1
|
Hummelgaard S, Hvid H, Birn H, Glerup S, Tom N, Bilgin M, Kirchhoff JE, Weyer K. Lack of renoprotective effects by long-term PCSK9 and SGLT2 inhibition using alirocumab and empagliflozin in obese ZSF1 rats. Am J Physiol Renal Physiol 2025; 328:F48-F67. [PMID: 39556312 DOI: 10.1152/ajprenal.00065.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 12/21/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with an increased risk of cardiovascular disease (CVD). Despite the entry of sodium glucose cotransporter 2 (SGLT2) inhibitors, CKD persists as a medical challenge. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition reduces low-density lipoprotein (LDL)-cholesterol, a major risk factor of CVD. Interestingly, studies indicate that PCSK9 inhibition decreases proteinuria in kidney disease, complementing the reduced CVD risk. This study aimed to validate obese ZSF1 rats as a model for the renoprotective effects of PCSK9 and SGLT2 inhibition using alirocumab and empagliflozin for 15 wk. Obese rats revealed a significant reduction in measured glomerular filtration rate (mGFR) and increased urine albumin/creatinine ratio (UACR) during follow-up compared with lean controls. Alirocumab treatment resulted in a decline in mGFR and increased UACR compared with vehicle-treated obese rats. Immunohistochemistry showed increased fibrosis and inflammation in kidney tissue from obese rats treated with empagliflozin or alirocumab, whereas hepatic cholesterol and triglyceride levels were lowered compared with vehicle-treated obese rats. Although alirocumab lowered circulating free cholesterol levels throughout the treatment period, certain cholesteryl esters were increased at the end of the study, resulting in no overall difference in total cholesterol levels in the alirocumab group. Correspondingly, only a trend toward increased hepatic LDL-receptor levels was observed. In conclusion, these findings suggest that alirocumab treatment aggravates kidney dysfunction in obese ZSF1 rats. Moreover, in contrast to the renoprotective properties of empagliflozin observed in patients with CKD, empagliflozin did not ameliorate kidney disease progression in the obese ZSF1 rat.NEW & NOTEWORTHY New treatments to slow kidney disease progression and reduce cardiovascular disease risk are needed for chronic kidney disease (CKD). We investigated the cholesterol-lowering PCSK9 inhibitor alirocumab as a new treatment for proteinuric CKD and the effect of SGLT2 inhibition using empagliflozin in obese ZSF1 rats. Regarding renoprotection, our findings were contradictory with previous preclinical studies and clinical data, suggesting that different pathophysiological mechanisms may apply to this rat model.
Collapse
Affiliation(s)
- Sandra Hummelgaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Cardio-Renal Pharmacology, Novo Nordisk, Måløv, Denmark
| | - Henning Hvid
- Department of Pathology and Imaging, Novo Nordisk, Måløv, Denmark
| | - Henrik Birn
- Department of Clinical Medicine and Renal Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Draupnir Bio, c/o INCUBA Skejby, Aarhus, Denmark
| | - Nikola Tom
- Lipidomics Core Facility, Danish Cancer Institute, Copenhagen, Denmark
| | - Mesut Bilgin
- Lipidomics Core Facility, Danish Cancer Institute, Copenhagen, Denmark
| | | | - Kathrin Weyer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Kanbay M, Copur S, Guldan M, Ozbek L, Hatipoglu A, Covic A, Mallamaci F, Zoccali C. Proximal tubule hypertrophy and hyperfunction: a novel pathophysiological feature in disease states. Clin Kidney J 2024; 17:sfae195. [PMID: 39050867 PMCID: PMC11267238 DOI: 10.1093/ckj/sfae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Indexed: 07/27/2024] Open
Abstract
The role of proximal tubules (PTs), a major component of the renal tubular structure in the renal cortex, has been examined extensively. Along with its physiological role in the reabsorption of various molecules, including electrolytes, amino acids and monosaccharides, transcellular transport of different hormones and regulation of homeostasis, pathological events affecting PTs may underlie multiple disease states. PT hypertrophy or a hyperfunctioning state, despite being a compensatory mechanism at first in response to various stimuli or alterations at tubular transport proteins, have been shown to be critical pathophysiological events leading to multiple disorders, including diabetes mellitus, obesity, metabolic syndrome and congestive heart failure. Moreover, pharmacotherapeutic agents have primarily targeted PTs, including sodium-glucose cotransporter 2, urate transporters and carbonic anhydrase enzymes. In this narrative review, we focus on the physiological role of PTs in healthy states and the current understanding of the PT pathologies leading to disease states and potential therapeutic targets.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Internal Medicine, Division of Nephrology, Koç University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Mustafa Guldan
- Department of Internal Medicine, Division of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Lasin Ozbek
- Department of Internal Medicine, Division of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Alper Hatipoglu
- Department of Internal Medicine, Division of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Adrian Covic
- Nephrology, Dialysis and Transplantation, University Grigore T Popa, Iasi, Romania
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit, Grande Ospedale Metropolitano, Reggio Calabria, Italy
- CNR-IFC, Research Unit of Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Institute of Clinical Physiology, Reggio Calabria, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, NY, USA
- Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale, Grande Ospedale Metropolitano, c/o Nefrologia, Reggio Calabria, Italy
| |
Collapse
|
3
|
Iwamoto Y, Kimura T, Dan K, Iwamoto H, Sanada J, Fushimi Y, Katakura Y, Shimoda M, Nogami Y, Shirakiya Y, Nakanishi S, Mune T, Kaku K, Kaneto H. Dipeptidyl peptidase-4 inhibitor and sodium-glucose cotransporter 2 inhibitor additively ameliorate hepatic steatosis through different mechanisms of action in high-fat diet-fed mice. Diabetes Obes Metab 2024; 26:2339-2348. [PMID: 38504118 DOI: 10.1111/dom.15548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
AIM Dipeptidyl peptidase-4 (DPP-4) inhibitors suppress the inactivation of incretin hormones and lower blood glucose levels by inhibiting DPP-4 function. Sodium-glucose cotransporter 2 (SGLT2) inhibitors lower blood glucose levels in an insulin-independent manner by inhibiting renal reabsorption of glucose. DPP-4 and SGLT2 inhibitors each have the potential to improve hepatic steatosis; however, their combined effects remain unclear. In this study, we examined the effects of the combination of these drugs on hepatic steatosis using high-fat diet-fed mice. METHOD C57BL/6J male mice were fed a 60% high-fat diet for 2 months to induce hepatic steatosis. Mice were divided into four groups (control; DPP-4 inhibitor anagliptin; SGLT2 inhibitor luseogliflozin; anagliptin and luseogliflozin combination), and the effects of each drug and their combination on hepatic steatosis after a 4-week intervention were evaluated. RESULTS There were no differences in blood glucose levels among the four groups. Anagliptin suppresses inflammation- and chemokine-related gene expression. It also improved macrophage fractionation in the liver. Luseogliflozin reduced body weight, hepatic gluconeogenesis and blood glucose levels in the oral glucose tolerance test. The combination treatment improved hepatic steatosis without interfering with the effects of anagliptin and luseogliflozin, respectively, and fat content and inflammatory gene expression in the liver were significantly improved in the combination group compared with the other groups. CONCLUSION The combination therapy with the DPP-4 inhibitor anagliptin and the SGLT2 inhibitor luseogliflozin inhibits fat deposition in the liver via anti-inflammatory effects during the early phase of diet-induced liver steatosis.
Collapse
Affiliation(s)
- Yuichiro Iwamoto
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Tomohiko Kimura
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Kazunori Dan
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Hideyuki Iwamoto
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Junpei Sanada
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Yoshiro Fushimi
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Yukino Katakura
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Masashi Shimoda
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Yuka Nogami
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Yoshiko Shirakiya
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Shuhei Nakanishi
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Tomoatsu Mune
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Kohei Kaku
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Hideaki Kaneto
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
4
|
Shepard BD, Chau J, Kurtz R, Rosenberg AZ, Sarder P, Border SP, Ginley B, Rodriguez O, Albanese C, Knoer G, Greene A, De Souza AMA, Ranjit S, Levi M, Ecelbarger CM. Nascent shifts in renal cellular metabolism, structure, and function due to chronic empagliflozin in prediabetic mice. Am J Physiol Cell Physiol 2024; 326:C1272-C1290. [PMID: 38602847 PMCID: PMC11193535 DOI: 10.1152/ajpcell.00446.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 04/13/2024]
Abstract
Sodium-glucose cotransporter, type 2 inhibitors (SGLT2i) are emerging as the gold standard for treatment of type 2 diabetes (T2D) with renal protective benefits independent of glucose lowering. We took a high-level approach to evaluate the effects of the SGLT2i, empagliflozin (EMPA) on renal metabolism and function in a prediabetic model of metabolic syndrome. Male and female 12-wk-old TallyHo (TH) mice, and their closest genetic lean strain (Swiss-Webster, SW) were treated with a high-milk-fat diet (HMFD) plus/minus EMPA (@0.01%) for 12-wk. Kidney weights and glomerular filtration rate were slightly increased by EMPA in the TH mice. Glomerular feature analysis by unsupervised clustering revealed sexually dimorphic clustering, and one unique cluster relating to EMPA. Periodic acid Schiff (PAS) positive areas, reflecting basement membranes and mesangium were slightly reduced by EMPA. Phasor-fluorescent life-time imaging (FLIM) of free-to-protein bound NADH in cortex showed a marginally greater reliance on oxidative phosphorylation with EMPA. Overall, net urine sodium, glucose, and albumin were slightly increased by EMPA. In TH, EMPA reduced the sodium phosphate cotransporter, type 2 (NaPi-2), but increased sodium hydrogen exchanger, type 3 (NHE3). These changes were absent or blunted in SW. EMPA led to changes in urine exosomal microRNA profile including, in females, enhanced levels of miRs 27a-3p, 190a-5p, and 196b-5p. Network analysis revealed "cancer pathways" and "FOXO signaling" as the major regulated pathways. Overall, EMPA treatment to prediabetic mice with limited renal disease resulted in modifications in renal metabolism, structure, and transport, which may preclude and underlie protection against kidney disease with developing T2D.NEW & NOTEWORTHY Renal protection afforded by sodium glucose transporter, type 2 inhibitors (SGLT2i), e.g., empagliflozin (EMPA) involves complex intertwined mechanisms. Using a novel mouse model of obesity with insulin resistance, the TallyHo/Jng (TH) mouse on a high-milk-fat diet (HMFD), we found subtle changes in metabolism including altered regulation of sodium transporters that line the renal tubule. New potential epigenetic determinants of metabolic changes relating to FOXO and cancer signaling pathways were elucidated from an altered urine exosomal microRNA signature.
Collapse
Affiliation(s)
- Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Jennifer Chau
- Department of Medicine,Georgetown University, Washington, District of Columbia, United States
| | - Ryan Kurtz
- Department of Human Science, Georgetown University, Washington, District of Columbia, United States
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States
| | - Pinaki Sarder
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States
| | - Samuel P Border
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States
| | - Brandon Ginley
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Computational Cell Biology, Anatomy, and Pathology, State University of New York at Buffalo, Buffalo, New York, United States
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, United States
- Center for Translational Imaging, Georgetown University, Washington, District of Columbia, United States
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, United States
- Center for Translational Imaging, Georgetown University, Washington, District of Columbia, United States
- Department of Radiology, Georgetown University, Washington, District of Columbia, United States
| | - Grace Knoer
- Center for Translational Imaging, Georgetown University, Washington, District of Columbia, United States
| | - Aarenee Greene
- Department of Medicine,Georgetown University, Washington, District of Columbia, United States
| | - Aline M A De Souza
- Department of Medicine,Georgetown University, Washington, District of Columbia, United States
| | - Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, United States
- Microscopy & Imaging Shared Resources, Georgetown University, Washington, District of Columbia, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, United States
| | - Carolyn M Ecelbarger
- Department of Medicine,Georgetown University, Washington, District of Columbia, United States
| |
Collapse
|
5
|
Papaetis GS. SGLT2 inhibitors, intrarenal hypoxia and the diabetic kidney: insights into pathophysiological concepts and current evidence. Arch Med Sci Atheroscler Dis 2023; 8:e155-e168. [PMID: 38283924 PMCID: PMC10811536 DOI: 10.5114/amsad/176658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/08/2023] [Indexed: 01/30/2024] Open
Abstract
Approximately 20-40% of all diabetic patients experience chronic kidney disease, which is related to higher mortality (cardiovascular and all-cause). A large body of evidence suggests that renal hypoxia is one of the main forces that drives diabetic kidney disease, both in its early and advanced stages. It promotes inflammation, generation of intrarenal collagen, capillary rarefaction and eventually accumulation of extracellular matrix that destroys normal renal architecture. SGLT2 inhibitors are unquestionably a practice-changing drug class and a valuable weapon for patients with type 2 diabetes and chronic kidney disease. They have achieved several beneficial kidney effects after targeting multiple and interrelated signaling pathways, including renal hypoxia, independent of their antihyperglycemic activities. This manuscript discusses the pathophysiological concepts that underly their possible effects on modulating renal hypoxia. It also comprehensively investigates both preclinical and clinical studies that explored the possible role of SGLT2 inhibitors in this setting, so as to achieve long-term renoprotective benefits.
Collapse
Affiliation(s)
- Georgios S. Papaetis
- K.M.P THERAPIS Paphos Medical Center, Internal Medicine and Diabetes Clinic, Paphos, Cyprus
- CDA College, Paphos, Cyprus
| |
Collapse
|
6
|
Meng Q, Ma J, Suo L, Pruekprasert N, Chakrapani P, Cooney RN. Galantamine improves glycemic control and diabetic nephropathy in Lepr db/db mice. Sci Rep 2023; 13:15544. [PMID: 37731032 PMCID: PMC10511534 DOI: 10.1038/s41598-023-42665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
Galantamine, a centrally acting acetylcholinesterase inhibitor, has been shown to attenuate inflammation and insulin resistance in patients with metabolic syndrome. We investigated the effects of galantamine on glycemic control and development of diabetic nephropathy (DN) in Leprdb/db mice. Galantamine significantly reduced food intake, body weight, blood glucose and HbA1c levels. Insulin resistance (HOMA-IR, QUICKI), HOMA-β and elevations in plasma inflammatory cytokine levels (TNF-α, IL-6 and HMGB-1) were all attenuated by galantamine. Galantamine also ameliorated diabetes-induced kidney injury as evidenced by improvements in renal function (BUN, creatinine, albuminuria), histologic injury and apoptosis. Improved glycemic control and nephropathy were associated with increased circulating GLP-1, decreased renal P-38 MAPK and caspase-1 activation and reduced SGLT-2 expression. These findings provide insights into the mechanisms by which galantamine improves glycemic control and attenuates DN in the Leprdb/db mouse model.
Collapse
Affiliation(s)
- Qinghe Meng
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Julia Ma
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Liye Suo
- Department of Pathology, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - Napat Pruekprasert
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Prithi Chakrapani
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Robert N Cooney
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA.
| |
Collapse
|
7
|
Ashfaq A, Meineck M, Pautz A, Arioglu-Inan E, Weinmann-Menke J, Michel MC. A systematic review on renal effects of SGLT2 inhibitors in rodent models of diabetic nephropathy. Pharmacol Ther 2023; 249:108503. [PMID: 37495021 DOI: 10.1016/j.pharmthera.2023.108503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
We have performed a systematic review of studies reporting on the renal effects of SGLT2 inhibitors in rodent models of diabetes. In 105 studies, SGLT2 inhibitors improved not only the glycemic control but also various aspects of renal function in most cases. These nephroprotective effects were similarly reported whether treatment with the SGLT2 inhibitor started concomitant with the onset of diabetes (within 1 week), early after onset (1-4 weeks) or after nephropathy had developed (>4 weeks after onset) with the latter probably having the greatest translational value. They were observed across various animal models of type 1 and type 2 diabetes/obesity (4 and 23 models, respectively), although studies in the type 2 diabetes model of db/db mice more often had negative data than in other models. Among possibly underlying pathophysiological mechanisms of nephroprotection, treatment with SGLT2 inhibitors had beneficial effects on lipid metabolism, blood pressure, glomerulosclerosis as well as renal tubular fibrosis, apoptosis, oxidative stress, and inflammation. These pathomechanisms highly influence atherosclerosis and renal health, which are two major factors that lead to an enhanced mortality in patients with diabetes and/or chronic kidney disease. Interestingly, renal SGLT2 inhibitor effects did not always correlate with those on glucose homeostasis, particularly in a limited number of direct comparative studies with other anti-diabetic treatments, indicating that nephroprotection may at least partly occur by mechanisms other than improving glycemic control. Our analyses did not provide evidence for different nephroprotective efficacy between SGLT2 inhibitors. Importantly, only four of 105 studies reported on female animals, and none provided direct comparative data between sexes. We conclude that more data on female animals and more direct comparative studies with other anti-diabetic compounds and combinations of treatments are needed.
Collapse
Affiliation(s)
- Aqsa Ashfaq
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Myriam Meineck
- 1(st) Dept. of Medicine, Div. of Nephrology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Andrea Pautz
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ebru Arioglu-Inan
- Dept. of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Julia Weinmann-Menke
- 1(st) Dept. of Medicine, Div. of Nephrology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Martin C Michel
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
8
|
Sun X, Wang G. Renal outcomes with sodium-glucose cotransporters 2 inhibitors. Front Endocrinol (Lausanne) 2022; 13:1063341. [PMID: 36531469 PMCID: PMC9752889 DOI: 10.3389/fendo.2022.1063341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most serious complications of diabetes. Therefore, delaying and preventing the progression of DN becomes an important goal in the clinical treatment of type 2 diabetes mellitus. Recent studies confirm that sodium-glucose cotransporters 2 inhibitors (SGLT2is) have been regarded as effective glucose-lowering drugs with renal protective effect. In this review, we summarize in detail the present knowledge of the effects of SGLT2is on renal outcomes by analyzing the experimental data in preclinical study, the effects of SGLT2is on estimated glomerular flitration rates (eGFRs) and urinary albumin-creatinine ratios (UACRs) from clinical trials and observational studies, and renal events (such as renal death or renal failure requiring renal replacement therapy) in some large prospective cardiovaslucar outcomes trials. The underlying mechanisms for renoprotective activity of SGLT2is have been demondtrated in multiple diabetic and nondiabetic animal models including kidney-specific effects and secondary kidney effects related to amelioration in blood glucose and blood pressure. In conclusion, these promising results show that SGLT2is act beneficially in terms of the kidney for diabetic patients.
Collapse
Affiliation(s)
| | - Guohong Wang
- Department of Geriatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Vergara A, Jacobs-Cacha C, Llorens-Cebria C, Ortiz A, Martinez-Diaz I, Martos N, Dominguez-Báez P, Van den Bosch MM, Bermejo S, Pieper MP, Benito B, Soler MJ. Enhanced Cardiorenal Protective Effects of Combining SGLT2 Inhibition, Endothelin Receptor Antagonism and RAS Blockade in Type 2 Diabetic Mice. Int J Mol Sci 2022; 23:12823. [PMID: 36361612 PMCID: PMC9656616 DOI: 10.3390/ijms232112823] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
Treatments with sodium-glucose 2 cotransporter inhibitors (SGLT2i) or endothelin receptor antagonists (ERA) have shown cardiorenal protective effects. The present study aimed to evaluate the cardiorenal beneficial effects of the combination of SGLT2i and ERA on top of renin-angiotensin system (RAS) blockade. Type 2 diabetic mice (db/db) were treated with different combinations of an SGLT2i (empagliflozin), an ERA (atrasentan), and an angiotensin-converting enzyme inhibitor (ramipril) for 8 weeks. Vehicle-treated diabetic mice and non-diabetic mice were included as controls. Weight, blood glucose, blood pressure, and kidney and heart function were monitored during the study. Kidneys and heart were collected for histological examination and to study the intrarenal RAS. Treatment with empagliflozin alone or combined significantly decreased blood glucose compared to vehicle-treated db/db. The dual and triple therapies achieved significantly greater reductions in diastolic blood pressure than ramipril alone. Compared to vehicle-treated db/db, empagliflozin combined with ramipril or in triple therapy significantly prevented GFR increase, but only the triple combination exerted greater protection against podocyte loss. In the heart, empagliflozin alone or combined reduced cardiac isovolumetric relaxation time (IVRT) and left atrium (LA) diameter as compared to vehicle-treated db/db. However, only the triple therapy was able to reduce cardiomyocyte area. Importantly, the add-on triple therapy further enhanced the intrarenal ACE2/Ang(1-7)/Mas protective arm of the RAS. These data suggest that triple therapy with empagliflozin, atrasentan and ramipril show synergistic cardiorenal protective effects in a type 2 diabetic mouse model.
Collapse
Affiliation(s)
- Ander Vergara
- Nephrology and Kidney Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Nephrology Department, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Conxita Jacobs-Cacha
- Nephrology and Kidney Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Carmen Llorens-Cebria
- Nephrology and Kidney Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Diaz, Fundación Renal Iñigo Álvarez de Toledo-IRSIN, REDinREN, Instituto de Investigación Carlos III, Universidad Autónoma de Madrid, Av. de los Reyes Católicos 2, 28040 Madrid, Spain
| | - Irene Martinez-Diaz
- Nephrology and Kidney Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Nerea Martos
- Nephrology and Kidney Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Pamela Dominguez-Báez
- Nephrology and Kidney Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Mireia Molina Van den Bosch
- Nephrology and Kidney Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Sheila Bermejo
- Nephrology and Kidney Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Nephrology Department, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Michael Paul Pieper
- Cardio-Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397 Biberach an der Riß, Germany
| | - Begoña Benito
- Cardiology Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Cardiology Department, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Deparment of Medicine, Universitat Autònoma de Barcelona, Av. de Can Domènech, 08193 Bellaterra, Spain
| | - Maria Jose Soler
- Nephrology and Kidney Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Nephrology Department, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
10
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small‐Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism, and Applications. Angew Chem Int Ed Engl 2022; 61:e202207188. [DOI: 10.1002/anie.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Bin Fang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Yu Shen
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Li Fu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Wei Zhang
- Teaching and Evaluation Center of Air Force Medical University Xi'an 710032 China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| |
Collapse
|
11
|
Stuart D, Peterson CS, Hu C, Revelo MP, Huang Y, Kohan DE, Ramkumar N. Lack of renoprotective effects of targeting the endothelin A receptor and (or) sodium glucose transporter 2 in a mouse model of Type 2 diabetic kidney disease. Can J Physiol Pharmacol 2022; 100:763-771. [PMID: 35531905 DOI: 10.1139/cjpp-2022-0082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two recent clinical trials, using sodium glucose cotransporter (SGLT2) or endothelin-A receptor (ET-A) blocker, reported the first efficacious treatments in 18 years to slow progression of diabetic kidney disease (DKD). We hypothesized that combined inhibition of SGLT2 and ET-A receptor may confer greater protection against renal injury than either agent alone. Uninephrectomized male db/db mice were randomized to four groups: vehicle, SGLT2 inhibitor (dapagliflozin (dapa), 1 mg/kg/day), ET-A blocker (atrasentan (atra), 5 mg/kg/day), or dual treatment from 10 weeks until 22 weeks of age. At 10 weeks of age, no differences were observed in body weight, blood glucose or urinary albumin excretion among the four groups. At 16 and 22 weeks of age, body weight was lower and blood glucose levels higher in the vehicle and atra groups compared with dapa- and dual-treated groups. No notable differences were observed among the four groups in urinary albumin excretion at weeks 16 and 22. Histological analysis showed mild glomerulosclerosis and tubular injury (<5%) in all four groups with reduced glomerulosclerosis in the dual treatment group compared with vehicle. Individual or combined treatment with an SGLT2 inhibitor and (or) an ET-A antagonist did not confer renoprotective effects in this model.
Collapse
Affiliation(s)
- Deborah Stuart
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT 84132, USA
| | - Caitlin S Peterson
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT 84132, USA
| | - Chunyan Hu
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT 84132, USA
| | - Monica P Revelo
- Department of Pathology, University of Utah Health, Salt Lake City, UT 84112, USA
| | - Yufeng Huang
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT 84132, USA
| | - Donald E Kohan
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT 84132, USA
| | - Nirupama Ramkumar
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT 84132, USA
| |
Collapse
|
12
|
Takiyama T, Sera T, Nakamura M, Hoshino M, Uesugi K, Horike SI, Meguro-Horike M, Bessho R, Takiyama Y, Kitsunai H, Takeda Y, Sawamoto K, Yagi N, Nishikawa Y, Takiyama Y. A maternal high-fat diet induces fetal origins of NASH-HCC in mice. Sci Rep 2022; 12:13136. [PMID: 35907977 PMCID: PMC9338981 DOI: 10.1038/s41598-022-17501-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Maternal overnutrition affects offspring susceptibility to nonalcoholic steatohepatitis (NASH). Male offspring from high-fat diet (HFD)-fed dams developed a severe form of NASH, leading to highly vascular tumor formation. The cancer/testis antigen HORMA domain containing protein 1 (HORMAD1), one of 146 upregulated differentially expressed genes in fetal livers from HFD-fed dams, was overexpressed with hypoxia-inducible factor 1 alpha (HIF-1alpha) in hepatoblasts and in NASH-based hepatocellular carcinoma (HCC) in offspring from HFD-fed dams at 15 weeks old. Hypoxia substantially increased Hormad1 expression in primary mouse hepatocytes. Despite the presence of three putative hypoxia response elements within the mouse Hormad1 gene, the Hif-1alpha siRNA only slightly decreased hypoxia-induced Hormad1 mRNA expression. In contrast, N-acetylcysteine, but not rotenone, inhibited hypoxia-induced Hormad1 expression, indicating its dependency on nonmitochondrial reactive oxygen species production. Synchrotron-based phase-contrast micro-CT of the fetuses from HFD-fed dams showed significant enlargement of the liver accompanied by a consistent size of the umbilical vein, which may cause hypoxia in the fetal liver. Based on these findings, a maternal HFD induces fetal origins of NASH/HCC via hypoxia, and HORMAD1 is a potential therapeutic target for NASH/HCC.
Collapse
Affiliation(s)
- Takao Takiyama
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Toshihiro Sera
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Masanori Nakamura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Japan
| | - Shin-Ichi Horike
- Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | | | - Ryoichi Bessho
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yuri Takiyama
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroya Kitsunai
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yasutaka Takeda
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kazuki Sawamoto
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Japan
| | - Yuji Nishikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yumi Takiyama
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|
13
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bin Fang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Yu Shen
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Bo Peng
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Hua Bai
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Limin Wang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Jiaxin Zhang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wenbo Hu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Li Fu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wei Zhang
- Air Force Medical University Teaching and Evaluation Center CHINA
| | - Lin Li
- Nanjing Tech University Institute of Advanced Materials 30 South Puzhu Road 210008 Nanjing CHINA
| | - Wei Huang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| |
Collapse
|
14
|
Kunishima N, Takeda Y, Hirose R, Kume S, Maeda M, Oguchi A, Yanagita M, Shibuya H, Tamura M, Kataoka Y, Murakawa Y, Ito K, Omote K. Compact laboratory-based X-ray microscope enabling nondestructive 3D structure acquisition of mouse nephron with high speed and better user accessibility. Microscopy (Oxf) 2022; 71:315-323. [PMID: 35778966 PMCID: PMC9731380 DOI: 10.1093/jmicro/dfac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 12/15/2022] Open
Abstract
X-ray microscopes adopting computed tomography enable nondestructive 3D visualization of biological specimens at micron-level resolution without conventional 2D serial sectioning that is a destructive/laborious method and is routinely used for analyzing renal biopsy in clinical diagnosis of kidney diseases. Here we applied a compact commercial system of laboratory-based X-ray microscope to observe a resin-embedded osmium-stained 1-mm strip of a mouse kidney piece as a model of renal biopsy, toward a more efficient diagnosis of kidney diseases. A reconstructed computed tomography image from several hours of data collection using CCD detector allowed us to unambiguously segment a single nephron connected to a renal corpuscle, which was consistent with previous reports using serial sectioning. Histogram analysis on the segmented nephron confirmed that the proximal and distal tubules were distinguishable on the basis of their X-ray opacities. A 3D rendering model of the segmented nephron visualized a convoluted structure of renal tubules neighboring the renal corpuscle and a branched structure of efferent arterioles. Furthermore, another data collection using scientific complementary metal-oxide semiconductor detector with a much shorter data acquisition time of 15 min provided similar results from the same samples. These results suggest a potential application of the compact laboratory-based X-ray microscope to analyze mouse renal biopsy.
Collapse
Affiliation(s)
| | - Yoshihiro Takeda
- X-ray Research Laboratory, Rigaku Corporation, Akishima, Tokyo 196-8666, Japan
| | - Raita Hirose
- X-ray Research Laboratory, Rigaku Corporation, Akishima, Tokyo 196-8666, Japan
| | - Satoshi Kume
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan,Center for Health Science Innovation, Osaka City University, Osaka 530-0011, Japan
| | - Mitsuyo Maeda
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe, Hyogo 650-0047, Japan
| | - Akiko Oguchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan,Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Hirotoshi Shibuya
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Yosky Kataoka
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe, Hyogo 650-0047, Japan,Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan,IFOM―the FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Koichiro Ito
- New Market Development Office, Rigaku Corporation, Akishima, Tokyo 196-8666, Japan
| | - Kazuhiko Omote
- X-ray Research Laboratory, Rigaku Corporation, Akishima, Tokyo 196-8666, Japan
| |
Collapse
|
15
|
Takashima M, Nakamura K, Kiyohara T, Wakisaka Y, Hidaka M, Takaki H, Yamanaka K, Shibahara T, Wakisaka M, Ago T, Kitazono T. Low-dose sodium-glucose cotransporter 2 inhibitor ameliorates ischemic brain injury in mice through pericyte protection without glucose-lowering effects. Commun Biol 2022; 5:653. [PMID: 35780235 PMCID: PMC9250510 DOI: 10.1038/s42003-022-03605-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 06/20/2022] [Indexed: 12/11/2022] Open
Abstract
Antidiabetic sodium-glucose cotransporter 2 (SGLT2) inhibitors have attracted attention for their cardiorenal-protective properties beyond their glucose-lowering effect. However, their benefits in ischemic stroke remain controversial. Here we show the effects of luseogliflozin, a selective SGLT2 inhibitor, in acute ischemic stroke, using a permanent middle cerebral artery occlusion (pMCAO) model in non-diabetic mice. Pretreatment with low-dose luseogliflozin, which does not affect blood glucose levels, significantly attenuated infarct volume, blood-brain barrier disruption, and motor dysfunction after pMCAO. SGLT2 was expressed predominantly in brain pericytes and was upregulated in peri- and intra-infarct areas. Notably, luseogliflozin pretreatment reduced pericyte loss in ischemic areas. In cultured pericytes, luseogliflozin activated AMP-activated protein kinase α and increased mitochondrial transcription factor A expression and number of mitochondria, conferring resistance to oxygen-glucose deprivation. Collectively, pre-stroke inhibition of SGLT2 induces ischemic tolerance in brain pericytes independent of the glucose-lowering effect, contributing to the attenuation of ischemic brain injury. Pre-treatment of non-diabetic mice with the SGLT2 inhibitor, luseogliflozin, reduces brain damage and neurological dysfunction following middle cerebral artery occlusion by acquiring ischemic tolerance in pericytes.
Collapse
Affiliation(s)
- Masamitsu Takashima
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Takuya Kiyohara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinobu Wakisaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaoki Hidaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hayato Takaki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kei Yamanaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoya Shibahara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masanori Wakisaka
- Wakisaka Internal Medicine Clinic, 1-24-19 Fujisaki, Sawara-ku, Fukuoka, 814-0013, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
16
|
Li N, Zhou H. Sodium-glucose Cotransporter Type 2 Inhibitors: A New Insight into the Molecular Mechanisms of Diabetic Nephropathy. Curr Pharm Des 2022; 28:2131-2139. [PMID: 35718973 DOI: 10.2174/1381612828666220617153331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy is one of the chronic microvascular complications of diabetes and is a leading cause of end-stage renal disease. Fortunately, clinical trials have demonstrated that sodium-glucose cotransporter type 2 inhibitors could decrease proteinuria and improve renal endpoints and are promising agents for the treatment of diabetic nephropathy. The renoprotective effects of sodium-glucose cotransporter type 2 inhibitors cannot be simply attributed to their advantages in aspects of metabolic benefits, such as glycemic control, lowering blood pressure, and control of serum uric acid, or improving hemodynamics associated with decreased glomerular filtration pressure. Some preclinical evidence suggests that sodium-glucose cotransporter type 2 inhibitors exert their renoprotective effects by multiple mechanisms, including attenuation of oxidative and endoplasmic reticulum stresses, anti-fibrosis and anti-inflammation, protection of podocytes, suppression of megalin function, improvement of renal hypoxia, restored mitochondrial dysfunction and autophagy, as well as inhibition of sodium-hydrogen exchanger 3. In the present study, the detailed molecular mechanisms of sodium-glucose cotransporter type 2 inhibitors with the actions of diabetic nephropathy were reviewed, with the purpose of providing the basis for drug selection for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Na Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
17
|
Takata T, Isomoto H. Pleiotropic Effects of Sodium-Glucose Cotransporter-2 Inhibitors: Renoprotective Mechanisms beyond Glycemic Control. Int J Mol Sci 2021; 22:ijms22094374. [PMID: 33922132 PMCID: PMC8122753 DOI: 10.3390/ijms22094374] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus is a major cause of chronic kidney disease and end-stage renal disease. However, the management of chronic kidney disease, particularly diabetes, requires vast improvements. Recently, sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally developed for the treatment of diabetes, have been shown to protect against kidney injury via glycemic control, as well as various other mechanisms, including blood pressure and hemodynamic regulation, protection from lipotoxicity, and uric acid control. As such, regulation of these mechanisms is recommended as an effective multidisciplinary approach for the treatment of diabetic patients with kidney disease. Thus, SGLT2 inhibitors are expected to become key drugs for treating diabetic kidney disease. This review summarizes the recent clinical evidence pertaining to SGLT2 inhibitors as well as the mechanisms underlying their renoprotective effects. Hence, the information contained herein will advance the current understanding regarding the pleiotropic effects of SGLT2 inhibitors, while promoting future research in the field.
Collapse
|
18
|
Glucose-dependent diuresis in relation to improvements in renal-tubular markers of sodium-glucose cotransporter-2 inhibitors in hospitalized heart failure patients with diabetes. Heart Vessels 2021; 36:978-985. [PMID: 33416971 DOI: 10.1007/s00380-020-01768-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
Clinical parameters with correlation to diuretic effects after initiation of sodium-glucose cotransporter-2 (SGLT2) inhibitors are unclear. We aimed to identify the factors associated with the diuretic effect observed following the initiation of SGLT2 inhibitors in patients with diabetes having an acute heart failure (HF). Fifty-six patients included were hospitalized for acute HF with diabetes and started on SGLT2 inhibitors. Changes in urine volume (ΔUV) and blood/urine laboratory parameters before and during the first 4 days of therapy were evaluated. Data were prospectively obtained under clinically stable conditions after initial HF treatment. UV increased following the initiation of SGLT2 inhibitors [UV at baseline (BL): 1383 ± 479 mL/day; ΔUV over 4 days: + 189 ± 358 mL/day]. Multivariate analysis revealed no association between BL-hemoglobin A1c or BL-estimated glomerular filtration rate and ΔUV. Conversely, higher BL-fasting plasma glucose (FPG) and higher BL-urine N-acetyl-β-D-glucosaminidase (NAG) were associated with a higher ΔUV. ΔUV was inversely associated with ΔFPG and ΔNAG, and positively associated with Δurinary sodium excretion. Elevated FPG and NAG both improved over 4 days of treatment. In conclusion, the diuretic effect of SGLT2 inhibitors was glycemia-dependent, and was associated with a reduction in elevated renal-tubular markers in hospitalized HF complicated with diabetes.
Collapse
|
19
|
Li Z, Murakoshi M, Ichikawa S, Koshida T, Adachi E, Suzuki C, Ueda S, Gohda T, Suzuki Y. The sodium-glucose cotransporter 2 inhibitor tofogliflozin prevents diabetic kidney disease progression in type 2 diabetic mice. FEBS Open Bio 2020; 10:2761-2770. [PMID: 33098615 PMCID: PMC7714078 DOI: 10.1002/2211-5463.13014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/04/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022] Open
Abstract
Trials on cardiovascular and renal outcomes in patients with type 2 diabetes have consistently demonstrated that sodium–glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of diabetic kidney disease (DKD) progression. However, their renal protective mechanisms have yet to be completely understood and the effect on albuminuria reduction in animal models is controversial. We investigated these issues using KK and KK‐Ay mice as a control (CTRL) and as a model for type 2 diabetes (DKD), respectively. KK‐Ay mice were treated with 0.015% tofogliflozin, which is an SGLT2 inhibitor, starting at seven weeks of age for eight weeks. Compared with the CTRL mice, the DKD mice had higher HbA1c levels and albuminuria. Although tofogliflozin treatment significantly lowered HbA1c levels, it did not reverse albuminuria. Tofogliflozin treatment enhanced damage in both the glomerular (i.e., enlarged mesangial area, increased foot process effacement rate, and decreased number of WT‐1‐positive cells) and tubulointerstitial (increased protein levels of KIM‐1 and MCP‐1, increased number of macrophages, and abnormal mitochondrial morphology) areas. Our results suggest that tofogliflozin may prevent glomerular and tubulointerstitial damage, partly by ameliorating hyperglycemia, renal inflammation, and abnormal mitochondrial morphology.
Collapse
Affiliation(s)
- Zi Li
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Maki Murakoshi
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Saki Ichikawa
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Takeo Koshida
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Eri Adachi
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Chigure Suzuki
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Seiji Ueda
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Tomohito Gohda
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Raval N, Jogi H, Gondaliya P, Kalia K, Tekade RK. Cyclo-RGD Truncated Polymeric Nanoconstruct with Dendrimeric Templates for Targeted HDAC4 Gene Silencing in a Diabetic Nephropathy Mouse Model. Mol Pharm 2020; 18:641-666. [PMID: 32453574 DOI: 10.1021/acs.molpharmaceut.0c00094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN), a chronic progressive kidney disease, is a significant complication of diabetes mellitus. Dysregulation of the histone deacetylases (HDACs) gene has been implicated in the pathogenesis of DN. Hence, the HDAC-inhibitors have emerged as a critical class of therapeutic agents in DN; however, the currently available HDAC4-inhibitors are mostly nonselective in nature as well as inhibit multiple HDACs. RNA interference of HDAC4 (HDAC4 siRNA) has shown immense promise, but the clinical translation has been impeded due to lack of a targeted, specific, and in vivo applicable delivery modality. In the present investigation, we examined Cyclo(RGDfC) (cRGD) truncated polymeric nanoplex with dendrimeric templates for targeted HDAC4 Gene Silencing. The developed nanoplex exhibited enhanced encapsulation of siRNA and offered superior protection against serum RNase nucleases degradation. The nanoplex was tested on podocytes (in vitro), wherein it showed selective binding to the αvβ3 integrin receptor, active cellular uptake, and significant in vitro gene silencing. The in vivo experiments showed remarkable suppression of the HDAC4 and inhibition in the progression of renal fibrosis in the Streptozotocin (STZ) induced DN C57BL/6 mice model. Histopathological and toxicological studies revealed nonsignificant abnormality/toxicity with the nanoplex. Conclusively, nanoplex was found as a promising tactic for targeted therapy of podocytes and could be extended for other kidney-related ailments.
Collapse
Affiliation(s)
- Nidhi Raval
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj (An Institute of National Importance), Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Hardi Jogi
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj (An Institute of National Importance), Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Piyush Gondaliya
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj (An Institute of National Importance), Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj (An Institute of National Importance), Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj (An Institute of National Importance), Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
21
|
Packer M. Critical examination of mechanisms underlying the reduction in heart failure events with SGLT2 inhibitors: identification of a molecular link between their actions to stimulate erythrocytosis and to alleviate cellular stress. Cardiovasc Res 2020; 117:74-84. [PMID: 32243505 DOI: 10.1093/cvr/cvaa064] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors reduce the risk of serious heart failure events, even though SGLT2 is not expressed in the myocardium. This cardioprotective benefit is not related to an effect of these drugs to lower blood glucose, promote ketone body utilization or enhance natriuresis, but it is linked statistically with their action to increase haematocrit. SGLT2 inhibitors increase both erythropoietin and erythropoiesis, but the increase in red blood cell mass does not directly prevent heart failure events. Instead, erythrocytosis is a biomarker of a state of hypoxia mimicry, which is induced by SGLT2 inhibitors in manner akin to cobalt chloride. The primary mediators of the cellular response to states of energy depletion are sirtuin-1 and hypoxia-inducible factors (HIF-1α/HIF-2α). These master regulators promote the cellular adaptation to states of nutrient and oxygen deprivation, promoting mitochondrial capacity and minimizing the generation of oxidative stress. Activation of sirtuin-1 and HIF-1α/HIF-2α also stimulates autophagy, a lysosome-mediated degradative pathway that maintains cellular homoeostasis by removing dangerous constituents (particularly unhealthy mitochondria and peroxisomes), which are a major source of oxidative stress and cardiomyocyte dysfunction and demise. SGLT2 inhibitors can activate SIRT-1 and stimulate autophagy in the heart, and thereby, favourably influence the course of cardiomyopathy. Therefore, the linkage between erythrocytosis and the reduction in heart failure events with SGLT2 inhibitors may be related to a shared underlying molecular mechanism that is triggered by the action of these drugs to induce a perceived state of oxygen and nutrient deprivation.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall Street, Dallas, TX 75226, USA.,Imperial College, London, UK
| |
Collapse
|
22
|
Miyata KN, Zhao S, Wu CH, Lo CS, Ghosh A, Chenier I, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Comparison of the effects of insulin and SGLT2 inhibitor on the Renal Renin-Angiotensin system in type 1 diabetes mice. Diabetes Res Clin Pract 2020; 162:108107. [PMID: 32173417 DOI: 10.1016/j.diabres.2020.108107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 01/22/2023]
Abstract
AIMS SGLT2 inhibitors have been proposed as an adjunct to insulin therapy for glycemic control in type 1 diabetes (T1D) patients. However, concern has been raised due to an increase in renin-angiotensin-system (RAS) activity reported in a clinical trial in which an SGLT2 inhibitor was added while insulin dose was reduced in T1D patients. We previously reported that insulin inhibits intrarenal angiotensinogen (Agt) gene transcription and RAS activation. We hypothesized that insulin, rather than SGLT2 inhibition might regulate the intrarenal RAS. METHODS We compared RAS activity in non-diabetic wild type mice, Akita mice (T1D model) and Akita mice treated with insulin or the SGLT2 inhibitor canagliflozin. RESULTS Treatment of Akita mice with insulin or canagliflozin produced similar reductions in blood glucose, whereas insulin, but not canagliflozin, reduced elevated systolic blood pressure. Akita mice exhibited increased renal Agt mRNA/protein expression, which was attenuated by insulin, but not by canagliflozin. Furthermore, insulin was more effective than canagliflozin in lowering kidney weight and albuminuria. CONCLUSIONS Insulin, but not canagliflozin, lowers intrarenal RAS activity in Akita mice. Our findings can be of potential clinical importance, especially for T1D patients who are not on RAS inhibitors at the time of adding SGLT2 inhibitors.
Collapse
Affiliation(s)
- Kana N Miyata
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada
| | - Shuiling Zhao
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada
| | - Chin-Han Wu
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada
| | - Chao-Sheng Lo
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada
| | - Anindya Ghosh
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada
| | - Isabelle Chenier
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada
| | - Janos G Filep
- Université de Montréal, Centre de recherche de l'Hopital Maisonneuve-Rosemont, 5415 boul. l'Assomption, Montréal, Quebec H1T 2M4, Canada
| | - Julie R Ingelfinger
- Harvard Medical School, Pediatric Nephrology Unit, Massachusetts General Hospital, 15 Parkman Street, WAC 709, Boston, MA 02114-3117, USA
| | - Shao-Ling Zhang
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada.
| | - John S D Chan
- Département de Médecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger-Pavillon R, 900 Saint Denis Street, Montréal, Quebec H2X 0A9, Canada.
| |
Collapse
|
23
|
Luseogliflozin, a sodium-glucose cotransporter 2 inhibitor, preserves renal function irrespective of acute changes in the estimated glomerular filtration rate in Japanese patients with type 2 diabetes. Hypertens Res 2020; 43:876-883. [DOI: 10.1038/s41440-020-0426-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/03/2020] [Accepted: 02/20/2020] [Indexed: 01/05/2023]
|
24
|
Bessho R, Takiyama Y, Takiyama T, Kitsunai H, Takeda Y, Sakagami H, Ota T. Hypoxia-inducible factor-1α is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy. Sci Rep 2019; 9:14754. [PMID: 31611596 PMCID: PMC6791873 DOI: 10.1038/s41598-019-51343-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/23/2019] [Indexed: 01/06/2023] Open
Abstract
Previous studies have demonstrated intrarenal hypoxia in patients with diabetes. Hypoxia-inducible factor (HIF)-1 plays an important role in hypoxia-induced tubulointerstitial fibrosis. Recent clinical trials have confirmed the renoprotective action of SGLT2 inhibitors in diabetic nephropathy. We explored the effects of an SGLT2 inhibitor, luseogliflozin on HIF-1α expression in human renal proximal tubular epithelial cells (HRPTECs). Luseogliflozin significantly inhibited hypoxia-induced HIF-1α protein expression in HRPTECs. In addition, luseogliflozin inhibited hypoxia-induced the expression of the HIF-1α target genes PAI-1, VEGF, GLUT1, HK2 and PKM. Although luseogliflozin increased phosphorylated-AMP-activated protein kinase α (p-AMPKα) levels, the AMPK activator AICAR did not changed hypoxia-induced HIF-1α expression. Luseogliflozin suppressed the oxygen consumption rate in HRPTECs, and subsequently decreased hypoxia-sensitive dye, pimonidazole staining under hypoxia, suggesting that luseogliflozin promoted the degradation of HIF-1α protein by redistribution of intracellular oxygen. To confirm the inhibitory effect of luseogliflozin on hypoxia-induced HIF-1α protein in vivo, we treated male diabetic db/db mice with luseogliflozin for 8 to 16 weeks. Luseogliflozin attenuated cortical tubular HIF-1α expression, tubular injury and interstitial fibronectin in db/db mice. Together, luseogliflozin inhibits hypoxia-induced HIF-1α accumulation by suppressing mitochondrial oxygen consumption. The SGLT2 inhibitors may protect diabetic kidneys by therapeutically targeting HIF-1α protein.
Collapse
Affiliation(s)
- Ryoichi Bessho
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510, Japan
| | - Yumi Takiyama
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510, Japan.
| | - Takao Takiyama
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510, Japan
| | - Hiroya Kitsunai
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510, Japan
| | - Yasutaka Takeda
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510, Japan
| | - Hidemitsu Sakagami
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510, Japan
| | - Tsuguhito Ota
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510, Japan.
| |
Collapse
|
25
|
Wang Y, Han P, Wang M, Weng W, Zhan H, Yu X, Yuan C, Shao M, Sun H. Artemether improves type 1 diabetic kidney disease by regulating mitochondrial function. Am J Transl Res 2019; 11:3879-3889. [PMID: 31312396 PMCID: PMC6614617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/16/2019] [Indexed: 06/10/2023]
Abstract
Many patients with type 1 diabetes mellitus suffer from progressive diabetic kidney disease (DKD). The progression of DKD is largely attributed to mitochondrial dysfunction, with key contributions from mitochondrial reactive oxygen species. Recent studies have revealed that the antimalarial drug artemether has antidiabetic effects. To identify potential effects on type 1 DKD in the present study, mice with streptozotocin-induced diabetes were treated with artemether. Treatment reduced urinary excretion of albumin and tubular injury biomarkers, increased serum albumin and total protein levels, and attenuated renal hypertrophy. In addition, artemether treatment prevented hyperglycemia, raised serum insulin levels, and restored glucagon/insulin and somatostatin/insulin ratios in islets. We found that artemether improved mitochondrial function and regulated redox balance in kidney. These results demonstrate that artemether provides renal protection in type 1 diabetes mellitus, which may be due to improved mitochondrial function.
Collapse
Affiliation(s)
- Yao Wang
- Department of Nephrology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine HospitalShenzhen 518033, Guangdong, China
| | - Pengxun Han
- Department of Nephrology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine HospitalShenzhen 518033, Guangdong, China
| | - Menghua Wang
- Department of Nephrology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine HospitalShenzhen 518033, Guangdong, China
| | - Wenci Weng
- Department of Nephrology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine HospitalShenzhen 518033, Guangdong, China
| | - Hongyue Zhan
- Department of Nephrology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine HospitalShenzhen 518033, Guangdong, China
| | - Xuewen Yu
- Department of Pathology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine HospitalShenzhen 518033, Guangdong, China
| | - Changjian Yuan
- Department of Nephrology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine HospitalShenzhen 518033, Guangdong, China
| | - Mumin Shao
- Department of Pathology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine HospitalShenzhen 518033, Guangdong, China
| | - Huili Sun
- Department of Nephrology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine HospitalShenzhen 518033, Guangdong, China
| |
Collapse
|
26
|
Ansary TM, Nakano D, Nishiyama A. Diuretic Effects of Sodium Glucose Cotransporter 2 Inhibitors and Their Influence on the Renin-Angiotensin System. Int J Mol Sci 2019; 20:E629. [PMID: 30717173 PMCID: PMC6387046 DOI: 10.3390/ijms20030629] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 12/26/2022] Open
Abstract
The renin-angiotensin system (RAS) plays an important role in regulating body fluids and blood pressure. However, inappropriate activation of the RAS contributes to the pathogenesis of cardiovascular and renal diseases. Recently, sodium glucose cotransporter 2 (SGLT2) inhibitors have been used as anti-diabetic agents. SGLT2 inhibitors induce glycosuria and improve hyperglycemia by inhibiting urinary reabsorption of glucose. However, in the early stages of treatment, these inhibitors frequently cause polyuria and natriuresis, which potentially activate the RAS. Nevertheless, the effects of SGLT2 inhibitors on RAS activity are not straightforward. Available data indicate that treatment with SGLT2 inhibitors transiently activates the systemic RAS in type 2 diabetic patients, but not the intrarenal RAS. In this review article, we summarize current evidence of the diuretic effects of SGLT2 inhibitors and their influence on RAS activity.
Collapse
Affiliation(s)
- Tuba M Ansary
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Daisuke Nakano
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| |
Collapse
|