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Lorenzo Sinibaldi
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Flaminia Frascarelli
- Rehabilitation Unit, Bambino Gesù Children’s Hospital, IRCCS, P.zza Sant’Onofrio 4, 00165 Rome, Italy
| | - Viola Ceccatelli
- Rehabilitation Unit, Bambino Gesù Children’s Hospital, IRCCS, P.zza Sant’Onofrio 4, 00165 Rome, Italy
| | - Sara Petrillo
- Unit of Neuromuscular and Neurodegenerative Disease, Bambino Gesù Children’s Hospital, IRCCS, P.zza Sant’Onofrio 4, 00165 Rome, Italy
| | - Fiorella Piemonte
- Unit of Neuromuscular and Neurodegenerative Disease, Bambino Gesù Children’s Hospital, IRCCS, P.zza Sant’Onofrio 4, 00165 Rome, Italy
| | - Gabriele Piccolo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, P.zza Sant’Onofrio 4, 00165 Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, P.zza Sant’Onofrio 4, 00165 Rome, Italy
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children’s Hospital, P.zza Sant’Onofrio 4, 00165 Rome, Italy
| | - Stefano Pro
- Developmental Neurology Unit, Bambino Gesù Children’s Hospital, IRCCS, P.zza Sant’Onofrio 4, 00165 Rome, Italy
| | - Adele D’Amico
- Unit of Neuromuscular and Neurodegenerative Disease, Bambino Gesù Children’s Hospital, IRCCS, P.zza Sant’Onofrio 4, 00165 Rome, Italy
| | - Enrico Silvio Bertini
- Unit of Neuromuscular and Neurodegenerative Disease, Bambino Gesù Children’s Hospital, IRCCS, P.zza Sant’Onofrio 4, 00165 Rome, Italy
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Disease, Bambino Gesù Children’s Hospital, IRCCS, P.zza Sant’Onofrio 4, 00165 Rome, Italy
| |
Collapse
|
6
|
Szepanowski LP, Wruck W, Kapr J, Rossi A, Fritsche E, Krutmann J, Adjaye J. Cockayne Syndrome Patient iPSC-Derived Brain Organoids and Neurospheres Show Early Transcriptional Dysregulation of Biological Processes Associated with Brain Development and Metabolism. Cells 2024; 13:591. [PMID: 38607030 PMCID: PMC11011893 DOI: 10.3390/cells13070591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Cockayne syndrome (CS) is a rare hereditary autosomal recessive disorder primarily caused by mutations in Cockayne syndrome protein A (CSA) or B (CSB). While many of the functions of CSB have been at least partially elucidated, little is known about the actual developmental dysregulation in this devasting disorder. Of particular interest is the regulation of cerebral development as the most debilitating symptoms are of neurological nature. We generated neurospheres and cerebral organoids utilizing Cockayne syndrome B protein (CSB)-deficient induced pluripotent stem cells derived from two patients with distinct severity levels of CS and healthy controls. The transcriptome of both developmental timepoints was explored using RNA-Seq and bioinformatic analysis to identify dysregulated biological processes common to both patients with CS in comparison to the control. CSB-deficient neurospheres displayed upregulation of the VEGFA-VEGFR2 signalling pathway, vesicle-mediated transport and head development. CSB-deficient cerebral organoids exhibited downregulation of brain development, neuron projection development and synaptic signalling. We further identified the upregulation of steroid biosynthesis as common to both timepoints, in particular the upregulation of the cholesterol biosynthesis branch. Our results provide insights into the neurodevelopmental dysregulation in patients with CS and strengthen the theory that CS is not only a neurodegenerative but also a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Leon-Phillip Szepanowski
- Institute for Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Duesseldorf, Germany; (L.-P.S.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Duesseldorf, Germany; (L.-P.S.)
| | - Julia Kapr
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Andrea Rossi
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Ellen Fritsche
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Jean Krutmann
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Duesseldorf, Germany; (L.-P.S.)
- Zayed Centre for Research into Rare Diseases in Children (ZCR), University College London (UCL)—EGA Institute for Women’s Health, 20 Guilford Street, London WC1N 1DZ, UK
| |
Collapse
|
7
|
Khalid F, Phan T, Qiang M, Maity P, Lasser T, Wiese S, Penzo M, Alupei M, Orioli D, Scharffetter-Kochanek K, Iben S. TFIIH mutations can impact on translational fidelity of the ribosome. Hum Mol Genet 2023; 32:1102-1113. [PMID: 36308430 PMCID: PMC10026254 DOI: 10.1093/hmg/ddac268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/25/2022] [Indexed: 11/14/2022] Open
Abstract
TFIIH is a complex essential for transcription of protein-coding genes by RNA polymerase II, DNA repair of UV-lesions and transcription of rRNA by RNA polymerase I. Mutations in TFIIH cause the cancer prone DNA-repair disorder xeroderma pigmentosum (XP) and the developmental and premature aging disorders trichothiodystrophy (TTD) and Cockayne syndrome. A total of 50% of the TTD cases are caused by TFIIH mutations. Using TFIIH mutant patient cells from TTD and XP subjects we can show that the stress-sensitivity of the proteome is reduced in TTD, but not in XP. Using three different methods to investigate the accuracy of protein synthesis by the ribosome, we demonstrate that translational fidelity of the ribosomes of TTD, but not XP cells, is decreased. The process of ribosomal synthesis and maturation is affected in TTD cells and can lead to instable ribosomes. Isolated ribosomes from TTD patients show an elevated error rate when challenged with oxidized mRNA, explaining the oxidative hypersensitivity of TTD cells. Treatment of TTD cells with N-acetyl cysteine normalized the increased translational error-rate and restored translational fidelity. Here we describe a pathomechanism that might be relevant for our understanding of impaired development and aging-associated neurodegeneration.
Collapse
Affiliation(s)
- Fatima Khalid
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Tamara Phan
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mingyue Qiang
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Theresa Lasser
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Marianna Penzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | - Marius Alupei
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Donata Orioli
- Institute of Molecular Genetics, Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | | | - Sebastian Iben
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
8
|
Liang F, Li B, Xu Y, Gong J, Zheng S, Zhang Y, Wang Y. Identification and characterization of Necdin as a target for the Cockayne syndrome B protein in promoting neuronal differentiation and maintenance. Pharmacol Res 2023; 187:106637. [PMID: 36586641 DOI: 10.1016/j.phrs.2022.106637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/01/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Cockayne syndrome (CS) is a devastating autosomal recessive genetic disorder, mainly characterized by photosensitivity, growth failure, neurological abnormalities, and premature aging. Mutations in CSB (ERCC6) are associated with almost all clinical phenotypes resembling classic CS. Using RNA-seq approach in multiple cell types, we identified Necdin (NDN) as a target of the CSB protein. Supportive of the RNA-seq results, CSB directly binds to NDN and manipulates the remodeling of active histone marks and DNA 5mC methylation on the regulatory elements of the NDN gene. Intriguingly, hyperactivation of NDN due to CSB deficiency does not interfere with nucleotide excision repair (1), but greatly affects neuronal cell differentiation. Inhibition of NDN can partially rescue the motor neuron defects in CSB mouse models. In addition to shedding light on cellular mechanisms underlying CS and pointing to future avenues for intervention, these data substantiate a reciprocal communication between CSB and NDN in the context of general transcription regulation.
Collapse
Affiliation(s)
- Fangkeng Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bijuan Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yingying Xu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junwei Gong
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shaohui Zheng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yunlong Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuming Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Ferreri C, Sansone A, Krokidis MG, Masi A, Pascucci B, D’Errico M, Chatgilialoglu C. Effects of Oxygen Tension for Membrane Lipidome Remodeling of Cockayne Syndrome Cell Models. Cells 2022; 11:1286. [PMID: 35455966 PMCID: PMC9032135 DOI: 10.3390/cells11081286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Oxygen is important for lipid metabolism, being involved in both enzymatic transformations and oxidative reactivity, and is particularly influent when genetic diseases impair the repair machinery of the cells, such as described for Cockayne syndrome (CS). We used two cellular models of transformed fibroblasts defective for CSA and CSB genes and their normal counterparts, grown for 24 h under various oxygen tensions (hyperoxic 21%, physioxic 5% and hypoxic 1%) to examine the fatty acid-based membrane remodeling by GC analysis of fatty acid methyl esters derived from membrane phospholipids. Overall, we first distinguished differences due to oxygen tensions: (a) hyperoxia induced a general boost of desaturase enzymatic activity in both normal and defective CSA and CSB cell lines, increasing monounsaturated fatty acids (MUFA), whereas polyunsaturated fatty acids (PUFA) did not undergo oxidative consumption; (b) hypoxia slowed down desaturase activities, mostly in CSA cell lines and defective CSB, causing saturated fatty acids (SFA) to increase, whereas PUFA levels diminished, suggesting their involvement in hypoxia-related signaling. CSB-deprived cells are the most sensitive to oxidation and CSA-deprived cells are the most sensitive to the radical-based formation of trans fatty acids (TFA). The results point to the need to finely differentiate biological targets connected to genetic impairments and, consequently, suggest the better definition of cell protection and treatments through accurate molecular profiling that includes membrane lipidomes.
Collapse
Affiliation(s)
- Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (C.F.); (A.S.); (A.M.)
| | - Anna Sansone
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (C.F.); (A.S.); (A.M.)
| | - Marios G. Krokidis
- Institute of Nanoscience and Nanotechnology, N.C.S.R. “Demokritos”, Agia Paraskevi Attikis, Athens 15310, Greece;
| | - Annalisa Masi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (C.F.); (A.S.); (A.M.)
- Institute of Crystallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, 00015 Rome, Italy;
| | - Barbara Pascucci
- Institute of Crystallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, 00015 Rome, Italy;
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Mariarosaria D’Errico
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (C.F.); (A.S.); (A.M.)
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
10
|
Cellular fractionation reveals transcriptome responses of human fibroblasts to UV-C irradiation. Cell Death Dis 2022; 13:177. [PMID: 35210409 PMCID: PMC8873393 DOI: 10.1038/s41419-022-04634-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022]
Abstract
AbstractWhile cells activate a multifaceted DNA damage response to remove transcription-blocking DNA lesions, mechanisms to regulate genome-wide reduction of RNA synthesis and the paradoxical continuous loading of RNAP II at initiation sites are still poorly understood. Uncovering how dramatic changes to the transcriptional program contribute to TC-NER (transcription-coupled nucleotide excision repair) is important in DNA repair research. However, the functional significance of transcriptome dynamics and the mechanisms of chromatin attachment for thousands of unstudied human lncRNAs remain unclear. To address these questions, we examined UV-induced gene expression regulation in human fibroblasts by performing RNA-seq with fractionated chromatin-associated and cytoplasmic transcripts. This approach allowed us to separate the synthesis of nascent transcripts from the accumulation of mature RNAs. In addition to documenting the subcellular locations of coding transcripts, our results also provide a high-resolution view of the transcription activities of noncoding RNAs in response to cellular stress. At the same time, the data showed that vast majority of genes exhibit large changes in chromatin-associated nascent transcripts without corresponding changes in cytoplasmic mRNA levels. Distinct from protein-coding genes that transcripts with shorter length prefer to be recovered first, repression of lncRNA transcription after UV exposure is inactivated first on noncoding transcripts with longer length. This work provides an updated framework for cellular RNA organization in response to stress and may provide useful information in understanding how cells respond to transcription-blocking DNA damage.
Collapse
|
11
|
Qiang M, Khalid F, Phan T, Ludwig C, Scharffetter-Kochanek K, Iben S. Cockayne Syndrome-Associated CSA and CSB Mutations Impair Ribosome Biogenesis, Ribosomal Protein Stability, and Global Protein Folding. Cells 2021; 10:cells10071616. [PMID: 34203326 PMCID: PMC8306422 DOI: 10.3390/cells10071616] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
Cockayne syndrome (CS) is a developmental disorder with symptoms that are typical for the aging body, including subcutaneous fat loss, alopecia, and cataracts. Here, we show that in the cells of CS patients, RNA polymerase I transcription and the processing of the pre-rRNA are disturbed, leading to an accumulation of the 18S-E intermediate. The mature 18S rRNA level is reduced, and isolated ribosomes lack specific ribosomal proteins of the small 40S subunit. Ribosomal proteins are susceptible to unfolding and the CS cell proteome is heat-sensitive, indicating misfolded proteins and an error-prone translation process in CS cells. Pharmaceutical chaperones restored impaired cellular proliferation. Therefore, we provide evidence for severe protein synthesis malfunction, which together with a loss of proteostasis constitutes the underlying pathophysiology in CS.
Collapse
Affiliation(s)
- Mingyue Qiang
- Department of Dermatology and Allergic Diseases, Ulm University, Albert-Einstein Allee 23, 89081 Ulm, Germany; (M.Q.); (F.K.); (T.P.); (K.S.-K.)
| | - Fatima Khalid
- Department of Dermatology and Allergic Diseases, Ulm University, Albert-Einstein Allee 23, 89081 Ulm, Germany; (M.Q.); (F.K.); (T.P.); (K.S.-K.)
| | - Tamara Phan
- Department of Dermatology and Allergic Diseases, Ulm University, Albert-Einstein Allee 23, 89081 Ulm, Germany; (M.Q.); (F.K.); (T.P.); (K.S.-K.)
| | - Christina Ludwig
- Bavarian Center for Biomedical Mass Spectrometry, TUM, University of Munich, 85354 Freising, Germany;
| | - Karin Scharffetter-Kochanek
- Department of Dermatology and Allergic Diseases, Ulm University, Albert-Einstein Allee 23, 89081 Ulm, Germany; (M.Q.); (F.K.); (T.P.); (K.S.-K.)
| | - Sebastian Iben
- Department of Dermatology and Allergic Diseases, Ulm University, Albert-Einstein Allee 23, 89081 Ulm, Germany; (M.Q.); (F.K.); (T.P.); (K.S.-K.)
- Correspondence:
| |
Collapse
|
12
|
Kajitani GS, Nascimento LLDS, Neves MRDC, Leandro GDS, Garcia CCM, Menck CFM. Transcription blockage by DNA damage in nucleotide excision repair-related neurological dysfunctions. Semin Cell Dev Biol 2021; 114:20-35. [DOI: 10.1016/j.semcdb.2020.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/18/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
|
13
|
Tiwari V, Baptiste BA, Okur MN, Bohr VA. Current and emerging roles of Cockayne syndrome group B (CSB) protein. Nucleic Acids Res 2021; 49:2418-2434. [PMID: 33590097 DOI: 10.1093/nar/gkab085] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cockayne syndrome (CS) is a segmental premature aging syndrome caused primarily by defects in the CSA or CSB genes. In addition to premature aging, CS patients typically exhibit microcephaly, progressive mental and sensorial retardation and cutaneous photosensitivity. Defects in the CSB gene were initially thought to primarily impair transcription-coupled nucleotide excision repair (TC-NER), predicting a relatively consistent phenotype among CS patients. In contrast, the phenotypes of CS patients are pleiotropic and variable. The latter is consistent with recent work that implicates CSB in multiple cellular systems and pathways, including DNA base excision repair, interstrand cross-link repair, transcription, chromatin remodeling, RNAPII processing, nucleolin regulation, rDNA transcription, redox homeostasis, and mitochondrial function. The discovery of additional functions for CSB could potentially explain the many clinical phenotypes of CSB patients. This review focuses on the diverse roles played by CSB in cellular pathways that enhance genome stability, providing insight into the molecular features of this complex premature aging disease.
Collapse
Affiliation(s)
- Vinod Tiwari
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Beverly A Baptiste
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mustafa N Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
14
|
Paccosi E, Proietti-De-Santis L. The emerging role of Cockayne group A and B proteins in ubiquitin/proteasome-directed protein degradation. Mech Ageing Dev 2021; 195:111466. [PMID: 33727156 DOI: 10.1016/j.mad.2021.111466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/16/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022]
Abstract
When mutated, csa and csb genes are responsible of the complex phenotype of the premature aging Cockayne Syndrome (CS). Our working hypothesis is to reconcile the multiple cellular and molecular phenotypes associated to CS within the unifying molecular function of CSA and CSB proteins in the cascade of events leading to ubiquitin/proteasome-directed protein degradation, which occurs in processes as DNA repair, transcription and cell division. This achievement may reasonably explain the plethora of cellular UPS-regulated functions that result impaired when either CSA or CSB are mutated and suggestively explains part of their pleiotropic effect. This review is aimed to solicit the interest of the scientific community in further investigating this aspect, since we believe that the identification of the ubiquitin-proteasome machinery as a new potential therapeutic target, able to comprehensively face the different molecular aspects of CS, whether confirmed and corroborated by in vivo studies, would open a promising avenue to design effective therapeutic intervention.
Collapse
Affiliation(s)
- Elena Paccosi
- Unit of Molecular Genetics of Aging, Department of Ecological and Biological Sciences, Università degli Studi della Tuscia, Viterbo, Italy
| | - Luca Proietti-De-Santis
- Unit of Molecular Genetics of Aging, Department of Ecological and Biological Sciences, Università degli Studi della Tuscia, Viterbo, Italy.
| |
Collapse
|
15
|
Xu Y, Wu Z, Liu L, Liu J, Wang Y. Rat Model of Cockayne Syndrome Neurological Disease. Cell Rep 2020; 29:800-809.e5. [PMID: 31644904 DOI: 10.1016/j.celrep.2019.09.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/26/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
Cockayne syndrome (CS) is a rare genetic neurodevelopmental disorder, characterized by a deficiency in transcription-coupled subpathway of nucleotide excision DNA repair (TC-NER). Mutation of the Cockayne syndrome B (CSB) gene affects basal transcription, which is considered a major cause of CS neurologic dysfunction. Here, we generate a rat model by mimicking a nonsense mutation in the CSB gene. In contrast to that of the Csb-/- mouse models, the brains of the CSB-deficient rats are more profoundly affected. The cerebellar cortex shows significant atrophy and dysmyelination. Aberrant foliation of the cerebellum and deformed hippocampus are visible. The white matter displays high glial fibrillary acidic protein (GFAP) staining indicative of reactive astrogliosis. RNA sequencing (RNA-seq) analysis reveals that CSB deficiency affects the expression of hundreds of genes, many of which are neuronal genes, suggesting that transcription dysregulation could contribute to the neurologic disease seen in the CSB rat models.
Collapse
Affiliation(s)
- Yingying Xu
- Key Laboratory of Neurological Function and Health, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhenzhen Wu
- Key Laboratory of Neurological Function and Health, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Lingyun Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jiena Liu
- Key Laboratory of Neurological Function and Health, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuming Wang
- Key Laboratory of Neurological Function and Health, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
16
|
Krokidis MG, D’Errico M, Pascucci B, Parlanti E, Masi A, Ferreri C, Chatgilialoglu C. Oxygen-Dependent Accumulation of Purine DNA Lesions in Cockayne Syndrome Cells. Cells 2020; 9:cells9071671. [PMID: 32664519 PMCID: PMC7407219 DOI: 10.3390/cells9071671] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cockayne Syndrome (CS) is an autosomal recessive neurodegenerative premature aging disorder associated with defects in nucleotide excision repair (NER). Cells from CS patients, with mutations in CSA or CSB genes, present elevated levels of reactive oxygen species (ROS) and are defective in the repair of a variety of oxidatively generated DNA lesions. In this study, six purine lesions were ascertained in wild type (wt) CSA, defective CSA, wtCSB and defective CSB-transformed fibroblasts under different oxygen tensions (hyperoxic 21%, physioxic 5% and hypoxic 1%). In particular, the four 5′,8-cyclopurine (cPu) and the two 8-oxo-purine (8-oxo-Pu) lesions were accurately quantified by LC-MS/MS analysis using isotopomeric internal standards after an enzymatic digestion procedure. cPu levels were found comparable to 8-oxo-Pu in all cases (3–6 lesions/106 nucleotides), slightly increasing on going from hyperoxia to physioxia to hypoxia. Moreover, higher levels of four cPu were observed under hypoxia in both CSA and CSB-defective cells as compared to normal counterparts, along with a significant enhancement of 8-oxo-Pu. These findings revealed that exposure to different oxygen tensions induced oxidative DNA damage in CS cells, repairable by NER or base excision repair (BER) pathways. In NER-defective CS patients, these results support the hypothesis that the clinical neurological features might be connected to the accumulation of cPu. Moreover, the elimination of dysfunctional mitochondria in CS cells is associated with a reduction in the oxidative DNA damage.
Collapse
Affiliation(s)
- Marios G. Krokidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.)
- Institute of Nanoscience and Nanotechnology, N.C.S.R. “Demokritos”, 15310 Agia Paraskevi Attikis, Athens, Greece
| | - Mariarosaria D’Errico
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.D.); (B.P.); (E.P.)
| | - Barbara Pascucci
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.D.); (B.P.); (E.P.)
- Institute of Crystallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, 00015 Rome, Italy
| | - Eleonora Parlanti
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.D.); (B.P.); (E.P.)
| | - Annalisa Masi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.)
- Institute of Crystallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, 00015 Rome, Italy
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.)
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.)
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznań, Poland
- Correspondence: ; Tel.: +39-051-639-8309
| |
Collapse
|
17
|
Lerner LK, Moreno NC, Rocha CRR, Munford V, Santos V, Soltys DT, Garcia CCM, Sarasin A, Menck CFM. XPD/ERCC2 mutations interfere in cellular responses to oxidative stress. Mutagenesis 2020; 34:341-354. [PMID: 31348825 DOI: 10.1093/mutage/gez020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/10/2019] [Indexed: 01/28/2023] Open
Abstract
Nucleotide excision repair (NER) is a conserved, flexible mechanism responsible for the removal of bulky, helix-distorting DNA lesions, like ultraviolet damage or cisplatin adducts, but its role in the repair of lesions generated by oxidative stress is still not clear. The helicase XPD/ERCC2, one of the two helicases of the transcription complex IIH, together with XPB, participates both in NER and in RNA pol II-driven transcription. In this work, we investigated the responses of distinct XPD-mutated cell lines to the oxidative stress generated by photoactivated methylene blue (MB) and KBrO3 treatments. The studied cells are derived from patients with XPD mutations but expressing different clinical phenotypes, including xeroderma pigmentosum (XP), XP and Cockayne syndrome (XP-D/CS) and trichothiodystrophy (TTD). We show by different approaches that all XPD-mutated cell lines tested were sensitive to oxidative stress, with those from TTD patients being the most sensitive. Host cell reactivation (HCR) assays showed that XP-D/CS and TTD cells have severely impaired repair capacity of oxidised lesions in plasmid DNA, and alkaline comet assays demonstrated the induction of significantly higher amounts of DNA strand breaks after treatment with photoactivated MB in these cells compared to wild-type cells. All XPD-mutated cells presented strong S/G2 arrest and persistent γ-H2AX staining after photoactivated MB treatment. Taken together, these results indicate that XPD participates in the repair of lesions induced by the redox process, and that XPD mutations lead to differences in the response to oxidatively induced damage.
Collapse
Affiliation(s)
- Leticia K Lerner
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Natália C Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Clarissa R R Rocha
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Veridiana Munford
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Valquíria Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Daniela T Soltys
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Camila C M Garcia
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Alain Sarasin
- CNRS-UMR8200, Institut Gustave Roussy, Université Paris-Sud, Villejuif, France
| | - Carlos F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
18
|
Vessoni AT, Guerra CCC, Kajitani GS, Nascimento LLS, Garcia CCM. Cockayne Syndrome: The many challenges and approaches to understand a multifaceted disease. Genet Mol Biol 2020; 43:e20190085. [PMID: 32453336 PMCID: PMC7250278 DOI: 10.1590/1678-4685-gmb-2019-0085] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 01/15/2020] [Indexed: 01/04/2023] Open
Abstract
The striking and complex phenotype of Cockayne syndrome (CS) patients combines progeria-like features with developmental deficits. Since the establishment of the in vitro culture of skin fibroblasts derived from patients with CS in the 1970s, significant progress has been made in the understanding of the genetic alterations associated with the disease and their impact on molecular, cellular, and organismal functions. In this review, we provide a historic perspective on the research into CS by revisiting seminal papers in this field. We highlighted the great contributions of several researchers in the last decades, ranging from the cloning and characterization of CS genes to the molecular dissection of their roles in DNA repair, transcription, redox processes and metabolism control. We also provide a detailed description of all pathological mutations in genes ERCC6 and ERCC8 reported to date and their impact on CS-related proteins. Finally, we review the contributions (and limitations) of many genetic animal models to the study of CS and how cutting-edge technologies, such as cell reprogramming and state-of-the-art genome editing, are helping us to address unanswered questions.
Collapse
Affiliation(s)
| | - Camila Chaves Coelho Guerra
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| | - Gustavo Satoru Kajitani
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Livia Luz Souza Nascimento
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Camila Carrião Machado Garcia
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| |
Collapse
|
19
|
Tufegdžić Vidaković A, Mitter R, Kelly GP, Neumann M, Harreman M, Rodríguez-Martínez M, Herlihy A, Weems JC, Boeing S, Encheva V, Gaul L, Milligan L, Tollervey D, Conaway RC, Conaway JW, Snijders AP, Stewart A, Svejstrup JQ. Regulation of the RNAPII Pool Is Integral to the DNA Damage Response. Cell 2020; 180:1245-1261.e21. [PMID: 32142654 PMCID: PMC7103762 DOI: 10.1016/j.cell.2020.02.009] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/23/2019] [Accepted: 02/04/2020] [Indexed: 12/27/2022]
Abstract
In response to transcription-blocking DNA damage, cells orchestrate a multi-pronged reaction, involving transcription-coupled DNA repair, degradation of RNA polymerase II (RNAPII), and genome-wide transcription shutdown. Here, we provide insight into how these responses are connected by the finding that ubiquitylation of RNAPII itself, at a single lysine (RPB1 K1268), is the focal point for DNA-damage-response coordination. K1268 ubiquitylation affects DNA repair and signals RNAPII degradation, essential for surviving genotoxic insult. RNAPII degradation results in a shutdown of transcriptional initiation, in the absence of which cells display dramatic transcriptome alterations. Additionally, regulation of RNAPII stability is central to transcription recovery-persistent RNAPII depletion underlies the failure of this process in Cockayne syndrome B cells. These data expose regulation of global RNAPII levels as integral to the cellular DNA-damage response and open the intriguing possibility that RNAPII pool size generally affects cell-specific transcription programs in genome instability disorders and even normal cells.
Collapse
Affiliation(s)
- Ana Tufegdžić Vidaković
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gavin P Kelly
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michelle Neumann
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michelle Harreman
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Marta Rodríguez-Martínez
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anna Herlihy
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Juston C Weems
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Stefan Boeing
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Vesela Encheva
- Protein Analysis and Proteomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Liam Gaul
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Laura Milligan
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland
| | - Ronald C Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Joan W Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Aengus Stewart
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
20
|
Defective transcription of ATF3 responsive genes, a marker for Cockayne Syndrome. Sci Rep 2020; 10:1105. [PMID: 31980658 PMCID: PMC6981198 DOI: 10.1038/s41598-020-57999-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022] Open
Abstract
Cockayne syndrome (CS) is a rare genetic disorder caused by mutations (dysfunction) in CSA and CSB. CS patients exhibit mild photosensitivity and severe neurological problems. Currently, CS diagnosis is based on the inefficiency of CS cells to recover RNA synthesis upon genotoxic (UV) stress. Indeed, upon genotoxic stress, ATF3, an immediate early gene is activated to repress up to 5000 genes encompassing its responsive element for a short period of time. On the contrary in CS cells, CSA and CSB dysfunction impairs the degradation of the chromatin-bound ATF3, leading to a permanent transcriptional arrest as observed by immunofluorescence and ChIP followed by RT-PCR. We analysed ChIP-seq of Pol II and ATF3 promoter occupation analysis and RNA sequencing-based gene expression profiling in CS cells, as well as performed immunofluorescence study of ATF3 protein stability and quantitative RT-PCR screening in 64 patient cell lines. We show that the analysis of few amount (as for example CDK5RAP2, NIPBL and NRG1) of ATF3 dependent genes, could serve as prominent molecular markers to discriminate between CS and non-CS patient’s cells. Such assay can significantly simplify the timing and the complexity of the CS diagnostic procedure in comparison to the currently available methods.
Collapse
|
21
|
Alupei MC, Maity P, Esser PR, Krikki I, Tuorto F, Parlato R, Penzo M, Schelling A, Laugel V, Montanaro L, Scharffetter-Kochanek K, Iben S. Loss of Proteostasis Is a Pathomechanism in Cockayne Syndrome. Cell Rep 2019; 23:1612-1619. [PMID: 29742419 DOI: 10.1016/j.celrep.2018.04.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/02/2018] [Accepted: 04/09/2018] [Indexed: 01/04/2023] Open
Abstract
Retarded growth and neurodegeneration are hallmarks of the premature aging disease Cockayne syndrome (CS). Cockayne syndrome proteins take part in the key step of ribosomal biogenesis, transcription of RNA polymerase I. Here, we identify a mechanism originating from a disturbed RNA polymerase I transcription that impacts translational fidelity of the ribosomes and consequently produces misfolded proteins. In cells from CS patients, the misfolded proteins are oxidized by the elevated reactive oxygen species (ROS) and provoke an unfolded protein response that represses RNA polymerase I transcription. This pathomechanism can be disrupted by the addition of pharmacological chaperones, suggesting a treatment strategy for CS. Additionally, this loss of proteostasis was not observed in mouse models of CS.
Collapse
Affiliation(s)
- Marius Costel Alupei
- Clinic of Dermatology and Allergic Diseases, University Medical Center, Albert-Einstein Allee 23, 89081 Ulm, Germany
| | - Pallab Maity
- Clinic of Dermatology and Allergic Diseases, University Medical Center, Albert-Einstein Allee 23, 89081 Ulm, Germany
| | - Philipp Ralf Esser
- Allergy Research Group, Department of Dermatology, University Medical Center Freiburg, Faculty of Medicine, 79104 Freiburg, Germany
| | - Ioanna Krikki
- Clinic of Dermatology and Allergic Diseases, University Medical Center, Albert-Einstein Allee 23, 89081 Ulm, Germany
| | - Francesca Tuorto
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Rosanna Parlato
- Institute of Applied Physiology, Ulm University, 89081 Ulm, Germany; Institute of Anatomy and Medical Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Marianna Penzo
- Laboratorio di Patologia Clinica, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Adrian Schelling
- Clinic of Dermatology and Allergic Diseases, University Medical Center, Albert-Einstein Allee 23, 89081 Ulm, Germany
| | - Vincent Laugel
- Laboratoire de Génétique Médicale - INSERM U1112, Institut de Génétique Médicale d'Alsace (IGMA), Faculté de médecine de Strasbourg, 11 rue Humann, 67000 Strasbourg, France
| | - Lorenzo Montanaro
- Laboratorio di Patologia Clinica, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Karin Scharffetter-Kochanek
- Clinic of Dermatology and Allergic Diseases, University Medical Center, Albert-Einstein Allee 23, 89081 Ulm, Germany
| | - Sebastian Iben
- Clinic of Dermatology and Allergic Diseases, University Medical Center, Albert-Einstein Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
22
|
Deger N, Yang Y, Lindsey-Boltz LA, Sancar A, Selby CP. Drosophila, which lacks canonical transcription-coupled repair proteins, performs transcription-coupled repair. J Biol Chem 2019; 294:18092-18098. [PMID: 31624146 DOI: 10.1074/jbc.ac119.011448] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/16/2019] [Indexed: 11/06/2022] Open
Abstract
Previous work with the classic T4 endonuclease V digestion of DNA from irradiated Drosophila cells followed by Southern hybridization led to the conclusion that Drosophila lacks transcription-coupled repair (TCR). This conclusion was reinforced by the Drosophila Genome Project, which revealed that Drosophila lacks Cockayne syndrome WD repeat protein (CSA), CSB, or UV-stimulated scaffold protein A (UVSSA) homologs, whose orthologs are present in eukaryotes ranging from Arabidopsis to humans that carry out TCR. A recently developed in vivo excision assay and the excision repair-sequencing (XR-Seq) method have enabled genome-wide analysis of nucleotide excision repair in various organisms at single-nucleotide resolution and in a strand-specific manner. Using these methods, we have discovered that Drosophila S2 cells carry out robust TCR comparable with that observed in mammalian cells. Our findings provide critical new insights into the mechanisms of TCR among various different species.
Collapse
Affiliation(s)
- Nazli Deger
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Yanyan Yang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina 27599.
| |
Collapse
|
23
|
Abstract
: Cockayne syndrome (CS) is a rare autosomal recessive syndrome resulting in defective DNA repair. Its features include cachectic dwarfism, hearing loss, skin hypersensitivity to sunlight, premature aging, and dementia. Presented is a right temporal bone of a patient who died at the age of 29 years. The clinical course was compatible with type 1 CS, the classical form. Homozygous missense variant in the ERCC6 gene (Excision Repair Cross-Complementation group 6) was found, compatible with CS complementation group B. Five years before his death he complained of tinnitus. An audiogram 3 and a 1/2 years before his death demonstrated a moderate symmetrical sensorineural hearing loss at 2 to 8 kHz. The speech reception threshold was 20 dB, and the word recognition score was 100% on the right.Histopathology revealed a near normal population of inner hair cells except in the basal 5 mm of the cochlea, and mild loss of outer hair cells particularly at the base of the cochlea. Severe atrophy of the spiral ligament and atrophy of stria vascularis and spiral prominence was present. There was loss of Claudius cells, outer sulcus cells, and mesenchymal cells on the scala tympani side of the basilar membrane and loss of cellularity of the limbus. There was a moderate loss of Scarpa's and spiral ganglion neurons, with the most severe loss in the basal segment. The vestibular neuro-epithelium was nearly intact, with the exception of mild loss in the saccule. The vestibular perilymphatic, and to a lesser extent endolymphatic spaces, were filled with filamentous material and osteoid. The patient had better hearing and a larger complement of neurons compared with the few published case reports.Neurodegenerative symptoms are likely attributed to the effect of intramitochondrial reactive oxygen species. The pathogenesis of hearing loss in CS may shed light on other causes of hearing loss, such as that induced by noise.
Collapse
|
24
|
Wu Z, Zhu X, Yu Q, Xu Y, Wang Y. Multisystem analyses of two Cockayne syndrome associated proteins CSA and CSB reveal shared and unique functions. DNA Repair (Amst) 2019; 83:102696. [PMID: 31546172 DOI: 10.1016/j.dnarep.2019.102696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022]
Abstract
Mutations in the CSA and CSB genes are causative of Cockayne syndrome neurological disorder. Since the identification of indispensable functions of these two proteins in transcription-coupled repair and restoring RNA synthesis following DNA damage, the paradoxical less severe clinical symptoms reported in some CS-A patients have been puzzling. In this study we compared the effects of a CSA or a CSB defect at the levels of the cell and the intact organism. We showed that CSA-deficient zebrafish embryos exhibited modest hypersensitive to UV damage than CSB depletion. We found that loss of CSA can effectively release aggregation of mutant crystallin proteins in vitro. We described the opposite effect of CSA and CSB on neuritogenesis and elucidated the differentiated gene expression pathways regulated by these two proteins. Our data demonstrate convergent and divergent roles for CSA and CSB in DNA repair and transcription regulation and provide potential explanations for the observed differences between CS-A and CS-B patients.
Collapse
Affiliation(s)
- Zhenzhen Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China; School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xun Zhu
- The Sixth Affiliated Hospital, Guangzhou Medical University, Qingyuan, 511518, China
| | - Qian Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yingying Xu
- School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuming Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China; School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
25
|
Boetefuer EL, Lake RJ, Fan HY. Mechanistic insights into the regulation of transcription and transcription-coupled DNA repair by Cockayne syndrome protein B. Nucleic Acids Res 2019; 46:7471-7479. [PMID: 30032309 PMCID: PMC6125617 DOI: 10.1093/nar/gky660] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/10/2018] [Indexed: 12/24/2022] Open
Abstract
Cockayne syndrome protein B (CSB) is a member of the SNF2/SWI2 ATPase family and is essential for transcription-coupled nucleotide excision DNA repair (TC-NER). CSB also plays critical roles in transcription regulation. CSB can hydrolyze ATP in a DNA-dependent manner, alter protein-DNA contacts and anneal DNA strands. How the different biochemical activities of CSB are utilized in these cellular processes have only begun to become clear in recent years. Mutations in the gene encoding CSB account for majority of the Cockayne syndrome cases, which result in extreme sun sensitivity, premature aging features and/or abnormalities in neurology and development. Here, we summarize and integrate recent biochemical, structural, single-molecule and somatic cell genetic studies that have advanced our understanding of CSB. First, we review studies on the mechanisms that regulate the different biochemical activities of CSB. Next, we summarize how CSB is targeted to regulate transcription under different growth conditions. We then discuss recent advances in our understanding of how CSB regulates transcription mechanistically. Lastly, we summarize the various roles that CSB plays in the different steps of TC-NER, integrating the results of different studies and proposing a model as to how CSB facilitates TC-NER.
Collapse
Affiliation(s)
- Erica L Boetefuer
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Lake
- Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Hua-Ying Fan
- Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| |
Collapse
|
26
|
Phan T, Khalid F, Iben S. Nucleolar and Ribosomal Dysfunction-A Common Pathomechanism in Childhood Progerias? Cells 2019; 8:E534. [PMID: 31167386 PMCID: PMC6627804 DOI: 10.3390/cells8060534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/21/2019] [Accepted: 06/02/2019] [Indexed: 01/03/2023] Open
Abstract
The nucleolus organizes around the sites of transcription by RNA polymerase I (RNA Pol I). rDNA transcription by this enzyme is the key step of ribosome biogenesis and most of the assembly and maturation processes of the ribosome occur co-transcriptionally. Therefore, disturbances in rRNA transcription and processing translate to ribosomal malfunction. Nucleolar malfunction has recently been described in the classical progeria of childhood, Hutchinson-Gilford syndrome (HGPS), which is characterized by severe signs of premature aging, including atherosclerosis, alopecia, and osteoporosis. A deregulated ribosomal biogenesis with enlarged nucleoli is not only characteristic for HGPS patients, but it is also found in the fibroblasts of "normal" aging individuals. Cockayne syndrome (CS) is also characterized by signs of premature aging, including the loss of subcutaneous fat, alopecia, and cataracts. It has been shown that all genes in which a mutation causes CS, are involved in rDNA transcription by RNA Pol I. A disturbed ribosomal biogenesis affects mitochondria and translates into ribosomes with a reduced translational fidelity that causes endoplasmic reticulum (ER) stress and apoptosis. Therefore, it is speculated that disease-causing disturbances in the process of ribosomal biogenesis may be more common than hitherto anticipated.
Collapse
Affiliation(s)
- Tamara Phan
- Department of Dermatology, Ulm University, James-Franck Ring N27, 89081 Ulm, Germany.
| | - Fatima Khalid
- Department of Dermatology, Ulm University, James-Franck Ring N27, 89081 Ulm, Germany.
| | - Sebastian Iben
- Department of Dermatology, Ulm University, James-Franck Ring N27, 89081 Ulm, Germany.
| |
Collapse
|
27
|
5',8-Cyclopurine Lesions in DNA Damage: Chemical, Analytical, Biological, and Diagnostic Significance. Cells 2019; 8:cells8060513. [PMID: 31141888 PMCID: PMC6628319 DOI: 10.3390/cells8060513] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Purine 5′,8-cyclo-2′-deoxynucleosides (cPu) are tandem-type lesions observed among the DNA purine modifications and identified in mammalian cellular DNA in vivo. These lesions can be present in two diasteroisomeric forms, 5′R and 5′S, for each 2′-deoxyadenosine and 2′-deoxyguanosine moiety. They are generated exclusively by hydroxyl radical attack to 2′-deoxyribose units generating C5′ radicals, followed by cyclization with the C8 position of the purine base. This review describes the main recent achievements in the preparation of the cPu molecular library for analytical and DNA synthesis applications for the studies of the enzymatic recognition and repair mechanisms, their impact on transcription and genetic instability, quantitative determination of the levels of lesions in various types of cells and animal model systems, and relationships between the levels of lesions and human health, disease, and aging, as well as the defining of the detection limits and quantification protocols.
Collapse
|
28
|
Ferri D, Orioli D, Botta E. Heterogeneity and overlaps in nucleotide excision repair disorders. Clin Genet 2019; 97:12-24. [PMID: 30919937 DOI: 10.1111/cge.13545] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/27/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022]
Abstract
Nucleotide excision repair (NER) is an essential DNA repair pathway devoted to the removal of bulky lesions such as photoproducts induced by the ultraviolet (UV) component of solar radiation. Deficiencies in NER typically result in a group of heterogeneous distinct disorders ranging from the mild UV sensitive syndrome to the cancer-prone xeroderma pigmentosum and the neurodevelopmental/progeroid conditions trichothiodystrophy, Cockayne syndrome and cerebro-oculo-facio-skeletal-syndrome. A complicated genetic scenario underlines these disorders with the same gene linked to different clinical entities as well as different genes associated with the same disease. Overlap syndromes with combined hallmark features of different NER disorders can occur and sporadic presentations showing extra features of the hematological disorder Fanconi Anemia or neurological manifestations mimicking Hungtinton disease-like syndromes have been described. Here, we discuss the multiple functions of the five major pleiotropic NER genes (ERCC3/XPB, ERCC2/XPD, ERCC5/XPG, ERCC1 and ERCC4/XPF) and their relevance in phenotypic complexity. We provide an update of mutational spectra and examine genotype-phenotype relationships. Finally, the molecular defects that could explain the puzzling overlap syndromes are discussed.
Collapse
Affiliation(s)
- Debora Ferri
- Istituto di Genetica Molecolare (IGM), Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Donata Orioli
- Istituto di Genetica Molecolare (IGM), Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Elena Botta
- Istituto di Genetica Molecolare (IGM), Consiglio Nazionale delle Ricerche, Pavia, Italy
| |
Collapse
|
29
|
Faridounnia M, Folkers GE, Boelens R. Function and Interactions of ERCC1-XPF in DNA Damage Response. Molecules 2018; 23:E3205. [PMID: 30563071 PMCID: PMC6320978 DOI: 10.3390/molecules23123205] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 12/28/2022] Open
Abstract
Numerous proteins are involved in the multiple pathways of the DNA damage response network and play a key role to protect the genome from the wide variety of damages that can occur to DNA. An example of this is the structure-specific endonuclease ERCC1-XPF. This heterodimeric complex is in particular involved in nucleotide excision repair (NER), but also in double strand break repair and interstrand cross-link repair pathways. Here we review the function of ERCC1-XPF in various DNA repair pathways and discuss human disorders associated with ERCC1-XPF deficiency. We also overview our molecular and structural understanding of XPF-ERCC1.
Collapse
Affiliation(s)
- Maryam Faridounnia
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Gert E Folkers
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Rolf Boelens
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
30
|
Kasraian Z, Trompezinski S, Cario-André M, Morice-Picard F, Ged C, Jullie ML, Taieb A, Rezvani HR. Pigmentation abnormalities in nucleotide excision repair disorders: Evidence and hypotheses. Pigment Cell Melanoma Res 2018; 32:25-40. [PMID: 29938913 DOI: 10.1111/pcmr.12720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/11/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022]
Abstract
Skin pigmentation abnormalities are manifested in several disorders associated with deficient DNA repair mechanisms such as nucleotide excision repair (NER) and double-strand break (DSB) diseases, a topic that has not received much attention up to now. Hereditary disorders associated with defective DNA repair are valuable models for understanding mechanisms that lead to hypo- and hyperpigmentation. Owing to the UV-associated nature of abnormal pigmentary manifestations, the outcome of the activated DNA damage response (DDR) network could be the effector signal for alterations in pigmentation, ultimately manifesting as pigmentary abnormalities in repair-deficient disorders. In this review, the role of the DDR network in the manifestation of pigmentary abnormalities in NER and DSB disorders is discussed with a special emphasis on NER disorders.
Collapse
Affiliation(s)
- Zeinab Kasraian
- NAOS, Aix en Provence, France.,Univ. Bordeaux, Inserm, BMGIC, UMR 1035, Bordeaux, France
| | | | - Muriel Cario-André
- Univ. Bordeaux, Inserm, BMGIC, UMR 1035, Bordeaux, France.,Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| | - Fanny Morice-Picard
- Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France.,Service de Dermatologie Adulte et Pédiatrique, CHU de Bordeaux, Bordeaux, France
| | - Cécile Ged
- Univ. Bordeaux, Inserm, BMGIC, UMR 1035, Bordeaux, France.,Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| | | | - Alain Taieb
- Univ. Bordeaux, Inserm, BMGIC, UMR 1035, Bordeaux, France.,Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France.,Service de Dermatologie Adulte et Pédiatrique, CHU de Bordeaux, Bordeaux, France
| | - Hamid Reza Rezvani
- Univ. Bordeaux, Inserm, BMGIC, UMR 1035, Bordeaux, France.,Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
31
|
Gregersen LH, Svejstrup JQ. The Cellular Response to Transcription-Blocking DNA Damage. Trends Biochem Sci 2018; 43:327-341. [PMID: 29699641 PMCID: PMC5929563 DOI: 10.1016/j.tibs.2018.02.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/27/2022]
Abstract
In response to transcription-blocking DNA lesions such as those generated by UV irradiation, cells activate a multipronged DNA damage response. This response encompasses repair of the lesions that stall RNA polymerase (RNAP) but also a poorly understood, genome-wide shutdown of transcription, even of genes that are not damaged. Over the past few years, a number of new results have shed light on this intriguing DNA damage response at the structural, biochemical, cell biological, and systems biology level. In this review we summarize the most important findings.
Collapse
Affiliation(s)
- Lea H Gregersen
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
32
|
Thomsen K, Yokota T, Hasan-Olive MM, Sherazi N, Fakouri NB, Desler C, Regnell CE, Larsen S, Rasmussen LJ, Dela F, Bergersen LH, Lauritzen M. Initial brain aging: heterogeneity of mitochondrial size is associated with decline in complex I-linked respiration in cortex and hippocampus. Neurobiol Aging 2018; 61:215-224. [DOI: 10.1016/j.neurobiolaging.2017.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 11/30/2022]
|
33
|
Epanchintsev A, Costanzo F, Rauschendorf MA, Caputo M, Ye T, Donnio LM, Proietti-de-Santis L, Coin F, Laugel V, Egly JM. Cockayne's Syndrome A and B Proteins Regulate Transcription Arrest after Genotoxic Stress by Promoting ATF3 Degradation. Mol Cell 2017; 68:1054-1066.e6. [PMID: 29225035 DOI: 10.1016/j.molcel.2017.11.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/09/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022]
Abstract
Cockayne syndrome (CS) is caused by mutations in CSA and CSB. The CSA and CSB proteins have been linked to both promoting transcription-coupled repair and restoring transcription following DNA damage. We show that UV stress arrests transcription of approximately 70% of genes in CSA- or CSB-deficient cells due to the constitutive presence of ATF3 at CRE/ATF sites. We found that CSB, CSA/DDB1/CUL4A, and MDM2 were essential for ATF3 ubiquitination and degradation by the proteasome. ATF3 removal was concomitant with the recruitment of RNA polymerase II and the restart of transcription. Preventing ATF3 ubiquitination by mutating target lysines prevented recovery of transcription and increased cell death following UV treatment. Our data suggest that the coordinate action of CSA and CSB, as part of the ubiquitin/proteasome machinery, regulates the recruitment timing of DNA-binding factors and provide explanations about the mechanism of transcription arrest following genotoxic stress.
Collapse
Affiliation(s)
- Alexey Epanchintsev
- IGBMC, Department of Functional Genomics and Cancer, Equipe Labellisée Ligue 2014, CNRS/INSERM/University of Strasbourg, BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Federico Costanzo
- IGBMC, Department of Functional Genomics and Cancer, Equipe Labellisée Ligue 2014, CNRS/INSERM/University of Strasbourg, BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Marc-Alexander Rauschendorf
- IGBMC, Department of Functional Genomics and Cancer, Equipe Labellisée Ligue 2014, CNRS/INSERM/University of Strasbourg, BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Manuela Caputo
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, 01100 Viterbo, Italy
| | - Tao Ye
- IGBMC, Department of Functional Genomics and Cancer, Equipe Labellisée Ligue 2014, CNRS/INSERM/University of Strasbourg, BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Lise-Marie Donnio
- IGBMC, Department of Functional Genomics and Cancer, Equipe Labellisée Ligue 2014, CNRS/INSERM/University of Strasbourg, BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Luca Proietti-de-Santis
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, 01100 Viterbo, Italy
| | - Frederic Coin
- IGBMC, Department of Functional Genomics and Cancer, Equipe Labellisée Ligue 2014, CNRS/INSERM/University of Strasbourg, BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Vincent Laugel
- Laboratory of Medical Genetics, University of Strasbourg, 11 rue Humann, 67000 Strasbourg, France; Department of Pediatric Neurology, Strasbourg University Hospital, Avenue Moliere, 67098 Strasbourg Cedex, France
| | - Jean-Marc Egly
- IGBMC, Department of Functional Genomics and Cancer, Equipe Labellisée Ligue 2014, CNRS/INSERM/University of Strasbourg, BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
34
|
Donnio LM, Bidon B, Hashimoto S, May M, Epanchintsev A, Ryan C, Allen W, Hackett A, Gecz J, Skinner C, Stevenson RE, de Brouwer APM, Coutton C, Francannet C, Jouk PS, Schwartz CE, Egly JM. MED12-related XLID disorders are dose-dependent of immediate early genes (IEGs) expression. Hum Mol Genet 2017; 26:2062-2075. [PMID: 28369444 DOI: 10.1093/hmg/ddx099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/08/2017] [Indexed: 11/13/2022] Open
Abstract
Mediator occupies a key role in protein coding genes expression in mediating the contacts between gene specific factors and the basal transcription machinery but little is known regarding the role of each Mediator subunits. Mutations in MED12 are linked with a broad spectrum of genetic disorders with X-linked intellectual disability that are difficult to range as Lujan, Opitz-Kaveggia or Ohdo syndromes. Here, we investigated several MED12 patients mutations (p.R206Q, p.N898D, p.R961W, p.N1007S, p.R1148H, p.S1165P and p.R1295H) and show that each MED12 mutations cause specific expression patterns of JUN, FOS and EGR1 immediate early genes (IEGs), reflected by the presence or absence of MED12 containing complex at their respective promoters. Moreover, the effect of MED12 mutations has cell-type specificity on IEG expression. As a consequence, the expression of late responsive genes such as the matrix metalloproteinase-3 and the RE1 silencing transcription factor implicated respectively in neural plasticity and the specific expression of neuronal genes is disturbed as documented for MED12/p.R1295H mutation. In such case, JUN and FOS failed to be properly recruited at their AP1-binding site. Our results suggest that the differences between MED12-related phenotypes are essentially the result of distinct IEGs expression patterns, the later ones depending on the accurate formation of the transcription initiation complex. This might challenge clinicians to rethink the traditional syndromes boundaries and to include genetic criterion in patients' diagnostic.
Collapse
Affiliation(s)
- Lise-Marie Donnio
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Baptiste Bidon
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Satoru Hashimoto
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France.,Department of Clinical Pharmacology and Therapeutics Oita University Faculty of Medicine, Yufu city, Oita 879-5593, Japan
| | - Melanie May
- Greenwood Genetic Center, Greenwood, SC 29649, USA
| | - Alexey Epanchintsev
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Colm Ryan
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | | | | | - Jozef Gecz
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, and South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | | | | | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525?HP, The Netherlands
| | - Charles Coutton
- Département de Génétique et Procréation, Centre Hospitalier-Universitaire, Institut Albert Bonniot, CNRS/INSERM/Université Grenoble Alpes, 38000 Grenoble, France
| | - Christine Francannet
- Service de Génétique Médicale, Centre Hospitalier-Universitaire, 63003 Clermont-Ferrand, France
| | - Pierre-Simon Jouk
- Département de Génétique et Procréation, Centre Hospitalier-Universitaire, Institut Albert Bonniot, CNRS/INSERM/Université Grenoble Alpes, 38000 Grenoble, France
| | | | - Jean-Marc Egly
- Department of Functional Genomics and Cancer biology, IGBMC, CNRS/INSERM/Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| |
Collapse
|
35
|
Assfalg R, Alupei MC, Wagner M, Koch S, Gonzalez OG, Schelling A, Scharffetter-Kochanek K, Iben S. Cellular sensitivity to UV-irradiation is mediated by RNA polymerase I transcription. PLoS One 2017. [PMID: 28636660 PMCID: PMC5479586 DOI: 10.1371/journal.pone.0179843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The nucleolus has long been considered to be a pure ribosome factory. However, over the last two decades it became clear that the nucleolus is involved in numerous other functions besides ribosome biogenesis. Our experiments indicate that the activity of RNA polymerase I (Pol I) transcription monitors the integrity of the DNA and influences the response to nucleolar stress as well as the rate of survival. Cells with a repressed ribosomal DNA (rDNA) transcription activity showed an increased and prolonged p53 stabilisation after UVC-irradiation. Furthermore, p53 stabilisation after inhibition and especially after UVC-irradiation might be due to abrogation of the HDM2-p53 degradation pathway by ribosomal proteins (RPs). Apoptosis mediated by highly activated p53 is a typical hallmark of Cockayne syndrome cells and transcriptional abnormalities and the following activation of the RP-HDM2-p53 pathway would be a possible explanation.
Collapse
Affiliation(s)
- Robin Assfalg
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Marius Costel Alupei
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Maximilian Wagner
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Sylvia Koch
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Omar Garcia Gonzalez
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Adrian Schelling
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | | | - Sebastian Iben
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
36
|
Brooks PJ. The cyclopurine deoxynucleosides: DNA repair, biological effects, mechanistic insights, and unanswered questions. Free Radic Biol Med 2017; 107:90-100. [PMID: 28011151 DOI: 10.1016/j.freeradbiomed.2016.12.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022]
Abstract
Patients with the genetic disease xeroderma pigmentosum (XP) who lack the capacity to carry out nucleotides excision repair (NER) have a dramatically elevated risk of skin cancer on sun exposed areas of the body. NER is the DNA repair mechanism responsible for the removal of DNA lesions resulting from ultraviolet light. In addition, a subset of XP patients develop a progressive neurodegenerative disease, referred to as XP neurologic disease, which is thought to be the result of accumulation of endogenous DNA lesions that are repaired by NER but not other repair pathways. The 8,5-cyclopurine deoxynucleotides (cyPu) have emerged as leading candidates for such lesions, in that they result from the reaction of the hydroxyl radical with DNA, are strong blocks to transcription in human cells, and are repaired by NER but not base excision repair. Here I present a focused perspective on progress into understating the repair and biological effects of these lesions. In doing so, I emphasize the role of Tomas Lindahl and his laboratory in stimulating cyPu research. I also include a critical evaluation of the evidence supporting a role for cyPu lesions in XP neurologic disease, with a focus on outstanding questions, and conceptual and technologic challenges.
Collapse
Affiliation(s)
- Philip J Brooks
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| |
Collapse
|
37
|
Schuch AP, Moreno NC, Schuch NJ, Menck CFM, Garcia CCM. Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radic Biol Med 2017; 107:110-124. [PMID: 28109890 DOI: 10.1016/j.freeradbiomed.2017.01.029] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022]
Abstract
The routine and often unavoidable exposure to solar ultraviolet (UV) radiation makes it one of the most significant environmental DNA-damaging agents to which humans are exposed. Sunlight, specifically UVB and UVA, triggers various types of DNA damage. Although sunlight, mainly UVB, is necessary for the production of vitamin D, which is necessary for human health, DNA damage may have several deleterious consequences, such as cell death, mutagenesis, photoaging and cancer. UVA and UVB photons can be directly absorbed not only by DNA, which results in lesions, but also by the chromophores that are present in skin cells. This process leads to the formation of reactive oxygen species, which may indirectly cause DNA damage. Despite many decades of investigation, the discrimination among the consequences of these different types of lesions is not clear. However, human cells have complex systems to avoid the deleterious effects of the reactive species produced by sunlight. These systems include antioxidants, that protect DNA, and mechanisms of DNA damage repair and tolerance. Genetic defects in these mechanisms that have clear harmful effects in the exposed skin are found in several human syndromes. The best known of these is xeroderma pigmentosum (XP), whose patients are defective in the nucleotide excision repair (NER) and translesion synthesis (TLS) pathways. These patients are mainly affected due to UV-induced pyrimidine dimers, but there is growing evidence that XP cells are also defective in the protection against other types of lesions, including oxidized DNA bases. This raises a question regarding the relative roles of the various forms of sunlight-induced DNA damage on skin carcinogenesis and photoaging. Therefore, knowledge of what occurs in XP patients may still bring important contributions to the understanding of the biological impact of sunlight-induced deleterious effects on the skin cells.
Collapse
Affiliation(s)
- André Passaglia Schuch
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97110-970 Santa Maria, RS, Brazil.
| | - Natália Cestari Moreno
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil.
| | - Natielen Jacques Schuch
- Departamento de Nutrição, Centro Universitário Franciscano, 97010-032 Santa Maria, RS, Brazil.
| | - Carlos Frederico Martins Menck
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil.
| | - Camila Carrião Machado Garcia
- Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, MG, Brazil.
| |
Collapse
|
38
|
Yew YW, Giordano CN, Spivak G, Lim HW. Understanding photodermatoses associated with defective DNA repair: Photosensitive syndromes without associated cancer predisposition. J Am Acad Dermatol 2017; 75:873-882. [PMID: 27745642 DOI: 10.1016/j.jaad.2016.03.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/25/2016] [Accepted: 03/07/2016] [Indexed: 11/17/2022]
Abstract
Photodermatoses associated with defective DNA repair are a group of photosensitive hereditary skin disorders. In this review, we focus on diseases and syndromes with defective nucleotide excision repair that are not accompanied by an increased risk of cutaneous malignancies despite having photosensitivity. Specifically, the gene mutations and transcription defects, epidemiology, and clinical features of Cockayne syndrome, cerebro-oculo-facial-skeletal syndrome, ultraviolet-sensitive syndrome, and trichothiodystrophy will be discussed. These conditions may also have other extracutaneous involvement affecting the neurologic system and growth and development. Rigorous photoprotection remains an important component of the management of these inherited DNA repair-deficiency photodermatoses.
Collapse
Affiliation(s)
- Yik Weng Yew
- Department of Dermatology, National Skin Centre, Singapore
| | | | - Graciela Spivak
- Department of Biology, Stanford University, Stanford, California
| | - Henry W Lim
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan.
| |
Collapse
|
39
|
Nucleotide Excision Repair: From Neurodegeneration to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:17-39. [PMID: 28840550 DOI: 10.1007/978-3-319-60733-7_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA damage poses a constant threat to genome integrity taking a variety of shapes and arising by normal cellular metabolism or environmental insults. Human syndromes, characterized by increased cancer pre-disposition or early onset of age-related pathology and developmental abnormalities, often result from defective DNA damage responses and compromised genome integrity. Over the last decades intensive research worldwide has made important contributions to our understanding of the molecular mechanisms underlying genomic instability and has substantiated the importance of DNA repair in cancer prevention in the general population. In this chapter, we discuss Nucleotide Excision Repair pathway, the causative role of its components in disease-related pathology and recent technological achievements that decipher mutational landscapes and may facilitate pathological classification and personalized therapy.
Collapse
|
40
|
Karikkineth AC, Scheibye-Knudsen M, Fivenson E, Croteau DL, Bohr VA. Cockayne syndrome: Clinical features, model systems and pathways. Ageing Res Rev 2017; 33:3-17. [PMID: 27507608 PMCID: PMC5195851 DOI: 10.1016/j.arr.2016.08.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/29/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022]
Abstract
Cockayne syndrome (CS) is a disorder characterized by a variety of clinical features including cachectic dwarfism, severe neurological manifestations including microcephaly and cognitive deficits, pigmentary retinopathy, cataracts, sensorineural deafness, and ambulatory and feeding difficulties, leading to death by 12 years of age on average. It is an autosomal recessive disorder, with a prevalence of approximately 2.5 per million. There are several phenotypes (1-3) and two complementation groups (CSA and CSB), and CS overlaps with xeroderma pigmentosum (XP). It has been considered a progeria, and many of the clinical features resemble accelerated aging. As such, the study of CS affords an opportunity to better understand the underlying mechanisms of aging. The molecular basis of CS has traditionally been ascribed to defects in transcription and transcription-coupled nucleotide excision repair (TC-NER). However, recent work suggests that defects in base excision DNA repair and mitochondrial functions may also play key roles. This opens up the possibility for molecular interventions in CS, and by extrapolation, possibly in aging.
Collapse
Affiliation(s)
- Ajoy C Karikkineth
- Clinical Research Branch, National Institute on Aging, Baltimore, MD, USA
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA; Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Elayne Fivenson
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
41
|
Abstract
Nucleotide excision repair (NER) is a versatile pathway that removes helix-distorting DNA lesions from the genomes of organisms across the evolutionary scale, from bacteria to humans. The serial steps in NER involve recognition of lesions, adducts or structures that disrupt the DNA double helix, removal of a short oligonucleotide containing the offending lesion, synthesis of a repair patch copying the opposite undamaged strand, and ligation, to restore the DNA to its original form. Transcription-coupled repair (TCR) is a subpathway of NER dedicated to the repair of lesions that, by virtue of their location on the transcribed strands of active genes, encumber elongation by RNA polymerases. In this review, I report on recent findings that contribute to the elucidation of TCR mechanisms in the bacterium Escherichia coli, the yeast Saccharomyces cerevisiae and human cells. I review general models for the biochemical pathways and how and when cells might choose to utilize TCR or other pathways for repair or bypass of transcription-blocking DNA alterations.
Collapse
Affiliation(s)
- Graciela Spivak
- Biology Department, Stanford University, 385 Serra Mall, Stanford, CA, 94305-5020, USA.
| |
Collapse
|
42
|
Wei L, Levine AS, Lan L. Transcription-coupled homologous recombination after oxidative damage. DNA Repair (Amst) 2016; 44:76-80. [DOI: 10.1016/j.dnarep.2016.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
Ranes M, Boeing S, Wang Y, Wienholz F, Menoni H, Walker J, Encheva V, Chakravarty P, Mari PO, Stewart A, Giglia-Mari G, Snijders AP, Vermeulen W, Svejstrup JQ. A ubiquitylation site in Cockayne syndrome B required for repair of oxidative DNA damage, but not for transcription-coupled nucleotide excision repair. Nucleic Acids Res 2016; 44:5246-55. [PMID: 27060134 PMCID: PMC4914099 DOI: 10.1093/nar/gkw216] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/11/2016] [Accepted: 03/18/2016] [Indexed: 12/23/2022] Open
Abstract
Cockayne syndrome B (CSB), best known for its role in transcription-coupled nucleotide excision repair (TC-NER), contains a ubiquitin-binding domain (UBD), but the functional connection between protein ubiquitylation and this UBD remains unclear. Here, we show that CSB is regulated via site-specific ubiquitylation. Mass spectrometry analysis of CSB identified lysine (K) 991 as a ubiquitylation site. Intriguingly, mutation of this residue (K991R) does not affect CSB's catalytic activity or protein stability, but greatly affects genome stability, even in the absence of induced DNA damage. Moreover, cells expressing CSB K991R are sensitive to oxidative DNA damage, but proficient for TC-NER. K991 becomes ubiquitylated upon oxidative DNA damage, and while CSB K991R is recruited normally to such damage, it fails to dissociate in a timely manner, suggesting a requirement for K991 ubiquitylation in CSB activation. Interestingly, deletion of CSB's UBD gives rise to oxidative damage sensitivity as well, while CSB ΔUBD and CSB K991R affects expression of overlapping groups of genes, further indicating a functional connection. Together, these results shed new light on the regulation of CSB, with K991R representing an important separation-of-function-mutation in this multi-functional protein.
Collapse
Affiliation(s)
- Michael Ranes
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Stefan Boeing
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Yuming Wang
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Franziska Wienholz
- Department of Genetics, Cancer Genomics Netherlands, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Hervé Menoni
- Department of Genetics, Cancer Genomics Netherlands, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Jane Walker
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Vesela Encheva
- Protein Analysis and Proteomics Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Probir Chakravarty
- Bioinformatics & Biostatistics Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Pierre-Olivier Mari
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F-31077 Toulouse, France
| | - Aengus Stewart
- Bioinformatics & Biostatistics Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Giuseppina Giglia-Mari
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F-31077 Toulouse, France
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Wim Vermeulen
- Department of Genetics, Cancer Genomics Netherlands, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| |
Collapse
|
44
|
Wang Y, Jones-Tabah J, Chakravarty P, Stewart A, Muotri A, Laposa RR, Svejstrup JQ. Pharmacological Bypass of Cockayne Syndrome B Function in Neuronal Differentiation. Cell Rep 2016; 14:2554-61. [PMID: 26972010 PMCID: PMC4806223 DOI: 10.1016/j.celrep.2016.02.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/22/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022] Open
Abstract
Cockayne syndrome (CS) is a severe neurodevelopmental disorder characterized by growth abnormalities, premature aging, and photosensitivity. Mutation of Cockayne syndrome B (CSB) affects neuronal gene expression and differentiation, so we attempted to bypass its function by expressing downstream target genes. Intriguingly, ectopic expression of Synaptotagmin 9 (SYT9), a key component of the machinery controlling neurotrophin release, bypasses the need for CSB in neuritogenesis. Importantly, brain-derived neurotrophic factor (BDNF), a neurotrophin implicated in neuronal differentiation and synaptic modulation, and pharmacological mimics such as 7,8-dihydroxyflavone and amitriptyline can compensate for CSB deficiency in cell models of neuronal differentiation as well. SYT9 and BDNF are downregulated in CS patient brain tissue, further indicating that sub-optimal neurotrophin signaling underlies neurological defects in CS. In addition to shedding light on cellular mechanisms underlying CS and pointing to future avenues for pharmacological intervention, these data suggest an important role for SYT9 in neuronal differentiation.
Collapse
Affiliation(s)
- Yuming Wang
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, The Francis Crick Institute, South Mimms, Hertfordshire EN6 3LD, UK
| | - Jace Jones-Tabah
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Probir Chakravarty
- Bioinformatics & Biostatistics Group, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Aengus Stewart
- Bioinformatics & Biostatistics Group, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Alysson Muotri
- Department of Pediatrics, University of California, San Diego, 2800 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, 2800 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Rebecca R Laposa
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, The Francis Crick Institute, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
45
|
Di Donato N, Neuhann T, Kahlert AK, Klink B, Hackmann K, Neuhann I, Novotna B, Schallner J, Krause C, Glass IA, Parnell SE, Benet-Pages A, Nissen AM, Berger W, Altmüller J, Thiele H, Weber BHF, Schrock E, Dobyns WB, Bier A, Rump A. Mutations inEXOSC2are associated with a novel syndrome characterised by retinitis pigmentosa, progressive hearing loss, premature ageing, short stature, mild intellectual disability and distinctive gestalt. J Med Genet 2016; 53:419-25. [DOI: 10.1136/jmedgenet-2015-103511] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/12/2016] [Indexed: 02/05/2023]
|
46
|
Vessoni AT, Herai RH, Karpiak JV, Leal AMS, Trujillo CA, Quinet A, Agnez Lima LF, Menck CFM, Muotri AR. Cockayne syndrome-derived neurons display reduced synapse density and altered neural network synchrony. Hum Mol Genet 2016; 25:1271-80. [PMID: 26755826 DOI: 10.1093/hmg/ddw008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/06/2016] [Indexed: 01/04/2023] Open
Abstract
Cockayne syndrome (CS) is a rare genetic disorder in which 80% of cases are caused by mutations in the Excision Repair Cross-Complementation group 6 gene (ERCC6). The encoded ERCC6 protein is more commonly referred to as Cockayne Syndrome B protein (CSB). Classical symptoms of CS patients include failure to thrive and a severe neuropathology characterized by microcephaly, hypomyelination, calcification and neuronal loss. Modeling the neurological aspect of this disease has proven difficult since murine models fail to mirror classical neurological symptoms. Therefore, a robust human in vitro cellular model would advance our fundamental understanding of the disease and reveal potential therapeutic targets. Herein, we successfully derived functional CS neural networks from human CS induced pluripotent stem cells (iPSCs) providing a new tool to facilitate studying this devastating disease. We identified dysregulation of the Growth Hormone/Insulin-like Growth Factor-1 (GH/IGF-1) pathway as well as pathways related to synapse formation, maintenance and neuronal differentiation in CSB neurons using unbiased RNA-seq gene expression analyses. Moreover, when compared to unaffected controls, CSB-deficient neural networks displayed altered electrophysiological activity, including decreased synchrony, and reduced synapse density. Collectively, our work reveals that CSB is required for normal neuronal function and we have established an alternative to previously available models to further study neural-specific aspects of CS.
Collapse
Affiliation(s)
- Alexandre T Vessoni
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular and Molecular Medicine, Stem Cell Program, University of California San Diego, School of Medicine, La Jolla, CA 92037, USA, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Roberto H Herai
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular and Molecular Medicine, Stem Cell Program, University of California San Diego, School of Medicine, La Jolla, CA 92037, USA, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil and
| | - Jerome V Karpiak
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular and Molecular Medicine, Stem Cell Program, University of California San Diego, School of Medicine, La Jolla, CA 92037, USA
| | - Angelica M S Leal
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular and Molecular Medicine, Stem Cell Program, University of California San Diego, School of Medicine, La Jolla, CA 92037, USA, Department of Cell Biology and Genetics, Center of Biosciences Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil
| | - Cleber A Trujillo
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular and Molecular Medicine, Stem Cell Program, University of California San Diego, School of Medicine, La Jolla, CA 92037, USA
| | - Annabel Quinet
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Lucymara F Agnez Lima
- Department of Cell Biology and Genetics, Center of Biosciences Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil
| | - Carlos F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular and Molecular Medicine, Stem Cell Program, University of California San Diego, School of Medicine, La Jolla, CA 92037, USA,
| |
Collapse
|
47
|
Abstract
The demonstration of DNA damage excision and repair replication by Setlow, Howard-Flanders, Hanawalt and their colleagues in the early 1960s, constituted the discovery of the ubiquitous pathway of nucleotide excision repair (NER). The serial steps in NER are similar in organisms from unicellular bacteria to complex mammals and plants, and involve recognition of lesions, adducts or structures that disrupt the DNA double helix, removal of a short oligonucleotide containing the offending lesion, synthesis of a repair patch copying the opposite undamaged strand, and ligation, to restore the DNA to its original form. The transcription-coupled repair (TCR) subpathway of NER, discovered nearly two decades later, is dedicated to the removal of lesions from the template DNA strands of actively transcribed genes. In this review I will outline the essential factors and complexes involved in NER in humans, and will comment on additional factors and metabolic processes that affect the efficiency of this important process.
Collapse
Affiliation(s)
- Graciela Spivak
- Department of Biology, Stanford University, Stanford, CA 94305-5020,USA.
| |
Collapse
|
48
|
Wilson BT, Stark Z, Sutton RE, Danda S, Ekbote AV, Elsayed SM, Gibson L, Goodship JA, Jackson AP, Keng WT, King MD, McCann E, Motojima T, Murray JE, Omata T, Pilz D, Pope K, Sugita K, White SM, Wilson IJ. The Cockayne Syndrome Natural History (CoSyNH) study: clinical findings in 102 individuals and recommendations for care. Genet Med 2015. [PMID: 26204423 PMCID: PMC4857186 DOI: 10.1038/gim.2015.110] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose: Cockayne syndrome (CS) is a rare, autosomal-recessive disorder characterized by microcephaly, impaired postnatal growth, and premature pathological aging. It has historically been considered a DNA repair disorder; fibroblasts from classic patients often exhibit impaired transcription-coupled nucleotide excision repair. Previous studies have largely been restricted to case reports and small series, and no guidelines for care have been established. Genet Med18 5, 483–493. Methods: One hundred two study participants were identified through a network of collaborating clinicians and the Amy and Friends CS support groups. Families with a diagnosis of CS could also self-recruit. Comprehensive clinical information for analysis was obtained directly from families and their clinicians. Genet Med18 5, 483–493. Results and Conclusion: We present the most complete evaluation of Cockayne syndrome to date, including detailed information on the prevalence and onset of clinical features, achievement of neurodevelopmental milestones, and patient management. We confirm that the most valuable prognostic factor in CS is the presence of early cataracts. Using this evidence, we have created simple guidelines for the care of individuals with CS. We aim to assist clinicians in the recognition, diagnosis, and management of this condition and to enable families to understand what problems they may encounter as CS progresses. Genet Med18 5, 483–493.
Collapse
Affiliation(s)
- Brian T Wilson
- Northern Genetics Service, Newcastle Upon Tyne NHS Foundation Trust, International Centre for Life, Newcastle upon Tyne, UK.,Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - Zornitza Stark
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Ruth E Sutton
- Northern Genetics Service, Newcastle Upon Tyne NHS Foundation Trust, International Centre for Life, Newcastle upon Tyne, UK
| | - Sumita Danda
- Clinical Genetics Unit, Christian Medical College, Vellore, India
| | - Alka V Ekbote
- Clinical Genetics Unit, Christian Medical College, Vellore, India
| | - Solaf M Elsayed
- Medical Genetics Center, Korba, Cairo, Egypt.,Children's Hospital, Ain Shams University, Cairo, Egypt
| | - Louise Gibson
- Paediatrics & Child Health, University College Cork, Cork, Republic of Ireland
| | - Judith A Goodship
- Northern Genetics Service, Newcastle Upon Tyne NHS Foundation Trust, International Centre for Life, Newcastle upon Tyne, UK.,Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - Andrew P Jackson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Wee Teik Keng
- Clinical Genetics, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Mary D King
- Paediatric Neurology, Temple Street Children's University Hospital, Dublin, Republic of Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Republic of Ireland
| | - Emma McCann
- Department of Clinical Genetics, Glan Clwyd Hospital, Rhyl, Denbighshire, UK
| | - Toshino Motojima
- Division of Child Neurology, Chiba Children's Hospital, Chiba, Japan
| | - Jennifer E Murray
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Taku Omata
- Division of Child Neurology, Chiba Children's Hospital, Chiba, Japan
| | - Daniela Pilz
- Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
| | - Kate Pope
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Katsuo Sugita
- Division of Child Health, Faculty of Education, Chiba University, Chiba, Japan
| | - Susan M White
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Ian J Wilson
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| |
Collapse
|
49
|
Regulation of Transcription Elongation by the XPG-TFIIH Complex Is Implicated in Cockayne Syndrome. Mol Cell Biol 2015; 35:3178-88. [PMID: 26149386 DOI: 10.1128/mcb.01401-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/23/2015] [Indexed: 11/20/2022] Open
Abstract
XPG is a causative gene underlying the photosensitive disorder xeroderma pigmentosum group G (XP-G) and is involved in nucleotide excision repair. Here, we show that XPG knockdown represses epidermal growth factor (EGF)-induced FOS transcription at the level of transcription elongation with little effect on EGF signal transduction. XPG interacted with transcription elongation factors in concert with TFIIH, suggesting that the XPG-TFIIH complex serves as a transcription elongation factor. The XPG-TFIIH complex was recruited to promoter and coding regions of both EGF-induced (FOS) and housekeeping (EEF1A1) genes. Further, EGF-induced recruitment of RNA polymerase II and TFIIH to FOS was reduced by XPG knockdown. Importantly, EGF-induced FOS transcription was markedly lower in XP-G/Cockayne syndrome (CS) cells expressing truncated XPG than in control cells expressing wild-type (WT) XPG, with less significant decreases in XP-G cells with XPG nuclease domain mutations. In corroboration of this finding, both WT XPG and a missense XPG mutant from an XP-G patient were recruited to FOS upon EGF stimulation, but an XPG mutant mimicking a C-terminal truncation from an XP-G/CS patient was not. These results suggest that the XPG-TFIIH complex is involved in transcription elongation and that defects in this association may partly account for Cockayne syndrome in XP-G/CS patients.
Collapse
|
50
|
Spivak G, Hanawalt PC. Photosensitive human syndromes. Mutat Res 2015; 776:24-30. [PMID: 26255937 PMCID: PMC4531261 DOI: 10.1016/j.mrfmmm.2014.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/17/2014] [Accepted: 11/06/2014] [Indexed: 02/06/2023]
Abstract
Photosensitivity in humans can result from defects in repair of light-induced DNA lesions, from photoactivation of chemicals (including certain medications) with sunlight to produce toxic mediators, and by immune reactions to sunlight exposures. Deficiencies in DNA repair and the processing of damaged DNA during replication and transcription may result in mutations and genomic instability. We will review current understanding of photosensitivity to short wavelength ultraviolet light (UV) due to genetic defects in particular DNA repair pathways; deficiencies in some are characterized by an extremely high incidence of cancer in sun-exposed tissues, while in others no cancers have been reported.
Collapse
Affiliation(s)
- Graciela Spivak
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|