1
|
Hu S, Zhang Y, Wang C, Li J, Su H, Xie X, Wang J, Wang J, Cao J, He X, Xu Y, Zhang L, Dai W, Liu H. Development of Orally Bioavailable Octahydroindole-Based Peptidomimetic Derivative as a Broad-Spectrum Inhibitor against HCoV-OC43 and SARS-CoV-2. J Med Chem 2025. [PMID: 40400488 DOI: 10.1021/acs.jmedchem.4c03024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
A series of novel Mpro inhibitors was designed and synthesized to combat the coronavirus, such as HCoV-OC43 and SARS-CoV-2, and several compounds showed comparable antiviral activity to nirmatrelvir. Among them, an octahydroindole-based peptidomimetic covalent inhibitor 28f showed strong inhibitory activity against Mpros and exhibited broad-spectrum anticoronavirus activity with EC50 values ranging from 0.027 to 4.41 μM. Besides, this compound displayed potent antiviral activity against EV71. Compared to FB2001, 28f displayed better pharmacokinetic properties, and the value of oral bioavailability in CD-1 mice and Beagle dogs was improved to 10.4 and 10.2%, respectively. In addition, oral treatment with 28f could significantly reduce the viral loads of HCoV-OC43 in mice, and compound 28f could also effectively reduce lung viral loads in a K18-hACE2 transgenic mouse model without ritonavir. Taken together, compound 28f is a promising orally bioavailable broad-spectrum antiviral drug candidate that deserves further research.
Collapse
Affiliation(s)
- Shulei Hu
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yumin Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Chenchen Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xiong Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| | - Jinlin Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyuan Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Xiaofei He
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Wenhao Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liu
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Sasaki E, Hamaguchi I, Hasegawa H, Takahashi Y. Establishment of a novel adjuvant screening system for the development of intranasal vaccine adjuvants. Vaccine 2025; 58:127267. [PMID: 40383081 DOI: 10.1016/j.vaccine.2025.127267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Vaccine adjuvants play a pivotal role in enhancing the immunogenicity of vaccines. Some vaccine modalities, such as subunit vaccines and split vaccines, are inherently poorly immunogenic and benefit greatly from combination with adjuvants. Notable examples, such as the herpes zoster glycoprotein E subunit vaccine and the Novavax COVID-19 (NVX-CoV2373) vaccine, underscore the importance of adjuvants in vaccination. Mucosal vaccines, and intranasal vaccines in particular, are gaining increasing attention for their potential to combat respiratory viral infections more effectively than subcutaneous and intramuscular vaccines. This is because mucosal vaccines can induce immunoglobulin (Ig)A production at mucosal surfaces to prevent the transmission of respiratory viruses such as influenza and severe acute respiratory syndrome coronavirus 2. However, few adjuvanted mucosal vaccines have been approved to date. To address this gap, we developed an adjuvant screening system to identify adjuvants suitable for use in combination with intranasal vaccines from a list of existing approved drugs or pharmaceutical additives. By analyzing biomarker gene expression levels, our screening system was able to predict the adjuvanticity and toxicity of a given adjuvant candidate in a short time. Using this screening system, we have to date identified some pharmaceutical additives, which induced a robust antigen-specific IgA antibody response following a single intranasal administration, without significant leukopenic toxicity or type I interferon inducibility. In this review, we discuss the development of our novel adjuvant evaluation system and its potential to enhance the efficacy of mucosal vaccines.
Collapse
Affiliation(s)
- Eita Sasaki
- Research Center for Vaccine Development, National Institute of Infectious Diseases, Japan Institute for Health Security, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan; Influenza Research Center, National Institute of Infectious Diseases, Japan Institute for Health Security, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan.
| | - Isao Hamaguchi
- Department of Clinical Laboratory, Subaru Health Insurance Society Ota Memorial Hospital, Gunma, Japan; Center for Next-Generation Biologics Research, National Institute of Infectious Diseases, Japan Institute for Health Security, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Hideki Hasegawa
- Influenza Research Center, National Institute of Infectious Diseases, Japan Institute for Health Security, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Yoshimasa Takahashi
- Research Center for Vaccine Development, National Institute of Infectious Diseases, Japan Institute for Health Security, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| |
Collapse
|
3
|
Waki K, Tani H, Kawahara E, Saga Y, Shimada T, Yamazaki E, Koike S, Morinaga Y, Isobe M, Kurosawa N. Comprehensive analysis of nasal IgA antibodies induced by intranasal administration of the SARS-CoV-2 spike protein. eLife 2025; 12:RP88387. [PMID: 40338637 PMCID: PMC12061477 DOI: 10.7554/elife.88387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Intranasal vaccination is an attractive strategy for preventing COVID-19 disease as it stimulates the production of multimeric secretory immunoglobulin A (IgA), the predominant antibody isotype in the mucosal immune system, at the target site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry. Currently, intranasal vaccine efficacy is evaluated based on the measurement of polyclonal antibody titers in nasal lavage fluid. However, how individual multimeric secretory IgA protects the mucosa from SARS-CoV-2 infection remains to be elucidated. To understand the precise contribution and molecular nature of multimeric secretory IgA induced by intranasal vaccines, we developed 99 monoclonal IgA clones from nasal mucosa and 114 monoclonal IgA or IgG clones from nonmucosal tissues of mice that were intranasally immunized with the SARS-CoV-2 spike protein. The nonmucosal IgA clones exhibited shared origins and common and unique somatic mutations with the related nasal IgA clones, indicating that the antigen-specific plasma cells in the nonmucosal tissues originated from B cells stimulated at the nasal mucosa. Comparing the spike protein binding reactivity, angiotensin-converting enzyme-2-blocking, and in vitro SARS-CoV-2 virus neutralization of monomeric and multimeric secretory IgA pairs recognizing different epitopes showed that even non-neutralizing monomeric IgAs, which represent 70% of the nasal IgA repertoire, can protect against SARS-CoV-2 infection when expressed as multimeric secretory IgAs. We also demonstrated that the intranasal administration of multimeric secretory IgA delivered as prophylaxis in the hamster model reduced infection-induced weight loss. Our investigation is the first to demonstrate the function of nasal IgA at the monoclonal level, showing that nasal immunization can provide effective immunity against SARS-CoV-2 by inducing multimeric secretory IgAs at the target site of the virus infection.
Collapse
Affiliation(s)
- Kentarou Waki
- Laboratory of Molecular and Cellular Biology, Graduate School of Science and Engineering for Education, University of ToyamaToyamaJapan
| | - Hideki Tani
- Department of Virology, Toyama Institute of HealthToyamaJapan
| | - Eigo Kawahara
- Department of Microbiology, Toyama University Graduate School of Medicine and Pharmaceutical SciencesToyamaJapan
- Center for Advanced Antibody Drug Development, University of ToyamaToyamaJapan
| | - Yumiko Saga
- Department of Virology, Toyama Institute of HealthToyamaJapan
| | | | - Emiko Yamazaki
- Department of Virology, Toyama Institute of HealthToyamaJapan
| | - Seiichi Koike
- Laboratory of Molecular and Cellular Biology, Graduate School of Innovative Life Science, University of ToyamaToyamaJapan
| | - Yoshitomo Morinaga
- Department of Microbiology, Toyama University Graduate School of Medicine and Pharmaceutical SciencesToyamaJapan
- Center for Advanced Antibody Drug Development, University of ToyamaToyamaJapan
| | - Masaharu Isobe
- Center for Advanced Antibody Drug Development, University of ToyamaToyamaJapan
- Laboratory of Molecular and Cellular Biology, Graduate School of Innovative Life Science, University of ToyamaToyamaJapan
| | - Nobuyuki Kurosawa
- Center for Advanced Antibody Drug Development, University of ToyamaToyamaJapan
- Laboratory of Molecular and Cellular Biology, Graduate School of Innovative Life Science, University of ToyamaToyamaJapan
| |
Collapse
|
4
|
Kumar P, Chaudhary B, Arya P, Chauhan R, Devi S, Parejiya PB, Gupta MM. Advanced Artificial Intelligence Technologies Transforming Contemporary Pharmaceutical Research. Bioengineering (Basel) 2025; 12:363. [PMID: 40281723 PMCID: PMC12024664 DOI: 10.3390/bioengineering12040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 04/29/2025] Open
Abstract
One area of study within machine learning and artificial intelligence (AI) seeks to create computer programs with intelligence that can mimic human focal processes in order to produce results. This technique includes data collection, effective data usage system development, conclusion illustration, and arrangements. Analysis algorithms that are learning to mimic human cognitive activities are the most widespread application of AI. Artificial intelligence (AI) studies have proliferated, and the field is quickly beginning to understand its potential impact on medical services and investigation. This review delves deeper into the pros and cons of AI across the healthcare and pharmaceutical research industries. Research and review articles published throughout the last few years were selected from PubMed, Google Scholar, and Science Direct, using search terms like 'artificial intelligence', 'drug discovery', 'pharmacy research', 'clinical trial', etc. This article provides a comprehensive overview of how artificial intelligence (AI) is being used to diagnose diseases, treat patients digitally, find new drugs, and predict when outbreaks or pandemics may occur. In artificial intelligence, neural networks and deep learning are some of the most popular tools; in clinical research, Bayesian non-parametric approaches hold promise for better results, while smartphones and the processing of natural languages are employed in recognizing patients and trial monitoring. Seasonal flu, Ebola, Zika, COVID-19, tuberculosis, and outbreak predictions were made using deep computation and artificial intelligence. The academic world is hopeful that AI development will lead to more efficient and less expensive medical and pharmaceutical investigations and better public services.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India;
| | - Benu Chaudhary
- Shri Ram College of Pharmacy, Karnal 132001, Haryana, India; (B.C.); (P.A.)
| | - Preeti Arya
- Shri Ram College of Pharmacy, Karnal 132001, Haryana, India; (B.C.); (P.A.)
| | - Rupali Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.C.); (S.D.)
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.C.); (S.D.)
| | - Punit B. Parejiya
- Department of Pharmaceutics, K.B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382 023, Gujarat, India;
| | - Madan Mohan Gupta
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India;
| |
Collapse
|
5
|
Valdez-Salas B, Salvador-Carlos J, Valdez-Salas E, Beltrán-Partida E, Castillo-Saenz J, Curiel-Álvarez M, Gonzalez-Mendoza D, Cheng N. Nasal Spray Disinfectant for Respiratory Infections Based on Functionalized Silver Nanoparticles: A Physicochemical and Docking Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:533. [PMID: 40214578 PMCID: PMC11990716 DOI: 10.3390/nano15070533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Respiratory diseases have presented a remarkable challenge during modern history, contributing to important pandemics. The scientific community has focused its efforts on developing vaccines and blocking the transmission of viruses through the respiratory tract. In this study, we propose the use of stable silver nanoparticles (AgNPs) functionalized with tannic acid (TA) and sodium citrate (SC) as a nasal spray disinfectant (NSD). The non-ionic ethoxylated surfactant Tween 80 (T80) was added to enhance the wetting effect on nasal and oral tissues following spray application. We analyzed the physicochemical properties of the AgNPs and the NSD, including zeta potential, polarity, morphology, composition, particle size, and distribution. The results indicated spherical AgNPs ranging from 3 to 5 nm, stabilized by TA-SC. The addition of T80 resulted in particles with negative polarity, high stability, and improved coverage area. Furthermore, the colloidal stability was monitored over one year, showing no signs of degradation or precipitation. Interestingly, the interaction between the capped AgNP complex, the spike protein, and ACE2 was studied by molecular docking, indicating a strong and thermodynamically favorable complex interaction. These findings hold promise for the development of potential inhibitors, antagonist receptors, Ag-complex agonists (as observed here), and drug development for viral protection.
Collapse
Affiliation(s)
- Benjamín Valdez-Salas
- Core Facilities of Chemistry and Advanced Materials, Instituto de Ingeniería, Universidad Autónoma de Baja California, Calle de La Normal S/N and Boulevard Benito Juárez, Mexicali 21100, Baja California, Mexico; (B.V.-S.); (E.B.-P.); (J.C.-S.); (M.C.-Á.)
| | - Jorge Salvador-Carlos
- Core Facilities of Chemistry and Advanced Materials, Instituto de Ingeniería, Universidad Autónoma de Baja California, Calle de La Normal S/N and Boulevard Benito Juárez, Mexicali 21100, Baja California, Mexico; (B.V.-S.); (E.B.-P.); (J.C.-S.); (M.C.-Á.)
| | - Ernesto Valdez-Salas
- Centro Médico Ixchel, Av. Nicolás Bravo 270, Mexicali 21000, Baja California, Mexico;
| | - Ernesto Beltrán-Partida
- Core Facilities of Chemistry and Advanced Materials, Instituto de Ingeniería, Universidad Autónoma de Baja California, Calle de La Normal S/N and Boulevard Benito Juárez, Mexicali 21100, Baja California, Mexico; (B.V.-S.); (E.B.-P.); (J.C.-S.); (M.C.-Á.)
| | - Jhonathan Castillo-Saenz
- Core Facilities of Chemistry and Advanced Materials, Instituto de Ingeniería, Universidad Autónoma de Baja California, Calle de La Normal S/N and Boulevard Benito Juárez, Mexicali 21100, Baja California, Mexico; (B.V.-S.); (E.B.-P.); (J.C.-S.); (M.C.-Á.)
| | - Mario Curiel-Álvarez
- Core Facilities of Chemistry and Advanced Materials, Instituto de Ingeniería, Universidad Autónoma de Baja California, Calle de La Normal S/N and Boulevard Benito Juárez, Mexicali 21100, Baja California, Mexico; (B.V.-S.); (E.B.-P.); (J.C.-S.); (M.C.-Á.)
| | - Daniel Gonzalez-Mendoza
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Carretera a Delta s/n, Ejido Nuevo Leon, Mexicali 21705, Baja California, Mexico;
| | - Nelson Cheng
- Magna International Pte Ltd., 10 H Enterprise Road, Singapore 629834, Singapore;
| |
Collapse
|
6
|
Vijayanand S, Patil S, Bagwe P, Singh R, Adediran E, D’Souza MJ. Evaluating the Immunogenicity of an Intranasal Microparticle Combination Vaccine for COVID-19 and Influenza. Vaccines (Basel) 2025; 13:282. [PMID: 40266139 PMCID: PMC11946802 DOI: 10.3390/vaccines13030282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Infectious respiratory pathogens like SARS-CoV-2 and influenza frequently mutate, leading to the emergence of variants. This necessitates continuous updates to FDA-approved vaccines with booster shots targeting the circulating variants. Vaccine hesitancy and needle injections create inconvenience and contribute to reduced global vaccination rates. To address the burden of frequent painful injections, this manuscript explores the potential of non-invasive intranasal (IN) vaccine administration as an effective alternative to intramuscular (IM) shots. Further, as a proof-of-concept, an inactivated combination vaccine for COVID-19 and influenza was tested to eliminate the need for separate vaccinations. METHODS The methods involved encapsulating antigens and adjuvants in poly(lactic-co-glycolic acid) (PLGA) polymer matrices, achieving over 85% entrapment. The vaccine was evaluated in vitro for cytotoxicity and immunogenicity before being administered to 6-8-week-old Swiss Webster mice at weeks 0, 3, and 6. The mice were then assessed for antibody levels and cellular responses. RESULTS The intranasal microparticle (IN-MP) vaccine induced an innate immune response, autophagy, and were non-cytotoxic in vitro. In vivo, the vaccine led to high levels of virus-specific serum IgM, IgG, and IgA binding antibodies, as well as elevated IgG and IgA levels in the lung wash samples. The antibodies generated demonstrated neutralizing activity against the SARS-CoV-2 pseudovirus. Furthermore, the IN-MP vaccine prompted increased antigen-specific CD4+ and CD8+ T-cell responses in the vaccinated mice. CONCLUSIONS The IN-MP combination vaccine produced immune responses comparable to or higher than the IM route, indicating its potential as an alternative to IM injections.
Collapse
Affiliation(s)
| | | | | | | | | | - Martin J. D’Souza
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery and Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (S.V.); (S.P.); (P.B.); (R.S.); (E.A.)
| |
Collapse
|
7
|
Tian Y, Hu L, Huang Q, Qi J, Shen L, Wang G, Yu W, Hu T. A SARS-CoV-2 mucosal nanovaccine based on assembly of maltodextrin, STING agonist and polyethyleneimine. Int J Biol Macromol 2025; 294:139395. [PMID: 39756748 DOI: 10.1016/j.ijbiomac.2024.139395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/17/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
SARS-CoV-2 has the characteristics of strong transmission with severe morbidity and mortality. Protein-based vaccines have the properties of specificity, effectiveness and safety against SARS-CoV-2. Receptor-binding domain (RBD) homotrimer affords high protection efficacy against stringent lethal viral challenge. Mucosal immunity could block the infection that first infect and replicate in the upper airway mucosa. Due to the physical barriers of the mucosa, mucosal vaccines necessitated appropriate adjuvants and delivery system. In the present study, maltodextrin, PEI and 2',3'-cGAMP acted as the mucosal adjuvants and RBD trimer as the antigen. A mucosal nanovaccine was prepared by assembly of adjuvants and the antigen to a nanoparticle. The vaccine elicited strong serum RBD-specific IgG and IgA response, and mild mucosal IgA and IgG response in the respiratory tract. It stimulated strong neutralizing antibody response and high ACE2-blocking activity in the sera. It promoted the RBD-specific CD4+ and CD8+ T cells secreting IFN-γ, IL-4 and IL-17 A. Moreover, it elicited durable RBD-specific memory T and B memory cell response, activated the T and B cells, enhanced the cytotoxic T cell killing effect, and promoted the maturation of DCs. These findings suggested the clinical potential of the vaccine to combat against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yu Tian
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijia Hu
- School of International Relations, Beijing Language and Culture University, Beijing 100083, China
| | | | - Jinming Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijuan Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Guosheng Wang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Weili Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
8
|
Fatima M, An T, Hong KJ. Revolutionizing mRNA Vaccines Through Innovative Formulation and Delivery Strategies. Biomolecules 2025; 15:359. [PMID: 40149895 PMCID: PMC11940278 DOI: 10.3390/biom15030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Modernization of existing methods for the delivery of mRNA is vital in advanced therapeutics. Traditionally, mRNA has faced obstacles of poor stability due to enzymatic degradation. This work examines cutting-edge formulation and emerging techniques for safer delivery of mRNA vaccines. Inspired by the success of lipid nanoparticles (LNP) in delivering mRNA vaccines for COVID-19, a variety of other formulations have been developed to deliver mRNA vaccines for diverse infections. The meritorious features of nanoparticle-based mRNA delivery strategies, including LNP, polymeric, dendrimers, polysaccharide-based, peptide-derived, carbon and metal-based, DNA nanostructures, hybrid, and extracellular vesicles, have been examined. The impact of these delivery platforms on mRNA vaccine delivery efficacy, protection from enzymatic degradation, cellular uptake, controlled release, and immunogenicity has been discussed in detail. Even with significant developments, there are certain limitations to overcome, including toxicity concerns, limited information about immune pathways, the need to maintain a cold chain, and the necessity of optimizing administration methods. Continuous innovation is essential for improving delivery systems for mRNA vaccines. Future research directions have been proposed to address the existing challenges in mRNA delivery and to expand their potential prophylactic and therapeutic application.
Collapse
Affiliation(s)
- Munazza Fatima
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea;
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Timothy An
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Kee-Jong Hong
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea;
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Korea mRNA Vaccine Initiative, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
9
|
Maniyamgama N, Bae KH, Chang ZW, Lee J, Ang MJY, Tan YJ, Ng LFP, Renia L, White KP, Yang YY. Muco-Penetrating Lipid Nanoparticles Having a Liquid Core for Enhanced Intranasal mRNA Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407383. [PMID: 39888252 PMCID: PMC11923898 DOI: 10.1002/advs.202407383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Indexed: 02/01/2025]
Abstract
Intranasal delivery of mRNA vaccines offers promising opportunities to combat airborne viruses like SARS-CoV-2 by provoking mucosal immunity, which not only defends against respiratory infection but also prevents contagious transmission. However, the development of nasal mRNA vaccines has been hampered by the lack of effective means to overcome the mucus barrier. Herein, ionizable lipid-incorporated liquid lipid nanoparticles (iLLNs) capable of delivering mRNA cargo across airway mucosa are designed. Adjusting the ratios of ionizable and cationic lipids allows fine-tuning of the pKa of iLLNs to the range of nasal mucosal pH (5.5-6.5), thus facilitating mucus penetration via the formation of near-neutral, PEGylated muco-inert surfaces. When nasally administered to mice, the top candidate iLLN-2/mRNA complexes enable about 60-fold greater reporter gene expression in the nasal cavity, compared to the benchmark mRNA-lipid nanoparticles (ALC-LNP) having the same lipid composition as that of BNT162b2 vaccine. Moreover, a prime-boost intranasal immunization of iLLN-2/mRNA complexes elicits a greater magnitude of SARS-CoV-2 spike-specific mucosal IgA and IgG response than ALC-LNP, without triggering any noticeable inflammatory reactions. Taken together, these results provide useful insights for the design of nasally deliverable mRNA formulations for prophylactic applications.
Collapse
Affiliation(s)
- Nipuni Maniyamgama
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)20 Biopolis Way, Centros #06‐01Singapore138668Republic of Singapore
| | - Ki Hyun Bae
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)20 Biopolis Way, Centros #06‐01Singapore138668Republic of Singapore
| | - Zi Wei Chang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and Research (A*STAR)8A Biomedical Grove, Immunos #05‐13Singapore138648Republic of Singapore
| | - Jialing Lee
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)20 Biopolis Way, Centros #06‐01Singapore138668Republic of Singapore
| | - Melgious J. Y. Ang
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)20 Biopolis Way, Centros #06‐01Singapore138668Republic of Singapore
| | - Yong Jie Tan
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and Research (A*STAR)8A Biomedical Grove, Immunos #05‐13Singapore138648Republic of Singapore
| | - Lisa F. P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and Research (A*STAR)8A Biomedical Grove, Immunos #05‐13Singapore138648Republic of Singapore
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and Research (A*STAR)8A Biomedical Grove, Immunos #05‐13Singapore138648Republic of Singapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore138648Republic of Singapore
- School of Biological SciencesNanyang Technological UniversitySingapore138648Republic of Singapore
| | - Kevin P. White
- Department of Biochemistry and Precision Medicine Translational Research ProgramYong Loo Lin School of MedicineNational University of SingaporeSingapore119228Republic of Singapore
| | - Yi Yan Yang
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)20 Biopolis Way, Centros #06‐01Singapore138668Republic of Singapore
| |
Collapse
|
10
|
Rath SK, Dash AK, Sarkar N, Panchpuri M. A Glimpse for the subsistence from pandemic SARS-CoV-2 infection. Bioorg Chem 2025; 154:107977. [PMID: 39603070 DOI: 10.1016/j.bioorg.2024.107977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
COVID-19 is an emerging viral pandemic caused by SARS-CoV-2, which is the causative agent of unprecedented disease-causing public health threats globally. Worldwide, this outbreak is wreaking havoc due to failure in risk assessment regarding the urgency of the pandemic. As per the reports, many secondary complications which include neurological, nephrological, gastrointestinal, cardiovascular, immune, and hepatic abnormalities, are linked with COVID -19 infection which is associated with prominent respiratory disorders including pneumonia. Hindering the initial binding of the virus with Angiotensin-converting enzyme 2 (ACE2) through the spike protein is one potential boulevard of monoclonal antibodies. Although some drug regimens and vaccines have shown safety in trials, none have been entirely successful yet. This review highlights, some of the potential antibodies (tocilizumab, Sarilumab, Avdoralimab, Lenzilumab, Interferon (alfa /beta /gamma)) screened against SARS-CoV-2 and the most promising drugs (Favipiravir, Hydroxychloroquine, Niclosamide, Ribavirin, Baricitinib, Remdesivir, Arbidol Losartan, Ritonavir, Lopinavir, Baloxavir, Nitazoxanide, Camostat) in various stages of development with their synthetic protocol and their clinical projects are discussed to counter COVID -19.
Collapse
Affiliation(s)
- Santosh K Rath
- School of Pharmaceuticals and Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India.
| | | | - Nandan Sarkar
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat, Kolkata 700126, India
| | - Mitali Panchpuri
- School of Pharmaceuticals and Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| |
Collapse
|
11
|
Saffarionpour S, Diosady LL. Cyclodextrins and their potential applications for delivering vitamins, iron, and iodine for improving micronutrient status. Drug Deliv Transl Res 2025; 15:26-65. [PMID: 38671315 DOI: 10.1007/s13346-024-01586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Cyclodextrins (CDs) have been investigated as potential biopolymeric carriers that can form inclusion complexes with numerous bioactive ingredients. The inclusion of micronutrients (e.g. vitamins or minerals) into cyclodextrins can enhance their solubility and provide oxidative or thermal stability. It also enables the formulation of products with extended shelf-life. The designed delivery systems with CDs and their inclusion complexes including electrospun nanofibers, emulsions, liposomes, and hydrogels, show potential in enhancing the solubility and oxidative stability of micronutrients while enabling their controlled and sustained release in applications including food packaging, fortified foods and dietary supplements. Nano or micrometer-sized delivery systems capable of controlling burst release and permeation, or moderating skin hydration have been reported, which can facilitate the formulation of several personal and skin care products for topical or transdermal delivery of micronutrients. This review highlights recent developments in the application of CDs for the delivery of micronutrients, i.e. vitamins, iron, and iodine, which play key roles in the human body, emphasizing their existing and potential applications in the food, pharmaceuticals, and cosmeceuticals industries.
Collapse
Affiliation(s)
| | - Levente L Diosady
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Colaço M, Cruz MT, de Almeida LP, Borges O. Mannose and Lactobionic Acid in Nasal Vaccination: Enhancing Antigen Delivery via C-Type Lectin Receptors. Pharmaceutics 2024; 16:1308. [PMID: 39458637 PMCID: PMC11510408 DOI: 10.3390/pharmaceutics16101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Nasal vaccines are a promising strategy for enhancing mucosal immune responses and preventing diseases at mucosal sites by stimulating the secretion of secretory IgA, which is crucial for early pathogen neutralization. However, designing effective nasal vaccines is challenging due to the complex immunological mechanisms in the nasal mucosa, which must balance protection and tolerance against constant exposure to inhaled pathogens. The nasal route also presents unique formulation and delivery hurdles, such as the mucous layer hindering antigen penetration and immune cell access. METHODS This review focuses on cutting-edge approaches to enhance nasal vaccine delivery, particularly those targeting C-type lectin receptors (CLRs) like the mannose receptor and macrophage galactose-type lectin (MGL) receptor. It elucidates the roles of these receptors in antigen recognition and uptake by antigen-presenting cells (APCs), providing insights into optimizing vaccine delivery. RESULTS While a comprehensive examination of targeted glycoconjugate vaccine development is outside the scope of this study, we provide key examples of glycan-based ligands, such as lactobionic acid and mannose, which can selectively target CLRs in the nasal mucosa. CONCLUSIONS With the rise of new viral infections, this review aims to facilitate the design of innovative vaccines and equip researchers, clinicians, and vaccine developers with the knowledge to enhance immune defenses against respiratory pathogens, ultimately protecting public health.
Collapse
Affiliation(s)
- Mariana Colaço
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria T. Cruz
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Olga Borges
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
13
|
Rader NA, Lee KS, Loes AN, Miller-Stump OA, Cooper M, Wong TY, Boehm DT, Barbier M, Bevere JR, Heath Damron F. Influenza virus strains expressing SARS-CoV-2 receptor binding domain protein confer immunity in K18-hACE2 mice. Vaccine X 2024; 20:100543. [PMID: 39221180 PMCID: PMC11364132 DOI: 10.1016/j.jvacx.2024.100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19), rapidly spread across the globe in 2019. With the emergence of the Omicron variant, COVID-19 shifted into an endemic phase. Given the anticipated rise in cases during the fall and winter seasons, the strategy of implementing seasonal booster vaccines for COVID-19 is becoming increasingly valuable to protect public health. This practice already exists for seasonal influenza vaccines to combat annual influenza seasons. Our goal was to investigate an easily modifiable vaccine platform for seasonal use against SARS-CoV-2. In this study, we evaluated the genetically modified influenza virus ΔNA(RBD) as an intranasal vaccine candidate for COVID-19. This modified virus was engineered to replace the coding sequence for the neuraminidase (NA) protein with a membrane-anchored form of the receptor binding domain (RBD) protein of SARS-CoV-2. We designed experiments to assess the protection of ΔNA(RBD) in K18-hACE2 mice using lethal (Delta) and non-lethal (Omicron) challenge models. Controls of COVID-19 mRNA vaccine and our lab's previously described intranasal virus like particle vaccine were used as comparisons. Immunization with ΔNA(RBD) expressing ancestral RBD elicited high anti-RBD IgG levels in the serum of mice, high anti-RBD IgA in lung tissue, and improved survival after Delta variant challenge. Modifying ΔNA(RBD) to express Omicron variant RBD shifted variant-specific antibody responses and limited viral burden in the lungs of mice after Omicron variant challenge. Overall, this data suggests that ΔNA(RBD) could be an effective intranasal vaccine platform that generates mucosal and systemic immunity towards SARS-CoV-2.
Collapse
Affiliation(s)
- Nathaniel A. Rader
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Katherine S. Lee
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Andrea N. Loes
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98103, USA
| | - Olivia A. Miller-Stump
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Melissa Cooper
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Ting Y. Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Dylan T. Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Justin R. Bevere
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| |
Collapse
|
14
|
Chavda VP, Luo G, Bezbaruah R, Kalita T, Sarma A, Deka G, Duo Y, Das BK, Shah Y, Postwala H. Unveiling the promise: Exosomes as game-changers in anti-infective therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230139. [PMID: 39439498 PMCID: PMC11491308 DOI: 10.1002/exp.20230139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/23/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs)-based intercellular communication (through exosomes, microvesicles, and apoptotic bodies) is conserved across all kingdoms of life. In recent years, exosomes have gained much attention for targeted pharmaceutical administration due to their unique features, nanoscale size, and capacity to significantly contribute to cellular communication. As drug delivery vehicles, exosomes have several advantages over alternative nanoparticulate drug delivery technologies. A key advantage lies in their comparable makeup to the body's cells, which makes them non-immunogenic. However, exosomes vesicles face several challenges, including a lack of an effective and standard production technique, decreased drug loading capacity, limited characterization techniques, and underdeveloped isolation and purification procedures. Exosomes are well known for their long-term safety and natural ability to transport intercellular nucleic acids and medicinal compounds across the blood-brain-barrier (BBB). Therefore, in addition to revealing new insights into exosomes' distinctiveness, the growing availability of new analytical tools may drive the development of next-generation synthetic systems. Herein, light is shed on exosomes as drug delivery vehicles in anti-infective therapy by reviewing the literature on primary articles published between 2002 and 2023. Additionally, the benefits and limitations of employing exosomes as vehicles for therapeutic drug delivery are also discussed.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical TechnologyL. M. College of PharmacyAhmedabadGujaratIndia
| | - Guanghong Luo
- Department of Radiation OncologyShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Rajashri Bezbaruah
- Department of Pharmaceutical SciencesFaculty of Science and EngineeringDibrugarh UniversityDibrugarhAssamIndia
| | - Tutumoni Kalita
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Anupam Sarma
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Gitima Deka
- College of PharmacyYeungnam UniversityGyeonsanRepublic of Korea
| | - Yanhong Duo
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Bhrigu Kumar Das
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Yesha Shah
- PharmD SectionL. M. College of PharmacyAhmedabadGujaratIndia
| | - Humzah Postwala
- PharmD SectionL. M. College of PharmacyAhmedabadGujaratIndia
| |
Collapse
|
15
|
Safarov R, Fedotova O, Uvarova A, Gordienko M, Menshutina N. Review of Intranasal Active Pharmaceutical Ingredient Delivery Systems. Pharmaceuticals (Basel) 2024; 17:1180. [PMID: 39338342 PMCID: PMC11435088 DOI: 10.3390/ph17091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
In recent decades, there has been an increased interest in the development of intranasal delivery systems for active pharmaceutical ingredients (APIs) not only for treating local nasal diseases but also for treating systemic diseases, central nervous system (CNS) disorders, and vaccine delivery. The nasal cavity possesses a unique set of anatomical characteristics for delivering active pharmaceutical ingredients, but there are several limitations that recent research in the field of the intranasal administration of APIs aims to overcome. For the effective delivery of nasal preparations, active pharmaceutical ingredients are incorporated into various micro- and nanosystems. Some of the most commonly encountered API delivery systems in the scientific literature include liposomal systems, polymer particles with mucoadhesive properties, in situ gels, nano- and microemulsions, and solid lipid particles. This article provides a review of research on the development of nasal preparations for treating local nasal cavity diseases (in particular, for antibiotic delivery), systemic diseases (analgesics, drugs for cardiovascular diseases, antiviral and antiemetic drugs), CNS disorders (Alzheimer's disease, Parkinson's disease, epilepsy, schizophrenia, depression), and vaccine delivery. The literature data show that active research is underway to reformulate drugs of various pharmacotherapeutic groups into a nasal form.
Collapse
Affiliation(s)
| | - Olga Fedotova
- Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia (A.U.)
| | | | | | | |
Collapse
|
16
|
Das A, Pathak S, Premkumar M, Sarpparajan CV, Balaji ER, Duttaroy AK, Banerjee A. A brief overview of SARS-CoV-2 infection and its management strategies: a recent update. Mol Cell Biochem 2024; 479:2195-2215. [PMID: 37742314 PMCID: PMC11371863 DOI: 10.1007/s11010-023-04848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/02/2023] [Indexed: 09/26/2023]
Abstract
The COVID-19 pandemic has become a global health crisis, inflicting substantial morbidity and mortality worldwide. A diverse range of symptoms, including fever, cough, dyspnea, and fatigue, characterizes COVID-19. A cytokine surge can exacerbate the disease's severity. This phenomenon involves an increased immune response, marked by the excessive release of inflammatory cytokines like IL-6, IL-8, TNF-α, and IFNγ, leading to tissue damage and organ dysfunction. Efforts to reduce the cytokine surge and its associated complications have garnered significant attention. Standardized management protocols have incorporated treatment strategies, with corticosteroids, chloroquine, and intravenous immunoglobulin taking the forefront. The recent therapeutic intervention has also assisted in novel strategies like repurposing existing medications and the utilization of in vitro drug screening methods to choose effective molecules against viral infections. Beyond acute management, the significance of comprehensive post-COVID-19 management strategies, like remedial measures including nutritional guidance, multidisciplinary care, and follow-up, has become increasingly evident. As the understanding of COVID-19 pathogenesis deepens, it is becoming increasingly evident that a tailored approach to therapy is imperative. This review focuses on effective treatment measures aimed at mitigating COVID-19 severity and highlights the significance of comprehensive COVID-19 management strategies that show promise in the battle against COVID-19.
Collapse
Affiliation(s)
- Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Madhavi Premkumar
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Chitra Veena Sarpparajan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Esther Raichel Balaji
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Asim K Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| |
Collapse
|
17
|
Chen Y, Wang Y, Li Z, Jiang H, Pan W, Liu M, Jiang W, Zhang X, Wang F. Preparation and immunological activity evaluation of an intranasal protein subunit vaccine against ancestral and mutant SARS-CoV-2 with curdlan sulfate/O-linked quaternized chitosan nanoparticles as carrier and adjuvant. Int J Biol Macromol 2024; 276:133733. [PMID: 39002905 DOI: 10.1016/j.ijbiomac.2024.133733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/07/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Chitosan and its derivatives are ideal nasal vaccine adjuvant to deliver antigens to immune cells. Previously, we successfully used a chitosan derivative, O-(2-Hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (O-HTCC), and a β-glucan derivative, curdlan sulfate (CS), to prepare a nanoparticle adjuvant CS/O-HTCC which could deliver ovalbumin to antigen presenting cells (APCs) through nasal inhalation. In this article, we used SARS-CoV-2 spike receptor binding domain (S-RBD) as the antigen and CS/O-HTCC nanoparticles as the adjuvant to develop a nasal mucosal protein subunit vaccine, CS/S-RBD/O-HTCC. The humoral immunity, cell-mediated immunity and mucosal immunity induced by vaccines were evaluated. The results showed that CS/S-RBD/O-HTCC could induce desirable immunization with single or bivalent antigen through nasal inoculation, giving one booster vaccination with mutated S-RBD (beta) could bring about a broad cross reaction with ancestral and different mutated S-RBD, and vaccination of the BALB/c mice with CS/S-RBD/O-HTCC containing S-RBD mix antigens (ancestral and omicron) could induce the production of binding and neutralizing antibodies against both of the two antigens. Our results indicate that CS/O-HTCC is a promising nasal mucosal adjuvant to prepare protein subunit vaccine for both primary and booster immunization, and the adjuvant is suitable for loading more than one antigen for preparing multivalent vaccines.
Collapse
MESH Headings
- Chitosan/chemistry
- Animals
- Nanoparticles/chemistry
- beta-Glucans/chemistry
- beta-Glucans/immunology
- SARS-CoV-2/immunology
- Vaccines, Subunit/immunology
- Mice
- Administration, Intranasal
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Adjuvants, Immunologic/pharmacology
- Mice, Inbred BALB C
- COVID-19/prevention & control
- COVID-19/immunology
- Female
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/chemistry
- Antibodies, Viral/immunology
- Immunity, Mucosal/drug effects
- Mutation
- Antibodies, Neutralizing/immunology
- Drug Carriers/chemistry
- Adjuvants, Vaccine/chemistry
- Humans
Collapse
Affiliation(s)
- Yipan Chen
- Key Laboratory of Chemical Biology of Natural Products, Ministry of education, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Yan Wang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of education, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Zuyi Li
- Key Laboratory of Chemical Biology of Natural Products, Ministry of education, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Honglei Jiang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of education, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Wei Pan
- Key Laboratory of Chemical Biology of Natural Products, Ministry of education, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Minghui Liu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of education, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Wenjie Jiang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of education, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China.
| | - Xinke Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Fengshan Wang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of education, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, National Glycoengineering Research Center, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
18
|
Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401631. [PMID: 38693099 DOI: 10.1002/smll.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | | | - Nanasaheb D Thorat
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
- Department of Physics, Bernal Institute, Castletroy, Limerick, V94T9PX, Ireland
- Nuffield Department of Women's & Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
19
|
Li J, Xing H, Meng F, Liu T, Hong X, Han X, Dong Y, Li M, Wang Z, Zhang S, Cui C, Zheng A. Virus-Mimetic Extracellular-Vesicle Vaccine Boosts Systemic and Mucosal Immunity via Immune Recruitment. ACS NANO 2024. [PMID: 39013102 DOI: 10.1021/acsnano.4c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Mucosal vaccines can prevent viruses from infecting the respiratory mucosa, rather than only curtailing infection and protecting against the development of disease symptoms. The SARS-CoV-2 spike receptor-binding domain (RBD) is a compelling vaccine target but is undermined by suboptimal mucosal immunogenicity. Here, we report a SARS-CoV-2-mimetic extracellular-vesicle vaccine developed using genetic engineering and dendritic cell membrane budding. After mucosal immunization, the vaccine recruits antigen-presenting cells rapidly initiating a strong innate immune response. Notably, it obviates the need for adjuvants and can induce germinal center formation through both intramuscular and intratracheal vaccination. It not only elicits high levels of RBD-specific antibodies but also stimulates extensive cellular immunity in the respiratory mucosa. A sequential immunization strategy, starting with an intramuscular injection followed by an intratracheal booster, significantly bolsters mucosal immunity with high levels of IgA and tissue-resident memory T cell responses, thereby establishing a formidable defense against pseudovirus infection.
Collapse
Affiliation(s)
- Jingru Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
- Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Haonan Xing
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Fan Meng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ting Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
- Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Xiaoxuan Hong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
- Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Xiaolu Han
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuhan Dong
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Meng Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zengming Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Shuang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
- Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Chunying Cui
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
- Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Aiping Zheng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
20
|
Cannon M, Ferrer G, Tesch M, Schipma M. Whole-Genome Deep Sequencing of the Healthy Adult Nasal Microbiome. Microorganisms 2024; 12:1407. [PMID: 39065175 PMCID: PMC11279209 DOI: 10.3390/microorganisms12071407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to determine shifts in microbial populations regarding richness and diversity from the daily use of a popular over-the-counter nasal spray. In addition, the finding of nasal commensal bacterial species that overlap with the oral microbiome may prove to be potential probiotics for the "gateway microbiomes". Nasal swab samples were obtained before and after using the most popular over-the-counter (OTC) nasal spray in 10 participants aged 18-48. All participants were healthy volunteers with no significant medical histories. The participants were randomly assigned a number by randomizing software and consisted of five men and five women. The sampling consisted of placing a nasal swab atraumatically into the nasal cavity. The samples were preserved and sent to Northwestern University Sequencing Center for whole-genome deep sequencing. After 21 days of OTC nasal spray use twice daily, the participants returned for further nasal microbiome sampling. The microbial analysis included all bacteria, archaea, viruses, molds, and yeasts via deep sequencing for species analysis. The Northwestern University Sequencing Center utilized artificial intelligence analysis to determine shifts in species and strains following nasal spray use that resulted in changes in diversity and richness.
Collapse
Affiliation(s)
- Mark Cannon
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gustavo Ferrer
- Aventura Hospital Pulmonary and Critical Care Fellowship, Aventura, FL 33180, USA; (G.F.); (M.T.)
| | - Mari Tesch
- Aventura Hospital Pulmonary and Critical Care Fellowship, Aventura, FL 33180, USA; (G.F.); (M.T.)
| | - Matthew Schipma
- QDSC, NUSeq Core, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
21
|
Sardu ML, Poggesi I. Pharmacokinetics of intranasal drugs, still a missed opportunity? Xenobiotica 2024; 54:424-438. [PMID: 38687903 DOI: 10.1080/00498254.2024.2349046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
The intranasal (IN) route of administration is important for topical drugs and drugs intended to act systemically. More recently, direct nose-to-brain input was considered to bypass the blood-brain barrier.Processes related to IN absorption and nose-to-brain distribution are complex and depend, sometimes in contrasting ways, on chemico-physical and structural parameters of the compounds, and on formulation options.Due to the intricacies of these processes and despite the large number of articles published on many different IN compounds, it appears that absorption after IN dosing is not yet fully understood. In particular, at variance of the understanding and modelling approaches that are available for predicting the pharmacokinetics (PK) following oral administration of xenobiotics, it appears that there is not a similar understanding of the chemico-physical and structural determinants influencing drug absorption and disposition of compounds after IN administration, which represents a missed opportunity for this research field. This is even more true regarding the understanding of the direct nose-to-brain input. Due to this, IN administrations may represent an interesting and open research field for scientists aiming to develop PK property predictions tools, mechanistic PK models describing rate and extent of IN absorption, and translational tools to anticipate the clinical PK following IN dosing based on in vitro and in vivo non clinical experiments.This review intends to provide: i) some basic knowledge related to the physiology of PK after IN dosing, ii) a non-exhaustive list of preclinical and clinical examples related to compounds explored for the potential nose-to-blood and nose-to-brain passage, and iii) the identification of some areas requiring improvements, the understanding of which may facilitate the development of IN drug candidates.
Collapse
Affiliation(s)
| | - Italo Poggesi
- Clinical Pharmacology, Modeling and Simulation, GSK, Verona, Italy
| |
Collapse
|
22
|
Jin G, Wang R, Jin Y, Song Y, Wang T. From intramuscular to nasal: unleashing the potential of nasal spray vaccines against coronavirus disease 2019. Clin Transl Immunology 2024; 13:e1514. [PMID: 38770238 PMCID: PMC11103645 DOI: 10.1002/cti2.1514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected 700 million people worldwide since its outbreak in 2019. The current pandemic strains, including Omicron and its large subvariant series, exhibit strong transmission and stealth. After entering the human body, the virus first infects nasal epithelial cells and invades host cells through the angiotensin-converting enzyme 2 receptor and transmembrane serine protease 2 on the host cell surface. The nasal cavity is an important body part that protects against the virus. Immunisation of the nasal mucosa produces immunoglobulin A antibodies that effectively neutralise viruses. Saline nasal irrigation, a type of physical therapy, can reduce the viral load in the nasal cavity and prevent viral infections to some extent. As a commonly used means to fight SARS-CoV-2, the intramuscular (IM) vaccine can induce the human body to produce a systemic immune response and immunoglobulin G antibody; however, the antibody is difficult to distribute to the nasal mucosa in time and cannot achieve a good preventive effect. Intranasal (IN) vaccines compensate for the shortcomings of IM vaccines, induce mucosal immune responses, and have a better effect in preventing infection. In this review, we discuss the nasal defence barrier, the harm caused by SARS-CoV-2, the mechanism of its invasion into host cells, nasal cleaning, IM vaccines and IN vaccines, and suggest increasing the development of IN vaccines, and use of IN vaccines as a supplement to IM vaccines.
Collapse
Affiliation(s)
- Ge Jin
- Faculty of MedicineDalian University of TechnologyDalianLiaoningChina
- Department of RadiotherapyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangLiaoningChina
| | - Runze Wang
- Department of RadiotherapyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangLiaoningChina
| | - Yi Jin
- Department of Breast SurgeryLiaoning Cancer Hospital and InstituteShenyangLiaoningChina
| | - Yingqiu Song
- Department of RadiotherapyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangLiaoningChina
| | - Tianlu Wang
- Faculty of MedicineDalian University of TechnologyDalianLiaoningChina
- Department of RadiotherapyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangLiaoningChina
- Department of RadiotherapyCancer Hospital of Dalian University of TechnologyDalianLiaoningChina
| |
Collapse
|
23
|
Wong SN, Li S, Low KH, Chan HW, Zhang X, Chow S, Hui B, Chow PCY, Chow SF. Development of favipiravir dry powders for intranasal delivery: An integrated cocrystal and particle engineering approach via spray freeze drying. Int J Pharm 2024; 653:123896. [PMID: 38346602 DOI: 10.1016/j.ijpharm.2024.123896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
The therapeutic potential of pharmaceutical cocrystals in intranasal applications remains largely unexplored despite progressive advancements in cocrystal research. We present the application of spray freeze drying (SFD) in successful fabrication of a favipiravir-pyridinecarboxamide cocrystal nasal powder formulation for potential treatment of broad-spectrum antiviral infections. Preliminary screening via mechanochemistry revealed that favipiravir (FAV) can cocrystallize with isonicotinamide (INA), but not nicotinamide (NCT) and picolinamide (PIC) notwithstanding their structural similarity. The cocrystal formation was characterized by differential scanning calorimetry, Fourier-transform infrared spectroscopy, and unit cell determination through Rietveld refinement of powder X-ray analysis. FAV-INA crystalized in a monoclinic space group P21/c with a unit cell volume of 1223.54(3) Å3, accommodating one FAV molecule and one INA molecule in the asymmetric unit. The cocrystal was further reproduced as intranasal dry powders by SFD, of which the morphology, particle size, in vitro drug release, and nasal deposition were assessed. The non-porous flake shaped FAV-INA powders exhibited a mean particle size of 19.79 ± 2.61 μm, rendering its suitability for intranasal delivery. Compared with raw FAV, FAV-INA displayed a 3-fold higher cumulative fraction of drug permeated in Franz diffusion cells at 45 min (p = 0.001). Dose fraction of FAV-INA deposited in the nasal fraction of a customized 3D-printed nasal cast reached over 80 %, whereas the fine particle fraction remained below 6 % at a flow rate of 15 L/min, suggesting high nasal deposition whilst minimal lung deposition. FAV-INA was safe in RPMI 2650 nasal and SH-SY5Y neuroblastoma cells without any in vitro cytotoxicity observed. This study demonstrated that combining the merits of cocrystallization and particle engineering via SFD can propel the development of advanced dry powder formulations for intranasal drug delivery.
Collapse
Affiliation(s)
- Si Nga Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong Special Administrative Region
| | - Si Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong Special Administrative Region
| | - Kam-Hung Low
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Ho Wan Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Xinyue Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Stephanie Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Bo Hui
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Philip C Y Chow
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong Special Administrative Region.
| |
Collapse
|
24
|
Li L, Liu Z, Shi J, Yang M, Yan Y, Fu Y, Shen Z, Peng G. The CDE region of feline Calicivirus VP1 protein is a potential candidate subunit vaccine. BMC Vet Res 2024; 20:80. [PMID: 38443948 PMCID: PMC10916247 DOI: 10.1186/s12917-024-03914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 02/04/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Feline calicivirus (FCV) infection causes severe upper respiratory disease in cats, but there are no effective vaccines available for preventing FCV infection. Subunit vaccines have the advantages of safety, low cost and excellent immunogenicity, but no FCV subunit vaccine is currently available. The CDE protein is the dominant neutralizing epitope region of the main antigenic structural protein of FCV, VP1. Therefore, this study evaluated the effectiveness of the CDE region as a truncated FCV VP1 protein in preventing FCV infection to provide a strategy for developing potential FCV subunit vaccines. RESULTS Through the prediction of FCV VP1 epitopes, we found that the E region is the dominant neutralizing epitope region. By analysing the spatial structure of VP1 protein, 13 amino acid sites in the CD and E regions were found to form hydrogen bonding interactions. The results show the presence of these interaction forces supports the E region, helping improve the stability and expression level of the soluble E protein. Therefore, we selected the CDE protein as the immunogen for the immunization of felines. After immunization with the CDE protein, we found significant stimulation of IgG, IgA and neutralizing antibody production in serum and swab samples, and the cytokine TNF-α levels and the numbers of CD4+ T lymphocytes were increased. Moreover, a viral challenge trial indicated that the protection generated by the CDE subunit vaccine significantly reduced the incidence of disease in animals. CONCLUSIONS For the first time, we studied the efficacy of the CDE protein, which is the dominant neutralizing epitope region of the FCV VP1 protein, in preventing FCV infection. We revealed that the CDE protein can significantly activate humoral, mucosal and cellular immunity, and the resulting protective effect can significantly reduce the incidence of animal disease. The CDE region of the FCV capsid is easy to produce and has high stability and excellent immunogenicity, which makes it a candidate for low-cost vaccines.
Collapse
Affiliation(s)
- Lisha Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Zirui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jiale Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Mengfang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yuanyuan Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yanan Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
25
|
Patel DR, Minns AM, Sim DG, Field CJ, Kerr AE, Heinly TA, Luley EH, Rossi RM, Bator CM, Moustafa IM, Norton EB, Hafenstein SL, Lindner SE, Sutton TC. Intranasal SARS-CoV-2 RBD decorated nanoparticle vaccine enhances viral clearance in the Syrian hamster model. Microbiol Spectr 2024; 12:e0499822. [PMID: 38334387 PMCID: PMC10923206 DOI: 10.1128/spectrum.04998-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Multiple vaccines have been developed and licensed for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). While these vaccines reduce disease severity, they do not prevent infection. To prevent infection and limit transmission, vaccines must be developed that induce immunity in the respiratory tract. Therefore, we performed proof-of-principle studies with an intranasal nanoparticle vaccine against SARS-CoV-2. The vaccine candidate consisted of the self-assembling 60-subunit I3-01 protein scaffold covalently decorated with the SARS-CoV-2 receptor-binding domain (RBD) using the SpyCatcher-SpyTag system. We verified the intended antigen display features by reconstructing the I3-01 scaffold to 3.4 A using cryogenicelectron microscopy. Using this RBD-grafted SpyCage scaffold (RBD + SpyCage), we performed two intranasal vaccination studies in the "gold-standard" pre-clinical Syrian hamster model. The initial study focused on assessing the immunogenicity of RBD + SpyCage combined with the LTA1 intranasal adjuvant. These studies showed RBD + SpyCage vaccination induced an antibody response that promoted viral clearance but did not prevent infection. Inclusion of the LTA1 adjuvant enhanced the magnitude of the antibody response but did not enhance protection. Thus, in an expanded study, in the absence of an intranasal adjuvant, we evaluated if covalent bonding of RBD to the scaffold was required to induce an antibody response. Covalent grafting of RBD was required for the vaccine to be immunogenic, and animals vaccinated with RBD + SpyCage more rapidly cleared SARS-CoV-2 from both the upper and lower respiratory tract. These findings demonstrate the intranasal SpyCage vaccine platform can induce protection against SARS-CoV-2 and, with additional modifications to improve immunogenicity, is a versatile platform for the development of intranasal vaccines targeting respiratory pathogens.IMPORTANCEDespite the availability of efficacious COVID vaccines that reduce disease severity, SARS-CoV-2 continues to spread. To limit SARS-CoV-2 transmission, the next generation of vaccines must induce immunity in the mucosa of the upper respiratory tract. Therefore, we performed proof-of-principle, intranasal vaccination studies with a recombinant protein nanoparticle scaffold, SpyCage, decorated with the RBD of the S protein (SpyCage + RBD). We show that SpyCage + RBD was immunogenic and enhanced SARS-CoV-2 clearance from the nose and lungs of Syrian hamsters. Moreover, covalent grafting of the RBD to the scaffold was required to induce an immune response when given via the intranasal route. These proof-of-concept findings indicate that with further enhancements to immunogenicity (e.g., adjuvant incorporation and antigen optimization), the SpyCage scaffold has potential as a versatile, intranasal vaccine platform for respiratory pathogens.
Collapse
Affiliation(s)
- Devanshi R. Patel
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Allen M. Minns
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Center for Malaria Research, University Park, Pennsylvania, USA
| | - Derek G. Sim
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Cassandra J. Field
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Abigail E. Kerr
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Talia A. Heinly
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Erin H. Luley
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Randall M. Rossi
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Carol M. Bator
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ibrahim M. Moustafa
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Elizabeth B. Norton
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana, USA
| | - Susan L. Hafenstein
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Medicine, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott E. Lindner
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Center for Malaria Research, University Park, Pennsylvania, USA
| | - Troy C. Sutton
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
26
|
Qin L, Sun Y, Gao N, Ling G, Zhang P. Nanotechnology of inhalable vaccines for enhancing mucosal immunity. Drug Deliv Transl Res 2024; 14:597-620. [PMID: 37747597 DOI: 10.1007/s13346-023-01431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
Vaccines are the cornerstone of world health. The majority of vaccines are formulated as injectable products, facing the drawbacks of cold chain transportation, needle-stick injuries, and primary systemic immunity. Inhalable vaccines exhibited unique advantages due to their small dose, easy to use, quick effect, and simultaneous induction of mucosal and systemic responses. Facing global pandemics, especially the coronavirus disease 2019 (COVID-19), a majority of inhalable vaccines are in preclinical or clinical trials. A better understanding of advanced delivery technologies of inhalable vaccines may provide new scientific insights for developing inhalable vaccines. In this review article, detailed immune mechanisms involving mucosal, cellular, and humoral immunity were described. The preparation methods of inhalable vaccines were then introduced. Advanced nanotechnologies of inhalable vaccines containing inhalable nucleic acid vaccines, inhalable adenovirus vector vaccines, novel adjuvant-assisted inhalable vaccines, and biomaterials for inhalable vaccine delivery were emphatically discussed. Meanwhile, the latest clinical progress in inhalable vaccines for COVID-19 and tuberculosis was discussed.
Collapse
Affiliation(s)
- Li Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co. Ltd., No. 243, Gongyebei Road, Jinan, 250100, China
| | - Nan Gao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
27
|
Guareschi F, Del Favero E, Ricci C, Cantù L, Brandolini M, Sambri V, Nicoli S, Pescina S, D'Angelo D, Rossi I, Buttini F, Bettini R, Sonvico F. Cyclosporine A micellar nasal spray characterization and antiviral action against SARS-CoV-2. Eur J Pharm Sci 2024; 193:106673. [PMID: 38103657 DOI: 10.1016/j.ejps.2023.106673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
The upper airways represent the point of entrance from where Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection spreads to the lungs. In the present work, α-tocopheryl-polyethylene-glycol succinate (TPGS) micelles loaded with cyclosporine A (CSA) were developed for nasal administration to prevent or treat the viral infection in the very first phases. The behavior of the micelles in presence of simulated nasal mucus was investigated in terms of stability and mucopenetration rate, evidencing long-term stability and fast diffusion across the glycoproteins matrix. Moreover, the spray characteristics of the micellar formulation and deposition profile in a silicon nasal model were studied using three nasal spray devices. Results allowed to identify the nasal spray pump (BiVax, Aptar) able to provide the wider and uniform deposition of the nasal cavity. The cyclosporine A micelles antiviral activity against SARS-CoV-2 was tested on the Omicron BA.1 variant using Vero E6 cells with protocols simulating treatment before, during and after the infection of the upper airways. Complete viral inactivation was observed for the cyclosporine-loaded micelles while a very low activity was evidenced for the non-formulated drug, suggesting a synergistic activity of the drug and the formulation. In conclusion, this work showed that the developed cyclosporine A-loaded micellar formulations have the potential to be clinically effective against a wide spectrum of coronavirus variants.
Collapse
Affiliation(s)
- Fabiola Guareschi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy
| | - Elena Del Favero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20054 Milan, Italy
| | - Caterina Ricci
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20054 Milan, Italy
| | - Laura Cantù
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20054 Milan, Italy
| | - Martina Brandolini
- Unit of Microbiology, The Great Romagna Hub Laboratory, Piazza della Liberazione 60, 47522 Pievesestina, Italy
| | - Vittorio Sambri
- Unit of Microbiology, The Great Romagna Hub Laboratory, Piazza della Liberazione 60, 47522 Pievesestina, Italy; Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum-University of Bologna, Via Massarenti 1, 40138 Bologna, Italy
| | - Sara Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy
| | - Silvia Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy
| | - Davide D'Angelo
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy
| | - Irene Rossi
- Nanopharm Ltd, Franklin House, Grange Road, Cwmbran NP44 3WY, United Kingdom
| | - Francesca Buttini
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy; Interdepartmental Center for Innovation in Health Products, Biopharmanet_TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ruggero Bettini
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy; Interdepartmental Center for Innovation in Health Products, Biopharmanet_TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Fabio Sonvico
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy; Interdepartmental Center for Innovation in Health Products, Biopharmanet_TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
28
|
Esmat K, Jamil B, Kheder RK, Kombe Kombe AJ, Zeng W, Ma H, Jin T. Immunoglobulin A response to SARS-CoV-2 infection and immunity. Heliyon 2024; 10:e24031. [PMID: 38230244 PMCID: PMC10789627 DOI: 10.1016/j.heliyon.2024.e24031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
The novel coronavirus disease (COVID-19) and its infamous "Variants" of the etiological agent termed Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) has proven to be a global health concern. The three antibodies, IgA, IgM, and IgG, perform their dedicated role as main workhorses of the host adaptive immune system in virus neutralization. Immunoglobulin-A (IgA), also known as "Mucosal Immunoglobulin", has been under keen interest throughout the viral infection cycle. Its importance lies because IgA is predominant mucosal antibody and SARS family viruses primarily infect the mucosal surfaces of human respiratory tract. Therefore, IgA can be considered a diagnostic and prognostic marker and an active infection biomarker for SARS CoV-2 infection. Along with molecular analyses, serological tests, including IgA detection tests, are gaining ground in application as an early detectable marker and as a minimally invasive detection strategy. In the current review, it was emphasized the role of IgA response in diagnosis, host defense strategies, treatment, and prevention of SARS-CoV-2 infection. The data analysis was performed through almost 100 published peer-reviewed research reports and comprehended the importance of IgA in antiviral immunity against SARS-CoV-2 and other related respiratory viruses. Taken together, it is concluded that secretory IgA- Abs can serve as a promising detection tool for respiratory viral diagnosis and treatment parallel to IgG-based therapeutics and diagnostics. Vaccine candidates that target and trigger mucosal immune response may also be employed in future dimensions of research against other respiratory viruses.
Collapse
Affiliation(s)
- Khaleqsefat Esmat
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Baban Jamil
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, KRG, Erbil, Iraq
| | - Ramiar Kaml Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Weihong Zeng
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Huan Ma
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
29
|
Zhang X, Zhang J, Chen S, He Q, Bai Y, Liu J, Wang Z, Liang Z, Chen L, Mao Q, Xu M. Progress and challenges in the clinical evaluation of immune responses to respiratory mucosal vaccines. Expert Rev Vaccines 2024; 23:362-370. [PMID: 38444382 DOI: 10.1080/14760584.2024.2326094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Following the coronavirus disease pandemic, respiratory mucosal vaccines that elicit both mucosal and systemic immune responses have garnered increasing attention. However, human physiological characteristics pose significant challenges in the evaluation of mucosal immunity, which directly impedes the development and application of respiratory mucosal vaccines. AREAS COVERED This study summarizes the characteristics of immune responses in the respiratory mucosa and reviews the current status and challenges in evaluating immune response to respiratory mucosal vaccines. EXPERT OPINION Secretory Immunoglobulin A (S-IgA) is a major effector molecule at mucosal sites and a commonly used indicator for evaluating respiratory mucosal vaccines. However, the unique physiological structure of the respiratory tract pose significant challenges for the clinical collection and detection of S-IgA. Therefore, it is imperative to develop a sampling method with high collection efficiency and acceptance, a sensitive detection method, reference materials for mucosal antibodies, and to establish a threshold for S-IgA that correlates with clinical protection. Sample collection is even more challenging when evaluating mucosal cell immunity. Therefore, a mucosal cell sampling method with high operability and high tolerance should be established. Targets of the circulatory system capable of reflecting mucosal cellular immunity should also be explored.
Collapse
Affiliation(s)
- Xuanxuan Zhang
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Jialu Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Si Chen
- Drug and Vaccine Research Center, Guangzhou National Laboratory, Guangzhou, China
| | - Qian He
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Yu Bai
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Jianyang Liu
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Zhongfang Wang
- Drug and Vaccine Research Center, Guangzhou National Laboratory, Guangzhou, China
| | - Zhenglun Liang
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Ling Chen
- Drug and Vaccine Research Center, Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qunying Mao
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Miao Xu
- State Key Laboratory of Drug Regulatory Science, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
30
|
Ao D, He X, Liu J, Xu L. Strategies for the development and approval of COVID-19 vaccines and therapeutics in the post-pandemic period. Signal Transduct Target Ther 2023; 8:466. [PMID: 38129394 PMCID: PMC10739883 DOI: 10.1038/s41392-023-01724-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant casualties and put immense strain on public health systems worldwide, leading to economic recession and social unrest. In response, various prevention and control strategies have been implemented globally, including vaccine and drug development and the promotion of preventive measures. Implementing these strategies has effectively curbed the transmission of the virus, reduced infection rates, and gradually restored normal social and economic activities. However, the mutations of SARS-CoV-2 have led to inevitable infections and reinfections, and the number of deaths continues to rise. Therefore, there is still a need to improve existing prevention and control strategies, mainly focusing on developing novel vaccines and drugs, expediting medical authorization processes, and keeping epidemic surveillance. These measures are crucial to combat the Coronavirus disease (COVID-19) pandemic and achieve sustained, long-term prevention, management, and disease control. Here, we summarized the characteristics of existing COVID-19 vaccines and drugs and suggested potential future directions for their development. Furthermore, we discussed the COVID-19-related policies implemented over the past years and presented some strategies for the future.
Collapse
Affiliation(s)
- Danyi Ao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Sichuan, People's Republic of China
| | - Jian Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Sichuan, People's Republic of China
| | - Li Xu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
31
|
Zhang P, Luo S, Zou P, Deng Q, Wang C, Li J, Cai P, Zhang L, Li C, Li T. A novel simian adenovirus-vectored COVID-19 vaccine elicits effective mucosal and systemic immunity in mice by intranasal and intramuscular vaccination regimens. Microbiol Spectr 2023; 11:e0179423. [PMID: 37877750 PMCID: PMC10715068 DOI: 10.1128/spectrum.01794-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE The essential goal of vaccination is to generate potent and long-term protection against diseases. Several factors including vaccine vector, delivery route, and boosting regimen influence the outcome of prime-boost immunization approaches. The immunization regimens by constructing a novel simian adenovirus-vectored COVID-19 vaccine and employing combination of intranasal and intramuscular inoculations could elicit mucosal neutralizing antibodies against five mutant strains in the respiratory tract and strong systemic immunity. Immune protection could last for more than 32 weeks. Vectored vaccine construction and immunization regimens have positively impacted respiratory disease prevention.
Collapse
Affiliation(s)
- Panli Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, Guangzhou , China
| | - Shengxue Luo
- Department of Pediatrics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Peng Zou
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, Guangzhou , China
| | - Qitao Deng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, Guangzhou , China
| | - Cong Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, Guangzhou , China
| | - Jinfeng Li
- Shenzhen Bao'an District Central Blood Station, Shenzhen, China
| | - Peiqiao Cai
- Department of Bioengineering, School of Medicine and College of Engineering, University of Washington, Seattle, Washington, USA
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
32
|
Hashimoto K. Detrimental effects of COVID-19 in the brain and therapeutic options for long COVID: The role of Epstein-Barr virus and the gut-brain axis. Mol Psychiatry 2023; 28:4968-4976. [PMID: 37402856 PMCID: PMC11041741 DOI: 10.1038/s41380-023-02161-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in a serious public health burden worldwide. In addition to respiratory, heart, and gastrointestinal symptoms, patients infected with SARS-CoV-2 experience a number of persistent neurological and psychiatric symptoms, known as long COVID or "brain fog". Studies of autopsy samples from patients who died from COVID-19 detected SARS-CoV-2 in the brain. Furthermore, increasing evidence shows that Epstein-Barr virus (EBV) reactivation after SARS-CoV-2 infection might play a role in long COVID symptoms. Moreover, alterations in the microbiome after SARS-CoV-2 infection might contribute to acute and long COVID symptoms. In this article, the author reviews the detrimental effects of COVID-19 on the brain, and the biological mechanisms (e.g., EBV reactivation, and changes in the gut, nasal, oral, or lung microbiomes) underlying long COVID. In addition, the author discusses potential therapeutic approaches based on the gut-brain axis, including plant-based diet, probiotics and prebiotics, fecal microbiota transplantation, and vagus nerve stimulation, and sigma-1 receptor agonist fluvoxamine.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
33
|
Castro VT, Chardin H, Amorim dos Santos J, Barra GB, Castilho GR, Souza PM, Magalhães PDO, Acevedo AC, Guerra ENS. Detection of anti-SARS-CoV-2 salivary antibodies in vaccinated adults. Front Immunol 2023; 14:1296603. [PMID: 38022522 PMCID: PMC10661372 DOI: 10.3389/fimmu.2023.1296603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Since the introduction of efficient anti-SARS-CoV-2 vaccines, the detection of antibodies becomes useful for immunological monitoring and COVID-19 control. Therefore, this longitudinal study aimed to evaluate the detection of SARS-CoV-2 antibodies in the serum and saliva of COVID-19-vaccinated adults. The study included 13 not vaccinated and 35 vaccinated participants with two doses of CoronaVac (Sinovac/Butantan) vaccine who subsequently received BNT162b2 (Pfizer-BioNTech) vaccine as a booster dose. Vaccinated participants donated saliva and serum in three different time points. Enzyme-linked immunosorbent assay was used for antibody detection. In our results, the serum neutralizing antibodies (NAb) were detected in 34/35 samples after second dose and in 35/35 samples one and five months after the booster dose. In saliva, NAb were detected in 30/35 samples after second dose and in 35/35 of samples one and five months after the booster dose. IgA was detected in 19/34 saliva samples after second dose, in 18/35 one month after the booster and in 30/35 five months after. IgG in saliva was detected in 1/34 samples after second dose, 33/35 samples one month after the booster dose and in 20/35 five months after. A strong correlation was found between IgG and neutralizing activity in saliva, and salivary IgA would be a sign of recent exposure to the virus. In conclusion, saliva can be suitable for monitoring antibodies anti-SARS-CoV-2 after vaccination. Heterologous vaccination contributed to increase anti-SARS-CoV-2 antibodies in the Brazilian health context. Complementary studies with large groups are mandatory to conclude the interest in following mucosal immunity.
Collapse
Affiliation(s)
- Vitória Tavares Castro
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Hélène Chardin
- Department of Analytical, Bioanalytical Sciences and Miniaturization, École Supérieure de Physique et de Chimie Industrielles (ESPCI) de la Ville de Paris, Paris, France
- Unité de Formation et de Recherche d’Odontologie, Université Paris Cité, Paris, France
| | - Juliana Amorim dos Santos
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | | | | | - Paula Monteiro Souza
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | | | - Ana Carolina Acevedo
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| |
Collapse
|
34
|
Rabaan AA, Alenazy MF, Alshehri AA, Alshahrani MA, Al-Subaie MF, Alrasheed HA, Al Kaabi NA, Thakur N, Bouafia NA, Alissa M, Alsulaiman AM, AlBaadani AM, Alhani HM, Alhaddad AH, Alfouzan WA, Ali BMA, Al-Abdulali KH, Khamis F, Bayahya A, Al Fares MA, Sharma M, Dhawan M. An updated review on pathogenic coronaviruses (CoVs) amid the emergence of SARS-CoV-2 variants: A look into the repercussions and possible solutions. J Infect Public Health 2023; 16:1870-1883. [PMID: 37839310 DOI: 10.1016/j.jiph.2023.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
SARS-CoV-2, responsible for COVID-19, shares 79% and 50% of its identity with SARS-CoV-1 and MERS-CoV, respectively. It uses the same main cell attachment and entry receptor as SARS-CoV-1, which is the ACE-2 receptor. However, key residues in the receptor-binding domain of its S-protein seem to give it a stronger affinity for the receptor and a better ability to hide from the host immune system. Like SARS-CoV-1 and MERS-CoV, cytokine storms in critically ill COVID-19 patients cause ARDS, neurological pathology, multiorgan failure, and increased death. Though many issues remain, the global research effort and lessons from SARS-CoV-1 and MERS-CoV are hopeful. The emergence of novel SARS-CoV-2 variants and subvariants raised serious concerns among the scientific community amid the emergence of other viral diseases like monkeypox and Marburg virus, which are major concerns for healthcare settings worldwide. Hence, an updated review on the comparative analysis of various coronaviruses (CoVs) has been developed, which highlights the evolution of CoVs and their repercussions.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan.
| | - Maha Fahad Alenazy
- Department of Physiology, College of Medicine, King Khalid university hospital, King Saud University, Riyadh 4545, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Maha F Al-Subaie
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia; Department of Infectious Diseases, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia
| | - Hayam A Alrasheed
- Department of pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; Pharmacy Department, King Abdullah Bin Abdulaziz University Hospital, Riyadh 11671, Saudi Arabia
| | - Nawal A Al Kaabi
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, 51900, United Arab Emirates; College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Nabiha A Bouafia
- Infection prevention and control centre of Excellence, Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Abeer M AlBaadani
- Internal Medicine Department, Infectious Disease Division, London health science Center, London, Ontario N6G0X2, Canada
| | - Hatem M Alhani
- Department of Pediatric Infectious Disease, Maternity and Children Hospital, Dammam 31176, Saudi Arabia; Department of Infection Control, Maternity and Children Hospital, Dammam 31176, Saudi Arabia; Preventive Medicine and Infection Prevention and Control Department, Directorate of Ministry of Health, Dammam 32245, Saudi Arabia
| | - Ali H Alhaddad
- Assistant Agency for Hospital Affairs, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Wadha A Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Batool Mohammed Abu Ali
- Infectious disease section, Department of internal medicine, King Fahad Hospital Hofuf, Hofuf 36365, Saudi Arabia
| | - Khadija H Al-Abdulali
- Nursing Department, Home health care, Qatif Health Network, Qatif 31911, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Ali Bayahya
- Microbiology Department, Alqunfudah General Hospital, Alqunfudah 28813, Saudi Arabia
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia.
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK.
| |
Collapse
|
35
|
Baldeon Vaca G, Meyer M, Cadete A, Hsiao CJ, Golding A, Jeon A, Jacquinet E, Azcue E, Guan CM, Sanchez-Felix X, Pietzsch CA, Mire CE, Hyde MA, Comeaux ME, Williams JM, Sung JC, Carfi A, Edwards DK, Bukreyev A, Bahl K. Intranasal mRNA-LNP vaccination protects hamsters from SARS-CoV-2 infection. SCIENCE ADVANCES 2023; 9:eadh1655. [PMID: 37738334 PMCID: PMC10516494 DOI: 10.1126/sciadv.adh1655] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
Intranasal vaccination represents a promising approach for preventing disease caused by respiratory pathogens by eliciting a mucosal immune response in the respiratory tract that may act as an early barrier to infection and transmission. This study investigated immunogenicity and protective efficacy of intranasally administered messenger RNA (mRNA)-lipid nanoparticle (LNP) encapsulated vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Syrian golden hamsters. Intranasal mRNA-LNP vaccination systemically induced spike-specific binding [immunoglobulin G (IgG) and IgA] and neutralizing antibodies. Intranasally vaccinated hamsters also had decreased viral loads in the respiratory tract, reduced lung pathology, and prevented weight loss after SARS-CoV-2 challenge. Together, this study demonstrates successful immunogenicity and protection against respiratory viral infection by an intranasally administered mRNA-LNP vaccine.
Collapse
Affiliation(s)
| | - Michelle Meyer
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | | | | | | | | | | | | | | | | | - Colette A. Pietzsch
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Chad E. Mire
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Matthew A. Hyde
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Margaret E. Comeaux
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Julie M. Williams
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | | | | | | | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | |
Collapse
|
36
|
Yu MZ, Wang NN, Zhu JQ, Lin YX. The clinical progress and challenges of mRNA vaccines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1894. [PMID: 37096256 DOI: 10.1002/wnan.1894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
Owing to the breakthroughs in the prevention and control of the COVID-19 pandemic, messenger RNA (mRNA)-based vaccines have emerged as promising alternatives to conventional vaccine approaches for infectious disease prevention and anticancer treatments. Advantages of mRNA vaccines include flexibility in designing and manipulating antigens of interest, scalability in rapid response to new variants, ability to induce both humoral and cell-mediated immune responses, and ease of industrialization. This review article presents the latest advances and innovations in mRNA-based vaccines and their clinical translations in the prevention and treatment of infectious diseases or cancers. We also highlight various nanoparticle delivery platforms that contribute to their success in clinical translation. Current challenges related to mRNA immunogenicity, stability, and in vivo delivery and the strategies for addressing them are also discussed. Finally, we provide our perspectives on future considerations and opportunities for applying mRNA vaccines to fight against major infectious diseases and cancers. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Meng-Zhen Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Nan-Nan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Jia-Qing Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
| | - Yao-Xin Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| |
Collapse
|
37
|
Li M, Chen C, Wang X, Guo P, Feng H, Zhang X, Zhang W, Gu C, Zhu J, Wen G, Feng Y, Xiao L, Peng G, Rao VB, Tao P. T4 bacteriophage nanoparticles engineered through CRISPR provide a versatile platform for rapid development of flu mucosal vaccines. Antiviral Res 2023; 217:105688. [PMID: 37516153 DOI: 10.1016/j.antiviral.2023.105688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Vaccines that trigger mucosal immune responses at the entry portals of pathogens are highly desired. Here, we showed that antigen-decorated nanoparticle generated through CRISPR engineering of T4 bacteriophage can serve as a universal platform for the rapid development of mucosal vaccines. Insertion of Flu viral M2e into phage T4 genome through fusion to Soc (Small Outer Capsid protein) generated a recombinant phage, and the Soc-M2e proteins self-assembled onto phage capsids to form 3M2e-T4 nanoparticles during propagation of T4 in E. coli. Intranasal administration of 3M2e-T4 nanoparticles maintains antigen persistence in the lungs, resulting in increased uptake and presentation by antigen-presenting cells. M2e-specific secretory IgA, effector (TEM), central (TCM), and tissue-resident memory CD4+ T cells (TRM) were efficiently induced in the local mucosal sites, which mediated protections against divergent influenza viruses. Our studies demonstrated the mechanisms of immune protection following 3M2e-T4 nanoparticles vaccination and provide a versatile T4 platform that can be customized to rapidly develop mucosal vaccines against future emerging epidemics.
Collapse
Affiliation(s)
- Mengling Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Cen Chen
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Xialin Wang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Pengju Guo
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Helong Feng
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430070, China
| | - Xueqi Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Wanpo Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Changqin Gu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Guoyuan Wen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430070, China
| | - Yaoyu Feng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Lab, Wuhan, Hubei, 430070, China.
| |
Collapse
|
38
|
Ramasamy R. Overview of immunological & virological factors driving the evolution & global spread of SARS-CoV-2 variants. Indian J Med Res 2023; 158:257-268. [PMID: 37815068 PMCID: PMC10720969 DOI: 10.4103/ijmr.ijmr_2591_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 10/11/2023] Open
Abstract
The SARS-CoV-2, a highly infectious positive strand RNA virus first identified in December 2019, has produced multiple genetic variants that have rapidly and sequentially spread worldwide during the coronavirus disease 2019 (COVID-19) pandemic. Genetic changes in SARS-CoV-2 for greater infectivity, replication and transmission were selected during the early stages of the pandemic. More recently, after widespread infection and vaccination, SARS-CoV-2 variants that evade antigen-specific adaptive immunity, have begun to be selected. This article provides an overview of the molecular immunological and virological factors underlying the origin and global spread of important SARS-CoV-2 variant lineages.
Collapse
|
39
|
Annamalai A, Karuppaiya V, Ezhumalai D, Cheruparambath P, Balakrishnan K, Venkatesan A. Nano-based techniques: A revolutionary approach to prevent covid-19 and enhancing human awareness. J Drug Deliv Sci Technol 2023; 86:104567. [PMID: 37313114 PMCID: PMC10183109 DOI: 10.1016/j.jddst.2023.104567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/22/2023] [Accepted: 05/13/2023] [Indexed: 06/15/2023]
Abstract
In every century of history, there are many new diseases emerged, which are not even cured by many developed countries. Today, despite of scientific development, new deadly pandemic diseases are caused by microorganisms. Hygiene is considered to be one of the best methods of avoiding such communicable diseases, especially viral diseases. Illness caused by SARS-CoV-2 was termed COVID-19 by the WHO, the acronym derived from "coronavirus disease 2019. The globe is living in the worst epidemic era, with the highest infection and mortality rate owing to COVID-19 reaching 6.89% (data up to March 2023). In recent years, nano biotechnology has become a promising and visible field of nanotechnology. Interestingly, nanotechnology is being used to cure many ailments and it has revolutionized many aspects of our lives. Several COVID-19 diagnostic approaches based on nanomaterial have been developed. The various metal NPs, it is highly anticipated that could be viable and economical alternatives for treating drug resistant in many deadly pandemic diseases in near future. This review focuses on an overview of nanotechnology's increasing involvement in the diagnosis, prevention, and therapy of COVID-19, also this review provides readers with an awareness and knowledge of importance of hygiene.
Collapse
Affiliation(s)
- Asaikkutti Annamalai
- Marine Biotechnology Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, 605 014, Puducherry, India
| | - Vimala Karuppaiya
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Dhineshkumar Ezhumalai
- Dr. Krishnamoorthi Foundation for Advanced Scientific Research, Vellore, 632 001, Tamil Nadu, India
- Manushyaa Blossom Private Limited, Chennai, 600 102, Tamil Nadu, India
| | | | - Kaviarasu Balakrishnan
- Dr. Krishnamoorthi Foundation for Advanced Scientific Research, Vellore, 632 001, Tamil Nadu, India
- Manushyaa Blossom Private Limited, Chennai, 600 102, Tamil Nadu, India
| | - Arul Venkatesan
- Marine Biotechnology Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, 605 014, Puducherry, India
| |
Collapse
|
40
|
Tokunoh N, Tamiya S, Watanabe M, Okamoto T, Anindita J, Tanaka H, Ono C, Hirai T, Akita H, Matsuura Y, Yoshioka Y. A nasal vaccine with inactivated whole-virion elicits protective mucosal immunity against SARS-CoV-2 in mice. Front Immunol 2023; 14:1224634. [PMID: 37720231 PMCID: PMC10500122 DOI: 10.3389/fimmu.2023.1224634] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Vaccinations are ideal for reducing the severity of clinical manifestations and secondary complications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, SARS-CoV-2 continues to cause morbidity and mortality worldwide. In contrast to parenteral vaccines such as messenger RNA vaccines, nasal vaccines are expected to be more effective in preventing viral infections in the upper respiratory tract, the primary locus for viral infection and transmission. In this study, we examined the prospects of an inactivated whole-virion (WV) vaccine administered intranasally against SARS-CoV-2. Methods Mice were immunized subcutaneously (subcutaneous vaccine) or intranasally (nasal vaccine) with the inactivated WV of SARS-CoV-2 as the antigen. Results The spike protein (S)-specific IgA level was found to be higher upon nasal vaccination than after subcutaneous vaccination. The level of S-specific IgG in the serum was also increased by the nasal vaccine, although it was lower than that induced by the subcutaneous vaccine. The nasal vaccine exhibited a stronger defense against viral invasion in the upper respiratory tract than the subcutaneous vaccine and unimmunized control; however, both subcutaneous and nasal vaccines provided protection in the lower respiratory tract. Furthermore, we found that intranasally administered inactivated WV elicited robust production of S-specific IgA in the nasal mucosa and IgG in the blood of mice previously vaccinated with messenger RNA encoding the S protein. Discussion Overall, these results suggest that a nasal vaccine containing inactivated WV can be a highly effective means of protection against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nagisa Tokunoh
- Innovative Vaccine Research and Development Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shigeyuki Tamiya
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Masato Watanabe
- Innovative Vaccine Research and Development Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Jessica Anindita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Science, Chiba University, Chiba-shi, Chiba, Japan
| | - Hiroki Tanaka
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Chikako Ono
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Toshiro Hirai
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Suita, Osaka, Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Suita, Osaka, Japan
| | - Yasuo Yoshioka
- Innovative Vaccine Research and Development Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Suita, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
41
|
Han S, Lee P, Choi HJ. Non-Invasive Vaccines: Challenges in Formulation and Vaccine Adjuvants. Pharmaceutics 2023; 15:2114. [PMID: 37631328 PMCID: PMC10458847 DOI: 10.3390/pharmaceutics15082114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Given the limitations of conventional invasive vaccines, such as the requirement for a cold chain system and trained personnel, needle-based injuries, and limited immunogenicity, non-invasive vaccines have gained significant attention. Although numerous approaches for formulating and administrating non-invasive vaccines have emerged, each of them faces its own challenges associated with vaccine bioavailability, toxicity, and other issues. To overcome such limitations, researchers have created novel supplementary materials and delivery systems. The goal of this review article is to provide vaccine formulation researchers with the most up-to-date information on vaccine formulation and the immunological mechanisms available, to identify the technical challenges associated with the commercialization of non-invasive vaccines, and to guide future research and development efforts.
Collapse
Affiliation(s)
| | | | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (S.H.); (P.L.)
| |
Collapse
|
42
|
Gupta SL, Goswami S, Anand A, Naman N, Kumari P, Sharma P, Jaiswal RK. An assessment of the strategy and status of COVID-19 vaccination in India. Immunol Res 2023; 71:565-577. [PMID: 37041424 PMCID: PMC10089693 DOI: 10.1007/s12026-023-09373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/14/2023] [Indexed: 04/13/2023]
Abstract
The COVID-19 disease continues to cause devastation for almost 3 years of its identification. India is one of the leading countries to set clinical trials, production, and administration of COVID-19 vaccination. Recent COVID-19 vaccine tracker record suggests that 12 vaccines are approved in India, including protein subunit, RNA/DNA, non-replicating viral vector, and inactivated vaccine. Along with that 16 more vaccines are undergoing clinical trials to counter COVID-19. The availability of different vaccines gives alternate and broad perspectives to fight against viral immune resistance and, thus, viruses escaping the immune system by mutations. Using the recently published literature on the Indian vaccine and clinical trial sites, we have reviewed the development, clinical evaluation, and registration of vaccines trial used in India against COVID-19. Moreover, we have also summarized the status of all approved vaccines in India, their associated registered clinical trials, manufacturing, efficacy, and their related safety and immunogenicity profile.
Collapse
Affiliation(s)
| | - Surbhi Goswami
- National Institute of Immunology, New Delhi, 110067 India
| | - Ananya Anand
- Department of Zoology, Patna Science College, Patna University, Bihar, India
| | - Namrata Naman
- Department of Zoology, Patna Science College, Patna University, Bihar, India
| | - Priya Kumari
- Department of Zoology, Patna Science College, Patna University, Bihar, India
| | - Priyanka Sharma
- Department of Zoology, Patna Science College, Patna University, Bihar, India
| | - Rishi K. Jaiswal
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153 USA
| |
Collapse
|
43
|
Xiao L, Yu W, Shen L, Yan W, Qi J, Hu T. Mucosal SARS-CoV-2 Nanoparticle Vaccine Based on Mucosal Adjuvants and Its Immune Effectiveness by Intranasal Administration. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37466148 DOI: 10.1021/acsami.3c05456] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
SARS-CoV-2 is a respiratory virus that causes significant threats to human health. Mucosal immunity provides a first-line defense to prevent the infection of SARS-CoV-2 in the respiratory tract. Because most SARS-CoV-2 vaccines could not stimulate mucosal immunity in the respiratory tract, appropriate mucosal adjuvants or delivery systems are needed for mucosal vaccine development. Mannan, polyarginine, and 2',3'-cGAMP are three mucosal adjuvants that could stimulate mucosal immunity. In the present study, the three adjuvants were assembled with a receptor-binding domain (RBD) by electrostatic interaction to generate a nanoparticle vaccine (RBD-MP-cG). RBD-MP-cG elicited mucosal IgA and IgG response in bronchoalveolar lavage and nasal lavage by intranasal administration. It induced a robust RBD-specific antibody response, high levels of protective neutralizing antibody, and ACE2-blocking activity in the mouse sera. It stimulated the splenic secretion of high levels of Th1-, Th2-, and Th17-type cytokines. Thus, RBD-MP-cG elicited strong mucosal immunity and systematic immunity by intranasal administration. RBD-MP-cG was expected to act as a safe, effective, and easily produced mucosal nanoparticle vaccine to combat the infection of SARS-CoV-2.
Collapse
Affiliation(s)
- Lucheng Xiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Weili Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
| | - Lijuan Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
| | - Wenying Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jinming Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
| | - Tao Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
| |
Collapse
|
44
|
Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics 2023; 15:1916. [PMID: 37514102 PMCID: PMC10385763 DOI: 10.3390/pharmaceutics15071916] [Citation(s) in RCA: 183] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Artificial intelligence (AI) has emerged as a powerful tool that harnesses anthropomorphic knowledge and provides expedited solutions to complex challenges. Remarkable advancements in AI technology and machine learning present a transformative opportunity in the drug discovery, formulation, and testing of pharmaceutical dosage forms. By utilizing AI algorithms that analyze extensive biological data, including genomics and proteomics, researchers can identify disease-associated targets and predict their interactions with potential drug candidates. This enables a more efficient and targeted approach to drug discovery, thereby increasing the likelihood of successful drug approvals. Furthermore, AI can contribute to reducing development costs by optimizing research and development processes. Machine learning algorithms assist in experimental design and can predict the pharmacokinetics and toxicity of drug candidates. This capability enables the prioritization and optimization of lead compounds, reducing the need for extensive and costly animal testing. Personalized medicine approaches can be facilitated through AI algorithms that analyze real-world patient data, leading to more effective treatment outcomes and improved patient adherence. This comprehensive review explores the wide-ranging applications of AI in drug discovery, drug delivery dosage form designs, process optimization, testing, and pharmacokinetics/pharmacodynamics (PK/PD) studies. This review provides an overview of various AI-based approaches utilized in pharmaceutical technology, highlighting their benefits and drawbacks. Nevertheless, the continued investment in and exploration of AI in the pharmaceutical industry offer exciting prospects for enhancing drug development processes and patient care.
Collapse
Affiliation(s)
- Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Keshava Jetha
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
- Ph.D. Section, Gujarat Technological University, Ahmedabad 382424, Gujarat, India
| | | | - Hetvi K Solanki
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
45
|
Sonvico F, Colombo G, Quarta E, Guareschi F, Banella S, Buttini F, Scherließ R. Nasal delivery as a strategy for the prevention and treatment of COVID-19. Expert Opin Drug Deliv 2023; 20:1115-1130. [PMID: 37755135 DOI: 10.1080/17425247.2023.2263363] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION The upper respiratory tract is a major route of infection for COVID-19 and other respiratory diseases. Thus, it appears logical to exploit the nose as administration site to prevent, fight, or minimize infectious spread and treat the disease. Numerous nasal products addressing these aspects have been considered and developed for COVID-19. AREAS COVERED This review gives a comprehensive overview of the different approaches involving nasal delivery, i.e., nasal vaccination, barrier products, and antiviral pharmacological treatments that have led to products on the market or under clinical evaluation, highlighting the peculiarities of the nose as application and absorption site and pointing at key aspects of nasal drug delivery. EXPERT OPINION From the analysis of nasal delivery strategies to prevent or fight COVID-19, it emerges that, especially for nasal immunization, formulations appear the same as originally designed for parenteral administration, leading to suboptimal results. On the other hand, mechanical barrier and antiviral products, designed to halt or treat the infection at early stage, have been proven effective but were rarely brought to the clinics. If supported by robust and targeted product development strategies, intranasal immunization and drug delivery can represent valid and sometimes superior alternatives to more conventional parenteral and oral medications.
Collapse
Affiliation(s)
- Fabio Sonvico
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Eride Quarta
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Sabrina Banella
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, Kiel, Germany
| |
Collapse
|
46
|
Bureerug TC, Kanokudom S, Suntronwong N, Yorsaeng R, Assawakosri S, Thongmee T, Poovorawan Y. Evaluation of Anti-S1 IgA Response to Different COVID-19 Vaccination Regimens. Vaccines (Basel) 2023; 11:1117. [PMID: 37376506 PMCID: PMC10301034 DOI: 10.3390/vaccines11061117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
IgA plays a crucial role in early virus neutralization. To identify the IgA stimulation by COVID-19 vaccine, this study aimed to evaluate the level of anti-S1 IgA in the serum of participants immunized with different COVID-19 vaccination regimens. Sera from 567 eligible participants vaccinated with two, three, or four doses of different types of COVID-19 vaccine were recruited. Post-vaccine anti-S1 IgA responses significantly varied according to vaccine type and regimen. The finding showed that heterologous boosters, especially after priming with an inactivated vaccine, elicited higher IgA levels than homologous boosters. Vaccination with SV/SV/PF produced the highest IgA level among all the immunization regimens after either two, three, or four doses. The different routes and amounts of vaccine used for vaccination showed non-significant differences in IgA levels. After the third dose of immunization for 4 months, the level of IgA decreased significantly from the level found on day 28 in both SV/SV/AZ and SV/SV/PF groups. In conclusion, our study showed that heterologous booster regimens for COVID-19 elicited higher anti-S1 IgA levels in serum, especially after priming with inactivated vaccine. The presented anti-S1 IgA may have advantages in preventing SARS-CoV-2 infection and severe disease.
Collapse
Affiliation(s)
- Teeraporn C. Bureerug
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Sitthichai Kanokudom
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (N.S.); (R.Y.); (S.A.); (T.T.); (Y.P.)
- Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (N.S.); (R.Y.); (S.A.); (T.T.); (Y.P.)
| | - Ritthideach Yorsaeng
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (N.S.); (R.Y.); (S.A.); (T.T.); (Y.P.)
| | - Suvichada Assawakosri
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (N.S.); (R.Y.); (S.A.); (T.T.); (Y.P.)
- Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Thanunrat Thongmee
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (N.S.); (R.Y.); (S.A.); (T.T.); (Y.P.)
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (N.S.); (R.Y.); (S.A.); (T.T.); (Y.P.)
- Fellow of the Royal Society of Thailand, The Royal Society of Thailand, Sanam Sueapa, Dusit, Bangkok 1030, Thailand
| |
Collapse
|
47
|
Elder E, Bangalore Revanna C, Johansson C, Wallin RPA, Sjödahl J, Winqvist O, Mirazimi A. Protective immunity induced by an inhaled SARS-CoV-2 subunit vaccine. Vaccine 2023:S0264-410X(23)00684-9. [PMID: 37353452 PMCID: PMC10242152 DOI: 10.1016/j.vaccine.2023.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/25/2023]
Abstract
Targeting the site of infection is a promising strategy for improving vaccine effectivity. To date, licensed COVID-19 vaccines have been administered intramuscularly despite the fact that SARS-CoV-2 is a respiratory virus. Here, we aim to induce local protective mucosal immune responses with an inhaled subunit vaccine candidate, ISR52, based on the SARS-CoV-2 Spike S1 protein. When tested in a lethal challenge hACE2 transgenic SARS-CoV-2 mouse model, intranasal and intratracheal administration of ISR52 provided superior protection against severe infection, compared to the subcutaneous injection of the vaccine. Interestingly for a protein-based vaccine, inhaled ISR52 elicited both CD4 and CD8 T-cell Spike-specific responses that were maintained for at least 6 months in wild-type mice. Induced IgG and IgA responses cross-reacting with several SARS- CoV-2 variants of concern were detected in the lung and in serum and protected animals displayed neutralizing antibodies. Based on our results, we are developing ISR52 as a dry powder formulation for inhalation, that does not require cold-chain distribution or the use of needle administration, for evaluation in a Phase I/II clinical trial.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ali Mirazimi
- National Veterinary Institute, Uppsala, Sweden; Clinical Microbiology, LABMED, Karolinska Institute, Sweden.
| |
Collapse
|
48
|
Pather S, Madhi SA, Cowling BJ, Moss P, Kamil JP, Ciesek S, Muik A, Türeci Ö. SARS-CoV-2 Omicron variants: burden of disease, impact on vaccine effectiveness and need for variant-adapted vaccines. Front Immunol 2023; 14:1130539. [PMID: 37287979 PMCID: PMC10242031 DOI: 10.3389/fimmu.2023.1130539] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/05/2023] [Indexed: 06/09/2023] Open
Abstract
The highly transmissible Omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in late 2021. Initial Omicron waves were primarily made up of sub-lineages BA.1 and/or BA.2, BA.4, and BA.5 subsequently became dominant in mid-2022, and several descendants of these sub-lineages have since emerged. Omicron infections have generally caused less severe disease on average than those caused by earlier variants of concern in healthy adult populations, at least, in part, due to increased population immunity. Nevertheless, healthcare systems in many countries, particularly those with low population immunity, have been overwhelmed by unprecedented surges in disease prevalence during Omicron waves. Pediatric admissions were also higher during Omicron waves compared with waves of previous variants of concern. All Omicron sub-lineages exhibit partial escape from wild-type (Wuhan-Hu 1) spike-based vaccine-elicited neutralizing antibodies, with sub-lineages with more enhanced immuno-evasive properties emerging over time. Evaluating vaccine effectiveness (VE) against Omicron sub-lineages has become challenging against a complex background of varying vaccine coverage, vaccine platforms, prior infection rates, and hybrid immunity. Original messenger RNA vaccine booster doses substantially improved VE against BA.1 or BA.2 symptomatic disease. However, protection against symptomatic disease waned, with reductions detected from 2 months after booster administration. While original vaccine-elicited CD8+ and CD4+ T-cell responses cross-recognize Omicron sub-lineages, thereby retaining protection against severe outcomes, variant-adapted vaccines are required to expand the breadth of B-cell responses and improve durability of protection. Variant-adapted vaccines were rolled out in late 2022 to increase overall protection against symptomatic and severe infections caused by Omicron sub-lineages and antigenically aligned variants with enhanced immune escape mechanisms.
Collapse
Affiliation(s)
| | - Shabir A. Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Benjamin J. Cowling
- School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Jeremy P. Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | | | | |
Collapse
|
49
|
Kakavandi S, Zare I, VaezJalali M, Dadashi M, Azarian M, Akbari A, Ramezani Farani M, Zalpoor H, Hajikhani B. Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Commun Signal 2023; 21:110. [PMID: 37189112 PMCID: PMC10183699 DOI: 10.1186/s12964-023-01104-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a new member of the Coronaviridae family known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are structural and non-structural proteins (NSPs) in the genome of this virus. S, M, H, and E proteins are structural proteins, and NSPs include accessory and replicase proteins. The structural and NSP components of SARS-CoV-2 play an important role in its infectivity, and some of them may be important in the pathogenesis of chronic diseases, including cancer, coagulation disorders, neurodegenerative disorders, and cardiovascular diseases. The SARS-CoV-2 proteins interact with targets such as angiotensin-converting enzyme 2 (ACE2) receptor. In addition, SARS-CoV-2 can stimulate pathological intracellular signaling pathways by triggering transcription factor hypoxia-inducible factor-1 (HIF-1), neuropilin-1 (NRP-1), CD147, and Eph receptors, which play important roles in the progression of neurodegenerative diseases like Alzheimer's disease, epilepsy, and multiple sclerosis, and multiple cancers such as glioblastoma, lung malignancies, and leukemias. Several compounds such as polyphenols, doxazosin, baricitinib, and ruxolitinib could inhibit these interactions. It has been demonstrated that the SARS-CoV-2 spike protein has a stronger affinity for human ACE2 than the spike protein of SARS-CoV, leading the current study to hypothesize that the newly produced variant Omicron receptor-binding domain (RBD) binds to human ACE2 more strongly than the primary strain. SARS and Middle East respiratory syndrome (MERS) viruses against structural and NSPs have become resistant to previous vaccines. Therefore, the review of recent studies and the performance of current vaccines and their effects on COVID-19 and related diseases has become a vital need to deal with the current conditions. This review examines the potential role of these SARS-CoV-2 proteins in the initiation of chronic diseases, and it is anticipated that these proteins could serve as components of an effective vaccine or treatment for COVID-19 and related diseases. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Maryam VaezJalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Tu B, Gao Y, An X, Wang H, Huang Y. Localized delivery of nanomedicine and antibodies for combating COVID-19. Acta Pharm Sin B 2023; 13:1828-1846. [PMID: 36168329 PMCID: PMC9502448 DOI: 10.1016/j.apsb.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been a major health burden in the world. So far, many strategies have been investigated to control the spread of COVID-19, including social distancing, disinfection protocols, vaccines, and antiviral treatments. Despite the significant achievement, due to the constantly emerging new variants, COVID-19 is still a great challenge to the global healthcare system. It is an urgent demand for the development of new therapeutics and technologies for containing the wild spread of SARS-CoV-2. Inhaled administration is useful for the treatment of lung and respiratory diseases, and enables the drugs to reach the site of action directly with benefits of decreased dose, improved safety, and enhanced patient compliance. Nanotechnology has been extensively applied in the prevention and treatment of COVID-19. In this review, the inhaled nanomedicines and antibodies, as well as intranasal nanodrugs, for the prevention and treatment of COVID-19 are summarized.
Collapse
Affiliation(s)
- Bin Tu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanrong Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinran An
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Huiyuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan 528437, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
- Taizhou University, School of Advanced Study, Institute of Natural Medicine and Health Product, Taizhou 318000, China
| |
Collapse
|