1
|
Olie SE, Staal SL, van de Beek D, Brouwer MC. Diagnosing infectious encephalitis: a narrative review. Clin Microbiol Infect 2025; 31:522-528. [PMID: 39581538 DOI: 10.1016/j.cmi.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Diagnosing infectious encephalitis can be challenging as it can be caused by a wide range of pathogens, with viruses being the most common cause. In a substantial number of patients, no pathogen is identified despite a clinical diagnosis of infectious encephalitis. Recent advancements in diagnostic testing have introduced new methods to address this diagnostic challenge and improve pathogen detection. OBJECTIVES The objective of this study is to provide a comprehensive clinical approach for diagnosing infectious encephalitis and explore novel diagnostic methods. SOURCES We searched PubMed to identify relevant literature on diagnosing encephalitis in English up to 1 September 2024, as well as included articles known by the authors. CONTENT Clinical characteristics may suggest a specific cause of infectious encephalitis, but are insufficient to guide treatment decisions. Therefore, cerebrospinal fluid (CSF) examination remains the cornerstone of the diagnostic process, with CSF leucocyte count being the most reliable predictor for central nervous system infections. CSF features can be normal, however, in a proportion of patients presenting with infectious encephalitis. A definite diagnosis of infectious encephalitis is established by microbiological or histopathological tests in ∼50% of patients. Additional investigations, including neuroimaging or electroencephalography, can provide evidence for encephalitis or help to identify alternate conditions, although their role is primarily supportive. Emerging diagnostic techniques, including next-generation sequencing metagenomics and unbiased serology (Phage ImmunoPrecipitation Sequencing), have the potential to increase the proportion of patients with a confirmed diagnosis. However, these techniques are not yet practical because of their complex analysis, long turnaround times and high costs. IMPLICATIONS Microbiological confirmation is paramount in the diagnosis of infectious encephalitis, but it is currently established in about half of cases. Although novel techniques show promise to increase the proportion of cause-specific diagnoses, they are not yet suitable for routine use. This highlights the ongoing need for advancements in diagnostic methods.
Collapse
Affiliation(s)
- Sabine E Olie
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Steven L Staal
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Jayaraman S, Tiniakou E, Morgenlander WR, Na M, Christopher‐Stine L, Larman HB. Comprehensive Enteroviral Serology Links Infection and Anti-Melanoma Differentiation-Associated Protein 5 Dermatomyositis. ACR Open Rheumatol 2025; 7:e11752. [PMID: 39509140 PMCID: PMC11694254 DOI: 10.1002/acr2.11752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 11/15/2024] Open
Abstract
OBJECTIVE Idiopathic inflammatory myopathies (IIMs) are a group of heterogeneous, systemic autoimmune diseases characterized by specific clinical features and, frequently, skeletal muscle inflammation. Specific subtypes of IIMs can be characterized by myositis-specific autoantibodies and are associated with distinct clinical phenotypes. Here, we focus on anti-melanoma differentiation-associated protein 5 (MDA5)-positive myositis and anti-signal recognition particle (SRP)-positive myositis, both of which exhibit seasonality but lack known environmental triggers. METHODS We employed Phage ImmunoPrecipitation Sequencing to profile serum antibodies against the human proteome, the human virome, and a comprehensive enterovirus library. We analyzed sera from 57 patients with anti-MDA5 autoantibodies and 57 patients with anti-SRP autoantibodies, as well as 57 healthy controls. All groups were matched for age, sex, and race. RESULTS Our autoantibody profiling results define specific immunogenic regions within the MDA5 and SRP autoantigens. We also discovered that in MDA5 sera, versus SRP sera, there was an elevated antibody response to the viral capsid protein 1 (VP1) of enterovirus B, which was accompanied by a decreased antibody response to rhinovirus A. CONCLUSION Considering the role of MDA5 as a sensor of picornaviral infections and a mediator of inflammatory signaling, our data suggest a novel etiologic link between enterovirus infection and anti-MDA5 dermatomyositis.
Collapse
Affiliation(s)
| | | | | | - Miso Na
- Johns Hopkins University School of MedicineBaltimoreMaryland
| | | | | |
Collapse
|
3
|
Dall'Olio FG, Zrafi WS, Blampey Q, Danlos FX, Roulleaux-Dugage M, Roman G, Naltet C, Cournède PH, Gautheret D, Aldea M, Planchard D, Barlesi F, Marabelle A, Hulett T, Chaput-Gras N, Besse B. Antecedent viral immunization and efficacy of immune checkpoint blockade: an extensive serum antibody profile to predict outcomes in non-small cell lung cancer. J Immunother Cancer 2024; 12:e009931. [PMID: 39613338 DOI: 10.1136/jitc-2024-009931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 12/01/2024] Open
Abstract
INTRODUCTION Immune checkpoint blockers (ICBs) revolutionized the treatment of patients with advanced non-small cell lung cancer (NSCLC) but only a fraction of them obtain a response, and clinical benefit from these treatments is often difficult to predict. The aim of our study is to unveil the potential implications of antibody response to previous viral infections in predicting response to ICBs in patients with NSCLC. METHODS Sera from patients treated with ICBs alone, chemotherapy (CT) or a combination of CT-ICBs were analyzed with VirScan (CDI Labs, USA), a high-throughput method that comprehensively analyzes epitope-level antiviral IgG antibodies via programmable phage display and immunoprecipitation sequencing.Total number of unique positive peptides (tUP) was defined as the total number of non-overlapping positive "is a hit" peptides for each patient. RESULTS Overall, 387 patients were included. Of them, 129 were treated with ICBs alone, 66 with CT-ICBs and 195 with CT alone. 90 out of 129 patients treated with ICBs alone received ICBs as a subsequent line of treatment, while CT-ICBs and CT were administered as upfront therapies.A higher tUP was correlated with improved overall survival in patients treated with ICBs, and confirmed in the multivariate model (HR 0.43, 95% CI 0.24, 0.79, p=0.006), while it was not in those treated with CT-ICBs (p=0.8) and CT alone (p=0.1).tUP was not correlated with programmed death-ligand 1 (PD-L1) expression, while at the transcriptome level it was correlated with several immune-related pathways, particularly involving B cells. CONCLUSION A higher number of viral peptides recognized by serum antibodies might reflect increased immune fitness, resulting in improved outcomes in ICBs treated patients with NSCLC.
Collapse
Affiliation(s)
- Filippo G Dall'Olio
- Department of Head and Neck Oncology, Gustave Roussy, Villejuif, France
- CNRS UMR9018, Metabolic and Systemic Aspects of Oncogenesis for New Therapeutic Approaches (METSY), Villejuif, France
| | - Wael Salem Zrafi
- Department of Biostatistics and Bioinformatics, Gustave Roussy, Villejuif, France
| | | | - Francois-Xavier Danlos
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
- Universite Paris-Saclay, Gif-sur-Yvette, France
| | - Matthieu Roulleaux-Dugage
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
- Universite Paris-Saclay, Gif-sur-Yvette, France
| | | | - Charles Naltet
- Department of Respiratory Diseases, Hôpital Paris Saint-Joseph, Paris, France
| | | | | | - Mihaela Aldea
- Universite Paris-Saclay, Gif-sur-Yvette, France
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - David Planchard
- Universite Paris-Saclay, Gif-sur-Yvette, France
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Fabrice Barlesi
- Universite Paris-Saclay, Gif-sur-Yvette, France
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Aurelien Marabelle
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
- Universite Paris-Saclay, Gif-sur-Yvette, France
| | | | - Nathalie Chaput-Gras
- Laboratoire d'immunomonitoring En Oncologie, University Paris-Saclay, Faculty of Pharmacy, Gustave Roussy Cancer Campus, Villejuif, France
| | - Benjamin Besse
- Universite Paris-Saclay, Gif-sur-Yvette, France
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| |
Collapse
|
4
|
Shrewsbury JV, Vitus ES, Koziol AL, Nenarokova A, Jess T, Elmahdi R. Comprehensive phage display viral antibody profiling using VirScan: potential applications in chronic immune-mediated disease. J Virol 2024; 98:e0110224. [PMID: 39431820 PMCID: PMC11575288 DOI: 10.1128/jvi.01102-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Phage immunoprecipitation sequencing (PhIP-Seq) is a high-throughput platform that uses programmable phage display for serology. VirScan, a specific PhIP-Seq library encoding viral peptides from all known human viruses, enables comprehensive quantification of past viral exposures. We review its use in immune-mediated diseases (IMDs), highlighting its utility in identifying viral exposures in the context of IMD development. Finally, we evaluate its potential for precision medicine by integrating it with other large-scale omics data sets.
Collapse
Affiliation(s)
- Jed Valentiner Shrewsbury
- Faculty of Medicine, Imperial College London, London, United Kingdom
- Ashford and St. Peter’s Hospitals NHS Foundation Trust, Chertsey, United Kingdom
| | - Evangelin Shaloom Vitus
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Adam Leslie Koziol
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | | | - Tine Jess
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Rahma Elmahdi
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
5
|
Huang Z, Gunarathne SMS, Liu W, Zhou Y, Jiang Y, Li S, Huang J. PhIP-Seq: methods, applications and challenges. FRONTIERS IN BIOINFORMATICS 2024; 4:1424202. [PMID: 39295784 PMCID: PMC11408297 DOI: 10.3389/fbinf.2024.1424202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Phage-immunoprecipitation sequencing (PhIP-Seq) technology is an innovative, high-throughput antibody detection method. It enables comprehensive analysis of individual antibody profiles. This technology shows great potential, particularly in exploring disease mechanisms and immune responses. Currently, PhIP-Seq has been successfully applied in various fields, such as the exploration of biomarkers for autoimmune diseases, vaccine development, and allergen detection. A variety of bioinformatics tools have facilitated the development of this process. However, PhIP-Seq technology still faces many challenges and has room for improvement. Here, we review the methods, applications, and challenges of PhIP-Seq and discuss its future directions in immunological research and clinical applications. With continuous progress and optimization, PhIP-Seq is expected to play an even more important role in future biomedical research, providing new ideas and methods for disease prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Ziru Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Wenwen Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuwei Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuqing Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiqi Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| |
Collapse
|
6
|
Sundell GN, Tao SC. Phage Immunoprecipitation and Sequencing-a Versatile Technique for Mapping the Antibody Reactome. Mol Cell Proteomics 2024; 23:100831. [PMID: 39168282 PMCID: PMC11417174 DOI: 10.1016/j.mcpro.2024.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Characterizing the antibody reactome for circulating antibodies provide insight into pathogen exposure, allergies, and autoimmune diseases. This is important for biomarker discovery, clinical diagnosis, and prognosis of disease progression, as well as population-level insights into the immune system. The emerging technology phage display immunoprecipitation and sequencing (PhIP-seq) is a high-throughput method for identifying antigens/epitopes of the antibody reactome. In PhIP-seq, libraries with sequences of defined lengths and overlapping segments are bioinformatically designed using naturally occurring proteins and cloned into phage genomes to be displayed on the surface. These libraries are used in immunoprecipitation experiments of circulating antibodies. This can be done with parallel samples from multiple sources, and the DNA inserts from the bound phages are barcoded and subjected to next-generation sequencing for hit determination. PhIP-seq is a powerful technique for characterizing the antibody reactome that has undergone rapid advances in recent years. In this review, we comprehensively describe the history of PhIP-seq and discuss recent advances in library design and applications.
Collapse
Affiliation(s)
- Gustav N Sundell
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Gachogo R, Happel AU, Alinde B, Gray CM, Jaspan H, Dzanibe S. Reduced anti-viral IgG repertoire in HIV-exposed but uninfected infants compared to HIV-unexposed infants. iScience 2024; 27:110282. [PMID: 39040054 PMCID: PMC11261148 DOI: 10.1016/j.isci.2024.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Infants who are HIV exposed but uninfected (iHEU) have higher risk of viral infections compared to infants who are HIV unexposed (iHUU). We explored the effect of intrauterine HIV exposure on the infant antibody repertoire by quantifying plasma immunoglobulin (Ig) G against 206 eukaryote-infecting viruses using phage immunoprecipitation sequencing (PhiPSeq) in iHEU and iHUU at birth and 36 weeks of life. Maternal HIV infection altered the infant IgG repertoire against eukaryote-infecting viruses at birth, resulting in significantly lower antibody breadth and diversity among iHEU compared to iHUU. Neonatal anti-viral IgG repertoire was dominated by antibodies against viruses belonging to the Herpesviridae family, although, by 36 weeks, this had shifted toward antibodies against enteroviruses, likely due to waning of maternal-derived antibodies and polio vaccine-induced antibody responses as expected. The observed reduced anti-viral IgG repertoire breadth and diversity acquired at birth in iHEU might contribute to the increased rates of viral infections among iHEU during early life.
Collapse
Affiliation(s)
- Rachael Gachogo
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Anna-Ursula Happel
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Berenice Alinde
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Division of Immunology, Department of Biomedical Sciences, Biomedical Research Institute, Stellenbosch University, Cape Town, South Africa
| | - Clive M. Gray
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Immunology, Department of Biomedical Sciences, Biomedical Research Institute, Stellenbosch University, Cape Town, South Africa
| | - Heather Jaspan
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Seattle Children’s Research Institute, Department of Pediatrics and Global Health, University of Washington, Seattle, WA, USA
| | - Sonwabile Dzanibe
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Morgenlander WR, Chia WN, Parra B, Monaco DR, Ragan I, Pardo CA, Bowen R, Zhong D, Norris DE, Ruczinski I, Durbin A, Wang LF, Larman HB, Robinson ML. Precision arbovirus serology with a pan-arbovirus peptidome. Nat Commun 2024; 15:5833. [PMID: 38992033 PMCID: PMC11239951 DOI: 10.1038/s41467-024-49461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Arthropod-borne viruses represent a crucial public health threat. Current arboviral serology assays are either labor intensive or incapable of distinguishing closely related viruses, and many zoonotic arboviruses that may transition to humans lack any serologic assays. In this study, we present a programmable phage display platform, ArboScan, that evaluates antibody binding to overlapping peptides that represent the proteomes of 691 human and zoonotic arboviruses. We confirm that ArboScan provides detailed antibody binding information from animal sera, human sera, and an arthropod blood meal. ArboScan identifies distinguishing features of antibody responses based on exposure history in a Colombian cohort of Zika patients. Finally, ArboScan details epitope level information that rapidly identifies candidate epitopes with potential protective significance. ArboScan thus represents a resource for characterizing human and animal arbovirus antibody responses at cohort scale.
Collapse
Affiliation(s)
- William R Morgenlander
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wan Ni Chia
- Program in Emerging Infectious Diseases Duke-NUS Medical School, Singapore, Singapore
| | - Beatriz Parra
- Department of Microbiology, Universidad del Valle, Cali, Colombia
| | - Daniel R Monaco
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Izabela Ragan
- Department of Biomedical Sciences, Colorado State University College of Veterinary and Biomedical Sciences, Fort Collins, CO, USA
| | - Carlos A Pardo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard Bowen
- Department of Biomedical Sciences, Colorado State University College of Veterinary and Biomedical Sciences, Fort Collins, CO, USA
| | - Diana Zhong
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Douglas E Norris
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Anna Durbin
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lin-Fa Wang
- Program in Emerging Infectious Diseases Duke-NUS Medical School, Singapore, Singapore
| | - H Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Matthew L Robinson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Liebhoff AM, Venkataraman T, Morgenlander WR, Na M, Kula T, Waugh K, Morrison C, Rewers M, Longman R, Round J, Elledge S, Ruczinski I, Langmead B, Larman HB. Efficient encoding of large antigenic spaces by epitope prioritization with Dolphyn. Nat Commun 2024; 15:1577. [PMID: 38383452 PMCID: PMC10881494 DOI: 10.1038/s41467-024-45601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
We investigate a relatively underexplored component of the gut-immune axis by profiling the antibody response to gut phages using Phage Immunoprecipitation Sequencing (PhIP-Seq). To cover large antigenic spaces, we develop Dolphyn, a method that uses machine learning to select peptides from protein sets and compresses the proteome through epitope-stitching. Dolphyn compresses the size of a peptide library by 78% compared to traditional tiling, increasing the antibody-reactive peptides from 10% to 31%. We find that the immune system develops antibodies to human gut bacteria-infecting viruses, particularly E.coli-infecting Myoviridae. Cost-effective PhIP-Seq libraries designed with Dolphyn enable the assessment of a wider range of proteins in a single experiment, thus facilitating the study of the gut-immune axis.
Collapse
Affiliation(s)
- Anna-Maria Liebhoff
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Institute of Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Thiagarajan Venkataraman
- Institute of Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - William R Morgenlander
- Institute of Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Miso Na
- Institute of Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Tomasz Kula
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA
| | - Kathleen Waugh
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO, USA
| | - Charles Morrison
- Behavioral, Clinical and Epidemiologic Sciences, FHI 360, Durham, NC, USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO, USA
| | - Randy Longman
- Jill Roberts Institute for Research in IBD, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - June Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Stephen Elledge
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Ben Langmead
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - H Benjamin Larman
- Institute of Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
10
|
Filimonova I, Innocenti G, Vogl T. Phage Immunoprecipitation Sequencing (PhIP-Seq) for Analyzing Antibody Epitope Repertoires Against Food Antigens. Methods Mol Biol 2024; 2717:101-122. [PMID: 37737980 DOI: 10.1007/978-1-0716-3453-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
While thousands of food and environmental allergens have been reported, conventional methods for allergy testing typically rely on measuring immunoglobulin E (IgE) binding against panels of dozens to hundreds of antigens. Beyond IgE, also the specificity of other Ig (sub-)classes such as IgG4, has gained interest because of a potential protective role toward allergy.Phage immunoprecipitation sequencing (PhIP-Seq) allows to study hundreds of thousands of rationally selected peptide antigens and to resolve binding specificities of different Ig classes. This technology combines synthetic DNA libraries encoding antigens, with the display on the surface of T7 bacteriophages and next-generation sequencing (NGS) for quantitative readouts. Thereby binding of entire Ig repertoires can be measured to detect the exact epitopes of food allergens and to study potential cross-reactivity.In this chapter, we provide a summary of both the key experimental steps and various strategies for analyzing PhIP-Seq datasets, as well as comparing the advantages and disadvantages of this methodology for measuring antibody responses against food antigens.
Collapse
Affiliation(s)
- Ioanna Filimonova
- Medical University of Vienna, Center for Cancer Research, Vienna, Austria
| | - Gabriel Innocenti
- Medical University of Vienna, Center for Cancer Research, Vienna, Austria
| | - Thomas Vogl
- Medical University of Vienna, Center for Cancer Research, Vienna, Austria.
| |
Collapse
|
11
|
Liechti T, Van Gassen S, Beddall M, Ballard R, Iftikhar Y, Du R, Venkataraman T, Novak D, Mangino M, Perfetto S, Larman HB, Spector T, Saeys Y, Roederer M. A robust pipeline for high-content, high-throughput immunophenotyping reveals age- and genetics-dependent changes in blood leukocytes. CELL REPORTS METHODS 2023; 3:100619. [PMID: 37883924 PMCID: PMC10626267 DOI: 10.1016/j.crmeth.2023.100619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/29/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
High-dimensional flow cytometry is the gold standard to study the human immune system in large cohorts. However, large sample sizes increase inter-experimental variation because of technical and experimental inaccuracies introduced by batch variability. Our high-throughput sample processing pipeline in combination with 28-color flow cytometry focuses on increased throughput (192 samples/experiment) and high reproducibility. We implemented quality control checkpoints to reduce technical and experimental variation. Finally, we integrated FlowSOM clustering to facilitate automated data analysis and demonstrate the reproducibility of our pipeline in a study with 3,357 samples. We reveal age-associated immune dynamics in 2,300 individuals, signified by decreasing T and B cell subsets with age. In addition, by combining genetic analyses, our approach revealed unique immune signatures associated with a single nucleotide polymorphism (SNP) that abrogates CD45 isoform splicing. In summary, we provide a versatile and reliable high-throughput, flow cytometry-based pipeline for immune discovery and exploration in large cohorts.
Collapse
Affiliation(s)
- Thomas Liechti
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA.
| | - Sofie Van Gassen
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Margaret Beddall
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Reid Ballard
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Yaser Iftikhar
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Renguang Du
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Thiagarajan Venkataraman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - David Novak
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Massimo Mangino
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK; National Heart and Lung Institute, Cardiovascular Science Division, Imperial College London, London, UK
| | - Stephen Perfetto
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - H Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Tim Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA.
| |
Collapse
|
12
|
Hu D, Irving AT. Massively-multiplexed epitope mapping techniques for viral antigen discovery. Front Immunol 2023; 14:1192385. [PMID: 37818363 PMCID: PMC10561112 DOI: 10.3389/fimmu.2023.1192385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Following viral infection, viral antigens bind specifically to receptors on the surface of lymphocytes thereby activating adaptive immunity in the host. An epitope, the smallest structural and functional unit of an antigen, binds specifically to an antibody or antigen receptor, to serve as key sites for the activation of adaptive immunity. The complexity and diverse range of epitopes are essential to study and map for the diagnosis of disease, the design of vaccines and for immunotherapy. Mapping the location of these specific epitopes has become a hot topic in immunology and immune therapy. Recently, epitope mapping techniques have evolved to become multiplexed, with the advent of high-throughput sequencing and techniques such as bacteriophage-display libraries and deep mutational scanning. Here, we briefly introduce the principles, advantages, and disadvantages of the latest epitope mapping techniques with examples for viral antigen discovery.
Collapse
Affiliation(s)
- Diya Hu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Aaron T. Irving
- Department of Clinical Laboratory Studies, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Infection, Immunity & Cancer, Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
- Biomedical and Health Translational Research Centre of Zhejiang Province (BIMET), Haining, China
- College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Ruhs EC, Chia WN, Foo R, Peel AJ, Li Y, Larman HB, Irving AT, Wang L, Brook CE. Applications of VirScan to broad serological profiling of bat reservoirs for emerging zoonoses. Front Public Health 2023; 11:1212018. [PMID: 37808979 PMCID: PMC10559906 DOI: 10.3389/fpubh.2023.1212018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Bats are important providers of ecosystem services such as pollination, seed dispersal, and insect control but also act as natural reservoirs for virulent zoonotic viruses. Bats host multiple viruses that cause life-threatening pathology in other animals and humans but, themselves, experience limited pathological disease from infection. Despite bats' importance as reservoirs for several zoonotic viruses, we know little about the broader viral diversity that they host. Bat virus surveillance efforts are challenged by difficulties of field capture and the limited scope of targeted PCR- or ELISA-based molecular and serological detection. Additionally, virus shedding is often transient, thus also limiting insights gained from nucleic acid testing of field specimens. Phage ImmunoPrecipitation Sequencing (PhIP-Seq), a broad serological tool used previously to comprehensively profile viral exposure history in humans, offers an exciting prospect for viral surveillance efforts in wildlife, including bats. Methods Here, for the first time, we apply PhIP-Seq technology to bat serum, using a viral peptide library originally designed to simultaneously assay exposures to the entire human virome. Results Using VirScan, we identified past exposures to 57 viral genera-including betacoronaviruses, henipaviruses, lyssaviruses, and filoviruses-in semi-captive Pteropus alecto and to nine viral genera in captive Eonycteris spelaea. Consistent with results from humans, we find that both total peptide hits (the number of enriched viral peptides in our library) and the corresponding number of inferred past virus exposures in bat hosts were correlated with poor bat body condition scores and increased with age. High and low body condition scores were associated with either seropositive or seronegative status for different viruses, though in general, virus-specific age-seroprevalence curves defied assumptions of lifelong immunizing infection, suggesting that many bat viruses may circulate via complex transmission dynamics. Discussion Overall, our work emphasizes the utility of applying biomedical tools, like PhIP-Seq, first developed for humans to viral surveillance efforts in wildlife, while highlighting opportunities for taxon-specific improvements.
Collapse
Affiliation(s)
- Emily Cornelius Ruhs
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
- Grainger Bioinformatics Center, Field Museum of Natural History, Chicago, IL, United States
| | - Wan Ni Chia
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- CoV Biotechnology Pte Ltd., Singapore, Singapore
| | - Randy Foo
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Alison J. Peel
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisband, QLD, Australia
| | - Yimei Li
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
- Quantitative and Computational Biology, Princeton University, Princeton, NJ, United States
| | - H. Benjamin Larman
- HBL – Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Aaron T. Irving
- Second Affiliated Hospital of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Haining, Zhejiang, China
- BIMET - Biomedical and Translational Research Centre of Zhejiang Province, Zhejiang Province, China
| | - Linfa Wang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| | - Cara E. Brook
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
| |
Collapse
|
14
|
Lei Y, Liu Q, Li Q, Zhao C, Zhao M, Lu Q. Exploring the Complex Relationship Between Microbiota and Systemic Lupus Erythematosus. Curr Rheumatol Rep 2023; 25:107-116. [PMID: 37083877 DOI: 10.1007/s11926-023-01102-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by various autoantibodies and multi-organ. Microbiota dysbiosis in the gut, skin, oral, and other surfaces has a significant impact on SLE development. This article summarizes relevant research and provides new microbiome-related strategies for exploring the mechanisms and treating patients with SLE. RECENT FINDINGS SLE patients have disruptions in multiple microbiomes, with the gut microbiota (bacteria, viruses, and fungi) and their metabolites being the most thoroughly researched. This dysbiosis can promote SLE progression through mechanisms such as the leaky gut, molecular mimicry, and epigenetic regulation. Notwithstanding study constraints on the relationship between microbiota and SLE, specific interventions targeting the gut microbiota, such as probiotics, dietary management, and fecal microbiota transplantation, have emerged as promising SLE therapeutics.
Collapse
Affiliation(s)
- Yu Lei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianmei Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Qilin Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
15
|
Kelley EJ, Henson SN, Rahee F, Boyle AS, Engelbrektson AL, Nelson GA, Mead HL, Anderson NL, Razavi M, Yip R, Ladner JT, Scriba TJ, Altin JA. Virome-wide detection of natural infection events and the associated antibody dynamics using longitudinal highly-multiplexed serology. Nat Commun 2023; 14:1783. [PMID: 36997517 PMCID: PMC10062260 DOI: 10.1038/s41467-023-37378-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
Current methods for detecting infections either require a sample collected from an actively infected site, are limited in the number of agents they can query, and/or yield no information on the immune response. Here we present an approach that uses temporally coordinated changes in highly-multiplexed antibody measurements from longitudinal blood samples to monitor infection events at sub-species resolution across the human virome. In a longitudinally-sampled cohort of South African adolescents representing >100 person-years, we identify >650 events across 48 virus species and observe strong epidemic effects, including high-incidence waves of Aichivirus A and the D68 subtype of Enterovirus D earlier than their widespread circulation was appreciated. In separate cohorts of adults who were sampled at higher frequency using self-collected dried blood spots, we show that such events temporally correlate with symptoms and transient inflammatory biomarker elevations, and observe the responding antibodies to persist for periods ranging from ≤1 week to >5 years. Our approach generates a rich view of viral/host dynamics, supporting novel studies in immunology and epidemiology.
Collapse
Affiliation(s)
- Erin J Kelley
- The Translational Genomics Research Institute (TGen), Flagstaff and Phoenix, AZ, USA
| | - Sierra N Henson
- The Translational Genomics Research Institute (TGen), Flagstaff and Phoenix, AZ, USA
| | - Fatima Rahee
- The Translational Genomics Research Institute (TGen), Flagstaff and Phoenix, AZ, USA
| | - Annalee S Boyle
- The Translational Genomics Research Institute (TGen), Flagstaff and Phoenix, AZ, USA
| | - Anna L Engelbrektson
- The Translational Genomics Research Institute (TGen), Flagstaff and Phoenix, AZ, USA
| | - Georgia A Nelson
- The Translational Genomics Research Institute (TGen), Flagstaff and Phoenix, AZ, USA
| | - Heather L Mead
- The Translational Genomics Research Institute (TGen), Flagstaff and Phoenix, AZ, USA
| | | | | | - Richard Yip
- SISCAPA Assay Technologies, Inc., Washington, DC, USA
| | - Jason T Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - John A Altin
- The Translational Genomics Research Institute (TGen), Flagstaff and Phoenix, AZ, USA.
| |
Collapse
|
16
|
Raghavan M, Kalantar KL, Duarte E, Teyssier N, Takahashi S, Kung AF, Rajan JV, Rek J, Tetteh KKA, Drakeley C, Ssewanyana I, Rodriguez-Barraquer I, Greenhouse B, DeRisi JL. Antibodies to repeat-containing antigens in Plasmodium falciparum are exposure-dependent and short-lived in children in natural malaria infections. eLife 2023; 12:e81401. [PMID: 36790168 PMCID: PMC10005774 DOI: 10.7554/elife.81401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 02/14/2023] [Indexed: 02/16/2023] Open
Abstract
Protection against Plasmodium falciparum, which is primarily antibody-mediated, requires recurrent exposure to develop. The study of both naturally acquired limited immunity and vaccine induced protection against malaria remains critical for ongoing eradication efforts. Towards this goal, we deployed a customized P. falciparum PhIP-seq T7 phage display library containing 238,068 tiled 62-amino acid peptides, covering all known coding regions, including antigenic variants, to systematically profile antibody targets in 198 Ugandan children and adults from high and moderate transmission settings. Repeat elements - short amino acid sequences repeated within a protein - were significantly enriched in antibody targets. While breadth of responses to repeat-containing peptides was twofold higher in children living in the high versus moderate exposure setting, no such differences were observed for peptides without repeats, suggesting that antibody responses to repeat-containing regions may be more exposure dependent and/or less durable in children than responses to regions without repeats. Additionally, short motifs associated with seroreactivity were extensively shared among hundreds of antigens, potentially representing cross-reactive epitopes. PfEMP1 shared motifs with the greatest number of other antigens, partly driven by the diversity of PfEMP1 sequences. These data suggest that the large number of repeat elements and potential cross-reactive epitopes found within antigenic regions of P. falciparum could contribute to the inefficient nature of malaria immunity.
Collapse
Affiliation(s)
- Madhura Raghavan
- University of California, San FranciscoSan FranciscoUnited States
| | | | - Elias Duarte
- University of California, BerkeleyBerkeleyUnited States
| | - Noam Teyssier
- University of California, San FranciscoSan FranciscoUnited States
| | - Saki Takahashi
- University of California, San FranciscoSan FranciscoUnited States
| | - Andrew F Kung
- University of California, San FranciscoSan FranciscoUnited States
| | - Jayant V Rajan
- University of California, San FranciscoSan FranciscoUnited States
| | - John Rek
- Infectious Diseases Research CollaborationKampalaUganda
| | - Kevin KA Tetteh
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Chris Drakeley
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Isaac Ssewanyana
- Infectious Diseases Research CollaborationKampalaUganda
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Isabel Rodriguez-Barraquer
- University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Bryan Greenhouse
- University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Joseph L DeRisi
- University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|
17
|
Krogvold L, Genoni A, Puggioni A, Campani D, Richardson SJ, Flaxman CS, Edwin B, Buanes T, Dahl-Jørgensen K, Toniolo A. Live enteroviruses, but not other viruses, detected in human pancreas at the onset of type 1 diabetes in the DiViD study. Diabetologia 2022; 65:2108-2120. [PMID: 35953727 PMCID: PMC9630231 DOI: 10.1007/s00125-022-05779-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/14/2022] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS Enterovirus (EV) infection of pancreatic islet cells is one possible factor contributing to type 1 diabetes development. We have reported the presence of EV genome by PCR and of EV proteins by immunohistochemistry in pancreatic sections. Here we explore multiple human virus species in the Diabetes Virus Detection (DiViD) study cases using innovative methods, including virus passage in cell cultures. METHODS Six recent-onset type 1 diabetes patients (age 24-35) were included in the DiViD study. Minimal pancreatic tail resection was performed under sterile conditions. Eleven live cases (age 43-83) of pancreatic carcinoma without diabetes served as control cases. In the present study, we used EV detection methods that combine virus growth in cell culture, gene amplification and detection of virus-coded proteins by immunofluorescence. Pancreas homogenates in cell culture medium were incubated with EV-susceptible cell lines for 3 days. Two to three blind passages were performed. DNA and RNA were extracted from both pancreas tissue and cell cultures. Real-time PCR was used for detecting 20 different viral agents other than EVs (six herpesviruses, human polyomavirus [BK virus and JC virus], parvovirus B19, hepatitis B virus, hepatitis C virus, hepatitis A virus, mumps, rubella, influenza A/B, parainfluenza 1-4, respiratory syncytial virus, astrovirus, norovirus, rotavirus). EV genomes were detected by endpoint PCR using five primer pairs targeting the partially conserved 5' untranslated region genome region of the A, B, C and D species. Amplicons were sequenced. The expression of EV capsid proteins was evaluated in cultured cells using a panel of EV antibodies. RESULTS Samples from six of six individuals with type 1 diabetes (cases) and two of 11 individuals without diabetes (control cases) contained EV genomes (p<0.05). In contrast, genomes of 20 human viruses other than EVs could be detected only once in an individual with diabetes (Epstein-Barr virus) and once in an individual without diabetes (parvovirus B19). EV detection was confirmed by immunofluorescence of cultured cells incubated with pancreatic extracts: viral antigens were expressed in the cytoplasm of approximately 1% of cells. Notably, infection could be transmitted from EV-positive cell cultures to uninfected cell cultures using supernatants filtered through 100 nm membranes, indicating that infectious agents of less than 100 nm were present in pancreases. Due to the slow progression of infection in EV-carrying cell cultures, cytopathic effects were not observed by standard microscopy but were recognised by measuring cell viability. Sequences of 5' untranslated region amplicons were compatible with EVs of the B, A and C species. Compared with control cell cultures exposed to EV-negative pancreatic extracts, EV-carrying cell cultures produced significantly higher levels of IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP1). CONCLUSIONS/INTERPRETATION Sensitive assays confirm that the pancreases of all DiViD cases contain EVs but no other viruses. Analogous EV strains have been found in pancreases of two of 11 individuals without diabetes. The detected EV strains can be passaged in series from one cell culture to another in the form of poorly replicating live viruses encoding antigenic proteins recognised by multiple EV-specific antibodies. Thus, the early phase of type 1 diabetes is associated with a low-grade infection by EVs, but not by other viral agents.
Collapse
Affiliation(s)
- Lars Krogvold
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | - Angelo Genoni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Anna Puggioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Daniela Campani
- Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Sarah J Richardson
- Islet Biology Group (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter College of Medicine and Health, Exeter, UK
| | - Christine S Flaxman
- Islet Biology Group (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter College of Medicine and Health, Exeter, UK
| | - Bjørn Edwin
- Department for HPB Surgery, Oslo University Hospital, Oslo, Norway
| | - Trond Buanes
- Department for HPB Surgery, Oslo University Hospital, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
18
|
Gordon‐Lipkin EM, Marcum CS, Kruk S, Thompson E, Kelly SEM, Kalish H, Bellusci L, Khurana S, Sadtler K, McGuire PJ. Comprehensive profiling of the human viral exposome in households containing an at-risk child with mitochondrial disease during the 2020-2021 COVID-19 pandemic. Clin Transl Med 2022; 12:e1100. [PMID: 36336785 PMCID: PMC9637669 DOI: 10.1002/ctm2.1100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Viral infection is a major cause of morbidity in children with mitochondrial disease (MtD). As a result, families with children with MtD are highly adherent to risk mitigation behaviours (RMBs) advised by the Centers for Disease Control and Prevention during the COVID-19 pandemic that can modulate infection risk. METHODS Deep serologic phenotyping of viral infections was performed via home-based sampling by combining SARS-CoV-2 serologic testing and phage display immunoprecipitation and sequencing. Samples were collected approximately 1 year apart (October 2020 to April 2021 and October 2021 to March 2022) on households containing a child with MtD. RESULTS In contrast to our first collection in 2020-2021, SARS-CoV-2 antibody profiles for all participants in 2021-2022 were marked by greater isotype diversity and the appearance of neutralizing antibodies. Besides SARS-CoV-2, households (N = 15) were exposed to >38 different respiratory and gastrointestinal viruses during the study, averaging five viral infections per child with MtD. Regarding clinical outcomes, children with MtD (N = 17) experienced 34 episodes of illness resulting in 6 hospitalizations, with some children experiencing multiple episodes. Neurologic events following illness were recorded in five patients. Infections were identified via clinical testing in only seven cases. Viral exposome profiles were consistent with clinical testing and even identified infections not captured by clinical testing. CONCLUSIONS Despite reported adherence to RMBs during the COVID-19 pandemic by families with a child with MtD, viral infection was pervasive. Not all infections resulted in illness in the child with MtD, suggesting that some were subclinical or asymptomatic. However, selected children with MtD did experience neurologic events. Our studies emphasize that viral infections are inexorable, emphasizing the need for further understanding of host-pathogen interactions through broad serologic surveillance.
Collapse
Affiliation(s)
- Eliza M. Gordon‐Lipkin
- Metabolism, Infection and Immunity SectionNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Christopher S. Marcum
- Data Science PolicyNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Shannon Kruk
- Metabolism, Infection and Immunity SectionNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Elizabeth Thompson
- Metabolism, Infection and Immunity SectionNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Sophie E. M. Kelly
- Trans‐NIH Shared Resource on Biomedical Engineering and Physical ScienceNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMarylandUSA
| | - Heather Kalish
- Trans‐NIH Shared Resource on Biomedical Engineering and Physical ScienceNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMarylandUSA
| | - Lorenza Bellusci
- Division of Viral ProductsCenter for Biologics Evaluation and ResearchFood and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Surender Khurana
- Division of Viral ProductsCenter for Biologics Evaluation and ResearchFood and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Kaitlyn Sadtler
- Section on ImmunoengineeringNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMarylandUSA
| | - Peter J. McGuire
- Metabolism, Infection and Immunity SectionNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
19
|
Keusch GT, Amuasi JH, Anderson DE, Daszak P, Eckerle I, Field H, Koopmans M, Lam SK, Das Neves CG, Peiris M, Perlman S, Wacharapluesadee S, Yadana S, Saif L. Pandemic origins and a One Health approach to preparedness and prevention: Solutions based on SARS-CoV-2 and other RNA viruses. Proc Natl Acad Sci U S A 2022; 119:e2202871119. [PMID: 36215506 PMCID: PMC9586299 DOI: 10.1073/pnas.2202871119] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
COVID-19 is the latest zoonotic RNA virus epidemic of concern. Learning how it began and spread will help to determine how to reduce the risk of future events. We review major RNA virus outbreaks since 1967 to identify common features and opportunities to prevent emergence, including ancestral viral origins in birds, bats, and other mammals; animal reservoirs and intermediate hosts; and pathways for zoonotic spillover and community spread, leading to local, regional, or international outbreaks. The increasing scientific evidence concerning the origins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is most consistent with a zoonotic origin and a spillover pathway from wildlife to people via wildlife farming and the wildlife trade. We apply what we know about these outbreaks to identify relevant, feasible, and implementable interventions. We identify three primary targets for pandemic prevention and preparedness: first, smart surveillance coupled with epidemiological risk assessment across wildlife-livestock-human (One Health) spillover interfaces; second, research to enhance pandemic preparedness and expedite development of vaccines and therapeutics; and third, strategies to reduce underlying drivers of spillover risk and spread and reduce the influence of misinformation. For all three, continued efforts to improve and integrate biosafety and biosecurity with the implementation of a One Health approach are essential. We discuss new models to address the challenges of creating an inclusive and effective governance structure, with the necessary stable funding for cross-disciplinary collaborative research. Finally, we offer recommendations for feasible actions to close the knowledge gaps across the One Health continuum and improve preparedness and response in the future.
Collapse
Affiliation(s)
- Gerald T. Keusch
- Department of Medicine, Section of Infectious Diseases, National Emerging Infectious Diseases Laboratories, Center for Emerging Infectious Diseases Policy and Research, Boston University, Boston, MA 02215
| | - John H. Amuasi
- School of Public Health, Department of Global Health, Kwame Nkrumah University of Science and Technology (KNUST), PMB UPO, Kumasi 00000 Ghana
- Global Health and Infectious Diseases Research Group, Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
- Bernhard Nocht Institute of Tropical Medicine, 20359 Hamburg, Germany
| | - Danielle E. Anderson
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000 Australia
| | | | - Isabella Eckerle
- Geneva Centre for Emerging Viral Diseases, Laboratory of Virology, Division of Infectious Diseases, University Hospital of Geneva, CH-1205 Geneva, Switzerland
- Department of Molecular Medicine and Microbiology Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Hume Field
- EcoHealth Alliance, New York, NY 10018
- School of Veterinary Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marion Koopmans
- Department of Viroscience and Pandemic and Disaster Preparedness Centre, Erasmus Medical Center, CA 3000 Rotterdam, Netherlands
| | - Sai Kit Lam
- University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Carlos G. Das Neves
- Norwegian Veterinary Institute, 1433 Ås, Norway
- Faculty of Health Sciences, UiT – The Arctic University of Norway, Langnes, N-9037 Tromsø, Norway
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, 999077 Hong Kong SAR, China
| | - Stanley Perlman
- Department of Microbiology and Immunology, Department of Pediatrics, University of Iowa, Iowa City, IA 52242
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital and Chulalongkorn University, Bangkok 10330, Thailand
| | - Su Yadana
- EcoHealth Alliance, New York, NY 10018
| | - Linda Saif
- Center for Food Animal Health (CFAH), Ohio Agricultural Research and Development Center, Animal Sciences Department, College of Food, Agricultural and Environmental Sciences, Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691
| |
Collapse
|
20
|
Rasquinha MT, Lasrado N, Petro-Turnquist E, Weaver E, Venkataraman T, Anderson D, Laserson U, Larman HB, Reddy J. PhIP-Seq Reveals Autoantibodies for Ubiquitously Expressed Antigens in Viral Myocarditis. BIOLOGY 2022; 11:biology11071055. [PMID: 36101433 PMCID: PMC9312229 DOI: 10.3390/biology11071055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022]
Abstract
Simple Summary Myocarditis is the inflammation of the heart muscle, and viral infections are a common cause of this disease. Myocarditis in some patients can progress to dilated cardiomyopathy (DCM). The mouse model of coxsackievirus B3 (CVB3) is commonly used to understand this disease progression in DCM patients. In this paper, we have attempted to analyze antibodies for heart antigens that could be produced as a result of heart damage in animals infected with CVB3 using a technique called Phage ImmunoPrecipitation Sequencing (PhIP-Seq). The analyses led us to identify antibodies for several proteins that were not previously reported that may have relevance to human disease. Abstract Enteroviruses such as group B coxsackieviruses (CVB) are commonly suspected as causes of myocarditis that can lead to dilated cardiomyopathy (DCM), and the mouse model of CVB3 myocarditis is routinely used to understand DCM pathogenesis. Mechanistically, autoimmunity is suspected due to the presence of autoantibodies for select antigens. However, their role continues to be enigmatic, which also raises the question of whether the breadth of autoantibodies is sufficiently characterized. Here, we attempted to comprehensively analyze the autoantibody repertoire using Phage ImmunoPrecipitation Sequencing (PhIP-Seq), a versatile and high-throughput platform, in the mouse model of CVB3 myocarditis. First, PhIP-Seq analysis using the VirScan library revealed antibody reactivity only to CVB3 in the infected group but not in controls, thus validating the technique in this model. Second, using the mouse peptide library, we detected autoantibodies to 32 peptides from 25 proteins in infected animals that are ubiquitously expressed and have not been previously reported. Third, by using ELISA as a secondary assay, we confirmed antibody reactivity in sera from CVB3-infected animals to cytochrome c oxidase assembly factor 4 homolog (COA4) and phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1), indicating the specificity of antibody detection by PhIP-Seq technology. Fourth, we noted similar antibody reactivity patterns in CVB3 and CVB4 infections, suggesting that the COA4- and PIK3AP1-reactive antibodies could be common to multiple CVB infections. The specificity of the autoantibodies was affirmed with influenza-infected animals that showed no reactivity to any of the antigens tested. Taken together, our data suggest that the autoantibodies identified by PhIP-Seq may have relevance to CVB pathogenesis, with a possibility that similar reactivity could be expected in human DCM patients.
Collapse
Affiliation(s)
- Mahima T. Rasquinha
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.T.R.); (N.L.)
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.T.R.); (N.L.)
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erika Petro-Turnquist
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.P.-T.); (E.W.)
| | - Eric Weaver
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.P.-T.); (E.W.)
| | - Thiagarajan Venkataraman
- Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Daniel Anderson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Uri Laserson
- Department of Genetics and Genomic Sciences and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - H. Benjamin Larman
- Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
- Correspondence: (H.B.L.); (J.R.); Tel.: +1-(410)-614-6525 (H.B.L); +1-(402)-472-8541 (J.R.)
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.T.R.); (N.L.)
- Correspondence: (H.B.L.); (J.R.); Tel.: +1-(410)-614-6525 (H.B.L); +1-(402)-472-8541 (J.R.)
| |
Collapse
|
21
|
Angkeow JW, Monaco DR, Chen A, Venkataraman T, Jayaraman S, Valencia C, Sie BM, Liechti T, Farhadi PN, Funez-dePagnier G, Sherman-Baust CA, Wong MQ, Ruczinski I, Caturegli P, Sears CL, Simner PJ, Round JL, Duggal P, Laserson U, Steiner TS, Sen R, Lloyd TE, Roederer M, Mammen AL, Longman RS, Rider LG, Larman HB. Phage display of environmental protein toxins and virulence factors reveals the prevalence, persistence, and genetics of antibody responses. Immunity 2022; 55:1051-1066.e4. [PMID: 35649416 PMCID: PMC9203978 DOI: 10.1016/j.immuni.2022.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/17/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022]
Abstract
Microbial exposures are crucial environmental factors that impact healthspan by sculpting the immune system and microbiota. Antibody profiling via Phage ImmunoPrecipitation Sequencing (PhIP-Seq) provides a high-throughput, cost-effective approach for detecting exposure and response to microbial protein products. We designed and constructed a library of 95,601 56-amino acid peptide tiles spanning 14,430 proteins with "toxin" or "virulence factor" keyword annotations. We used PhIP-Seq to profile the antibodies of ∼1,000 individuals against this "ToxScan" library. In addition to enumerating immunodominant antibody epitopes, we studied the age-dependent stability of the ToxScan profile and used a genome-wide association study to find that the MHC-II locus modulates bacterial epitope selection. We detected previously described anti-flagellin antibody responses in a Crohn's disease cohort and identified an association between anti-flagellin antibodies and juvenile dermatomyositis. PhIP-Seq with the ToxScan library is thus an effective tool for studying the environmental determinants of health and disease at cohort scale.
Collapse
Affiliation(s)
- Julia W Angkeow
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Monaco
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Athena Chen
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Thiagarajan Venkataraman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sahana Jayaraman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cristian Valencia
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brandon M Sie
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas Liechti
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Payam N Farhadi
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, MD, USA
| | - Gabriela Funez-dePagnier
- Jill Roberts Institute for Research in IBD, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Cheryl A Sherman-Baust
- Laboratory of Molecular Biology and Immunology, NIH/National Institute on Aging, Baltimore, MD, USA
| | - May Q Wong
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Patrizio Caturegli
- Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Departments of Medicine and Oncology, Johns Hopkins University School of Medicine, and Department of Molecular Microbiology & Immunology, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Patricia J Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - June L Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Uri Laserson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, NIH/National Institute on Aging, Baltimore, MD, USA
| | - Thomas E Lloyd
- Department of Neurology, Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Andrew L Mammen
- Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Regulations, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Randy S Longman
- Jill Roberts Institute for Research in IBD, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lisa G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, MD, USA
| | - H Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
22
|
Tiu CK, Zhu F, Wang LF, de Alwis R. Phage ImmunoPrecipitation Sequencing (PhIP-Seq): The Promise of High Throughput Serology. Pathogens 2022; 11:pathogens11050568. [PMID: 35631089 PMCID: PMC9143919 DOI: 10.3390/pathogens11050568] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Determining the exposure or infection history of a person to a multitude of viruses is not an easy task. Typically, antibody tests detect antibodies against proteins (antigens) to only one or a few viruses. Here, we review an emerging technology called Phage ImmunoPrecipitation Sequencing (PhIP-Seq), that allows us to study the infection history of individuals to large numbers of viruses simultaneously. This technology uses bacteriophages to express and display viral antigens of choice, which are then bound by antigen-specific antibodies in patient samples. Antibody-bound bacteriophages are pulled down and identified through molecular techniques. This technology has been used in various infectious disease scenarios, including assessing exposure to different viruses, studying vaccine responses, and identifying viral cause of diseases. Despite inherent limitations in presenting only peptides, this technology holds great promise for future application in identifying novel pathogens, one health and pandemic preparedness. Abstract Phage ImmunoPrecipitation Sequencing (PhIP-Seq) is a high throughput serological technology that is revolutionizing the manner in which we track antibody profiles. In this review, we mainly focus on its application to viral infectious diseases. Through the pull-down of patient antibodies using peptide-tile-expressing T7 bacteriophages and detection using next-generation sequencing (NGS), PhIP-Seq allows the determination of antibody repertoires against peptide targets from hundreds of proteins and pathogens. It differs from conventional serological techniques in that PhIP-Seq does not require protein expression and purification. It also allows for the testing of many samples against the whole virome. PhIP-Seq has been successfully applied in many infectious disease investigations concerning seroprevalence, risk factors, time trends, etiology of disease, vaccinology, and emerging pathogens. Despite the inherent limitations of this technology, we foresee the future expansion of PhIP-Seq in both investigative studies and tracking of current, emerging, and novel viruses. Following the review of PhIP-Seq technology, its limitations, and applications, we recommend that PhIP-Seq be integrated into national surveillance programs and be used in conjunction with molecular techniques to support both One Health and pandemic preparedness efforts.
Collapse
Affiliation(s)
- Charles Kevin Tiu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (C.K.T.); (F.Z.); (L.-F.W.)
- SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (C.K.T.); (F.Z.); (L.-F.W.)
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (C.K.T.); (F.Z.); (L.-F.W.)
- SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Ruklanthi de Alwis
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (C.K.T.); (F.Z.); (L.-F.W.)
- Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
- Correspondence:
| |
Collapse
|