1
|
Chengatt AP, Sarath NG, A M S, Sebastian DP, George S. 6-Benzylaminopurine mediated augmentation of cadmium phytostabilization potential in Strobilanthes alternata. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1893-1913. [PMID: 38836518 DOI: 10.1080/15226514.2024.2360573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This study unveiled the cadmium phytoremediation potential and its augmentation using 6-Benzylaminopurine in Strobilanthes alternata. Cadmium stress was provided by applying 250 mg/kg cadmium chloride in soil and 25 ppm of 6-BAP (25 ml) was administered to the plants as foliar spray. The results revealed high bioconcentration factor (BCF) (18.82 ± 0.54) and low translocation factor (TF) values (0.055 ± 0.002) for the plant based on which we strongly recommend S. alternata as a promising candidate for Cd phytoremediation. The phytostabilization potential of the plant was further enhanced by applying 6-BAP, which augmented its BCF to 22.09 ± 0.64 and reduced the TF to 0.038 ± 0.001. Cd toxicity caused a reduction of plant growth parameters, root volume, adaxial-abaxial stomatal indices, relative water content, tolerance index, moisture content, membrane stability index, and xylem vessel diameter in S. alternata. However, Cd + 6-BAP treated plants exhibited an increase of the same compared to Cd-treated plants. FTIR analysis of Cd + 6-BAP treated plants revealed increased deposition of hemicellulose, causing enhanced retention of Cd in the root xylem walls, which is largely responsible for increased phytostabilization of Cd. Therefore, 6-BAP application in S. alternata can be exploited to restore Cd-contaminated areas effectively.
Collapse
Affiliation(s)
- Akshaya Prakash Chengatt
- Department of Botany, St. Joseph's College (Autonomous) Devagiri, Kozhikode, Affiliated to University of Calicut, Kerala, India
| | - Nair G Sarath
- Department of Botany, Mar Athanasius College (Autonomous), Kothamangalam, Kerala, India
| | - Shackira A M
- Department of Botany, Sir Syed College, Kannur University, Kannur, Kerala, India
| | - Delse Parekkattil Sebastian
- Department of Botany, St. Joseph's College (Autonomous) Devagiri, Kozhikode, Affiliated to University of Calicut, Kerala, India
| | - Satheesh George
- Department of Botany, St. Joseph's College (Autonomous) Devagiri, Kozhikode, Affiliated to University of Calicut, Kerala, India
| |
Collapse
|
2
|
Zhang Y, Yang C, Liu S, Xie Z, Chang H, Wu T. Phytohormones-mediated strategies for mitigation of heavy metals toxicity in plants focused on sustainable production. PLANT CELL REPORTS 2024; 43:99. [PMID: 38494540 DOI: 10.1007/s00299-024-03189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
KEY MESSAGE In this manuscript, authors reviewed and explore the information on beneficial role of phytohormones to mitigate adverse effects of heavy metals toxicity in plants. Global farming systems are seriously threatened by heavy metals (HMs) toxicity, which can result in decreased crop yields, impaired food safety, and negative environmental effects. A rise in curiosity has been shown recently in creating sustainable methods to reduce HMs toxicity in plants and improve agricultural productivity. To accomplish this, phytohormones, which play a crucial role in controlling plant development and adaptations to stress, have emerged as intriguing possibilities. With a particular focus on environmentally friendly farming methods, the current review provides an overview of phytohormone-mediated strategies for reducing HMs toxicity in plants. Several physiological and biochemical activities, including metal uptake, translocation, detoxification, and stress tolerance, are mediated by phytohormones, such as melatonin, auxin, gibberellin, cytokinin, ethylene, abscisic acid, salicylic acid, and jasmonates. The current review offers thorough explanations of the ways in which phytohormones respond to HMs to help plants detoxify and strengthen their resilience to metal stress. It is crucial to explore the potential uses of phytohormones as long-term solutions for reducing the harmful effects of HMs in plants. These include accelerating phytoextraction, decreasing metal redistribution to edible plant portions, increasing plant tolerance to HMs by hormonal manipulation, and boosting metal sequestration in roots. These methods seek to increase plant resistance to HMs stress while supporting environmentally friendly agricultural output. In conclusion, phytohormones present potential ways to reduce the toxicity of HMs in plants, thus promoting sustainable agriculture.
Collapse
Affiliation(s)
- Yumang Zhang
- College of Life Sciences, Changchun University of Science and Technology, Changchun, 130600, China
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Chunyuan Yang
- College of Life Sciences, Changchun University of Science and Technology, Changchun, 130600, China.
| | - Shuxia Liu
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China.
| | - Zhonglei Xie
- College of Life Sciences, Changchun University of Science and Technology, Changchun, 130600, China
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Hongyan Chang
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Tong Wu
- College of Life Sciences, Changchun University of Science and Technology, Changchun, 130600, China
| |
Collapse
|
3
|
Qin C, Lian H, Zhang B, He Z, Alsahli AA, Ahanger MA. Synergistic influence of selenium and silicon supplementation prevents the oxidative effects of arsenic stress in wheat. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133304. [PMID: 38159516 DOI: 10.1016/j.jhazmat.2023.133304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Influence of supplementation of selenium (Se, 1 and 5 µM) and silicon (Si, 0.1 and 0.5 mM) was investigated in wheat under arsenic (30 µM As) stress. Plants grown under As stress exhibited a significant decline in growth parameters however, Se and Si supplementation mitigated the decline significantly. Treatment of Se and Si alleviated the reduction in the intermediate components of chlorophyll biosynthesis pathway and the content of photosynthetic pigments. Arsenic stressed plants exhibited increased reactive oxygen species accumulation and the NADPH oxidase activity which were lowered significantly due to Se and Si treatments. Moreover, Se and Si supplementation reduced lipid peroxidation and activity of lipoxygenase and protease under As stress. Supplementation of Se and Si significantly improved the antioxidant activities and the content of cysteine, tocopherol, reduced glutathione and ascorbic acid. Treatment of Se and Si alleviated the reduction in nitrate reductase activity. Exogenously applied Se and Si mitigated the reduction in mineral elements and reduced As accumulation. Hence, supplementation of Se and Si is beneficial in preventing the alterations in growth and metabolism of wheat under As stress.
Collapse
Affiliation(s)
- Cheng Qin
- Department of Life Sciences, University of Changzhi, Changzhi 046000, China
| | - Huida Lian
- Department of Life Sciences, University of Changzhi, Changzhi 046000, China
| | - Bo Zhang
- Shanxi Normal University, Taiyuan, China
| | - Zhan He
- College of Life Science, Northwest A&F University, Yangling, Xianyang, Shaanxi, China
| | - Abdulaziz Abdullah Alsahli
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Abass Ahanger
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.
| |
Collapse
|
4
|
Espinosa-Vellarino FL, Garrido I, Casimiro I, Silva AC, Espinosa F, Ortega A. Enzymes Involved in Antioxidant and Detoxification Processes Present Changes in the Expression Levels of Their Coding Genes under the Stress Caused by the Presence of Antimony in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:609. [PMID: 38475456 DOI: 10.3390/plants13050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Currently, there is an increasing presence of heavy metals and metalloids in soils and water due to anthropogenic activities. However, the biggest problem caused by this increase is the difficulty in recycling these elements and their high permanence in soils. There are plants with great capacity to assimilate these elements or make them less accessible to other organisms. We analyzed the behavior of Solanum lycopersicum L., a crop with great agronomic interest, under the stress caused by antimony (Sb). We evaluated the antioxidant response throughout different exposure times to the metalloid. Our results showed that the enzymes involved in the AsA-GSH cycle show changes in their expression level under the stress caused by Sb but could not find a relationship between the NITROSOGLUTATHIONE REDUCTASE (GSNOR) expression data and nitric oxide (NO) content in tomato roots exposed to Sb. We hypothesize that a better understanding of how these enzymes work could be key to develop more tolerant varieties to this kind of abiotic stress and could explain a greater or lesser phytoremediation capacity. Moreover, we deepened our knowledge about Glutathione S-transferase (GST) and Glutathione Reductase (GR) due to their involvement in the elimination of the xenobiotic component.
Collapse
Affiliation(s)
- Francisco Luis Espinosa-Vellarino
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Inmaculada Garrido
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Ilda Casimiro
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Ana Cláudia Silva
- Centro Tecnológico Nacional Agroalimentario "Extremadura" (CTAEX), Ctra. Villafranco-Balboa 1.2, 06195 Badajoz, Spain
| | - Francisco Espinosa
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Alfonso Ortega
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
5
|
Koźmińska A, Kamińska I, Hanus-Fajerska E. Sulfur-Oxidizing Bacteria Alleviate Salt and Cadmium Stress in Halophyte Tripolium pannonicum (Jacq.) Dobrocz. Int J Mol Sci 2024; 25:2455. [PMID: 38473702 DOI: 10.3390/ijms25052455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to investigate how introducing halophilic sulfur-oxidizing bacteria (SOB) Halothiobacillus halophilus to the growth substrate affects the physiological and biochemical responses of the halophyte Tripolium pannonicum (also known as sea aster or seashore aster) under salt and cadmium stress conditions. This study assessed the plant's response to these stressors and bacterial inoculation by analyzing various factors including the accumulation of elements such as sodium (Na), chloride (Cl), cadmium (Cd) and sulfur (S); growth parameters; levels of photosynthetic pigments, proline and phenolic compounds; the formation of malondialdehyde (MDA); and the plant's potential to scavenge 2,2-Diphenyl-1-picrylhydrazyl (DPPH). The results revealed that bacterial inoculation was effective in mitigating the deleterious effect of cadmium stress on some growth criteria. For instance, stem length was 2-hold higher, the growth tolerance index was 3-fold higher and there was a 20% increase in the content of photosynthetic pigments compared to non-inoculated plants. Furthermore, the SOB contributed to enhancing cadmium tolerance in Tripolium pannonicum by increasing the availability of sulfur in the plant's leaves, which led to the maintenance of an appropriate, about 2-fold-higher level of phenolic compounds (phenylpropanoids and flavonols), as well as chloride ions. The level of MDA decreased after bacterial application in all experimental variants except when both salt and cadmium stress were present. These findings provide novel insights into how halophytes respond to abiotic stress following inoculation of the growth medium with sulfur-oxidizing bacteria. The data suggest that inoculating the substrate with SOB has a beneficial effect on T. pannonicum's tolerance to cadmium stress.
Collapse
Affiliation(s)
- Aleksandra Koźmińska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Cracow, Poland
| | - Iwona Kamińska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Cracow, Poland
| | - Ewa Hanus-Fajerska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Cracow, Poland
| |
Collapse
|
6
|
Iwuala E, Olajide O, Abiodun I, Odjegba V, Utoblo O, Ajewole T, Oluwajobi A, Uzochukwu S. Silicon ameliorates cadmium (Cd) toxicity in pearl millet by inducing antioxidant defense system. Heliyon 2024; 10:e25514. [PMID: 38333779 PMCID: PMC10850601 DOI: 10.1016/j.heliyon.2024.e25514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
Cadmium (Cd) stress is a significant environmental pollutant that can negatively impact crop yield and growth, and is a serious global issue. However, silicon (Si) has been shown to have a potential function in alleviating the effects of several abiotic stress conditions on crops, including Cd stress. This study investigated the effectiveness of applying silicon to soil as a method for reducing cadmium toxicity in pearl millet (IP14599) seedlings. Seeds of IP14599 were treated with Si + Cd element which cumulated to a combination of 9 treatments. Different Cd concentration of (0, 200, and 300 mg/kg-1) was taken and manually mixed into a sieved soil prior to planting and Si (0, 100 and 200 mg/kg-1) was selectively introduced till after attaining 12 days of seedling emergence. The physiochemical parameters of Cd stressed plants investigated includes chlorophyll, gas exchange attributes, proline, relative water contents, malondialdehyde (MDA) content and antioxidant enzymes (superoxide dismutase (SOD),catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD). Our result revealed that the metal (Cd) caused serious oxidative impairment thereby reducing photosynthetic performance, increased activity of MDA and Cd content in the roots and leaves of IP14599.In addition, Si increased the growth pattern and antioxidant defense action thereby mitigating the Cd toxicity. The results revealed that at Si 200, Si significantly increased the chlorophyll, carotenoids and plant height at 122 %, 69 % and 128 % under the Cd 200 and Cd 300 mg/kg-1 treatment, respectively. The single treatment at Si100 and Si 200 decreased ROS by 29 %, and 37 % respectively and MDA decreased by 33 % and 43 % in contrast to Cd 200 and 300 treatments, respectively. However, Si200 showed significant increase in the activities of APX 97 %, SOD by 89 %, CAT 35 % and POD 86 % as compared to single Si, Cd or combine Cd + Si treatment. Also, a gradual decline in Cd level in both the leaf and root was present when exposed to high concentrations of Si at Si200 and 300 mg/kg-1. Our findings revealed that Si might significantly increase the capacity to tolerate Cd stress in crop plants. Therefore, the study revealed that Si has the potential to alleviate Cd-induced toxicity by reducing Cd assimilation and enhancing the growth attributes of IP14599 plants.
Collapse
Affiliation(s)
- Emmanuel Iwuala
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Nigeria
| | - Olubunmi Olajide
- Department of Landscape and Horticulture, Ekiti State University, Ekiti, Nigeria
| | - Isaika Abiodun
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Nigeria
| | - Victor Odjegba
- Department of Botany, University of Lagos, Akoka, Yaba, Lagos State, Nigeria
| | - Obaiya Utoblo
- Department of Plant Science and Biotechnology, University of Jos, Plateau State, Nigeria
| | - Tolulope Ajewole
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Nigeria
| | - Ayoola Oluwajobi
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Nigeria
| | - Sylvia Uzochukwu
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Nigeria
| |
Collapse
|
7
|
Feng D, Wang R, Sun X, Liu L, Liu P, Tang J, Zhang C, Liu H. Heavy metal stress in plants: Ways to alleviate with exogenous substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165397. [PMID: 37429478 DOI: 10.1016/j.scitotenv.2023.165397] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Accumulation and enrichment of excessive heavy metals due to industrialization and modernization not only devastate our ecosystem, but also pose a threat to the global vegetation, especially crops. To improve plant resilience against heavy metal stress (HMS), numerous exogenous substances (ESs) have been tried as the alleviating agents. After a careful and thorough review of over 150 recently published literature, 93 reported ESs and their corresponding effects on alleviating HMS, we propose that 7 underlying mechanisms of ESs be categorized in plants for: 1) improving the capacity of the antioxidant system, 2) inducing the synthesis of osmoregulatory substances, 3) enhancing the photochemical system, 4) detouring the accumulation and migration of heavy metals, 5) regulating the secretion of endogenous hormones, 6) modulating gene expressions, and 7) participating in microbe-involved regulations. Recent research advances strongly indicate that ESs have proven to be effective in mitigating a potential negative impact of HMS on crops and other plants, but not enough to ultimately solve the devastating problem associated with excessive heavy metals. Therefore, much more research should be focused and carried out to eliminate HMS for the sustainable agriculture and clean environmental through minimizing towards prohibiting heavy metals from entering our ecosystem, phytodetoxicating polluted landscapes, retrieving heavy metals from detoxicating plants or crop, breeding for more tolerant cultivars for both high yield and tolerance against HMS, and seeking synergetic effect of multiply ESs on HMS alleviation in our feature researches.
Collapse
Affiliation(s)
- Di Feng
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Rongxue Wang
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Xiaoan Sun
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Li'nan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ping Liu
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chenxi Zhang
- Weifang University of Science and Technology/Shandong Facility Horticulture Bioengineering Research Center, Weifang 262700, Shandong, China.
| | - Hao Liu
- Key Laboratory of Crop Water Requirement and Regulation of the Ministry of Agriculture and Rural Affairs/Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453003, Henan, China.
| |
Collapse
|
8
|
Kumar RS, Sinha H, Datta T, Asif MH, Trivedi PK. microRNA408 and its encoded peptide regulate sulfur assimilation and arsenic stress response in Arabidopsis. PLANT PHYSIOLOGY 2023; 192:837-856. [PMID: 36682886 PMCID: PMC10231396 DOI: 10.1093/plphys/kiad033] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 06/01/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a central role in regulating various developmental and biological processes. The expression of miRNAs is differentially modulated in response to various biotic and abiotic stresses. Recent findings have shown that some pri-miRNAs encode small regulatory peptides known as microRNA-encoded peptides (miPEPs). miPEPs regulate the growth and development of plants by modulating corresponding miRNA expression; however, the role of these peptides under different stress conditions remains unexplored. Here, we report that pri-miR408 encodes a small peptide, miPEP408, that regulates the expression of miR408, its targets, and associated phenotype in Arabidopsis. We also report that miR408, apart from Plantacyanin (ARPN) and Laccase3 (LAC3), targets a glutathione S-transferase (GSTU25) that plays a role in sulfur assimilation and exhibits a range of detoxification activities with the environmental pollutant. Plants overexpressing miR408 showed severe sensitivity under low sulfur (LS), arsenite As(III), and LS + As(III) stress, while miR408 mutants developed using the CRISPR/Cas9 approach showed tolerance. Transgenic lines showed phenotypic alteration and modulation in the expression of genes involved in the sulfur reduction pathway and affect sulfate and glutathione accumulation. Similar to miR408 overexpressing lines, the exogenous application of synthetic miPEP408 and miPEP408OX lines led to sensitivity in plants under LS, As(III), and combined LS + As(III) stress compared to the control. This study suggests the involvement of miR408 and miPEP408 in heavy metal and nutrient deficiency responses through modulation of the sulfur assimilation pathway.
Collapse
Affiliation(s)
- Ravi Shankar Kumar
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hiteshwari Sinha
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tapasya Datta
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Mehar Hasan Asif
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| |
Collapse
|
9
|
Fatma M, Sehar Z, Iqbal N, Alvi AF, Abdi G, Proestos C, Khan NA. Sulfur supplementation enhances nitric oxide efficacy in reversal of chromium-inhibited Calvin cycle enzymes, photosynthetic activity, and carbohydrate metabolism in wheat. Sci Rep 2023; 13:6858. [PMID: 37100855 PMCID: PMC10133275 DOI: 10.1038/s41598-023-33885-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
The present study demonstrated that exogenously-sourced nitric oxide (as SNP, sodium nitroprusside; NO donor) and sulfur (S) protected photosynthesis against chromium (Cr) stress in wheat (Triticum aestivum L. cv. HD 2851). Plants grown with 100 µM Cr exhibited higher reactive oxygen species (ROS) production, resulting in photosynthetic damage. The individual application of 50 µM NO increased carbohydrate metabolism as well as photosynthetic parameters, antioxidant system with higher transcriptional gene levels that encode the key enzymes for the Calvin cycle under Cr stress. These effects were more prominent when NO was applied with 1.0 mM SO42-. An increase in the reduced glutathione (GSH) content obtained with NO was further enhanced by S and resulted in higher protection against Cr stress. The protective effect of NO with S against Cr toxicity on photosynthesis was reversed when buthionine sulfoximine (BSO; GSH biosynthetic inhibitor) was used. Application of BSO reversed the impact of NO plus S on photosynthesis under Cr stress, verifying that the ameliorating effect of NO was through S-assimilation and via GSH production. Thus, the availability of S to NO application can help reduce Cr toxicity and protect photosynthetic activity and expression of the Calvin cycle enzymes in leaves through the GSH involvement.
Collapse
Affiliation(s)
- Mehar Fatma
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Zebus Sehar
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Noushina Iqbal
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | | | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| | - Charalampos Proestos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece.
| | - Nafees A Khan
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
10
|
Cuypers A, Vanbuel I, Iven V, Kunnen K, Vandionant S, Huybrechts M, Hendrix S. Cadmium-induced oxidative stress responses and acclimation in plants require fine-tuning of redox biology at subcellular level. Free Radic Biol Med 2023; 199:81-96. [PMID: 36775109 DOI: 10.1016/j.freeradbiomed.2023.02.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Cadmium (Cd) is one of the most toxic compounds released into our environment and is harmful to human health, urging the need to remediate Cd-polluted soils. To this end, it is important to increase our insight into the molecular mechanisms underlying Cd stress responses in plants, ultimately leading to acclimation, and to develop novel strategies for economic validation of these soils. Albeit its non-redox-active nature, Cd causes a cellular oxidative challenge, which is a crucial determinant in the onset of diverse signalling cascades required for long-term acclimation and survival of Cd-exposed plants. Although it is well known that Cd affects reactive oxygen species (ROS) production and scavenging, the contribution of individual organelles to Cd-induced oxidative stress responses is less well studied. Here, we provide an overview of the current information on Cd-induced organellar responses with special attention to redox biology. We propose that an integration of organellar ROS signals with other signalling pathways is essential to finetune plant acclimation to Cd stress.
Collapse
Affiliation(s)
- Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium.
| | - Isabeau Vanbuel
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Verena Iven
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Kris Kunnen
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Stéphanie Vandionant
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Michiel Huybrechts
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Sophie Hendrix
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| |
Collapse
|
11
|
Tariq A, Zeng F, Graciano C, Ullah A, Sadia S, Ahmed Z, Murtaza G, Ismoilov K, Zhang Z. Regulation of Metabolites by Nutrients in Plants. PLANT IONOMICS 2023:1-18. [DOI: 10.1002/9781119803041.ch1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
12
|
Overexpression of acdS in Petunia hybrida Improved Flower Longevity and Cadmium-Stress Tolerance by Reducing Ethylene Production in Floral and Vegetative Tissues. Cells 2022; 11:cells11203197. [PMID: 36291065 PMCID: PMC9600315 DOI: 10.3390/cells11203197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/25/2022] Open
Abstract
The role of acdS, which encodes the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase enzyme, in extending flower longevity and improving tolerance to cadmium (Cd) stress was assessed using transgenic Petunia hybrida cv. ‘Mirage Rose’ overexpressing acdS and wild-type (WT) plants. The overexpression of acdS reduced ethylene production in floral tissue via suppression of ethylene-related genes and improved flower longevity, approximately 2 to 4 days longer than WT flowers. Under Cd stress, acdS significantly reduced Cd-induced ethylene production in vegetable tissues of transgenic plants through suppression of ethylene-related genes. This resulted in a lower accumulation of ethylene-induced reactive oxygen species (ROS) in the transgenic plants than in WT plants. In addition, expression of the genes involved in the activities of antioxidant and proline synthesis as well as the metal chelation process was also higher in the former than in the latter. Moreover, Cd accumulation was significantly higher in WT plants than in the transgenic plants. These results are linked to the greater tolerance of transgenic plants to Cd stress than the WT plants, which was determined based on plant growth and physiological performance. These results highlight the potential applicability of using acdS to extend flower longevity of ornamental bedding plants and also reveal the mechanism by which acdS improves Cd-stress tolerance. We suggest that acdS overexpression in plants can extend flower longevity and also help reduce the negative impact of Cd-induced ethylene on plant growth when the plants are unavoidably cultivated in Cd-contaminated soil.
Collapse
|
13
|
Ethylene Signaling under Stressful Environments: Analyzing Collaborative Knowledge. PLANTS 2022; 11:plants11172211. [PMID: 36079592 PMCID: PMC9460115 DOI: 10.3390/plants11172211] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Ethylene is a gaseous plant growth hormone that regulates various plant developmental processes, ranging from seed germination to senescence. The mechanisms underlying ethylene biosynthesis and signaling involve multistep mechanisms representing different control levels to regulate its production and response. Ethylene is an established phytohormone that displays various signaling processes under environmental stress in plants. Such environmental stresses trigger ethylene biosynthesis/action, which influences the growth and development of plants and opens new windows for future crop improvement. This review summarizes the current understanding of how environmental stress influences plants’ ethylene biosynthesis, signaling, and response. The review focuses on (a) ethylene biosynthesis and signaling in plants, (b) the influence of environmental stress on ethylene biosynthesis, (c) regulation of ethylene signaling for stress acclimation, (d) potential mechanisms underlying the ethylene-mediated stress tolerance in plants, and (e) summarizing ethylene formation under stress and its mechanism of action.
Collapse
|
14
|
Liu Y, Lu M, Persson DP, Luo J, Liang Y, Li T. The involvement of nitric oxide and ethylene on the formation of endodermal barriers in response to Cd in hyperaccumulator Sedum alfredii. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119530. [PMID: 35636714 DOI: 10.1016/j.envpol.2022.119530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/08/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Nitric oxide (NO) and ethylene are both important signaling molecules which participate in numerous plant development processes and environmental stress resistance. Here, we investigate whether and how NO interacts with ethylene during the development of endodermal barriers that have major consequences for the apoplastic uptake of cadmium (Cd) in the hyperaccumulator Sedum alfredii. In response to Cd, an increased NO accumulation, while a decrease in ethylene production was observed in the roots of S. alfredii. Exogenous supplementation of NO donor SNP (sodium nitroprusside) decreased the ethylene production in roots, while NO scavenger cPTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) had the opposite effect. The exogenous addition of NO affected the ethylene production through regulating the expression of genes related to ethylene synthesis. However, upon exogenous ethylene addition, roots retained their NO accumulation. The abovementioned results suggest that ethylene is downstream of the NO signaling pathway in S. alfredii. Regardless of Cd, addition of SNP promoted the deposition of endodermal barriers via regulating the genes related to Casparian strips deposition and suberization. Correlation analyses indicate that NO positively modifies the formation of endodermal barriers via the NO-ethylene signaling pathway, Cd-induced NO accumulation interferes with the synthesis of ethylene, leading to a deposition of endodermal barriers in S. alfredii.
Collapse
Affiliation(s)
- Yuankun Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Plant and Environmental Sciences, Facility of Science, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Min Lu
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Daniel Pergament Persson
- Department of Plant and Environmental Sciences, Facility of Science, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; National Demonstration Center for Experimental Environment and Resources Education, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Exogenously Applied Rohitukine Inhibits Photosynthetic Processes, Growth and Induces Antioxidant Defense System in Arabidopsis thaliana. Antioxidants (Basel) 2022; 11:antiox11081512. [PMID: 36009231 PMCID: PMC9404761 DOI: 10.3390/antiox11081512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
The secondary metabolite rohitukine has been reported in only a few plant species, including Schumanniophyton magnificum, S. problematicum, Amoora rohituka, Dysoxylum acutangulum and D. gotadhora. It has several biological activities, such as anticancer, anti-inflammatory, antiadipogenic, immunomodulatory, gastroprotective, anti-implantation, antidyslipidemic, anti-arthritic and anti-fertility properties. However, the ecological and physiological roles of rohitukine in parent plants have yet to be explored. Here for the first time, we tried to decipher the physiological effect of rohitukine isolated from D. gotadhora on the model system Arabidopsis thaliana. Application of 0.25 mM and 0.5 mM rohitukine concentrations moderately affected the growth of A. thaliana, whereas a remarkable decrease in growth and the alteration of various morphological, physiological and biochemical mechanisms were observed in plants that received 1.0 mM of rohitukine as compared to the untreated control. A. thaliana showed considerable dose-dependent decreases in leaf area, fresh weight and dry weight when sprayed with 0.25 mM, 0.5 mM and 1.0 mM of rohitukine. Rohitukine exposure resulted in the disruption of photosynthesis, photosystem II (PSII) activity and degradation of chlorophyll content in A. thaliana. It also triggered oxidative stress in visualized tissues through antioxidant enzyme activity and the expression levels of key genes involved in the antioxidant system, such as superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX). Rohitukine-induced changes in levels of metabolites (amino acids, sugars, organic acids, etc.) were also assessed. In light of these results, we discuss (i) the likely ecological importance of rohitukine in parent plants as well as (ii) the comparison of responses to rohitukine treatment in plants and mammals.
Collapse
|
16
|
Kaleem M, Shabir F, Hussain I, Hameed M, Ahmad MSA, Mehmood A, Ashfaq W, Riaz S, Afzaal Z, Maqsood MF, Iqbal U, Shah SMR, Irshad M. Alleviation of cadmium toxicity in Zea mays L. through up-regulation of growth, antioxidant defense system and organic osmolytes under calcium supplementation. PLoS One 2022; 17:e0269162. [PMID: 35731737 PMCID: PMC9216560 DOI: 10.1371/journal.pone.0269162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/15/2022] [Indexed: 01/05/2023] Open
Abstract
Calcium (Ca) is a macronutrient and works as a modulator to mitigate oxidative stress induced by heavy metals. In this study, we investigated the role of Ca to ameliorate the Cd toxicity in Zea mays L. by modulating the growth, physio-biochemical traits, and cellular antioxidant defense system. Maize genotype Sahiwal-2002 was grown under a controlled glasshouse environment with a day/night temperature of 24 ± 4°C/14 ± 2°C in a complete randomized design with three replications and two Cd levels as (0 and 150 μM) and six regimes of Ca (0, 0.5, 1, 2.5, 5, and 10 mM). Maize seedlings exposed to Cd at 150 μM concentration showed a notable decrease in growth, biomass, anthocyanins, chlorophylls, and antioxidant enzymes activities. A higher level of Cd (150 μM) also caused an upsurge in oxidative damage observed as higher electrolyte leakage (increased membrane permeability), H2O2 production, and MDA accumulation. Supplementation of Ca notably improved growth traits, photosynthetic pigments, cellular antioxidants (APX, POD, and ascorbic acid), anthocyanins, and levels of osmolytes. The significant improvement in the osmolytes (proteins and amino acids), and enzymatic antioxidative defense system enhanced the membrane stability and mitigated the damaging effects of Cd. The present results concluded that exogenously applied Ca potentially improve growth by regulating antioxidants and enabling maize plants to withstand the Cd toxicity.
Collapse
Affiliation(s)
- Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
- Department of Botany, Government College University, Faisalabad, Pakistan Department of Botany, Government Associate College for Women Layyah, Layyah, Pakistan
| | - Farah Shabir
- Department of Botany, Government Associate College for Women Layyah, Layyah, Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University, Faisalabad, Pakistan Department of Botany, Government Associate College for Women Layyah, Layyah, Pakistan
- * E-mail:
| | - Mansoor Hameed
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | | | - Anam Mehmood
- Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, Pakistan
| | - Waseem Ashfaq
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Saima Riaz
- Department of Botany, Government College University, Faisalabad, Pakistan Department of Botany, Government Associate College for Women Layyah, Layyah, Pakistan
| | - Zarbakht Afzaal
- Department of Botany, Government College University, Faisalabad, Pakistan Department of Botany, Government Associate College for Women Layyah, Layyah, Pakistan
| | | | - Ummar Iqbal
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Irshad
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
17
|
Kaur H, Hussain SJ, Al-Huqail AA, Siddiqui MH, Al-Huqail AA, Khan MIR. Hydrogen sulphide and salicylic acid regulate antioxidant pathway and nutrient balance in mustard plants under cadmium stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:660-669. [PMID: 34516728 DOI: 10.1111/plb.13322] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd), a pervasive noxious heavy metal, is a key threat to agricultural system. It is rapidly translocated and has detrimental effects on plant growth and development. Hydrogen sulphide (H2 S) is emerging as a potential messenger molecule for modulating plant tolerance to Cd. Salicylic acid (SA), a phenolic signalling molecule, can alleviate Cd toxicity in plants. The present study investigated the mediatory role of H2 S (100 µM) and SA (0.5 mM), individually and in combination, in modulating antioxidant defence machinery and nutrient balance to impart Cd (50 µM) resistance to mustard. Accumulation of Cd resulted in oxidative stress (TBARS and H2 O2 ), mineral nutrient imbalance (N, P, K, Ca), decreased leaf gas exchange and PSII efficiency, ultimately reducing plant growth. Both H2 S and SA independently attenuated phytotoxic effects of Cd by triggering antioxidant systems, enhancing the nutrient pool, eventually leading to improved photosynthesis and biomass of mustard plants. The positive effects were more pronounced under combined application of H2 S and SA, indicating a synergistic relationship between these two signalling molecules in mitigating the detrimental effects of Cd on nutrient homeostasis and overall health of mustard, primarily by boosting antioxidant pathway. Our findings provide new insights into H2 S- and SA-induced protective mechanisms in mustard plants subjected to Cd stress and suggest their combined use as a feasible strategy to confer Cd tolerance.
Collapse
Affiliation(s)
- H Kaur
- Department of Botany, Akal University, Bathinda, India
| | - S J Hussain
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - A A Al-Huqail
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M H Siddiqui
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A A Al-Huqail
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - M I R Khan
- Department of Botany, Jamia Hamdard, New Delhi, India
| |
Collapse
|
18
|
The Functional Interplay between Ethylene, Hydrogen Sulfide, and Sulfur in Plant Heat Stress Tolerance. Biomolecules 2022; 12:biom12050678. [PMID: 35625606 PMCID: PMC9138313 DOI: 10.3390/biom12050678] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Plants encounter several abiotic stresses, among which heat stress is gaining paramount attention because of the changing climatic conditions. Severe heat stress conspicuously reduces crop productivity through changes in metabolic processes and in growth and development. Ethylene and hydrogen sulfide (H2S) are signaling molecules involved in defense against heat stress through modulation of biomolecule synthesis, the antioxidant system, and post-translational modifications. Other compounds containing the essential mineral nutrient sulfur (S) also play pivotal roles in these defense mechanisms. As biosynthesis of ethylene and H2S is connected to the S-assimilation pathway, it is logical to consider the existence of a functional interplay between ethylene, H2S, and S in relation to heat stress tolerance. The present review focuses on the crosstalk between ethylene, H2S, and S to highlight their joint involvement in heat stress tolerance.
Collapse
|
19
|
Huang L, Hansen HCB, Yang X, Xie Z, Li S, Yang M, Liang X, Hu Z. Does sulfur application continue to reduce cadmium accumulation and increase the seed yield of oilseed rape (Brassica napus L.) at the maturity stage? JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2281-2290. [PMID: 34625978 DOI: 10.1002/jsfa.11566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Oilseed rape requires sulfur (S) fertilization. Cadmium (Cd) differs dramatically in agricultural soils. Rice-oilseed rape rotation distributes widely and contributes the majority of rapeseeds in Asian countries. It was reported that S metabolism was involved in Cd uptake in seedlings of oilseed rape, although the effects of S on Cd accumulation and seed yield at maturity are still unclear. RESULTS We performed a pot experiment including two Cd rates (0.35 and 10.35 mg kg-1 , as low and high Cd soil) and four S levels (0, 30, 60 and 120 mg kg-1 ). The results showed that low S application (30 mg kg-1 ) resulted in two-fold higher seed-Cd concentration irrespective of soil Cd levels. The responsible mechanism might be that Cd translocation into rapeseeds was involved in sulfate transporters, which could be strongly expressed in shoots and roots when supplying sulfate under S-starvation conditions, but depressed under a S-sufficient environment. For high Cd soil, seed yield decreased by 36%, 48% and 72% at 30, 60 and 120 mg S kg-1 compared to non-S treatment, whereas there were no differences for low Cd soil. Antagonistic effects of S and Cd existed for seed yield according to structure equation model analysis. CONCLUSION Oilseed rape can be grown in low-Cd fields as a safe food crop with high levels of sulfur fertilizers (>60 mg S kg-1 ). In high-Cd fields, oilseed rape is recommended as a Cd-remediation crop, and rapeseeds should only be used for industrial purposes and not for food. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lijuan Huang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Sino-Danish Center for Education and Research (SDC), Beijing, China
| | - Hans C B Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Sino-Danish Center for Education and Research (SDC), Beijing, China
| | - Xiaosong Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zijian Xie
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Songyan Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Sino-Danish Center for Education and Research (SDC), Beijing, China
| | - Mei Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomeng Liang
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Zhengyi Hu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research (SDC), Beijing, China
| |
Collapse
|
20
|
Thakur M, Praveen S, Divte PR, Mitra R, Kumar M, Gupta CK, Kalidindi U, Bansal R, Roy S, Anand A, Singh B. Metal tolerance in plants: Molecular and physicochemical interface determines the "not so heavy effect" of heavy metals. CHEMOSPHERE 2022; 287:131957. [PMID: 34450367 DOI: 10.1016/j.chemosphere.2021.131957] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 05/27/2023]
Abstract
An increase in technological interventions and ruthless urbanization in the name of development has deteriorated our environment over time and caused the buildup of heavy metals (HMs) in the soil and water resources. These heavy metals are gaining increased access into our food chain through the plant and/or animal-based products, to adversely impact human health. The issue of how to restrict the entry of HMs or modulate their response in event of their ingress into the plant system is worrisome. The current knowledge on the interactive-regulatory role and contribution of different physical, biophysical, biochemical, physiological, and molecular factors that determine the heavy metal availability-uptake-partitioning dynamics in the soil-plant-environment needs to be updated. The present review critically analyses the interactive overlaps between different adaptation and tolerance strategies that may be causally related to their cellular localization, conjugation and homeostasis, a relative affinity for the transporters, rhizosphere modifications, activation of efflux pumps and vacuolar sequestration that singly or collectively determine a plant's response to HM stress. Recently postulated role of gaseous pollutants such as SO2 and other secondary metabolites in heavy metal tolerance, which may be regulated at the whole plant and/or tissue/cell is discussed to delineate and work towards a "not so heavy" response of plants to heavy metals present in the contaminated soils.
Collapse
Affiliation(s)
- Meenakshi Thakur
- College of Horticulture and Forestry (Dr. Y.S. Parmar University of Horticulture and Forestry), Neri, Hamirpur, 177 001, Himachal Pradesh, India
| | - Shamima Praveen
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Pandurang R Divte
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Raktim Mitra
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Mahesh Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Maharashtra, 413 115, India
| | - Chandan Kumar Gupta
- Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Sugarcane Research, Lucknow, 226 002, India
| | - Usha Kalidindi
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Ruchi Bansal
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110 012, India
| | - Suman Roy
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, 700 120, India
| | - Anjali Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| | - Bhupinder Singh
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| |
Collapse
|
21
|
Djemal R, Khoudi H. The ethylene-responsive transcription factor of durum wheat, TdSHN1, confers cadmium, copper, and zinc tolerance to yeast and transgenic tobacco plants. PROTOPLASMA 2022; 259:19-31. [PMID: 33759027 DOI: 10.1007/s00709-021-01635-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd), copper (Cu), and zinc (Zn) are among the most common heavy metals (HMs) present in polluted soils. While some HMs are required for key biological processes, they are toxic when present in excess. This toxicity damages plant health, decreases crop yields, and can impact human health via the food chain. For example, durum wheat is a staple food that is known to accumulate Cd when grown on polluted soils. Plant response to HM stress is complex and involves several transcription factors (TFs) among which members of the ERF family. Although roles of SHINE-type ERF transcription factors in abiotic stress tolerance have been thoroughly investigated, there is little information concerning their role in HM stress tolerance. In the present study, we investigated the role of durum wheat TdSHN1 TF in HM response and tolerance. Results showed that TdSHN1 expression was strongly induced by Cd, Cu, and Zn in durum wheat seedlings. In addition, TdSHN1 gene promoter directed HM-inducible GUS gene expression in transgenic tobacco. Overexpression of TdSHN1 encoding cDNA in transgenic yeast and tobacco conferred Cd, Cu, and Zn tolerances. Interestingly, transgenic tobacco lines exhibited longer roots and greater biomass accumulation, retained more chlorophyll, and produced less ROS than WT plants, when subjected to excess HMs. In addition, transgenic tobacco lines had higher activities of ROS-scavenging enzymes (SOD and CAT) which might have contributed to their HM tolerance. This study suggested that TdSHN1 is a potential candidate for improving HM tolerance in plants and phytoremediation of HM-contaminated soils.
Collapse
Affiliation(s)
- Rania Djemal
- Laboratory of Plant Biotechnology and Improvement, University of Sfax, Center of Biotechnology of Sfax, Route Sidi Mansour, Km 6, 1177, 3018, Sfax, Tunisia
| | - Habib Khoudi
- Laboratory of Plant Biotechnology and Improvement, University of Sfax, Center of Biotechnology of Sfax, Route Sidi Mansour, Km 6, 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
22
|
Feki K, Tounsi S, Mrabet M, Mhadhbi H, Brini F. Recent advances in physiological and molecular mechanisms of heavy metal accumulation in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64967-64986. [PMID: 34599711 DOI: 10.1007/s11356-021-16805-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/24/2021] [Indexed: 05/27/2023]
Abstract
Among abiotic stress, the toxicity of metals impacts negatively on plants' growth and productivity. This toxicity promotes various perturbations in plants at different levels. To withstand stress, plants involve efficient mechanisms through the implication of various signaling pathways. These pathways enhance the expression of many target genes among them gene coding for metal transporters. Various metal transporters which are localized at the plasma membrane and/or at the tonoplast are crucial in metal stress response. Furthermore, metal detoxification is provided by metal-binding proteins like phytochelatins and metallothioneins. The understanding of the molecular basis of metal toxicities signaling pathways and tolerance mechanisms is crucial for genetic engineering to produce transgenic plants that enhance phytoremediation. This review presents an overview of the recent advances in our understanding of metal stress response. Firstly, we described the effect of metal stress on plants. Then, we highlight the mechanisms involved in metal detoxification and the importance of the regulation in the response to heavy metal stress. Finally, we mentioned the importance of genetic engineering for enhancing the phytoremediation technique. In the end, the response to heavy metal stress is complex and implicates various components. Thus, further studies are needed to better understand the mechanisms involved in response to this abiotic stress.
Collapse
Affiliation(s)
- Kaouthar Feki
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cédria, BP901, 2050, Hammam-Lif, Tunisia
| | - Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Moncef Mrabet
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cédria, BP901, 2050, Hammam-Lif, Tunisia
| | - Haythem Mhadhbi
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cédria, BP901, 2050, Hammam-Lif, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177", 3018, Sfax, Tunisia.
| |
Collapse
|
23
|
Hoque MN, Tahjib-Ul-Arif M, Hannan A, Sultana N, Akhter S, Hasanuzzaman M, Akter F, Hossain MS, Sayed MA, Hasan MT, Skalicky M, Li X, Brestič M. Melatonin Modulates Plant Tolerance to Heavy Metal Stress: Morphological Responses to Molecular Mechanisms. Int J Mol Sci 2021; 22:ijms222111445. [PMID: 34768875 PMCID: PMC8584185 DOI: 10.3390/ijms222111445] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/18/2022] Open
Abstract
Heavy metal toxicity is one of the most devastating abiotic stresses. Heavy metals cause serious damage to plant growth and productivity, which is a major problem for sustainable agriculture. It adversely affects plant molecular physiology and biochemistry by generating osmotic stress, ionic imbalance, oxidative stress, membrane disorganization, cellular toxicity, and metabolic homeostasis. To improve and stimulate plant tolerance to heavy metal stress, the application of biostimulants can be an effective approach without threatening the ecosystem. Melatonin (N-acetyl-5-methoxytryptamine), a biostimulator, plant growth regulator, and antioxidant, promotes plant tolerance to heavy metal stress by improving redox and nutrient homeostasis, osmotic balance, and primary and secondary metabolism. It is important to perceive the complete and detailed regulatory mechanisms of exogenous and endogenous melatonin-mediated heavy metal-toxicity mitigation in plants to identify potential research gaps that should be addressed in the future. This review provides a novel insight to understand the multifunctional role of melatonin in reducing heavy metal stress and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Md. Najmol Hoque
- Department of Biochemistry and Molecular Biology, Khulna Agricultural University, Khulna 9100, Bangladesh;
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Correspondence: (M.T.-U.-A.); (M.B.)
| | - Afsana Hannan
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.H.); (N.S.); (S.A.)
| | - Naima Sultana
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.H.); (N.S.); (S.A.)
| | - Shirin Akhter
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.H.); (N.S.); (S.A.)
| | - Md. Hasanuzzaman
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Fahmida Akter
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md. Sazzad Hossain
- Department of Agronomy and Haor Agriculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh;
| | - Md. Abu Sayed
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology, Dinajpur 5200, Bangladesh;
| | - Md. Toufiq Hasan
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Xiangnan Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
| | - Marián Brestič
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976 Nitra, Slovakia
- Correspondence: (M.T.-U.-A.); (M.B.)
| |
Collapse
|
24
|
Khan MIR, Chopra P, Chhillar H, Ahanger MA, Hussain SJ, Maheshwari C. Regulatory hubs and strategies for improving heavy metal tolerance in plants: Chemical messengers, omics and genetic engineering. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:260-278. [PMID: 34020167 DOI: 10.1016/j.plaphy.2021.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/03/2021] [Indexed: 05/28/2023]
Abstract
Heavy metal (HM) accumulation in the agricultural soil and its toxicity is a major threat for plant growth and development. HMs disrupt functional integrity of the plants, induces altered phenological and physiological responses and slashes down qualitative crop yield. Chemical messengers such as phytohormones, plant growth regulators and gasotransmitters play a crucial role in regulating plant growth and development under metal toxicity in plants. Understanding the intricate network of these chemical messengers as well as interactions of genes/metabolites/proteins associated with HM toxicity in plants is necessary for deciphering insights into the regulatory circuit involved in HM tolerance. The present review describes (a) the role of chemical messengers in HM-induced toxicity mitigation, (b) possible crosstalk between phytohormones and other signaling cascades involved in plants HM tolerance and (c) the recent advancements in biotechnological interventions including genetic engineering, genome editing and omics approaches to provide a step ahead in making of improved plant against HM toxicities.
Collapse
Affiliation(s)
| | | | | | | | - Sofi Javed Hussain
- Department of Botany, Government Degree College, Kokernag, Jammu & Kashmir, India
| | - Chirag Maheshwari
- Agricultural Energy and Power Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| |
Collapse
|
25
|
Jahan B, Iqbal N, Fatma M, Sehar Z, Masood A, Sofo A, D’Ippolito I, Khan NA. Ethylene Supplementation Combined with Split Application of Nitrogen and Sulfur Protects Salt-Inhibited Photosynthesis through Optimization of Proline Metabolism and Antioxidant System in Mustard ( Brassica juncea L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10071303. [PMID: 34199061 PMCID: PMC8309136 DOI: 10.3390/plants10071303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 05/04/2023]
Abstract
In the present study, the potential of ethylene as ethephon (an ethylene source) was investigated individually and in combination with split doses of nitrogen (N) and sulfur (S) soil treatments for removal of the damaging effects of salt stress (100 mM NaCl) in mustard (Brassica juncea L.). Plants were grown with 50 mg N plus 50 mg S kg-1 soil at sowing time and an equivalent dose at 20 days after sowing [N50 + S50]0d and 20d. Ethephon at 200 μL L‒1 was applied to combined split doses of N and S with or without NaCl. Plants subjected to NaCl showed a decrease in growth and photosynthetic characteristics as well as N and S assimilation, whereas proline metabolism and antioxidants increased. The application of ethephon to plants grown with split N and S doses significantly enhanced photosynthetic efficiency by increasing the assimilation of N and S, improving the concentration of proline and induction of the antioxidant system with or without NaCl. The regulation of ethylene and/or split forms of N and S application may be potential tools for not just overcoming salt stress effects in this species and in related Brassicaceae but also enhancing their photosynthesis and growth potential through increased nutrient assimilation.
Collapse
Affiliation(s)
- Badar Jahan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (B.J.); (M.F.); (Z.S.); (A.M.)
| | - Noushina Iqbal
- Department of Botany, Jamia Hamdard, New Delhi 110062, India;
| | - Mehar Fatma
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (B.J.); (M.F.); (Z.S.); (A.M.)
| | - Zebus Sehar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (B.J.); (M.F.); (Z.S.); (A.M.)
| | - Asim Masood
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (B.J.); (M.F.); (Z.S.); (A.M.)
| | - Adriano Sofo
- Department of European and Mediterranean Cultures: Architecture, Environment, Cultural Heritage (DiCEM), University of Basilicata, 75100 Matera, Italy;
- Correspondence: (A.S.); (N.A.K.)
| | - Ilaria D’Ippolito
- Department of European and Mediterranean Cultures: Architecture, Environment, Cultural Heritage (DiCEM), University of Basilicata, 75100 Matera, Italy;
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (B.J.); (M.F.); (Z.S.); (A.M.)
- Correspondence: (A.S.); (N.A.K.)
| |
Collapse
|
26
|
Sehar Z, Iqbal N, Khan MIR, Masood A, Rehman MT, Hussain A, AlAjmi MF, Ahmad A, Khan NA. Ethylene reduces glucose sensitivity and reverses photosynthetic repression through optimization of glutathione production in salt-stressed wheat (Triticum aestivum L.). Sci Rep 2021; 11:12650. [PMID: 34135422 PMCID: PMC8209215 DOI: 10.1038/s41598-021-92086-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/04/2021] [Indexed: 02/05/2023] Open
Abstract
Ethylene plays a crucial role throughout the life cycle of plants under optimal and stressful environments. The present study reports the involvement of exogenously sourced ethylene (as ethephon; 2-chloroethyl phosphonic acid) in the protection of the photosynthetic activity from glucose (Glu) sensitivity through its influence on the antioxidant system for adaptation of wheat (Triticum aestivum L.) plants under salt stress. Ten-day-old plants were subjected to control and 100 mM NaCl and treated with 200 µl L-1 ethephon on foliage at 20 days after seed sowing individually or in combination with 6% Glu. Plants receiving ethylene exhibited higher growth and photosynthesis through reduced Glu sensitivity in the presence of salt stress. Moreover, ethylene-induced reduced glutathione (GSH) production resulted in increased psbA and psbB expression to protect PSII activity and photosynthesis under salt stress. The use of buthionine sulfoximine (BSO), GSH biosynthesis inhibitor, substantiated the involvement of ethylene-induced GSH in the reversal of Glu-mediated photosynthetic repression in salt-stressed plants. It was suggested that ethylene increased the utilization of Glu under salt stress through its influence on photosynthetic potential and sink strength and reduced the Glu-mediated repression of photosynthesis.
Collapse
Affiliation(s)
- Zebus Sehar
- grid.411340.30000 0004 1937 0765Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Noushina Iqbal
- grid.411816.b0000 0004 0498 8167Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
| | - M. Iqbal R. Khan
- grid.411816.b0000 0004 0498 8167Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
| | - Asim Masood
- grid.411340.30000 0004 1937 0765Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Md. Tabish Rehman
- grid.56302.320000 0004 1773 5396Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451 Kingdom of Saudi Arabia
| | - Afzal Hussain
- grid.56302.320000 0004 1773 5396Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451 Kingdom of Saudi Arabia
| | - Mohamed F. AlAjmi
- grid.56302.320000 0004 1773 5396Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451 Kingdom of Saudi Arabia
| | - Altaf Ahmad
- grid.411340.30000 0004 1937 0765Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Nafees A. Khan
- grid.411340.30000 0004 1937 0765Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| |
Collapse
|
27
|
Singh N, Gaddam SR, Singh D, Trivedi PK. Regulation of arsenic stress response by ethylene biosynthesis and signaling in Arabidopsis thaliana. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2021; 185:104408. [PMID: 0 DOI: 10.1016/j.envexpbot.2021.104408] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
28
|
Soil Sulfur Sources Differentially Enhance Cadmium Tolerance in Indian Mustard (Brassica juncea L.). SOIL SYSTEMS 2021. [DOI: 10.3390/soilsystems5020029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The effect of four soil-applied sulfur (100 mg S kg−1 soil (100S) and 200 mg S kg−1 soil (200S)) in different sources (elemental S, ammonium sulfate, gypsum or magnesium sulfate) in protecting mustard (Brassica juncea L. (Czern & Coss.)) from cadmium effects was studied. Based on the observed reduction in growth and photosynthesis in plants subjected to 100 and 200 mg Cd kg−1 soil, B. juncea cv. Giriraj was selected as the most Cd-tolerant among five cultivars (namely, Giriraj, RH-0749, Pusa Agrani, RH-406, and Pusa Tarak). Sulfur applied to soil mitigated the negative impact of Cd on sulfur assimilation, cell viability, and photosynthetic functions, with a lower lipid peroxidation, electrolyte leakage, and contents of reactive oxygen species (ROS: hydrogen peroxide, H2O2, and superoxide anion, O2•−). Generally, added S caused higher activity of antioxidant enzymes (ascorbate peroxidase, catalase and superoxide dismutase), contents of ascorbate (AsA) and reduced glutathione (GSH); increases in the activities of their regenerating enzymes (dehydroascorbate reductase and glutathione reductase); as well as rises in S assimilation, biosynthesis of non-protein thiols (NPTs), and phytochelatins (PCs). Compared to the other S-sources tested, elemental S more prominently protected B. juncea cv. Giriraj against Cd-impacts by minimizing Cd-accumulation and its root-to-shoot translocation; decreasing cellular ROS and membrane damage, and improving Cd-chelation (NPTs and PCs), so strengthening the defense machinery against Cd. The results suggest the use of elemental S for favoring the growth and development of cultivated plants also in Cd-contaminated agricultural soils.
Collapse
|
29
|
Al Murad M, Razi K, Benjamin LK, Lee JH, Kim TH, Muneer S. Ethylene regulates sulfur acquisition by regulating the expression of sulfate transporter genes in oilseed rape. PHYSIOLOGIA PLANTARUM 2021; 171:533-545. [PMID: 32588442 DOI: 10.1111/ppl.13157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 05/25/2023]
Abstract
To manage nutrient deficiencies, plants develop both morphological and physiological responses. The studies on the regulation of these responses are limited; however, certain hormones and signaling components have been largely implicated. Several studies depicted ethylene as a regulator of the response of some nutrient deficiencies like iron, phosphorous and potassium. The present study focused on the response of sulfur in the presence and absence of ethylene. The experiments were performed in hydroponic nutrient media, using oilseed rape grown with or without sulfur deficiency and ethylene treatments for 10 days. The ACC oxidase and ACC synthase were observed significantly reduced in sulfur-deficient plants treated with ethylene compared to control. The biomass and photosynthetic parameters, including the expression of multicomplex thylakoidal proteins showed a significant increase in sulfur deficient plants supplemented with ethylene. The enzymes related to sulfur regulation such as sulfate adenyltransferase, glutamine synthetase and O-acetylserine (thiol)lyase also showed similar results as shown by the morphological data. The relative expression of the sulfur transporter genes BnSultr1, 1, BnSultr1, 2, BnSultr4,1, BnSultr 4,2, ATP sulfurylase and OASTL increased in sulfur-deficient plants, whereas their expression decreased when ethylene was given to the plants. Fe and S nutritional correlations are already known; therefore, Fe-transporters like IRT1 and FRO1 were also evaluated, and similar results as for the sulfur transporter genes were observed. The overall results indicated that ethylene regulates sulfur acquisition by regulating the expression of sulfur transporter genes in oilseed rape (Brassica napus).
Collapse
Affiliation(s)
- Musa Al Murad
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
- School of Bio Sciences and Biotechnology, Vellore Institute of Technology, Vellore, India
| | - Kaukab Razi
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
- School of Bio Sciences and Biotechnology, Vellore Institute of Technology, Vellore, India
| | - Lincy Kirubhadharsini Benjamin
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| | - Jeong Hyun Lee
- Department of Horticulture, College of Agricultural Sciences, Chonnam National University, Guwangju, South Korea
| | - Tae Hwan Kim
- Department of Animal Science, College of Agricultural Sciences, Chonnam National University, Guwangju, South Korea
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
30
|
Liu Y, Tao Q, Li J, Guo X, Luo J, Jupa R, Liang Y, Li T. Ethylene-mediated apoplastic barriers development involved in cadmium accumulation in root of hyperaccumulator Sedum alfredii. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123729. [PMID: 33264898 DOI: 10.1016/j.jhazmat.2020.123729] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/23/2020] [Accepted: 08/14/2020] [Indexed: 06/12/2023]
Abstract
Ethylene is an important phytohormone for plant adaptation to heavy metal stress. However, the effects of ethylene on radial apoplastic transport of Cd remain elusive. This study investigated the role of ethylene on apoplastic barriers development and consequences for Cd uptake in Sedum alfredii. In response to Cd, endogenous ethylene production in hyperaccumulating ecotype (HE) roots was decreased due to the down-regulated expressions of ethylene biosynthesis genes, while the opposite result was observed in non-hyperaccumulating ecotype (NHE). Interestingly, the ethylene emission in HE was always higher than that in NHE, regardless of Cd concentrations. Results of exogenous application of ethylene biosynthesis precursor/inhibitor indicate that ethylene with high level would delay the formation of apoplastic barriers in HE through restraining phenylalanine ammonia lyase activity and gene expressions related to lignin/suberin biosynthesis. Simultaneously, correlation analyses suggest that Cd-induced apoplastic barriers formation may be also regulated by ethylene signaling. By using an apoplastic bypass tracer and scanning ion-selected electrode, we observed that the delayed deposition of apoplastic barriers significantly promoted Cd influx in roots. Taken together, high endogenous ethylene in HE postponed the formation of apoplastic barriers and thus promoted the Cd accumulation in the apoplast of roots.
Collapse
Affiliation(s)
- Yuankun Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmentaland Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinxing Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmentaland Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyu Guo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmentaland Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmentaland Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Radek Jupa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmentaland Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmentaland Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China; National Demonstration Center for Experimental Environment and Resources Education, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
31
|
Fatma M, Iqbal N, Gautam H, Sehar Z, Sofo A, D’Ippolito I, Khan NA. Ethylene and Sulfur Coordinately Modulate the Antioxidant System and ABA Accumulation in Mustard Plants under Salt Stress. PLANTS 2021; 10:plants10010180. [PMID: 33478097 PMCID: PMC7835815 DOI: 10.3390/plants10010180] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 02/01/2023]
Abstract
This study explored the interactive effect of ethephon (2-chloroethyl phosphonic acid; an ethylene source) and sulfur (S) in regulating the antioxidant system and ABA content and in maintaining stomatal responses, chloroplast structure, and photosynthetic performance of mustard plants (Brassica juncea L. Czern.) grown under 100 mM NaCl stress. The treatment of ethephon (200 µL L−1) and S (200 mg S kg−1 soil) together markedly improved the activity of enzymatic and non-enzymatic components of the ascorbate-glutathione (AsA-GSH) cycle, resulting in declined oxidative stress through lesser content of sodium (Na+) ion and hydrogen peroxide (H2O2) in salt-stressed plants. These changes promoted the development of chloroplast thylakoids and photosynthetic performance under salt stress. Ethephon + S also reduced abscisic acid (ABA) accumulation in guard cell, leading to maximal stomatal conductance under salt stress. The inhibition of ethylene action by norbornadiene (NBD) in salt- plus non-stressed treated plants increased ABA and H2O2 contents, and reduced stomatal opening, suggesting the involvement of ethephon and S in regulating stomatal conductance. These findings suggest that ethephon and S modulate antioxidant system and ABA accumulation in guard cells, controlling stomatal conductance, and the structure and efficiency of the photosynthetic apparatus in plants under salt stress.
Collapse
Affiliation(s)
- Mehar Fatma
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (M.F.); (H.G.); (Z.S.)
| | - Noushina Iqbal
- Department of Botany, Jamia Hamdard, New Delhi 110062, India;
| | - Harsha Gautam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (M.F.); (H.G.); (Z.S.)
| | - Zebus Sehar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (M.F.); (H.G.); (Z.S.)
| | - Adriano Sofo
- Department of European and Mediterranean Cultures: Architecture, Environment and Cultural Heritage (DiCEM), University of Basilicata, Via Lanera, 20, 75100 Matera, Italy;
- Correspondence: (A.S.); (N.A.K.)
| | - Ilaria D’Ippolito
- Department of European and Mediterranean Cultures: Architecture, Environment and Cultural Heritage (DiCEM), University of Basilicata, Via Lanera, 20, 75100 Matera, Italy;
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (M.F.); (H.G.); (Z.S.)
- Correspondence: (A.S.); (N.A.K.)
| |
Collapse
|
32
|
Asgher M, Ahmed S, Sehar Z, Gautam H, Gandhi SG, Khan NA. Hydrogen peroxide modulates activity and expression of antioxidant enzymes and protects photosynthetic activity from arsenic damage in rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123365. [PMID: 32652423 DOI: 10.1016/j.jhazmat.2020.123365] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 05/21/2023]
Abstract
We studied the role of H2O2 in the protection of photosynthesis from arsenic (As) damage in rice (Oryza sativa L.) by examining the antioxidant system, photosynthesis, and growth attributes. Among the As concentrations (0, 20, 30, 40 and 50 μM) tested, maximum oxidative stress and inhibition in photosynthesis and growth were found with 50 μM As. The application of 50 μM H2O2 resulted in alleviation of the adverse effects of 50 μM As on Pigment System (PS) II activity, photosynthesis, and growth. Hydrogen peroxide supplementation induced the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR) and increased reduced glutathione (GSH) content and proline metabolism. The expression of SOD and APX, PSBA and PSBB was induced in the presence of H2O2 to alleviate the As damage to PS II and maintain photosynthetic activity. The role of H2O2 as a signaling molecule is shown in the protection of photosynthetic activity in rice from As toxicity through regulation on the activity and the expression of antioxidant enzymes.
Collapse
Affiliation(s)
- Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Sajad Ahmed
- Plant Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, Jammu and Kashmir, 180001, India
| | - Zebus Sehar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Harsha Gautam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Sumit G Gandhi
- Plant Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, Jammu and Kashmir, 180001, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
33
|
Nguyen TQ, Sesin V, Kisiala A, Emery RJN. Phytohormonal Roles in Plant Responses to Heavy Metal Stress: Implications for Using Macrophytes in Phytoremediation of Aquatic Ecosystems. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:7-22. [PMID: 33074580 DOI: 10.1002/etc.4909] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 05/20/2023]
Abstract
Heavy metals can represent a threat to the health of aquatic ecosystems. Unlike organic chemicals, heavy metals cannot be eliminated by natural processes such as their degradation into less toxic compounds, and this creates unique challenges for their remediation from soil, water, and air. Phytoremediation, defined as the use of plants for the removal of environmental contaminants, has many benefits compared to other pollution-reducing methods. Phytoremediation is simple, efficient, cost-effective, and environmentally friendly because it can be carried out at the polluted site, which simplifies logistics and minimizes exposure to humans and wildlife. Macrophytes represent a unique tool to remediate diverse environmental media because they can accumulate heavy metals from contaminated sediment via roots, from water via submerged leaves, and from air via emergent shoots. In this review, a synopsis is presented about how plants, especially macrophytes, respond to heavy metal stress; and we propose potential roles that phytohormones can play in the alleviation of metal toxicity in the aquatic environment. We focus on the uptake, translocation, and accumulation mechanisms of heavy metals in organs of macrophytes and give examples of how phytohormones interact with plant defense systems under heavy metal exposure. We advocate for a more in-depth understanding of these processes to inform more effective metal remediation techniques from metal-polluted water bodies. Environ Toxicol Chem 2021;40:7-22. © 2020 SETAC.
Collapse
Affiliation(s)
- Thien Q Nguyen
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Verena Sesin
- Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - Anna Kisiala
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - R J Neil Emery
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
34
|
Shah AA, Khan WU, Yasin NA, Akram W, Ahmad A, Abbas M, Ali A, Safdar MN. Butanolide alleviated cadmium stress by improving plant growth, photosynthetic parameters and antioxidant defense system of brassica oleracea. CHEMOSPHERE 2020; 261:127728. [PMID: 32731022 DOI: 10.1016/j.chemosphere.2020.127728] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 05/04/2023]
Abstract
Current study was performed to explore the effect of butanolide (KAR1) in mitigation of cadmium (Cd) induced toxicity in Brussels sprout (Brassica oleracea L.). Brussels sprout seeds, treated with 10-5 M, 10-7 M and 10-10 M solution of KAR1 were allowed to grow in Cd-contaminated (5 mg L-1) regimes for 25 d. Cadmium toxicity decreased seed germination and growth in B. oleracea seedlings. Elevated intensity of electrolyte leakage (EL), malondialdehyde (MDA) and hydrogen peroxide (H2O2) were observed in Cd-stressed seedlings. Additionally, reduced level of stomatal conductivity, transpiration rate, photosynthesis rate, intercellular carbon dioxide concentration, and leaf relative water content (LRWC) was also observed in Cd-stressed seedlings. Nevertheless, KAR1 improved seed germination, seedling growth and biomass production in Cd stressed plants. KAR1 application showed elevated LRWC, osmotic potential, and higher membranous stability index (MSI) in seedlings under Cd regime. Furthermore, seedlings developed by KAR1 treatment exhibited higher stomatal conductivity, and intercellular carbon dioxide concentration together with improved rate of transpiration and photosynthetic rate in B. oleracea under Cd stress. These findings elucidate that the reduced level of MDA, EL and H2O2, as well as improvement in antioxidative machinery increased growth and alleviated Cd toxicity in KAR1 treated seedlings under Cd stress.
Collapse
Affiliation(s)
- Anis Ali Shah
- Department of Botany, University of Narowal, Pakistan
| | - Waheed Ullah Khan
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Waheed Akram
- Guangdong Key Laboratory of New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Aqeel Ahmad
- Guangdong Key Laboratory of New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Muhammad Abbas
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | | |
Collapse
|
35
|
Wang Y, Yuan M, Li Z, Niu Y, Jin Q, Zhu B, Xu Y. Effects of ethylene biosynthesis and signaling on oxidative stress and antioxidant defense system in Nelumbo nucifera G. under cadmium exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40156-40170. [PMID: 32661968 DOI: 10.1007/s11356-020-09918-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/26/2020] [Indexed: 05/27/2023]
Abstract
Water contamination with cadmium (Cd) is a global environmental problem and its remediation becomes urgent. Phytoremediation using ornamental plants has attracted much attention for its advantages of cost-effectiveness and beautification of the environment. Nelumbo nucifera G. is a popular ornamental aquatic macrophyte with fast growth, large biomass, and high capacities for Cd accumulation and removal. However, information about Cd resistance and defense responses in N. nucifera is rather scarce, which restricts its large-scale utilization for phytoremediation. The phytohormone ethylene plays an important role in plant resistance to Cd stress, but the underlying mechanism remains unclear. In this study, we investigated morphophysiological responses of N. nucifera seedlings to Cd stress, and focused on the effects of ethylene on oxidative damage, Cd accumulation, and antioxidant defense system at the metabolic and transcript levels in leaves under Cd stress. Our results showed that Cd exposure led to leaf chlorosis and necrosis, coupled with an increase in contents of hydrogen peroxide, electrolyte leakage, and malondialdehyde, and decrease in chlorophyll content. Exogenous ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) application intensified Cd-induced stress responses and Cd accumulation, and increased ethylene production by inducing ACC synthase (ACS) gene NnACS. Such enhanced ethylene emission inhibited catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) activities, and modulated ascorbate (AsA) and glutathione (GSH) accumulation through transcriptional regulation of their respective metabolic genes. After ethylene action inhibitor silver thiosulfate (STS) supplementation, Cd-induced oxidative damage was abolished, and Cd content declined but still at a relatively high level. Blocking of ethylene perception by STS inhibited ethylene biosynthesis; enhanced CAT, APX, and GR activities and their transcript levels; increased AsA accumulation via inducing its biosynthetic genes; but reduced GSH content and NnGSH2 expression level. These results suggest that ethylene biosynthesis and signaling play an important role in N. nucifera response to Cd stress, and maintaining appropriate ethylene level and low ethylene sensitivity could improve its Cd tolerance via efficient antioxidant defenses.
Collapse
Affiliation(s)
- Yanjie Wang
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China
| | - Man Yuan
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China
| | - Zexin Li
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China
| | - Yeqing Niu
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China
| | - Qijiang Jin
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China
| | - Bin Zhu
- Department of Biology, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT, 06117, USA
| | - Yingchun Xu
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
36
|
Li Y, Guo P, Liu Y, Su H, Zhang Y, Deng J, Wu Y. Effects of sulfur on the toxicity of cadmium to Folsomia candida in red earth and paddy soil in southern Fujian. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121683. [PMID: 31771886 DOI: 10.1016/j.jhazmat.2019.121683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 05/23/2023]
Abstract
Sulfur has been shown to mitigate the toxic effects of metals on soil organisms. Here we report the effects of sulfur on cadmium toxicity to the collembolan Folsomia candida in soil, including its effects on glutathione (GSH) level, catalase (CAT) activity and metallothionein (MT) content. Following sulfur treatment, catalase, glutathione and metallothionein activities were all significantly increased in cadmium-contaminated soil, and as the cadmium concentration increased, the activities decreased. In addition, because of the reducing effects of pH and organic matter on cadmium bioavailability, the bioavailable cadmium varied among soils of different pH values and organic matter contents, causing the catalase activity, glutathione content and metallothionein levels of F. candida to vary among soils. Our study suggests that sulfur can affect the toxicity of certain concentrations of cadmium and that soil properties are very important to consider. This study provides insight into the effects of sulfur application on soil animals.
Collapse
Affiliation(s)
- Yanqi Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| | - Peiyong Guo
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China.
| | - Yongjun Liu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| | - Haitao Su
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| | - Yuxuan Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| | - Jun Deng
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| | - Yanmei Wu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Institute of Environmental and Resources Technology, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
37
|
Li H, Liu X, Wassie M, Chen L. Selenium supplementation alleviates cadmium-induced damages in tall fescue through modulating antioxidant system, photosynthesis efficiency, and gene expression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9490-9502. [PMID: 31919821 DOI: 10.1007/s11356-019-06628-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Selenium (Se) is beneficial for plant growth under different stressful conditions. In this study, we investigated the protective effects of Se supply from Cd-induced damages in tall fescue under Cd stress. Tall fescue seedlings (40 days old) were treated with Cd (30 mg/L, as CdSO4·8/3 H2O) and Se (0.1 mg/L, as Na2SeO3) individually and in combination using 1/2 Hoagland's solution system for 7 days. Various physiological parameters, photosynthetic behaviors, and gene expressions were measured. The results showed that Cd-stressed plants displayed obvious toxicity symptoms such as leaf yellowing, decreasing plant height, and root length. Cd stress significantly increased the malondialdehyde (MDA) content and electrolyte leakage (EL), and remarkably reduced the chlorophyll and soluble protein content, antioxidant enzyme activities, and photosynthetic efficiency. Cd stress significantly inhibited the expression of two photosynthesis-related genes (psbB and psbC), but not psbA. In addition, it significantly inhibited the expression of antioxidant system-related genes such as ChlCu/ZnSOD, CytCu/ZnSOD, GPX, and pAPX, but significantly increased the expression of GR. However, Se improved the overall physiological and photosynthetic behaviors of Cd-stressed plants. Se significantly enhanced the chlorophyll and soluble protein content and CAT and SOD activities, but decreased MDA contents, EL, and Cd content and translocation in tall fescue under Cd stress. Furthermore, under Cd stress, Se increased the expression of psbA, psbB psbC, ChlCu/ZnSOD, CytCu/ZnSOD, GPx, and PAPx. The result suggests that Se alleviated the deleterious effects of Cd and improved Cd resistance in tall fescue through upregulating the antioxidant system, photosynthesis activities, and gene expressions.
Collapse
Affiliation(s)
- Huiying Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiaofei Liu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences China, Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
38
|
Asgher M, Verma S, Khan NA, Vyas D, Kumari P, Rashid S, Khan S, Qadir S, Ajmal Ali M, Ahmad P. Physiological, Biochemical and Reproductive Studies on Valeriana wallichii, a Critically Endangered Medicinal Plant of the Himalayan Region Grown under In-Situ and Ex-Situ Conditions. PLANTS 2020; 9:plants9020131. [PMID: 31973064 PMCID: PMC7076705 DOI: 10.3390/plants9020131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/29/2022]
Abstract
Valeriana wallichii, a perennial herb belonging to family Valerianaceae, is an important medicinal herb of the Himalayan region. The incessant exploitation of nature for meeting the demands of the pharmaceutical industry has put unbearable pressure on its natural habitats. A study on its physiological, biochemical, growth and reproductive attributes was planned. Physiological study revealed that ex-situ (outside their natural habitat) populations faced severe stress as compared to in-situ (natural habitat) plants. The difference in the performance of these habitat plants was related to superoxide and H2O2 in the leaves. Photosynthetic attributes were increased in in-situ populations. Proline content and its biosynthetic enzymes ornithine aminotransferase, and pyrroline-5-carboxylate reductase showed an increase in ex-situ plants; proline oxidase decreased. Glucose-6-phosphate dehydrogenase, shikimic acid dehydrogenese, phenylalanine lyase, and flavonoids content showed an increment in ex-situ plants. Antioxidants enzyme superoxide dismutase, catalase, ascorbate peroxidase and reduced glutathione showed an increment in ex-situ conditions. Growth and reproductive attributes were more in ex-situ plants. The observations made are suggestive that a comprehensive conservation programme involving in-situ as well as ex-situ strategies will be effective for the conservation and long term survival of the species.
Collapse
Affiliation(s)
- Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India;
- Correspondence: (M.A.); (P.A.); Tel.: +966-1-1467-5873 (P.A.)
| | - Susheel Verma
- Conservation and Molecular Biology Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India; (S.V.); (P.K.); (S.K.)
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India;
| | - Dhiraj Vyas
- Biodiversity and Applied Botany Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, Jammu and Kashmir 180001, India;
| | - Priyanka Kumari
- Conservation and Molecular Biology Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India; (S.V.); (P.K.); (S.K.)
| | - Shaista Rashid
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India;
| | - Sajid Khan
- Conservation and Molecular Biology Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India; (S.V.); (P.K.); (S.K.)
| | - Shaista Qadir
- Department of Botany, Womens College, Maulana Azad Road, Srinagar, Jammu and Kashmir 190001, India;
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir 190001, India
- Correspondence: (M.A.); (P.A.); Tel.: +966-1-1467-5873 (P.A.)
| |
Collapse
|
39
|
Gong Q, Li Z, Wang L, Dai T, Kang Q, Niu D. Exogenous of Indole-3-Acetic Acid Application Alleviates Copper Toxicity in Spinach Seedlings by Enhancing Antioxidant Systems and Nitrogen Metabolism. TOXICS 2019; 8:E1. [PMID: 31878158 PMCID: PMC7151742 DOI: 10.3390/toxics8010001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 01/31/2023]
Abstract
Indole-3-acetic acid (IAA) is a potential mediator in the protection of plants from copper (Cu) toxicity and the enhancement of Cu tolerance. In this paper, spinach (Spinacia oleracea L.) seedlings were cultivated in soil containing 700 mg kg-1 Cu and the leaves of seedlings were sprayed with different concentrations of IAA. Exogenous IAA treatment reduced the malondialdehyde (MDA) concentrations in Cu-stressed seedlings and increased biomass, proline content, and the activities of antioxidant enzymes. Exogenous IAA treatment also increased the levels of nitrogen (N) assimilation compounds and the activities of N-metabolizing enzymes, but reduced NH4+ content. Notably, lower concentrations of IAA (10-40 mg L-1) increased the Cu concentrations in roots and reduced the Cu concentrations in leaves, while higher concentrations of IAA (50 mg L-1) reduced the Cu concentrations in both roots and leaves to the lowest levels. The findings indicated that the application of IAA reduced Cu accumulation, alleviated Cu toxicity, and enhanced Cu tolerance in spinach seedlings. IAA application could be used as an alternative strategy for reducing Cu accumulation in vegetable crops and for remediating Cu-contaminated soil, in turn reducing the hazardous effects of heavy metal contamination on human health and the environment.
Collapse
Affiliation(s)
- Qin Gong
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (Q.G.); (L.W.); (T.D.); (Q.K.); (D.N.)
- Further Education Colleges, Xinjiang Vocation College of Agriculture, Changji 831100, China
| | - Zhaohua Li
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (Q.G.); (L.W.); (T.D.); (Q.K.); (D.N.)
- Hubei Rural Safe Drinking Water Engineering Technology Research Center, Wuhan 430062, China
| | - Ling Wang
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (Q.G.); (L.W.); (T.D.); (Q.K.); (D.N.)
| | - Tongwei Dai
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (Q.G.); (L.W.); (T.D.); (Q.K.); (D.N.)
| | - Qun Kang
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (Q.G.); (L.W.); (T.D.); (Q.K.); (D.N.)
| | - Duandan Niu
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; (Q.G.); (L.W.); (T.D.); (Q.K.); (D.N.)
| |
Collapse
|
40
|
Zheng H, Wang M, Chen S, Li S, Lei X. Sulfur application modifies cadmium availability and transfer in the soil-rice system under unstable pe+pH conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109641. [PMID: 31518827 DOI: 10.1016/j.ecoenv.2019.109641] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
The objective of this study was to investigate the responses of cadmium (Cd) availability and transfer in the soil-rice system to added sulfur (S) under unstable pe + pH conditions. Different water management conditions (flooding and aerobic treatments) cause changes in the soil pe + pH. We conducted a pot experiment to investigate the influence of S supply on soil Cd availability and Cd accumulation in rice plants (Oryza sativa L.), using three water regimes (continuous dryness, alternating dry-wet for one cycle, and continuous flooding) combined with two S concentrations (0 and 300 mg/kg). The results showed that the flooding treatment was more effective in decreasing soil pe + pH, Cd availability, and Cd accumulation in rice tissues than were the aerobic treatments. S-induced reduction in Cd uptake and translocation in rice was attributed to the decreased soil pe + pH values and enhanced biosynthesis of phytochelatins (PCs) and glutathione (GSH) in rice roots. Microscopic examination showed that the flooding treatment with added soil S resulted in better rice root growth. Element dispersive spectrometer (EDS) analysis indicated that S addition and flooding treatment promoted the formation of iron plaques and increases in Fe concentration in rice tissues. Conversely, partial disintegration of the root epidermis was observed in the dry treatment without added S.
Collapse
Affiliation(s)
- Han Zheng
- Key Laboratory of Plant Nutrition and Fertilizer, Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Meng Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Shibao Chen
- Key Laboratory of Plant Nutrition and Fertilizer, Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Shanshan Li
- Key Laboratory of Plant Nutrition and Fertilizer, Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Xiaoqin Lei
- Key Laboratory of Plant Nutrition and Fertilizer, Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| |
Collapse
|
41
|
Effects of exogenous sulfur on alleviating cadmium stress in tartary buckwheat. Sci Rep 2019; 9:7397. [PMID: 31089197 PMCID: PMC6517408 DOI: 10.1038/s41598-019-43901-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/03/2019] [Indexed: 01/23/2023] Open
Abstract
Supplying exogenous sulfur-rich compounds increases the content of glutathione(GSH) and phytochelatins(PCs) in plant tissues, enabling plants to enhance their cellular defense capacity and/or compartmentalize Cadmium(Cd) into vacuoles. However, the mechanism by which surplus S modulates tolerance to Cd stress in different tissues need further investigation. In the present study, we found that supplementing the tartary buckwheat(Fagopyrum tararicum) exposed to Cd with surplus S reversed Cd induced adverse effects, and increased Cd concentrations in roots, but decreased in leaves. Further analysis revealed that exogenous S significantly mitigated Cd-induced oxidative stress with the aids of antioxidant enzymes and agents both in leaves and roots, including peroxidase(POD), ascorbate peroxidase(APX), glutathione peroxidase(GPX), glutathione S-transferase(GST), ascorbic acid(AsA), and GSH, but not superoxide dismutase(SOD) and catalase(CAT). The increased Cd uptake in root vacuoles and decreased translocation in leaves of exogenous S treated plants could be ascribed to the increasing Cd binding on cell walls, chelation and vacuolar sequestration with helps of non-protein thiols(NPT), PCs and heavy metal ATPase 3(FtHMA3) in roots, and inhibiting expression of FtHMA2, a transporter that helps Cd translocation from roots to shoots. Results provide the fundamental information for the application of exogenous S in reversal of heavy metal stress.
Collapse
|
42
|
Ma C, Chen Y, Ding S, Li Z, Shi WG, Zhang Y, Luo ZB. Sulfur nutrition stimulates lead accumulation and alleviates its toxicity in Populus deltoides. TREE PHYSIOLOGY 2018; 38:1724-1741. [PMID: 29939370 DOI: 10.1093/treephys/tpy069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/19/2018] [Indexed: 05/24/2023]
Abstract
Sulfur (S) can modulate plant responses to toxic heavy metals, but the underlying physiological and transcriptional regulation mechanisms remain largely unknown. To investigate the effects of S supply on lead (Pb)-induced toxicity in poplars, Populus deltoides monilifera (Aiton) Eckenw. saplings were exposed to 0 or 50 μM Pb together with one of the three S concentrations (0 (low S), 100 (moderate S) or 1500 (high S) μM Na2SO4). Populus deltoides roots absorbed Pb and it was partially translocated to the aerial organs, thereby decreasing the CO2 assimilation rate and leaf growth. Lead accumulation in poplars caused the overproduction of O2- and H2O2 to induce higher levels of total thiols (T-SH) and glutathione (GSH). Lead uptake by the roots and its accumulation in the aerial organs were repressed by low S application, but stimulated by high S supply. Lead-induced O2- and H2O2 production were exacerbated by S limitation, but alleviated by high S supply. Moreover, the concentrations of S-containing antioxidants including T-SH and GSH were reduced in S-deficient poplars, but increased in high S-treated plants, which corresponded well to the changes in the activities of enzymes involved in S assimilation and GSH biosynthesis. The transcript levels of both genes encoding sulfate transporters, i.e., SULTR1.1 and SULTR2.2, were elevated by low S application or high S supply in the roots, and the transcriptional upregulation of both genes was more pronounced under Pb exposure. Furthermore, the mRNA levels of several genes involved in S assimilation and the biosynthesis of GSH and phytochelatins, i.e., ATPS1, ATPS3, GSHS1, GSHS2 and PCS1, were upregulated in poplar roots with high S supply, particularly under Pb exposure. These results indicate that a high S supply can stimulate Pb accumulation and reduce its toxicity in poplars by improving S assimilation and stimulating the biosynthesis of S-containing compounds including T-SH and GSH.
Collapse
Affiliation(s)
- Chaofeng Ma
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yinghao Chen
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Shen Ding
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Ziliang Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Wen-Guang Shi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yi Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhi-Bin Luo
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
43
|
Fu Y, Yang X, Shen H. Root iron plaque alleviates cadmium toxicity to rice (Oryza sativa) seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:534-541. [PMID: 29929129 DOI: 10.1016/j.ecoenv.2018.06.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Iron plaque (IP) on root surface can enhance the tolerance of plants to environmental stresses. However, it remains unclear the impact of Fe2+ on cadmium (Cd) toxicity to rice (Oryza sativa) seedlings. In this study, the effects of different Fe2+ and Cd2+ concentration combinations on rice growth were examined hydroponically. Results indicated that Fe2+ concentration up to 3.2 mM did not damage rice roots while induced IP formation obviously. Cd2+ of 10 μM repressed rice growth significantly, while the addition of 0.2 mM Fe2+ to 10 μM Cd2+ solution (Cd+Fe) did not damage rice roots, indicating that Fe2+ could ameliorate Cd toxicity to rice seedlings. Microstructure analysis showed Cd+Fe treatment induced the formation of IP with dense and intricate network structure, Cd adsorption on the root surface was reduced significantly. Cd concentration of rice roots and shoots and Cd translocation from roots to shoots with Fe+Cd treatment were reduced by 34.1%, 36.0% and 20.1%, respectively, in comparison to a single Cd treatment. Noteworthy, the removal of IP resulted in a larger loss of root biomass under Cd treatment. In addition, Cd+Fe treatment increased the activities of root superoxide dismutase and catalase by 105.5% and 177.4%, and decreased H2O2 and O2·- accumulation of rice roots by 56.9% and 35.9%, and recovered Cd-triggered electrolyte leakage obviously, when compared with a single Cd treatment. The results from this experiment indicated that the formed dense IP on rice roots decreased Cd absorption and reactive oxygen species accumulation, and Fe2+ supply alleviated Cd toxicity to rice seedlings.
Collapse
Affiliation(s)
- Youqiang Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Xujian Yang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Hong Shen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
44
|
Han Y, Wu M, Hao L, Yi H. Sulfur dioxide derivatives alleviate cadmium toxicity by enhancing antioxidant defence and reducing Cd 2+ uptake and translocation in foxtail millet seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:207-215. [PMID: 29625394 DOI: 10.1016/j.ecoenv.2018.03.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Sulfur dioxide (SO2) was recently proposed as a novel bio-regulator in mammals. However, the possible advantageous effects of SO2 in plant adaptation to heavy metal-contaminated environments are largely unknown. In the present study, using Na2SO3/NaHSO3 derivatives as SO2 donors, we investigated the possible roles and regulation mechanisms of SO2 in alleviating Cd2+ toxicity in foxtail millet seedlings. Exogenous SO2 derivatives (0.5 mM) application significantly reduced the seedling growth inhibition caused by Cd2+ stress. Cd2+-induced oxidative damage was also alleviated by SO2 derivatives, which was supported by the decreased malondialdehyde (MDA) level in the leaves of seedlings pretreated with SO2 derivatives. These responses were related to the enhanced activities of representative antioxidant enzymes, including catalase and superoxide dismutase, as well as the up-regulation of ascorbate-glutathione cycle, which contributed to the scavenging of Cd2+-elicited O2•- and H2O2 within the leaves of foxtail millet seedlings. Also, SO2 derivative application promoted sulfur assimilation and increased the content of glutathione and phytochelatins, which may help to enhance Cd2+ detoxification capacity in foxtail millet seedlings. Moreover, application of SO2 derivatives caused down-regulation of the transcript expression levels of several genes involved in Cd2+ uptake and translocation, such as NRAMP1, NRAMP6, IRT1, IRT2, HMA2, and HMA4, thus resulting in reduced Cd2+ accumulation in the shoots and roots of Cd2+-stressed seedlings. Collectively, these results suggest that exogenous SO2 derivative application can alleviate oxidative damage and restrict Cd2+ buildup, thereby reducing Cd2+-induced growth inhibition in foxtail millet seedlings upon Cd2+ exposure. This novel finding indicates that the usage of SO2 derivatives may be an effective approach for enhancing Cd2+ tolerance in foxtail millet and other crops.
Collapse
Affiliation(s)
- Yansha Han
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi Province, China
| | - Mengyang Wu
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi Province, China
| | - Lihong Hao
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi Province, China
| | - Huilan Yi
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi Province, China.
| |
Collapse
|
45
|
Rizwan M, Ali S, Zia Ur Rehman M, Rinklebe J, Tsang DCW, Bashir A, Maqbool A, Tack FMG, Ok YS. Cadmium phytoremediation potential of Brassica crop species: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:1175-1191. [PMID: 29727943 DOI: 10.1016/j.scitotenv.2018.03.104] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd) is a highly toxic metal released into the environment through anthropogenic activities. Phytoremediation is a green technology used for the stabilization or remediation of Cd-contaminated soils. Brassica crop species can produce high biomass under a range of climatic and growing conditions, allowing for considerable uptake and accumulation of Cd, depending on species. These crop species can tolerate Cd stress via different mechanisms, including the stimulation of the antioxidant defense system, chelation, compartmentation of Cd into metabolically inactive parts, and accumulation of total amino-acids and osmoprotectants. A higher Cd-stress level, however, overcomes the defense system and may cause oxidative stress in Brassica species due to overproduction of reactive oxygen species and lipid peroxidation. Therefore, numerous approaches have been followed to decrease Cd toxicity in Brassica species, including selection of Cd-tolerant cultivars, the use of inorganic and organic amendments, exogenous application of soil organisms, and employment of plant-growth regulators. Furthermore, the coupling of genetic engineering with cropping may also help to alleviate Cd toxicity in Brassica species. However, several field studies demonstrated contrasting results. This review suggests that the combination of Cd-tolerant Brassica cultivars and the application of soil amendments, along with proper agricultural practices, may be the most efficient means of the soil Cd phytoattenuation. Breeding and selection of Cd-tolerant species, as well as species with higher biomass production, might be needed in the future when aiming to use Brassica species for phytoremediation.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, South Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Arooj Bashir
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Arosha Maqbool
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - F M G Tack
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
46
|
Alyemeni MN, Ahanger MA, Wijaya L, Alam P, Bhardwaj R, Ahmad P. Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system. PROTOPLASMA 2018; 255:459-469. [PMID: 28900731 DOI: 10.1007/s00709-017-1162-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/29/2017] [Indexed: 05/08/2023]
Abstract
Pot experiments were conducted to investigate the role of selenium in alleviating cadmium stress in Solanum lycopersicum seedlings. Cadmium (150 mg L-1) treatment caused a significant reduction in growth in terms of height and biomass accumulation and affected chlorophyll pigments, gas exchange parameters, and chlorophyll fluorescence. Selenium (10 μM) application mitigated the adverse effects of cadmium on growth, chlorophyll and carotenoid contents, leaf relative water content, and other physiological attributes. Lipid peroxidation and electrolyte leakage increased because of cadmium treatment and selenium-treated plants exhibited considerable reduction because of the decreased production of hydrogen peroxide in them. Cadmium-treated plants exhibited enhanced activity of antioxidant enzymes that protected cellular structures by neutralizing reactive free radicals. Supplementation of selenium to cadmium-treated plants (Cd + Se) further enhanced the activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) by 19.69, 31.68, 33.14, and 54.47%, respectively. Osmolytes, including proline and glycine betaine, increased with selenium application, illustrating their role in improving the osmotic stability of S. lycopersicum under cadmium stress. More importantly, selenium application significantly reduced cadmium uptake. From these results, it is clear that application of selenium alleviates the negative effects of cadmium stress in S. lycopersicum through the modifications of osmolytes and antioxidant enzymes.
Collapse
Affiliation(s)
- Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | | | - Leonard Wijaya
- Botany and Microbiology Department, College of Science, King Saud University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Pravej Alam
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), Alkharj, Kingdom of Saudi Arabia
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, 190001, India.
| |
Collapse
|
47
|
Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Alam P. Exogenous application of nitric oxide modulates osmolyte metabolism, antioxidants, enzymes of ascorbate-glutathione cycle and promotes growth under cadmium stress in tomato. PROTOPLASMA 2018; 255:79-93. [PMID: 28643085 DOI: 10.1007/s00709-017-1132-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 05/31/2017] [Indexed: 05/21/2023]
Abstract
Experiments were carried out to investigate the role of nitric oxide (NO) in ameliorating the negative effects of cadmium stress in tomato seedlings. Plants treated with cadmium (CdCl2, 150 μM) showed reduced growth, biomass yield, pigment content, chlorophyll fluorescence, and gas exchange parameters. Exogenous application of NO donor (sodium nitroprusside) with nutrient solution protected chlorophyll pigments, restored chlorophyll fluorescence and gas exchange parameters, and caused significant enhancements in growth and biomass yield. Cadmium triggered the synthesis of proline and glycine betaine; however, application of NO caused further enhancement of their accumulation, reflecting an obvious amelioration of the cadmium-induced decline in relative water content. Activities of the antioxidant enzymes superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, monodehydroascorbate reductase, dehydroascorbate reductase, and other enzymatic activities of ascorbate-glutathione cycle were enhanced following the application of NO, as compared with those in untreated seedlings under control and cadmium stress conditions. NO increased the flavonoid and total phenol content in Cd-stressed tomato plants. Moreover, NO application restricted the uptake of cadmium and enhanced the accumulation of nutrients in different parts of tomato plants. On the basis of the findings of the present study, we propose that NO has a potential role as a growth promoter for tomato under cadmium stress.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, 190001, India.
| | - Mohammed Abass Ahanger
- Stress Physiology Laboratory, Department of Botany, Jiwaji University Gwalior, Gwalior, MP, 474011, India
| | - Mohammed Nasser Alyemeni
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Leonard Wijaya
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Pravej Alam
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), 11942, Alkharj, Kingdom of Saudi Arabia
| |
Collapse
|
48
|
Shukla A, Srivastava S, Suprasanna P. Genomics of Metal Stress-Mediated Signalling and Plant Adaptive Responses in Reference to Phytohormones. Curr Genomics 2017; 18:512-522. [PMID: 29204080 PMCID: PMC5684655 DOI: 10.2174/1389202918666170608093327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/15/2016] [Accepted: 10/30/2016] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION As a consequence of a sessile lifestyle, plants often have to face a number of life threatening abiotic and biotic stresses. Plants counteract the stresses through morphological and physiological adaptations, which are imparted through flexible and well-coordinated network of signalling and effector molecules, where phytohormones play important role. Hormone synthesis, signal transduction, perception and cross-talks create a complex network. Omics approaches, which include transcriptomics, genomics, proteomics and metabolomics, have opened new paths to understand such complex networks. OBJECTIVE This review concentrates on the importance of phytohormones and enzymatic expressions under metal stressed conditions. CONCLUSION This review sheds light on gene expressions involved in plant adaptive and defence responses during metal stress. It gives an insight of genomic approaches leading to identification and functional annotation of genes involved in phytohormone signal transduction and perception. Moreover, it also emphasizes on perception, signalling and cross-talks among various phytohormones and other signalling components viz., Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS).
Collapse
Affiliation(s)
- Anurakti Shukla
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi - 221005, U.P., India
| | - Sudhakar Srivastava
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi - 221005, U.P., India
| | - Penna Suprasanna
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai - 400085, Maharashtra, India
| |
Collapse
|
49
|
Li M, Hao P, Cao F. Glutathione-induced alleviation of cadmium toxicity in Zea mays. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:240-249. [PMID: 28917143 DOI: 10.1016/j.plaphy.2017.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 05/04/2023]
Abstract
Glutathione (GSH) is known to alleviate cadmium (Cd) stress in many plant species. However, the comprehensive mechanisms responsible for this effect in maize are still need more investigation. Here, a combination of physiological and molecular approaches was utilized in GSH-Cd treated maize seedlings, which revealed that GSH reversed the adverse effects of Cd, as reflected by plant growth, plant hormones, vacuole, stoma development, gene expression, etc. Plant growth, root cell viability, photosynthetic capacity, redox equilibrium, and cell ultrastructure recovery following GSH treatment, coupled with the strong up-regulation of Cd tolerance-related genes (e.g., phytochelatin synthetase-like protein, MYB and WRKY transcription factors, and CYP450), demonstrated the efficient activation of cellular defense against Cd toxicity. The addition of GSH significantly elevated GSH/GSSG ratio and the activity of γ-glutamylcysteine synthetase in both shoots and roots and markedly reduced Cd concentration in shoots. Ethylene emission rate and abscisic acid (ABA) content were significantly reduced after GSH application in the presence of Cd, except ABA content in leaves. These findings highlighted the significance of GSH in alleviating Cd-stress in maize and indicate a promising strategy for safe food production.
Collapse
Affiliation(s)
- Mei Li
- Analysis Center of Agrobiology and Environmental Sciences, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Pengfei Hao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
50
|
Storch TT, Finatto T, Bruneau M, Orsel-Baldwin M, Renou JP, Rombaldi CV, Quecini V, Laurens F, Girardi CL. Contrasting Transcriptional Programs Control Postharvest Development of Apples (Malus x domestica Borkh.) Submitted to Cold Storage and Ethylene Blockage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7813-7826. [PMID: 28771353 DOI: 10.1021/acs.jafc.7b01425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Apple is commercially important worldwide. Favorable genomic contexts and postharvest technologies allow year-round availability. Although ripening is considered a unidirectional developmental process toward senescence, storage at low temperatures, alone or in combination with ethylene blockage, is effective in preserving apple properties. Quality traits and genome wide expression were integrated to investigate the mechanisms underlying postharvest changes. Development and conservation techniques were responsible for transcriptional reprogramming and distinct programs associated with quality traits. A large portion of the differentially regulated genes constitutes a program involved in ripening and senescence, whereas a smaller module consists of genes associated with reestablishment and maintenance of juvenile traits after harvest. Ethylene inhibition was associated with a reversal of ripening by transcriptional induction of anabolic pathways. Our results demonstrate that the blockage of ethylene perception and signaling leads to upregulation of genes in anabolic pathways. We also associated complex phenotypes to subsets of differentially regulated genes.
Collapse
Affiliation(s)
- Tatiane Timm Storch
- Embrapa Uva e Vinho , Bento Gonçalves, RS 95701-008, Brazil
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas , Pelotas, RS 96050-500, Brazil
| | | | - Maryline Bruneau
- Bâtiment B, Institut de Recherche en Horticulture et Semences IRHS, Institut National de la Recherche Agronomique INRA , 49071 Beaucouzé, France
| | - Mathilde Orsel-Baldwin
- Bâtiment B, Institut de Recherche en Horticulture et Semences IRHS, Institut National de la Recherche Agronomique INRA , 49071 Beaucouzé, France
| | - Jean-Pierre Renou
- Bâtiment B, Institut de Recherche en Horticulture et Semences IRHS, Institut National de la Recherche Agronomique INRA , 49071 Beaucouzé, France
| | - Cesar Valmor Rombaldi
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas , Pelotas, RS 96050-500, Brazil
| | - Vera Quecini
- Embrapa Uva e Vinho , Bento Gonçalves, RS 95701-008, Brazil
| | - François Laurens
- Bâtiment B, Institut de Recherche en Horticulture et Semences IRHS, Institut National de la Recherche Agronomique INRA , 49071 Beaucouzé, France
| | | |
Collapse
|