1
|
Mauclin M, Guillien A, Niespodziana K, Boudier A, Schlederer T, Bajic M, Errhalt P, Borochova K, Pin I, Gormand F, Vernet R, Bousquet J, Bouzigon E, Valenta R, Siroux V. Association between asthma and IgG levels specific for rhinovirus and respiratory syncytial virus antigens in children and adults. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100342. [PMID: 39507925 PMCID: PMC11536052 DOI: 10.1016/j.jacig.2024.100342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 11/08/2024]
Abstract
Background Viral infections in childhood, especially to rhinovirus (RV) and respiratory syncytial virus (RSV), are associated with asthma inception and exacerbation. However, little is known about the role of RV- and RSV-specific antibodies in childhood versus adult asthma. Objective We sought to investigate associations between RV- and RSV-specific IgG levels and asthma phenotypes in children and adults. Methods The analysis included 1771 samples from participants of the Epidemiological Study on the Genetics and Environment of Asthma (530 children; age [mean ± SD], 11.1 ± 2.8, and 1241 adults; age [mean ± SD], 43.4 ± 16.7, among whom 274 and 498 had ever asthma, respectively). RSV- and RV-specific IgG levels were determined using microarrayed virus-derived antigens and peptides. Cross-sectional associations between standardized RSV- and RV-specific IgG levels and asthma phenotypes were estimated by multiple regression models. Results In children, ever asthma was associated with higher IgG levels specific to RV, especially to RV-A and RV-C, and to RSV (adjusted odds ratios [95% CI] for a 1 - SD increase in IgG levels were 1.52 [1.16-1.99], 1.42 [1.10-1.83], and 1.24 [0.99-1.54], respectively). These associations were stronger for moderate to severe asthma than for mild asthma. Conversely in adults, ever asthma was associated with lower RV-A, RV-B, and RV-C IgG levels (adjusted odds ratios [95% CI] were 0.86 [0.74-0.99], 0.83 [0.73-0.95], and 0.85 [0.73-0.99], respectively). Conclusions Our results suggest that the association between respiratory virus-specific antibody levels and asthma varies during life, with asthma associated with higher levels of IgG to RSV, RV-A, and RV-C in children and lower levels of IgG responses to RV-A/B/C in adults.
Collapse
Affiliation(s)
- Marion Mauclin
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Alicia Guillien
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Katarzyna Niespodziana
- the Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna
| | - Anne Boudier
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
- CHU Grenoble-Alpes, Grenoble, France
| | - Thomas Schlederer
- the Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna
| | - Maja Bajic
- the Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna
- the Department of Pneumology, University Hospital Krems and Karl Landsteiner University of Health Sciences, Krems
| | - Peter Errhalt
- the Department of Pneumology, University Hospital Krems and Karl Landsteiner University of Health Sciences, Krems
| | - Kristina Borochova
- the Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna
| | - Isabelle Pin
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | | | - Raphaël Vernet
- Université Paris Cité, INSERM UMR 1124, Group of Genomic Epidemiology of Multifactorial Diseases, Paris
| | - Jean Bousquet
- Université Paris-Saclay, UVSQ, Université Paris-Sud, INSERM, Equipe d’Epidémiologie Respiratoire Intégrative, CESP, Villejuif
| | - Emmanuelle Bouzigon
- Université Paris Cité, INSERM UMR 1124, Group of Genomic Epidemiology of Multifactorial Diseases, Paris
| | - Rudolf Valenta
- the Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna
- Karl Landsteiner University, Krems
| | - Valérie Siroux
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
2
|
Bochkov YA, Devries M, Tetreault K, Gangnon R, Lee S, Bacharier LB, Busse WW, Camargo CA, Choi T, Cohen R, De R, DeMuri GP, Fitzpatrick AM, Gergen PJ, Grindle K, Gruchalla R, Hartert T, Hasegawa K, Khurana Hershey GK, Holt P, Homil K, Jartti T, Kattan M, Kercsmar C, Kim H, Laing IA, Le Souëf PN, Liu AH, Mauger DT, Pappas T, Patel SJ, Phipatanakul W, Pongracic J, Seroogy C, Sly PD, Tisler C, Wald ER, Wood R, Lemanske RF, Jackson DJ, Gern JE. Rhinoviruses A and C elicit long-lasting antibody responses with limited cross-neutralization. J Med Virol 2023; 95:e29058. [PMID: 37638498 PMCID: PMC10484091 DOI: 10.1002/jmv.29058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Rhinoviruses (RVs) can cause severe wheezing illnesses in young children and patients with asthma. Vaccine development has been hampered by the multitude of RV types with little information about cross-neutralization. We previously showed that neutralizing antibody (nAb) responses to RV-C are detected twofold to threefold more often than those to RV-A throughout childhood. Based on those findings, we hypothesized that RV-C infections are more likely to induce either cross-neutralizing or longer-lasting antibody responses compared with RV-A infections. We pooled RV diagnostic data from multiple studies of children with respiratory illnesses and compared the expected versus observed frequencies of sequential infections with RV-A or RV-C types using log-linear regression models. We tested longitudinally collected plasma samples from children to compare the duration of RV-A versus RV-C nAb responses. Our models identified limited reciprocal cross-neutralizing relationships for RV-A (A12-A75, A12-A78, A20-A78, and A75-A78) and only one for RV-C (C2-C40). Serologic analysis using reference mouse sera and banked human plasma samples confirmed that C40 infections induced nAb responses with modest heterotypic activity against RV-C2. Mixed-effects regression modeling of longitudinal human plasma samples collected from ages 2 to 18 years demonstrated that RV-A and RV-C illnesses induced nAb responses of similar duration. These results indicate that both RV-A and RV-C nAb responses have only modest cross-reactivity that is limited to genetically similar types. Contrary to our initial hypothesis, RV-C species may include even fewer cross-neutralizing types than RV-A, whereas the duration of nAb responses during childhood is similar between the two species. The modest heterotypic responses suggest that RV vaccines must have a broad representation of prevalent types.
Collapse
Affiliation(s)
| | - Mark Devries
- University of Wisconsin-Madison, Madison, WI, United States
| | | | - Ronald Gangnon
- University of Wisconsin-Madison, Madison, WI, United States
| | - Sujin Lee
- Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, GA, United States
| | | | | | - Carlos A. Camargo
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Timothy Choi
- University of Wisconsin-Madison, Madison, WI, United States
| | - Robyn Cohen
- Boston University, Boston, MA, United States
| | - Ramyani De
- Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, GA, United States
| | | | - Anne M. Fitzpatrick
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Peter J. Gergen
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | | | | | - Tina Hartert
- Vanderbilt University, Nashville, TN, United States
| | - Kohei Hasegawa
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Patrick Holt
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Kiara Homil
- University of Turku and Turku University Hospital, Turku, Finland
| | - Tuomas Jartti
- University of Turku and Turku University Hospital, Turku, Finland
- PEDEGO Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Meyer Kattan
- Columbia University, New York, NY, United States
| | | | - Haejin Kim
- Henry Ford Health Systems, Detroit, MI, United States
| | | | | | - Andrew H. Liu
- Children’s Hospital Colorado, University of Colorado, Aurora, CO, United States
| | | | - Tressa Pappas
- University of Wisconsin-Madison, Madison, WI, United States
| | | | | | | | | | - Peter D. Sly
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | | | - Ellen R. Wald
- University of Wisconsin-Madison, Madison, WI, United States
| | - Robert Wood
- Johns Hopkins University, Baltimore, MD, United States
| | | | | | - James E. Gern
- University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Microarray-Based Analyses of Rhinovirus Species-Specific Antibody Responses in Exacerbated Pediatric Asthma in a German Pediatric Cohort. Viruses 2022; 14:v14091857. [PMID: 36146664 PMCID: PMC9502376 DOI: 10.3390/v14091857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 02/05/2023] Open
Abstract
Rhinoviruses (RV) account for a significant number of asthma exacerbations, and RV species C may be associated with a severe course in vulnerable patient groups. Despite important evidence on the role of RV reported by clinicians and life scientists, there are still unanswered questions regarding their influence on asthma exacerbation in young patients. Thus, we measured the RVspecies-specific IgG titers in our German pediatric exacerbation cohort using a microarray-based technology. For this approach, human sera of patients with exacerbated asthma and wheeze, as well as healthy control subjects (n = 136) were included, and correlation analyses were performed. Concordantly with previously published results, we observed significantly higher cumulative levels of RV species A-specific IgG (p = 0.011) and RV-C-specific IgG (p = 0.051) in exacerbated asthma group compared to age-matched controls. Moreover, atopic wheezers had increased RV-specific IgG levels for species A (p = 0.0011) and species C (p = 0.0009) compared to non-atopic wheezers. Hypothesizing that bacterial infection positively correlates with immune memory against RV, we included nasopharyngeal swab results in our analyses and detected limited correlations. Interestingly, the eosinophil blood titer positively correlated with RV-specific IgG levels. With these observations, we add important observations to the existing data regarding exacerbation in pediatric and adolescent medicine. We propose that scientists and clinicians should pay more attention to the relevance of RV species in susceptible pediatric patients.
Collapse
|
4
|
Wirz OF, Jansen K, Satitsuksanoa P, Veen W, Tan G, Sokolowska M, Mirer D, Stanić B, Message SD, Kebadze T, Glanville N, Mallia P, Gern JE, Papadopoulos N, Akdis CA, Johnston SL, Nadeau K, Akdis M. Experimental rhinovirus infection induces an antiviral response in circulating B cells which is dysregulated in patients with asthma. Allergy 2022; 77:130-142. [PMID: 34169553 PMCID: PMC10138744 DOI: 10.1111/all.14985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Rhinoviruses are the predominant cause of respiratory viral infections and are strongly associated with asthma exacerbations. While humoral immunity plays an important role during virus infections, cellular aspects of this response are less well understood. Here, we investigated the antiviral response of circulating B cells upon experimental rhinovirus infection in healthy individuals and asthma patients. METHODS We purified B cells from experimentally infected healthy individuals and patients with asthma and subjected them to total RNA-sequencing. Rhinovirus-derived RNA was measured in isolated B cells using a highly sensitive PCR. B cells were stimulated with rhinovirus in vitro to further study gene expression, expression of antiviral proteins and B-cell differentiation in response rhinovirus stimulation. Protein expression of pro-inflammatory cytokines in response to rhinovirus was assessed using a proximity extension assay. RESULTS B cells isolated from experimentally infected subjects exhibited an antiviral gene profile linked to IFN-alpha, carried viral RNA in vivo and were transiently infected by rhinovirus in vitro. B cells rapidly differentiated into plasmablasts upon rhinovirus stimulation. While B cells lacked expression of interferons in response to rhinovirus exposure, co-stimulation with rhinovirus and IFN-alpha upregulated pro-inflammatory cytokine expression suggesting a potential new function of B cells during virus infections. Asthma patients showed extensive upregulation and dysregulation of antiviral gene expression. CONCLUSION These findings add to the understanding of systemic effects of rhinovirus infections on B-cell responses in the periphery, show potential dysregulation in patients with asthma and might also have implications during infection with other respiratory viruses.
Collapse
Affiliation(s)
- Oliver F. Wirz
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | | | - Willem Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne – Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Functional Genomics Center Zürich ETH Zürich/University of Zürich Zürich Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - David Mirer
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Barbara Stanić
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Simon D. Message
- National Heart and Lung Institute Imperial College London London UK
| | - Tatiana Kebadze
- National Heart and Lung Institute Imperial College London London UK
| | | | - Patrick Mallia
- National Heart and Lung Institute Imperial College London London UK
| | - James E. Gern
- Department of Pediatrics University of Wisconsin‐Madison Madison USA
| | - Nikolaos Papadopoulos
- Division of Infection, Immunity & Respiratory Medicine The University of Manchester Manchester UK
- Allergy Department 2nd Pediatric Clinic University of Athens Athens Greece
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne – Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | | | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research Department of Medicine Stanford University Palo Alto California USA
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| |
Collapse
|
5
|
Gattinger P, Niespodziana K, Stiasny K, Sahanic S, Tulaeva I, Borochova K, Dorofeeva Y, Schlederer T, Sonnweber T, Hofer G, Kiss R, Kratzer B, Trapin D, Tauber PA, Rottal A, Körmöczi U, Feichter M, Weber M, Focke‐Tejkl M, Löffler‐Ragg J, Mühl B, Kropfmüller A, Keller W, Stolz F, Henning R, Tancevski I, Puchhammer‐Stöckl E, Pickl WF, Valenta R. Neutralization of SARS-CoV-2 requires antibodies against conformational receptor-binding domain epitopes. Allergy 2022; 77:230-242. [PMID: 34453317 PMCID: PMC8653362 DOI: 10.1111/all.15066] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022]
Abstract
Background The determinants of successful humoral immune response to the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) are of critical importance for the design of effective vaccines and the evaluation of the degree of protective immunity conferred by exposure to the virus. As novel variants emerge, understanding their likelihood of suppression by population antibody repertoires has become increasingly important. Methods In this study, we analyzed the SARS‐CoV‐2 polyclonal antibody response in a large population of clinically well‐characterized patients after mild and severe COVID‐19 using a panel of microarrayed structurally folded and unfolded SARS‐CoV‐2 proteins, as well as sequential peptides, spanning the surface spike protein (S) and the receptor‐binding domain (RBD) of the virus. Results S‐ and RBD‐specific antibody responses were dominated by immunoglobulin G (IgG), mainly IgG1, and directed against structurally folded S and RBD and three distinct peptide epitopes in S2. The virus neutralization activity of patients´ sera was highly correlated with IgG antibodies specific for conformational but not sequential RBD epitopes and their ability to prevent RBD binding to its human receptor angiotensin‐converting enzyme 2 (ACE2). Twenty percent of patients selectively lacked RBD‐specific IgG. Only immunization with folded, but not with unfolded RBD, induced antibodies against conformational epitopes with high virus‐neutralizing activity. Conformational RBD epitopes required for protection do not seem to be altered in the currently emerging virus variants. Conclusion These results are fundamental for estimating the protective activity of antibody responses after natural infection or vaccination and for the design of vaccines, which can induce high levels of SARS‐CoV‐2–neutralizing antibodies conferring sterilizing immunity.
Collapse
Affiliation(s)
- Pia Gattinger
- Department of Pathophysiology and Allergy Research Division of Immunopathology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Katarzyna Niespodziana
- Department of Pathophysiology and Allergy Research Division of Immunopathology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Karin Stiasny
- Center for Virology Medical University of Vienna Vienna Austria
| | - Sabina Sahanic
- Department of Internal Medicine II Medical University of Innsbruck Innsbruck Austria
| | - Inna Tulaeva
- Department of Pathophysiology and Allergy Research Division of Immunopathology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- Laboratory for Immunopathology Department of Clinical Immunology and Allergology Sechenov First Moscow State Medical University Moscow Russia
| | - Kristina Borochova
- Department of Pathophysiology and Allergy Research Division of Immunopathology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Yulia Dorofeeva
- Department of Pathophysiology and Allergy Research Division of Immunopathology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Thomas Schlederer
- Department of Pathophysiology and Allergy Research Division of Immunopathology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Thomas Sonnweber
- Department of Internal Medicine II Medical University of Innsbruck Innsbruck Austria
| | - Gerhard Hofer
- Department of Materials and Environmental Chemistry University of Stockholm Stockholm Sweden
| | | | - Bernhard Kratzer
- Institute of Immunology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Doris Trapin
- Institute of Immunology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Peter A. Tauber
- Institute of Immunology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Arno Rottal
- Institute of Immunology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Ulrike Körmöczi
- Institute of Immunology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Melanie Feichter
- Institute of Immunology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Milena Weber
- Department of Pathophysiology and Allergy Research Division of Immunopathology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Margarete Focke‐Tejkl
- Department of Pathophysiology and Allergy Research Division of Immunopathology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- Karl Landsteiner University of Health Sciences Krems Austria
| | - Judith Löffler‐Ragg
- Department of Internal Medicine II Medical University of Innsbruck Innsbruck Austria
| | | | - Anna Kropfmüller
- Österreichische Gesundheitskasse Klinikum Peterhof Baden Austria
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz University of Graz Graz Austria
| | | | | | - Ivan Tancevski
- Department of Internal Medicine II Medical University of Innsbruck Innsbruck Austria
| | | | - Winfried F. Pickl
- Institute of Immunology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- Karl Landsteiner University of Health Sciences Krems Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research Division of Immunopathology Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- Laboratory for Immunopathology Department of Clinical Immunology and Allergology Sechenov First Moscow State Medical University Moscow Russia
- Karl Landsteiner University of Health Sciences Krems Austria
- NRC Institute of Immunology, FMBA Moscow Russia
| |
Collapse
|
6
|
Prevention and Treatment of Asthma Exacerbations in Adults. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:2578-2586. [PMID: 34246434 DOI: 10.1016/j.jaip.2021.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
Asthma exacerbations are major contributors to disease morbidity in patients of all ages. To develop strategies that reduce the disease burden from exacerbations, it is helpful to review current concepts about the risk factors for asthma attacks and current approaches for prevention and treatment. Multiple factors contribute as risks and to the development of asthma exacerbations, including allergic and infectious processes. Viral respiratory infections, primarily from rhinoviruses, are the dominant exacerbating cause for most asthma patients. Allergic sensitization and allergen exposure contribute directly and enhance susceptibility for respiratory viral infections. Respiratory viruses infect airway epithelium to promote underlying type 2 inflammation with eosinophils, the predominant cellular component of increased inflammation. Deficiencies of antiviral interferon responses and generation have been identified that increase susceptibility to viral infections in asthma. Exacerbation treatment focuses on reducing airflow obstruction and suppressing inflammation, followed by improving long-term asthma control. Increasing concern exists regarding the side effects associated with frequent systemic corticosteroid use. A major advance has been the selective use of biologics to prevent exacerbations, primarily in patients with existing type 2 inflammation. Future research to prevent exacerbations is being directed toward antiviral activity and a more encompassing regulation of underlying airway inflammation.
Collapse
|
7
|
Niespodziana K, Stenberg-Hammar K, Papadopoulos NG, Focke-Tejkl M, Errhalt P, Konradsen JR, Söderhäll C, van Hage M, Hedlin G, Valenta R. Microarray Technology May Reveal the Contribution of Allergen Exposure and Rhinovirus Infections as Possible Triggers for Acute Wheezing Attacks in Preschool Children. Viruses 2021; 13:915. [PMID: 34063445 PMCID: PMC8155838 DOI: 10.3390/v13050915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Allergen exposure and rhinovirus (RV) infections are common triggers of acute wheezing exacerbations in early childhood. The identification of such trigger factors is difficult but may have therapeutic implications. Increases of IgE and IgG in sera, were shown against allergens and the N-terminal portion of the VP1 proteins of RV species, respectively, several weeks after allergen exposure or RV infection. Hence, increases in VP1-specific IgG and in allergen-specific IgE may serve as biomarkers for RV infections or allergen exposure. The MeDALL-allergen chip containing comprehensive panels of allergens and the PreDicta RV chip equipped with VP1-derived peptides, representative of three genetic RV species, were used to measure allergen-specific IgE levels and RV-species-specific IgG levels in sera obtained from 120 preschool children at the time of an acute wheezing attack and convalescence. Nearly 20% of the children (22/120) showed specific IgE sensitizations to at least one of the allergen molecules on the MeDALL chip. For 87% of the children, increases in RV-specific IgG could be detected in the follow-up sera. This percentage of RV-specific IgG increases was equal in IgE-positive and -negative children. In 10% of the children, increases or de novo appearances of IgE sensitizations indicative of allergen exposure could be detected. Our results suggest that, in the majority of preschool children, RV infections trigger wheezing attacks, but, in addition, allergen exposure seems to play a role as a trigger factor. RV-induced wheezing attacks occur in IgE-sensitized and non-IgE-sensitized children, indicating that allergic sensitization is not a prerequisite for RV-induced wheeze.
Collapse
Affiliation(s)
- Katarzyna Niespodziana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.N.); (M.F.-T.)
| | - Katarina Stenberg-Hammar
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 171 77 Stockholm, Sweden; (K.S.-H.); (J.R.K.); (C.S.); (G.H.)
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Nikolaos G. Papadopoulos
- Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK;
- Allergy Department, 2nd Pediatric Clinic, University of Athens, 106 79 Athens, Greece
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.N.); (M.F.-T.)
- Karl Landsteiner University for Healthcare Sciences, 3500 Krems, Austria
| | - Peter Errhalt
- Department of Pneumology, University Hospital Krems, Austria, and Karl Landsteiner University of Health Sciences, 3500 Krems, Austria;
| | - Jon R. Konradsen
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 171 77 Stockholm, Sweden; (K.S.-H.); (J.R.K.); (C.S.); (G.H.)
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Cilla Söderhäll
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 171 77 Stockholm, Sweden; (K.S.-H.); (J.R.K.); (C.S.); (G.H.)
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, 171 77 Stockholm, Sweden;
| | - Gunilla Hedlin
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 171 77 Stockholm, Sweden; (K.S.-H.); (J.R.K.); (C.S.); (G.H.)
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.N.); (M.F.-T.)
- Karl Landsteiner University for Healthcare Sciences, 3500 Krems, Austria
- National Research Center, Institute of immunology, FMBA of Russia, 115478 Moscow, Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| |
Collapse
|
8
|
Choi T, Devries M, Bacharier LB, Busse W, Camargo CA, Cohen R, Demuri GP, Evans MD, Fitzpatrick AM, Gergen PJ, Grindle K, Gruchalla R, Hartert T, Hasegawa K, Khurana Hershey GK, Holt P, Homil K, Jartti T, Kattan M, Kercsmar C, Kim H, Laing IA, LeBeau P, Lee KE, Le Souëf PN, Liu A, Mauger DT, Ober C, Pappas T, Patel SJ, Phipatanakul W, Pongracic J, Seroogy C, Sly PD, Tisler C, Wald ER, Wood R, Gangnon R, Jackson DJ, Lemanske RF, Gern JE, Bochkov YA. Enhanced Neutralizing Antibody Responses to Rhinovirus C and Age-Dependent Patterns of Infection. Am J Respir Crit Care Med 2021; 203:822-830. [PMID: 33357024 PMCID: PMC8017585 DOI: 10.1164/rccm.202010-3753oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/23/2020] [Indexed: 01/10/2023] Open
Abstract
Rationale: Rhinovirus (RV) C can cause asymptomatic infection and respiratory illnesses ranging from the common cold to severe wheezing.Objectives: To identify how age and other individual-level factors are associated with susceptibility to RV-C illnesses.Methods: Longitudinal data from the COAST (Childhood Origins of Asthma) birth cohort study were analyzed to determine relationships between age and RV-C infections. Neutralizing antibodies specific for RV-A and RV-C (three types each) were determined using a novel PCR-based assay. Data were pooled from 14 study cohorts in the United States, Finland, and Australia, and mixed-effects logistic regression was used to identify factors related to the proportion of RV-C versus RV-A detection.Measurements and Main Results: In COAST, RV-A and RV-C infections were similarly common in infancy, whereas RV-C was detected much less often than RV-A during both respiratory illnesses and scheduled surveillance visits (P < 0.001, χ2) in older children. The prevalence of neutralizing antibodies to RV-A or RV-C types was low (5-27%) at the age of 2 years, but by the age of 16 years, RV-C seropositivity was more prevalent (78% vs. 18% for RV-A; P < 0.0001). In the pooled analysis, the RV-C to RV-A detection ratio during illnesses was significantly related to age (P < 0.0001), CDHR3 genotype (P < 0.05), and wheezing illnesses (P < 0.05). Furthermore, certain RV types (e.g., C2, C11, A78, and A12) were consistently more virulent and prevalent over time.Conclusions: Knowledge of prevalent RV types, antibody responses, and populations at risk based on age and genetics may guide the development of vaccines or other novel therapies against this important respiratory pathogen.
Collapse
Affiliation(s)
- Timothy Choi
- University of Wisconsin-Madison, Madison, Wisconsin
| | - Mark Devries
- University of Wisconsin-Madison, Madison, Wisconsin
| | | | | | | | | | | | | | - Anne M Fitzpatrick
- Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Peter J Gergen
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland
| | | | | | | | | | | | - Patrick Holt
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | | | - Tuomas Jartti
- University of Turku, Turku, Finland
- Universities of Oulu, Oulu, Finland
| | | | | | - Haejin Kim
- Henry Ford Health Systems, Detroit, Michigan
| | - Ingrid A Laing
- University of Western Australia, Perth, Western Australia, Australia
| | | | | | - Peter N Le Souëf
- University of Western Australia, Perth, Western Australia, Australia
| | - Andrew Liu
- University of Colorado, Denver, Colorado
| | | | | | | | | | | | | | | | - Peter D Sly
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia; and
| | | | - Ellen R Wald
- University of Wisconsin-Madison, Madison, Wisconsin
| | - Robert Wood
- Johns Hopkins University, Baltimore, Maryland
| | | | | | | | - James E Gern
- University of Wisconsin-Madison, Madison, Wisconsin
| | | |
Collapse
|
9
|
Borochova K, Niespodziana K, Stenberg Hammar K, van Hage M, Hedlin G, Söderhäll C, Focke-Tejkl M, Valenta R. Features of the Human Antibody Response against the Respiratory Syncytial Virus Surface Glycoprotein G. Vaccines (Basel) 2020; 8:vaccines8020337. [PMID: 32630611 PMCID: PMC7350215 DOI: 10.3390/vaccines8020337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) infections are a major cause of serious respiratory disease in infants. RSV occurs as two major subgroups A and B, which mainly differ regarding the surface glycoprotein G. The G protein is important for virus attachment and G-specific antibodies can protect against infection. We expressed the surface-exposed part of A2 strain-derived G (A2-G) in baculovirus-infected insect cells and synthesized overlapping peptides spanning complete A2-G. The investigation of the natural IgG response of adult subjects during a period of one year showed that IgG antibodies (i) recognize G significantly stronger than the fusion protein F0, (ii) target mainly non-conformational, sequential peptide epitopes from the exposed conserved region but also buried peptides, and (iii) exhibit a scattered but constant recognition profile during the observation period. The IgG subclass reactivity profile (IgG1 > IgG2 > IgG4 = IgG3) was indicative of a mixed Th1/Th2 response. Two strongly RSV-neutralizing sera including the 1st WHO standard contained high IgG anti-G levels. G-specific IgG increased strongly in children after wheezing attacks suggesting RSV as trigger factor. Our study shows that RSV G and G-derived peptides are useful for serological diagnosis of RSV-triggered exacerbations of respiratory diseases and underlines the importance of G for development of RSV-neutralizing vaccines.
Collapse
Affiliation(s)
- Kristina Borochova
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
| | - Katarzyna Niespodziana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
| | - Katarina Stenberg Hammar
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (K.S.H.); (G.H.); (C.S.)
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 14186 Stockholm, Sweden
- Centre of Allergy Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, 171 77 Stockholm, Sweden;
| | - Gunilla Hedlin
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (K.S.H.); (G.H.); (C.S.)
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 14186 Stockholm, Sweden
- Centre of Allergy Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Cilla Söderhäll
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (K.S.H.); (G.H.); (C.S.)
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 14186 Stockholm, Sweden
- Centre of Allergy Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
- NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
- Correspondence: ; Tel.: +431-40400-51130; Fax: +431-40400-51300
| |
Collapse
|
10
|
Pazderova P, Waltl EE, Niederberger-Leppin V, Flicker S, Valenta R, Niespodziana K. ELISA-Based Assay for Studying Major and Minor Group Rhinovirus-Receptor Interactions. Vaccines (Basel) 2020; 8:E315. [PMID: 32570763 PMCID: PMC7350259 DOI: 10.3390/vaccines8020315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 11/16/2022] Open
Abstract
Rhinovirus (RV) infections are a major cause of recurrent common colds and trigger severe exacerbations of chronic respiratory diseases. Major challenges for the development of vaccines for RV include the virus occurring in the form of approximately 160 different serotypes, using different receptors, and the need for preclinical models for the screening of vaccine candidates and antiviral compounds. We report the establishment and characterization of an ELISA-based assay for studying major and minor group RV-receptor interactions. This assay is based on the interaction of purified virus with plate-bound human receptor proteins, intercellular adhesion molecule 1 (ICAM-1), and low density lipoprotein receptor (LDLR). Using RV strain-specific antibodies, we demonstrate the specific binding of a panel of major and minor RV group types including RV-A and RV-B strains to ICAM-1 and LDLR, respectively. We show that the RV-receptor interaction can be blocked with receptor-specific antibodies as well as with soluble receptors and neutralizing RV-specific antibodies. The assay is more sensitive than a cell culture-based virus neutralization test. The ELISA assay will therefore be useful for the preclinical evaluation for preventive and therapeutic strategies targeting the RV-receptor interaction, such as vaccines, antibodies, and anti-viral compounds.
Collapse
Affiliation(s)
- Petra Pazderova
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria; (P.P.); (S.F.); (R.V.)
| | - Eva E. Waltl
- Department of Otorhinolaryngology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria; (E.E.W.); (V.N.-L.)
| | - Verena Niederberger-Leppin
- Department of Otorhinolaryngology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria; (E.E.W.); (V.N.-L.)
| | - Sabine Flicker
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria; (P.P.); (S.F.); (R.V.)
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria; (P.P.); (S.F.); (R.V.)
- NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Katarzyna Niespodziana
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria; (P.P.); (S.F.); (R.V.)
| |
Collapse
|
11
|
Megremis S, Niespodziana K, Cabauatan C, Xepapadaki P, Kowalski ML, Jartti T, Bachert C, Finotto S, West P, Stamataki S, Lewandowska-Polak A, Lukkarinen H, Zhang N, Zimmermann T, Stolz F, Neubauer A, Akdis M, Andreakos E, Valenta R, Papadopoulos NG. Rhinovirus Species-Specific Antibodies Differentially Reflect Clinical Outcomes in Health and Asthma. Am J Respir Crit Care Med 2020; 198:1490-1499. [PMID: 30134114 DOI: 10.1164/rccm.201803-0575oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rationale: Rhinoviruses (RVs) are major triggers of common cold and acute asthma exacerbations. RV species A, B, and C may have distinct clinical impact; however, little is known regarding RV species-specific antibody responses in health and asthma.Objectives: To describe and compare total and RV species-specific antibody levels in healthy children and children with asthma, away from an acute event.Methods: Serum samples from 163 preschool children with mild to moderate asthma and 72 healthy control subjects from the multinational Predicta cohort were analyzed using the recently developed PreDicta RV antibody chip.Measurements and Main Results: RV antibody levels varied, with RV-C and RV-A being higher than RV-B in both groups. Compared with control subjects, asthma was characterized by significantly higher levels of antibodies to RV-A and RV-C, but not RV-B. RV antibody levels positively correlated with the number of common colds over the previous year in healthy children, and wheeze episodes in children with asthma. Antibody levels also positively correlated with asthma severity but not with current asthma control.Conclusions: The variable humoral response to RV species in both groups suggests a differential infectivity pattern between RV species. In healthy preschoolers, RV antibodies accumulate with colds. In asthma, RV-A and RV-C antibodies are much higher and further increase with disease severity and wheeze episodes. Higher antibody levels in asthma may be caused by a compromised innate immune response, leading to increased exposure of the adaptive immune response to the virus. Importantly, there is no apparent protection with increasing levels of antibodies.
Collapse
Affiliation(s)
| | - Katarzyna Niespodziana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Clarissa Cabauatan
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Paraskevi Xepapadaki
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Marek L Kowalski
- Department of Immunology, Rheumatology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Tuomas Jartti
- Department of Paediatrics, Turku University Hospital, University of Turku, Turku, Finland
| | - Claus Bachert
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter West
- Division of Infection, Immunity and Respiratory Medicine and
| | - Sofia Stamataki
- Athens General Children's Hospital "Pan & Aglaia Kyriakou," Athens, Greece
| | - Anna Lewandowska-Polak
- Department of Immunology, Rheumatology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Heikki Lukkarinen
- Department of Paediatrics, Turku University Hospital, University of Turku, Turku, Finland
| | - Nan Zhang
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - Theodor Zimmermann
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Zurich, Switzerland
| | | | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria.,NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Nikolaos G Papadopoulos
- Division of Infection, Immunity and Respiratory Medicine and.,Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Hasan SF, Jozwik A, Heaps A, Kakkar N, Donnelly I, Cookson S, Bourke SJ, McSharry C, Todryk SM. Antibody and T cell responses against avian and microbial antigens associate with hypersensitivity pneumonitis disease parameters in pigeon breeders. Allergy 2020; 75:1469-1473. [PMID: 31833564 DOI: 10.1111/all.14152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Sajidah F. Hasan
- Department of Applied Sciences Faculty of Health & Life Sciences Northumbria University Newcastle upon Tyne UK
- College of Science University of Kerbala Kerbala Iraq
| | - Agnieszka Jozwik
- Department of Applied Sciences Faculty of Health & Life Sciences Northumbria University Newcastle upon Tyne UK
- Division of Cancer Sciences Kings College London London UK
| | - Adrian Heaps
- Department of Virology & Immunology Cumberland Infirmary Carlisle UK
| | - Nirupma Kakkar
- Department of Applied Sciences Faculty of Health & Life Sciences Northumbria University Newcastle upon Tyne UK
| | - Iona Donnelly
- Institute of Infection, Immunity and Inflammation University of Glasgow Glasgow UK
| | - Sharon Cookson
- Department of Applied Sciences Faculty of Health & Life Sciences Northumbria University Newcastle upon Tyne UK
| | - Stephen J. Bourke
- Department of Respiratory Medicine Royal Victoria Infirmary Newcastle upon Tyne UK
| | - Charles McSharry
- Institute of Infection, Immunity and Inflammation University of Glasgow Glasgow UK
| | - Stephen M. Todryk
- Department of Applied Sciences Faculty of Health & Life Sciences Northumbria University Newcastle upon Tyne UK
- Institute of Cellular Medicine Newcastle University Newcastle upon Tyne UK
| |
Collapse
|
13
|
Niespodziana K, Borochova K, Pazderova P, Schlederer T, Astafyeva N, Baranovskaya T, Barbouche MR, Beltyukov E, Berger A, Borzova E, Bousquet J, Bumbacea RS, Bychkovskaya S, Caraballo L, Chung KF, Custovic A, Docena G, Eiwegger T, Evsegneeva I, Emelyanov A, Errhalt P, Fassakhov R, Fayzullina R, Fedenko E, Fomina D, Gao Z, Giavina-Bianchi P, Gotua M, Greber-Platzer S, Hedlin G, Ilina N, Ispayeva Z, Idzko M, Johnston SL, Kalayci Ö, Karaulov A, Karsonova A, Khaitov M, Kovzel E, Kowalski ML, Kudlay D, Levin M, Makarova S, Matricardi PM, Nadeau KC, Namazova-Baranova L, Naumova O, Nazarenko O, O'Byrne PM, Osier F, Pampura AN, Panaitescu C, Papadopoulos NG, Park HS, Pawankar R, Pohl W, Renz H, Riabova K, Sampath V, Sekerel BE, Sibanda E, Siroux V, Sizyakina LP, Sun JL, Szepfalusi Z, Umanets T, Van Bever HPS, van Hage M, Vasileva M, von Mutius E, Wang JY, Wong GWK, Zaikov S, Zidarn M, Valenta R. Toward personalization of asthma treatment according to trigger factors. J Allergy Clin Immunol 2020; 145:1529-1534. [PMID: 32081759 PMCID: PMC7613502 DOI: 10.1016/j.jaci.2020.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022]
Abstract
Asthma is a severe and chronic disabling disease affecting more than 300 million people worldwide. Although in the past few drugs for the treatment of asthma were available, new treatment options are currently emerging, which appear to be highly effective in certain subgroups of patients. Accordingly, there is a need for biomarkers that allow selection of patients for refined and personalized treatment strategies. Recently, serological chip tests based on microarrayed allergen molecules and peptides derived from the most common rhinovirus strains have been developed, which may discriminate 2 of the most common forms of asthma, that is, allergen- and virus-triggered asthma. In this perspective, we argue that classification of patients with asthma according to these common trigger factors may open new possibilities for personalized management of asthma.
Collapse
Affiliation(s)
- Katarzyna Niespodziana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Kristina Borochova
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Petra Pazderova
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Schlederer
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Natalia Astafyeva
- Department of Clinical Immunology and Allergology of Saratov State Medical University, Saratov, Russia
| | | | | | - Evgeny Beltyukov
- Department of Faculty Therapy, Endocrinology, Allergology and Immunology, Ural State Medical University, Ekaterinburg, Russia
| | - Angelika Berger
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Elena Borzova
- Department of Clinical Allergology and Immunology, Russian Medical Academy of Continuous Professional Education, Moscow, Russia; Department of Clinical Genetics, Research and Clinical Institute for Pediatrics named after Yuri Veltischev at the Pirogov Russian National Research Medical University, Moscow, Russia; Department of Dermatology and Venereology, I.V. Sechenov First State Medical University, Moscow, Russia
| | - Jean Bousquet
- University Hospital, Montpellier, France; MACVIA-France, Montpellier, France; Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Comprehensive Allergy Center, Department of Dermatology and Allergy, Berlin, Germany
| | - Roxana S Bumbacea
- Department of Allergology and Clinical Immunology, University of Medicine and Pharmacy "Carol Davila," Bucharest, Romania
| | | | - Luis Caraballo
- Institute for Immunological Research, The University of Cartagena, Cartagena de Indias, Colombia
| | - Kian Fan Chung
- National Heart & Lung Institute, Imperial College London, London, United Kingdom; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Adnan Custovic
- National Heart & Lung Institute, Imperial College London, London, United Kingdom; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Guillermo Docena
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Division of Immunology and Allergy, Food Allergy and Anaphylaxis Program, Hospital for Sick Children, Departments of Paedriatrics and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Irina Evsegneeva
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Emelyanov
- Department of Respiratory Medicine and Allergy, North-Western Medical University, St Petersburg, Russia
| | - Peter Errhalt
- Department of Pneumology, University Hospital Krems and Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Rustem Fassakhov
- Institute of Fundamental Medicine and Biology of Kazan Federal University, Kazan, Russia
| | - Rezeda Fayzullina
- Faculty of Pediatrics, Bashkir State Medical University, Ufa, Russia
| | - Elena Fedenko
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Daria Fomina
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia; City Moscow Center of Allergy and Immunology, Clinical Hospital No. 52, Moscow, Russia
| | - Zhongshan Gao
- Allergy Research Center, Zhejiang University, Hangzhou, China
| | - Pedro Giavina-Bianchi
- Clinical Immunology and Allergy Division, University of Sao Paulo, Sao Paulo, Brazil
| | - Maia Gotua
- Center of Allergy and Immunology, David Tvildiani Medical University, Tbilisi, Georgia
| | - Susanne Greber-Platzer
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Gunilla Hedlin
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden; Department of Womenś and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Natalia Ilina
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Zhanat Ispayeva
- Allergology Department, Kazakh National Medical University, Almaty, Kazakhstan
| | - Marco Idzko
- Department of Pneumology, Medical University of Vienna, Vienna, Austria
| | - Sebastian L Johnston
- National Heart & Lung Institute, Imperial College London, London, United Kingdom; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Ömer Kalayci
- Pediatric Allergy and Asthma Unit, Hacettepe University School of Medicine, Ankara, Turkey
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Antonina Karsonova
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Elena Kovzel
- Department of Clinical Immunology, Allergology, Pulmonology, Republic Diagnostic Center, Corporate Fund University Medical Center of Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Marek L Kowalski
- Department of Allergy and Immunology, Medical University Lodz, Lodz, Poland
| | - Dmitry Kudlay
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Michael Levin
- Division of Asthma and Allergy, University of Cape Town, Cape Town, South Africa
| | - Svetlana Makarova
- Department of Preventive Pediatrics, National Medical Research Center for Children's Health, Moscow, Russia
| | - Paolo Maria Matricardi
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-University Medicine Berlin, Berlin, Germany
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford University, Stanford, Calif
| | - Leyla Namazova-Baranova
- Department of Pediatrics, Russian National Research Medical University of MoH RF, Moscow, Russia
| | - Olga Naumova
- Center of Allergic Diseases of Upper Respiratory Ways, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Oleksandr Nazarenko
- Department of Clinical and Laboratory Allergology and Immunology, National Medical Academy of Postgraduate Education, Kyiv, Ukraine
| | - Paul M O'Byrne
- Firestone Institute of Respiratory Health, Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Canada
| | - Faith Osier
- KEMRI-Wellcome Trust Research Programme (KWTRP), Kilifi, Kenya
| | - Alexander N Pampura
- Department of Allergology and Clinical Immunology, Research and Clinical Institute for Pediatrics named after Yuri Veltischev at the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Carmen Panaitescu
- OncoGen Center, County Clinical Emergency Hospital "Pius Branzeu," and University of Medicine and Pharmacy V Babes, Timisoara, Romania
| | - Nikolaos G Papadopoulos
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom; Allergy Department, 2nd Pediatric Clinic, National Kapodistrian University of Athens, Athens, Greece
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Ruby Pawankar
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Wolfgang Pohl
- Pulmonary Department and Karl Landsteiner Institute for Clinical and Experimental Pulmology, Hietzing Hospital, Vienna, Austria
| | - Harald Renz
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL) Marburg, Marburg, Germany
| | - Ksenja Riabova
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford University, Stanford, Calif
| | - Bülent E Sekerel
- Pediatric Allergy and Asthma Unit, Hacettepe University School of Medicine, Ankara, Turkey
| | - Elopy Sibanda
- Asthma, Allergy and Immune Dysfunction Clinic, Twin Palms Medical Centre, Harare, Zimbabwe; Department of Pathology, Medical School, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Valérie Siroux
- Univ. Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, Grenoble, France
| | - Ludmila P Sizyakina
- Department of Allergology and Immunology, Rostov Medical University, Rostov, Russia
| | - Jin-Lyu Sun
- Department of Allergy and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zsolt Szepfalusi
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Tetiana Umanets
- Department of Respiratory Diseases and Respiratory Allergy in Children, Institute of Pediatrics, Obstetrics and Gynecology, National Academy of Medical Sciences, Kyiv, Ukraine
| | - Hugo P S Van Bever
- Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and University Hospital, Stockholm
| | - Margarita Vasileva
- Center of Allergology and Clinical Immunology, Regional Clinical Hospital, Khabarovsk, Russia
| | - Erika von Mutius
- Dr. von Hauner Children's Hospital, Ludwig Maximilian University Munich, Munich, Germany; Institute of Asthma and Allergy Prevention, Helmholtz Centre Munich, Munich, Germany; German Centre for Lung Research, Germany
| | - Jiu-Yao Wang
- Center for Allergy and Clinical Immunology Research (ACIR), Department of Pediatrics, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Gary W K Wong
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Sergii Zaikov
- Department of Phtihisiatry and Pulmonology, Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine
| | - Mihaela Zidarn
- University Clinic of Pulmonary and Allergic Diseases Golnik, Golnik, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia; NRC Institute of Immunology FMBA of Russia, Moscow, Russia; Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden; Karl Landsteiner University, Krems, Austria.
| |
Collapse
|
14
|
Niespodziana K. MUW researcher of the month. Wien Klin Wochenschr 2019; 131:92-93. [DOI: 10.1007/s00508-019-1461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Totten AH, Xiao L, Luo D, Briles D, Hale JY, Crabb DM, Schoeb TR, Alishlash AS, Waites KB, Atkinson TP. Allergic airway sensitization impairs antibacterial IgG antibody responses during bacterial respiratory tract infections. J Allergy Clin Immunol 2018; 143:1183-1197.e7. [PMID: 30092287 DOI: 10.1016/j.jaci.2018.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 06/02/2018] [Accepted: 07/24/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Mycoplasma pneumoniae, an atypical human pathogen, has been associated with asthma initiation and exacerbation. Asthmatic patients have been reported to have higher carriage rates of M pneumoniae compared with nonasthmatic subjects and are at greater risk for invasive respiratory infections. OBJECTIVE We sought to study whether prior allergen sensitization affects the host response to chronic bacterial infection. METHODS BALB/cJ and IL-4 receptor α-/- mice were sensitized with ovalbumin (OVA) and then infected with M pneumoniae or Streptococcus pneumoniae. Immune parameters were analyzed at 30 days postinfection and included cellular profiles in bronchoalveolar lavage fluid (BALF) and serum IgG and IgE antibody levels to whole bacterial lysate, recombinant P1 adhesin, and OVA. Total lung RNA was examined for transcript levels, and BALF was examined for cytokine protein profiles. RESULTS Anti-M pneumoniae antibody responses were decreased in allergen-sensitized, M pneumoniae-infected animals compared with control animals, but OVA-specific IgG responses were unaffected. Similar decreases in anti-S pneumoniae antibody levels were found in OVA-sensitized animals. However, M pneumoniae, but not S pneumoniae, infection augmented anti-OVA IgE antibody responses. Loss of IL-4 receptor signaling partially restored anti-M pneumoniae antibody responses in IgG2a and IgG2b subclasses. Inflammatory cytokine levels in BALF from OVA-sensitized, M pneumoniae-infected or S pneumoniae-infected animals were reduced compared with those in uninfected OVA-sensitized control animals. Unexpectedly, airway hyperreactivity to methacholine was essentially ablated in M pneumoniae-infected, OVA-sensitized animals. CONCLUSIONS An established type 2-biased host immune response impairs the host immune response to respiratory bacterial infection in a largely pathogen-independent manner. Some pathogens, such as M pneumoniae, can augment ongoing allergic responses and inhibit pulmonary type 2 cytokine responses and allergic airway hyperreactivity.
Collapse
Affiliation(s)
- Arthur H Totten
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Ala
| | - Li Xiao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
| | - Danlin Luo
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Ala
| | - David Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Ala
| | - Joanetha Y Hale
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Ala
| | - Donna M Crabb
- Department of Pathology, Diagnostic Mycoplasma Laboratory, University of Alabama at Birmingham, Birmingham, Ala
| | - Trenton R Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Ala
| | | | - Ken B Waites
- Department of Pathology, Diagnostic Mycoplasma Laboratory, University of Alabama at Birmingham, Birmingham, Ala
| | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Ala.
| |
Collapse
|
16
|
Niespodziana K, Stenberg-Hammar K, Megremis S, Cabauatan CR, Napora-Wijata K, Vacal PC, Gallerano D, Lupinek C, Ebner D, Schlederer T, Harwanegg C, Söderhäll C, van Hage M, Hedlin G, Papadopoulos NG, Valenta R. PreDicta chip-based high resolution diagnosis of rhinovirus-induced wheeze. Nat Commun 2018; 9:2382. [PMID: 29915220 PMCID: PMC6006174 DOI: 10.1038/s41467-018-04591-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022] Open
Abstract
Rhinovirus (RV) infections are major triggers of acute exacerbations of severe respiratory diseases such as pre-school wheeze, asthma and chronic obstructive pulmonary disease (COPD). The occurrence of numerous RV types is a major challenge for the identification of the culprit virus types and for the improvement of virus type-specific treatment strategies. Here, we develop a chip containing 130 different micro-arrayed RV proteins and peptides and demonstrate in a cohort of 120 pre-school children, most of whom had been hospitalized due to acute wheeze, that it is possible to determine the culprit RV species with a minute blood sample by serology. Importantly, we identify RV-A and RV-C species as giving rise to most severe respiratory symptoms. Thus, we have generated a chip for the serological identification of RV-induced respiratory illness which should be useful for the rational development of preventive and therapeutic strategies targeting the most important RV types.
Collapse
Affiliation(s)
- Katarzyna Niespodziana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Katarina Stenberg-Hammar
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Spyridon Megremis
- Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, M13 9NT, UK
| | - Clarissa R Cabauatan
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Kamila Napora-Wijata
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Phyllis C Vacal
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Daniela Gallerano
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Christian Lupinek
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Daniel Ebner
- Phadia Austria GmbH, Part of Thermo Fisher Scientific ImmunoDiagnostics, A-1220, Vienna, Austria
| | - Thomas Schlederer
- Phadia Austria GmbH, Part of Thermo Fisher Scientific ImmunoDiagnostics, A-1220, Vienna, Austria
| | - Christian Harwanegg
- Phadia Austria GmbH, Part of Thermo Fisher Scientific ImmunoDiagnostics, A-1220, Vienna, Austria
| | - Cilla Söderhäll
- Department of Women's and Children's Health, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Marianne van Hage
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and University Hospital, SE-171 77, Stockholm, Sweden
| | - Gunilla Hedlin
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Nikolaos G Papadopoulos
- Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, M13 9NT, UK.
- Allergy Department, 2nd Pediatric Clinic, University of Athens, 106 79, Athens, Greece.
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria.
| |
Collapse
|
17
|
Barlow-Anacker A, Bochkov Y, Gern J, Seroogy CM. Neonatal immune response to rhinovirus A16 has diminished dendritic cell function and increased B cell activation. PLoS One 2017; 12:e0180664. [PMID: 29045416 PMCID: PMC5646756 DOI: 10.1371/journal.pone.0180664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/19/2017] [Indexed: 02/02/2023] Open
Abstract
Background Rhinovirus infections during infancy account for the majority of respiratory illness health care utilization and are an associated risk factor for subsequent development of allergic asthma. Neonatal type I interferon production is diminished compared to adults after stimulation with TLR agonists. However, broad profiling of immune cell responses to infectious rhinovirus has not been undertaken and we hypothesized that additional immune differences can be identified in neonates. In this study, we undertook a comparative analysis of neonatal and adult blood immune cell responses after in vitro incubation with infectious RV-A16 for 6 and 24 hours. Methods Intracellular proinflammatory and type I interferon cytokines along with expression of surface co-stimulatory and maturation markers were measured using multi-parameter flow cytometry. Results Both circulating myeloid dendritic cell (mDC) and plasmacytoid dendritic cell (pDC) frequency were lower in cord blood. Qualitative and quantitative plasmacytoid dendritic cell IFN-alpha + TNF- alpha responses to rhinovirus were significantly lower in cord pDCs. In cord blood samples, the majority of responsive pDCs were single-positive TNF-alpha producing cells, whereas in adult samples rhinovirus increased double-positive TNF-alpha+IFN-alpha+ pDCs. Rhinovirus upregulated activation and maturation markers on monocytes, mDCs, pDCs, and B cells, but CD40+CD86+ monocytes, mDCs, and pDCs cells were significantly higher in adult samples compared to cord samples. Surprisingly, rhinovirus increased CD40+CD86+ B cells to a significantly greater extent in cord samples compared to adults. Conclusions These findings define a number of cell-specific differences in neonatal responses to rhinovirus. This differential age-related immune response to RV may have implications for the immune correlates of protection to viral respiratory illness burden and determination of potential biomarkers for asthma risk.
Collapse
Affiliation(s)
- Amanda Barlow-Anacker
- Department of Pediatrics, Division of Allergy, Immunology, & Rheumatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Yury Bochkov
- Department of Pediatrics, Division of Allergy, Immunology, & Rheumatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - James Gern
- Department of Pediatrics, Division of Allergy, Immunology, & Rheumatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Christine M. Seroogy
- Department of Pediatrics, Division of Allergy, Immunology, & Rheumatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
18
|
To KKW, Yip CCY, Yuen KY. Rhinovirus - From bench to bedside. J Formos Med Assoc 2017; 116:496-504. [PMID: 28495415 DOI: 10.1016/j.jfma.2017.04.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/07/2017] [Accepted: 04/17/2017] [Indexed: 11/16/2022] Open
Abstract
Rhinovirus has been neglected in the past because it was generally perceived as a respiratory virus only capable of causing mild common cold. Contemporary epidemiological studies using molecular assays have shown that rhinovirus is frequently detected in adult and pediatric patients with upper or lower respiratory tract infections. Severe pulmonary and extrapulmonary complications are increasingly recognized. Contrary to popular belief, some rhinoviruses can actually replicate well at 37 °C and infect the lower airway in humans. The increasing availability of multiplex PCR panels allows rapid detection of rhinovirus and provides the opportunity for timely treatment and early recognition of outbreaks. Recent advances in the understanding of host factors for viral attachment and replication, and the host immunological response in both asthmatic and non-asthmatic individuals, have provided important insights into rhinovirus infection which are crucial in the development of antiviral treatment. The identification of novel drugs has been accelerated by repurposing clinically-approved drugs. As humoral antibodies induced by past exposure and vaccine antigen of a particular serotype cannot provide full coverage for all rhinovirus serotypes, novel vaccination strategies are required for inducing protective response against all rhinoviruses.
Collapse
Affiliation(s)
- Kelvin K W To
- State Key Laboratory for Emerging Infectious Diseases, Hong Kong Special Administrative Region; Carol Yu Centre for Infection, Hong Kong Special Administrative Region; Research Centre of Infection and Immunology, Hong Kong Special Administrative Region; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Cyril C Y Yip
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Hong Kong Special Administrative Region; Carol Yu Centre for Infection, Hong Kong Special Administrative Region; Research Centre of Infection and Immunology, Hong Kong Special Administrative Region; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
19
|
Valenta R. Mucosal Lining Fluid Biomarkers in Asthma: Basis for Rational Use of New Targeted Therapies? EBioMedicine 2017; 19:12-13. [PMID: 28412250 PMCID: PMC5440598 DOI: 10.1016/j.ebiom.2017.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rudolf Valenta
- Div. of Immunopathology, Dept. of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria.
| |
Collapse
|
20
|
Stenberg-Hammar K, Niespodziana K, Söderhäll C, James A, Cabauatan C, Konradsen JR, Melén E, van Hage M, Valenta R, Hedlin G. Rhinovirus-specific antibody responses in preschool children with acute wheeze reflect severity of respiratory symptoms. Allergy 2016; 71:1728-1735. [PMID: 27444786 DOI: 10.1111/all.12991] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Some children with rhinovirus (RV) infections wheeze, but it is unknown whether this is due to more virulent strains of virus or differences in host immune responses. The aim of this study was to investigate the RV species-specific antibody responses measured at a follow-up visit in preschool children in relation to reported time with respiratory symptoms and the presence of different RV species during an acute episode of wheeze. METHOD Nasopharyngeal swabs and blood samples were taken among 120 preschool children (<4 years of age) at an acute episode of wheeze and at a follow-up visit (median 11 weeks later). Nested PCR was used to detect different RV strains, and serum levels of IgG1 against purified recombinant VP1 proteins from representatives of the three RV species (RV-A, RV-B, and RV-C) were measured by ELISA. RESULTS Rhinovirus was detected in 74% (n = 80/108) of the children at the acute visit, and RV-C was the most common subtype (n = 59/80, 74%). An increase in RV-specific IgG1 was seen in 61% (n = 73) of the children at follow-up, most frequently against RV-A (n = 61/73, 86%) irrespective of the RV strains detected by PCR. Increases in RV-specific IgG1 against RV-A or against RV-A and RV-C were significantly associated with more respiratory symptoms (p = 0.03, p = 0.007). CONCLUSION Antibody response to recombinant RV VP1 proteins was associated with longer time with respiratory symptoms.
Collapse
Affiliation(s)
- K. Stenberg-Hammar
- Astrid Lindgren Children's Hospital; Karolinska University Hospital; Stockholm Sweden
- Department of Women's and Children′s Health; Karolinska Institutet; Stockholm Sweden
| | - K. Niespodziana
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center of Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - C. Söderhäll
- Department of Women's and Children′s Health; Karolinska Institutet; Stockholm Sweden
- Department of Biosciences and Nutrition; Karolinska Institutet; Stockholm Sweden
| | - A. James
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
- Centre for Allergy Research (CfA); Karolinska Institutet; Stockholm Sweden
| | - C.R. Cabauatan
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center of Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - J. R. Konradsen
- Astrid Lindgren Children's Hospital; Karolinska University Hospital; Stockholm Sweden
- Department of Women's and Children′s Health; Karolinska Institutet; Stockholm Sweden
| | - E. Melén
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
- Sachs' Children's Hospital; Södersjukhuset; Stockholm Sweden
| | - M. van Hage
- Immunology and Allergy Unit; Department of Medicine; Karolinska Institutet and University Hospital; Solna Stockholm Sweden
| | - R. Valenta
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center of Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - G. Hedlin
- Astrid Lindgren Children's Hospital; Karolinska University Hospital; Stockholm Sweden
- Department of Women's and Children′s Health; Karolinska Institutet; Stockholm Sweden
- Centre for Allergy Research (CfA); Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
21
|
Muehling LM, Mai DT, Kwok WW, Heymann PW, Pomés A, Woodfolk JA. Circulating Memory CD4+ T Cells Target Conserved Epitopes of Rhinovirus Capsid Proteins and Respond Rapidly to Experimental Infection in Humans. THE JOURNAL OF IMMUNOLOGY 2016; 197:3214-3224. [PMID: 27591323 DOI: 10.4049/jimmunol.1600663] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/09/2016] [Indexed: 01/15/2023]
Abstract
Rhinovirus (RV) is a major cause of common cold and an important trigger of acute episodes of chronic lung diseases. Antigenic variation across the numerous RV strains results in frequent infections and a lack of durable cross-protection. Because the nature of human CD4+ T cells that target RV is largely unknown, T cell epitopes of RV capsid proteins were analyzed, and cognate T cells were characterized in healthy subjects and those infected by intranasal challenge. Peptide epitopes of the RV-A16 capsid proteins VP1 and VP2 were identified by peptide/MHC class II tetramer-guided epitope mapping, validated by direct ex vivo enumeration, and interrogated using a variety of in silico methods. Among noninfected subjects, those circulating RV-A16-specific CD4+ T cells detected at the highest frequencies targeted 10 unique epitopes that bound to diverse HLA-DR molecules. T cell epitopes localized to conserved molecular regions of biological significance to the virus were enriched for HLA class I and II binding motifs, and constituted both species-specific (RV-A) and pan-species (RV-A, -B, and -C) varieties. Circulating epitope-specific T cells comprised both memory Th1 and T follicular helper cells, and were rapidly expanded and activated after intranasal challenge with RV-A16. Cross-reactivity was evidenced by identification of a common *0401-restricted epitope for RV-A16 and RV-A39 by tetramer-guided epitope mapping and the ability for RV-A16-specific Th1 cells to proliferate in response to their RV-A39 peptide counterpart. The preferential persistence of high-frequency RV-specific memory Th1 cells that recognize a limited set of conserved epitopes likely arises from iterative priming by previous exposures to different RV strains.
Collapse
Affiliation(s)
- Lyndsey M Muehling
- Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908
| | - Duy T Mai
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - Peter W Heymann
- Department of Pediatrics, University of Virginia Health System, Charlottesville, VA 22908; and
| | - Anna Pomés
- Indoor Biotechnologies Inc., Charlottesville, VA 22903
| | - Judith A Woodfolk
- Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908;
| |
Collapse
|
22
|
Heymann PW. Developing Strategies to Treat Asthma Exacerbations Caused by Rhinovirus. EBioMedicine 2014; 2:11-2. [PMID: 26137528 PMCID: PMC4484507 DOI: 10.1016/j.ebiom.2014.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 12/30/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Peter W Heymann
- University of Virginia Asthma and Allergic Diseases Center, Department of Pediatrics, P.O. Box 800386, Charlottesville, VA 22908-0386, United States
| |
Collapse
|