1
|
Da Motta SAB, Furlani NR, Lourenço AC, Junior SXS, Rezende JCR, Hannas MI. SID Trp-Lys Ratio on Pig Performance and Immune Response After LPS Challenge. Animals (Basel) 2025; 15:1194. [PMID: 40362009 PMCID: PMC12071063 DOI: 10.3390/ani15091194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 05/15/2025] Open
Abstract
This study aimed to evaluate the effects of the standardized ileal digestible tryptophan-to-lysine (SID Trp-Lys) ratio through the supplementation of different levels of L-tryptophan on pig performance and immune response following an LPS challenge. A total of 120 entire male pigs, with an average body weight of 16.5 ± 0.50 kg, were allocated in a randomized block design with four treatments, ten replicates per treatment, and three animals per experimental unit. The experimental treatments consisted of SID Trp-Lys ratios of 16%, 18%, 21%, and 24%, achieved through L-tryptophan supplementation. The evaluated performance parameters included the final body weight (BW), average daily gain (ADG), average daily feed intake (ADFI), and feed conversion ratio (FCR). Blood samples were collected on day 21 to determine serum serotonin levels, and on day 26, pigs were inoculated with LPS to induce an immune challenge, followed by blood sampling to assess cytokine responses. The results showed that pigs fed the 16% SID Trp-Lys ratio exhibited a lower FBW (p < 0.05). The SID Trp-Lys ratios influenced performance parameters, with quadratic responses (p < 0.05) observed for the FBW and FCR, where the highest FBW and lowest FCR were recorded at 22.05% and 21% SID Trp-Lys, respectively. A linear increase (p < 0.05) was observed for ADG, with a trend for a linear increase (p = 0.056) in ADFI. No effects (p > 0.10) of the SID Trp-Lys ratios were detected on serum serotonin levels. An increase in cytokine levels (GM-CSF, IFN-γ, IL-1α, IL-1β, IL-1ra, IL-4, IL-6, IL-8, IL-10, IL-12, IL-18, and TNF-α) was observed in pigs challenged with LPS (p < 0.10) compared to non-challenged animals. An interaction effect (p < 0.10) was detected for IL-2 and IL-18. SID Trp-Lys ratios between 21% and 24% optimize growth performance in pigs from 16 to 33 kg and modulate the immune response under LPS-induced challenge conditions.
Collapse
Affiliation(s)
- Stephane Alverina Briguente Da Motta
- Department of Animal Science, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (S.A.B.D.M.); (N.R.F.); (A.C.L.); (S.X.S.J.)
| | - Nathana Rudio Furlani
- Department of Animal Science, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (S.A.B.D.M.); (N.R.F.); (A.C.L.); (S.X.S.J.)
| | - Antonio Carlos Lourenço
- Department of Animal Science, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (S.A.B.D.M.); (N.R.F.); (A.C.L.); (S.X.S.J.)
| | - Sergio Xavier Silva Junior
- Department of Animal Science, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (S.A.B.D.M.); (N.R.F.); (A.C.L.); (S.X.S.J.)
| | | | - Melissa Izabel Hannas
- Department of Animal Science, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (S.A.B.D.M.); (N.R.F.); (A.C.L.); (S.X.S.J.)
| |
Collapse
|
2
|
Lee J, Park S, Park H, Hong J, Kim Y, Jeong Y, Sa S, Choi Y, Kim J. Heat Stress in Growing-Finishing Pigs: Effects of Low Protein with Increased Crystalline Amino Acids on Growth, Gut Health, Antioxidant Status and Microbiome. Animals (Basel) 2025; 15:848. [PMID: 40150377 PMCID: PMC11939231 DOI: 10.3390/ani15060848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/05/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
A total of sixty crossbred ([Landrace × Yorkshire] × Duroc) pigs with an initial body weight of 46.34 ± 0.13 kg were randomly assigned to four treatments under thermoneutral (TN, 22 °C) or heat-stress (HS, 31 °C) conditions for 54 d trial (Phase 1: 0-26 d; Phase 2: 27-54 d): a control diet (16% CP in phase 1, 14% CP in phase 2) under TN (PC), a control diet under HS (NC), a low crude protein (LCP) diet (14% CP in phase 1, 12% CP in phase 2) under HS (LCP) and an LCP diet with increased crystalline AA (an increase in 5% in Lys, Met, Thr and Trp based on calculated SID AA) (LCP5) under HS. Experimental treatments consisted of five replicate pens, with three pigs per pen. The results showed that HS reduced (p < 0.05) growth performance and nutrient digestibility compared to TN. However, LCP5 improved (p < 0.05) growth performance and nutrient digestibility compared to other HS groups. Heat stress adversely affected (p < 0.05) intestinal morphology, gut integrity and serum oxidative markers, but these effects were alleviated (p < 0.05) by LCP5 supplementation. Notably, LCP5 improved (p < 0.05) the production of butyric acids among short-chain fatty acid production and decreased (p < 0.05) proteobacteria and Spirochaetota in phylum in feces. These findings highlight the potential of LCP diets supplemented with crystalline AA as an effective nutritional strategy to mitigate the negative effects of HS on pigs, enhancing their performance, gut health and overall welfare in high-temperature environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yohan Choi
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea; (J.L.); (S.P.); (H.P.); (J.H.); (Y.K.); (Y.J.); (S.S.)
| | - Joeun Kim
- Correspondence: (Y.C.); (J.K.); Tel.: +82-041-580-3454 (Y.C. & J.K.)
| |
Collapse
|
3
|
Gonçalves JPR, Melo ADB, Yang Q, de Oliveira MJK, Marçal DA, Ortiz MT, Righetti Arnaut P, França I, Alves da Cunha Valini G, Silva CA, Korth N, Pavlovikj N, Campos PHRF, Brand HG, Htoo JK, Gomes-Neto JC, Benson AK, Hauschild L. Increased Dietary Trp, Thr, and Met Supplementation Improves Performance, Health, and Protein Metabolism of Weaned Piglets under Mixed Management and Poor Housing Conditions. Animals (Basel) 2024; 14:1143. [PMID: 38672291 PMCID: PMC11047353 DOI: 10.3390/ani14081143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
A sanitary challenge was carried out to induce suboptimal herd health while investigating the effect of amino acids supplementation on piglet responses. Weaned piglets of high sanitary status (6.33 ± 0.91 kg of BW) were distributed in a 2 × 2 factorial arrangement into two similar facilities with contrasting sanitary conditions and two different diets. Our results suggest that increased Trp, Thr, and Met dietary supplementation could support the immune systems of piglets under a sanitary challenge. In this manner, AA+ supplementation improved the performance and metabolism of piglets under mixed management and poor sanitary conditions. No major temporal microbiome changes were associated with differences in performance regardless of sanitary conditions or diets. Since piglets often become mixed in multiple-site production systems and facility hygiene is also often neglected, this study suggests that increased Trp, Thr, and Met (AA+) dietary supplementation could contribute to mitigating the side effects of these harmful risk factors in modern pig farms.
Collapse
Affiliation(s)
- Joseane Penteado Rosa Gonçalves
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Antonio Diego Brandão Melo
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (Q.Y.); (N.K.); (J.C.G.-N.); (A.K.B.)
| | - Qinnan Yang
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (Q.Y.); (N.K.); (J.C.G.-N.); (A.K.B.)
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Marllon José Karpeggiane de Oliveira
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Danilo Alves Marçal
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Manoela Trevisan Ortiz
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Pedro Righetti Arnaut
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Ismael França
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Graziela Alves da Cunha Valini
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Cleslei Alisson Silva
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Nate Korth
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (Q.Y.); (N.K.); (J.C.G.-N.); (A.K.B.)
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Natasha Pavlovikj
- Holland Computing Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | | | | | | | - João Carlos Gomes-Neto
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (Q.Y.); (N.K.); (J.C.G.-N.); (A.K.B.)
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Animal Science, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew K. Benson
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (Q.Y.); (N.K.); (J.C.G.-N.); (A.K.B.)
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Luciano Hauschild
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| |
Collapse
|
4
|
Duarte ME, Parnsen W, Zhang S, Abreu MLT, Kim SW. Low crude protein formulation with supplemental amino acids for its impacts on intestinal health and growth performance of growing-finishing pigs. J Anim Sci Biotechnol 2024; 15:55. [PMID: 38528636 PMCID: PMC10962153 DOI: 10.1186/s40104-024-01015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/14/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Low crude protein (CP) formulations with supplemental amino acids (AA) are used to enhance intestinal health, reduce costs, minimize environmental impact, and maintain growth performance of pigs. However, extensive reduction of dietary CP can compromise growth performance due to limited synthesis of non-essential AA and limited availability of bioactive compounds from protein supplements even when AA requirements are met. Moreover, implementing a low CP formulation can increase the net energy (NE) content in feeds causing excessive fat deposition. Additional supplementation of functional AA, coupled with low CP formulation could further enhance intestinal health and glucose metabolism, improving nitrogen utilization, and growth performance. Three experiments were conducted to evaluate the effects of low CP formulations with supplemental AA on the intestinal health and growth performance of growing-finishing pigs. METHODS In Exp. 1, 90 pigs (19.7 ± 1.1 kg, 45 barrows and 45 gilts) were assigned to 3 treatments: CON (18.0% CP, supplementing Lys, Met, and Thr), LCP (16.0% CP, supplementing Lys, Met, Thr, Trp, and Val), and LCPT (16.1% CP, LCP + 0.05% SID Trp). In Exp. 2, 72 pigs (34.2 ± 4.2 kg BW) were assigned to 3 treatments: CON (17.7% CP, meeting the requirements of Lys, Met, Thr, and Trp); LCP (15.0% CP, meeting Lys, Thr, Trp, Met, Val, Ile, and Phe); and VLCP (12.8% CP, meeting Lys, Thr, Trp, Met, Val, Ile, Phe, His, and Leu). In Exp. 3, 72 pigs (54.1 ± 5.9 kg BW) were assigned to 3 treatments and fed experimental diets for 3 phases (grower 2, finishing 1, and finishing 2). Treatments were CON (18.0%, 13.8%, 12.7% CP for 3 phases; meeting Lys, Met, Thr, and Trp); LCP (13.5%, 11.4%, 10.4% CP for 3 phases; meeting Lys, Thr, Trp, Met, Val, Ile, and Phe); and LCPG (14.1%, 12.8%, 11.1% CP for 3 phases; LCP + Glu to match SID Glu with CON). All diets had 2.6 Mcal/kg NE. RESULTS In Exp. 1, overall, the growth performance did not differ among treatments. The LCPT increased (P < 0.05) Claudin-1 expression in the duodenum and jejunum. The LCP and LCPT increased (P < 0.05) CAT-1, 4F2hc, and B0AT expressions in the jejunum. In Exp. 2, overall, the VLCP reduced (P < 0.05) G:F and BUN. The LCP and VLCP increased (P < 0.05) the backfat thickness (BFT). In Exp. 3, overall, growth performance and BFT did not differ among treatments. The LCPG reduced (P < 0.05) BUN, whereas increased the insulin in plasma. The LCP and LCPG reduced (P < 0.05) the abundance of Streptococcaceae, whereas the LCP reduced (P < 0.05) Erysipelotrichaceae, and the alpha diversity. CONCLUSIONS When implementing low CP formulation, CP can be reduced by supplementation of Lys, Thr, Met, Trp, Val, and Ile without affecting the growth performance of growing-finishing pigs when NE is adjusted to avoid increased fat deposition. Supplementation of Trp above the requirement or supplementation of Glu in low CP formulation seems to benefit intestinal health as well as improved nitrogen utilization and glucose metabolism.
Collapse
Affiliation(s)
- Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Wanpuech Parnsen
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Shihai Zhang
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Márvio L T Abreu
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
5
|
Wang J, Ding L, Yu X, Wu F, Zhang J, Chen P, Qian S, Wang M. Tryptophan improves antioxidant capability and meat quality by reducing responses to stress in nervous Hu sheep. Meat Sci 2023; 204:109267. [PMID: 37392733 DOI: 10.1016/j.meatsci.2023.109267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
In sheep, the effect of tryptophan (Trp) on behavioural traits that are associated with temperament and any effects on production traits is unknown. The hypothesis of this study is that the supplementation of Trp would improve temperament by enhancing serotonin production, which is beneficial to meat production subsequently in sheep. Twelve ewes that had the lowest and 12 ewes that had the highest behavioural responses to human contact were selected into the calm and the nervous groups respectively. Then, the ewes from each group were equally assigned into two treatments that were treated with the basal diet and the diet with extra 90 mg/kg/d Trp for 30 d. The temperament traits, the growth performance, the biochemicals that are related to health the slaughter performance and meat quality were measured at the end of feeding experiment. The findings in this study suggested the Hu sheep with calm temperament would experience less stress during production, resulting in less oxidative stress, better growth performance, slaughter traits and carcass traits, compared to the nervous sheep. Meanwhile, the dietary supplementation of Trp reduced stress responses by enhancing production of 5-HT in sheep from the nervous group which is beneficial to improve the production traits that mentioned above.
Collapse
Affiliation(s)
- Jiasheng Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Luoyang Ding
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; School of Agriculture and Environment, The University of Western Australia, Perth 6009, WA, Australia; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, Xinjiang, China
| | - Xiang Yu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Feifan Wu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jinying Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Peigen Chen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shuhan Qian
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
6
|
de Paula VRC, Pasquetti TJ, de Oliveira NTE, Tanamati W, Silveira RMF, Pozza PC. Standardized ileal digestible tryptophan and lysine affects the eating and sleeping behavior of 15-30 kg barrows. Trop Anim Health Prod 2023; 55:309. [PMID: 37731057 DOI: 10.1007/s11250-023-03734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
The objective of this study was to evaluate the effect of standardized ileal digestible (SID) tryptophan (Trp) and lysine (Lys) levels on eating and sleeping behavior and the respective feed intake of barrows. Sixty-four pigs, averaging 15.00 ± 1.63 kg of initial body weight, were used and distributed in a randomized blocks design, in a 4 × 4 factorial scheme, consisting of four levels of SID Trp (0.155, 0.185, 0.215, 0.245%) and four levels of SID Lys (0.972, 1.112, 1.252, and 1.392%). Behavior evaluation was performed by an instantaneous sampling using 10-min intervals during 24 h, at each 7 days (days 7, 14, and 21), and each day was divided into four times of 6 h each one (08:30-14:20, 14:30-20:20, 20:30-02:20, and 02:30-08:20 h), during all the experimental period, yielding a total of 3 × 24 h behavior recordings (72 h) × 6 10-min intervals, totalizing 432 observations per animal. Data were analyzed by classifying behavior into eating or sleeping. All these behaviors were measured in order to obtain the estimated frequency of the eating and sleeping behaviors. Changes were observed (P<0.05) for all the behavioral parameters during the starting phase. SID Trp and SID Lys showed an interactive positive effect on the estimated frequency of eating behavior, and mainly SID Trp increased the estimated frequency of the sleeping behavior of starting pigs in the nocturnal time. Pig diets with increasing levels of SID Trp and SID Lys until 0.245 and 1.392%, respectively, increased the average daily feed intake, and the interaction of the amino acids increased the estimated frequency of eating behavior during all the starting phase, and mainly the increasing levels of SID Trp increased the estimated frequency of sleeping behavior of pigs from the middle to the end of the starting phase, from 2:30 to 8:20 h.
Collapse
Affiliation(s)
- Vinicius Ricardo Cambito de Paula
- Institute of Agricultural and Environmental Sciences (ICAA), Federal University of Mato Grosso (UFMT), Av. Alexandre Ferronato, 1200, 78550-728, Sinop, Mato Grosso, Brazil
| | - Tiago Junior Pasquetti
- Department of Animal Science, State University of Maringá (UEM), Av. Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Newton Tavares Escocard de Oliveira
- Department of Animal Science, Western Parana State University (UNIOESTE), St. Pernambuco, 1777, 85960-000, Marechal Candido Rondon, Paraná, Brazil
| | - Wesley Tanamati
- Department of Animal Science, State University of Maringá (UEM), Av. Colombo, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Robson Mateus Freitas Silveira
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Paulo Cesar Pozza
- Department of Animal Science, State University of Maringá (UEM), Av. Colombo, 5790, 87020-900, Maringá, Paraná, Brazil.
| |
Collapse
|
7
|
Li S, Liu M, Cao S, Liu B, Li D, Wang Z, Sun H, Cui Y, Shi Y. The Mechanism of the Gut-Brain Axis in Regulating Food Intake. Nutrients 2023; 15:3728. [PMID: 37686760 PMCID: PMC10490484 DOI: 10.3390/nu15173728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
With the increasing prevalence of energy metabolism disorders such as diabetes, cardiovascular disease, obesity, and anorexia, the regulation of feeding has become the focus of global attention. The gastrointestinal tract is not only the site of food digestion and absorption but also contains a variety of appetite-regulating signals such as gut-brain peptides, short-chain fatty acids (SCFAs), bile acids (BAs), bacterial proteins, and cellular components produced by gut microbes. While the central nervous system (CNS), as the core of appetite regulation, can receive and integrate these appetite signals and send instructions to downstream effector organs to promote or inhibit the body's feeding behaviour. This review will focus on the gut-brain axis mechanism of feeding behaviour, discussing how the peripheral appetite signal is sensed by the CNS via the gut-brain axis and the role of the central "first order neural nuclei" in the process of appetite regulation. Here, elucidation of the gut-brain axis mechanism of feeding regulation may provide new strategies for future production practises and the treatment of diseases such as anorexia and obesity.
Collapse
Affiliation(s)
- Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Hao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| |
Collapse
|
8
|
Kiernan DP, O'Doherty JV, Connolly KR, Ryan M, Sweeney T. Exploring the Differential Expression of a Set of Key Genes Involved in the Regulation and Functioning of the Stomach in the Post-Weaned Pig. Vet Sci 2023; 10:473. [PMID: 37505877 PMCID: PMC10386345 DOI: 10.3390/vetsci10070473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Despite playing a key role in digestion, there is only a broad characterization of the spatiotemporal development of the three glandular regions of the stomach (cardiac, fundic and pyloric) in the weaned pig. Hence, the objective of this experiment was to explore the differential expression (DE) of a panel of key genes within the three glandular regions of the stomach. Eight pigs were sacrificed at d 8 post-weaning, and three mucosal samples were collected from each stomach's glandular regions. The expression of a panel of genes were measured using QPCR. The true cardiac gland region was characterized by increased expression of PIGR, OLFM4, CXCL8 and MUC2 relative to the two other regions (p < 0.05). The fundic gland region was characterized by increased expression of ATP4A, CLIC6, KCNQ1, HRH2, AQP4, HDC, CCKBR, CHIA, PGA5, GHRL and MBOAT4 compared to the two other regions (p < 0.05). The pyloric gland region was characterized by exclusive expression of GAST (p < 0.05). A transition region between the cardiac and fundic region (cardiac-to-oxyntic transition) was observed with a gene expression signature that resembles a cross of the signatures found in the two regions. In conclusion, unique gene expression signatures were identifiable in each of the glandular regions, with a cardiac-to-oxyntic transition region clearly identifiable in the post-weaned pigs' stomachs.
Collapse
Affiliation(s)
- Dillon P Kiernan
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| | - John V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| | - Kathryn Ruth Connolly
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| | - Marion Ryan
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| |
Collapse
|
9
|
Spinler MS, Tolosa AF, Gebhardt JT, Tokach MD, Goodband RD, DeRouchey JM, Coble KF, Woodworth JC. Comparing tryptophan:lysine ratios in dried distillers grains with solubles-based diets with and without a dried distillers grains with solubles withdrawal strategy on growth, carcass characteristics, and carcass fat iodine value of growing-finishing pigs. J Anim Sci 2023; 101:skad245. [PMID: 37466169 PMCID: PMC10393200 DOI: 10.1093/jas/skad245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
A total of 6,240 finishing pigs (DNA 600 × PIC 1050; initially 22.5 ± 1.00 kg), divided into two groups, were used in a 119 or 120 d study comparing increasing Trp:Lys ratio in diets containing dried distillers grains with solubles (DDGS) or a DDGS withdrawal strategy (removing all DDGS from the last phase before marketing) on growth performance and carcass fat iodine value (IV). Pigs were randomly allotted to one of seven dietary treatments with 30 to 36 pigs per pen and 26 replications per treatment. Diets were fed in four phases, approximately 23 to 44, 44 to 71, 71 to 100, and 100 kg to market. Diets included a control corn-soybean meal-based diet (no DDGS) formulated to a 19% standardized ileal digestibility (SID) Trp:Lys ratio, four diets with 30% DDGS fed in all four phases and formulated to provide SID Trp:Lys ratios of 16%, 19%, 22%, or 25%, and two DDGS withdrawal strategy diets: 19% SID Trp:Lys with 30% DDGS in phases 1 through 3 and then 0% DDGS in phase 4 with either a 19% or 25% Trp:Lys ratio. Overall, body weight (BW), average daily gain (ADG), average daily feed intake (ADFI), and gain:feed ratio (G:F) increased (linear, P < 0.05) as SID Trp:Lys ratio increased in diets with 30% DDGS fed in all phases. Simultaneously, hot carcass weight (quadratic, P = 0.014), carcass yield (quadratic, P = 0.012), and backfat depth (linear, P = 0.040) increased with increasing Trp:Lys ratio. Pigs fed the 19% SID Trp:Lys ratio withdrawal strategy diet had similar ADG and ADFI as those fed the control diet, the 25% Trp:Lys withdrawal diet, or the 30% DDGS diets with 25% Trp:Lys ratio throughout the study. Pigs fed the control diet had decreased (P < 0.05) carcass fat IV compared to pigs fed the DDGS diets throughout the study, with pigs fed the two DDGS withdrawal strategy diets intermediate. In summary, increasing the SID Trp:Lys ratio in diets with 30% DDGS resulted in a linear increase in ADG, ADFI, G:F, and BW but did not influence carcass fat IV, with most of the benefits observed as diets increased from 16% to 19% Trp:Lys. Removing DDGS from the diet in the last period reduced carcass fat IV and increased growth rate during the withdrawal period compared to pigs fed with 30% DDGS throughout, indicating value in a withdrawal strategy.
Collapse
Affiliation(s)
- Mikayla S Spinler
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Andres F Tolosa
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | | | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
10
|
Canibe N, Højberg O, Kongsted H, Vodolazska D, Lauridsen C, Nielsen TS, Schönherz AA. Review on Preventive Measures to Reduce Post-Weaning Diarrhoea in Piglets. Animals (Basel) 2022; 12:2585. [PMID: 36230326 PMCID: PMC9558551 DOI: 10.3390/ani12192585] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023] Open
Abstract
In many countries, medical levels of zinc (typically as zinc oxide) are added to piglet diets in the first two weeks post-weaning to prevent the development of post-weaning diarrhoea (PWD). However, high levels of zinc constitute an environmental polluting agent, and may contribute to the development and/or maintenance of antimicrobial resistance (AMR) among bacteria. Consequently, the EU banned administering medical levels of zinc in pig diets as of June 2022. However, this may result in an increased use of antibiotic therapeutics to combat PWD and thereby an increased risk of further AMR development. The search for alternative measures against PWD with a minimum use of antibiotics and in the absence of medical levels of zinc has therefore been intensified over recent years, and feed-related measures, including feed ingredients, feed additives, and feeding strategies, are being intensively investigated. Furthermore, management strategies have been developed and are undoubtedly relevant; however, these will not be addressed in this review. Here, feed measures (and vaccines) are addressed, these being probiotics, prebiotics, synbiotics, postbiotics, proteobiotics, plants and plant extracts (in particular essential oils and tannins), macroalgae (particularly macroalgae-derived polysaccharides), dietary fibre, antimicrobial peptides, specific amino acids, dietary fatty acids, milk replacers, milk components, creep feed, vaccines, bacteriophages, and single-domain antibodies (nanobodies). The list covers measures with a rather long history and others that require significant development before their eventual use can be extended. To assess the potential of feed-related measures in combating PWD, the literature reviewed here has focused on studies reporting parameters of PWD (i.e., faeces score and/or faeces dry matter content during the first two weeks post-weaning). Although the impact on PWD (or related parameters) of the investigated measures may often be inconsistent, many studies do report positive effects. However, several studies have shown that control pigs do not suffer from diarrhoea, making it difficult to evaluate the biological and practical relevance of these improvements. From the reviewed literature, it is not possible to rank the efficacy of the various measures, and the efficacy most probably depends on a range of factors related to animal genetics and health status, additive doses used, composition of the feed, etc. We conclude that a combination of various measures is probably most recommendable in most situations. However, in this respect, it should be considered that combining strategies may lead to additive (e.g., synbiotics), synergistic (e.g., plant materials), or antagonistic (e.g., algae compounds) effects, requiring detailed knowledge on the modes of action in order to design effective strategies.
Collapse
Affiliation(s)
- Nuria Canibe
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | | | | | | | | | | | | |
Collapse
|
11
|
Müller M, Van Liefferinge E, Navarro M, Garcia-Puig E, Tilbrook A, van Barneveld R, Roura E. CCK and GLP-1 release in response to proteinogenic amino acids using a small intestine ex vivo model in pigs. J Anim Sci 2022; 100:6552238. [PMID: 35323927 PMCID: PMC9030139 DOI: 10.1093/jas/skac093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/18/2022] [Indexed: 12/03/2022] Open
Abstract
The impact of individual amino acids (AA) on gut hormone secretion and appetite regulation in pigs remains largely unknown. The aim of the present study was to determine the effect of the 20 proteinogenic AA on the release of the anorexigenic hormones cholecystokinin (CCK) and glucagon-like peptide 1 (GLP-1) in postweaning pigs. Six 25-d-old male piglets (Domestic Landrace × Large White; body weight = 6.94 ± 0.29 kg) were humanely killed for the collection of intestinal segments from the duodenum, jejunum, and ileum. Tissue samples from the three intestinal segments were used to determine which of the regions were more relevant for the analysis of gut peptides. Only the segments with the highest CCK and GLP-1 secretion and expression levels were evaluated with the 20 individual AA. Tissue segments were cut open, cleaned, and stripped of their muscle layer before identical circular samples were collected and incubated in 24-well plates for 1 h (37 °C, 5% v/v CO2). The culture broth consisted of a glucose-free KRB buffer containing no added AA (control) or with the addition of 10 mM of 1 of the 20 proteinogenic AA. Following incubation, tissues and supernatant were collected for gene expression and secretion analysis of CCK and GLP-1 levels. CCK secretion and mRNA expression were higher (P < 0.05) in duodenum when compared with proximal jejunum or ileum, whereas GLP-1/proglucagon levels were higher in ileum vs. duodenum (P < 0.05) and jejunum (P < 0.05, for GLP-1 only) in postweaning pigs. Based on these results, the effect of AA on CCK and GLP-1 secretion was studied in the duodenum and ileum, respectively. None of the AA tested stimulated both anorexigenic hormones. Of all the essential AA, Ile, Leu, Met, and Trp significantly (P < 0.05) stimulated GLP-1 from the ileum, while only Phe stimulated CCK from the duodenum. Of the nonessential AA, amide AA (Gln and Asn) caused the release of CCK, while Glu and Arg increased the release of GLP-1 from the ileum. Interpreting the results in the context of the digestion and absorption dynamics, non-bound AA are quickly absorbed and have their effect on gut peptide secretion limited to the proximal small intestine (i.e., duodenum), thus, mainly CCK. In contrast, protein-bound AA would only stimulate CCK release from the duodenum through feedback mechanisms (such as through GLP-1 secreted mainly in the ileum).
Collapse
Affiliation(s)
- Maximiliano Müller
- Centre of Nutrition & and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia
| | - Elout Van Liefferinge
- Laboratory of Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Flanders, Belgium
| | - Marta Navarro
- Centre of Nutrition & and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia
| | - Elisabet Garcia-Puig
- Centre of Nutrition & and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia
| | - Alan Tilbrook
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation (QAAFI) and the School of Veterinary Science, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Eugeni Roura
- Centre of Nutrition & and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Kwon WB, Soto JA, Stein HH. Effects of dietary leucine and tryptophan on serotonin metabolism and growth performance of growing pigs. J Anim Sci 2021; 100:6448144. [PMID: 34865076 DOI: 10.1093/jas/skab356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/29/2021] [Indexed: 11/12/2022] Open
Abstract
An experiment was conducted to test the hypothesis that increased dietary Trp is needed in high-Leu diets for growing pigs to prevent a drop in plasma serotonin and hypothalamic serotonin concentrations and to maintain growth performance of animals. A total of 144 growing pigs (initial weight: 28.2 ± 1.9 kg) were assigned to 9 treatments in a randomized complete block design with 2 blocks, 2 pigs per pen, and 8 replicate pens per treatment. The 9 diets were formulated in a 3 × 3 factorial with 3 levels of dietary Leu (101, 200, or 299% standardized ileal digestible [SID] Leu:Lys), and 3 levels of dietary Trp (18, 23, or 28% SID Trp:Lys). A basal diet that met requirements for SID Leu and SID Trp was formulated and 8 additional diets were formulated by adding crystalline L-Leu and (or) L-Trp to the basal diet. Individual pig weights were recorded at the beginning of the experiment and at the conclusion of the 21-d experiment. On the last day of the experiment, one pig per pen was sacrificed, and blood and hypothalamus samples were collected to measure plasma urea N, plasma serotonin, and hypothalamic serotonin concentrations. Results indicated that increasing dietary Trp increased (P < 0.05) hypothalamic serotonin, whereas increases (P < 0.05) in average daily gain (ADG) and average daily feed intake (ADFI) were observed only in pigs fed diets containing excess Leu. Increasing dietary Leu reduced (P < 0.05) ADG, ADFI, and hypothalamic serotonin. However, the increase in ADG and ADFI caused by dietary Trp was greater if 299% SID Leu:Lys was provided than if 101% SID Leu:Lys was provided (interaction, P < 0.05). Plasma Leu concentration was positively affected by dietary Leu and negatively affected by dietary Trp, but the negative effect of Trp was greater if 299% SID Leu:Lys was provided than if 101% SID Leu:Lys was provided (interaction, P < 0.05). Plasma concentration of Trp was positively affected by increased dietary Trp and increased dietary Leu, but the increase in plasma concentration of Trp was greater if Leu level was at 101 % SID Leu:Lys ratio than at 299% SID Leu:Lys ratio (interaction, P < 0.05). In conclusion, increased dietary Leu reduced ADG, ADFI, and hypothalamic serotonin concentration, and influenced metabolism of several indispensable amino acids, but Trp supplementation partly overcame the negative effect of excess Leu. This demonstrates the importance of Trp in regulation of hypothalamic serotonin, and therefore, feed intake of pigs.
Collapse
Affiliation(s)
- Woong B Kwon
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA
| | - Jose A Soto
- Ajinomoto Animal Nutrition North America Inc, Chicago, IL, 60631, USA
| | - Hans H Stein
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA
| |
Collapse
|
13
|
Ingerslev AK, Rasmussen L, Zhou P, Nørgaard JV, Theil PK, Jensen SK, Lærke HN. Effects of dairy and plant protein on growth and growth biomarkers in a piglet model. Food Funct 2021; 12:11625-11640. [PMID: 34724015 DOI: 10.1039/d1fo02092g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The increasing world population with improved living conditions has increased the demand for food protein. This has intensified the search for sustainable alternative plant-derived high-quality protein sources for human nutrition. To study the effect of plant and milk proteins on growth in weaned pigs as a model for humans, 96 weaned pigs were divided into 48 pens and fed one of 4 different diets for 3 weeks. The dietary protein originated from either 50% rice + 50% 00-rapeseed protein (RICE + RAPE), 50% milk protein (MPC) + 50% 00-rapeseed protein (MPC + RAPE), 50% milk + 50% rice protein (MPC + RICE), or 100% MPC, and were supplemented with crystalline amino acids to meet the amino acid requirements. Weekly feed intake and body weights were recorded and after 3 weeks, a blood sample was taken 1 hour after a fixed meal, while organ weights were measured, and liver- and muscle tissue, and bone samples were collected at euthanasia. All pigs had a high daily gain and a low feed-to-gain ratio (F : G, feed intake per kg weight gain), but feed intake and daily gain was lowest and F : G highest in the RICE + RAPE diet. Metacarpal bones were longer and heavier in MPC + RICE and MPC fed pigs compared to pigs fed diet RICE + RAPE (P < 0.05), and intermediate in MPC + RAPE fed pigs, with no differences in bone thickness (P > 0.05). Plasma levels of all essential amino acids except Cys and Lys decreased markedly when fed a diet containing only plant protein. The differences were not associated with differences in plasma insulin or IGF-1, nor in the abundance of mRNA related to growth in liver and longissimus dorsi muscle. In conclusion, the growth of piglets fed a combination of milk and rice protein did not differ from the pure dairy-based diet, whereas the pure plant-based diet consisting of rice and rapeseed protein led to reduced growth. This was most likely caused by a lower feed intake and a lower than expected amino acid digestibility of the 00-rapeseed protein. There were no indications that the milk protein, beyond a favourable amino acid composition and high digestibility, specifically stimulated growth factors or other biomarkers of growth via the IGF-1 and insulin signalling pathways.
Collapse
Affiliation(s)
| | - Laura Rasmussen
- Department of Animal Science, Aarhus University, Tjele, Denmark.
| | - Pan Zhou
- Department of Animal Science, Aarhus University, Tjele, Denmark.
| | | | | | | | | |
Collapse
|
14
|
Physiological Effects of Deoxynivalenol from Naturally Contaminated Corn on Cerebral Tryptophan Metabolism, Behavioral Response, Gastrointestinal Immune Status and Health in Pigs Following a Pair-Feeding Model. Toxins (Basel) 2021; 13:toxins13060393. [PMID: 34070838 PMCID: PMC8230096 DOI: 10.3390/toxins13060393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022] Open
Abstract
This study investigated the impact of deoxynivalenol (DON) from naturally contaminated feed on pig growth, immune status, organ health, brain serotonin (5-Hydroxytryptamine, 5-HT) and behavior. Sixteen individually housed pigs (25.57 ± 0.98 kg, age 9 weeks) were randomly allotted to two dietary treatments: without DON (CON) or with 3.8 mg/kg of DON (MT). Pigs were pair-fed to eliminate differences in feed intake (equal tryptophan (Trp) intake). Pigs fed CON received a daily ration based on the ad libitum feed consumption of their MT pair-mate. Performance was determined over 21 days and blood collected for immunological and oxidative stress parameters. Behavior was recorded for 12 h on days 0, 7, 14 and 21. After 21 days, pigs were euthanized to collect tissues for immune parameters, gut morphology and brain serotonin levels. Overall, pigs fed MT had greater weight gain compared with CON. Immunological and oxidative stress parameters were unaffected, but pigs fed MT had reduced villus height, crypt depth and villus-to-crypt ratio in the jejunum. Pigs consuming MT had reduced concentration of 5-HT and increased 5-HT turnover in the hypothalamus. Mycotoxin-fed pigs spent more time lying and sitting, and less time standing and drinking. In conclusion, consumption of DON impacted gastrointestinal tract structure, altered behavior and changed Trp metabolism through increasing 5-HT turnover in hypothalamus.
Collapse
|
15
|
Tang T, Li Y, Wang J, Elzo MA, Shao J, Li Y, Xia S, Fan H, Jia X, Lai S. Untargeted Metabolomics Reveals Intestinal Pathogenesis and Self-Repair in Rabbits Fed an Antibiotic-Free Diet. Animals (Basel) 2021; 11:1560. [PMID: 34071848 PMCID: PMC8228699 DOI: 10.3390/ani11061560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 01/18/2023] Open
Abstract
The prohibition of the use of growth-promoting drug additives in feeds was implemented in China in 2020. However, rabbits can experience symptoms of intestinal disease, such as diarrhea and flatulence, when switching from standard normal diets with antibiotics to antibiotic-free diets. The molecular mechanisms related to the occurrence of these diseases as well as associated physiological and metabolic changes in the intestine are unclear. Thus, the objectives of this study were to study the pathogenesis of intestinal inflammation using untargeted metabolomics. This was done to identify differential metabolites between a group of antibiotic-free feed Hyplus rabbits (Dia) whose diet was abruptly changed from a standard normal diet with antibiotics to an antibiotic-free diet, and an antibiotic diet group Hyplus rabbits (Con) that was fed a standard normal diet with antibiotics. Morphological damage to the three intestinal tissues was determined through visual microscopic examination of intestinal Dia and Con tissue samples stained with hematoxylin and eosin (HE). A total of 1969 different metabolites were identified in the three intestinal tissues from Dia and Con rabbits. The level of 1280 metabolites was significantly higher and the level of 761 metabolites was significantly lower in the Dia than in the Con group. These differential metabolites were involved in five metabolic pathways associated with intestinal inflammation (tryptophan metabolism, pyrimidine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, lysine degradation, and bile secretion). Rabbits in the Dia group developed metabolic disorders that affected the intestinal microbiota and changed the permeability of the intestinal tract, thereby triggering intestinal inflammation, affecting feed utilization, reducing production performance, and activating the intestinal tract self-repair mechanism. Thus, the abrupt transition from a diet with antibiotics to an antibiotic-free diet affected the structure and metabolism of the intestinal tract in Hyplus rabbits. Consequently, to avoid these problems, the antibiotic content in a rabbit diet should be changed gradually or alternative antibiotics should be found.
Collapse
Affiliation(s)
- Tao Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Ya Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Jie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Mauricio A. Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Yanhong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Siqi Xia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Huimei Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Xianbo Jia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
16
|
Standardized ileal digestible tryptophan to lysine ratios affect performance and regulate intestinal mRNA expression of amino acid transporters in weaning pigs fed a low crude protein diet. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Kwon WB, Soto JA, Stein HH. Effects on nitrogen balance and metabolism of branched-chain amino acids by growing pigs of supplementing isoleucine and valine to diets with adequate or excess concentrations of dietary leucine. J Anim Sci 2021; 98:5936637. [PMID: 33095867 DOI: 10.1093/jas/skaa346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/16/2020] [Indexed: 02/01/2023] Open
Abstract
Diets based on high levels of corn protein have elevated concentrations of Leu, which may negatively affect N retention in pigs. An experiment was, therefore, conducted to test the hypothesis that Ile and Val supplementation may overcome the detrimental effects of excess dietary Leu on N balance and metabolism of branched-chain amino acids (BCAA) in growing pigs. A total of 144 barrows (initial body weight: 28.5 kg) were housed in metabolism crates and randomly assigned to 1 of 18 dietary treatments. The basal diet contained 0.98% standardized ileal digestible (SID) Lys and had SID Leu, Val, and Ile ratios to SID Lys of 100%, 60%, and 43%, respectively. Crystalline l-Leu (0% or 2.0%), l-Ile (0%, 0.1%, or 0.2%), and l-Val (0%, 0.1%, or 0.2%) were added to the basal diet resulting in a total of 18 dietary treatments that were arranged in a 2 × 3 × 3 factorial. Urine and fecal samples were collected for 5 d after 7 d of adaptation. Blood, skeletal muscle, and liver samples were collected at the conclusion of the experiment. There were no three-way interactions among the main effects. Excess Leu in diets reduced (P < 0.05) N retention and biological value of protein and increased (P < 0.001) plasma urea N (PUN), but PUN was reduced (P < 0.05) as dietary Val increased. Concentrations of Leu in the liver were greater (P < 0.001) in pigs fed excess Leu diets than in pigs fed adequate Leu diets, but concentrations of BCAA in muscle were greater (P < 0.05) in pigs fed low-Leu diets. Increasing dietary Ile increased (P < 0.001) plasma-free Ile and plasma concentration of the Ile metabolite, α-keto-β-methylvalerate, but the increase was greater in diets without excess Leu than in diets with excess Leu (interaction, P < 0.001). Plasma concentrations of Val and the Val metabolite α-keto isovalerate increased (P < 0.001) with increasing dietary Val in diets with adequate Leu, but not in diets with excess Leu (interaction, P < 0.001). Increasing dietary Leu increased (P < 0.001) plasma-free Leu and plasma concentration of the Leu metabolite, α-keto isocaproate (KIC). In contrast, increased dietary Val reduced (P < 0.05) the plasma concentration of KIC. In conclusion, excess dietary Leu reduced N retention and increased PUN in growing pigs, but Val supplementation to excess Leu diets may increase the efficiency of amino acid utilization for protein synthesis as indicated by reduced PUN.
Collapse
Affiliation(s)
- Woong B Kwon
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - Jose A Soto
- Ajinomoto Animal Nutrition North America Inc., Chicago, IL
| | - Hans H Stein
- Department of Animal Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
18
|
Blavi L, Solà-Oriol D, Llonch P, López-Vergé S, Martín-Orúe SM, Pérez JF. Management and Feeding Strategies in Early Life to Increase Piglet Performance and Welfare around Weaning: A Review. Animals (Basel) 2021; 11:302. [PMID: 33503942 PMCID: PMC7911825 DOI: 10.3390/ani11020302] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
The performance of piglets in nurseries may vary depending on body weight, age at weaning, management, and pathogenic load in the pig facilities. The early events in a pig's life are very important and may have long lasting consequences, since growth lag involves a significant cost to the system due to reduced market weights and increased barn occupancy. The present review evidences that there are several strategies that can be used to improve the performance and welfare of pigs at weaning. A complex set of early management and dietary strategies have been explored in sows and suckling piglets for achieving optimum and efficient growth of piglets after weaning. The management strategies studied to improve development and animal welfare include: (1) improving sow housing during gestation, (2) reducing pain during farrowing, (3) facilitating an early and sufficient colostrum intake, (4) promoting an early social interaction between litters, and (5) providing complementary feed during lactation. Dietary strategies for sows and suckling piglets aim to: (1) enhance fetal growth (arginine, folate, betaine, vitamin B12, carnitine, chromium, and zinc), (2) increase colostrum and milk production (DL-methionine, DL-2-hydroxy-4-methylthiobutanoic acid, arginine, L-carnitine, tryptophan, valine, vitamin E, and phytogenic actives), (3) modulate sows' oxidative and inflammation status (polyunsaturated fatty acids, vitamin E, selenium, phytogenic actives, and spray dried plasma), (4) allow early microbial colonization (probiotics), or (5) supply conditionally essential nutrients (nucleotides, glutamate, glutamine, threonine, and tryptophan).
Collapse
Affiliation(s)
- Laia Blavi
- Department of Animal and Food Sciences, Animal Nutrition and Welfare Service, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (D.S.-O.); (P.L.); (S.L.-V.); (S.M.M.-O.); (J.F.P.)
| | | | | | | | | | | |
Collapse
|
19
|
Wensley MR, Tokach MD, Woodworth JC, Goodband RD, Gebhardt JT, DeRouchey JM, McKilligan D. Maintaining continuity of nutrient intake after weaning. II. Review of post-weaning strategies. Transl Anim Sci 2021; 5:txab022. [PMID: 34841202 PMCID: PMC8611789 DOI: 10.1093/tas/txab022] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/02/2021] [Indexed: 12/17/2022] Open
Abstract
Low feed consumption during the first 3 d post-weaning disrupts nutrient intake and results in what is commonly known as a post-weaning growth check. While most pigs recover from this initial reduction in feed intake (FI), some pigs fail to successfully make this transition leading to morbidity and mortality. In this review, our objective is to describe the different post-weaning strategies that can be used to minimize nutrient intake disruption and improve FI in the immediate post-weaning period. Providing weanling pigs with an environment that encourages them to search out and consume feed is important. This includes appropriate barn temperatures, resource availability, and nursery placement strategies. Research is needed to better understand the ideal environmental temperatures to encourage pen exploration and reduce time to initial FI. Likewise, mat and gruel feeding are commonly practiced throughout the industry to increase feed accessibility; however, limited research data is available to validate protocols or benefits. Nursery placement strategies include sorting light weight pigs into uniform body weight groups and average or heavy weight pigs into variable body weight groups to provide benefit to light pigs while reducing initial aggression in heavy pigs. Furthermore, water enrichment with nutrient dense products have been shown to improve growth performance and reduce morbidity and mortality in the early post-weaning period. Because young pigs are sensitive to palatability, diet form and complexity should also be considered. Weanling pigs prefer diets manufactured with coarse ground corn (700 μm) compared to fine ground corn. Additionally, weanling pigs are more attracted to large diameter pellets (12 mm) compared with small pellets. Despite these preferences, impacts on growth are relatively small. Feeding complex diets with high levels of lactose, animal protein products, or other palatable ingredients is another strategy shown to improve growth performance during the first week post-weaning; however, the initial benefits quickly diminished as pigs become older. Other strategies that warrant further investigation include the effect of crumble diets on feed preference and the concept of perinatal or social interaction flavor learning. In summary, strategic post-weaning nutrition and management practices must focus on maintaining continuity of nutrient intake in order to reduce morbidity and mortality in the immediate post-weaning period.
Collapse
Affiliation(s)
- Madie R Wensley
- Department of Animal Sciences and Industry, College of
Agriculture, Manhattan, KS 66506-0201, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of
Agriculture, Manhattan, KS 66506-0201, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of
Agriculture, Manhattan, KS 66506-0201, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of
Agriculture, Manhattan, KS 66506-0201, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine,
Kansas State University, Manhattan, KS 66506-0201,
USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of
Agriculture, Manhattan, KS 66506-0201, USA
| | | |
Collapse
|
20
|
Acácio R, Sakomura N, Viana G, Malheiros E, Fernandes J, Suzuki R. Optimum standardized ileal digestible tryptophan intake for broiler chickens. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Kwon WB, Touchette KJ, Simongiovanni A, Syriopoulos K, Wessels A, Stein HH. Excess dietary leucine in diets for growing pigs reduces growth performance, biological value of protein, protein retention, and serotonin synthesis1. J Anim Sci 2020; 97:4282-4292. [PMID: 31410464 DOI: 10.1093/jas/skz259] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/31/2019] [Indexed: 12/27/2022] Open
Abstract
An experiment was conducted to test the hypothesis that excess dietary Leu affects metabolism of branched-chain amino acids (BCAA) in growing pigs. Forty barrows (initial body weight [BW]: 30.0 ± 2.7 kg) were housed individually in metabolism crates and allotted to 5 dietary treatments (8 replicates per treatment) in a randomized complete block design. The 5 diets were based on identical quantities of corn, soybean meal, wheat, and barley and designed to contain 100%, 150%, 200%, 250%, or 300% of the requirement for standardized ileal digestible Leu. Initial and final (day 15) BW of pigs were recorded. Daily feed consumption was also recorded. Urine and fecal samples were collected for 5 d following 7 d of adaptation to the diets. At the end of the experiment, blood and tissue samples were collected to analyze plasma urea N (PUN), plasma and hypothalamic serotonin, tissue BCAA, serum and tissue branched-chain α-keto acids, and messenger ribonucleic acid abundance of genes involved in BCAA metabolism. Results indicated that acid detergent fiber, average daily feed intake, and gain-to-feed ratio decreased (linear, P < 0.05) as dietary Leu increased. A trend (linear, P = 0.082) for decreased N retention and decreased (linear, P < 0.05) biological value of dietary protein was also observed, and PUN increased (linear, P < 0.05) as dietary Leu increased. A quadratic reduction (P < 0.05) in plasma serotonin and a linear reduction (P < 0.05) in hypothalamic serotonin were observed with increasing dietary Leu. Concentrations of BCAA in liver increased (linear, P < 0.001), whereas concentrations of BCAA in skeletal muscle decreased (linear, P < 0.05) as dietary Leu increased. Concentration of α-ketoisovalerate was reduced (linear and quadratic, P < 0.001) in liver, skeletal muscle, and serum, and α-keto-β-methylvalerate was reduced (linear, P < 0.001; quadratic, P < 0.001) in skeletal muscle and serum. In contrast, α-keto isocaproate increased (linear, P < 0.05) in liver and skeletal muscle and also in serum (linear and quadratic, P < 0.001) with increasing dietary Leu. Expression of mitochondrial BCAA transaminase and of the E1α subunit of branched-chain α-keto acid dehydrogenase increased (linear, P < 0.05) in skeletal muscle as dietary Leu increased. In conclusion, excess dietary Leu impaired growth performance and nitrogen retention, which is likely a result of increased catabolism of Ile and Val, which in turn reduces availability of these amino acids resulting in reduced protein retention, and excess dietary Leu also reduced hypothalamic serotonin synthesis.
Collapse
Affiliation(s)
- Woong B Kwon
- Department of Animal Sciences, University of Illinois, Urbana
| | - Kevin J Touchette
- Department of Veterinary Medicine, Ajinomoto Animal Nutrition North America Inc., Chicago, IL
| | - Aude Simongiovanni
- Department of Veterinary Medicine, Ajinomoto Animal Nutrition North America Inc., Chicago, IL
| | - Kostas Syriopoulos
- Innovation and Customer Success Department, Ajinomoto Animal Nutrition Europe, Paris, France
| | | | - Hans H Stein
- Department of Animal Sciences, University of Illinois, Urbana
| |
Collapse
|
22
|
Zhao Y, Wu XY, Xu SX, Xie JY, Xiang KW, Feng L, Liu Y, Jiang WD, Wu P, Zhao J, Zhou XQ, Jiang J. Dietary tryptophan affects growth performance, digestive and absorptive enzyme activities, intestinal antioxidant capacity, and appetite and GH-IGF axis-related gene expression of hybrid catfish (Pelteobagrus vachelli♀ × Leiocassis longirostris♂). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1627-1647. [PMID: 31161532 DOI: 10.1007/s10695-019-00651-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
The 56-day feeding trial was carried out to investigate the effects of dietary tryptophan (Trp) on growth performance, digestive and absorptive enzyme activities, intestinal antioxidant capacity, and appetite and GH-IGF axis-related genes expression of hybrid catfish (Pelteobagrus vachelli♀ × Leiocassis longirostris♂). A total of 864 hybrid catfish (21.82 ± 0.14 g) were fed six different experimental diets containing graded levels of Trp at 2.6, 3.1, 3.7, 4.2, 4.7, and 5.6 g kg-1 diet. The results indicated that dietary Trp increased (P < 0.05) (1) final body weight, percent weight gain, specific growth rate, feed intake, feed efficiency, and protein efficiency ratio; (2) fish body protein, lipid and ash contents, protein, and ash production values; (3) stomach weight, stomach somatic index, liver weight, intestinal weight, length and somatic index, and relative gut length; and (4) activities of pepsin in the stomach; trypsin, chymotrypsin, lipase, and amylase in the pancreas and intestine; and γ-glutamyl transpeptidase, Na+, K+-ATPase, and alkaline phosphatase in the intestine. Dietary Trp decreased malondialdehyde content, increased antioxidant enzyme activities and glutathione content, but downregulated Keap1 mRNA expression, and upregulated the expression of NPY, ghrelin, GH, GHR, IGF1, IGF2, IGF1R, PIK3Ca, AKT1, TOR, 4EBP1, and S6K1 genes. These results indicated that Trp improved hybrid catfish growth performance, digestive and absorptive ability, antioxidant status, and appetite and GH-IGF axis-related gene expression. Based on the quadratic regression analysis of PWG, SGR, and FI, the dietary Trp requirement of hybrid catfish (21.82-39.64 g) was recommended between 3.96 and 4.08 g kg-1 diet (9.4-9.7 g kg-1 of dietary protein).
Collapse
Affiliation(s)
- Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Yun Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Shang-Xiao Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jia-Yuan Xie
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai-Wen Xiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
23
|
KANG HYOKON, KANG SEONGIL, NA YOUNGJUN, KWON HYOUNCHUL, LEE SANGRAK. Effect of feeding frequency on growth performance, nutrient digestibility, diarrhea incidence and blood profiles in weaning pigs. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i8.93025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An experiment was conducted to evaluate the effect of feeding frequency on growth performance, nutrient digestibility, diarrhea incidence and blood profiles in weaning pigs. Piglets (264) (Average BW, 7.6 kg), were allotted to 2 treatments with 6 replicated pens (22 animals per pen; 11 males and 11 females) in a randomized complete block design based on body weight. Equal amount of diet was provided to all the animals. They were fed an early weaning diet for 14 d and a late weaning diet for 14 d. The control group was fed the diet twice (at 0700 and 1900 h) per day and treatment group was fed the diet four times (at 0700, 1100, 1500 and 1900 h) per day. The change of feeding frequency did not affect feed intake, body weight gain and gain to feed ratio. With increase in the feeding frequency, blood cortisol concentration was not changed. Also, in leptin and ghrelin analysis, there was no significant difference between treatments. Likewise, dry matter digestibility and diarrhea incidence showed no significant difference. In conclusion, the change of feeding frequency in weaning pigs did not affect the growth performance, nutrient digestibility, diarrhea incidence and blood profiles.
Collapse
|
24
|
Khanipour S, Mehri M, Bagherzadeh-Kasmani F, Maghsoudi A, Assadi Soumeh E. Excess dietary tryptophan mitigates aflatoxicosis in growing quails. J Anim Physiol Anim Nutr (Berl) 2019; 103:1462-1473. [PMID: 31407825 DOI: 10.1111/jpn.13167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/22/2022]
Abstract
A biological assay was carried out to evaluate the impact of dietary tryptophan (TRP) in aflatoxin B1 -contaminated diets (AFB1 -D) on performance, blood parameters, immunity, meat quality and microbial populations of intestine in Japanese quails. Six experimental diets were formulated to include two levels of dietary TRP; 2.9 (moderate high: MH-TRP) and 4.9 g/kg (excess: Ex-TRP); and three levels of AFB1 (0.0, 2.5, and 5.0 mg/kg). Each experimental diet was fed to the one of the six groups of birds from 7 to 35 days of age in a completely randomized design with 2 × 3 factorial arrangement. Decrease in feed intake, body weight gain and gain:feed in birds fed 5.0 mg/kg AFB1 -D was restored to the control level by 4.9 g TRP/kg of the diet. The hepatic enzymes in blood were elevated in quails fed on AFB1 -D but attenuated by 4.9 g TRP/kg of the diet (Ex-TRP; p ≤ .01). High serum uric acid in birds challenged with AFB1 significantly decreased by Ex-TRP (p ≤ .01). The skin thickness to 2,4-dinitro-1-chlorobenzene challenge suppressed by AFB1 but increased by Ex-TRP diet (p ≤ .02). The AFB1 increased the malondialdehyde in meat, whereas TRP efficiently diminished malondialdehyde production (p ≤ .01). The greatest drip loss and pH in meat were observed in the birds fed 5.0 mg/kg AFB1 -D but Ex-TRP augmented the adverse effects of AFB1 (p ≤ .01). The Ex-TRP reduced the total microbial and Escherichia coli counts (p ≤ .01). The adverse effect of AFB1 on ileal Lactic acid bacteria was completely prevented by Ex-TRP (p ≤ .03). This study showed that tryptophan supplementation could be considered as a powerful nutritional tool to ameliorate the adverse effects of AFB1 in growing quails.
Collapse
Affiliation(s)
- Sousan Khanipour
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Zabol, Iran.,Department of Special Domestic Animals, Research Institute at the University of Zabol (RIUOZ), Zabol, Iran
| | - Mehran Mehri
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Zabol, Iran.,Department of Special Domestic Animals, Research Institute at the University of Zabol (RIUOZ), Zabol, Iran
| | - Farzad Bagherzadeh-Kasmani
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Zabol, Iran.,Department of Special Domestic Animals, Research Institute at the University of Zabol (RIUOZ), Zabol, Iran
| | - Ali Maghsoudi
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Zabol, Iran.,Department of Special Domestic Animals, Research Institute at the University of Zabol (RIUOZ), Zabol, Iran
| | - Elham Assadi Soumeh
- School of Agriculture and Food Science, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
25
|
Lee SB, Lee KW, Wang T, Lee JS, Jung US, Nejad JG, Oh YK, Baek YC, Kim KH, Lee HG. Intravenous administration of L-tryptophan stimulates gastrointestinal hormones and melatonin secretions: study on beef cattle. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2019; 61:239-244. [PMID: 31452911 PMCID: PMC6686141 DOI: 10.5187/jast.2019.61.4.239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 01/26/2023]
Abstract
This study aimed to determine the effective dose of intravenous administration of L-tryptophan (L-T) on gastrointestinal hormones (GIH) secretions and melatonin using Hanwoo cattle. Three steers (362 ± 23 kg) fitted with indwelling jugular vein catheters were assigned in a 3 × 3 Latin square design. Treatments were intravenous administration of saline (control), 28.9 mg L-T/kg body weight (BW; low) and 57.8 mg L-T/kg BW (high) L-T for 1 day with 7 days of adaptation. Samples were collected after adaptation period at -60, 0, 30, 60, 90, 120, 150, 180, 240, and 300 min of sampling day. The levels of serum cholecystokinin (CCK) and secretin were higher (p < 0.05) in the high L-T group than those in the other groups. Serum Melatonin (MEL) levels were increased upon L-T administration (p < 0.05) in the high L-T group. Taken together, the effective dose of L-T administration was defined at 57.8 mg L-T/kg BW in order to stimulate increase of GIH and MEL.
Collapse
Affiliation(s)
- Sang-Bum Lee
- Department of Animal Science and Technology, College of Animal
Bioscience and Technology, Konkuk University, Seoul 05029,
Korea
| | | | - Tao Wang
- Department of Animal Nutrition and Feed Science, College of Animal
Science and Technology, Jilin Agricultural University, Jilin 130118,
China
| | - Jae-Sung Lee
- Department of Animal Science and Technology, College of Animal
Bioscience and Technology, Konkuk University, Seoul 05029,
Korea
- An Educational Program for Specialists in Global Animal Science,
Brain Korea 21 Plus Project, Konkuk University, Seoul 05029,
Korea
| | - U-Suk Jung
- Department of Animal Science and Technology, College of Animal
Bioscience and Technology, Konkuk University, Seoul 05029,
Korea
| | - Jalil Ghassemi Nejad
- Department of Animal Science and Technology, College of Animal
Bioscience and Technology, Konkuk University, Seoul 05029,
Korea
- An Educational Program for Specialists in Global Animal Science,
Brain Korea 21 Plus Project, Konkuk University, Seoul 05029,
Korea
| | - Young-Kyoon Oh
- Department of Nutrition and Physiology, National Institute of
Animal Science, RDA, JeonJu 55365, Korea
| | - Youl-Chang Baek
- Department of Nutrition and Physiology, National Institute of
Animal Science, RDA, JeonJu 55365, Korea
| | - Kyoung Hoon Kim
- Graduate School of International Agricultural Technology,
Pyeongchang Campus, Seoul National University, Pyeongchang 25354,
Korea
| | - Hong-Gu Lee
- Department of Animal Science and Technology, College of Animal
Bioscience and Technology, Konkuk University, Seoul 05029,
Korea
- An Educational Program for Specialists in Global Animal Science,
Brain Korea 21 Plus Project, Konkuk University, Seoul 05029,
Korea
| |
Collapse
|
26
|
L-tryptophan Enhances Intestinal Integrity in Diquat-Challenged Piglets Associated with Improvement of Redox Status and Mitochondrial Function. Animals (Basel) 2019; 9:ani9050266. [PMID: 31121956 PMCID: PMC6562546 DOI: 10.3390/ani9050266] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/16/2022] Open
Abstract
Simple Summary In the present study, three groups of piglets were treated with diquat, a bipyridyl herbicide which can utilize molecular oxygen to generate superoxide anion radicals and is widely considered as an effective chemical agent for inducing oxidative stress. The three groups were fed a 0, 0.15%, and 0.30% tryptophan (Trp) supplemented diet, and one control group without diquat treatment was used to study the protective effects of supplemented Trp on growth performance and intestinal barrier function of piglets exposed to oxidative stress. The results showed that 0.15% Trp supplementation alleviated diquat-induced impaired growth performance, intestinal barrier injury, redox imbalance, and mitochondrial dysfunction. These findings from the current study suggest that piglets under the condition of stress might need more Trp to maintain intestinal integrity and optimal growth performance, but the proper dosage of Trp supplementation is needed to determine for different conditions or models. Abstract Tryptophan (Trp) supplementation has been shown to improve growth performance and enhance intestinal integrity in piglets. However, the effects of dietary Trp supplementation on the intestinal barrier function in piglets exposed to oxidative stress remain unknown. This study was conducted to evaluate whether dietary Trp supplementation can attenuate intestinal injury, oxidative stress, and mitochondrial dysfunction of piglets caused by diquat injection. Thirty-two piglets at 25 days of age were randomly allocated to four groups: (1) the non-challenged control; (2) diquat-challenged control; (3) 0.15% Trp-supplemented diet + diquat; (4) 0.30% Trp supplemented diet + diquat. On day seven, the piglets were injected intraperitoneally with sterilized saline or diquat (10 mg/kg body weight). The experiment lasted 21 days. Dietary supplementation with 0.15% Trp improved growth performance of diquat-challenged piglets from day 7 to 21. Diquat induced an increased intestinal permeability, impaired antioxidant capacity, and mitochondrial dysfunction. Although dietary supplementation with 0.15% Trp ameliorated these negative effects induced by diquat challenge that showed decreasing permeability of 4 kDa fluorescein isothiocyanate dextran, increasing antioxidant indexes, and enhancing mitochondrial biogenesis. Results indicated that dietary supplementation with 0.15% Trp enhanced intestinal integrity, restored the redox status, and improved the mitochondrial function of piglets challenged with diquat.
Collapse
|
27
|
|
28
|
Gomes LM, de Mello Miassi G, Sousa dos Santos L, Anton Dib Saleh M, Sartori JR, Panhoza Tse ML, Antonio Berto D. Impact of two light programs and two levels of dietary tryptophan for weanling piglets. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Seridi L, Leo GC, Dohm GL, Pories WJ, Lenhard J. Time course metabolome of Roux-en-Y gastric bypass confirms correlation between leptin, body weight and the microbiome. PLoS One 2018; 13:e0198156. [PMID: 29851973 PMCID: PMC5979615 DOI: 10.1371/journal.pone.0198156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/15/2018] [Indexed: 12/17/2022] Open
Abstract
Roux-en-Y gastric bypass (RYGB) is an effective way to lose weight and reverse type 2 diabetes. We profiled the metabolome of 18 obese patients (nine euglycemic and nine diabetics) that underwent RYGB surgery and seven lean subjects. Plasma samples from the obese patients were collected before the surgery and one week and three months after the surgery. We analyzed the metabolome in association to five hormones (Adiponectin, Insulin, Ghrelin, Leptin, and Resistin), four peptide hormones (GIP, Glucagon, GLP1, and PYY), and two cytokines (IL-6 and TNF). PCA showed samples cluster by surgery time and many microbially driven metabolites (indoles in particular) correlated with the three months after the surgery. Network analysis of metabolites revealed a connection between carbohydrate (mannosamine and glucosamine) and glyoxylate and confirms glyoxylate association to diabetes. Only leptin and IL-6 had a significant association with the measured metabolites. Leptin decreased immediately after RYGB (before significant weight loss), whereas IL-6 showed no consistent response to RYGB. Moreover, leptin associated with tryptophan in support of the possible role of leptin in the regulation of serotonin synthesis pathways in the gut. These results suggest a potential link between gastric leptin and microbial-derived metabolites in the context of obesity and diabetes.
Collapse
Affiliation(s)
- Loqmane Seridi
- Janssen Research & Development, LLC, Spring House, Pennsylvania, United States of America
- * E-mail:
| | - Gregory C. Leo
- Janssen Research & Development, LLC, Spring House, Pennsylvania, United States of America
| | - G. Lynis Dohm
- Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Walter J. Pories
- Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - James Lenhard
- Janssen Research & Development, LLC, Spring House, Pennsylvania, United States of America
| |
Collapse
|
30
|
Zhang E, Dong S, Wang F, Tian X, Gao Q. Effects of l-tryptophan on the growth, intestinal enzyme activities and non-specific immune response of sea cucumber (Apostichopus japonicus Selenka) exposed to crowding stress. FISH & SHELLFISH IMMUNOLOGY 2018; 75:158-163. [PMID: 29331348 DOI: 10.1016/j.fsi.2018.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/30/2017] [Accepted: 01/08/2018] [Indexed: 06/07/2023]
Abstract
In order to reveal the effects of l-tryptophan (Trp) on the physiology and immune response of sea cucumber (Apostichopus japonicus Selenka) exposed to crowding stress, four density groups of sea cucumbers (i.e. 4, 8, 16 and 32 individuals per 40 L water, represented as L, ML, MH and H) were fed with diets containing 0, 1, 3 and 5% l-tryptophan respectively for 75 days. The results showed that the specific growth rates (SGR) of the sea cucumber fed with diet with 3% Trp (L, 2.1; ML, 1.76; MH, 1.2; H, 0.7) were significantly higher than those fed with basal diet without Trp supplementation (P < .05). Peak amylase activity occurred at H stress density at 3% dietary Trp. Trypsin activity was higher in diet 3% in ML and MH densities than the controls, which increased by 66.4% and 53.8%. However, the lipase activity first increased and then decreased from the stocking density L to H, with highest values of 3% Trp group showed the highest value than other groups. Compared to those fed with the basal diet, sea cucumber fed diets with Trp (3%) had significantly higher phagocytic activities (0.28 OD540/106 cells, H) in coelomic fluid and respiratory burst activities (0.105 OD630/106 cells, MH) (P < .05). The results suggested that Trp cannot improve superoxide dismutase (SOD) activity at L, ML and MH densities. The alkaline phosphatase activity (AKP) significantly decreased at H stress density. Under the experimental conditions, the present results confirmed that a diet supplemented with 3% Trp was able to enhance intestinal enzyme activities, non-specific immune response and higher growth performance of A. japonicus.
Collapse
Affiliation(s)
- Endong Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries college, Ocean University of China, Qingdao, 266003, China; Department of Environmental Science, Plant Biotechnology Key Laboratory of Liaoning Province, Liaoning Normal University, Dalian 116081, Liaoning, China
| | - Shuanglin Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries college, Ocean University of China, Qingdao, 266003, China.
| | - Fang Wang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries college, Ocean University of China, Qingdao, 266003, China
| | - Xiangli Tian
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries college, Ocean University of China, Qingdao, 266003, China
| | - Qinfeng Gao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries college, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
31
|
Roura E, Navarro M. Physiological and metabolic control of diet selection. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an16775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The fact that most farm animals have no dietary choice under commercial practices translates the dietary decisions to the carers. Thus, a lack of understanding of the principles of dietary choices is likely to result in a high toll for the feed industry. In healthy animals, diet selection and, ultimately, feed intake is the result of factoring together the preference for the feed available with the motivation to eat. Both are dynamic states and integrate transient stimulus derived from the nutritional status, environmental and social determinants of the animal with hard-wired genetic mechanisms. Peripheral senses are the primary inputs that determine feed preferences. Some of the sensory aspects of feed, such as taste, are innate and genetically driven, keeping the hedonic value of feed strictly associated with a nutritional frame. Sweet, umami and fat tastes are all highly appetitive. They stimulate reward responses from the brain and reinforce dietary choices related to essential nutrients. In contrast, aroma (smell) recognition is a plastic trait and preferences are driven mostly by learned experience. Maternal transfer through perinatal conditioning and the individual’s own innate behaviour to try or to avoid novel feed (often termed as neophobia) are known mechanisms where the learning process strongly affects preferences. In addtition, the motivation to eat responds to episodic events fluctuating in harmony with the eating patterns. These signals are driven mainly by gastrointestinal hormones (such as cholecystokinin [CCK] and glucagon-like peptide 1 [GLP-1]) and load. In addition, long-term events generate mechanisms for a sustainable nutritional homeostasis managed by tonic signals from tissue stores (i.e. leptin and insulin). Insulin and leptin are known to affect appetite by modulating peripheral sensory inputs. The study of chemosensory mechanisms related to the nutritional status of the animal offers novel tools to understand the dynamic states of feed choices so as to meet nutritional and hedonic needs. Finally, a significant body of literature exists regarding appetite driven by energy and amino acids in farm animals. However, it is surprising that there is scarcity of knowledge regarding what and how specific dietary nutrients may affect satiety. Thus, a better understanding on how bitter compounds and excess dietary nutrients (i.e. amino acids) play a role in no-choice animal feeding is an urgent topic to be addressed so that right choices can be made on the animal’s behalf.
Collapse
|
32
|
Greiner L, Neill C, Allee GL, Touchette KJ, Connor J. Evaluation of the optimal standardized ileal digestible tryptophan:lysine ratio in lactating sow diets. Transl Anim Sci 2017; 1:526-532. [PMID: 32704676 PMCID: PMC7204970 DOI: 10.2527/tas2017.0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/18/2017] [Indexed: 11/13/2022] Open
Abstract
Three hundred and fifteen primiparous and multiparous sows were evaluated in a study to determine the effect of standardized ileal digestible (SID) Trp:Lys ratio in lactating sow diets. Camborough sows (PIC USA, Hendersonville, TN) ranging from first parity to eighth parity were blocked by parity and randomly allotted to 1 of 4 experimental diets containing different levels of added L-Trp (0.006, 0.026, 0.045, and 0.064%, respectively) while soybean meal, 30% corn dried distiller's grain with solubles (DDGS), and L-Lys levels were held constant. The SID Lys level for the rations was 0.95% so that the SID Trp:Lys ratios were formulated to be 14, 16, 18, and 20%, respectively. All diets were formulated to have 3.2 Mcal ME/kg and to contain vitamins and minerals that exceeded NRC (1998) recommendations. Sows were fed twice a day with a Howema computerized feed system and were allowed a maximum intake (5.9 kg/d). Average daily feed intake had a tendency to be quadratically improved when the SID ratio was increased (5.11, 5.28, 5.24, 5.21 kg/d, P = 0.09). In addition, sow wean to estrus (6.71, 5.53, 5.58, 6.33, P < 0.02) was quadratically improved as SID Trp:Lys ratio increased. Percent of sows bred by 10 d (84.39, 90.82, 90.28, 90.61) was not linearly (P = 0.25) or quadratically (P = 0.40) improved. There was no difference in litter gain (2.44, 2.52, 2.60, 2.57 kg/d, P = 0.16). Based on a broken-line quadratic model, when sows are fed 30% DDGS, the SID Trp:Lys ratio of 17.6 is required for optimal sow average daily feed intake and 17.2 for wean to estrus interval.
Collapse
Affiliation(s)
- L Greiner
- Carthage Innovative Sow Solutions, LLC, Carthage, IL 62321
| | - C Neill
- PIC, Hendersonville, TN 37075
| | - G L Allee
- University of Missouri-Columbia, Department of Animal Science, Columbia, 65211
| | | | - J Connor
- Carthage Innovative Sow Solutions, LLC, Carthage, IL 62321
| |
Collapse
|
33
|
Roura E, Fu M. Taste, nutrient sensing and feed intake in pigs (130 years of research: then, now and future). Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
34
|
|
35
|
Meyer F, Jansen van Rensburg C, Gous RM. The response of weaned piglets to dietary valine and leucine. Animal 2017; 11:1279-1286. [PMID: 28077194 DOI: 10.1017/s1751731116002834] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Valine (Val) is considered to be the fifth-limiting amino acid in a maize-soyabean meal diet for pigs. Excess leucine (Leu) levels often occur in commercial diets, which may attenuate the effect of Val deficiency because of an increased oxidation of Val. The objective of the present experiment was to determine the effect of increasing concentrations of Leu on the response of young piglets to dietary Val. In all, 75 Large White×Landrace entire male pigs, 44 days of age and with a mean starting weight of 13.5 kg, were used. Three of these were sacrificed at the start to determine their mean initial chemical composition. A summit feed first limiting in Val was serially diluted with a non-protein diluent to produce a series of five digestible Val concentrations of 11.9, 10.1, 8.3, 6.6 and 4.8 g/kg, with a sixth treatment being added to test that the feeds were limiting in Val. Three identical Val series, each with six levels of Val, were supplemented with increasing amounts of Leu (23, 45 and 67 g/kg), thus 18 treatments in total. All pigs were killed at the end of the trial after 18 days for analysis of water, protein, lipid and ash in the carcass. The levels of Val and Leu and their interaction significantly influenced all the measurements taken in the trial. Daily gain in liveweight, water and protein, and feed conversion efficiency all increased with dietary Val content, whereas feed intake decreased as both Val and Leu contents increased. The deleterious effect of increased Leu on feed intake and growth was more marked at lower levels of Val. Supplementing the feed with the lowest Val content with additional Val largely overcame the effect of excess Leu. The efficiency of utilisation of Val for protein growth was unaffected by the level of Leu in the feed, the primary response to excess Leu being a reduction in feed intake. An intake of around 9 g Val/day yielded maximal protein growth during the period from 44 to 62 days of age in pigs of the genotype used in this trial.
Collapse
Affiliation(s)
- F Meyer
- 1Department Animal and Wildlife Science, Faculty Natural and Agricultural Sciences,University of Pretoria,Pretoria 0002,South Africa
| | - C Jansen van Rensburg
- 1Department Animal and Wildlife Science, Faculty Natural and Agricultural Sciences,University of Pretoria,Pretoria 0002,South Africa
| | - R M Gous
- 2School of Agricultural, Earth and Environmental Sciences,University of KwaZulu-Natal,Pietermaritzburg 3209,South Africa
| |
Collapse
|
36
|
Stracke J, Otten W, Tuchscherer A, Witthahn M, Metges CC, Puppe B, Düpjan S. Dietary tryptophan supplementation and affective state in pigs. J Vet Behav 2017. [DOI: 10.1016/j.jveb.2017.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Castilha LD, Sangali CP, Esteves LAC, Muniz CF, Furlan AC, Vasconcellos RS, Pozza PC. Day-night behaviour and performance of barrows and gilts (70–100kg) fed low protein diets with different levels of tryptophan and B6 vitamin. Appl Anim Behav Sci 2016. [DOI: 10.1016/j.applanim.2016.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Abstract
The present review examines the pig as a model for physiological studies in human subjects related to nutrient sensing, appetite regulation, gut barrier function, intestinal microbiota and nutritional neuroscience. The nutrient-sensing mechanisms regarding acids (sour), carbohydrates (sweet), glutamic acid (umami) and fatty acids are conserved between humans and pigs. In contrast, pigs show limited perception of high-intensity sweeteners and NaCl and sense a wider array of amino acids than humans. Differences on bitter taste may reflect the adaptation to ecosystems. In relation to appetite regulation, plasma concentrations of cholecystokinin and glucagon-like peptide-1 are similar in pigs and humans, while peptide YY in pigs is ten to twenty times higher and ghrelin two to five times lower than in humans. Pigs are an excellent model for human studies for vagal nerve function related to the hormonal regulation of food intake. Similarly, the study of gut barrier functions reveals conserved defence mechanisms between the two species particularly in functional permeability. However, human data are scant for some of the defence systems and nutritional programming. The pig model has been valuable for studying the changes in human microbiota following nutritional interventions. In particular, the use of human flora-associated pigs is a useful model for infants, but the long-term stability of the implanted human microbiota in pigs remains to be investigated. The similarity of the pig and human brain anatomy and development is paradigmatic. Brain explorations and therapies described in pig, when compared with available human data, highlight their value in nutritional neuroscience, particularly regarding functional neuroimaging techniques.
Collapse
|
39
|
Koyama H, Iwakura H, Dote K, Bando M, Hosoda H, Ariyasu H, Kusakabe T, Son C, Hosoda K, Akamizu T, Kangawa K, Nakao K. Comprehensive Profiling of GPCR Expression in Ghrelin-Producing Cells. Endocrinology 2016; 157:692-704. [PMID: 26671185 DOI: 10.1210/en.2015-1784] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To determine the comprehensive G protein-coupled receptor (GPCR) expression profile in ghrelin-producing cells and to elucidate the role of GPCR-mediated signaling in the regulation of ghrelin secretion, we determined GPCR expression profiles by RNA sequencing in the ghrelin-producing cell line MGN3-1 and analyzed the effects of ligands for highly expressed receptors on intracellular signaling and ghrelin secretion. Expression of selected GPCRs was confirmed in fluorescence-activated cell-sorted fluorescently tagged ghrelin-producing cells from ghrelin-promoter CreERT2/Rosa-CAG-LSL-ZsGreen1 mice. Expression levels of GPCRs previously suggested to regulate ghrelin secretion including adrenergic-β1 receptor, GPR81, oxytocin receptor, GPR120, and somatostatin receptor 2 were high in MGN3-1 cells. Consistent with previous reports, isoproterenol and oxytocin stimulated the Gs and Gq pathways, respectively, whereas lactate, palmitate, and somatostatin stimulated the Gi pathway, confirming the reliability of current assays. Among other highly expressed GPCRs, prostaglandin E receptor 4 agonist prostaglandin E2 significantly stimulated the Gs pathway and ghrelin secretion. Muscarine, the canonical agonist of cholinergic receptor muscarinic 4, stimulated both the Gq and Gi pathways. Although muscarine treatment alone did not affect ghrelin secretion, it did suppress forskolin-induced ghrelin secretion, suggesting that the cholinergic pathway may play a role in counterbalancing the stimulation of ghrelin by Gs (eg, by adrenaline). In addition, GPR142 ligand tryptophan stimulated ghrelin secretion. In conclusion, we determined the comprehensive expression profile of GPCRs in ghrelin-producing cells and identified two novel ghrelin regulators, prostaglandin E2 and tryptophan. These results will lead to a greater understanding of the physiology of ghrelin and facilitate the development of ghrelin-modulating drugs.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Animals
- Cell Line, Tumor
- Colforsin/pharmacology
- Dinoprostone/pharmacology
- Gastric Mucosa/cytology
- Gastric Mucosa/drug effects
- Gastric Mucosa/metabolism
- Gene Expression Profiling
- Ghrelin/drug effects
- Ghrelin/metabolism
- Hormones/pharmacology
- Immunohistochemistry
- Isoproterenol/pharmacology
- Lactic Acid/pharmacology
- Mice
- Mice, Transgenic
- Muscarine/pharmacology
- Muscarinic Agonists/pharmacology
- Oxytocics/pharmacology
- Oxytocin/pharmacology
- Palmitates/pharmacology
- RNA, Messenger/metabolism
- Receptor, Muscarinic M4/agonists
- Receptors, Adrenergic, beta-1/drug effects
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Oxytocin/drug effects
- Receptors, Oxytocin/genetics
- Receptors, Oxytocin/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/agonists
- Receptors, Somatostatin/drug effects
- Receptors, Somatostatin/genetics
- Receptors, Somatostatin/metabolism
- Sequence Analysis, RNA
- Somatostatin/pharmacology
- Tryptophan/pharmacology
Collapse
Affiliation(s)
- Hiroyuki Koyama
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Hiroshi Iwakura
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Katsuko Dote
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Mika Bando
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Hiroshi Hosoda
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Hiroyuki Ariyasu
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Toru Kusakabe
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Choel Son
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kiminori Hosoda
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Takashi Akamizu
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kenji Kangawa
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kazuwa Nakao
- Medical Innovation Center (H.I., K.D., M.B., T.K., C.S., K.H., K.K., K.N.) and Departments of Diabetes, Endocrinology, and Nutrition (H.K.) and Human Health Sciences (K.H.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center Research Institute (H.H., K.K.), Osaka 565-8565; Japan; and The First Department of Medicine (H.A., T.A.), Wakayama Medical University, Wakayama 641-8509, Japan
| |
Collapse
|
40
|
Wu F, Johnston LJ, Urriola PE, Hilbrands AM, Shurson GC. Effects of feeding diets containing distillers' dried grains with solubles and wheat middlings with equal predicted dietary net energy on growth performance and carcass composition of growing-finishing pigs. J Anim Sci 2016; 94:144-54. [PMID: 26812321 DOI: 10.2527/jas.2015-9592] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This experiment evaluated the effects of feeding distillers' dried grains with solubles (DDGS) and wheat middlings (WM) in diets with similar estimated NE content on growth performance and carcass characteristics of growing-finishing pigs. Pigs ( = 384; 29.1 ± 3.6 kg initial BW) were blocked by initial BW, and within blocks, pens were randomly allotted to 1 of 4 dietary treatments (8 pigs/pen and 12 replicates/treatment) in a 4-phase feeding program (29 to 50, 50 to 75, 75 to 100, and 100 to 120 kg BW). Dietary treatments were arranged in a 2 × 2 factorial design and formulated to consist of: 1) corn and soybean meal (CON), 2) CON with 30% DDGS, 3) CON with 15% WM, and 4) CON with 30% DDGS and 15% WM. Diets met or exceeded nutrient requirements published by the and were formulated to contain the same concentrations of standardized ileal digestible (SID) Lys and meet or exceed minimum SID AA to Lys ratios within phases. No significant interactions for DDGS × WM × phase or DDGS × WM were observed for all growth performance criteria. Pigs fed diets containing 30% DDGS had reduced ( < 0.05) ADFI (1.76 vs. 1.86 kg/d) and ADG (0.85 vs. 0.91 kg/d) compared with pigs fed diets with no DDGS in phase 1 but not in other phases. The G:F of pigs fed diets containing DDGS was not different during phase 1 to 3 but was greater ( < 0.01) in phase 4 (0.313 vs. 0.291) compared with that of pigs fed diets with no DDGS. Pigs fed diets containing 15% WM had similar ADFI and G:F but reduced ( < 0.05) ADG (0.86 vs. 0.90 kg/d) compared with pigs fed diets without WM in phase 1, but no difference in ADG was observed in phases 2 to 4. No DDGS × WM interaction was observed for carcass traits. Pigs fed diets containing 30% DDGS had reduced ( < 0.01) HCW (86.5 vs. 89.9 kg), carcass yield (72.3 vs. 73.6%), LM area (45.0 vs. 47.9 cm), and percentage of carcass fat-free lean (52.1 vs. 53.4%), but backfat depth was not affected compared with pigs fed diets with no DDGS. Pigs fed diets containing 15% WM had lower carcass yield (72.7 vs. 73.1%; < 0.05) and HCW (87.7 vs. 88.7 kg; < 0.10) than pigs fed diets with no addition of WM, but other carcass traits were not affected. In conclusion, overall ADG and G:F were not affected by feeding 30% DDGS or 15% WM when diets were formulated on the NE basis, but more accurate and dynamic estimation of NE content for DDGS sources is needed to optimize caloric efficiency at different physiological ages of pigs.
Collapse
|
41
|
Pasquetti T, Pozza P, Moreira I, Santos T, Diaz-Huepa L, Castilha L, Perondi D, Carvalho P, Kim S. Simultaneous determination of standardized ileal digestible tryptophan and lysine for barrows from 15 to 30kg live weight. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Shen Y, Coffey M, Kim S. Effects of short term supplementation of l-tryptophan and reducing large neutral amino acid along with l-tryptophan supplementation on growth and stress response in pigs. Anim Feed Sci Technol 2015. [DOI: 10.1016/j.anifeedsci.2015.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Nørgaard J, Pedersen T, Soumeh E, Blaabjerg K, Canibe N, Jensen B, Poulsen H. Optimum standardized ileal digestible tryptophan to lysine ratio for pigs weighing 7–14kg. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Koopmans SJ, Schuurman T. Considerations on pig models for appetite, metabolic syndrome and obese type 2 diabetes: From food intake to metabolic disease. Eur J Pharmacol 2015; 759:231-9. [PMID: 25814261 DOI: 10.1016/j.ejphar.2015.03.044] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/06/2015] [Accepted: 03/12/2015] [Indexed: 12/24/2022]
Abstract
(Mini)pigs have proven to be a valuable animal model in nutritional, metabolic and cardiovascular research and in some other biomedical research areas (toxicology, neurobiology). The large resemblance of (neuro)anatomy, the gastro-intestinal tract, body size, body composition, and the omnivorous food choice and appetite of the pig are additional reasons to select this large animal species for (preclinical) nutritional and pharmacological studies. Both humans and pigs are prone to the development of obesity and related cardiovascular diseases such as hypertension and atherosclerosis. Bad cholesterol (LDL) is high and good cholesterol (HDL) is low in pigs, like in humans. Disease-relevant pig models fill the gap between rodent models and primate species including humans. Diet-induced obese pigs show a phenotype related to the metabolic syndrome including high amounts of visceral fat, fatty organs, insulin resistance and high blood pressure. However, overt hyperglycaemia does not develop within 6 months after initiation of high sugar-fat feeding. Therefore, to accelerate the induction of obese type 2 diabetes, obese pigs can be titrated with streptozotocin, a chemical agent which selectively damages the insulin-producing pancreatic beta-cells. However, insulin is required to maintain obesity. With proper titration of streptozotocin, insulin secretion can be restrained at such a level that hyperglycaemia will be induced but lipolysis is still inhibited due to the fact that inhibition of lipolysis is more sensitive to insulin compared to stimulation of glucose uptake. This strategy may lead to a stable hyperglycaemic, non-ketotic obese pig model which remains anabolic with time without the necessity of exogenous insulin treatment.
Collapse
Affiliation(s)
- Sietse Jan Koopmans
- Wageningen UR Livestock Research, de Elst 1 and CARUS Animal Facilities, Bornseweilanden 5, Wageningen University, Wageningen, The Netherlands.
| | - Teun Schuurman
- Wageningen University, Department of Animal Sciences, Animal Nutrition Group, de Elst 1, Wageningen, The Netherlands
| |
Collapse
|
45
|
Iwakura H, Kangawa K, Nakao K. The regulation of circulating ghrelin - with recent updates from cell-based assays. Endocr J 2015; 62:107-22. [PMID: 25273611 DOI: 10.1507/endocrj.ej14-0419] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ghrelin is a stomach-derived orexigenic hormone with a wide range of physiological functions. Elucidation of the regulation of the circulating ghrelin level would lead to a better understanding of appetite control in body energy homeostasis. Earlier studies revealed that circulating ghrelin levels are under the control of both acute and chronic energy status: at the acute scale, ghrelin levels are increased by fasting and decreased by feeding, whereas at the chronic scale, they are high in obese subjects and low in lean subjects. Subsequent studies revealed that nutrients, hormones, or neural activities can influence circulating ghrelin levels in vivo. Recently developed in vitro assay systems for ghrelin secretion can assess whether and how individual factors affect ghrelin secretion from cells. In this review, on the basis of numerous human, animal, and cell-based studies, we summarize current knowledge on the regulation of circulating ghrelin levels and enumerate the factors that influence ghrelin levels.
Collapse
Affiliation(s)
- Hiroshi Iwakura
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
46
|
The effects of 5-hydroxytryptophan in combination with different Fatty acids on gastrointestinal functions: a pilot experiment. Gastroenterol Res Pract 2014; 2014:424503. [PMID: 25214830 PMCID: PMC4156978 DOI: 10.1155/2014/424503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/14/2014] [Indexed: 11/23/2022] Open
Abstract
Background.
Fat affects gastric emptying (GE). 5-Hydroxythryptophan (5-HTP) is involved in central and peripheral satiety mechanisms. Influence of 5-HTP in addition to saturated or monounsaturated fatty acids (FA) on GE and hormone release was investigated.
Subjects/Methods.
24 healthy individuals (12f : 12m, 22–29 years, BMI 19–25.7 kg/m²) were tested on 4 days with either 5-HTP + short-chain saturated FA (butter), placebo + butter, 5-HTP + monounsaturated FA (olive oil), or placebo + olive oil in double-blinded randomized order. Two hours after FA/5-HTP or placebo intake, a 13C octanoid acid test was conducted. Cortisol, serotonin, cholecystokinin (CCK), and ghrelin were measured, as were mood and GE.
Results.
GE was delayed with butter and was normal with olive (P < 0.05) but not affected by 5-HTP. 5-HTP supplementation did not affect serotonin levels. Food intake increased plasma CCK (F = 6.136; P < 0.05) irrespective of the FA. Ghrelin levels significantly decreased with oil/5-HTP (F = 9.166; P < 0.001). The diurnal cortisol profile was unaffected by FA or 5-HTP, as were ratings of mood, hunger, and stool urgency.
Conclusion.
Diverse FAs have different effects on GE and secretion of orexigenic and anorexigenic hormones. Supplementation of 5-HTP had no effect on plasma serotonin and central functions. Further studies are needed to explain the complex interplay.
Collapse
|
47
|
Effect of dietary crude glycerin on growth performance, nutrient digestibility and hormone levels of Iberian crossbred pigs from 50 to 100kg body weight. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.04.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
48
|
Giuberti G, Gallo A, Masoero F, Ferraretto LF, Hoffman PC, Shaver RD. Factors affecting starch utilization in large animal food production system: A review. STARCH-STARKE 2013. [DOI: 10.1002/star.201300177] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Gianluca Giuberti
- Institute of Feed and Food Science and Nutrition; Università Cattolica del Sacro Cuore; Piacenza Italy
| | - Antonio Gallo
- Institute of Feed and Food Science and Nutrition; Università Cattolica del Sacro Cuore; Piacenza Italy
| | - Francesco Masoero
- Institute of Feed and Food Science and Nutrition; Università Cattolica del Sacro Cuore; Piacenza Italy
| | | | | | - Randy D. Shaver
- Department of Dairy Science; University of Wisconsin; Madison WI USA
| |
Collapse
|
49
|
Abstract
There is no consensus concerning the Trp requirement for piglets expressed relative to Lys on a standardized ileal digestible basis (SID Trp : Lys). A meta-analysis was performed to estimate the SID Trp : Lys ratio that maximizes performance of weaned piglets between 7 and 25 kg of BW. A database comprising 130 experiments on the Trp requirement in piglets was established. The nutritional values of the diets were calculated from the composition of feed ingredients. Among all experiments, 37 experiments were selected to be used in the meta-analysis because they were designed to express the Trp requirement relative to Lys (e.g. Lys was the second-limiting amino acid in the diet) while testing at least three levels of Trp. The linear-plateau (LP), curvilinear-plateau (CLP) and asymptotic (ASY) models were tested to estimate the SID Trp : Lys requirement using average daily gain (ADG), average daily feed intake (ADFI) and gain-to-feed ratio (G : F) as response criteria. A multiplicative trial effect was included in the models on the plateau value, assuming that the experimental conditions affected only this parameter and not the requirement or the shape of the response to Trp. Model choice appeared to have an important impact on the estimated requirement. Using ADG and ADFI as response criteria, the SID Trp : Lys requirement was estimated at 17% with the LP model, at 22% with the CLP model and at 26% with the ASY model. Requirement estimates were slightly lower when G : F was used as response criterion. The Trp requirement was not affected by the composition of the diet (corn v. a mixture of cereals). The CLP model appeared to be the best-adapted model to describe the response curve of a population. This model predicted that increasing the SID Trp : Lys ratio from 17% to 22% resulted in an increase in ADG by 8%.
Collapse
|
50
|
Takahashi T, Kobayashi Y, Haga S, Ohtani Y, Sato K, Obara Y, Hagino A, Roh SG, Katoh K. A high-protein diet induces dissociation between plasma concentrations of growth hormone and ghrelin in wethers. J Anim Sci 2012; 90:4807-13. [PMID: 22871937 DOI: 10.2527/jas.2011-4596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High-carbohydrate or high-fat diets have been demonstrated to change ghrelin concentrations in plasma; however, there remains a need to clarify the effects of dietary protein on the interaction between circulating GH and ghrelin concentrations in the ruminant. In this study, we investigated the postprandial changes in plasma concentrations of GH and ghrelin and their interactions when wethers were fed either a high-protein (HP; 40% CP) or a low-protein (LP; 10% CP) diet for 2 wk. The wethers were divided into 2 groups and fed once a day for 2 wk in a randomized crossover design. Each diet contained the same level of ME. Blood was collected from the animals at specific times over 24 h to measure hormones and metabolites. Feeding once a day caused a prompt reduction in the GH and ghrelin concentrations regardless of the type of diet that the wethers consumed. The preprandial concentrations (P = 0.04), area under the curve (AUC; P = 0.04), and incremental AUC (iAUC; P = 0.06) for ghrelin in HP-fed wethers were or tended to be greater than those in LP-fed wethers although concentrations for GH were the same for both diets (P = 0.23). In addition, the time it took for the postprandial ghrelin concentrations to recover to the preprandial concentrations was greater in HP-fed wethers than in LP-fed wethers although this was not true for GH concentrations. Similarly, as for ghrelin, postprandial increase (P < 0.001) and AUC (P = 0.03) for insulin concentration was greater in the HP-fed wethers than in the LP-fed wethers. From these findings, we concluded that dietary proteins (or some other derived metabolites) may dissociate the interaction between plasma concentrations of GH and ghrelin in wethers.
Collapse
Affiliation(s)
- T Takahashi
- Department of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiyamachi, Aoba-ku, Sendai, 981-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|