1
|
Rawal S, Antany R, Kumar S, Pottakkal JG, Linda A. The perils of open landfill: a study on environmental risk assessment in Dharamshala, Himachal Pradesh, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:177. [PMID: 39828885 DOI: 10.1007/s10661-024-13530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
Improper and unscientific management of municipal solid waste (MSW) landfill sites has increasingly become a pressing environmental issue especially in the mountainous regions worldwide. In view of this, an attempt was made to assess the detrimental effects of MSW landfill on the natural water sources at Dharamshala, Himachal Pradesh. Further, the suitability of potential landfill site and dispersion of pollutant air masses were stipulated using Arc GIS and HYSPLIT model. The findings show a discernible increase in electrical conductivity (323-858 μS/cm) and total dissolved solids (1086-1144 mg/kg levels) during sampling period. The results exhibited a notable increasing trend in the mean concentrations of heavy metals viz. As (0.13 mg/kg and 0.10 mg/kg), Hg (0.52 mg/kg and 0.65 mg/kg), Pb (0.10 mg/kg and 0.06 mg/kg), Zn (30.40 mg/kg and 0.22 mg/kg), Cd (0.46 mg/kg and 0.04 mg/kg), Cr (0.10 mg/kg and 0.05 mg/kg), Ni (0.28 mg/kg and 0.10 mg/kg), Mn (24.40 mg/kg and 0.35 mg/kg) and Fe (1.81 mg/kg and 0.96 mg/kg) during monsoon and post monsoon. High HPI values were observed at the sampling location near to landfill drain (9060), followed by spring site (7338). However, most of sampling points consistently exceeding the critical HPI value, across all seasons, indicated a severe level of heavy metal pollution, where sampling sites near to landfill drain pose significant environmental health risks of 63%. An overwhelming 93% population in vicinity of MSW site expressed their concern that the current landfill site poses substantial threat to their health and livestock. Furthermore, the obtained forward trajectories showed the downhill dispersion of polluted air arising from solid waste burning. A continuous monitoring of landfill leachate dynamics, atmospheric pollutants due to burning of waste and their potential impact on regional climate followed by appropriate adaptation strategies will be a promising step towards a sustainable future for the Indian Himalayan Region (IHR).
Collapse
Affiliation(s)
- Shikha Rawal
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra, Himachal Pradesh, India
| | - Riju Antany
- Department of Environment Studies, Panjab University, Chandigarh, India
| | - Shanta Kumar
- Department of Environmental Sciences, Indraprastha College for Women, University of Delhi, Delhi, India
| | | | - Anurag Linda
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra, Himachal Pradesh, India.
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India.
| |
Collapse
|
2
|
Garcia CSC, Garcia PMC, Santos OBAF, Steffens D, Martins ST, Pranke P, Crespo JS, Henriques JAP, Roesch-Ely M. Red propolis extract associated to platelet-rich plasma and stromal cells with focus in cell therapy and functional tissue regeneration. AN ACAD BRAS CIENC 2024; 96:e20240100. [PMID: 39166613 DOI: 10.1590/0001-3765202420240100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/11/2024] [Indexed: 08/23/2024] Open
Abstract
The use of platelet-rich plasma (PRP) and adipose-derived stromal cells (ADSC) have been investigated as a form of wound healing enhancement. The objective of this work was to evaluate the association of red propolis (RP) and PRP as inducers of ADSC for application in tissue regeneration. Adipose tissue post-collection and post-cryopreservation was isolated with type II collagenase, characterized by flow cytometry, and differentiated into osteogenic, chondrogenic and adipose cell. The viability of ADSC was evaluated when exposed to different concentrations of RP using the MTT and trypan blue assay. Acridine orange and ethidium bromide (AO/EB) was performed to evaluate cell death events. Horizontal migration methods were investigated in ADSC using autologous and homologous PRP associated with RP (PRP/RP). All assays were processed in triplicate. Flow cytometry and cellular differentiation showed that type II collagenase was effective for isolating ADSC post-collection and post-cryopreservation. RP extracts at concentrations of up to 50 μg.mL-1 presented no cytotoxic effects. Association of PRP and RP at 25 and 50 μg.ml-1 influenced ADSC migration, with total closure on the seventh day after exposition. The results here presented could stimulate proliferation of ADSC cells that may contribute directly or indirectly to the reconstructive process of tissue regeneration.
Collapse
Affiliation(s)
- Charlene S C Garcia
- Universidade de Caxias do Sul, Institute of Biotechnology, Rua Francisco Getúlio Vargas 1130, Petrópolis, 95070-560 Caxias do Sul, RS, Brazil
| | - Paulo Miguel C Garcia
- Universidade de Caxias do Sul, Institute of Biotechnology, Rua Francisco Getúlio Vargas 1130, Petrópolis, 95070-560 Caxias do Sul, RS, Brazil
- Brazilian Society of Plastic Surgery - SBCP, Rua Funchal 129, 2º andar, Vila Olímpia, 04551-060 São Paulo, SP, Brazil
| | - Otávio B A F Santos
- Brazilian Society of Anesthesiology - SBA, Rua Prof. Alfredo Gomes, 36, Botafogo, 22251-080 Rio de Janeiro, RJ, Brazil
| | - Daniela Steffens
- Universidade de Caxias do Sul, Institute of Biotechnology, Rua Francisco Getúlio Vargas 1130, Petrópolis, 95070-560 Caxias do Sul, RS, Brazil
| | - Sandro T Martins
- Universidade de Caxias do Sul, Area of Knowledge of Exact Sciences and Engineering, Rua Francisco Getúlio Vargas 1130, Petrópolis, 95070-560 Caxias do Sul, RS, Brazil
| | - Patricia Pranke
- Universidade Federal do Rio Grande do Sul, Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Av. Ipiranga, 2752, Azenha, 90610-000 Porto Alegre, RS, Brazil
- Stem Cell Research Institute, R. dos Andradas, 1464 - Conj 133, Centro Histórico, 90050-170 Porto Alegre, RS, Brazil
| | - Janaína S Crespo
- Universidade de Caxias do Sul, Area of Knowledge of Exact Sciences and Engineering, Rua Francisco Getúlio Vargas 1130, Petrópolis, 95070-560 Caxias do Sul, RS, Brazil
| | - João Antonio P Henriques
- Universidade de Caxias do Sul, Institute of Biotechnology, Rua Francisco Getúlio Vargas 1130, Petrópolis, 95070-560 Caxias do Sul, RS, Brazil
| | - Mariana Roesch-Ely
- Universidade de Caxias do Sul, Institute of Biotechnology, Rua Francisco Getúlio Vargas 1130, Petrópolis, 95070-560 Caxias do Sul, RS, Brazil
| |
Collapse
|
3
|
Gaur VK, Gautam K, Vishvakarma R, Sharma P, Pandey U, Srivastava JK, Varjani S, Chang JS, Ngo HH, Wong JWC. Integrating advanced techniques and machine learning for landfill leachate treatment: Addressing limitations and environmental concerns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124134. [PMID: 38734050 DOI: 10.1016/j.envpol.2024.124134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
This review article explores the challenges associated with landfill leachate resulting from the increasing disposal of municipal solid waste in landfills and open areas. The composition of landfill leachate includes antibiotics (0.001-100 μg), heavy metals (0.001-1.4 g/L), dissolved organic and inorganic components, and xenobiotics including polyaromatic hydrocarbons (10-25 μg/L). Conventional treatment methods, such as biological (microbial and phytoremediation) and physicochemical (electrochemical and membrane-based) techniques, are available but face limitations in terms of cost, accuracy, and environmental risks. To surmount these challenges, this study advocates for the integration of artificial intelligence (AI) and machine learning (ML) to strengthen treatment efficacy through predictive analytics and optimized operational parameters. It critically evaluates the risks posed by recalcitrant leachate components and appraises the performance of various treatment modalities, both independently and in tandem with biological and physicochemical processes. Notably, physicochemical treatments have demonstrated pollutant removal rates of up to 90% for various contaminants, while integrated biological approaches have achieved over 95% removal efficiency. However, the heterogeneous nature of solid waste composition further complicates treatment methodologies. Consequently, the integration of advanced ML algorithms such as Support Vector Regression, Artificial Neural Networks, and Genetic Algorithms is proposed to refine leachate treatment processes. This review provides valuable insights for different stakeholders specifically researchers, policymakers and practitioners, seeking to fortify waste disposal infrastructure and foster sustainable landfill leachate management practices. By leveraging AI and ML tools in conjunction with a nuanced understanding of leachate complexities, a promising pathway emerges towards effectively addressing this environmental challenge while mitigating potential adverse impacts.
Collapse
Affiliation(s)
- Vivek Kumar Gaur
- Centre for Energy and Environmental Sustainability, Lucknow, India; School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Krishna Gautam
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | | | - Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Upasana Pandey
- Dabur Research Foundation, Ghaziabad, Uttar Pradesh, 201010, India
| | | | - Sunita Varjani
- School of Engineering, UPES, Dehradun-248 007, Uttarakhand, India; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW - 2007, Australia
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong
| |
Collapse
|
4
|
Ricardo TGO, Eduardo FSM, Rafael TMA, Moisés SHI, Verónica CH, Cesar SF, Sofía GGA, Eduardo PC. The leachate from the Urban Solid Waste Transfer Station produces neurotoxicity in Wistar rats. Toxicol Rep 2024; 12:318-324. [PMID: 38510067 PMCID: PMC10950561 DOI: 10.1016/j.toxrep.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Leachate from municipal solid waste is a mixture of xenobiotics capable of contaminating bodies of water and causing damage to the health of living beings that inhabit or consume contaminated water. A previous study revealed the presence of heavy metals in Urban Solid Waste Transfer Station (USWTS) leachate above the permissible national and international limits. In the present study, we demonstrate that subchronic oral administration (5 and 25 % v/v) of leachate to male Wistar rats caused changes in the immunoreactivity of the glial markers: GFAP and Iba-1, accompanied by an increase in the expression of caspase-3, and a decrease in the expression of the NeuN protein. Results indicate that the heavy metals present in the leachate induced neuronal loss in the prefrontal cortex, suggesting that these contaminants can cause neurological problems in mammals that consume surface water with xenobiotics, since the leachate could contaminate water bodies and underground water.
Collapse
Affiliation(s)
- Torres-González Omar Ricardo
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Mexico
| | | | | | - Sánchez-Hernández Iván Moisés
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Mexico
| | | | - Soria-Fregozo Cesar
- Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara, Mexico
| | - González-Garibay Angélica Sofía
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Mexico
| | - Padilla-Camberos Eduardo
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Mexico
| |
Collapse
|
5
|
Gunarathne V, Phillips AJ, Zanoletti A, Rajapaksha AU, Vithanage M, Di Maria F, Pivato A, Korzeniewska E, Bontempi E. Environmental pitfalls and associated human health risks and ecological impacts from landfill leachate contaminants: Current evidence, recommended interventions and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169026. [PMID: 38056656 DOI: 10.1016/j.scitotenv.2023.169026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The improper management of solid waste, particularly the dumping of untreated municipal solid waste, poses a growing global challenge in both developed and developing nations. The generation of leachate is one of the significant issues that arise from this practice, and it can have harmful impacts on both the environment and public health. This paper presents an overview of the primary waste types that generate landfill leachate and their characteristics. This includes examining the distribution of waste types in landfills globally and how they have changed over time, which can provide valuable insights into potential pollutants in a given area and their trends. With a lack of specific regulations and growing concerns regarding environmental and health impacts, the paper also focuses on emerging contaminants. Furthermore, the environmental and ecological impacts of leachate, along with associated health risks, are analyzed. The potential applications of landfill leachate, suggested interventions and future directions are also discussed in the manuscript. Finally, this work addresses future research directions in landfill leachate studies, with attention, for the first time to the potentialities that artificial intelligence can offer for landfill leachate management, studies, and applications.
Collapse
Affiliation(s)
- Viraj Gunarathne
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Ankur J Phillips
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Alessandra Zanoletti
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka
| | - Francesco Di Maria
- LAR5 Laboratory, Dipartimento di Ingegneria, University of Perugia, via G. Duranti 93, 06125 Perugia, Italy
| | - Alberto Pivato
- DICEA - Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy.
| |
Collapse
|
6
|
Wang H, Liu Z, Wang X, Zhang L, Wu X, Li S, Cao Y, Ma L. Precision co-composting of multi-source organic solid wastes provide a sustainable waste management strategy with high eco-efficiency: a life cycle assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32320-2. [PMID: 38329671 DOI: 10.1007/s11356-024-32320-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
With the increase of organic solid wastes (OSWs), current waste management practices, such as landfill, incineration, and windrow composting, have shown weaknesses in both resource recycling and environmental protection. Co-composting has been used to achieve nutrient and carbon recycling but is accused of high ammonia emission and low degradation efficiency. Therefore, this study developed a precision co-composting strategy (S3, which adds functional bacteria generated from food processing waste to a co-composting system) and compared it with the current OSW treatment strategy (S1) and traditional co-composting strategy (S2) from a life cycle assessment (LCA) perspective. The results showed that compared with S1, the eco-efficiency increased by 31.3% due to the higher economic profit of S2 but did not directly reduce the environmental cost. The addition of bacterial agents reduced ammonia emissions and shortened composting time, so compared with S1 and S2, the environmental cost of S3 was reduced by 37.9 and 43.6%, while the economic profit increased by 79.8 and 24.4%, respectively. The changes in environmental costs and economic benefits resulted in a huge improvement of S3's eco-efficiency, which was 189.6 and 121.7% higher than S1 and S2. Meanwhile, the adoption of S3 at a national scale in China could reduce the emission of 1,4-dichlorobenzene by 99.9% compared with S1 and increase profits by 6.58 billion USD per year. This study proposes a novel approach that exhibits high eco-efficiency in the treatment of OSWs.
Collapse
Affiliation(s)
- Hongge Wang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, People's Republic of China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Zelong Liu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, People's Republic of China
| | - Xuan Wang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, People's Republic of China
| | - Lu Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, People's Republic of China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Xiaofei Wu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, People's Republic of China
| | - Shuo Li
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Yubo Cao
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, People's Republic of China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, People's Republic of China.
| |
Collapse
|
7
|
Bah A, Chen Z, Bah A, Qian Q, Tuan PD, Feng D. Systematic literature review of solar-powered landfill leachate sanitation: Challenges and research directions over the past decade. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116751. [PMID: 36435142 DOI: 10.1016/j.jenvman.2022.116751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Researchers have documented the negative effects of refractory chemicals and emergent pollutants in landfill leachate (LL) that cannot be degraded using conventional methods. The propagation, invasion, and deleterious effects of several LL hazards affect aquatic species, the environment, and food outlets, causing significant safety issues. These include cancer risks, chronic exposure, and reproductive consequences. Alternatively, solar energy is a sustainable solution for treating landfill leachate to benefit humans and the environment. In this work, a thorough bibliometric and systematic analysis of studies that employed solar energy for landfill leachate remediation over the past decade was conducted in order to determine trends, and future research areas. In addition to the energy demand, the economic aspect and the advantages of using solar power to treat landfill leachate were discussed. Additionally, the study gives specific suggestions for future research purposes and important problems. The reviewed literature revealed that combining solar-based physical-chemical and biological processes has proven to be the most efficient method for landfill leachate degradation. It also appears from the bibliometric study that more collaboration and contribution are needed to develop solar-based landfill leachate treatment. This study concludes that solar-powered landfill leachate remediation techniques would considerably increase the effectiveness of treated leachate reutilization, advancing the cause of environmental sustainability.
Collapse
Affiliation(s)
- Alseny Bah
- Merchant Marine College, Shanghai Maritime University, Shanghai, 201306, PR China
| | - Zhenhui Chen
- Merchant Marine College, Shanghai Maritime University, Shanghai, 201306, PR China
| | - Alhassane Bah
- School of Electrical Power Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qun Qian
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, PR China
| | - Phan Dinh Tuan
- Research Institute of Sustainable Development, Hochiminh City University of Natural Resources and Environment, Hochiminh City, 70.000, Viet Nam
| | - Daolun Feng
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, PR China.
| |
Collapse
|
8
|
Martínez-Ruiz M, Molina-Vázquez A, Santiesteban-Romero B, Reyes-Pardo H, Villaseñor-Zepeda KR, Meléndez-Sánchez ER, Araújo RG, Sosa-Hernández JE, Bilal M, Iqbal HMN, Parra-Saldivar R. Micro-algae assisted green bioremediation of water pollutants rich leachate and source products recovery. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119422. [PMID: 35533958 DOI: 10.1016/j.envpol.2022.119422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/05/2023]
Abstract
Water management and treatment are high concern fields with several challenges due to increasing pollutants produced by human activity. It is imperative to find integral solutions and strategic measures with robust remediation. Landfill leachate production is a high concern emerging problem. Especially in low middle-income countries due to no proper local waste disposition regulation and non-engineered implemented methods to dispose of urban waste. These landfills can accumulate electronic waste and release heavy metals during the degradation process. Similar phenomena include expired pharmaceuticals like antibiotics. All these pollutants accumulated in leachate made it hard to dispose of or treat. Leachate produced in non-engineered landfills can permeate soils and reach groundwater, dragging different contaminants, including antibiotics and heavy metals, which eventually can affect the environment, changing soil properties and affecting wildlife. The presence of antibiotics in the environment is a problem with particular interest to solve, mainly to avoid the development of antibiotic-resistant microorganisms, which represent a future risk for human health with possible epidemic implications. It has been reported that the use of contaminated water with heavy metals to produce and grow vegetables is a risk for consumers, heavy metals effects in humans can include carcinogenic induction. This work explores the opportunities to use leachate as a source of nutrients to grow microalgae. Microalgae stand out as an alternative to bioremediate leachate, at the same time, microalgae produce high-value compounds that can be used in bioplastic, biofuels, and other industrial applications.
Collapse
Affiliation(s)
- Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico
| | | | | | - Humberto Reyes-Pardo
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico
| | | | | | - Rafael G Araújo
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico
| | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico.
| | | |
Collapse
|
9
|
Essien JP, Ikpe DI, Inam ED, Okon AO, Ebong GA, Benson NU. Occurrence and spatial distribution of heavy metals in landfill leachates and impacted freshwater ecosystem: An environmental and human health threat. PLoS One 2022; 17:e0263279. [PMID: 35113945 PMCID: PMC8812908 DOI: 10.1371/journal.pone.0263279] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 01/14/2022] [Indexed: 11/19/2022] Open
Abstract
Municipal landfill leachates are a source of toxic heavy metals that have been shown to have a detrimental effect on human health and the environment. This study aimed to assess heavy metal contamination in leachates, surface water, and sediments from non-sanitary landfills in Uyo, Nigeria, and to identify potential health and environmental effects of leachate contamination. Over the wet and dry seasons, surface water and sediment samples were collected from an impacted freshwater ecosystem, and leachates samples from six monitoring wells. Elemental analyses of samples were conducted following standard analytical procedures and methods. The results indicated that leachate, surface water, and sediment samples all had elevated levels of heavy metals, implying a significant impact from landfills. Pollution indices such as the potential ecological risk index (PERI), pollution load index (PLI), degree of contamination (Cd), modified degree of contamination (mCd), enrichment factor (EF), geoaccumulation index (Igeo), and Nemerov pollution index (NPI) were used to assess the ecological impacts of landfill leachates. The following values were derived: PERI (29.09), PLI (1.96E-07), Cd (0.13), mCd (0.16), EF (0.97-1.79E-03), Igeo (0), and NPI (0.74). Pollution indicators suggested that the sediment samples were low to moderately polluted by chemical contaminants from the non-sanitary landfills, and may pose negative risks due to bioaccumulation. Human health risks were also assessed using standard risk models. For adults, children, and kids, the incremental lifetime cancer rate (ILCR) values were within the acceptable range of 1.00E-06-1.00E-04. The lifetime carcinogenicity risks associated with oral ingestion exposure to heavy metals were 9.09E-05, 1.21E-05, and 3.60 E-05 for kids, adults, and children, respectively. The mean cumulative risk values for dermal exposures were 3.24E-07, 1.89E-06, and 1.17E-05 for adults, children, and kids, respectively. These findings emphasized the risks of human and biota exposure to contaminants from landfills.
Collapse
Affiliation(s)
| | - Donald I. Ikpe
- Department of Science Technology, Akwa Ibom State Polytechnic, Ikot Ekpene, Nigeria
| | - Edu D. Inam
- Department of Chemistry, University of Uyo, Uyo, Nigeria
| | | | | | | |
Collapse
|
10
|
Mohammadi A, Malakootian M, Dobaradaran S, Hashemi M, Jaafarzadeh N, Parniani N. Determination and seasonal analysis of physicochemical characterization and metal(oid)s of landfill leachate in Bushehr port along the Persian Gulf. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2027454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Azam Mohammadi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Malakootian
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Majid Hashemi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Neemat Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nasrin Parniani
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Waste Organization, Bushehr Municipality, Bushehr, Iran
| |
Collapse
|
11
|
Wijekoon P, Koliyabandara PA, Cooray AT, Lam SS, Athapattu BCL, Vithanage M. Progress and prospects in mitigation of landfill leachate pollution: Risk, pollution potential, treatment and challenges. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126627. [PMID: 34343881 DOI: 10.1016/j.jhazmat.2021.126627] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/22/2021] [Accepted: 07/08/2021] [Indexed: 05/23/2023]
Abstract
The escalating loads of municipal solid waste (MSW) end up in open dumps and landfills, producing continuous flows of landfill leachate. The risk of incorporating highly toxic landfill leachate into environment is important to be evaluated and measured in order to facilitate decision making for landfill leachate management and treatment. Leachate pollution index (LPI) provides quantitative measures of the potential environmental pollution by landfill leachate and information about the environmental quality adjacent to a particular landfill. According to LPI values, most developing countries show high pollution potentials from leachate, mainly due to high organic waste composition and low level of waste management techniques. A special focus on leachate characterization studies with LPI and its integration to treatment, which has not been focused in previous reviews on landfill leachate, is given here. Further, the current review provides a summary related to leachate generation, composition, characterization, risk assessment and treatment together with challenges and perspectives in the sector with its focus to developing nations. Potential commercial and industrial applications of landfill leachate is discussed in the study to provide insights into its sustainable management which is original for the study.
Collapse
Affiliation(s)
- Prabuddhi Wijekoon
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | | | - Asitha T Cooray
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Bandunee C L Athapattu
- Department of Civil Engineering, Faculty of Engineering Technology, The Open University of Sri Lanka, Nawala, Nugegoda 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka.
| |
Collapse
|
12
|
Torres-González OR, Sánchez-Hernández IM, Flores-Soto ME, Chaparro-Huerta V, Soria-Fregozo C, Hernández-García L, Padilla-Camberos E, Flores-Fernández JM. Landfill Leachate from an Urban Solid Waste Storage System Produces Genotoxicity and Cytotoxicity in Pre-Adolescent and Young Adults Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111029. [PMID: 34769555 PMCID: PMC8583563 DOI: 10.3390/ijerph182111029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022]
Abstract
Landfill leachate is a complex mixture of organic and inorganic molecules, as well as environmental pollutants that can cause harm to ecosystems and living beings. The micronucleus test in peripheral blood erythrocytes was used to evaluate the genotoxic and cytotoxic effects of exposure to a landfill leachate from an outdoor solid waste storage system on Wistar strain rats at different developmental stages, pre-adolescents and young adults, and the heavy metal content of the leachate was determined by atomic absorption spectrometry. Contents of arsenic, cadmium, chromium, mercury, and lead in the landfill leachate were outside the allowable international standards, and the exposure to the landfill leachate caused genotoxic and cytotoxic effects on Wistar rats, where the pre-adolescent animals were more susceptible to the toxics contained in the landfill leachate than young adults. Heavy metals contained in landfill leachate, individually or synergically with other molecules can be responsible for clastogenic and cytotoxic effects that can be harmful to humans and ecosystems.
Collapse
Affiliation(s)
- Omar Ricardo Torres-González
- Unit of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Guadalajara 44270, Mexico; (O.R.T.-G.); (I.M.S.-H.)
| | - Ivan Moisés Sánchez-Hernández
- Unit of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Guadalajara 44270, Mexico; (O.R.T.-G.); (I.M.S.-H.)
| | - Mario Eduardo Flores-Soto
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (M.E.F.-S.); (V.C.-H.)
| | - Verónica Chaparro-Huerta
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (M.E.F.-S.); (V.C.-H.)
| | - Cesar Soria-Fregozo
- Laboratorio Ciencias Biomédicas, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Mexico;
| | - Laura Hernández-García
- Department of Research and Innovation, Universidad Tecnológica de Oriental, Oriental 75020, Mexico;
| | - Eduardo Padilla-Camberos
- Unit of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Guadalajara 44270, Mexico; (O.R.T.-G.); (I.M.S.-H.)
- Correspondence: (E.P.-C.); (J.M.F.-F.); Tel.: +52-(33)-3345-5200 (ext. 1640) (E.P.-C.); +1-(825)-993-1702 (J.M.F.-F.)
| | - José Miguel Flores-Fernández
- Department of Research and Innovation, Universidad Tecnológica de Oriental, Oriental 75020, Mexico;
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB T6G 2M8, Canada
- Correspondence: (E.P.-C.); (J.M.F.-F.); Tel.: +52-(33)-3345-5200 (ext. 1640) (E.P.-C.); +1-(825)-993-1702 (J.M.F.-F.)
| |
Collapse
|
13
|
Analysis of Microbial Communities in Aged Refuse Based on 16S Sequencing. SUSTAINABILITY 2021. [DOI: 10.3390/su13084111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aged refuse is widely considered to have certain soil fertility. 16S rRNA amplicon sequencing is used to investigate the microbial community of aged refuse. The aged refuse is found to contain higher soil fertility elements (total nitrogen, total phosphorus, total potassium, etc.) and higher concentrations of heavy metals (Pb, Cd, Zn, and Hg). Taxonomy based on operational taxonomic units (OTUs) shows that Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria, and Gemmatimonadetes are the main bacterial phyla in the two soils and there is a palpable difference in the microbial community composition between the two groups of samples. The genera Paramaledivibacter, Limnochorda, Marinobacter, Pseudaminobacter, Kocuria, Bdellovibrio, Halomonas, Gillisia, and Membranicola are enriched in the aged refuse. Functional predictive analysis shows that both the control soil and aged refuse have a high abundance of “carbohydrate metabolism” and “amino acid metabolism”, and show differences in the abundance of several metabolism pathways, such as “xenobiotics biodegradation and metabolism” and “lipid metabolism”. Aged refuse and undisturbed soil show significant differences in alpha diversity and microbial community composition. Multiple environmental factors (Hg, TN, Cr, Cd, etc.) significantly impact microorganisms’ abundance (Marinobacter, Halomonas, Blastococcus, etc.). Our study provides valuable knowledge for the ecological restoration of closed landfills.
Collapse
|
14
|
Reshadi MAM, Bazargan A, McKay G. A review of the application of adsorbents for landfill leachate treatment: Focus on magnetic adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138863. [PMID: 32446150 DOI: 10.1016/j.scitotenv.2020.138863] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 05/12/2023]
Abstract
Landfill leachate is a significant environmental threat due to the complexity and variety of its pollutants. There are various physical, chemical, and biological treatment methods proposed for leachate treatment. Adsorption with conventional adsorbents such as activated carbon is a process which has been widely employed with relative success. Magnetic adsorbents are a special type of adsorbents with favorable stability, high adsorption capacities, and excellent recycling and reuse capabilities when compared to conventional sorbents. Research regarding the synthesis and use of magnetic adsorbents has been growing at a rapid pace, exhibiting >8-fold increase in publications in the decade of 2010 to 2020. In the current study, both conventional and magnetic adsorbents for landfill leachate treatment have been comprehensively reviewed and discussed. The application of magnetic adsorbents for landfill leachate treatment is relatively new, with numerous avenues of research open to study. Although the production of magnetic adsorbents is significantly more expensive than conventional adsorbents, when taking into consideration all life cycle costs, they are much more competitive than it initially appears. If environmental impacts are of concern, research should shift towards the use of greener chemicals and processes for magnetic adsorbent synthesis, because preliminary analysis of the current synthesis processes shows a much higher environmental impact compared to conventional adsorbents, in particular in terms of global warming potential and energy use.
Collapse
Affiliation(s)
| | - Alireza Bazargan
- School of Environment, College of Engineering, University of Tehran, Iran.
| | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Education City, Qatar Foundation, Qatar
| |
Collapse
|
15
|
Luo H, Zeng Y, Cheng Y, He D, Pan X. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135468. [PMID: 31753496 DOI: 10.1016/j.scitotenv.2019.135468] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Nowadays, sanitary landfilling is the most common approach to eliminate municipal solid waste, but a major drawback is the generation of heavily polluted leachates. These leachates must be appropriately treated before being discharged into the environment. Generally, the leachate characteristics such as COD, BOD/COD ratio, and landfill age are necessary determinants for selection of suitable treatment technologies. Rapid, sensitive and cost-effective bioassays are required to evaluate the toxicity of leachate before and after the treatment. This review summarizes extensive studies on leachate treatment methods and leachate toxicity assessment. It is found that individual biological or physical-chemical treatment is unable to meet strict effluent guidelines, whereas a combination of biological and physical-chemical treatments can achieve satisfactory removal efficiencies of both COD and ammonia nitrogen. In order to assess the toxic effects of leachate on different trophic organisms, we need to develop an appropriate matrix of bioassays based on their sensitivity to various toxicants and a multispecies approach using organisms representing different trophic levels. In this regard, a reduction in toxicity of the treated leachate will contribute to assessing the effectiveness of a specific remediation strategy.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifeng Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Cheng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
16
|
Ančić M, Huđek A, Rihtarić I, Cazar M, Bačun-Družina V, Kopjar N, Durgo K. PHYSICO chemical properties and toxicological effect of landfill groundwaters and leachates. CHEMOSPHERE 2020; 238:124574. [PMID: 31445332 DOI: 10.1016/j.chemosphere.2019.124574] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/29/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Waste landfills represent a global problem, which is more pronounced in developing countries because of the lack of resources to implement procedures that include separation and waste processing. The aim of this research was to analyze leachate and ground waters samples at the site, upstream and downstream from the landfill during different year seasons on a registered non-hazardous waste dump and to conduct physico-chemical and biological assays to determine potential risk for the ecosystem. Potential cytotoxic, prooxidative and mutagenic effects of leachates and water samples were evaluated on human laryngeal cell line (HEp2). Leachates collected at landfill site caused genotoxic effect and had a higher pH, chemical oxygen demand (COD), biochemical oxygen demand (BOD) and elevated concentrations of phosphorus, chloride, nitrogen compounds and sulphate. Genotoxicity of the leachate was increased in samples collected in dry and warm period of the year. These results are in accordance to the physico-chemical analysis which revealed that during summer period, because of intense degradation process at high temperatures increased concentrations of different chemicals can be found in leachate. Groundwater collected downstream and upstream from landfill did not show statistically significant (geno)toxic effect, irrespective of the sampling season. Chemical analysis revealed that all compounds in groundwater were below permitted values. Purification process at landfill is effective and compounds that reach groundwater do not represent a toxicological threat.
Collapse
Affiliation(s)
- Mario Ančić
- Euroinspekt Croatiakontrola, d.o.o., Karlovačka cesta 4L, 10000, Zagreb, Croatia.
| | - Ana Huđek
- Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000, Zagreb, Croatia.
| | - Iva Rihtarić
- Euroinspekt Croatiakontrola, d.o.o., Karlovačka cesta 4L, 10000, Zagreb, Croatia.
| | - Mario Cazar
- Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000, Zagreb, Croatia
| | - Višnja Bačun-Družina
- Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000, Zagreb, Croatia.
| | - Nevenka Kopjar
- Institute for Medicine Research and Occupational Health, Ksaverska 2, 10000, Zagreb, Croatia.
| | - Ksenija Durgo
- Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000, Zagreb, Croatia.
| |
Collapse
|
17
|
Chen W, Luo Y, Ran G, Li Q. An investigation of refractory organics in membrane bioreactor effluent following the treatment of landfill leachate by the O 3/H 2O 2 and MW/PS processes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 97:1-9. [PMID: 31447015 DOI: 10.1016/j.wasman.2019.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/13/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
In this study, refractory organics in a membrane bioreactor (MBR) effluent were investigated following the treatment of landfill leachate by the ozone combined hydrogen peroxide (O3/H2O2) and microwave-activated persulfate (MW/PS) processes. The treatment efficiency and the transformation characteristics of refractory organics and reactive oxygen species were determined. It was found that an acidic environment and an increase in the O3 dosage improved the organic removal efficiency in the O3/H2O2 process, and the use of H2O2 improved the treatment efficiency, while excessive H2O2 inhibited it. In the MW/PS process, an increase in the PS dosage and MW power greatly improved the treatment efficiency, while an alkaline environment inhibited it. Under the optimized reaction parameters, the O3/H2O2 and MW/PS processes effectively degraded refractory organics (i.e., humic acid and fulvic acid) into components with a smaller molecular weight and simpler structure. The humification, aromaticity, and conjugation of organics in wastewater were greatly reduced. Compared to the O3/H2O2 process, the MW/PS process had a better treatment effect on refractory organics, and there were more low molecular weight organics (<1 kDa) in the treated wastewater. Because O3 is the main selective oxidant in the O3/H2O2 process, a large amount of organic acids were accumulated. A large amount of hydroxyl radicals and sulfate radicals with strong oxidation ability were produced in the MW/PS process, and therefore the combined action of hydroxyl and sulfate radicals can efficiently decompose humus and intermediate organics. Overall, the MW/PS process was more effective in treating the MBR effluent than the O3/H2O2 process. The results of this study provide a reference for the selection of an advanced oxidation process to eliminate refractory organics in landfill leachate.
Collapse
Affiliation(s)
- Weiming Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yuanfeng Luo
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Gang Ran
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
18
|
Gupta P, Bhargava A, Kumari R, Lodhi L, Tiwari R, Gupta PK, Bunkar N, Samarth R, Mishra PK. Impairment of Mitochondrial-Nuclear Cross Talk in Lymphocytes Exposed to Landfill Leachate. ENVIRONMENTAL HEALTH INSIGHTS 2019; 13:1178630219839013. [PMID: 31168291 PMCID: PMC6484670 DOI: 10.1177/1178630219839013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/22/2019] [Indexed: 05/05/2023]
Abstract
Landfill leachate, a complex mixture of different solid waste compounds, is widely known to possess toxic properties. However, the fundamental molecular mechanisms engaged with landfill leachate exposure inducing cellular and sub-cellular ramifications are not well explicated. Therefore, we aim to examine the potential of leachate to impair mitochondrial machinery and its associated mechanisms in human peripheral blood lymphocytes. On assessment, the significant increase in the dichlorofluorescein (DCF) fluorescence, accumulation of 8-Oxo-2'-deoxyguanosine (8-oxo-dG), and levels of nuclear factor erythroid 2-related factor 2 (Nrf-2) strongly indicated the ability of the leachate to induce a pro-oxidant state inside the cell. The decrease in the mitochondrial membrane potential and alterations in the mitochondrial genome observed in leachate-exposed cells further suggested the disturbances in mitochondrial machinery. Moreover, these mitochondrial-associated redox imbalances were accompanied by the increased level of NF-κβ, pro-inflammatory cytokines, and DNA damage. In addition, the higher DNA fragmentation, release of nucleosomes, levels of polyadenosine diphosphate ADP-ribose polymerase (PARP), and activity of caspase-3 suggested the involvement of mitochondrial mediated apoptosis in leachate exposed cells. These observations were accompanied by the low proliferative index of the exposed cells. Conclusively, our results clearly indicate the ability of landfill leachate to disturb mitochondrial redox homeostasis, which might be a probable source for the immunotoxic consequences leading to plausible patho-physiological conditions in humans susceptible to such environmental exposures.
Collapse
Affiliation(s)
- Priyal Gupta
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Lalit Lodhi
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pushpendra Kumar Gupta
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Ravindra Samarth
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
19
|
Baderna D, Caloni F, Benfenati E. Investigating landfill leachate toxicity in vitro: A review of cell models and endpoints. ENVIRONMENT INTERNATIONAL 2019; 122:21-30. [PMID: 30448364 DOI: 10.1016/j.envint.2018.11.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 05/15/2023]
Abstract
Landfill leachate is a complex mixture characterized by high toxicity and able to contaminate soils and waters surrounding the dumpsite, especially in developing countries where engineered landfills are still rare. Leachate pollution can severely damage natural ecosystems and harm human health. Traditionally, the hazard assessment of leachate is based on physicochemical characterization but the toxicity is not considered. In the last few decades, different bioassays have been used to assess the toxicity of this complex matrix, including human-related in vitro models. This article reviews the cell bioassays successfully used for the risk assessment of leachate and to evaluate the efficiency of toxicity removal of several processes for detoxification of this wastewater. Articles from 2003 to 2018 are covered, focusing mainly on studies that used human cell lines, highlighting the usefulness and adequacy of in vitro models for assessing the hazard involved with exposure to leachate, particularly as an integrative supporting tool for chemical-based risk assessment. Leachate is generally toxic, mutagenic, genotoxic and estrogenic in vitro, and these effects can be measured in the cells exposed to already low concentrations, confirming the serious hazard of this wastewater for human health.
Collapse
Affiliation(s)
- Diego Baderna
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy.
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Italy
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| |
Collapse
|
20
|
Franco de Diana D, Segovia Abreu J, Castiglioni Serafini D, Ortíz JF, Samaniego MJ, Aranda AC, Zamorano-Ponce E. Increased genetic damage found in waste picker women in a landfill in Paraguay measured by comet assay and the micronucleus test. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:19-23. [DOI: 10.1016/j.mrgentox.2018.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/20/2018] [Accepted: 06/01/2018] [Indexed: 11/15/2022]
|
21
|
Ma C, He Z, Jia S, Zhang X, Hou S. Treatment of stabilized landfill leachate by Fenton-like process using Fe 3O 4 particles decorated Zr-pillared bentonite. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:489-496. [PMID: 29913417 DOI: 10.1016/j.ecoenv.2018.06.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Fe3O4 particles decorated Zr pillared bentonite (Fe3O4/Zr-B) were successfully synthesized, which were used to treat stabilized landfill leachate by Fenton-like process. The organics removal and biodegradability were both significantly improved owing to good catalytic stability of the magnetically recoverable catalyst. With the catalyst dosage of 1.0 mg L-1, initial pH of 2 and peroxide concentration of 0.1 mmol L-1, the COD removal efficiency increased to 68% and BOD5/COD of 0.27 was achieved. According to the results of the GC-MS, Fenton-like reaction with Fe3O4/Zr-B had an excellent removal performance for almost all the heterocyclic compounds. The 3D-EEM fluorescence spectra indicated that the fluorescence intensity was dramatically reduced and the UV humic-like and fulvic-like substances were removed effectively during the catalytic degradation. It seemed advisable to implement this process as a pre-treatment to facilitate the further biological treatment.
Collapse
Affiliation(s)
- Cui Ma
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Zhengguang He
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China.
| | - Shengyong Jia
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Xingjun Zhang
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Sen Hou
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
22
|
Khalil C, Al Hageh C, Korfali S, Khnayzer RS. Municipal leachates health risks: Chemical and cytotoxicity assessment from regulated and unregulated municipal dumpsites in Lebanon. CHEMOSPHERE 2018; 208:1-13. [PMID: 29857206 DOI: 10.1016/j.chemosphere.2018.05.151] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 05/15/2023]
Abstract
The proper management of municipal waste is critical for resource recovery, sustainability and health. Lebanon main approach for managing its municipal waste consisted of landfill disposal with minimal recycling capacity. This approach contributed to exceeding the holding capacity of existing landfills leading eventually to their closures. The closure of a major landfill (Naameh landfill) servicing Beirut and Mount Lebanon areas led to municipal wastes piling in the streets and forests for more than a year in 2016. The main problem identified in the municipal wastes consisted of untreated leachates (from regulated and unregulated dumpsites) going straight into the Mediterranean Sea. Therefore leachate samples were collected and subjected to chemical characterization followed by biological assessment. The chemical characterization and profiling of the Lebanese leachates were compared to results reported in Lebanon, Europe and United States as well as to the toxicity reference values (TRV). The biological assessment was conducted in vitro using human derived immortalized cell cultures. This strategy revealed significant alarming cellular organelles and DNA damages using in vitro cytotoxicity assays (MTS and comet assay). The significant damages observed at the cellular level prompted further animal model investigations using BALB/c mice. The animal data pointed to significant upregulation of liver activity enzymes coupled with significant damage expression in liver spleen and bone marrow DNA. The presented research clearly indicated that there is an urgent need for development of national waste strategies for proper treatment and disposal of municipal waste leachates in Lebanon.
Collapse
Affiliation(s)
- Christian Khalil
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon.
| | - Cynthia Al Hageh
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| | - Samira Korfali
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| | - Rony S Khnayzer
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| |
Collapse
|
23
|
Hong M, Lu G, Hou C, She S, Zhu L. Advanced treatment of landfill leachate membrane concentrates: performance comparison, biosafety and toxic residue analysis. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:2949-2958. [PMID: 29210682 DOI: 10.2166/wst.2017.469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With the improvement of people's consciousness about health, more attention has been paid to the biosafety of effluent reaching conventional discharge standard. In this contribution, removal efficiency of chemical oxygen demand (COD), acute toxicity, genotoxicity and estrogenicity in landfill leachate membrane concentrates (MCs) among UV-Fenton, Fenton and activated carbon adsorption process were compared. Daphnia magna acute toxicity assay, comet assay, cytokinesis-block micronucleus and E-screen assay were performed to assess whether the effluent reaching the main parameters of Chinese Discharge Standard (GB 16889-2008) still had toxic residues. Under the conditions that COD of effluents treated by the three processes were up to the discharge standard, no obvious toxic residue was found in the effluent of UV-Fenton treatment, but effluent from Fenton or activated carbon adsorption process showed genotoxicity or estrogenicity to some extent. Dynamic analysis of UV-Fenton degradation process for estrogen simulation solutions was also conducted, and the formation of intermediates was detected by gas chromatography-mass spectrometry (GC/MS). Toxic residues might be caused by the lack of treatment duration and the formation of more toxic intermediates. UV-Fenton was found to be efficient for the treatment of MCs. Biosafety should be concerned when a new wastewater discharge standard is being established.
Collapse
Affiliation(s)
- Mianwei Hong
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China E-mail:
| | - Gang Lu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China E-mail:
| | - Changcheng Hou
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China E-mail:
| | - Shaohua She
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China E-mail:
| | - Lingfei Zhu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China E-mail:
| |
Collapse
|
24
|
Mishra H, Karmakar S, Kumar R, Singh J. A Framework for Assessing Uncertainty Associated with Human Health Risks from MSW Landfill Leachate Contamination. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2017; 37:1237-1255. [PMID: 27664078 DOI: 10.1111/risa.12713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 08/04/2016] [Accepted: 08/14/2016] [Indexed: 06/06/2023]
Abstract
Landfilling is a cost-effective method, which makes it a widely used practice around the world, especially in developing countries. However, because of the improper management of landfills, high leachate leakage can have adverse impacts on soils, plants, groundwater, aquatic organisms, and, subsequently, human health. A comprehensive survey of the literature finds that the probabilistic quantification of uncertainty based on estimations of the human health risks due to landfill leachate contamination has rarely been reported. Hence, in the present study, the uncertainty about the human health risks from municipal solid waste landfill leachate contamination to children and adults was quantified to investigate its long-term risks by using a Monte Carlo simulation framework for selected heavy metals. The Turbhe sanitary landfill of Navi Mumbai, India, which was commissioned in the recent past, was selected to understand the fate and transport of heavy metals in leachate. A large residential area is located near the site, which makes the risk assessment problem both crucial and challenging. In this article, an integral approach in the form of a framework has been proposed to quantify the uncertainty that is intrinsic to human health risk estimation. A set of nonparametric cubic splines was fitted to identify the nonlinear seasonal trend in leachate quality parameters. LandSim 2.5, a landfill simulator, was used to simulate the landfill activities for various time slices, and further uncertainty in noncarcinogenic human health risk was estimated using a Monte Carlo simulation followed by univariate and multivariate sensitivity analyses.
Collapse
Affiliation(s)
- Harshit Mishra
- Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Subhankar Karmakar
- Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Urban Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rakesh Kumar
- National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Jitendra Singh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
25
|
Cheng R, Zhao L, Yin P. Genotoxic effects of old landfill leachate on HepG2 cells after nitration/ultrafiltration/reverse osmosis membrane treatment process. J Appl Toxicol 2017; 37:1455-1463. [DOI: 10.1002/jat.3490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Rong Cheng
- School of Environment; Jinan University; Guangzhou 510632 People's Republic of China
| | - Ling Zhao
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, Department of Environmental Engineering; Jinan University; Guangzhou 510632 People's Republic of China
| | - Pinghe Yin
- Research Center of Analysis and Test; Jinan University; Guangzhou 510632 People's Republic of China
| |
Collapse
|
26
|
Gerić M, Gajski G, Oreščanin V, Domijan AM, Kollar R, Garaj-Vrhovac V. Environmental risk assessment of wastewaters from printed circuit board production: A multibiomarker approach using human cells. CHEMOSPHERE 2017; 168:1075-1081. [PMID: 27829507 DOI: 10.1016/j.chemosphere.2016.10.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/21/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
Since the production of printed circuit boards (PCBs) generates wastewater contaminated with heavy metals and organic matter, PCB factories represent potential pollution sites. The wastewater toxicologically tested in this study contained several metals and the most abundant were copper and iron. At two exposure times tested (4 and 24 h) PCB wastewater (PCBW) proved to be cytotoxic (decreased cell viability) and genotoxic (increased comet assay tail intensity and tail moment) to human blood peripheral lymphocytes in vitro, and the oxidative stress parameter (malondialdehyde concentration) was also found to be higher. After application of combined treatment by waste base, ozone and waste sludge methods, concentrations of metals in purified PCBW were below the upper permitted levels and all tested toxicological parameters did not differ compared to the negative control. Taken together, similar methods could be implemented in PCB factories before discharging potentially toxic wastewater into the environment because purified PCBW does not represent a threat from the aspect of cytotoxicity and genotoxicity.
Collapse
Affiliation(s)
- Marko Gerić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000, Zagreb, Croatia
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000, Zagreb, Croatia
| | | | - Ana-Marija Domijan
- University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000, Zagreb, Croatia
| | | | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000, Zagreb, Croatia.
| |
Collapse
|
27
|
Rubinos DA, Barral MT. Sorptive removal of Hg II by red mud (bauxite residue) in contaminated landfill leachate. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:84-98. [PMID: 27737613 DOI: 10.1080/10934529.2016.1229938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability of red mud (RM) (bauxite residue) to remove HgII from landfill leachate (LL) was assessed. The studied aspects comprised the effects of time, pH, HgII concentration and the sorption isotherm, besides the influence of chloride and representative organic ligands. HgII removal by RM exhibited a complex kinetics where initial rapid sorption was followed by desorption at longer times. The sorption of HgII on RM was strongly pH-dependent. Outstanding maximum sorption was observed at pH∼4-5 (≥99.6%), while it abruptly dropped at higher pH values down to a minimum ∼28% at pH∼10.5. Chloride decreased HgII sorption at acid pH and shifted the pHmax towards higher pH∼9.4, which opposes to sorption in LL and suggests Cl- did not primarily control the process in LL. Amongst the organic ligands, acetate and salicylate slightly affected HgII sorption. Conversely, glycine affected sorption in a pH-dependent manner resembling that in LL, which suggests the relevant role of the organic nitrogenated compounds of LL. EDTA suppressed HgII sorption at any pH. HgII speciation modelling and dissolved organic matter (DOM) sorption support complexation of HgII by DOM as the primary factor governing the removal of HgII in LL. The sorption isotherm was better described by the Freundlich equation, which agrees with the heterogeneous composition of RM. The results indicate that HgII sorption on RM is favorable, but reveal differences in sorption and reduced efficiency, in LL media. Notwithstanding, RM possesses a notable capacity to remove HgII, even under the unhelpful complexing and competing conditions of LL.
Collapse
Affiliation(s)
- David A Rubinos
- a Department of Soil Science and Agricultural Chemistry, Faculty of Pharmacy , University of Santiago de Compostela , Santiago de Compostela , Spain
| | - María T Barral
- a Department of Soil Science and Agricultural Chemistry, Faculty of Pharmacy , University of Santiago de Compostela , Santiago de Compostela , Spain
| |
Collapse
|
28
|
Bonomo MM, Morozesk M, Duarte ID, Rocha LD, Fernandes MN, Matsumoto ST. Sewage sludge hazardous assessment: chemical evaluation and cytological effects in CHO-k1 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:11069-11075. [PMID: 26906003 DOI: 10.1007/s11356-016-6201-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
Application of sewage sludge in agricultural lands is a growing practice in several countries due to its numerous benefits to soil and crops, where chemical and pathogen levels are determined by corresponding legislation. However, the presence of contaminants in residues must always be controlled before application due to their dangerous effects over the ecosystem and potential risks to human health. The main objective of this study was to integrate biological and chemical analysis in order to help elucidating the residue potential toxic, cytotoxic, and mutagenic effects. We evaluate samples of sewage sludge before and after the sanitizing treatment with lime in cytokinesis-block assay using CHO-k1 culture cells. The sanitizing treatment promoted a decrease in pathogen levels, which is the main purpose of this process. Even with chemical levels below the established by environmental agencies, results showed sewage sludge ability to enhance genotoxic and mutagenic effects, proving that residue should be handled with caution in order to minimize its environmental and human risk.
Collapse
Affiliation(s)
- M M Bonomo
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), CEP 29075-910, Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, Brazil
| | - M Morozesk
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), CEP 29075-910, Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, Brazil
| | - I D Duarte
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), CEP 29075-910, Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, Brazil
| | - L D Rocha
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), CEP 29075-910, Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, Brazil
| | - M N Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), CEP 13565-905, São Carlos, São Paulo, Brazil
| | - S T Matsumoto
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), CEP 29075-910, Av. Fernando Ferrari, n 514, Vitoria, Espirito Santo, Brazil.
| |
Collapse
|
29
|
Wang G, Lu G, Yin P, Zhao L, Yu QJ. Genotoxicity assessment of membrane concentrates of landfill leachate treated with Fenton reagent and UV-Fenton reagent using human hepatoma cell line. JOURNAL OF HAZARDOUS MATERIALS 2016; 307:154-162. [PMID: 26780702 DOI: 10.1016/j.jhazmat.2015.12.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/29/2015] [Accepted: 12/31/2015] [Indexed: 06/05/2023]
Abstract
Membrane concentrates of landfill leachates contain organic and inorganic contaminants that could be highly toxic and carcinogenic. In this paper, the genotoxicity of membrane concentrates before and after Fenton and UV-Fenton reagent was assessed. The cytotoxicity and genotoxicity was determined by using the methods of methyltetrazolium (MTT), cytokinesis-block micronucleus (CBMN) and comet assay in human hepatoma cells. MTT assay showed a cytotoxicity of 75% after 24h of exposure to the highest tested concentration of untreated concentrates, and no cytotoxocity for UV-Fenton and Fenton treated concentrates. Both CBMN and comet assays showed increased levels of genotoxicity in cells exposed to untreated concentrates, compared to those occurred in cells exposed to UV-Fenton and Fenton reagent treated concentrates. There was no significant difference between negative control and UV-Fenton treated concentrates for micronucleus and comet assay parameters. UV-Fenton and Fenton treatment, especially the former, were effective methods for degradation of bisphenol A and nonylphenol in concentrates. These findings showed UV-Fenton and Fenton reaction were effective methods for treatment of such complex concentrates, UV-Fenton reagent provided toxicological safety of the treated effluent, and the genotoxicity assays were found to be feasible tools for assessment of toxicity risks of complex concentrates.
Collapse
Affiliation(s)
- Guifang Wang
- Department of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China
| | - Gang Lu
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, Department of Environmental Engineering, Jinan University, Guangzhou 510632, People's Republic of China
| | - Pinghe Yin
- Research Center of Analysis and Test, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Ling Zhao
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, Department of Environmental Engineering, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Qiming Jimmy Yu
- Griffith School of Engineering, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia
| |
Collapse
|
30
|
|
31
|
Ghosh P, Gupta A, Thakur IS. Combined chemical and toxicological evaluation of leachate from municipal solid waste landfill sites of Delhi, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:9148-58. [PMID: 25578612 DOI: 10.1007/s11356-015-4077-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/04/2015] [Indexed: 05/15/2023]
Abstract
In the present study, landfill leachate of three landfill sites of Delhi, India, was toxico-chemically analyzed for human risk assessment. Raw leachate samples were collected from the municipal solid waste (MSW) landfills of Delhi lacking liner systems. Samples were characterized with relatively low concentrations of heavy metals while the organic component exceeded the upper permissible limit by up to 158 times. Qualitative analysis showed the presence of numerous xenobiotics belonging to the group of halogenated aliphatic and aromatic compounds, polycyclic aromatic hydrocarbons (PAHs), phthalate esters, and other emerging contaminants. Quantitative analysis of PAHs showed that the benzo(a)pyrene-toxic equivalence quotient (BaP-TEQ) ranged from 41.22 to 285.557 ng L(-1). The human risk assessment methodology employed to evaluate the potential adverse effects of PAHs showed that the cancer risk level was lower than the designated acceptable risk of 10(-6). However, significant cytotoxic and genotoxic effects of leachates on HepG2 cell line was observed with MTT EC50 value ranging from 11.58 to 20.44 % and statistically significant DNA damage. Thus, although the leachates contained low concentrations of PAHs with proven carcinogenic potential, but the mixture of contaminants present in leachates are toxic enough to cause synergistic or additive cytotoxicity and genotoxicity and affect human health.
Collapse
Affiliation(s)
- Pooja Ghosh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India,
| | | | | |
Collapse
|
32
|
Clarke BO, Anumol T, Barlaz M, Snyder SA. Investigating landfill leachate as a source of trace organic pollutants. CHEMOSPHERE 2015; 127:269-75. [PMID: 25753851 DOI: 10.1016/j.chemosphere.2015.02.030] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 05/18/2023]
Abstract
Landfill leachate samples (n=11) were collected from five USA municipal solid waste (MSW) landfills and analyzed for ten trace organic pollutants that are commonly detected in surface and municipal wastewater effluents (viz., carbamazepine, DEET, fluoxetine, gemfibrozil, PFOA, PFOS, primidone, sucralose, sulfamethoxazole and trimethoprim). Carbamazepine, DEET, PFOA and primidone were detected in all leachate samples analyzed and gemfibrozil was detected in samples from four of the five-landfill sites. The contaminants found in the highest concentrations were DEET (6900-143000 ng L(-1)) and sucralose (<10-621000 ng L(-1)). Several compounds were not detected (fluoxetine) or detected infrequently (sulfamethoxazole, trimethoprim and PFOS). Using the average mass of DEET in leachate amongst the five landfills and scaling the mass release from the five test landfills to the USA population of landfills, an order of magnitude estimate is that over 10000 kg DEET yr(-1) may be released in leachate. Some pharmaceuticals have similar annual mean discharges to one another, with the estimated annual discharge of carbamazepine, gemfibrozil, primidone equating to 53, 151 and 128 kg year(-1). To the authors knowledge, this is the first time that primidone has been included in a landfill leachate study. While the estimates developed in this study are order of magnitude, the values do suggest the need for further research to better quantify the amount of chemicals sent to wastewater treatment facilities with landfill leachate, potential impacts on treatment processes and the significance of landfill leachate as a source of surface water contamination.
Collapse
Affiliation(s)
- Bradley O Clarke
- Chemical and Environmental Engineering, Bio5 Institute, University of Arizona, 1657 E Helen St, Tucson, AZ, USA; RMIT University, School of Applied Sciences, GPO Box 2476, Melbourne 3001, Australia
| | - Tarun Anumol
- Chemical and Environmental Engineering, Bio5 Institute, University of Arizona, 1657 E Helen St, Tucson, AZ, USA
| | - Morton Barlaz
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC 27695-7908, USA
| | - Shane A Snyder
- Chemical and Environmental Engineering, Bio5 Institute, University of Arizona, 1657 E Helen St, Tucson, AZ, USA; National University of Singapore, NUS Environmental Research Institute (NERI), 5A Engineering Drive 1, T-Lab Building, #02-01, Singapore 117411, Singapore.
| |
Collapse
|
33
|
Gerić M, Gajski G, Oreščanin V, Kollar R, Franekić J, Garaj-Vrhovac V. Toxicological assessment and management options for boat pressure-washing wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:164-170. [PMID: 25638522 DOI: 10.1016/j.ecoenv.2015.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 06/04/2023]
Abstract
Boats are washed periodically for maintenance in order to remove biofoulants from hulls, which results in the generation of wastewater. This study aimed at evaluating the cyto/genotoxic and mutagenic properties of wastewater produced by pressure washing of boats. The chemical characterisation of this wastewater showed that Cu, Zn, V, Cr, Fe, Pb, and select organic contaminants exceeded the maximum allowable values from 1.7 up to 96 times. The wastewater produced negative effects on human lymphocytes resulting in decreased cell viability after 4 and 24h of exposure. Chromosome aberration, micronucleus, and comet assay parameters were significantly higher after 24h of exposure. At the same time, the Salmonella typhimurium test showed negative for both TA98 and TA100 strains at all of the concentrations tested. After the treatment of wastewater using electrochemical methods/ozonation during real scale treatment plant, removal rates of colour, turbidity and heavy metals ranged from 99.4% to 99.9%, while the removal of total organic carbon (TOC) and chemical oxygen demand (COD) was above 85%. This was reflected in the removal of the wastewater's cyto/genotoxicity, which was comparable to negative controls in all of the conducted tests, suggesting that such plants could be implemented in marinas to minimise human impact on marine systems.
Collapse
Affiliation(s)
- Marko Gerić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb, Croatia
| | | | | | - Jasna Franekić
- Faculty of Food Technology and Biotechnology, Laboratory for Biology and Microbial Genetics, 10000 Zagreb, Croatia
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb, Croatia.
| |
Collapse
|
34
|
Ghosh P, Das MT, Thakur IS. Mammalian cell line-based bioassays for toxicological evaluation of landfill leachate treated by Pseudomonas sp. ISTDF1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:8084-8094. [PMID: 24671403 DOI: 10.1007/s11356-014-2802-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/12/2014] [Indexed: 06/03/2023]
Abstract
Landfill leachate has become a serious environmental concern because of the presence of many hazardous compounds which even at trace levels are a threat to human health and environment. Therefore, it is important to assess the toxicity of leachate generated and discharge it conforming to the safety standards. The present work examined the efficiency of an earlier reported Pseudomonas sp. strain ISTDF1 for detoxification of leachate collected from Okhla landfill site (New Delhi, India). GC-MS analysis performed after treatment showed the removal of compounds like alpha-limonene diepoxide, brominated dioxin-2-one, Bisphenol A, nitromusk, phthalate derivative, and nitrobenzene originally found in untreated leachate. ICP-AES analysis for heavy metals also showed reduction in concentrations of Zn, Cd, Cr, Fe, Ni, and Pb bringing them within the limit of safety discharge. Methyl tetrazolium (MTT) assay for cytotoxicity, alkaline comet assay for genotoxicity, and 7-ethoxyresorufin-O-deethylase (EROD) assay for dioxin-like behavior were carried out in human hepato-carcinoma cell line HepG2 to evaluate the toxic potential of treated and untreated leachates. The bacterium reduced toxicity as shown by 2.5-fold reduction of MTT EC50 value, 7-fold reduction in Olive Tail Moment, and 2.8-fold reduction in EROD induction after 240 h of bacterial treatment.
Collapse
Affiliation(s)
- Pooja Ghosh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India,
| | | | | |
Collapse
|
35
|
Klauck CR, Rodrigues MAS, da Silva LB. Toxicological evaluation of landfill leachate using plant (Allium cepa) and fish (Leporinus obtusidens) bioassays. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2013; 31:1148-1153. [PMID: 24019385 DOI: 10.1177/0734242x13502388] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The disposal of municipal waste in landfills may pose an environmental problem because the product of the decomposition of these residues generates large volumes of leachate, which may present high toxicity. The aim of this study was to assess the toxic and genotoxic effects of a sample of untreated leachate in fish (Leporinus obtusidens) and onions (Allium cepa). The leachate was collected in a landfill located in the region of Vale do Rio dos Sinos, southern Brazil. The fish were exposed to raw leachate, at concentrations of 0.5%, 1.0%, 5%, 10% and 20% for 6 days, while the bulbs of A. cepa were exposed to concentrations of 5%, 10%, 25%, 50% and 100% for 48 h. For fish, the concentrations of 5%, 10% and 20% were lethal, thus indicating high toxicity; however, sublethal concentrations (0.5% and 1.0%) showed no genotoxicity by micronucleus test when compared with the control group. In the bioassays involving onions, high toxicity was observed, with significant reduction of root growth and mitotic index in bulbs exposed to the 100% concentration of the leachate. An increase in the frequency of chromosome abnormalities in the A. cepa root cells in anaphase-telophase was observed in accordance with the increase in the concentration of leachate (5%, 10%, 25% and 50%), with values significantly greater than the control, at the highest concentration. The results showed that the leachate contains toxic and genotoxic substances, thus representing a major source of environmental pollution if not handled properly.
Collapse
Affiliation(s)
- Cláudia Regina Klauck
- Environmental Quality Post-Graduate Program, Universidade Feevale, Novo Hamburgo, Brazil
| | | | | |
Collapse
|
36
|
Garaj-Vrhovac V, Oreščanin V, Gajski G, Gerić M, Ruk D, Kollar R, Radić Brkanac S, Cvjetko P. Toxicological characterization of the landfill leachate prior/after chemical and electrochemical treatment: a study on human and plant cells. CHEMOSPHERE 2013; 93:939-945. [PMID: 23790829 DOI: 10.1016/j.chemosphere.2013.05.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 05/06/2013] [Accepted: 05/25/2013] [Indexed: 06/02/2023]
Abstract
In this research, toxicological safety of two newly developed methods for the treatment of landfill leachate from the Piškornica (Croatia) sanitary landfill was investigated. Chemical treatment procedure combined chemical precipitation with CaO followed by coagulation with ferric chloride and final adsorption by clinoptilolite. Electrochemical treatment approach included pretreatment with ozone followed by electrooxidation/electrocoagulation and final polishing by microwave irradiation. Cell viability of untreated/treated landfill leachate was examined using fluorescence microscopy. Cytotoxic effect of the original leachate was obtained for both exposure periods (4 and 24 h) while treated samples showed no cytotoxic effect even after prolonged exposure time. The potential DNA damage of the untreated/treated landfill leachate was evaluated by the comet assay and cytokinesis-block micronucleus (CBMN) assay using either human or plant cells. The original leachate exhibited significantly higher comet assay parameters compared to negative control after 24 h exposure. On the contrary, there was no significant difference between negative control and chemically/electrochemically treated leachate for any of the parameters tested. There was also no significant increase in either CBMN assay parameter compared to the negative control following the exposure of the lymphocytes to the chemically or electrochemically treated landfill leachate for both exposure periods while the original sample showed significantly higher number of micronuclei, nucleoplasmic bridges and nuclear buds for both exposure times. Results suggest that both methods are suitable for the treatment of such complex waste effluent due to high removal efficiency of all measured parameters and toxicological safety of the treated effluent.
Collapse
Affiliation(s)
- Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb, Croatia.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Toufexi E, Tsarpali V, Efthimiou I, Vidali MS, Vlastos D, Dailianis S. Environmental and human risk assessment of landfill leachate: an integrated approach with the use of cytotoxic and genotoxic stress indices in mussel and human cells. JOURNAL OF HAZARDOUS MATERIALS 2013; 260:593-601. [PMID: 23811380 DOI: 10.1016/j.jhazmat.2013.05.054] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/17/2013] [Accepted: 05/28/2013] [Indexed: 06/02/2023]
Abstract
The present study investigates leachate hazardous effects on marine biota and human cells, with the use of a battery of assays, both under in vivo and in vitro conditions. According to the results, mussels exposed for 4 days to 0.01 and 0.1% (v/v) of leachate showed increased levels of DNA damage and micronuclei (MN) frequencies in their hemocytes. Similarly, enhanced levels of DNA damage were also observed in hemocytes treated in vitro with relevant concentrations of leachate, followed by a significant enhancement of both superoxide anions (O₂(-)) and lipid peroxidation products (malondialdehyde/MDA). On the other hand, human lymphocyte cultures treated with such a low concentrations of leachate (0.1, 0.2 and 1%, v/v), showed increased frequencies of MN formation and large MN size ratio, as well as decreased cell proliferation, as indicated by the use of the cytokinesis block micronucleus (CBMN) assay and Cytokinesis Block Proliferation Index (CBPI) respectively. These findings showed the clear-cut genotoxic and cytotoxic effects of leachate on both cellular types, as well as its potential aneugenic activity in human lymphocytes.
Collapse
Affiliation(s)
- Eirini Toufexi
- Section of Animal Biology, Department of Biology, School of Natural Sciences, University of Patras, GR 26500 Patras, Greece
| | | | | | | | | | | |
Collapse
|
38
|
Bertoldi K, Spindler C, dos Santos Moysés F, Vanzella C, Lovatel GA, Elsner VR, Rodrigues MAS, Siqueira IR. Effect of landfill leachate on oxidative stress of brain structures and liver from rodents: modulation by photoelectrooxidation process. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 84:319-324. [PMID: 22910280 DOI: 10.1016/j.ecoenv.2012.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/29/2012] [Accepted: 08/01/2012] [Indexed: 06/01/2023]
Abstract
The decomposition of solid waste in landfill is responsible for the formation of leachate, a dark liquid with an unpleasant odor; studies investigating its toxicity on mammals are rare. Oxidative stress has been considered as an important biochemical mechanism of the toxicity of several xenobiotics. The aim of this study was to evaluate the effects of landfill leachate on oxidative parameters in striatum, hippocampus and liver homogenates of mice and rats. In order to propose a clean technology for the treatment of leachate, we also investigated the effects of landfill leachate submitted to photoelectrooxidation process (PEO). The homogenates of cerebral structures and liver of Swiss albino mice and Wistar rats were incubated with different concentrations of non-PEO landfill leachate and PEO-treated landfill leachate. After the incubation, the levels of free radicals, determined by 2',7'-dichlorofluorescein diacetate probe, and the lipoperoxidation, quantified by the thiobarbituric acid reactive substances, were evaluated. There was an increase on the levels of free radicals in striatum of both mice and rats when exposed to non-PEO leachate. Moreover, PEO-treated leachate increased the lipoperoxidation in striatum homogenates from rodents. However, both leachates did not alter any of the parameters evaluated in the hippocampus. In the liver, the incubation with leachates induced an augment on levels of free radicals only in samples of mice. In addition, PEO-treated leachate increased the lipoperoxidation indexes in the liver of mice and rats. These results suggest that the landfill leachate can induce an oxidative stress state in the liver and the striatum of rodents. Additionally, the PEO process was unable to efficiently alter the toxic compounds of landfill leachate.
Collapse
Affiliation(s)
- Karine Bertoldi
- Programa de Pós-Graduação em Ciências Biológicas-Fisiologia, Instituto de Ciências Básicas da Saúde, Departamento de Farmacología, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|