1
|
Loggetto SR, Vilela TDS, Beatrice JM, Grizante-Lopes P, Emerenciano JG, Angel A, Braga JAP. Complete Blood Count in Children With COVID-19: A Predictor of Disease Severity. Clin Pediatr (Phila) 2025; 64:695-702. [PMID: 39396126 DOI: 10.1177/00099228241288715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Blood count abnormalities are frequent in patients with severe COVID-19 disease and there is still a lack of information in pediatric complete blood count (CBC) results. Thus, this study aims to correlate the CBC in the emergency room of children with COVID-19 between 0 and 10 years old and the clinical severity of the disease. A retrospective cohort study was performed in children with COVID-19 who collected at the emergency room CBC, C-reactive protein (CRP), platelet to lymphocyte ratio (PLR), neutrophil to lymphocyte ratio (NLR), neutrophil to monocyte ratio (NMR), lymphocyte to neutrophil ratio (LNR), lymphocyte to monocyte ratio (LMR), monocyte to neutrophil ratio (MNR) and monocyte to lymphocyte ratio (MLR). In total, demographic data from 93 children with median age of 19 months (0.3-126), 60.2% males, were included. The main changes in the CBC were atypical lymphocytes (51.6%) and eosinopenia (49.5%). From 69 hospitalized children, 21 were considered severe. There was no association between age, gender, and CRP value with clinical severity. The presence of underlying disease was five times higher (odds ratio [OR] = 5.08) in patients who required hospitalization and a higher NLR value was 54% (OR = 1.54) more likely to occur. Eosinopenia was three times more frequent in inpatients with disease severity criteria (OR = 3.05). In conclusion, children younger than 10 years of age with COVID-19 have changes in the CBC collected in the emergency room, mainly atypical lymphocytes and eosinopenia. The presence of a comorbidity or a higher NLR increases the chance of hospitalization. In addition, eosinopenia was a predictor of severity in inpatient children due to COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrea Angel
- Division of Pediatric Hematology, Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
2
|
Masset C, Drillaud N, Ternisien C, Degauque N, Gerard N, Bruneau S, Branchereau J, Blancho G, Mesnard B, Brouard S, Giral M, Cantarovich D, Dantal J. The concept of immunothrombosis in pancreas transplantation. Am J Transplant 2025; 25:650-668. [PMID: 39709128 DOI: 10.1016/j.ajt.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/06/2024] [Accepted: 11/23/2024] [Indexed: 12/23/2024]
Abstract
Early failure of a pancreatic allograft due to complete thrombosis has an incidence of approximately 10% and is the main cause of comorbidity in pancreas transplantation. Although several risk factors have been identified, the exact mechanisms leading to this serious complication are still unclear. In this review, we define the roles of the individual components involved during sterile immunothrombosis-namely endothelial cells, platelets, and innate immune cells. Further, we review the published evidence linking the main risk factors for pancreatic thrombosis to cellular activation and vascular modifications. We also explore the unique features of the pancreas itself: the vessel endothelium, specific vascularization, and relationship to other organs-notably the spleen and adipose tissue. Finally, we summarize the therapeutic possibilities for the prevention of pancreatic thrombosis depending on the different mechanisms such as anticoagulation, anti-inflammatory molecules, endothelium protectors, antagonism of damage-associated molecular patterns, and use of machine perfusion.
Collapse
Affiliation(s)
- Christophe Masset
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| | - Nicolas Drillaud
- Laboratory of Hemostasis, Nantes University Hospital, Nantes, France
| | | | - Nicolas Degauque
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Nathalie Gerard
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Sarah Bruneau
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Julien Branchereau
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Gilles Blancho
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Benoit Mesnard
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Sophie Brouard
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Magali Giral
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Diego Cantarovich
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Jacques Dantal
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| |
Collapse
|
3
|
Shyong O, Alfakhri N, Bates SV, Carroll RW, Gallagher K, Huang L, Madhavan V, Murphy SA, Okrzesik SA, Yager PH, Yonker LM, Lok J. Multisystem Inflammatory Syndrome in Children: A Comprehensive Review Over the Past Five Years. J Intensive Care Med 2025:8850666251320558. [PMID: 40096057 DOI: 10.1177/08850666251320558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Multisystem Inflammatory Syndrome in Children: A Comprehensive Review over the Past Five Years This review explores many facets of Multisystem Inflammatory Syndrome in Children (MIS-C) over the previous 5 years. In the time since the COVID 19 pandemic gripped our medical systems, we can now explore the data that has been collected from the previous years. The literature has allowed us to better understand the impact of COVID 19 and the post illness occurrence of a severe systemic inflammatory disease on our youngest patient populations. This paper will outline the pathophysiology of MIS-C, the treatments utilized, short and long-term patient outcomes including epidemiological factors.
Collapse
Affiliation(s)
- Olivia Shyong
- Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nora Alfakhri
- Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sara V Bates
- Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Newborn Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ryan W Carroll
- Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Krista Gallagher
- Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lena Huang
- Touro University Nevada, College of Osteopathic Medicine, Henderson, NV, USA
| | - Vandana Madhavan
- Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Pediatric Infectious Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Sarah A Murphy
- Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sylvia A Okrzesik
- Department of Pharmacy, Massachusetts General Hospital, Boston, MA, USA
| | - Phoebe H Yager
- Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lael M Yonker
- Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Pediatric Pulmonary Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Josephine Lok
- Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Li L, Ji L, Chen J, Hou S, Yang Y, Wang W, Lei B, Zhang W, Zhao K, Zhao Z, Yuan W. Host-derived Bacillus antagonistic novel duck reovirus infection by regulating gut microbiota-mediated immune responses. Vet Microbiol 2025; 300:110332. [PMID: 39647218 DOI: 10.1016/j.vetmic.2024.110332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
The Novel Duck Reovirus (NDRV) infection poses a significant health risk to ducks, primarily attributed to the absence of efficacious preventive measures. This research aimed to investigate whether the administration of isolated Bacillus could protect antagonistic NDRV infection in a Cherry Valley duck model. Four indigenous Bacillus strains from the feces of healthy ducks demonstrated promising biosafety profiles. One-day-old ducklings were inoculated intramuscularly with NDRV and subsequently subjected to a 28-day regimen of mixed Bacillus (Bac) treatment. The effects of Bac on pathological symptoms, immune response and intestinal flora were analyzed. The results showed that Bac significantly reduced weight loss, clinical symptoms, and viral loading. Moreover, Bac treatment significantly decreased neutrophils, monocytes proportion, the TNF-α, IL-1β and IL-6 expression, increased platelets, lymphocytes proportion, the IFN-β and IL-10 expression, and restored immune dysfunction. In addition, Bac has increased the relative abundance of Enterococcaceae, Lactobacillales, Bacilli, Ruminococcaceae, Clostridium and Phascolarctobacterium. Moreover, the metabolism of short-chain fatty acids (SCFAs) was further regulated, thereby enhancing the acetate content. The correlation analysis showed that a positive association between acetate levels and IFN-β expression, while a negative correlation was observed with viral loading. In conclusion, the results suggest that the anti-NDRV mechanism of Bac may involve the modulation of gut microbiota to elicit an immune response that inhibits viral infection. This study presents a novel approach for the prevention and treatment of NDRV, thereby establishing a theoretical foundation for the future development of probiotics in the prevention and treatment of NDRV.
Collapse
Affiliation(s)
- Lijie Li
- College of Veterinary Medicine, Hebei Agricultural University, NO.2596 Lekai South Street, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Longhai Ji
- College of Veterinary Medicine, Hebei Agricultural University, NO.2596 Lekai South Street, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Jiawei Chen
- College of Veterinary Medicine, Hebei Agricultural University, NO.2596 Lekai South Street, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Suli Hou
- College of Veterinary Medicine, Hebei Agricultural University, NO.2596 Lekai South Street, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Yuchuan Yang
- College of Veterinary Medicine, Hebei Agricultural University, NO.2596 Lekai South Street, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Weizhu Wang
- College of Veterinary Medicine, Hebei Agricultural University, NO.2596 Lekai South Street, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Baishi Lei
- College of Veterinary Medicine, Hebei Agricultural University, NO.2596 Lekai South Street, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, NO.2596 Lekai South Street, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, NO.2596 Lekai South Street, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Zhuo Zhao
- Beijing Centrebio Biological Co., Ltd, Beijing 102629, China.
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, NO.2596 Lekai South Street, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China.
| |
Collapse
|
5
|
Guo ZY, Tang YQ, Zhang ZB, Liu J, Zhuang YX, Li T. COVID-19: from immune response to clinical intervention. PRECISION CLINICAL MEDICINE 2024; 7:pbae015. [PMID: 39139990 PMCID: PMC11319938 DOI: 10.1093/pcmedi/pbae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has highlighted the pivotal role of the immune response in determining the progression and severity of viral infections. In this paper, we review the most recent studies on the complicated dynamics between SARS-CoV-2 and the host immune system, highlight the importance of understanding these dynamics in developing effective treatments and formulate potent management strategies for COVID-19. We describe the activation of the host's innate immunity and the subsequent adaptive immune response following infection with SARS-CoV-2. In addition, the review emphasizes the immune evasion strategies of the SARS-CoV-2, including inhibition of interferon production and induction of cytokine storms, along with the resulting clinical outcomes. Finally, we assess the efficacy of current treatment strategies, including antiviral drugs, monoclonal antibodies, and anti-inflammatory treatments, and discuss their role in providing immunity and preventing severe disease.
Collapse
Affiliation(s)
- Zheng-yang Guo
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Yan-qing Tang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Zi-bo Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Yu-xin Zhuang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
6
|
Man Y, Zhai Y, Jiang A, Bai H, Gulati A, Plebani R, Mannix RJ, Merry GE, Goyal G, Belgur C, Hall SRR, Ingber DE. Exacerbation of influenza virus induced lung injury by alveolar macrophages and its suppression by pyroptosis blockade in a human lung alveolus chip. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607799. [PMID: 39211234 PMCID: PMC11361059 DOI: 10.1101/2024.08.13.607799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alveolar macrophages (AMs) are the major sentinel immune cells in human alveoli and play a central role in eliciting host inflammatory responses upon distal lung viral infection. Here, we incorporated peripheral human monocyte-derived macrophages within a microfluidic human Lung Alveolus Chip that recreates the human alveolar-capillary interface under an air-liquid interface along with vascular flow to study how residential AMs contribute to the human pulmonary response to viral infection. When Lung Alveolus Chips that were cultured with macrophages were infected with influenza H3N2, there was a major reduction in viral titers compared to chips without macrophages; however, there was significantly greater inflammation and tissue injury. Pro-inflammatory cytokine levels, recruitment of immune cells circulating through the vascular channel, and expression of genes involved in myelocyte activation were all increased, and this was accompanied by reduced epithelial and endothelial cell viability and compromise of the alveolar tissue barrier. These effects were partially mediated through activation of pyroptosis in macrophages and release of pro-inflammatory mediators, such as interleukin (IL)-1β, and blocking pyroptosis via caspase-1 inhibition suppressed lung inflammation and injury on-chip. These findings demonstrate how integrating tissue resident immune cells within human Lung Alveolus Chip can identify potential new therapeutic targets and uncover cell and molecular mechanisms that contribute to the development of viral pneumonia and acute respiratory distress syndrome (ARDS).
Collapse
|
7
|
Zhang J. Immune responses in COVID-19 patients: Insights into cytokine storms and adaptive immunity kinetics. Heliyon 2024; 10:e34577. [PMID: 39149061 PMCID: PMC11325674 DOI: 10.1016/j.heliyon.2024.e34577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
SARS-CoV-2 infection can trigger cytokine storm in some patients, which characterized by an excessive production of cytokines and chemical mediators. This hyperactive immune response may cause significant tissue damage and multiple organ failure (MOF). The severity of COVID-19 correlates with the intensity of cytokine storm, involving elements such as IFN, NF-κB, IL-6, HMGB1, etc. It is imperative to rapidly engage adaptive immunity to effectively control the disease progression. CD4+ T cells facilitate an immune response by improving B cells in the production of neutralizing antibodies and activating CD8+ T cells, which are instrumental in eradicating virus-infected cells. Meanwhile, antibodies from B cells can neutralize virus, obstructing further infection of host cells. In individuals who have recovered from the disease, virus-specific antibodies and memory T cells were observed, which could confer a level of protection, reducing the likelihood of re-infection or attenuating severity. This paper discussed the roles of macrophages, IFN, IL-6 and HMGB1 in cytokine release syndrome (CRS), the intricacies of adaptive immunity, and the persistence of immune memory, all of which are critical for the prevention and therapeutic strategies against COVID-19.
Collapse
Affiliation(s)
- Junguo Zhang
- Pulmonology Department, Fengdu General Hospital, Chongqing, 408200, China
| |
Collapse
|
8
|
Lin J, Bai S, He L, Yang Y, Li X, Luo L, Wang Y, Chen YY, Qin J, Zhong Y. Cytotoxic Lymphocyte-Monocyte Complex Reflects the Dynamics of Coronavirus Disease 2019 Systemic Immune Response. J Infect Dis 2024; 230:5-14. [PMID: 39052699 DOI: 10.1093/infdis/jiae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a variety of clinical manifestations, many of which originate from altered immune responses, either locally or systemically. Immune cell cross-talk occurs mainly in lymphoid organs. However, systemic cell interaction specific to coronavirus disease 2019 has not been well characterized. Here, by employing single-cell RNA sequencing and imaging flow cytometry analysis, we unraveled, in peripheral blood, a heterogeneous group of cell complexes formed by the adherence of CD14+ monocytes to different cytotoxic lymphocytes, including SARS-CoV-2-specific CD8+ T cells, γδ T cells, and natural killer T cells. These lymphocytes attached to CD14+ monocytes that showed enhanced inflammasome activation and pyroptosis-induced cell death in progression stage; in contrast, in the convalescent phase, CD14+ monocytes with elevated antigen presentation potential were targeted by cytotoxic lymphocytes, thereby restricting the excessive immune activation. Collectively, our study reports previously unrecognized cell-cell interplay in the SARS-CoV-2-specific immune response, providing new insight into the intricacy of dynamic immune cell interaction representing antiviral defense.
Collapse
Affiliation(s)
- Jiajia Lin
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
- Shanghai Immune Therapy Institute, Renji Hospital and Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine
| | - Shiyu Bai
- Shanghai Immune Therapy Institute, Renji Hospital and Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine
| | - Liheng He
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
| | - Ye Yang
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xiyue Li
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
- Shanghai Immune Therapy Institute, Renji Hospital and Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine
| | - Liulin Luo
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine
| | - Ying Wang
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Ying Chen
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhong Qin
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine
| | - Yi Zhong
- Shanghai Immune Therapy Institute, Renji Hospital and Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
9
|
Orsenigo F, Stewart A, Hammer CP, Clarke E, Simpkin D, Attia H, Rockall T, Gordon S, Martinez FO. Unifying considerations and evidence of macrophage activation mosaicism through human CSF1R and M1/M2 genes. Cell Rep 2024; 43:114352. [PMID: 38870011 DOI: 10.1016/j.celrep.2024.114352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
Addressing the mononuclear phagocyte system (MPS) and macrophage M1/M2 activation is important in diagnosing hematological disorders and inflammatory pathologies and designing therapeutic tools. CSF1R is a reliable marker to identify all circulating MPS cells and tissue macrophages in humans using a single surface protein. CSF1R permits the quantification and isolation of monocyte and dendritic cell (DC) subsets in conjunction with CD14, CD16, and CD1c and is stable across the lifespan and sexes in the absence of overt pathology. Beyond cell detection, measuring M1/M2 activation in humans poses challenges due to response heterogeneity, transient signaling, and multiple regulation steps for transcripts and proteins. MPS cells respond in a conserved manner to M1/M2 pathways such as interleukin-4 (IL-4), steroids, interferon-γ (IFNγ), and lipopolysaccharide (LPS), for which we propose an ad hoc modular gene expression tool. Signature analysis highlights macrophage activation mosaicism in experimental samples, an emerging concept that points to mixed macrophage activation states in pathology.
Collapse
Affiliation(s)
- Federica Orsenigo
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, UK
| | - Alexander Stewart
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, UK; Virology Department, Animal and Plant Health Agency, APHA-Weybridge, KT15 3NB Addlestone, UK
| | - Clare P Hammer
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, UK; Royal Surrey County Hospital NHS Foundation Trust, GU2 7XX Guildford, UK
| | - Emma Clarke
- Royal Surrey County Hospital NHS Foundation Trust, GU2 7XX Guildford, UK
| | - Daniel Simpkin
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, UK
| | - Hossameldin Attia
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, UK; Royal Surrey County Hospital NHS Foundation Trust, GU2 7XX Guildford, UK
| | - Timothy Rockall
- Royal Surrey County Hospital NHS Foundation Trust, GU2 7XX Guildford, UK
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan; Sir William Dunn School of Pathology, University of Oxford, OX13RE Oxford, UK
| | - Fernando O Martinez
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, UK.
| |
Collapse
|
10
|
Mangiaterra S, Gavazza A, Biagini L, Rossi G. Study of Macrophage Activity in Cats with FIP and Naturally FCoV-Shedding Healthy Cats. Pathogens 2024; 13:437. [PMID: 38921735 PMCID: PMC11206276 DOI: 10.3390/pathogens13060437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/27/2024] Open
Abstract
Coronavirus frequently infects humans and animals, showing the ability to recombine and cross over to different species. Cats can be considered a model for studying coronavirus infection, in which feline coronavirus (FCoV) represents a major enteric pathogen related to gastroenteric disease. In this animal, the virus can acquire tropism for macrophage cells, leading to a deadly disease called feline infectious peritonitis (FIP). In this study, monocyte-derived macrophages were isolated by CD14-positive selection in venous whole blood from 26 cats with FIP and 32 FCoV-positive healthy cats. Phagocytosis and respiratory burst activities were investigated and compared between the groups. This is the first study comparing macrophage activity in cats affected by FIP and healthy cats positive for FCoV infection. Our results showed that in cats with FIP, the phagocytic and respiratory burst activities were significantly lower. Our results support the possible role of host immunity in Coronaviridae pathogenesis in cats, supporting future research on the immune defense against this systemic disease.
Collapse
Affiliation(s)
- Sara Mangiaterra
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.G.); (L.B.); (G.R.)
| | | | | | | |
Collapse
|
11
|
Galati D, Mallardo D, Nicastro C, Zanotta S, Capitelli L, Lombardi C, Baino B, Cavalcanti E, Sale S, Labonia F, Boenzi R, Atripaldi L, Ascierto PA, Bocchino M. The Dysregulation of the Monocyte-Dendritic Cell Interplay Is Associated with In-Hospital Mortality in COVID-19 Pneumonia. J Clin Med 2024; 13:2481. [PMID: 38731010 PMCID: PMC11084469 DOI: 10.3390/jcm13092481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Background: The monocyte-phagocyte system (MPS), including monocytes/macrophages and dendritic cells (DCs), plays a key role in anti-viral immunity. We aimed to analyze the prognostic value of the MPS components on in-hospital mortality in a cohort of 58 patients (M/F; mean age ± SD years) with COVID-19 pneumonia and 22 age- and sex-matched healthy controls. Methods: We measured frequencies and absolute numbers of peripheral blood CD169+ monocytes, conventional CD1c+ and CD141+ (namely cDC2 and cDC1), and plasmacytoid CD303+ DCs by means of multi-parametric flow cytometry. A gene profile analysis of 770 immune-inflammatory-related human genes and 20 SARS-CoV-2 genes was also performed. Results: Median frequencies and absolute counts of CD169-expressing monocytes were significantly higher in COVID-19 patients than in controls (p 0.04 and p 0.01, respectively). Conversely, percentages and absolute numbers of all DC subsets were markedly depleted in patients (p < 0.0001). COVID-19 cases with absolute counts of CD169+ monocytes above the median value of 114.68/μL had significantly higher in-hospital mortality (HR 4.96; 95% CI: 1.42-17.27; p = 0.02). Interleukin (IL)-6 concentrations were significantly increased in COVID-19 patients (p < 0.0001 vs. controls), and negatively correlated with the absolute counts of circulating CD1c+ cDC2 (r = -0.29, p = 0.034) and CD303+ pDC (r = -0.29, p = 0.036) subsets. Viral genes were upregulated in patients with worse outcomes along with inflammatory mediators such as interleukin (IL)-1 beta, tumor necrosis-α (TNF-α) and the anticoagulant protein (PROS1). Conversely, surviving patients had upregulated genes related to inflammatory and anti-viral-related pathways along with the T cell membrane molecule CD4. Conclusions: Our results suggest that the dysregulated interplay between the different components of the MPS along with the imbalance between viral gene expression and host anti-viral immunity negatively impacts COVID-19 outcomes. Although the clinical scenario of COVID-19 has changed over time, a deepening of its pathogenesis remains a priority in clinical and experimental research.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Innovative Diagnostics, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.G.); (S.Z.)
| | - Domenico Mallardo
- Unit of Melanoma and Innovative Therapy, Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.M.); (P.A.A.)
| | - Carmine Nicastro
- Clinical Biochemistry Unit, AORN dei Colli, Ospedale Monaldi, 80131 Naples, Italy; (C.N.); (S.S.); (R.B.); (L.A.)
| | - Serena Zanotta
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Innovative Diagnostics, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.G.); (S.Z.)
| | - Ludovica Capitelli
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Monaldi Hospital, 80131 Naples, Italy; (L.C.); (C.L.); (B.B.)
| | - Carmen Lombardi
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Monaldi Hospital, 80131 Naples, Italy; (L.C.); (C.L.); (B.B.)
| | - Bianca Baino
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Monaldi Hospital, 80131 Naples, Italy; (L.C.); (C.L.); (B.B.)
| | - Ernesta Cavalcanti
- Laboratory Medicine Unit, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (E.C.)
| | - Silvia Sale
- Clinical Biochemistry Unit, AORN dei Colli, Ospedale Monaldi, 80131 Naples, Italy; (C.N.); (S.S.); (R.B.); (L.A.)
| | - Francesco Labonia
- Laboratory Medicine Unit, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (E.C.)
| | - Rita Boenzi
- Clinical Biochemistry Unit, AORN dei Colli, Ospedale Monaldi, 80131 Naples, Italy; (C.N.); (S.S.); (R.B.); (L.A.)
| | - Luigi Atripaldi
- Clinical Biochemistry Unit, AORN dei Colli, Ospedale Monaldi, 80131 Naples, Italy; (C.N.); (S.S.); (R.B.); (L.A.)
| | - Paolo Antonio Ascierto
- Unit of Melanoma and Innovative Therapy, Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.M.); (P.A.A.)
| | - Marialuisa Bocchino
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Monaldi Hospital, 80131 Naples, Italy; (L.C.); (C.L.); (B.B.)
| |
Collapse
|
12
|
Gu X, Huang L, Li X, Zhou Y, Zhang H, Wang Y, Cui D, Yu T, Wang Y, Cao B. Association of Monocyte Count With Lung Function and Exercise Capacity Among Hospitalized COVID-19 Survivors: A 2-Year Cohort Study. Influenza Other Respir Viruses 2024; 18:e13263. [PMID: 38503498 PMCID: PMC10950557 DOI: 10.1111/irv.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Abnormal changes of monocytes have been observed in acute COVID-19, whereas associations of monocyte count with long COVID were not sufficiently elucidated. METHODS A cohort study was conducted among COVID-19 survivors discharged from hospital. The primary outcomes were core symptoms of long COVID, distance walked in 6 min, and lung function, and the secondary outcomes were health-related quality of life and healthcare use after discharge. Latent variable mixture modeling was used to classify individuals into groups with similar trajectory of monocyte count from discharge to 2-year after symptom onset. Multivariable adjusted generalized linear regression models and logistic regression models were used to estimate the associations of monocyte count trajectories and monocyte count at discharge with outcomes. RESULTS In total, 1389 study participants were included in this study. Two monocyte count trajectories including high to normal high and normal trajectory were identified. After multivariable adjustment, participants in high to normal high trajectory group had an odds ratio (OR) of 2.52 (95% CI, 1.44-4.42) for smell disorder, 2.27 (1.27-4.04) for 6-min walking distance less than lower limit of normal range, 2.45 (1.08-5.57) for total lung capacity (TLC) < 80% of predicted, 3.37 (1.16-9.76) for personal care problem, and 1.70 (1.12-2.58) for rehospitalization after discharge at 2-year follow-up compared with those in normal trajectory group. Monocyte count at discharge showed similar results, which was associated with smell disorder, TLC < 80% of predicted, diffusion impairment, and rehospitalization. CONCLUSIONS Monocyte count may serve as an easily accessible marker for long-term management of people recovering from COVID-19.
Collapse
Affiliation(s)
- Xiaoying Gu
- National Center for Respiratory MedicineBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityBeijingChina
- National Clinical Research Center for Respiratory DiseasesBeijingChina
- Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Department of Clinical Research and Data Management, Center of Respiratory MedicineChina‐Japan Friendship HospitalBeijingChina
| | - Lixue Huang
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Xia Li
- Hubei Provincial Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and TreatmentChinese Academy of Medical SciencesWuhanChina
| | - Yuting Zhou
- Department of Pulmonary and Critical Care Medicine, Hubei Provincial Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and TreatmentChinese Academy of Medical SciencesWuhanChina
| | - Hui Zhang
- National Center for Respiratory MedicineBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityBeijingChina
- National Clinical Research Center for Respiratory DiseasesBeijingChina
- Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory MedicineChina‐Japan Friendship HospitalBeijingChina
- Department of Pulmonary and Critical Care MedicineCapital Medical UniversityBeijingChina
| | - Yeming Wang
- National Center for Respiratory MedicineBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityBeijingChina
- National Clinical Research Center for Respiratory DiseasesBeijingChina
- Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory MedicineChina‐Japan Friendship HospitalBeijingChina
| | - Dan Cui
- Department of Pulmonary and Critical Care MedicineThe 2nd Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Ting Yu
- Department of Pulmonary and Critical Care Medicine, Hubei Provincial Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and TreatmentChinese Academy of Medical SciencesWuhanChina
| | - Yimin Wang
- National Center for Respiratory MedicineBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityBeijingChina
- National Clinical Research Center for Respiratory DiseasesBeijingChina
- Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Department of Pulmonary and Critical Care Medicine, Hubei Provincial Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and TreatmentChinese Academy of Medical SciencesWuhanChina
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory MedicineChina‐Japan Friendship HospitalBeijingChina
| | - Bin Cao
- National Center for Respiratory MedicineBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityBeijingChina
- National Clinical Research Center for Respiratory DiseasesBeijingChina
- Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory MedicineChina‐Japan Friendship HospitalBeijingChina
- Department of Pulmonary and Critical Care MedicineCapital Medical UniversityBeijingChina
- Tsinghua University‐Peking University Joint Center for Life SciencesBeijingChina
| |
Collapse
|
13
|
Henao-Agudelo JS, Ayala S, Badiel M, Zea-Vera AF, Matta Cortes L. Classical monocytes-low expressing HLA-DR is associated with higher mortality rate in SARS-CoV-2+ young patients with severe pneumonia. Heliyon 2024; 10:e24099. [PMID: 38268832 PMCID: PMC10803910 DOI: 10.1016/j.heliyon.2024.e24099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Aims This study aimed to investigate whether monocyte dysregulation and hyperinflammation serve as predictive markers for mortality in young patients with SARS-CoV-2 severe pneumonia. Methods A prospective cohort study was conducted in a tertiary-level public University Hospital in Colombia. Forty young adults (18-50 years of age) with severe pneumonia and SARS-CoV-2 infection confirmed by qPCR, were enrroled. Serum cytokines and the monocyte phenotype profile, including PDL1/HLA-DR expression, were determined during the first 24 h of hospitalization. Routine laboratory parameters were measured throughout patient follow-up until either death or hospital discharge. We also included a cohort of twenty-five healthy control subjects. Key findings Elevated levels of IL-10, IL-8, and IL-6 cytokines emerged as robust predictors of mortality in young adults with severe pneumonia due to SARS-CoV-2 infected. A descriptive analysis revealed a cumulative mortality rate of 30 % in unvaccinated and ICU-admitted patients. Patients who died had significantly lower expression of HLA-DR on their classical monocytes subsets (CD14+CD16-) than survivors and healthy controls. Lower expression of HLA-DR was associated with greater clinical severity (APACHE≥12) and bacterial coinfection (relative risk 2.5 95%CI [1.18-5.74]). Notably, the expression of HLA-DR in 27.5 % of CD14+/CD16- monocytes was associated with a significantly lower probability of survival. Significance The early reduction in HLA-DR expression within classical monocytes emerged as an independent predictor of mortality, irrespective of comorbidities. Together with PD-L1 expression and cytokine alterations, these findings support the notion that monocyte immunosuppression plays a fundamental role in the pathogenesis and mortality of young patients infected with SARS-CoV-2. These findings hold significant implications for risk assessment and therapeutic strategies in managing critically ill young adults with SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Sebastian Ayala
- Department of Internal Medicine, Universidad del Valle, Cali, Colombia
- Hospital Universitario del Valle Evaristo García, Cali, Colombia
| | - Marisol Badiel
- Department of Internal Medicine, Universidad del Valle, Cali, Colombia
- Hospital Universitario del Valle Evaristo García, Cali, Colombia
| | - Andrés F. Zea-Vera
- School of Basic Sciences, Universidad del Valle, Cali, Colombia
- LCIM//Division of Intramural Research, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Lorena Matta Cortes
- Department of Internal Medicine, Universidad del Valle, Cali, Colombia
- Hospital Universitario del Valle Evaristo García, Cali, Colombia
| |
Collapse
|
14
|
Tyler SR, Lozano-Ojalvo D, Guccione E, Schadt EE. Anti-correlated feature selection prevents false discovery of subpopulations in scRNAseq. Nat Commun 2024; 15:699. [PMID: 38267438 PMCID: PMC10808220 DOI: 10.1038/s41467-023-43406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 11/07/2023] [Indexed: 01/26/2024] Open
Abstract
While sub-clustering cell-populations has become popular in single cell-omics, negative controls for this process are lacking. Popular feature-selection/clustering algorithms fail the null-dataset problem, allowing erroneous subdivisions of homogenous clusters until nearly each cell is called its own cluster. Using real and synthetic datasets, we find that anti-correlated gene selection reduces or eliminates erroneous subdivisions, increases marker-gene selection efficacy, and efficiently scales to millions of cells.
Collapse
Affiliation(s)
- Scott R Tyler
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Daniel Lozano-Ojalvo
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ernesto Guccione
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
15
|
Cezar R, Kundura L, André S, Lozano C, Vincent T, Muller L, Lefrant JY, Roger C, Claret PG, Duvnjak S, Loubet P, Sotto A, Tran TA, Estaquier J, Corbeau P. T4 apoptosis in the acute phase of SARS-CoV-2 infection predicts long COVID. Front Immunol 2024; 14:1335352. [PMID: 38235145 PMCID: PMC10791767 DOI: 10.3389/fimmu.2023.1335352] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024] Open
Abstract
Background As about 10% of patients with COVID-19 present sequelae, it is important to better understand the physiopathology of so-called long COVID. Method To this aim, we recruited 29 patients hospitalized for SARS-CoV-2 infection and, by Luminex®, quantified 19 soluble factors in their plasma and in the supernatant of their peripheral blood mononuclear cells, including inflammatory and anti-inflammatory cytokines and chemokines, Th1/Th2/Th17 cytokines, and endothelium activation markers. We also measured their T4, T8 and NK differentiation, activation, exhaustion and senescence, T cell apoptosis, and monocyte subpopulations by flow cytometry. We compared these markers between participants who developed long COVID or not one year later. Results None of these markers was predictive for sequelae, except programmed T4 cell death. T4 lymphocytes from participants who later presented long COVID were more apoptotic in culture than those of sequelae-free participants at Month 12 (36.9 ± 14.7 vs. 24.2 ± 9.0%, p = 0.016). Conclusions Our observation raises the hypothesis that T4 cell death during the acute phase of SARS-CoV-2 infection might pave the way for long COVID. Mechanistically, T4 lymphopenia might favor phenomena that could cause sequelae, including SARS-CoV-2 persistence, reactivation of other viruses, autoimmunity and immune dysregulation. In this scenario, inhibiting T cell apoptosis, for instance, by caspase inhibitors, could prevent long COVID.
Collapse
Affiliation(s)
- Renaud Cezar
- Immunology Department, Nîmes University Hospital, Nîmes, France
| | - Lucy Kundura
- Institute of Human Genetics, UMR9002, Centre National de la Recherche Scientifique (CNRS) and Montpellier University, Montpellier, France
| | - Sonia André
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1124, Université de Paris, Paris, France
| | - Claire Lozano
- Immunology Department, Montpellier University Hospital, Montpellier, France
| | - Thierry Vincent
- Immunology Department, Montpellier University Hospital, Montpellier, France
| | - Laurent Muller
- Surgical Intensive Care Department, Nîmes University Hospital, Nîmes, France
| | - Jean-Yves Lefrant
- Surgical Intensive Care Department, Nîmes University Hospital, Nîmes, France
| | - Claire Roger
- Surgical Intensive Care Department, Nîmes University Hospital, Nîmes, France
| | - Pierre-Géraud Claret
- Medical and Surgical Emergency Department, Nîmes University Hospital, Nîmes, France
| | - Sandra Duvnjak
- Gerontology Department, Nîmes University Hospital, Nîmes, France
| | - Paul Loubet
- Infectious Diseases Department, Nîmes University Hospital, Nîmes, France
| | - Albert Sotto
- Infectious Diseases Department, Nîmes University Hospital, Nîmes, France
| | - Tu-Ahn Tran
- Pediatrics Department, Nîmes University Hospital, Nîmes, France
| | - Jérôme Estaquier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1124, Université de Paris, Paris, France
- Laval University Research Center, Quebec City, QC, Canada
| | - Pierre Corbeau
- Immunology Department, Nîmes University Hospital, Nîmes, France
- Institute of Human Genetics, UMR9002, Centre National de la Recherche Scientifique (CNRS) and Montpellier University, Montpellier, France
| |
Collapse
|
16
|
Gnaba S, Sukhachev D, Pascreau T, Ackermann F, Delcominette F, Habarou F, Védrenne A, Jolly E, Sukhacheva E, Farfour E, Vasse M. Can Haematological Parameters Discriminate COVID-19 from Influenza? J Clin Med 2023; 13:186. [PMID: 38202193 PMCID: PMC10780240 DOI: 10.3390/jcm13010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Symptoms of COVID-19 are similar to the influenza virus, but because treatments and prognoses are different, it is important to accurately and rapidly differentiate these diseases. The aim of this study was to evaluate whether the analysis of complete blood count (CBC), including cellular population (CPD) data of leukocytes and automated flow cytometry analysis, could discriminate these pathologies. In total, 350 patients with COVID-19 and 102 patients with influenza were included between September 2021 and April 2022 in the tertiary hospital of Suresnes (France). Platelets were lower in patients with influenza than in patients with COVID-19, whereas the CD16pos monocyte count and the ratio of the CD16pos monocytes/total monocyte count were higher. Significant differences were observed for 9/56 CPD of COVID-19 and flu patients. A logistic regression model with 17 parameters, including among them 11 CPD, the haemoglobin level, the haematocrit, the red cell distribution width, and B-lymphocyte and CD16pos monocyte levels, discriminates COVID-19 patients from flu patients. The sensitivity and efficiency of the model were 96.2 and 86.6%, respectively, with an area under the curve of 0.862. Classical parameters of CBC are very similar among the three infections, but CPD, CD16pos monocytes, and B-lymphocyte levels can discriminate patients with COVID-19.
Collapse
Affiliation(s)
- Sahar Gnaba
- Biology Department, Foch Hospital, 92150 Suresnes, France; (S.G.); (T.P.); (F.D.); (F.H.); (A.V.); (E.J.); (E.F.)
| | | | - Tiffany Pascreau
- Biology Department, Foch Hospital, 92150 Suresnes, France; (S.G.); (T.P.); (F.D.); (F.H.); (A.V.); (E.J.); (E.F.)
- INSERM Hémostase Inflammation Thrombose HITh U1176, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Félix Ackermann
- Department of Internal Medicine, Foch Hospital, 92150 Suresnes, France;
| | - Frédérique Delcominette
- Biology Department, Foch Hospital, 92150 Suresnes, France; (S.G.); (T.P.); (F.D.); (F.H.); (A.V.); (E.J.); (E.F.)
| | - Florence Habarou
- Biology Department, Foch Hospital, 92150 Suresnes, France; (S.G.); (T.P.); (F.D.); (F.H.); (A.V.); (E.J.); (E.F.)
| | - Aurélie Védrenne
- Biology Department, Foch Hospital, 92150 Suresnes, France; (S.G.); (T.P.); (F.D.); (F.H.); (A.V.); (E.J.); (E.F.)
| | - Emilie Jolly
- Biology Department, Foch Hospital, 92150 Suresnes, France; (S.G.); (T.P.); (F.D.); (F.H.); (A.V.); (E.J.); (E.F.)
| | | | - Eric Farfour
- Biology Department, Foch Hospital, 92150 Suresnes, France; (S.G.); (T.P.); (F.D.); (F.H.); (A.V.); (E.J.); (E.F.)
| | - Marc Vasse
- Biology Department, Foch Hospital, 92150 Suresnes, France; (S.G.); (T.P.); (F.D.); (F.H.); (A.V.); (E.J.); (E.F.)
- INSERM Hémostase Inflammation Thrombose HITh U1176, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
17
|
Fanelli M, Petrone V, Maracchioni C, Chirico R, Cipriani C, Coppola L, Malagnino V, Teti E, Sorace C, Zordan M, Vitale P, Iannetta M, Balestrieri E, Rasi G, Grelli S, Malergue F, Sarmati L, Minutolo A, Matteucci C. Persistence of circulating CD169+monocytes and HLA-DR downregulation underline the immune response impairment in PASC individuals: the potential contribution of different COVID-19 pandemic waves. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100215. [PMID: 38187999 PMCID: PMC10767315 DOI: 10.1016/j.crmicr.2023.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
The use of CD169 as a marker of viral infection has been widely discussed in the context of COVID-19, and in particular, its crucial role in the early detection of SARS-CoV-2 infection and its association with the severity and clinical outcome of COVID-19 were demonstrated. COVID-19 patients show relevant systemic alteration and immunological dysfunction that persists in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC). It is critical to implement the characterization of the disease, focusing also on the possible impact of the different COVID-19 waves and the consequent effects found after infection. On this basis, we evaluated by flow cytometry the expression of CD169 and HLA-DR on monocytes from COVID-19 patients and PASC individuals to better elucidate their involvement in immunological dysfunction, also evaluating the possible impact of different pandemic waves. The results confirm CD169 RMFI is a good marker of viral infection. Moreover, COVID-19 patients and PASC individuals showed high percentage of CD169+ monocytes, but low percentage of HLA-DR+ monocytes and the alteration of systemic inflammatory indices. We have also observed alterations of CD169 and HLA-DR expression and indices of inflammation upon different COVID-19 waves. The persistence of specific myeloid subpopulations suggests a role of CD169+ monocytes and HLA-DR in COVID-19 disease and chronic post-infection inflammation, opening new opportunities to evaluate the impact of specific pandemic waves on the immune response impairment and systemic alterations with the perspective to provide new tools to monitoring new variants and diseases associated to emerging respiratory viruses.
Collapse
Affiliation(s)
- Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Christian Maracchioni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Rossella Chirico
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Luigi Coppola
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Vincenzo Malagnino
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Elisabetta Teti
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Chiara Sorace
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Marta Zordan
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Pietro Vitale
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Marco Iannetta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Guido Rasi
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
- Virology Unit, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Fabrice Malergue
- Global Research Organization, Beckman Coulter Life Sciences, Marseille, 13009, France
| | - Loredana Sarmati
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| |
Collapse
|
18
|
Frugoli A, Ong J, Meyer B, Khiatah B, Bernstein R, Hernandez A, Diaz G. Monocyte Distribution Width Predicts Sepsis, Respiratory Failure, and Death in COVID-19. Cureus 2023; 15:e50525. [PMID: 38222192 PMCID: PMC10787605 DOI: 10.7759/cureus.50525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/16/2024] Open
Abstract
Introduction Sepsis is the leading cause of hospital mortality nationwide. Early recognition has been shown to improve outcomes. This research investigates the use of monocyte distribution width's (MDW) ability to detect sepsis and clinically correlate to outcomes in COVID-19 infection. Methods This is a retrospective, single-center cohort study of adult patients with confirmed COVID-19 requiring hospital admission over a 14-month period (September 2020 to November 2021). MDW was evaluated as a cytomarker to predict disease severity, mortality, and determination of sepsis in patients with COVID-19. Additionally, MDW was compared to existing inflammatory markers, including procalcitonin, D-dimer, ferritin, and lactic acid. Results MDW was able to predict sepsis in patients with COVID-19. The average MDW was found to be significantly higher in the detection of sepsis (25.50 ± 5.93) vs. patients without (23.13 ± 4.46) (p < 0.01). MDW was able to correlate with clinical outcomes or respiratory failure/hypoxia and death. An MDW value of 24.9 was shown to be the best cut-off value in determining fatal outcomes; receiver operating characteristic curve analysis revealed an area under the curve value of 0.69 (95% CI: 0.55-0.71) with a sensitivity of 83% and specificity of 71%. A chi-square test was performed, which detected a significant association between MDW values and the final clinical outcome of COVID-19 (OR = 3.52, 95% CI: 1.78-7.11, p < 0.001). Additionally, the mean MDW of patients with hypoxia or respiratory failure was significantly higher (22 vs. 25, p < 0.1). MDW did not correlate with any of the existing inflammatory markers. Conclusion MDW is a novel and reliable cytomarker for identifying sepsis in patients with COVID-19 infection. High MDW values are associated with clinical outcomes of respiratory failure and death with a mortality rate or absolute risk of 25%. MDW is easily obtained from routine laboratory evaluation in the emergency room and has the potential to be a useful tool in the triage of COVID-19 patients.
Collapse
Affiliation(s)
- Amanda Frugoli
- Graduate Medical Education/Internal Medicine, Community Memorial Hospital, Ventura, USA
| | - Johnson Ong
- Graduate Medical Education/Internal Medicine, Community Memorial Hospital, Ventura, USA
| | - Brittany Meyer
- Graduate Medical Education/Internal Medicine, Community Memorial Hospital, Ventura, USA
| | - Bashar Khiatah
- Graduate Medical Education/Internal Medicine, Community Memorial Hospital, Ventura, USA
| | - Robert Bernstein
- Pulmonary and Critical Care Medicine/Internal Medicine, Community Memorial Hospital, Ventura, USA
| | - Anthony Hernandez
- Graduate Medical Education/Emergency Medicine, Community Memorial Hospital, Ventura, USA
| | - Graal Diaz
- Graduate Medical Education, Community Memorial Health System, Ventura, USA
| |
Collapse
|
19
|
Deprez J, Verbeke R, Meulewaeter S, Aernout I, Dewitte H, Decruy T, Coudenys J, Van Duyse J, Van Isterdael G, Peer D, van der Meel R, De Smedt SC, Jacques P, Elewaut D, Lentacker I. Transport by circulating myeloid cells drives liposomal accumulation in inflamed synovium. NATURE NANOTECHNOLOGY 2023; 18:1341-1350. [PMID: 37430039 DOI: 10.1038/s41565-023-01444-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
The therapeutic potential of liposomes to deliver drugs into inflamed tissue is well documented. Liposomes are believed to largely transport drugs into inflamed joints by selective extravasation through endothelial gaps at the inflammatory sites, known as the enhanced permeation and retention effect. However, the potential of blood-circulating myeloid cells for the uptake and delivery of liposomes has been largely overlooked. Here we show that myeloid cells can transport liposomes to inflammatory sites in a collagen-induced arthritis model. It is shown that the selective depletion of the circulating myeloid cells reduces the accumulation of liposomes up to 50-60%, suggesting that myeloid-cell-mediated transport accounts for more than half of liposomal accumulation in inflamed regions. Although it is widely believed that PEGylation inhibits premature liposome clearance by the mononuclear phagocytic system, our data show that the long blood circulation times of PEGylated liposomes rather favours uptake by myeloid cells. This challenges the prevailing theory that synovial liposomal accumulation is primarily due to the enhanced permeation and retention effect and highlights the potential for other pathways of delivery in inflammatory diseases.
Collapse
Affiliation(s)
- Joke Deprez
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Unit Molecular Immunology and Inflammation, VIB Centre for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Rein Verbeke
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sofie Meulewaeter
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ilke Aernout
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Heleen Dewitte
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Tine Decruy
- Unit Molecular Immunology and Inflammation, VIB Centre for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Julie Coudenys
- Unit Molecular Immunology and Inflammation, VIB Centre for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Julie Van Duyse
- VIB Flow Core, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Gert Van Isterdael
- VIB Flow Core, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Peggy Jacques
- Unit Molecular Immunology and Inflammation, VIB Centre for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Dirk Elewaut
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
- Unit Molecular Immunology and Inflammation, VIB Centre for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
20
|
Ceccarelli G, Alessandri F, Migliara G, Baccolini V, Giordano G, Galardo G, Marzuillo C, De Vito C, Russo A, Ciccozzi M, Villari P, Venditti M, Mastroianni CM, Pugliese F, d’Ettorre G. Reduced Reliability of Procalcitonin (PCT) as a Biomarker of Bacterial Superinfection: Concerns about PCT-Driven Antibiotic Stewardship in Critically Ill COVID-19 Patients-Results from a Retrospective Observational Study in Intensive Care Units. J Clin Med 2023; 12:6171. [PMID: 37834815 PMCID: PMC10573961 DOI: 10.3390/jcm12196171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The aim of this study was to assess whether procalcitonin levels is a diagnostic tool capable of accurately identifying sepsis and ventilator-associated pneumonia (VAP) even in critically ill COVID-19 patients. METHODS In this retrospective, observational study, all critically ill COVID-19 patients who survived for ≥2 days in a single university hospital and had at least one serum procalcitonin (PCT) value and associated blood culture and/or culture from a lower respiratory tract specimen available were eligible for the study. RESULTS Over the research period, 184 patients were recruited; 67 VAP/BSI occurred, with an incidence rate of 21.82 episodes of VAP/BSI (95% CI: 17.18-27.73) per 1000 patient-days among patients who were included. At the time of a positive microbiological culture, an average PCT level of 1.25-3.2 ng/mL was found. Moreover, also in subjects without positive cultures, PCT was altered in 21.7% of determinations, with an average value of 1.04-5.5 ng/mL. Both PCT and PCT-72 h were not linked to a diagnosis of VAP/BSI in COVID-19 patients, according to the multivariable GEE models (aOR 1.13, 95% CI 0.51-2.52 for PCT; aOR 1.32, 95% CI 0.66-2.64 for PCT-72 h). CONCLUSION Elevated PCT levels might not always indicate bacterial superinfections or coinfections in a severe COVID-19 setting.
Collapse
Affiliation(s)
- Giancarlo Ceccarelli
- Hospital Policlinico Umberto I, 00161 Rome, Italy; (G.C.); (G.G.); (G.M.); (V.B.); (G.G.); (M.V.); (C.M.M.); (F.P.); (G.d.)
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00185 Rome, Italy; (C.M.); (P.V.)
| | - Francesco Alessandri
- Hospital Policlinico Umberto I, 00161 Rome, Italy; (G.C.); (G.G.); (G.M.); (V.B.); (G.G.); (M.V.); (C.M.M.); (F.P.); (G.d.)
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00185 Rome, Italy; (C.M.); (P.V.)
- Intensive Care Unit, Department of General, Specialistic Surgery, University of Rome Sapienza, 00185 Rome, Italy
| | - Giuseppe Migliara
- Hospital Policlinico Umberto I, 00161 Rome, Italy; (G.C.); (G.G.); (G.M.); (V.B.); (G.G.); (M.V.); (C.M.M.); (F.P.); (G.d.)
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00185 Rome, Italy; (C.M.); (P.V.)
| | - Valentina Baccolini
- Hospital Policlinico Umberto I, 00161 Rome, Italy; (G.C.); (G.G.); (G.M.); (V.B.); (G.G.); (M.V.); (C.M.M.); (F.P.); (G.d.)
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00185 Rome, Italy; (C.M.); (P.V.)
| | - Giovanni Giordano
- Hospital Policlinico Umberto I, 00161 Rome, Italy; (G.C.); (G.G.); (G.M.); (V.B.); (G.G.); (M.V.); (C.M.M.); (F.P.); (G.d.)
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00185 Rome, Italy; (C.M.); (P.V.)
- Intensive Care Unit, Department of General, Specialistic Surgery, University of Rome Sapienza, 00185 Rome, Italy
| | - Gioacchino Galardo
- Hospital Policlinico Umberto I, 00161 Rome, Italy; (G.C.); (G.G.); (G.M.); (V.B.); (G.G.); (M.V.); (C.M.M.); (F.P.); (G.d.)
| | - Carolina Marzuillo
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00185 Rome, Italy; (C.M.); (P.V.)
| | - Corrado De Vito
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00185 Rome, Italy; (C.M.); (P.V.)
| | - Alessandro Russo
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy;
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
| | - Paolo Villari
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00185 Rome, Italy; (C.M.); (P.V.)
| | - Mario Venditti
- Hospital Policlinico Umberto I, 00161 Rome, Italy; (G.C.); (G.G.); (G.M.); (V.B.); (G.G.); (M.V.); (C.M.M.); (F.P.); (G.d.)
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00185 Rome, Italy; (C.M.); (P.V.)
| | - Claudio M. Mastroianni
- Hospital Policlinico Umberto I, 00161 Rome, Italy; (G.C.); (G.G.); (G.M.); (V.B.); (G.G.); (M.V.); (C.M.M.); (F.P.); (G.d.)
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00185 Rome, Italy; (C.M.); (P.V.)
| | - Francesco Pugliese
- Hospital Policlinico Umberto I, 00161 Rome, Italy; (G.C.); (G.G.); (G.M.); (V.B.); (G.G.); (M.V.); (C.M.M.); (F.P.); (G.d.)
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00185 Rome, Italy; (C.M.); (P.V.)
- Intensive Care Unit, Department of General, Specialistic Surgery, University of Rome Sapienza, 00185 Rome, Italy
| | - Gabriella d’Ettorre
- Hospital Policlinico Umberto I, 00161 Rome, Italy; (G.C.); (G.G.); (G.M.); (V.B.); (G.G.); (M.V.); (C.M.M.); (F.P.); (G.d.)
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00185 Rome, Italy; (C.M.); (P.V.)
| |
Collapse
|
21
|
Wroński J, Ciechomska M, Kuca-Warnawin E. Impact of methotrexate treatment on vaccines immunogenicity in adult rheumatological patients - Lessons learned from the COVID-19 pandemic. Biomed Pharmacother 2023; 165:115254. [PMID: 37542854 DOI: 10.1016/j.biopha.2023.115254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023] Open
Abstract
Despite the development of new biological and synthetic targeted therapies, methotrexate remains one of the most commonly used immunomodulatory drugs in rheumatology. However, its effect on the immunogenicity of vaccines has been studied only to a limited extent until recently, resulting in the lack of clear guidelines on the use of methotrexate during vaccination. Significant progress was made during the COVID-19 pandemic due to the dynamic development of research on vaccines, including patients with autoimmune inflammatory rheumatic diseases. In the following literature review, we present a summary of what we know so far on the impact of methotrexate on post-vaccination response in adult rheumatology patients, taking into account the lessons learned from the COVID-19 pandemic. Studies on the effect of methotrexate on the immunogenicity of influenza, pneumococcal, herpes zoster, tetanus/diphtheria/pertussis, hepatitis A, yellow fever, and COVID-19 vaccines are described in detail, including the effect of methotrexate on the humoral and cellular response of individual vaccines. The available evidence for recommendations for withholding methotrexate in the post-vaccination period is presented. Lastly, an overview of potential immunological mechanisms through which MTX modulates the immunogenicity of vaccinations is also provided.
Collapse
Affiliation(s)
- Jakub Wroński
- Department of Rheumatology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland.
| | - Marzena Ciechomska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland
| | - Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland
| |
Collapse
|
22
|
Kane AS, Boribong BP, Loiselle M, Chitnis AP, Chavez H, Moldawer LL, Larson SD, Badaki-Makun O, Irimia D, Yonker LM. Monocyte anisocytosis corresponds with increasing severity of COVID-19 in children. Front Pediatr 2023; 11:1177048. [PMID: 37425266 PMCID: PMC10326545 DOI: 10.3389/fped.2023.1177048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Although SARS-CoV-2 infection can lead to severe COVID-19 in children, the role of biomarkers for assessing the risk of progression to severe disease is not well established in the pediatric population. Given the differences in monocyte signatures associated with worsening COVID-19 in adults, we aimed to determine whether monocyte anisocytosis early in the infectious course would correspond with increasing severity of COVID-19 in children. Methods We performed a multicenter retrospective study of 215 children with SARS-CoV-2 infection, Multisystem Inflammatory Syndrome in Children (MIS-C), convalescent COVID-19, and healthy age-matched controls to determine whether monocyte anisocytosis, quantified by monocyte distribution width (MDW) on complete blood count, was associated with increasing severity of COVID-19. We performed exploratory analyses to identify other hematologic parameters in the inflammatory signature of pediatric SARS-CoV-2 infection and determine the most effective combination of markers for assessing COVID-19 severity in children. Results Monocyte anisocytosis increases with COVID-19 severity and need for hospitalization. Although other inflammatory markers such as lymphocyte count, neutrophil/lymphocyte ratio, C-reactive protein, and cytokines correlate with disease severity, these parameters were not as sensitive as MDW for identifying severe disease in children. An MDW threshold of 23 offers a sensitive marker for severe pediatric COVID-19, with improved accuracy when assessed in combination with other hematologic parameters. Conclusion Monocyte anisocytosis corresponds with shifting hematologic profiles and inflammatory markers in children with COVID-19, and MDW serves as a clinically accessible biomarker for severe COVID-19 in children.
Collapse
Affiliation(s)
- Abigail S. Kane
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Brittany P. Boribong
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Maggie Loiselle
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Anagha P. Chitnis
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Hector Chavez
- Department of Pediatrics, Jackson Memorial Hospital, Miami, FL, United States
- Department of Pediatric Emergency Medicine, Holtz Children’s Hospital, Miami, FL, United States
| | - Lyle L. Moldawer
- Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Shawn D. Larson
- Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Oluwakemi Badaki-Makun
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Center for Data Science in Emergency Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Daniel Irimia
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Surgery, Shriners Burn Hospital, Boston, MA, United States
| | - Lael M. Yonker
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Ormen M, Doruk OG, Gozgoz H, Kutlu A, Nurcan G, Sevinc C, Appak O, Kutsoylu OE, Bayraktar F, Yanturali S, Tuncel P. Leucocyte volume, conductivity, and scatter at presentation in COVID-19 patients. Niger J Clin Pract 2023; 26:771-778. [PMID: 37470652 DOI: 10.4103/njcp.njcp_737_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Background In COVID-19 patients, besides changes in leucocyte count, morphological abnormalities of circulating blood cells have been reported. Aim This study aims to investigate the relationship between the morphological and functional properties of leucocytes and the severity of the disease in COVID-19 patients. Materials and Methods Blood samples were collected from COVID-19 patients (n = 130) at the time of admission. The patients were stratified according to the comorbidity, age, LDH, lymhocyte count score as mild, moderate, and severe. Complete blood count and the cell population data were analyzed by the Volume, conductivity, scatter (VCS) technology on Beckman Coulter LH-780 hematology analyzer. Kruskal-Wal'lis test was used to assess the differences between the groups with subsequent Bonferroni correction. Results Neutrophil count was increased, and lymphocyte count was decreased in severe patients compared to mild patients. The increase in the percent of neutrophils and the neutrophil/lymphocyte ratio in the severe patient group was significant in comparison to both the moderate and the mild group. The dispersion of the neutrophil volume and conductivity showed significant changes depending on the severity of the disease. The lymphocyte volume, lymphocyte-volume-SD and lymphocyte-conductivity as well as the monocyte-volume and monocyte-volume-SD were significantly increased in severe patients in comparison to mild patients. The increase of lymphocyte and monocyte volume in severe patients was also significant in comparison to moderate patients. Conclusions COVID-19 infection leads to important changes in cell population data of leucocytes. The volumetric changes in lymphocytes and monocytes are related to the severity of the disease.
Collapse
Affiliation(s)
- M Ormen
- Department of Medical Biochemistry, Dokuz Eylül University Faculty of Medicine, Turkey
| | - O G Doruk
- Department of Medical Biochemistry, Dokuz Eylül University Faculty of Medicine, Turkey
| | - H Gozgoz
- Department of Medical Biochemistry, Dokuz Eylül University Faculty of Medicine, Turkey
| | - A Kutlu
- Department of Medical Biochemistry, Dokuz Eylül University Faculty of Medicine, Turkey
| | - G Nurcan
- Department of Chest Diseases, Dokuz Eylül University Faculty of Medicine, Turkey
| | - C Sevinc
- Department of Chest Diseases, Dokuz Eylül University Faculty of Medicine, Turkey
| | - O Appak
- Department of Medical Microbiology, Dokuz Eylül University Faculty of Medicine, Turkey
| | - O E Kutsoylu
- Department of Infectious Diseases and Clinical Microbiology, Dokuz Eylül University Faculty of Medicine, Turkey
| | - F Bayraktar
- Department of Internal Diseases, Dokuz Eylül University Faculty of Medicine, Turkey
| | - S Yanturali
- Department of Emergency Medicine, Dokuz Eylül University Faculty of Medicine, Turkey
| | - P Tuncel
- Department of Medical Biochemistry, Dokuz Eylül University Faculty of Medicine, Turkey
| |
Collapse
|
24
|
Wulandari S, Hartono, Wibawa T. The role of HMGB1 in COVID-19-induced cytokine storm and its potential therapeutic targets: A review. Immunology 2023; 169:117-131. [PMID: 36571562 PMCID: PMC9880760 DOI: 10.1111/imm.13623] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Hyperinflammation characterized by elevated proinflammatory cytokines known as 'cytokine storms' is the major cause of high severity and mortality seen in COVID-19 patients. The pathology behind the cytokine storms is currently unknown. Increased HMGB1 levels in serum/plasma of COVID-19 patients were reported by many studies, which positively correlated with the level of proinflammatory cytokines. Dead cells following SARS-CoV-2 infection might release a large amount of HMGB1 and RNA of SARS-CoV-2 into extracellular space. HMGB1 is a well-known inflammatory mediator. Additionally, extracellular HMGB1 might interact with SARS-CoV-2 RNA because of its high capability to bind with a wide variety of molecules including nucleic acids and could trigger massive proinflammatory immune responses. This review aimed to critically explore the many possible pathways by which HMGB1-SARS-CoV-2 RNA complexes mediate proinflammatory responses in COVID-19. The contribution of these pathways to impair host immune responses against SARS-CoV-2 infection leading to a cytokine storm was also evaluated. Moreover, since blocking the HMGB1-SARS-CoV-2 RNA interaction might have therapeutic value, some of the HMGB1 antagonists have been reviewed. The HMGB1- SARS-CoV-2 RNA complexes might trigger endocytosis via RAGE which is linked to lysosomal rupture, PRRs activation, and pyroptotic death. High levels of the proinflammatory cytokines produced might suppress many immune cells leading to uncontrolled viral infection and cell damage with more HMGB1 released. Altogether these mechanisms might initiate a proinflammatory cycle leading to a cytokine storm. HMGB1 antagonists could be considered to give benefit in alleviating cytokine storms and serve as a potential candidate for COVID-19 therapy.
Collapse
Affiliation(s)
- Sri Wulandari
- Doctorate Program of Medicine and Health Science, Faculty of MedicinePublic Health and Nursing Universitas Gadjah MadaYogyakartaIndonesia
- Department of Physiology, Faculty of MedicineUniversitas Sebelas MaretSurakartaIndonesia
| | - Hartono
- Department of Physiology, Faculty of MedicineUniversitas Sebelas MaretSurakartaIndonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of MedicinePublic Health and Nursing Universitas Gadjah MadaYogyakartaIndonesia
| |
Collapse
|
25
|
Daorattanachai K, Hirunrut C, Pirompanich P, Weschawalit S, Srivilaithon W. Association of Monocyte Distribution Width with the Need for Respiratory Support in Hospitalized COVID-19 Patients. Indian J Crit Care Med 2023; 27:352-357. [PMID: 37214109 PMCID: PMC10196649 DOI: 10.5005/jp-journals-10071-24447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/04/2023] [Indexed: 05/24/2023] Open
Abstract
Background The monocyte distribution width (MDW), a novel inflammatory biomarker reflecting morphological changes in response to inflammation, has been shown to be useful in identifying COVID-19 infection or predicting death. However, data on the association with predicting the need for respiratory support are still limited. The aim of this study was to determine the association of MDW with the need for respiratory support in patients with SARS-CoV-2 infection. Patients and methods This is a single-center retrospective cohort study. Consecutive hospitalized COVID-19 adult patients who presented at the outpatient department (OPD) or emergency department (ED) between May and August 2021 were enrolled. Respiratory support was defined as any one of the following: conventional oxygen therapy, high-flow oxygen nasal cannula, noninvasive, or invasive mechanical ventilation. The performance of MDW was measured using the area under the receiver operating characteristic (AuROC) curve. Results Of the 250 enrolled patients, 122 (48.8%) patients received respiratory support. The mean MDW was significantly higher in the respiratory support group: 27.2 ± 4.6 vs 23.6 ± 4.1 (p < 0.001). The MDW ≥ 25 had the best AuROC characteristics of 0.70 (95% CI: 0.65-0.76). Conclusions The MDW is a potential biomarker that may aid in identifying individuals at risk of requiring oxygen support in COVID-19 and can be easily implemented in clinical practice. How to cite this article Daorattanachai K, Hirunrut C, Pirompanich P, Weschawalit S, Srivilaithon W. Association of Monocyte Distribution Width with the Need for Respiratory Support in Hospitalized COVID-19 Patients. Indian J Crit Care Med 2023;27(5):352-357.
Collapse
Affiliation(s)
| | - Chachchom Hirunrut
- Department of Emergency Medicine, Thammasat University, Pathum Thani, Thailand
| | - Pattarin Pirompanich
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Thammasat University, Thailand
| | - Sinee Weschawalit
- Division of Dermatology, Department of Medicine, Thammasat University, Thailand
| | | |
Collapse
|
26
|
Alomair BM, Al‐Kuraishy HM, Al‐Gareeb AI, Al‐Buhadily AK, Alexiou A, Papadakis M, Alshammari MA, Saad HM, Batiha GE. Mixed storm in SARS-CoV-2 infection: A narrative review and new term in the Covid-19 era. Immun Inflamm Dis 2023; 11:e838. [PMID: 37102645 PMCID: PMC10132185 DOI: 10.1002/iid3.838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Coronavirus disease 2019 (Covid-19) is caused by a novel severe acute respiratory syndrome coronavirus virus type 2 (SARS-CoV-2) leading to the global pandemic worldwide. Systemic complications in Covid-19 are mainly related to the direct SARS-CoV-2 cytopathic effects, associated hyperinflammation, hypercytokinemia, and the development of cytokine storm (CS). As well, Covid-19 complications are developed due to the propagation of oxidative and thrombotic events which may progress to a severe state called oxidative storm and thrombotic storm (TS), respectively. In addition, inflammatory and lipid storms are also developed in Covid-19 due to the activation of inflammatory cells and the release of bioactive lipids correspondingly. Therefore, the present narrative review aimed to elucidate the interrelated relationship between different storm types in Covid-19 and the development of the mixed storm (MS). In conclusion, SARS-CoV-2 infection induces various storm types including CS, inflammatory storm, lipid storm, TS and oxidative storm. These storms are not developing alone since there is a close relationship between them. Therefore, the MS seems to be more appropriate to be related to severe Covid-19 than CS, since it develops in Covid-19 due to the intricate interface between reactive oxygen species, proinflammatory cytokines, complement activation, coagulation disorders, and activated inflammatory signaling pathway.
Collapse
Affiliation(s)
- Basil Mohammed Alomair
- Department of Medicine, College of Medicine, Internal Medicine and EndocrinologyJouf UniversityAl‐JoufSaudi Arabia
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali K. Al‐Buhadily
- Department of Clinical Pharmacology, Medicine, and Therapeutic, Medical Faculty, College of MedicineAl‐Mustansiriyah UniversityBaghdadIraq
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Majed Ayed Alshammari
- Department of MedicinePrince Mohammed Bin Abdulaziz Medical CitySakakaAl‐JoufSaudi Arabia
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMarsaMatruhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
27
|
Du L, Liang Y, Wang X, Huang L, Pan X, Chen J, Chen D. Cellular and Molecular Atlas of Peripheral Blood Mononuclear Cells from a Pregnant Woman After Recovery from COVID-19. MATERNAL-FETAL MEDICINE 2023; 5:88-96. [PMID: 40406392 PMCID: PMC12094376 DOI: 10.1097/fm9.0000000000000190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 05/26/2025] Open
Abstract
Objective This study aimed to investigate the immune response of a pregnant woman who recovered from the coronavirus disease 2019 (COVID_RS) by using single-cell transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) and to analyze the properties of different immune cell subsets. Methods PBMCs were collected from the COVID_RS patient at 28 weeks of gestation, before a cesarean section. The PBMCs were then analyzed using single-cell RNA sequencing. The transcriptional profiles of myeloid, T, and natural killer (NK) cell subsets were systematically analyzed and compared with those of healthy pregnant controls from a published single-cell RNA sequencing data set. Results We identified major cell types such as T cells, B cells, NK cells, and myeloid cells in the PBMCs of our COVID_RS patient. The increase of myeloid and B cells and decrease of T cells and NK cells in the PBMCs in this patient were quite distinct compared with that in the control subjects. After reclustering and Augur analysis, we found that CD16 monocytes and mucosal-associated invariant T (MAIT) cells were mostly affected within different myeloid, T, and NK cell subtypes in our COVID_RS patient. The proportion of CD16 monocytes in the total myeloid population was increased, and the frequency of MAIT cells in the total T and NK cells was significantly decreased in the COVID-RS patient. We also observed significant enrichment of gene sets related to antigen processing and presentation, T-cell activation, T-cell differentiation, and tumor necrosis factor superfamily cytokine production in CD16 monocytes, and enrichment of gene sets related to antigen processing and presentation, response to type II interferon, and response to virus in MAIT cells. Conclusion Our study provides a single-cell resolution atlas of the immune gene expression patterns in PBMCs from a COVID_RS patient. Our findings suggest that CD16-positive monocytes and MAIT cells likely play crucial roles in the maternal immune response against severe acute respiratory syndrome coronavirus 2 infection. These results contribute to a better understanding of the maternal immune response to severe acute respiratory syndrome coronavirus 2 infection and may have implications for the development of effective treatments and preventive strategies for the coronavirus disease 2019 in pregnant women.
Collapse
Affiliation(s)
- Lili Du
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yingyu Liang
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xiaoyi Wang
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Lijun Huang
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xingfei Pan
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| |
Collapse
|
28
|
Massimo M, Barelli C, Moreno C, Collesi C, Holloway RK, Crespo B, Zentilin L, Williams A, Miron VE, Giacca M, Long KR. Haemorrhage of human foetal cortex associated with SARS-CoV-2 infection. Brain 2023; 146:1175-1185. [PMID: 36642091 PMCID: PMC9976976 DOI: 10.1093/brain/awac372] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/22/2022] [Accepted: 09/19/2022] [Indexed: 01/17/2023] Open
Abstract
Maternal viral infection and immune response are known to increase the risk of altered development of the foetal brain. Given the ongoing global pandemic of coronavirus disease 2019 (COVID-19), investigating the impact of SARS-CoV-2 on foetal brain health is of critical importance. Here, we report the presence of SARS-CoV-2 in first and second trimester foetal brain tissue in association with cortical haemorrhages. SARS-CoV-2 spike protein was sparsely detected within progenitors and neurons of the cortex itself, but was abundant in the choroid plexus of haemorrhagic samples. SARS-CoV-2 was also sparsely detected in placenta, amnion and umbilical cord tissues. Cortical haemorrhages were linked to a reduction in blood vessel integrity and an increase in immune cell infiltration into the foetal brain. Our findings indicate that SARS-CoV-2 infection may affect the foetal brain during early gestation and highlight the need for further study of its impact on subsequent neurological development.
Collapse
Affiliation(s)
- Marco Massimo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Carlotta Barelli
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Catalina Moreno
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Chiara Collesi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Rebecca K Holloway
- Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, UK
- Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Medical Research Council Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Barlo Multiple Sclerosis Centre and Keenan Research Institute for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Berta Crespo
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Veronique E Miron
- Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, UK
- Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Medical Research Council Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Barlo Multiple Sclerosis Centre and Keenan Research Institute for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, London, UK
| | - Katherine R Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| |
Collapse
|
29
|
Zhu K, Chen Z, Xiao Y, Lai D, Wang X, Fang X, Shu Q. Multi-omics and immune cells' profiling of COVID-19 patients for ICU admission prediction: in silico analysis and an integrated machine learning-based approach in the framework of Predictive, Preventive, and Personalized Medicine. EPMA J 2023; 14:1-17. [PMID: 36845281 PMCID: PMC9942629 DOI: 10.1007/s13167-023-00317-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Background Intensive care unit admission (ICUA) triage has been urgent need for solving the shortage of ICU beds, during the coronavirus disease 2019 (COVID-19) surge. In silico analysis and integrated machine learning (ML) approach, based on multi-omics and immune cells (ICs) profiling, might provide solutions for this issue in the framework of predictive, preventive, and personalized medicine (PPPM). Methods Multi-omics was used to screen the synchronous differentially expressed protein-coding genes (SDEpcGs), and an integrated ML approach to develop and validate a nomogram for prediction of ICUA. Finally, the independent risk factor (IRF) with ICs profiling of the ICUA was identified. Results Colony-stimulating factor 1 receptor (CSF1R) and peptidase inhibitor 16 (PI16) were identified as SDEpcGs, and each fold change (FCij) of CSF1R and PI16 was selected to develop and validate a nomogram to predict ICUA. The area under curve (AUC) of the nomogram was 0.872 (95% confidence interval (CI): 0.707 to 0.950) on the training set, and 0.822 (95% CI: 0.659 to 0.917) on the testing set. CSF1R was identified as an IRF of ICUA, expressed in and positively correlated with monocytes which had a lower fraction in COVID-19 ICU patients. Conclusion The nomogram and monocytes could provide added value to ICUA prediction and targeted prevention, which are cost-effective platform for personalized medicine of COVID-19 patients. The log2fold change (log2FC) of the fraction of monocytes could be monitored simply and economically in primary care, and the nomogram offered an accurate prediction for secondary care in the framework of PPPM. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00317-5.
Collapse
Affiliation(s)
- Kun Zhu
- Department of Pathology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhonghua Chen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,Department of Anesthesiology, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Yi Xiao
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Dengming Lai
- Department of Neonatal Surgery, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaofeng Wang
- Department of Information Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiangming Fang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
30
|
Bajić D, Matijašević J, Andrijević L, Zarić B, Lalić-Popović M, Andrijević I, Todorović N, Mihajlović A, Tapavički B, Ostojić J. Prognostic Role of Monocyte Distribution Width, CRP, Procalcitonin and Lactate as Sepsis Biomarkers in Critically Ill COVID-19 Patients. J Clin Med 2023; 12:jcm12031197. [PMID: 36769843 PMCID: PMC9917557 DOI: 10.3390/jcm12031197] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic and one group of patients has developed a severe form of COVID-19 pneumonia with an urgent need for hospitalization and intensive care unit (ICU) admission. The aim of our study was to evaluate the prognostic role of MDW, CRP, procalcitonin (PCT), and lactate in critically ill COVID-19 patients. The primary outcome of interest is the 28 day mortality of ICU patients with confirmed SARS-CoV-2 infection and sepsis (according to Sepsis 3 criteria with acute change in SOFA score ≥ 2 points). Patients were divided into two groups according to survival on the 28th day after admission to the ICU. Every group was divided into two subgroups (women and men). Nonparametric tests (Mann-Whitney) for variables age, PCT, lactate, and MDW were lower than alpha p < 0.05, so there was a significant difference between survived and deceased patients. The Chi-square test confirmed statistically significant higher values of MDW and lactate in the non-survivor group. We found a significant association between MDW, lactate, procalcitonin, and fatal outcome, higher values were reported in the deceased group.
Collapse
Affiliation(s)
- Dejana Bajić
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Street Hajduk Veljkova 3, 21137 Novi Sad, Serbia
- Correspondence: ; Tel.: +381-60-6-330-550
| | - Jovan Matijašević
- Institute for Pulmonary Diseases of Vojvodina, Put Dr Goldmana Street 4, 21204 Sremska Kamenica, Serbia
- Faculty of Medicine, University of Novi Sad, Street Hajduk Veljkova 3, 21137 Novi Sad, Serbia
| | - Ljiljana Andrijević
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Street Hajduk Veljkova 3, 21137 Novi Sad, Serbia
| | - Bojan Zarić
- Institute for Pulmonary Diseases of Vojvodina, Put Dr Goldmana Street 4, 21204 Sremska Kamenica, Serbia
- Faculty of Medicine, University of Novi Sad, Street Hajduk Veljkova 3, 21137 Novi Sad, Serbia
| | - Mladena Lalić-Popović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Street Hajduk Veljkova 3, 21137 Novi Sad, Serbia
| | - Ilija Andrijević
- Institute for Pulmonary Diseases of Vojvodina, Put Dr Goldmana Street 4, 21204 Sremska Kamenica, Serbia
- Faculty of Medicine, University of Novi Sad, Street Hajduk Veljkova 3, 21137 Novi Sad, Serbia
| | - Nemanja Todorović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Street Hajduk Veljkova 3, 21137 Novi Sad, Serbia
| | - Andrea Mihajlović
- Department of Physiology, Faculty of Medicine, University of Novi Sad, Street Hajduk Veljkova 3, 21137 Novi Sad, Serbia
| | - Borislav Tapavički
- Department of Physiology, Faculty of Medicine, University of Novi Sad, Street Hajduk Veljkova 3, 21137 Novi Sad, Serbia
| | - Jelena Ostojić
- Faculty of Medicine, University of Novi Sad, Street Hajduk Veljkova 3, 21137 Novi Sad, Serbia
| |
Collapse
|
31
|
Nasrollahi H, Talepoor AG, Saleh Z, Eshkevar Vakili M, Heydarinezhad P, Karami N, Noroozi M, Meri S, Kalantar K. Immune responses in mildly versus critically ill COVID-19 patients. Front Immunol 2023; 14:1077236. [PMID: 36793739 PMCID: PMC9923185 DOI: 10.3389/fimmu.2023.1077236] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
The current coronavirus pandemic (COVID-19), caused by SARS-CoV-2, has had devastating effects on the global health and economic system. The cellular and molecular mediators of both the innate and adaptive immune systems are critical in controlling SARS-CoV-2 infections. However, dysregulated inflammatory responses and imbalanced adaptive immunity may contribute to tissue destruction and pathogenesis of the disease. Important mechanisms in severe forms of COVID-19 include overproduction of inflammatory cytokines, impairment of type I IFN response, overactivation of neutrophils and macrophages, decreased frequencies of DC cells, NK cells and ILCs, complement activation, lymphopenia, Th1 and Treg hypoactivation, Th2 and Th17 hyperactivation, as well as decreased clonal diversity and dysregulated B lymphocyte function. Given the relationship between disease severity and an imbalanced immune system, scientists have been led to manipulate the immune system as a therapeutic approach. For example, anti-cytokine, cell, and IVIG therapies have received attention in the treatment of severe COVID-19. In this review, the role of immunity in the development and progression of COVID-19 is discussed, focusing on molecular and cellular aspects of the immune system in mild vs. severe forms of the disease. Moreover, some immune- based therapeutic approaches to COVID-19 are being investigated. Understanding key processes involved in the disease progression is critical in developing therapeutic agents and optimizing related strategies.
Collapse
Affiliation(s)
- Hamid Nasrollahi
- Radio-Oncology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Saleh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Eshkevar Vakili
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paria Heydarinezhad
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karami
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Noroozi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki and Diagnostic Center of the Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
32
|
Vasse M, Sukhachev D, Ballester MC, Delcominette F, Mellot F, Habarou F, Védrenne A, Jolly E, Sukhacheva E, Farfour E, Pascreau T. Prognostic value of cellular population data in patients with COVID-19. INFORMATICS IN MEDICINE UNLOCKED 2023; 38:101207. [PMID: 36919041 PMCID: PMC9991930 DOI: 10.1016/j.imu.2023.101207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Background and aims Beckman Coulter hematology analysers identify leukocytes by their volume (V), conductivity (C) and scatter (S) of a laser beam at different angles. Each leukocyte sub-population [neutrophils (NE), lymphocytes (LY), monocytes (MO)] is characterized by the mean (MN) and the standard deviation (SD) of 7 measurements called "cellular population data" (@CPD), corresponding to morphological analysis of the leukocytes. As severe forms of infections to SARS-CoV-2 are characterized by a functional activation of mononuclear cells, leading to a cytokine storm, we evaluated whether CPD variations are correlated to the inflammation state, oxygen requirement and lung damage and whether CPD analysis could be useful for a triage of patients with COVID-19 in the Emergency Department (ED) and could help to identify patients with a high risk of worsening. Materials and method The CPD of 825 consecutive patients with proven COVID-19 presenting to the ED were recorded and compared to classical biochemical parameters, the need for hospitalization in the ward or ICU, the need for oxygen, or lung injury on CT-scan. Results 40 of the 42 CPD were significantly modified in COVID-19 patients in comparison to 245 controls. @MN-V-MO and @SD-V-MO were highly correlated with C-reactive protein, procalcitonin, ferritin and D-dimers. SD-UMALS-LY > 21.45 and > 23.92 identified, respectively, patients with critical lung injuries (>75%) and requiring tracheal intubation. @SD-V-MO > 25.03 and @SD-V-NE > 19.4 identified patients required immediate ICU admission, whereas a @MN-V-MO < 183 suggested that the patient could be immediately discharged. Using logistic regression, the combination of 8 CPD with platelet and basophil counts and the existence of diabetes or obesity could identify patients requiring ICU after a first stay in conventional wards (area under the curve = 0.843). Conclusion CPD analysis constitutes an easy and inexpensive tool for triage and prognosis of COVID-19 patients in the ED.
Collapse
Affiliation(s)
- Marc Vasse
- Service de Biologie Clinique, Hôpital Foch, Suresnes, France
- UMRS 1176, Hôpital du Kremlin-Bicêtre, Le Kremlin-Bicêtre, France
| | | | | | | | - François Mellot
- Imagerie diagnostique et Interventionnelle, Hôpital Foch, Suresnes, France
| | | | | | - Emilie Jolly
- Service de Biologie Clinique, Hôpital Foch, Suresnes, France
| | | | - Eric Farfour
- Service de Biologie Clinique, Hôpital Foch, Suresnes, France
| | - Tiffany Pascreau
- Service de Biologie Clinique, Hôpital Foch, Suresnes, France
- UMRS 1176, Hôpital du Kremlin-Bicêtre, Le Kremlin-Bicêtre, France
| |
Collapse
|
33
|
Patra T, Ray R. Bystander effect of SARS-CoV-2 spike protein on human monocytic THP-1 cell activation and initiation of prothrombogenic stimulus representing severe COVID-19. J Inflamm (Lond) 2022; 19:28. [PMID: 36585712 PMCID: PMC9801152 DOI: 10.1186/s12950-022-00325-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hypercoagulable state and thromboembolic complications are potential life-threatening events in COVID-19 patients. Our previous studies demonstrated that SARS-CoV-2 infection as well as viral spike protein expressed epithelial cells exhibit senescence with the release of inflammatory molecules, including alarmins. FINDINGS We observed extracellular alarmins present in the culture media of SARS-CoV-2 spike expressing cells activate human THP-1 monocytes to secrete pro-inflammatory cytokines to a significant level. The release of THP-1 derived pro-inflammatory cytokine signature correlated with the serum of acute COVID-19 patient, but not in post-COVID-19 state. Our study suggested that the alarmins secreted by spike expressing cells, initiated phagocytosis property of THP-1 cells. The phagocytic monocytes secreted complement component C5a and generated an autocrine signal via C5aR1 receptor. The C5a-C5aR1 signal induced formation of monocyte mediated extracellular trap resulted in the generation of a prothrombogenic stimulus with activating platelets and increased tissue factor activity. We also observed an enhanced C5a level, platelet activating factor, and high tissue factor activity in the serum of acute COVID-19 patients, but not in recovered patients. CONCLUSION Our present study demonstrated that SARS-CoV-2 spike protein modulates monocyte responses in a paracrine manner for prothrombogenic stimulus by the generation of C5a complement component.
Collapse
Affiliation(s)
- Tapas Patra
- Departments of Internal Medicine, Division of Infectious Diseases, Allergy & Immunology, Edward A. Doisy Research Center, 1100 South Grand Blvd, MO 63104 Saint Louis, USA
| | - Ranjit Ray
- Departments of Internal Medicine, Division of Infectious Diseases, Allergy & Immunology, Edward A. Doisy Research Center, 1100 South Grand Blvd, MO 63104 Saint Louis, USA ,grid.262962.b0000 0004 1936 9342Molecular Microbiology & Immunology, Saint Louis University, 63104 Saint Louis, Missouri, MO USA
| |
Collapse
|
34
|
Dang W, Tao Y, Xu X, Zhao H, Zou L, Li Y. The role of lung macrophages in acute respiratory distress syndrome. Inflamm Res 2022; 71:1417-1432. [PMID: 36264361 PMCID: PMC9582389 DOI: 10.1007/s00011-022-01645-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute and diffuse inflammatory lung injury in a short time, one of the common severe manifestations of the respiratory system that endangers human life and health. As an innate immune cell, macrophages play a key role in the inflammatory response. For a long time, the role of pulmonary macrophages in ARDS has tended to revolve around the polarization of M1/M2. However, with the development of single-cell RNA sequencing, fate mapping, metabolomics, and other new technologies, a deeper understanding of the development process, classification, and function of macrophages in the lung are acquired. Here, we discuss the function of pulmonary macrophages in ARDS from the two dimensions of anatomical location and cell origin and describe the effects of cell metabolism and intercellular interaction on the function of macrophages. Besides, we explore the treatments for targeting macrophages, such as enhancing macrophage phagocytosis, regulating macrophage recruitment, and macrophage death. Considering the differences in responsiveness of different research groups to these treatments and the tremendous dynamic changes in the gene expression of monocyte/macrophage, we discussed the possibility of characterizing the gene expression of monocyte/macrophage as the biomarkers. We hope that this review will provide new insight into pulmonary macrophage function and therapeutic targets of ARDS.
Collapse
Affiliation(s)
- Wenpei Dang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xinxin Xu
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Hui Zhao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Lijuan Zou
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yongsheng Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
35
|
Mohan AA, Olson LB, Naqvi IA, Morrison SA, Kraft BD, Chen L, Que LG, Ma Q, Barkauskas CE, Kirk A, Nair SK, Sullenger BA, Kasotakis G. Age and Comorbidities Predict COVID-19 Outcome, Regardless of Innate Immune Response Severity: A Single Institutional Cohort Study. Crit Care Explor 2022; 4:e0799. [PMID: 36506827 PMCID: PMC9726311 DOI: 10.1097/cce.0000000000000799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has claimed over eight hundred thousand lives in the United States alone, with older individuals and those with comorbidities being at higher risk of severe disease and death. Although severe acute respiratory syndrome coronavirus 2-induced hyperinflammation is one of the mechanisms underlying the high mortality, the association between age and innate immune responses in COVID-19 mortality remains unclear. DESIGN Flow cytometry of fresh blood and multiplexed inflammatory chemokine measurements of sera were performed on samples collected longitudinally from our cohort. Aggregate impact of comorbid conditions was calculated with the Charlson Comorbidity Index, and association between patient factors and outcomes was calculated via Cox proportional hazard analysis and repeated measures analysis of variance. SETTING A cohort of severely ill COVID-19 patients requiring ICU admission was followed prospectively. PATIENTS In total, 67 patients (46 male, age 59 ± 14 yr) were included in the study. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Mortality in our cohort was 41.8%. We identified older age (hazard ratio [HR] 1.09 [95% CI 1.07-1.11]; p = 0.001), higher comorbidity index (HR 1.24 [95% CI 1.14-1.35]; p = 0.039), and hyponatremia (HR 0.90 [95% CI 0.82-0.99]; p = 0.026) to each independently increase risk for death in COVID-19. We also found that neutrophilia (R = 0.2; p = 0.017), chemokine C-C motif ligand (CCL) 2 (R = 0.3; p = 0.043), and C-X-C motif chemokine ligand 9 (CXCL9) (R = 0.3; p = 0.050) were weakly but significantly correlated with mortality. Older age was associated with lower monocyte (R = -0.2; p = 0.006) and cluster of differentiation (CD) 16+ cell counts (R = -0.2; p = 0.002) and increased CCL11 concentration (R = 0.3; p = 0.050). Similarly, younger patients (< 65 yr) demonstrated a rise in CD4 (b-coefficient = 0.02; p = 0.036) and CD8 (0.01; p = 0.001) counts, as well as CCL20 (b-coefficient = 6.8; p = 0.036) during their ICU stay. This CD8 count rise was also associated with survival (b-coefficient = 0.01; p = 0.023). CONCLUSIONS Age, comorbidities, and hyponatremia independently predict mortality in severe COVID-19. Neutrophilia and higher CCL2 and CXCL9 levels are also associated with higher mortality, while independent of age.
Collapse
Affiliation(s)
| | - Lyra B Olson
- Department of Surgery, Duke University, Durham, NC
| | | | | | | | - Lingye Chen
- Department of Surgery, Duke University, Durham, NC
| | | | - Qing Ma
- Department of Surgery, Duke University, Durham, NC
| | | | - Allan Kirk
- Department of Surgery, Duke University, Durham, NC
| | - Smita K Nair
- Department of Surgery, Duke University, Durham, NC
- Departments of Neurosurgery and Pathology, Duke University, Durham, NC
| | - Bruce A Sullenger
- Department of Surgery, Duke University, Durham, NC
- Departments of Neurosurgery and Pathology, Duke University, Durham, NC
- Departments of Neurosurgery, Pharmacology, and Cancer Biology, Duke University, Durham, NC
| | | |
Collapse
|
36
|
Mortezaee K, Majidpoor J. Cellular immune states in SARS-CoV-2-induced disease. Front Immunol 2022; 13:1016304. [PMID: 36505442 PMCID: PMC9726761 DOI: 10.3389/fimmu.2022.1016304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
The general immune state plays important roles against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Cells of the immune system are encountering rapid changes during the acute phase of SARS-CoV-2-induced disease. Reduced fraction of functional CD8+ T cells, disrupted cross-talking between CD8+ T cells with dendritic cells (DCs), and impaired immunological T-cell memory, along with the higher presence of hyperactive neutrophils, high expansion of myeloid-derived suppressor cells (MDSCs) and non-classical monocytes, and attenuated cytotoxic capacity of natural killer (NK) cells, are all indicative of low efficient immunity against viral surge within the body. Immune state and responses from pro- or anti-inflammatory cells of the immune system to SARS-CoV-2 are discussed in this review. We also suggest some strategies to enhance the power of immune system against SARS-CoV-2-induced disease.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran,*Correspondence: Keywan Mortezaee, ;
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
37
|
Armingol E, Baghdassarian HM, Martino C, Perez-Lopez A, Aamodt C, Knight R, Lewis NE. Context-aware deconvolution of cell-cell communication with Tensor-cell2cell. Nat Commun 2022; 13:3665. [PMID: 35760817 PMCID: PMC9237099 DOI: 10.1038/s41467-022-31369-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
Cell interactions determine phenotypes, and intercellular communication is shaped by cellular contexts such as disease state, organismal life stage, and tissue microenvironment. Single-cell technologies measure the molecules mediating cell-cell communication, and emerging computational tools can exploit these data to decipher intercellular communication. However, current methods either disregard cellular context or rely on simple pairwise comparisons between samples, thus limiting the ability to decipher complex cell-cell communication across multiple time points, levels of disease severity, or spatial contexts. Here we present Tensor-cell2cell, an unsupervised method using tensor decomposition, which deciphers context-driven intercellular communication by simultaneously accounting for multiple stages, states, or locations of the cells. To do so, Tensor-cell2cell uncovers context-driven patterns of communication associated with different phenotypic states and determined by unique combinations of cell types and ligand-receptor pairs. As such, Tensor-cell2cell robustly improves upon and extends the analytical capabilities of existing tools. We show Tensor-cell2cell can identify multiple modules associated with distinct communication processes (e.g., participating cell-cell and ligand-receptor pairs) linked to severities of Coronavirus Disease 2019 and to Autism Spectrum Disorder. Thus, we introduce an effective and easy-to-use strategy for understanding complex communication patterns across diverse conditions.
Collapse
Affiliation(s)
- Erick Armingol
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hratch M Baghdassarian
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Cameron Martino
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, 92093, USA
| | - Araceli Perez-Lopez
- Biomedicine Research Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México, 54090, México
| | - Caitlin Aamodt
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
38
|
Fan H, Cui Y, Xu X, Zhang D, Yang D, Huang L, Ding T, Lu G. Validation of a Classification Model Using Complete Blood Count to Predict Severe Human Adenovirus Lower Respiratory Tract Infections in Pediatric Cases. Front Pediatr 2022; 10:896606. [PMID: 35712623 PMCID: PMC9197341 DOI: 10.3389/fped.2022.896606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Human adenovirus (HAdV) lower respiratory tract infections (LRTIs) are prone to severe cases and even cause death in children. Here, we aimed to develop a classification model to predict severity in pediatric patients with HAdV LRTIs using complete blood count (CBC). Methods The CBC parameters from pediatric patients with a diagnosis of HAdV LRTIs from 2013 to 2019 were collected during the disease's course. The data were analyzed as potential predictors for severe cases and were selected using a random forest model. Results We enrolled 1,652 CBC specimens from 1,069 pediatric patients with HAdV LRTIs in the present study. Four hundred and seventy-four patients from 2017 to 2019 were used as the discovery cohort, and 470 patients from 2013 to 2016 were used as the validation cohort. The monocyte ratio (MONO%) was the most obvious difference between the mild and severe groups at onset, and could be used as a marker for the early accurate prediction of the severity [area under the subject operating characteristic curve (AUROC): 0.843]. Four risk factors [MONO%, hematocrit (HCT), red blood cell count (RBC), and platelet count (PLT)] were derived to construct a classification model of severe and mild cases using a random forest model (AUROC: 0.931 vs. 0.903). Conclusion Monocyte ratio can be used as an individual predictor of severe cases in the early stages of HAdV LRTIs. The four risk factors model is a simple and accurate risk assessment tool that can predict severe cases in the early stages of HAdV LRTIs.
Collapse
Affiliation(s)
- Huifeng Fan
- Department of Respiration, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ying Cui
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xuehua Xu
- Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dongwei Zhang
- Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Diyuan Yang
- Department of Respiration, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Huang
- Pediatric Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tao Ding
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Gen Lu
- Department of Respiration, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
39
|
Farzi R, Aghbash PS, Eslami N, Azadi A, Shamekh A, Hemmat N, Entezari-Maleki T, Baghi HB. The role of antigen-presenting cells in the pathogenesis of COVID-19. Pathol Res Pract 2022; 233:153848. [PMID: 35338971 PMCID: PMC8941975 DOI: 10.1016/j.prp.2022.153848] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) is one of the three lethal coronavirus outbreaks in the recent two decades and a serious threat to global health all over the world. The principal feature of the COVID-19 infection is the so-called "cytokine storm" exaggerated molecular response to virus distribution, which plays massive tissue and organ injury roles. Immunological treatments, including monoclonal antibodies and vaccines, have been suggested as the main approaches in treating and preventing this disease. Therefore, a proper investigation of the roles of antigen-presenting cells (APCs) in the aforementioned immunological responses appears essential. The present review will provide detailed information about APCs' role in the infection and pathogenesis of SARS-CoV-2 and the effect of monoclonal antibodies in diagnosis and treatment.
Collapse
Affiliation(s)
- Rana Farzi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Eslami
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Azadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Ahmadi E, Bagherpour Z, Zarei E, Omidkhoda A. Pathological effects of SARS-CoV-2 on hematological and immunological cells: Alterations in count, morphology, and function. Pathol Res Pract 2022; 231:153782. [PMID: 35121363 PMCID: PMC8800420 DOI: 10.1016/j.prp.2022.153782] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/08/2023]
Abstract
The novel Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19 outbreak, spread rapidly and infected more than 140 million people with more than three million victims worldwide. The SARS-CoV-2 causes destructive changes in the immunological and hematological system of the host. These alterations appear to play a critical role in disease pathology and the emerging of clinical manifestations. In this review, we aimed to discuss the effect of COVID-19 on the count, function and morphology of immune and blood cells and the role of these changes in the pathophysiology of the disease. Knowledge of these changes may help with better management and treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Ehsan Ahmadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zahra Bagherpour
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| | - Elmira Zarei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| | - Azadeh Omidkhoda
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Cizmecioglu A, Emsen A, Sumer S, Ergun D, Akay Cizmecioglu H, Turk Dagi H, Artac H. Reduced Monocyte Subsets, Their HLA-DR Expressions, and Relations to Acute Phase Reactants in Severe COVID-19 Cases. Viral Immunol 2022; 35:273-282. [PMID: 35196160 DOI: 10.1089/vim.2021.0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Monocytes are one of the principal immune defense cells that encounter infectious agents. However, an essential role of monocytes has been shown in the spread of viruses throughout the human body. Considering this dilemma, this study aimed to evaluate monocyte subsets and Human Leukocyte Antigen-DR isotype (HLA-DR) expressions in clinical coronavirus disease 2019 (COVID-19) cases. This prospective, multicenter, case-control study was conducted with COVID-19 patients and healthy controls. The patient group was divided into two subgroups according to disease severity (severe and non-severe). Three monocyte subsets (classical, CL; intermediate, INT; non-classical, NC) were analyzed with flow cytometry upon the patients' hospital admission. A total of 42 patients with COVID-19 and 30 controls participated in this study. The patients' conditions were either severe (n = 23) or non-severe (n = 19). All patients' monocyte and HLA-DR expressions were decreased compared with the controls (p < 0.05). Per disease severity, all monocyte subsets were not significant with disease severity; however, the HLA-DR expressions of CL monocytes (p = 0.002) and INT monocytes (p = 0.025) were more decreased in the severe patient group. In patients with various clinical features, NC monocytes were more affected. Based on these results, NC monocytes were more decreased in acute COVID-19 cases, though related various clinics decreased all monocyte subsets in these patients. Decreased monocyte HLA expressions may be a sign of immune suppression in severe patients, even when the percentage of monocyte levels has not decreased yet.
Collapse
Affiliation(s)
- Ahmet Cizmecioglu
- Department of Internal Medicine, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Ayca Emsen
- Department of Pediatric Allergy and Immunology, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Sua Sumer
- Department of Infectious Disease, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Dilek Ergun
- Department of Respiratory Diseases, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Hilal Akay Cizmecioglu
- Department of Internal Medicine, Necmettin Erbakan University Faculty of Medicine, Konya, Turkey
| | - Hatice Turk Dagi
- Department of Clinical Microbiology, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Hasibe Artac
- Department of Pediatric Allergy and Immunology, Selcuk University Faculty of Medicine, Konya, Turkey
| |
Collapse
|
42
|
Jakob F, Herrmann M. Gestörte Geweberegeneration durch entzündliche
Prozesse bei Alterung, Seneszenz und degenerativen Erkrankungen –
Interaktionen mit dem COVID-19-induzierten Zytokin-Sturm des angeborenen
Immunsystems. OSTEOLOGIE 2022; 31:7-16. [DOI: 10.1055/a-1725-8211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
ZusammenfassungEntzündung ist Bestandteil einer jeglichen Geweberegeneration. Verletzung
und Schädigung von Geweben - inklusive exogene virale und bakterielle
Infektionen - induzieren eine frühe pro-inflammatorische Phase, die
durch Aktivierung von residenten und aus dem peripheren Blut und Knochenmark
rekrutierten Zellen des angeborenen Immunsystems weiter propagiert wird. Diese
Phase dient auch dem Clearing der Umgebung von vorgeschädigten Zellen
und cell debris. Um eine erfolgreiche Geweberegeneration zu erreichen ist es
essentiell, die Auflösung der Entzündung durch zeitgerechte
Einleitung einer anti-inflammatorischen Phase der Geweberegeneration zu
ermöglichen. Dieser Phase kann dann die Gewebeneubildung folgen, am
Beispiel der Frakturheilung als „Modeling“ bezeichnet. Das
schnell gebildete neue Gewebe wird in der letzten Phase der Regeneration an die
physikalischen Bedingungen im Gewebeverband angepasst, bei der Frakturheilung
„Remodeling“ genannt. Kann die zeitgerechte Auflösung
der Entzündung nicht erfolgen, verhindert die persistierende
Entzündung das Eintreten in die Phase der Gewebeneubildung und damit die
erfolgreiche Regeneration. Es erfolgt dann entweder als
„Notlösung“ eine Narbenheilung oder im Falle weiter
ausufernder Entzündung eine Zerstörung des Gewebes. Die mit dem
Alter sich verschlechternde Regenerationskapazität vieler Gewebe
inklusive Knochen, Muskel und Sehnen ist unter anderem eine Folge der
subklinischen chronischen Entzündung von Geweben, die Alterung
(„Inflammaging“) propagiert. Die Entzündung im
Mikromillieu involviert neben den gewebe-typischen Zellen und deren adulten
Progenitoren auch die Zellen des gewebeeigenen (residenten) angeborenen
Immunsystems, allen voran Makrophagen. Auch diese unterliegen
Alters-assoziierten Veränderungen wie Zellalterung und eine gesteigerte
Suszeptibilität für pro-inflammatorische Überreaktionen.
Chronische Inflammation mündet letztlich in die zelluläre
Seneszenz, die begleitet ist von einem Seneszenz-assoziierten sekretorischen
Phänotyp (SASP) mit hoher Produktion von Interleukinen 1, 6, 8, und
anderen Zytokinen. Solange solche Zellen nicht in den geregelten Zelltod gehen,
unterhalten sie die chronische Entzündung und damit die Voraussetzungen
für insuffiziente Geweberegeneration. Eine COVID-19 Infektion triggert
und unterhält identische inflammatorische Mechanismen und induziert
zusätzlich Seneszenz. Dies kann in der Summe zu einem Zytokin-Sturm
führen, der in einem circulus vitiosus eine zerstörerische
Hyperinflammation unterhält und der umso schwerwiegender
ausfällt je höher die Vorlast an seneszenten Zellen ist, wie das
in den COVID-Risikopopulationen der Fall ist. Deren Zusammensetzung
überlappt sehr stark mit unseren Risikopopulationen für
degenerative muskuloskelettale Erkrankungen wie Osteoporose und Sarkopenie.
Collapse
Affiliation(s)
- Franz Jakob
- Bernhard-Heine-Centrum für Bewegungsforschung,
Julius-Maximilians-Universität Würzburg, Wurzburg,
Germany
| | - Marietta Herrmann
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University
Hospital Wurzburg, Wurzburg, Germany
| |
Collapse
|
43
|
Geronikolou SA, Takan I, Pavlopoulou A, Mantzourani M, Chrousos GP. Thrombocytopenia in COVID‑19 and vaccine‑induced thrombotic thrombocytopenia. Int J Mol Med 2022; 49:35. [PMID: 35059730 PMCID: PMC8815408 DOI: 10.3892/ijmm.2022.5090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
The highly heterogeneous symptomatology and unpredictable progress of COVID-19 triggered unprecedented intensive biomedical research and a number of clinical research projects. Although the pathophysiology of the disease is being progressively clarified, its complexity remains vast. Moreover, some extremely infrequent cases of thrombotic thrombocytopenia following vaccination against SARS-CoV-2 infection have been observed. The present study aimed to map the signaling pathways of thrombocytopenia implicated in COVID-19, as well as in vaccine-induced thrombotic thrombocytopenia (VITT). The biomedical literature database, MEDLINE/PubMed, was thoroughly searched using artificial intelligence techniques for the semantic relations among the top 50 similar words (>0.9) implicated in COVID-19-mediated human infection or VITT. Additionally, STRING, a database of primary and predicted associations among genes and proteins (collected from diverse resources, such as documented pathway knowledge, high-throughput experimental studies, cross-species extrapolated information, automated text mining results, computationally predicted interactions, etc.), was employed, with the confidence threshold set at 0.7. In addition, two interactomes were constructed: i) A network including 119 and 56 nodes relevant to COVID-19 and thrombocytopenia, respectively; and ii) a second network containing 60 nodes relevant to VITT. Although thrombocytopenia is a dominant morbidity in both entities, three nodes were observed that corresponded to genes (AURKA, CD46 and CD19) expressed only in VITT, whilst ADAM10, CDC20, SHC1 and STXBP2 are silenced in VITT, but are commonly expressed in both COVID-19 and thrombocytopenia. The calculated average node degree was immense (11.9 in COVID-19 and 6.43 in VITT), illustrating the complexity of COVID-19 and VITT pathologies and confirming the importance of cytokines, as well as of pathways activated following hypoxic events. In addition, PYCARD, NLP3 and P2RX7 are key potential therapeutic targets for all three morbid entities, meriting further research. This interactome was based on wild-type genes, revealing the predisposition of the body to hypoxia-induced thrombosis, leading to the acute COVID-19 phenotype, the 'long-COVID syndrome', and/or VITT. Thus, common nodes appear to be key players in illness prevention, progression and treatment.
Collapse
Affiliation(s)
- Styliani A Geronikolou
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Işil Takan
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey
| | | | - Marina Mantzourani
- First Department of Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
| | - George P Chrousos
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
44
|
Wu H, He P, Ren Y, Xiao S, Wang W, Liu Z, Li H, Wang Z, Zhang D, Cai J, Zhou X, Jiang D, Fei X, Zhao L, Zhang H, Liu Z, Chen R, Li W, Wang C, Zhang S, Qin J, Nashan B, Sun C. Postmortem high-dimensional immune profiling of severe COVID-19 patients reveals distinct patterns of immunosuppression and immunoactivation. Nat Commun 2022; 13:269. [PMID: 35022412 PMCID: PMC8755743 DOI: 10.1038/s41467-021-27723-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/01/2021] [Indexed: 02/08/2023] Open
Abstract
A complete diagnostic autopsy is the gold-standard to gain insight into Coronavirus disease 2019 (COVID-19) pathogenesis. To delineate the in situ immune responses to SARS-CoV-2 viral infection, here we perform comprehensive high-dimensional transcriptional and spatial immune profiling in 22 COVID-19 decedents from Wuhan, China. We find TIM-3-mediated and PD-1-mediated immunosuppression as a hallmark of severe COVID-19, particularly in men, with PD-1+ cells being proximal rather than distal to TIM-3+ cells. Concurrently, lymphocytes are distal, while activated myeloid cells are proximal, to SARS-CoV-2 viral antigens, consistent with prevalent SARS-CoV-2 infection of myeloid cells in multiple organs. Finally, viral load positively correlates with specific immunosuppression and dendritic cell markers. In summary, our data show that SARS-CoV-2 viral infection induces lymphocyte suppression yet myeloid activation in severe COVID-19, so these two cell types likely have distinct functions in severe COVID-19 disease progression, and should be targeted differently for therapy.
Collapse
Affiliation(s)
- Haibo Wu
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
| | - Peiqi He
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Transplant & Immunology Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yong Ren
- Department of Pathology, the First Hospital Affiliated to Army Medical University, Chongqing, 400038, China
| | - Shiqi Xiao
- Department of Pathology, the First Hospital Affiliated to Army Medical University, Chongqing, 400038, China
| | - Wei Wang
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
| | - Zhenbang Liu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Heng Li
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
| | - Zhe Wang
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
| | - Dingyu Zhang
- Wuhan Jinyintan Hospital, Wuhan, Hubei, 430015, China
| | - Jun Cai
- Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Xiangdong Zhou
- Third Military Medical University Daping Hospital, Chongqing, 400038, China
| | - Dongpo Jiang
- Third Military Medical University Daping Hospital, Chongqing, 400038, China
| | - Xiaochun Fei
- Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Lei Zhao
- Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Heng Zhang
- Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Zhenhua Liu
- Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Rong Chen
- Wuhan Jinyintan Hospital, Wuhan, Hubei, 430015, China
| | - Weiqing Li
- Department of Critical Care Medicine, Key Laboratory of Emergency and Critical Care Research, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Chaofu Wang
- Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Shuyang Zhang
- Peking Union Medical College Hospital, Peking, 100730, China
| | - Jiwei Qin
- Transplant & Immunology Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Björn Nashan
- Transplant & Immunology Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Cheng Sun
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
- Transplant & Immunology Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
45
|
Alsuwaidi L, Al Heialy S, Shaikh N, Al Najjar F, Seliem R, Han A, Hachim M. Monocyte distribution width as a novel sepsis indicator in COVID-19 patients. BMC Infect Dis 2022; 22:27. [PMID: 34983404 PMCID: PMC8724663 DOI: 10.1186/s12879-021-07016-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/23/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus (SARS-CoV-2) is a highly transmittable virus which causes the novel coronavirus disease (COVID-19). Monocyte distribution width (MDW) is an in-vitro hematological parameter which describes the changes in monocyte size distribution and can indicate progression from localized infection to systemic infection. In this study we evaluated the correlation between the laboratory parameters and available clinical data in different quartiles of MDW to predict the progression and severity of COVID-19 infection. METHODS A retrospective analysis of clinical data collected in the Emergency Department of Rashid Hospital Trauma Center-DHA from adult individuals tested for SARS-CoV-2 between January and June 2020. The patients (n = 2454) were assigned into quartiles based on their MDW value on admission. The four groups were analyzed to determine if MDW was an indicator to identify patients who are at increased risk for progression to sepsis. RESULTS Our data showed a significant positive correlation between MDW and various laboratory parameters associated with SARS-CoV-2 infection. The study also revealed that MDW ≥ 24.685 has a strong correlation with poor prognosis of COVID-19. CONCLUSIONS Monitoring of monocytes provides a window into the systemic inflammation caused by infection and can aid in evaluating the progression and severity of COVID-19 infection.
Collapse
Affiliation(s)
- Laila Alsuwaidi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, P.O. Box: 505055, Dubai, UAE.
| | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, P.O. Box: 505055, Dubai, UAE.,Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Nahid Shaikh
- Rashid Hospital, Dubai Health Authority, Dubai, UAE
| | | | - Rania Seliem
- Rashid Hospital, Dubai Health Authority, Dubai, UAE
| | - Aaron Han
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, P.O. Box: 505055, Dubai, UAE.,Kings College Hospital London Dubai, Dubai, UAE
| | - Mahmood Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, P.O. Box: 505055, Dubai, UAE
| |
Collapse
|
46
|
Riva G, Nasillo V, Luppi M, Tagliafico E, Trenti T. Linking COVID-19, monocyte activation and sepsis: MDW, a novel biomarker from cytometry. EBioMedicine 2022; 75:103754. [PMID: 34922322 PMCID: PMC8672420 DOI: 10.1016/j.ebiom.2021.103754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022] Open
|
47
|
Thimoteo LM, Vellasco MM, Amaral J, Figueiredo K, Yokoyama CL, Marques E. Explainable Artificial Intelligence for COVID-19 Diagnosis Through Blood Test Variables. JOURNAL OF CONTROL, AUTOMATION AND ELECTRICAL SYSTEMS 2022; 33. [PMCID: PMC8722647 DOI: 10.1007/s40313-021-00858-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This work proposes an explainable artificial intelligence approach to help diagnose COVID-19 patients based on blood test and pathogen variables. Two glass-box models, logistic regression and explainable boosting machine, and two black-box models, random forest and support vector machine, were used to assess the disease diagnosis. Shapley additive explanations were used to explain predictions for the black-box models, while glass-box models feature importance brought insights into the most relevant features. All global explanations show the eosinophils and leukocytes, white blood cells are among the essential features to help diagnose the COVID-19. Moreover, the best model obtained an AUC of 0.87.
Collapse
Affiliation(s)
- Lucas M. Thimoteo
- Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ Brasil
| | - Marley M. Vellasco
- Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ Brasil
| | - Jorge Amaral
- Programa de Pós-Graduação em Engenharia Eletrônica (PEL), Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brasil
| | - Karla Figueiredo
- Programa de Pós-Graduação em Ciências Computacionais (CCOMP), Programa de Pós-Graduação em Telessaúde, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brasil
| | - Cátia Lie Yokoyama
- Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, PR Brasil
| | - Erito Marques
- Programa de Pós-Graduação em Engenharia Eletrônica (PEL), Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ Brasil
| |
Collapse
|
48
|
Amino Acid Metabolism is Significantly Altered at the Time of Admission in Hospital for Severe COVID-19 Patients: Findings from Longitudinal Targeted Metabolomics Analysis. Microbiol Spectr 2021; 9:e0033821. [PMID: 34878333 PMCID: PMC8653833 DOI: 10.1128/spectrum.00338-21] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The heterogeneity in severity and outcome of COVID-19 cases points out the urgent need for early molecular characterization of patients followed by risk-stratified care. The main objective of this study was to evaluate the fluctuations of serum metabolomic profiles of COVID-19 patients with severe illness during the different disease stages in a longitudinal manner. We demonstrate a distinct metabolomic signature in serum samples of 32 hospitalized patients at the acute phase compared to the recovery period, suggesting the tryptophan (tryptophan, kynurenine, and 3-hydroxy-DL-kynurenine) and arginine (citrulline and ornithine) metabolism as contributing pathways in the immune response to SARS-CoV-2 with a potential link to the clinical severity of the disease. In addition, we suggest that glutamine deprivation may further result in inhibited M2 macrophage polarization as a complementary process, and highlight the contribution of phenylalanine and tyrosine in the molecular mechanisms underlying the severe course of the infection. In conclusion, our results provide several functional metabolic markers for disease progression and severe outcome with potential clinical application. IMPORTANCE Although the host defense mechanisms against SARS-CoV-2 infection are still poorly described, they are of central importance in shaping the course of the disease and the possible outcome. Metabolomic profiling may complement the lacking knowledge of the molecular mechanisms underlying clinical manifestations and pathogenesis of COVID-19. Moreover, early identification of metabolomics-based biomarker signatures is proved to serve as an effective approach for the prediction of disease outcome. Here we provide the list of metabolites describing the severe, acute phase of the infection and bring the evidence of crucial metabolic pathways linked to aggressive immune responses. Finally, we suggest metabolomic phenotyping as a promising method for developing personalized care strategies in COVID-19 patients.
Collapse
|
49
|
Minutolo A, Petrone V, Fanelli M, Iannetta M, Giudice M, Ait Belkacem I, Zordan M, Vitale P, Rasi G, Sinibaldi-Vallebona P, Sarmati L, Andreoni M, Malergue F, Balestrieri E, Grelli S, Matteucci C. High CD169 Monocyte/Lymphocyte Ratio Reflects Immunophenotype Disruption and Oxygen Need in COVID-19 Patients. Pathogens 2021; 10:1639. [PMID: 34959594 PMCID: PMC8715749 DOI: 10.3390/pathogens10121639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/28/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Sialoadhesin (CD169) has been found to be overexpressed in the blood of COVID-19 patients and identified as a biomarker in early disease. We analyzed CD169 in the blood cells of COVID-19 patients to assess its role as a predictive marker of disease progression and clinical outcomes. METHODS The ratio of the median fluorescence intensity of CD169 between monocytes and lymphocytes (CD169 RMFI) was analyzed by flow cytometry in blood samples of COVID-19 patients (COV) and healthy donors (HDs) and correlated with immunophenotyping, inflammatory markers, cytokine mRNA expression, pulmonary involvement, and disease progression. RESULTS CD169 RMFI was high in COV but not in HDs, and it correlated with CD8 T-cell senescence and exhaustion markers, as well as with B-cell maturation and differentiation in COV. CD169 RMFI correlated with blood cytokine mRNA levels, inflammatory markers, and pneumonia severity in patients who were untreated at sampling, and was associated with the respiratory outcome throughout hospitalization. Finally, we also report the first evidence of the specific ability of the spike protein of SARS-CoV-2 to trigger CD169 RMFI in a dose-dependent manner in parallel with IL-6 and IL-10 gene transcription in HD PBMCs stimulated in vitro. CONCLUSION CD169 is induced by the spike protein and should be considered as an early biomarker for evaluating immune dysfunction and respiratory outcomes in COVID-19 patients.
Collapse
Affiliation(s)
- Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (V.P.); (M.F.); (M.G.); (G.R.); (P.S.-V.); (E.B.); (S.G.)
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (V.P.); (M.F.); (M.G.); (G.R.); (P.S.-V.); (E.B.); (S.G.)
| | - Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (V.P.); (M.F.); (M.G.); (G.R.); (P.S.-V.); (E.B.); (S.G.)
| | - Marco Iannetta
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.I.); (M.Z.); (L.S.); (M.A.)
- Infectious Diseases Clinic, Policlinic of Tor Vergata, 00133 Rome, Italy;
| | - Martina Giudice
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (V.P.); (M.F.); (M.G.); (G.R.); (P.S.-V.); (E.B.); (S.G.)
| | - Ines Ait Belkacem
- CNRS, INSERM, CIML, Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, 13009 Marseille, France;
- Department of Research and Development, Beckman Coulter Life Sciences-Immunotech, 13009 Marseille, France;
| | - Marta Zordan
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.I.); (M.Z.); (L.S.); (M.A.)
- Infectious Diseases Clinic, Policlinic of Tor Vergata, 00133 Rome, Italy;
| | - Pietro Vitale
- Infectious Diseases Clinic, Policlinic of Tor Vergata, 00133 Rome, Italy;
| | - Guido Rasi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (V.P.); (M.F.); (M.G.); (G.R.); (P.S.-V.); (E.B.); (S.G.)
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (V.P.); (M.F.); (M.G.); (G.R.); (P.S.-V.); (E.B.); (S.G.)
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Loredana Sarmati
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.I.); (M.Z.); (L.S.); (M.A.)
- Infectious Diseases Clinic, Policlinic of Tor Vergata, 00133 Rome, Italy;
| | - Massimo Andreoni
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.I.); (M.Z.); (L.S.); (M.A.)
- Infectious Diseases Clinic, Policlinic of Tor Vergata, 00133 Rome, Italy;
| | - Fabrice Malergue
- Department of Research and Development, Beckman Coulter Life Sciences-Immunotech, 13009 Marseille, France;
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (V.P.); (M.F.); (M.G.); (G.R.); (P.S.-V.); (E.B.); (S.G.)
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (V.P.); (M.F.); (M.G.); (G.R.); (P.S.-V.); (E.B.); (S.G.)
- Virology Unit, Policlinic of Tor Vergata, 00133 Rome, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (V.P.); (M.F.); (M.G.); (G.R.); (P.S.-V.); (E.B.); (S.G.)
| |
Collapse
|
50
|
Rivas AL, van Regenmortel MHV. COVID-19 related interdisciplinary methods: Preventing errors and detecting research opportunities. Methods 2021; 195:3-14. [PMID: 34029715 PMCID: PMC8545872 DOI: 10.1016/j.ymeth.2021.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
More than 130,000 peer-reviewed studies have been published within one year after COVID-19 emerged in many countries. This large and rapidly growing field may overwhelm the synthesizing abilities of both researchers and policy-makers. To provide a sinopsis, prevent errors, and detect cognitive gaps that may require interdisciplinary research methods, the literature on COVID-19 is summarized, twice. The overall purpose of this study is to generate a dialogue meant to explain the genesis of and/or find remedies for omissions and contradictions. The first review starts in Biology and ends in Policy. Policy is chosen as a destination because it is the setting where cognitive integration must occur. The second review follows the opposite path: it begins with stated policies on COVID-19 and then their assumptions and disciplinary relationships are identified. The purpose of this interdisciplinary method on methods is to yield a relational and explanatory view of the field -one strategy likely to be incomplete but usable when large bodies of literature need to be rapidly summarized. These reviews identify nine inter-related problems, research needs, or omissions, namely: (1) nation-wide, geo-referenced, epidemiological data collection systems (open to and monitored by the public); (2) metrics meant to detect non-symptomatic cases -e.g., test positivity-; (3) cost-benefit oriented methods, which should demonstrate they detect silent viral spreaders even with limited testing; (4) new personalized tests that inform on biological functions and disease correlates, such as cell-mediated immunity, co-morbidities, and immuno-suppression; (5) factors that influence vaccine effectiveness; (6) economic predictions that consider the long-term consequences likely to follow epidemics that growth exponentially; (7) the errors induced by self-limiting and/or implausible paradigms, such as binary and reductionist approaches; (8) new governance models that emphasize problem-solving skills, social participation, and the use of scientific knowledge; and (9) new educational programs that utilize visual aids and audience-specific communication strategies. The analysis indicates that, to optimally address these problems, disciplinary and social integration is needed. By asking what is/are the potential cause(s) and consequence(s) of each issue, this methodology generates visualizations that reveal possible relationships as well as omissions and contradictions. While inherently limited in scope and likely to become obsolete, these shortcomings are avoided when this 'method on methods' is frequently practiced. Open-ended, inter-/trans-disciplinary perspectives and broad social participation may help researchers and citizens to construct, de-construct, and re-construct COVID-19 related research.
Collapse
Affiliation(s)
- Ariel L Rivas
- Center for Global Health, School of Medicine, University of New Mexico, Albuquerque, NM, United States.
| | - Marc H V van Regenmortel
- University of Vienna, Austria; and Higher School of Biotechnology, University of Strasbourg, and French National Research Center, France
| |
Collapse
|