1
|
Chen J, Feng Y, Ma J, Zhang Q, Dong Y, Li D, Duan X, Zhou L, Li Z, Yang Y, Cai B, Liu Z, Yu J, Zhou B, Liu T. Genomic and metabolomic insights into the antimicrobial compounds and plant growth-promoting potential of Bacillus velezensis B115. Sci Rep 2025; 15:10666. [PMID: 40148367 PMCID: PMC11950384 DOI: 10.1038/s41598-025-92322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
The B115 strain, isolated from the inter-root soil of healthy plants in a continuous cropping site of Panax notoginseng, was identified as Bacillus velezensis B115 by 16S rDNA sequence comparison and comparative genomic analysis. B115 is a strain of beneficial microorganisms present in the inter-root zone of plants, with favorable plant growth-promoting properties and antagonistic effects against the plant pathogen Fusarium oxysporum. However, the whole genome of B115 remains unclear, thus restricting its potential applications. To address this gap, the whole genome of B115 has been sequenced and annotated to elucidate the molecular mechanisms underlying its plant growth-promoting and antimicrobial activities. The genome analysis revealed that B115 comprises a single circular chromosome of 4,200,774 bp and a plasmid region 16,878 bp long, possessing a GC content of 45.95%. Moreover, 4349 protein-coding genes were predicted. Notably, the B115 genome contains a substantial number of genes (103) involved in the biosynthesis, transport, and catabolism of secondary metabolites. Through genome mining, 13 BGCs and 540 genes encoding secondary metabolites with predicted roles were identified, including members of the surfactin and fengycin families. Utilizing LC-MS/MS technologies, 2318 metabolites were detected in the fermentation broth of B. velezensis B115, encompassing compounds such as Corynebactin, Gamabufotalin, Pracinostat, Indoleacetic acid, (8)-Gingerol, Luteolin, Liquiritigenin, and other metabolites with antimicrobial, growth-promoting, antioxidant, and antitumor properties. By exploring secondary metabolite-related genes and predicting potential secondary metabolites from the B115 genome based on the whole-genome sequence results, we further elucidate the genomic basis for its ability to promote plant growth and inhibit pathogen activity.
Collapse
Affiliation(s)
- Jili Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Yuzhou Feng
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Junchi Ma
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qing Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yumei Dong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Dongjie Li
- Raw Material Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, 650201, Yunnan, China
| | - Xuemei Duan
- Tobacco Leaf Quality Inspection Section, Raw Material Department, Hongyun Honghe Tobacco (Group) Co., Ltd., Kunming, 650201, China
| | - Lequn Zhou
- Tobacco Leaf Quality Inspection Section, Raw Material Department, Hongyun Honghe Tobacco (Group) Co., Ltd., Kunming, 650201, China
| | - Zhihua Li
- Tobacco Leaf Quality Inspection Section, Raw Material Department, Hongyun Honghe Tobacco (Group) Co., Ltd., Kunming, 650201, China
| | - Ying Yang
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, 650201, Yunnan, China
| | - Bo Cai
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, 650201, Yunnan, China
| | - Ze Liu
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, 650201, Yunnan, China
| | - Jialong Yu
- Yunnan Tobacco Company, Kunming, 650051, China
| | - Bo Zhou
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, 650201, Yunnan, China.
| | - Tao Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
2
|
Han L, Wang Y, Wang Y, Xu H, Liu M, Nie J, Huang B, Wang Q. Pyraclostrobin repeated treatment altered the degradation behavior in soil and negatively affected soil bacterial communities and functions. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136876. [PMID: 39694009 DOI: 10.1016/j.jhazmat.2024.136876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
This study investigated the degradation dynamics of the fungicide pyraclostrobin in three apple orchard soils, along with the responses of soil bacterial community compositions, functions, co-occurrence patterns, and soil nitrogen cycling, under repeated treatment strategies in laboratory conditions. The degradation half-lives of pyraclostrobin varied across the soil types, ranging from 15.7 to 43.4 days, in the following order: Anyang soil > Qingdao soil > Yangling soil. Repeated pyraclostrobin treatment affected degradation behaviors across the different soils. Pyraclostrobin significantly inhibited soil microbial activity and reduced soil bacterial diversity, with more pronounced negative effects observed at high-concentration treatment. Pyraclostrobin clearly changed soil bacterial community structures, significantly enriching potentially degradative bacterial genera such as Methylibium and Nocardioides, which showed increases in the relative abundances of 3.0-181.8 % compared with control. Additionally, pyraclostrobin reduced the complexity of soil bacterial networks and modified the diversity of functional modules. Notably, repeated treatment severely disrupted soil nitrogen cycling, with the absolute abundances of amoA, amoB, nifH, nirK, and nirS in high-concentration treatment decreasing by up to 19.4-91.8 % compared with control. Collectively, pyraclostrobin repeated application altered the degradation behavior, inhibited soil microbial activities, modified soil bacterial community structures and co-occurrence patterns, and seriously disrupted soil nitrogen cycling.
Collapse
Affiliation(s)
- Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/ National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, PR China
| | - Yiran Wang
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/ National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, PR China
| | - Yajie Wang
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/ National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, PR China
| | - Han Xu
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/ National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, PR China
| | - Mingyu Liu
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/ National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, PR China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/ National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, PR China
| | - Bin Huang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| | - Qianwen Wang
- Central Laboratory, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
3
|
Wang R, Deng L, Wang Y, Liu N, Yang M, Qiu J, Chen C. Synergistic effects of combined lead and iprodione exposure on P53 signaling-mediated hepatotoxicity, enterotoxicity and transgenerational toxicity in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178127. [PMID: 39708747 DOI: 10.1016/j.scitotenv.2024.178127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/04/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Environmental heavy metal contamination, combined with inappropriate use of fungicides, has led to the co-existence of lead (Pb) and iprodione (IPR), presenting signification risks to ecosystems and human health. The toxic effects resulting from concurrent exposure to Pb and IPR, however, remain poorly understood. In the study, we conducted a comprehensive 60-day subchronic study to investigate the toxic effects on the liver and gut in parental male zebrafish through employing multi-omics analyses. We also explored the potential transgenerational toxicity to unexposed offspring embryos. The results demonstrated that exposure to both Pb and IPR exacerbated intestinal pathological damage, decreased the expression of intestinal tight junction molecules, and activated the expression of intestinal inflammatory molecules in the gut. Metabolic and microbial analyses, utilizing 16S rRNA sequencing and non-targeted metabolic profiling, revealed alterations in the intestinal flora structure and disruptions in metabolite synthesis. Notably, we observed a significant negative correlation between the abundance of the Lactobacillus genus and uracil synthesis. Furthermore, liver RNA-seq analysis identified a marked enrichment of the P53 signaling pathway, confirmed by the activation of P53-mediated apoptotic markers, which was consistent with the observed increase in inflammatory infiltration and pathological damage within the liver. Importantly, P53-mediated apoptosis and inflammatory responses were activated in offspring embryos, suggesting that long-term parental exposure to Pb and IPR may induce transgenerational toxicity, potentially impacting offspring health. Despite the identification of these molecular changes, the phenotypic effects remain to be elucidated. Future studies are necessary to evaluate the potential phenotypic changes in offspring to fully understand the long-term effects of Pb and IPR exposure. Overall, these findings enhance the understanding of the molecular mechanisms underlying the toxic effects of Pb and IPR and emphasize the importance of a comprehensive risk assessment of environmental pollutants.
Collapse
Affiliation(s)
- Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Ligang Deng
- Institute of Agricultural Quality Standards and Testing Technology Research, Shandong Academy of Agricultural Sciences, Jinan, China; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Na Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Menglian Yang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
4
|
Yu S, Li L, Liu T, Li J, Yang Q, Cui X. The effects of different hormone combinations on the growth of Panax notoginseng anther callus based on metabolome analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1503931. [PMID: 39719933 PMCID: PMC11667561 DOI: 10.3389/fpls.2024.1503931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024]
Abstract
Panax notoginseng saponins (PNS), the primary active components of Panax notoginseng (Burk.) F.H.Chen, a traditional and precious Chinese medicinal herb, are mainly derived from the roots of the plant. However, due to the long cultivation period and specific environmental requirements, the PNS supply is often limited. And, callus cultures of P. notoginseng, which grow rapidly, have short production cycles, and can be cultured under controlled conditions, provide a more efficient source for the quick acquisition of saponins. In this study, anthers of P. notoginseng were used as explants, and twelve hormone combinations were tested to induce callus formation. Eight kinds of hormone combinations successfully induced P. notoginseng anther callus. Among these, callus induced by combinations 5 and 7 had the highest saponin content, while those induced by combinations 1 and 3 exhibited the highest relative growth rates. Metabolomic analysis of these four callus types revealed that there were a total of 99 differential metabolites between combinations 5 and 7, 30 between combinations 1 and 3, 123 between combinations 3 and 7, and 116 between combinations 1 and 5. Further analysis showed that the tricarboxylic acid (TCA) cycle metabolites in callus induced by combinations 1 and 3 were significantly upregulated, with corresponding genes showing high expression levels, increased ATP accumulation, and low responses of the auxin response factor PnARF-3 and cytokinin response factor PnCRF-3. The abundance of metabolites in the PNS biosynthesis pathway in callus induced by combinations 5 and 7 increased significantly, with related genes showing high expression levels, increased IPP accumulation, and high responses of PnARF-3 and PnCRF-3. Overexpression of PnARF-3 and PnCRF-3 in callus induced by combination 3 promoted the production of IPP and saponins while reducing ATP production. In conclusion, different hormone combinations affect the distribution of Acetyl-CoA through PnARF-3 and PnCRF-3, resulting in the relative growth rate and saponin of P. notoginseng anther callus differences.
Collapse
Affiliation(s)
- Saiying Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
| | - Leilin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
| | - Tiantai Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
| | - Jianbin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
| | - Qian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
- Sanqi Research Institute of Yunnan Province, Kunming, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
- Sanqi Research Institute of Yunnan Province, Kunming, China
| |
Collapse
|
5
|
Huang Y, Zhang X, Li Z. Analysis of nationwide soil pesticide pollution: Insights from China. ENVIRONMENTAL RESEARCH 2024; 252:118988. [PMID: 38663666 DOI: 10.1016/j.envres.2024.118988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024]
Abstract
China is a typical agricultural country that heavily relies on pesticides. Some pesticides can remain in the soil after application and thus pose a significant threat to human health. In order to characterize the status and hazards of nationwide soil contamination, this study extracted concentration data from published literature and analyzed them by a scoring approach, standard comparison and health risk assessment. For the soil pollution score, northern regions got the highest values, such as Henan (0.63), Liaoning (0.55), Heilongjiang (0.54) and Jilin (0.53), which implies high soil pesticide residues in these provinces. In contrast, Qinghai (-0.77), Guizhou (-0.64) and Tibet (-0.63) had lower scores. China's soil pesticide standards cover only 16 pesticides, and these pesticide concentrations were all below the corresponding standards. Direct exposure to soil pesticides in this study generally posed a negligible risk to children. Furthermore, pesticide dissipation and usage intensity in each province were analyzed as they were possible influences on pollution. The result showed that soil in the northern regions could accumulate more pesticides than those in the southern regions, and this geographic pattern was basically consistent with the distribution of soil pollution. However, the relationship between agricultural activities and soil pollution was less well characterized. It is recommended to establish a long-term monitoring database for pesticides and include more pesticides in regulatory frameworks. Additionally, efforts to accelerate pesticide degradation and shift the planting structure to reduce pesticide usage can help alleviate the pressure on soil from pesticides. This study can serve as a critical reference for policymakers and stakeholders in the field of agriculture.
Collapse
Affiliation(s)
- Yabi Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
6
|
Li X, Song S, Wei F, Huang X, Guo Y, Zhang T. Occurrence, distribution, and translocation of legacy and current-use pesticides in pomelo orchards in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169674. [PMID: 38160827 DOI: 10.1016/j.scitotenv.2023.169674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Pomelo (Citrus grandis) is a highly popular and juicy member of the citrus family. However, little is known regarding the occurrence and distribution of pesticides in pomelo. In this study, we determined the levels of legacy (n = 25) and current-use pesticides (n = 2) in all parts of pomelo (i.e., epicarp, mesocarp, endocarp, pulp, and seed) and paired soil and leaf samples collected from two pomelo orchards in South China. At least one target pesticide was detected in the pomelo fruit, soil, and leaf samples, indicating that these pesticides were ubiquitous. The spatial distribution of the total concentration of pesticides in the pomelo parts was in the order of epicarp (216 ng/g) > mesocarp (9.50 ng/g) > endocarp (4.40 ng/g) > seed (3.80 ng/g) > pulp (1.10 ng/g), revealing different spatial distributions in pomelo. Principal component analysis was performed based on the concentrations of the target pesticides in the pulp and paired samples of epicarp, leaf, topsoil, and deep soil to examine the translocation pathway of the pesticides in pomelo. Close correlations were found among the target pesticides, and the pesticides in the pulp were mainly transferred from the epicarp, topsoil, or deep soil. We also explored the factors that affected such transport and found that the main translocation pathway of the non-systemic pesticide (i.e., buprofezin) into the pulp was the epicarp, whereas the systemic pesticide (i.e., pyriproxyfen) was mainly derived from the soil. The cumulative chronic dietary risks of all the pesticides resulting from pomelo consumption were much lower than the acceptable daily intake values for the general population. However, the prolonged risk of exposure to these pesticides should not be underestimated. The potential health risks posed by legacy and current-use pesticides, which are widely and frequently utilized, should be given increased attention.
Collapse
Affiliation(s)
- Xu Li
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Fenghua Wei
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Xiongfei Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuankai Guo
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, China.
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
7
|
Gu W, Xing W, Liang M, Wang Z, Zhang B, Sun S, Fan D, Wang L. Occurrence, distribution, and risk assessment of pesticides in surface water and sediment in Jiangsu Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118418-118429. [PMID: 37907825 DOI: 10.1007/s11356-023-30416-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/08/2023] [Indexed: 11/02/2023]
Abstract
The occurrence and distribution of 157 pesticides were investigated in surface water and sediment in Jiangsu Province, China. Gas chromatography-mass spectrometry was used to analyze and quantify these pesticides, and the risk quotient method was used to evaluate their respective environmental risk. The results showed that 91 pesticides were detected in surface water. The organophosphates (OPPs), fungicides, and amide herbicides were predominant. The total concentration in surface water ranged from 63.7 to 22,463 ng/L, 3.90 to 7262 ng/L, and ND to 34,120 ng/L, respectively. The mean concentration was 3479 ng/L, 1644 ng/L, and 1878 ng/L, respectively. The concentration range of detected pesticides in the Yangtze River Basin was generally lower than that in the Huai River Basin. In sediment samples, a total of 63 pesticides were detected. OPPs and amide herbicides were also ranked highest; the total concentration in sediment samples ranged from 2951 to 47,739 ng/g and 106 to 12,996 ng/g, respectively. And the mean concentrations was 6971 ng/g and 5130 ng/g, respectively. Suqian City had the highest concentration for OPPs and amide herbicides in the Huai River Basin, followed by Huai'an City, while Nanjing City and Yangzhou City ranked highest in the Yangtze River Basin. The spatial distribution of pesticides in Jiangsu Province indicated a concentration significantly higher in the western and northern regions than in the eastern and southern regions, and a concentration generally higher in lakes than in rivers. The risk assessment results showed that OPPs, fungicides, amide herbicides, organochlorines, and triazine herbicides in most surface water samples posed a high risk and had regional pollution characteristics. In sediment samples, organochlorines, carbamates, other herbicides, and other insecticides posed a high risk in northern Jiangsu Province, whereas OPPs, amide herbicides, and triazine herbicides posed high risks everywhere in Jiangsu Province.
Collapse
Affiliation(s)
- Wen Gu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Weilong Xing
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Mengyuan Liang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Zhen Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Bing Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Shuai Sun
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Deling Fan
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Lei Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
8
|
Tsiantas P, Karasali H, Pavlidis G, Kavasilis S, Doula M. The status of organochlorine pesticide contamination in Greek agricultural soils: the ghost of traditional agricultural history. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117654-117675. [PMID: 37872334 DOI: 10.1007/s11356-023-30447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Inadequate information regarding pesticide contamination in Greek agricultural soils is currently available, while national soil monitoring programs have not been initiated yet. The aim of the present study was to assess the levels, compositions, and distribution of thirty three organochlorine pesticides (OCPs) in Greek agricultural soils, due to the environmental threat posed by these compounds, even after decades from their abrogation from the market. Determination of the organochlorine pesticides was achieved using gas-chromatography-mass spectrometry, following a QuEChERS sample preparation method. A total of 60 soil samples, from two soil horizons (up to 60 cm), were obtained from agricultural lands in Greece throughout 2019-2020. The major findings presented DDTs, γ-HCH, alachlor, and 4,4- DCBP in the examined soil samples, with DDTs being the major compounds with their maximum cumulative concentration (ΣDDTs) reaching 1273.4 μg kg-1 d.w. Compositional profile and diagnostic ratios suggested that the occurrence of DDT residues was due to historical inputs. Most of the samples did not exceed the target values set by the Netherlands and Canadian guidelines for DDTs in soil; however, there was one exception in the case of Aegina Island. Finally, based on the environmental exposure assessment conducted, the vast majority of the analytes presented lower concentrations compared to the predicted environmental concentrations, with an exemption for DDE metabolite where the measured and predicted concentrations were almost equal.
Collapse
Affiliation(s)
- Petros Tsiantas
- Benaki Phytopathological Institute, Scientific Directorate of Pesticides' Control & Phytopharmacy, Laboratory of Chemical Control of Pesticides, Kifissia, 14561, Athens, Greece
| | - Helen Karasali
- Benaki Phytopathological Institute, Scientific Directorate of Pesticides' Control & Phytopharmacy, Laboratory of Chemical Control of Pesticides, Kifissia, 14561, Athens, Greece.
| | - George Pavlidis
- Centre for the Assessment of Natural Hazards and Proactive Planning & Laboratory of Reclamation Works and Water Resources Management, School of Rural and Surveying Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., 15780, Zographou, Athens, Greece
| | - Stamatis Kavasilis
- Benaki Phytopathological Institute, Scientific Directorate of Phytopathology, Laboratory of Non-Parasitic Diseases, Soil Resources and Geoinformatics, Kifissia, 14561, Athens, Greece
| | - Maria Doula
- Benaki Phytopathological Institute, Scientific Directorate of Phytopathology, Laboratory of Non-Parasitic Diseases, Soil Resources and Geoinformatics, Kifissia, 14561, Athens, Greece
| |
Collapse
|
9
|
Qiu M, Wu Z, Song J, Zheng C, Zhan X, Shan M, Cui M, Chen L, Zhang L, Yu Y, Fang H. Chlorothalonil drives the antibiotic resistome in earthworm guts. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132831. [PMID: 39492104 DOI: 10.1016/j.jhazmat.2023.132831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Earthworms are recognized as carriers of pollutants; however, how fungicide residues affect microbiota and antibiotic resistance genes (ARGs) in earthworm guts has remained unclear. In this work, changes in the earthworm gut microbiome and resistome were investigated after chlorothalonil (CTL) application. Earthworm activity accelerated the dissipation of CTL in soil, while metagenomic analysis revealed that CTL altered the ARG profile, leading to an increased abundance of ARGs in earthworm guts, particularly with respect to ARG subtypes CRP and OXA-427. CTL also reduced bacterial diversity and elevated the relative abundance of the phylum Proteobacteria, including a potential ARG host, Aeromonas, which is a known pathogen. Various bacterial genera from the Actinobacteria and Proteobacteria phyla were identified as broad-spectrum hosts for ARGs in earthworm guts. CTL could increase the abundance of multidrug efflux pump genes and enhance the abundance of mobile genetic elements, especially plasmids. Various co-occurrence patterns between plasmids and ARGs were also found after CTL treatments. It is concluded that CTL may act as a selective stress for ARGs and lead to an increase in their abundance by facilitating the proliferation of potential ARG hosts and enhancing plasmid-mediated horizontal transfer frequency of ARGs in earthworm guts.
Collapse
Affiliation(s)
- Mengting Qiu
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zishan Wu
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiajin Song
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Conglai Zheng
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiuping Zhan
- Shanghai Agricultural Technology Extension Service Center, Shanghai 201103, China
| | - Mei Shan
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Minrong Cui
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liezhong Chen
- Zhejiang Academy of Agricultural Sciences, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 310021, China
| | - Luqing Zhang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Li Y, Lu D, Xia Y, Xu X, Huang H, Mei X, Yang M, Li J, Zhu S, Liu Y, Zhang Z. Effects of allyl isothiocyanate fumigation on medicinal plant root knot disease control, plant survival, and the soil bacterial community. BMC Microbiol 2023; 23:278. [PMID: 37775764 PMCID: PMC10542678 DOI: 10.1186/s12866-023-02992-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/22/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Allyl isothiocyanate (AITC) is a natural product with high volatility that is used as a biofumigant to alleviate soil-borne plant diseases, and problems such as root knot nematodes (RKNs) that necessitate continuous cropping. However, little research has assessed the effects of AITC fumigation on medicinal plants. RESULTS AITC significantly reduced the population of RKNs in soil (p < 0.0001) and showed an excellent RKN disease control effect within 6 months after sowing Panax notoginseng (p < 0.0001). The seedling survival rate of 2-year-old P. notoginseng was approximately 1.7-fold higher after soil treatment with AITC (p = 0.1008). 16S rRNA sequencing indicated that the AITC treatment affected bacterial richness rather than diversity in consecutively cultivated (CC) soil. Furthermore, biomarkers with statistical differences between AITC-treated and untreated CC soil showed that Pirellulales (order), Pirellulaceae (family), Pseudomonadaceae (family), and Pseudomonas (genus) played important roles in the AITC-treated group. In addition, the microbiome functional phenotypes predicted using the BugBase tool suggested that AITC treatment is more conducive to improving CC soil through changes in the bacterial community structure. Crucially, our research also suggested that AITC soil treatment significantly increases soil organic matter (p = 0.0055), total nitrogen (p = 0.0054), and available potassium (p = 0.0373), which promotes the survival of a succeeding medicinal plant (Polygonatum kingianum). CONCLUSION AITC is an ecologically friendly soil treatment that affects the top 10 bacterial richness but not diversity. It could also provide a basis for a useful agricultural soil management measure to alleviate soil sickness.
Collapse
Affiliation(s)
- Yingbin Li
- Department of Pesticide Science, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Daqing Lu
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Yan Xia
- Department of Pesticide Science, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xinjing Xu
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Huichuan Huang
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xinyue Mei
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Min Yang
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jianqiang Li
- Department of Plant Pathology, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, 100193, China
| | - Shusheng Zhu
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Yixiang Liu
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| | - Zhiping Zhang
- Department of Horticulture, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| |
Collapse
|
11
|
Wang X, Wang Q, Li W, Zhang D, Fang W, Li Y, Wang Q, Cao A, Yan D. Long-term effects of chloropicrin fumigation on soil microbe recovery and growth promotion of Panax notoginseng. Front Microbiol 2023; 14:1225944. [PMID: 37520348 PMCID: PMC10375714 DOI: 10.3389/fmicb.2023.1225944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Panax notoginseng is a precious Chinese medicinal material. Soil fumigation can control soil-borne disease and overcome the continuous cropping obstacles of P. notoginseng. However, chloropicrin (CP) fumigation can kill non-target soil microorganisms and reduce microbial diversity, but the long-time impacts of CP fumigation on soil microbial are less reported. Methods We studied the long-term effects of CP fumigation on soil microbes with high-throughput gene sequencing, and correlated the changes in the composition of microbial communities with environmental factors like soil physicochemical properties and soil enzyme activities. This study mainly focuses on the recovery characteristics of soil microbe after soil fumigation by evaluating the ecological restoration of P. notoginseng soil, its sustained control effect on plant diseases, and its promotion effect on crop growth by focusing on the CP fumigation treatment. Results The results showed that CP fumigation significantly increased soil available phosphorus (P) to 34.6 ~ 101.6 mg/kg and electrical conductivity (EC) by 18.7% ~ 34.1%, respectively. High-throughput gene sequencing showed that soil fumigation with CP altered the relative abundance of Trichoderma, Chaetomium, Proteobacteria, and Chloroflexi in the soil while inhibiting a lot of Fusarium and Phytophthora. The inhibition rate of Phytophthora spp. was still 75.0% in the third year after fumigation. Fumigation with CP enhanced P. notoginseng's survival rate and stimulated plant growth, ensuring P. notoginseng's healthy in the growth period. The impact of fumigation on microbial community assembly and changes in microbial ecological niches were characterized using normalized stochasticity ratio (NST) and Levins' niche breadth index. Stochasticity dominated bacterial community assembly, while the fungal community was initially dominated by stochasticity and later by determinism. Fumigation with CP reduced the ecological niches of both fungi and bacteria. Conclusion In summary, the decrease in microbial diversity and niche caused by CP fumigation could be recovered over time, and the control of soil pathogens by CP fumigation remained sustainable. Moreover, CP fumigation could overcome continuous cropping obstacles of P. notoginseng and promote the healthy growth of P. notoginseng.
Collapse
|
12
|
Báez ME, Sarkar B, Peña A, Vidal J, Espinoza J, Fuentes E. Effect of surfactants on the sorption-desorption, degradation, and transport of chlorothalonil and hydroxy-chlorothalonil in agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121545. [PMID: 37004862 DOI: 10.1016/j.envpol.2023.121545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The fungicide chlorothalonil (CTL) and its metabolite hydroxy chlorothalonil (OH-CTL) constitute a risk of soil and water contamination, highlighting the need to find suitable soil remediation methods for these compounds. Surfactants can promote the bioavailability of organic compounds for enhanced microbial degradation, but the performance depends on soil and surfactant properties, sorption-desorption equilibria of contaminants and surfactants, and possible adverse effects of surfactants on microorganisms. This study investigated the influence of five surfactants [e.g., Triton X-100 (TX-100), sodium dodecyl sulphate (SDS), hexadecyltrimethylammonium bromide (HDTMA), Aerosol 22 and Tween 80] on the sorption-desorption, degradation, and mobility of CTL and OH-CTL in two volcanic and one non-volcanic soil. Sorption and desorption of fungicides depended on the sorption of surfactants on soils, surfactants' capacity to neutralize the net negative charge of soils, surfactants' critical micellar concentration, and pH of soils. HDTMA was strongly adsorbed on soils, which shifted the fungicide sorption equilibria by increasing the distribution coefficient (Kd) values. Contrarily, SDS and TX-100 lowered CTL and OH-CTL sorption on soils by decreasing the Kd values, which resulted in an efficient extraction of the fungicide compounds from soil. SDS increased the degradation of CTL, especially in the non-volcanic soil (DT50 values were 14 and 7 days in natural and amended soils, with final residues <7% of the initial dose), whereas TX-100 enabled an early start and sustenance of OH-CTL degradation in all soils. CTL and OH-CTL stimulated soil microbial activities without noticeable deleterious effects of the surfactants. SDS and TX-100 also reduced the vertical transport of OH-CTL in soils. Results of this study could be extended to soils in other regions of the world because the tested soils represent widely different physical, chemical, and biological properties.
Collapse
Affiliation(s)
- María E Báez
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380000, Santiago, Chile.
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Aránzazu Peña
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Jorge Vidal
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380000, Santiago, Chile
| | - Jeannette Espinoza
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380000, Santiago, Chile
| | - Edwar Fuentes
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380000, Santiago, Chile
| |
Collapse
|
13
|
Tsiantas P, Bempelou E, Doula M, Karasali H. Validation and Simultaneous Monitoring of 311 Pesticide Residues in Loamy Sand Agricultural Soils by LC-MS/MS and GC-MS/MS, Combined with QuEChERS-Based Extraction. Molecules 2023; 28:molecules28114268. [PMID: 37298746 DOI: 10.3390/molecules28114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Soil can be contaminated by pesticide residues through agricultural practices, by direct application or through spray-drift in cultivations. The dissipation of those chemicals in the soil may pose risks to the environment and human health. A simple and sensitive multi-residue analytical method was optimized and validated for the simultaneous determination of 311 active substances of pesticides in agricultural soils. The method involves sample preparation with QuEChERS-based extraction, and determination of the analytes with a combination of GC-MS/MS and LC-MS/MS techniques. Calibration plots were linear for both detectors over the range of five concentration levels, using matrix-matched calibration standards. The obtained recoveries from fortified-soil samples ranged from 70 to 119% and from 72.6 to 119% for GC-MS/MS and LC-MS/MS, respectively, while precision values were <20% in all cases. As regards the matrix effect (ME), signal suppression was observed in the liquid chromatography (LC)-amenable compounds, which was further estimated to be negligible. The gas chromatography (GC)-amenable compounds showed enhancement in the chromatographic response estimated as medium or strong ME. The calibrated limit of quantification (LOQ) value was 0.01 μg g-1 dry weight for most of the analytes, while the corresponding calculated limit of determination (LOD) value was 0.003 μg g-1 d.w. The proposed method was subsequently applied to agricultural soils from Greece, and positive determinations were obtained, among which were non-authorized compounds. The results indicate that the developed multi-residue method is fit for the purpose of analyzing low levels of pesticides in soil, according to EU requirements.
Collapse
Affiliation(s)
- Petros Tsiantas
- Laboratory of Chemical Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Str., 145 61 Kifissia, Greece
| | - Eleftheria Bempelou
- Laboratory of Chemical Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Str., 145 61 Kifissia, Greece
| | - Maria Doula
- Laboratory of Non-Parasitic Diseases, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 St. Delta Str., 145 61 Kifissia, Greece
| | - Helen Karasali
- Laboratory of Chemical Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Str., 145 61 Kifissia, Greece
| |
Collapse
|
14
|
Li W, Wang B, Yuan Y, Wang S. Spatiotemporal distribution patterns and ecological risk of multi-pesticide residues in the surface water of a typical agriculture area in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161872. [PMID: 36716873 DOI: 10.1016/j.scitotenv.2023.161872] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
This study systematically investigated the occurrence, spatiotemporal distribution, and ecological risk of 106 pesticides in the surface water of the Jiaodong Peninsula in China. The results show that 52 pesticides, including 21 insecticides, 10 fungicides, and 21 herbicides, were detectable in the surface water. The concentrations of target pesticides in water samples ranged from 0.42 (tebuconazole in the wet season) to 645.31 ng/L (thiamethoxam in the normal season). The two most polluting and widespread pesticides were quintozene (maximum concentration of 481.46 ng/L and detection rate of 94 %) and atrazine (maximum concentration of 465.73 ng/L and detection rate of 100 %). The total pesticide concentrations in surface water in different seasons revealed the order of dry season > wet season > normal season. Based on aquatic pesticide concentrations, their frequency of occurrence, and effect concentrations, insecticides posed higher risks to aquatic organisms and human health than either fungicides or herbicides. Total pesticide concentrations were significantly positively correlated with suspended particulate matter, dissolved organic carbon, soil pH, normalized difference vegetation index, adjacent cropland area; and were negatively associated with adjacent grassland area. The cropland area largely influences pesticide distribution in the surface water of the Jiaodong Peninsula.
Collapse
Affiliation(s)
- Wanting Li
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Bingbing Wang
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yin Yuan
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Shiliang Wang
- School of Life Science, Qufu Normal University, Qufu 273165, PR China.
| |
Collapse
|
15
|
Yao R, Yao S, Ai T, Huang J, Liu Y, Sun J. Organophosphate Pesticides and Pyrethroids in Farmland of the Pearl River Delta, China: Regional Residue, Distributions and Risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1017. [PMID: 36673774 PMCID: PMC9858657 DOI: 10.3390/ijerph20021017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
A regional-scale survey was conducted to assess the occurrence, distribution, and risk of two extensively used pesticides (organophosphate pesticides and pyrethroids) in agricultural soils from the Pearl River Delta (PRD), South China. All target organophosphate pesticides (OPPs) and pyrethroids (PYs) were detected in the soil samples and both with a detection rate of 100%. The residues of the sum of six OPPs and the sum of four PYs were in the range of LOD-991 ng/g and 8.76-2810 ng/g, respectively. Dimethoate was the dominant OPPs, and fenpropathrin was the predominant PYs in the soils of the PRD region. With intensive agricultural activities, higher residues of OPPs and PYs in soils were detected closer to the seaside, among which Zhuhai city and Huizhou city suffered more serious combined pesticide pollution. The vertical compositional profiles showed that dimethoate could be detected through each soil layer in the PRD region's nine cities. The human exposure estimation of OPPs showed insignificant risks to the local population. In contrast, cypermethrin and fenpropathrin showed a potential ecological risk of 2.5% and 3.75% of the sampling sites, respectively. These results can facilitate those commonly used pesticide controls and promote sustainable soil management.
Collapse
Affiliation(s)
- Runlin Yao
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Bathurst Future Agri-Tech Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Siyu Yao
- Department of Environmental Sciences, College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tao Ai
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
16
|
Tan H, Wu Q, Hao R, Wang C, Zhai J, Li Q, Cui Y, Wu C. Occurrence, distribution, and driving factors of current-use pesticides in commonly cultivated crops and their potential risks to non-target organisms: A case study in Hainan, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158640. [PMID: 36113805 DOI: 10.1016/j.scitotenv.2022.158640] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Multiple pesticides are heavily applied in crops grown in China's tropics due to the prevalence of diseases and pests, thus posing potential risks to nontarget organisms (e.g., honeybees, lacewings, ladybugs, and humans). However, there is little information on this topic. This study is the first assessment of the occurrence, driving factors, and ecological/human health risks of 32 current-use pesticides (CUPs) in 10 frequently-planted crops collected from practicing rice-vegetable rotation systems in Hainan, China. Of the 132 whole crop samples, 44 (33.3 %) residues from ≥8 pesticides were detected in 9.09 % of crop samples with concentrations ≥0.5 mg kg-1. Six pesticide residues, namely carbendazim, pyraclostrobin, acetamiprid, thiophanate methyl, phoxim, and imidacloprid, were detected in 72.7 % of samples, with concentrations ranging from 0.0021 to 13.5 (median = 0.032) mg kg-1. Among them, carbendazim, pyraclostrobin, and acetamiprid were the most common, contributions from 10.2 to 25.5 % and a detection frequency ranging from 25.6 to 56.1 %. The order of total concentration of 32 CUPs (∑32 CUP) concentrations during the year was January > May > November > August and vegetables > rice, being highly related with pesticides usage pattern, crop type, plant accumulation/dissipation and plant lipid contents. The ecological risk quotients (RQs) to four beneficial terrestrial organisms showed that 9.6-39.1 % of samples posed a potential medium or high ecological risk, with 13.6-65.9 % of samples at ∑RQ > 1 being highly affected by the residues of neonicotinoids and emamectin benzoate. Emamectin benzoate (8.9 %) and acetamiprid (5.6 %) exceeded the individual Maximum Residue Levels based on Chinese legislation (GB2763-2021). Moreover, cumulative dietary exposure presented a higher risk to humans in 11.0 and 22.0 % of the cases for acute and chronic, mainly originating from the higher concentration contributors of systemic pesticides in edible crops. Therefore, the regulation and monitoring of CUP residues is imperative for rice-vegetable rotation systems in tropical China to avoid negative effects on nontarget organisms.
Collapse
Affiliation(s)
- Huadong Tan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou 571737, PR China
| | - Qiumin Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; School of Resources and Environment, Central China Agricultural University, Wuhan 430070, PR China
| | - Rong Hao
- School of Resources and Environment, Central China Agricultural University, Wuhan 430070, PR China
| | - Chuanmi Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; College of Tropical Crops, Hainan University, Haikou 570228, PR China
| | - Jinlin Zhai
- College of Tropical Crops, Hainan University, Haikou 570228, PR China
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou 571737, PR China
| | - Yanmei Cui
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Chunyuan Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou 571737, PR China.
| |
Collapse
|
17
|
Zheng H, Ding Y, Xue Y, Xiao K, Zhu J, Liu Y, Cai M. Occurrence, seasonal variations, and eco-risk of currently using organochlorine pesticides in surface seawater of the East China Sea and Western Pacific Ocean. MARINE POLLUTION BULLETIN 2022; 185:114300. [PMID: 36330943 DOI: 10.1016/j.marpolbul.2022.114300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
We studied 19 targets currently using organochlorine pesticides (CUOCPs) from 98 samples in the Western Pacific Ocean and the East China Sea collected in 2019, 2020, and 2021. The samples were analyzed using a novel High-throat/High-volume Solid-Phase Extraction method. Eighteen individual CUOCPs were above the method detection limits. The levels of ∑19CUOCPs ranged from 0.13 to 17.80 ng/L, with an average of 3.13 ± 14.67 ng/L. Dicofol was the main pollutant in the Western Pacific Ocean, while Pyridaben dominated the East China Sea. In the summer, land-source input was the primary source in the Western Pacific Ocean and the East China Sea. Historical residues were the main source in the East China Sea in spring. In the summer, the ecological risk assessment results indicated a relatively low risk to the Western Pacific Ocean and the East China Sea.
Collapse
Affiliation(s)
- Hongyuan Zheng
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| | - Yunhao Ding
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China; School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Yingang Xue
- School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Kaiyan Xiao
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| | - Jincai Zhu
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China; Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, 1000 Xuelong Road, Shanghai 201209, China; School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Yanguang Liu
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China.
| | - Minghong Cai
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China; Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, 1000 Xuelong Road, Shanghai 201209, China; School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| |
Collapse
|
18
|
Kovačević M, Stjepanović N, Hackenberger DK, Lončarić Ž, Hackenberger BK. Comprehensive study of the effects of strobilurin-based fungicide formulations on Enchytraeus albidus. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1554-1564. [PMID: 36462129 DOI: 10.1007/s10646-022-02609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Excessive application of fungicides in crop fields can cause adverse effects on soil organisms and consequently affect soil properties. Existing knowledge on the effects of strobilurin fungicides has been primarily based on toxicity tests with active ingredients, while the effects of fungicide formulations remain unclear. Therefore, this work aims to provide new data on the effects of three commercial formulations of strobilurin fungicides on the soil organism Enchytraeus albidus. The tested fungicide formulations were Retengo® (pyraclostrobin-PYR), Zato WG 50® (trifloxystrobin-TRI) and Stroby WG® (kresoxim-methyl-KM). In laboratory experiments, multiple endpoints were considered at different time points. The results showed that PYR had the greatest impact on survival and reproduction (LC50 = 7.57 mga.i.kgsoil-1, EC50 = 0.98 mga.i.kgsoil-1), followed by TRI (LC50 = 72.98 mga.i.kgsoil-1, EC50 = 16.93 mga.i.kgsoil-1) and KM (LC50 = 73.12 mga.i.kgsoil-1, EC50 ≥ 30 mga.i.kgsoil-1). After 7 days of exposure, MXR activity was inhibited at the highest concentration of all fungicides tested (6 mgPYRkgsoil-1, 15 mgTRIkgsoil-1 and 30 mgKMkgsoil-1). Furthermore, oxidative stress (induction of SOD, CAT and GST) and lipid peroxidation (increase in MDA) were also observed. In addition, there was a decrease in total available energy after exposure to PYR and KM. Exposure to fungicides resulted in a shift in the proportions of carbohydrates, lipids, and proteins affecting the amount of available energy. In addition to the initial findings on the effects of strobilurin formulations on enchytraeids, the observed results suggest that multiple and long-term exposure to strobilurin formulations in the field could have negative consequences on enchytraeid populations.
Collapse
Affiliation(s)
- Marija Kovačević
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | - Nikolina Stjepanović
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | - Davorka K Hackenberger
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000, Osijek, Croatia.
| | - Željka Lončarić
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | | |
Collapse
|
19
|
Luo M, Chen L, Wei J, Cui X, Cheng Z, Wang T, Chao I, Zhao Y, Gao H, Li P. A two-step strategy for simultaneous dual-mode detection of methyl-paraoxon and Ni (Ⅱ). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113668. [PMID: 35623151 DOI: 10.1016/j.ecoenv.2022.113668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Exogenous pollution of Chinese medicinal materials by pesticide residues and heavy metal ions has attracted great attention. Relying on the rapid development of nanotechnology and multidisciplinary fields, fluorescent techniques have been widely applied in contaminant detection and pollution monitoring due to their advantages of simple preparation, low cost, high throughput and others. Most importantly, synchronous detection of multi-targets has always been pursued as one of the major goals in the design of fluorescent probes. Herein, we firstly develop a simultaneous sensing method for methyl-paraoxon (MP) and Nickel ion (Ni, Ⅱ) by using carbon based fluorescent nanocomposite with ratiometric signal readout and nanozyme. Notably, the designed system showed excellent effectiveness even when the two pollutants co-exist. Under the optimum conditions, this method provides low limits of detection of 1.25 µM for methyl-paraoxon and 0.01 µM for Ni (Ⅱ). To further verify the reliability, recovery studies of these two analytes were performed on ginseng radix et rhizoma, nelumbinis semen, and water samples. In addition, smartphone-based visual analysis has been introduced to expand its applicability in point of care detection. This work not only expands the application of the dual-mode approach to pollutant detection, but also provides insights into the analysis of multiple pollutants in a single assay.
Collapse
Affiliation(s)
- Mai Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Ling Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Jinchao Wei
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Xiping Cui
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zehua Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Ting Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Incheng Chao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yunyang Zhao
- Scientific Research Center, Wenzhou Medical University, Wenzhou 325035, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
20
|
Wang Y, Han J, Zhang J, Li X, Bai R, Hu F. A monitoring survey and health risk assessment for pesticide residues on Codonopsis Radix in China. Sci Rep 2022; 12:8133. [PMID: 35581226 PMCID: PMC9114365 DOI: 10.1038/s41598-022-11428-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
In recent years, the safety of Codonopsis Radix (CR) has attracted considerable attention. Pesticide residues is an important index to evaluate the safety of CR. The purpose of this study was to monitor pesticide residues in 164 batches of CR in China and assess dietary risk assessment. Firstly, a combined method of QuEChERS-GC–MS/MS and QuEChERS-LC–MS/MS was established for determination of 155 pesticide residues in CR. Second, 155 Pesticide residues in 3 CR cultivars from Gansu, Shanxi, Hubei, Guizhou and Chongqing were determined by this method. Finally, the risk score of pesticide residues in CR was evaluated, and the dietary health risk was evaluated based on the pesticide residues in CR. The results demonstrated that one or more pesticide residues were detected in 39 batches (23.78%) of 164 batches of CR. Of the 155 pesticide residues, 20 were detected. The most frequently detected pesticide residue was dimethomorph with a detection rate of 5.49%. Risk scores showed that 6 pesticides were at higher risk. Risk assessment based on the hazard quotient/hazard index (HQ/HI) approach revealed that exposure to pesticide residues which detected in CR were far below levels that might pose a health risk.
Collapse
Affiliation(s)
- Yanping Wang
- The State Key Laboratory of Applied Organic Chemistry (SKLAOC), School of Pharmacy, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, China
| | - Jiabin Han
- The State Key Laboratory of Applied Organic Chemistry (SKLAOC), School of Pharmacy, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, China
| | - Jinjin Zhang
- The State Key Laboratory of Applied Organic Chemistry (SKLAOC), School of Pharmacy, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, China
| | - Xue Li
- The State Key Laboratory of Applied Organic Chemistry (SKLAOC), School of Pharmacy, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, China
| | - Ruibin Bai
- The State Key Laboratory of Applied Organic Chemistry (SKLAOC), School of Pharmacy, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, China
| | - Fangdi Hu
- The State Key Laboratory of Applied Organic Chemistry (SKLAOC), School of Pharmacy, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, China.
| |
Collapse
|
21
|
Yang Y, Zheng K, Guo LP, Wang CX, Zhong DB, Shang L, Nian HJ, Cui XM, Huang SJ. Rapid determination and dietary intake risk assessment of 249 pesticide residues in Panax notoginseng. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113348. [PMID: 35240504 DOI: 10.1016/j.ecoenv.2022.113348] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
UPLC-MS/MS and GC-MS/MS were used to establish a method to simultaneously determine various pesticide residues in Panax notoginseng. Results showed that the limits of detection of 249 pesticides were all 5-10 μg/kg. The detection rate of pesticides in 121 P. notoginseng samples was 93.39%, and 19 pesticides were detected. According to the US Code of Federal Regulations, the Chinese Pharmacopoeia recommended algorithm, and the Japanese "positive list system", the pass rates of pesticide residues were 100%, 99.17%, and 89.26%, respectively. The chronic risk quotient (ADI%) and acute risk quotient (ARfD%) of P. notoginseng were 0.00-0.12% and 0.00-0.15%, respectively. In summary, the detection method established in this study can be used for routine analysis of various P. notoginseng pesticide residues. The pesticide residues in the main root samples of P. notoginseng were at a safe level and unlikely pose health risks to consumers.
Collapse
Affiliation(s)
- Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Panax Notoginseng Key Laboratory, Kunming 650500, PR China
| | - Kai Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Panax Notoginseng Key Laboratory, Kunming 650500, PR China
| | - Lan-Ping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Cheng-Xiao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Panax Notoginseng Key Laboratory, Kunming 650500, PR China
| | - Du-Bo Zhong
- Yunnan Yunce Quality Testing Co., Ltd., Kunming 650217, PR China
| | - Le Shang
- Yunnan Yunce Quality Testing Co., Ltd., Kunming 650217, PR China
| | - Hong-Juan Nian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xiu-Ming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Panax Notoginseng Key Laboratory, Kunming 650500, PR China.
| | - Shao-Jun Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Panax Notoginseng Key Laboratory, Kunming 650500, PR China.
| |
Collapse
|
22
|
Wang Y, Zhang T, Wang J, Xu S, Shen W. Regulation of chlorothalonil degradation by molecular hydrogen. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127291. [PMID: 34583156 DOI: 10.1016/j.jhazmat.2021.127291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Pesticides can accumulate throughout the food chain to potentially endanger human health. Although molecular hydrogen (H2) is widely used in industry and medicine, its application in agriculture is just beginning. This study showed that H2 enhances the degradation of the fungicide chlorothalonil (CHT) in plants, but does not reduce its antifungal efficacy. Pharmacological evidence confirmed the contribution of H2-stimulated brassinosteroids (BRs) in the above responses. The genetic increased endogenous H2 with overexpression of hydrogenase 1 gene (CrHYD1) from Chlamydomonas reinhardtii in Arabidopsis not only increased BRs levels, but also eventually intensified the degradation of CHT. Expression of genes encoding some enzymes responsible for detoxification in tomato and Arabidopsis were also stimulated. Contrasting responses were observed after the pharmacological removal of endogenous BR. We further proved that H2 control of CHT degradation was relatively universal, with at least since its degradation in Chinese cabbage, cucumber, radish, alfalfa, rice, and rapeseed were differentially enhanced by H2. Collectively, above results clearly indicated that both exogenously and endogenously applied with H2 could stimulate degradation of CHT partially via BR-dependent detoxification. These results may open a new window for environmental-friendly hydrogen-based agriculture.
Collapse
Affiliation(s)
- Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
23
|
Zhang X, Liao X, Hou Y, Jia B, Fu L, Jia M, Zhou L, Lu J, Kong W. Recent advances in synthesis and modification of carbon dots for optical sensing of pesticides. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126881. [PMID: 34449329 DOI: 10.1016/j.jhazmat.2021.126881] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Serious threat from pesticide residues to the ecosystem and human health has become a global concern. Developing reliable methods for monitoring pesticides is a world-wide research hotspot. Carbon dots (CDs) with excellent photostability, low toxicity, and good biocompatibility have been regarded as the potential substitutes in fabricating various optical sensors for pesticide detection. Based on the relevant high-quality publications, this paper first summarizes the current state-of-the-art of the synthetic and modification approaches of CDs. Then, a comprehensive overview is given on the recent advances of CDs-based optical sensors for pesticides over the past five years, with a particular focus on photoluminescent, electrochemiluminescent and colorimetric sensors regarding the sensing mechanisms and design principles by integrating with various recognition elements including antibodies, aptamers, enzymes, molecularly imprinted polymers, and some nanoparticles. Novel functions and extended applications of CDs as signal indicators, catalyst, co-reactants, and electrode surface modifiers, in constructing optical sensors are specially highlighted. Beyond an assessment of the performances of the real-world application of these proposed optical sensors, the existing inadequacies and current challenges, as well as future perspectives for pesticide monitoring are discussed in detail. It is hoped to provide powerful insights for the development of novel CDs-based sensing strategies with their wide application in different fields for pesticide supervision.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yujiao Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Xinjiang Agricultural Vocational Technical College, Changji 831100, China
| | - Boyu Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Lizhu Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mingxuan Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jinghua Lu
- Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
24
|
Li JJ, Yang L, Miao CP, Teng YJ, Fu ZH, Cheng CL, Chang XX, Qian Y, Zhao LX. Impact of rhizosphere microorganisms on arsenic (As) transformation and accumulation in a traditional Chinese medical plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60923-60934. [PMID: 34165739 DOI: 10.1007/s11356-021-14500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Panax notoginseng is an important traditional medicinal plant, but the commercial value is threatened by root-rot disease caused by rhizosphere microbes and a potential health risk caused by plant arsenic (As) accumulation. Whether rhizospheric microbes isolated from P. notoginseng rhizosphere soil could impact As uptake and transport into P. notoginseng is not yet known. Among the three root-rot disease-causing pathogens Fusarium flocciferum (PG 1), Fusarium oxysporum (PG 2), and Fusarium solani (PG 3) and one root-rot disease biocontrol fungus Trichoderma koningiopsis (FC 1) and five biocontrol-exerting bacterial species Bacillus siamensis (BC 1), Delftia acidovorans (BC 2), Brevibacillus formosus (BC 3), Mortierella alpine (BC 4), and Bacillus subtilis (BC 5), one As-resistant pathogen and four biocontrol microorganisms with As-resistant ability were identified. The As-transforming ability of the identified fungi and bacteria was ranked in the order of FC 1 > PG 1 and BC 2 > BC 3 > BC 1, respectively. Then, the As-resistant biocontrol and pathogenic microbes were initiated to colonize the rhizosphere of 1-year-old P. notoginseng seedlings growing in artificially As(V)-contaminated soil to evaluate the impact of microbe inoculation on P. notoginseng As uptake and transport capacity. Concentration of As in P. notoginseng tissues decreased in the order of the sequence stem > root > leaf. Compared to treatment without colonization by microorganism, inoculation with microorganisms increased As root uptake efficiency and root As concentration, especially under treatment of inoculation by BC 2 and PG 1 + BC 2. As transport efficiency from root to stem decreased by inoculation with microorganism, especially under treatment with inoculation of BC 2 and PG 1 + BC 2. However, the impact of microorganism colonization on As stem to leaf transport efficiency was not obvious. In summary, inoculation with rhizosphere microbes may increase As accumulation in P. notoginseng root, especially when using bacteria with high As transformation ability. Therefore, it is necessary to evaluate the As transformation capacity before applying biological control microorganism to the rhizosphere of P. notoginseng.
Collapse
Affiliation(s)
- Jiao-Jiao Li
- School of Ecology and Environmental Sciences, Yunnan University, No. 2 Cuihu North Road, Kunming, 650091, People's Republic of China
| | - Long Yang
- School of Ecology and Environmental Sciences, Yunnan University, No. 2 Cuihu North Road, Kunming, 650091, People's Republic of China
| | - Cui-Ping Miao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, No. 2 Cuihu North Road, Kunming, 650091, People's Republic of China
| | - Ya-Jun Teng
- Technology Center of Kunming Customs District P. R. China, Kunming, 650000, Yunnan, People's Republic of China
| | - Zi-Hao Fu
- School of Ecology and Environmental Sciences, Yunnan University, No. 2 Cuihu North Road, Kunming, 650091, People's Republic of China
| | - Chang-Lei Cheng
- Analysis and Measurements Center of Yunnan Provincial Non-ferrous Geology Bureau, Kunming, 650051, Yunnan, People's Republic of China
| | - Xue-Xiu Chang
- School of Ecology and Environmental Sciences, Yunnan University, No. 2 Cuihu North Road, Kunming, 650091, People's Republic of China
| | - Yu Qian
- School of Ecology and Environmental Sciences, Yunnan University, No. 2 Cuihu North Road, Kunming, 650091, People's Republic of China.
| | - Li-Xing Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, No. 2 Cuihu North Road, Kunming, 650091, People's Republic of China.
- Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
25
|
Zhang Y, Zhang H, Wang J, Yu Z, Li H, Yang M. Suspect and target screening of emerging pesticides and their transformation products in an urban river using LC-QTOF-MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:147978. [PMID: 34102441 DOI: 10.1016/j.scitotenv.2021.147978] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
This study sheds light on the occurrence of emerging pesticides and their transformation products (TPs) in an urban river in Beijing that is mainly supplemented with treated wastewater. To this end, suspect and non-target screening was conducted using a database of 557 commercial pesticides and over 1400 predicted TPs. Finally, 30 pesticides and 20 TPs were identified, with 12 pesticides and 10 TPs detected in all samples. Eleven pesticides and 17 TPs were detected in Beijing for the first time. Among these, 18 compounds were confirmed using authentic standards. Concentrations of the confirmed and suspected compounds were determined by quantification and semi-quantification, respectively, based on 18 authentic standards. Fungicides and their TPs constituted the largest group and exhibited the highest total concentration (26 compounds; 52.2 μg/L), followed by insecticides (14 compounds; 51.3 μg/L) and herbicides (10 compounds; 24.5 μg/L). DEET, carbendazim, prometryn, ω-carboxylic acid, 2-aminobenzimidazole, metolachlor TP, hexaconazole TP, metalaxyl TP, and azoxystrobin TP exhibited relatively high mean concentration (>100 ng/L). Among the 20 TPs, approximately 65% showed higher concentrations than their parent compounds. Correlation analysis revealed that 6 pesticides and 10 TPs in the river were mainly contributed by the discharge from a wastewater treatment plant. Although a majority of the emerging pesticides had low toxicity, 10 pesticides exhibited high risks to aquatic systems, especially invertebrates.
Collapse
Affiliation(s)
- Yangping Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, 100085, China; Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China.
| | - Juan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiyong Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Hongyan Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
26
|
Sun L, Liu J, Guo X, Wu L, Duan Z, Wang C, Wang L. [Hydrophilic interaction liquid chromatography for removal of pesticide residues in ginseng extracts]. Se Pu 2021; 39:444-452. [PMID: 34227766 PMCID: PMC9404050 DOI: 10.3724/sp.j.1123.2020.08017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
亲水作用液相色谱法(HILIC)是一种用于改善强极性物质的保留和分离选择性的方法,广泛应用于药物分析、代谢组学、蛋白质组学等领域。该文利用农药分子与皂苷成分在HILIC上的保留行为差异,开发了一种农药残留脱除方法。以市售高纯人参提取物为例,该文评价了农药分子和人参皂苷在亲水色谱柱上的保留行为,并考察了上样量、淋洗体积、上样体积等因素对农残脱除效果的影响。实验结果证明:7种人参皂苷由于糖链上的羟基与亲水色谱固定相上的羧基形成氢键作用而具有较强保留,而农药分子由于亲水性较差且相对分子质量较小,保留很弱,从而一步实现了7种人参皂苷的富集与14种农残的脱除。在优化所得的最佳脱除工艺条件下,最终制备得到的人参总皂苷样品中,总皂苷的含量由59.87%提高到69.61%;总皂苷的回收率为94.4%;通过气相色谱-三重四极杆质谱(GC-MS/MS)对样品中的农残进行定量检测,发现原人参提取物中14种农残均得到了有效脱除,其中5种含量降至0.05 mg/kg以下,9种完全脱除。本研究是亲水色谱在中药提取物中农残脱除领域的应用,为天然产物的精制提供了一种新的技术手段,该技术对人参提取物中的农残脱除率高、人参总皂苷回收率高且安全、高效、无污染,为高品质人参提取物的研制提供了新的思路。
Collapse
Affiliation(s)
- Lingli Sun
- Hubei Minzu University, Enshi 445000, China
| | - Jia Liu
- Hubei Minzu University, Enshi 445000, China
| | - Xiujie Guo
- DICP-CMC Innovation Institute of Medicine, Taizhou 225300, China
| | - Lidong Wu
- Chinese Academy of Fishery Sciences, Beijing 100141, China
| | | | - Chaoran Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,DICP-CMC Innovation Institute of Medicine, Taizhou 225300, China
| | | |
Collapse
|
27
|
Masjedi MR, Dobaradaran S, Keshmiri S, Taghizadeh F, Arfaeinia H, Fanaei F, Behroozi M, Nasrzadeh F, Joukar M. Use of toenail-bounded heavy metals to characterize occupational exposure and oxidative stress in workers of waterpipe/cigarette cafés. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1783-1797. [PMID: 33098497 DOI: 10.1007/s10653-020-00751-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Tobacco smoke is known for releasing metals in indoor air of waterpipe/cigarette cafés. However, the worker exposure to metals, and its association with oxidative stress in these cafés are still unclear. To this end, 54 workers and 38 customers from waterpipe/cigarette cafés (the exposed group), 30 workers from non-smoking cafés (the control group 1 (CG_1)) and 32 individuals from the general population (the control group 2 (CG_2)) were selected and toenails samples were then taken from them. Our findings revealed a significant difference in terms of toenail-bounded metal levels between the exposure and control groups (CG_1 and CG_2) (Mann-Whitney U test, Pvalue < 0.05). This study has also indicated that "type of tobacco" could be considered as a predictor for toenail-bounded heavy metals. Furthermore, our research's results suggest that toenail-bounded heavy metals are positively and significantly correlated with urinary levels of 8- hydroxy-2'-deoxyguanosine (8-OHdG, as a biomarker for the degradation of deoxyribonucleic acid (DNA) oxidative stress). Therefore, it can be concluded that workers of waterpipe/cigarette cafés are at high risks of adverse health of DNA oxidative degradation.
Collapse
Affiliation(s)
- Mohammad Reza Masjedi
- Tobacco Control Research Center (TCRC), Iranian Anti-Tobacco Association, Tehran, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Saeed Keshmiri
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Taghizadeh
- Department of Environmental Health Engineering, Faculty of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Arfaeinia
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Farzad Fanaei
- Department of Environmental Health Engineering, Faculty of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Behroozi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farzaneh Nasrzadeh
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Melika Joukar
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|