1
|
Núñez MDP, López Loveira EG, Domínguez SE, Calfayan LM, Itria RF, Butler M. Assessment of nicotine and degradation products in cigarette butts leachates after detoxification by white rot fungi. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138059. [PMID: 40163991 DOI: 10.1016/j.jhazmat.2025.138059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
Cigarette butts (CBs) are widespread hazardous waste contaminating the environment due to the recalcitrance of the filter and the toxicity of the contaminants leached. This paper evaluated through analysis of contaminants and toxicity bioassays on Raphanus sativus seeds, the ability of four fungal strains of white rot fungi to treat cigarette butts, including 2 native strains of Trametes sp. (strains BAFC 4765 and BAFC 4767), one of Irpex lacteus (strain BAFC 4766) and one commercial strain of Pleurotus ostreatus (strain BAFC 2034). Each strain was grown in a medium of water-soaked CBs in axenic conditions at Erlenmeyer-scale during six weeks, analyzing leachate samples periodically by HPLC-MSn. Temporal evolution of nicotine as well as the transformations of tobacco alkaloids and other contaminants generated by the different fungal treatments were characterized. Nicotine was degraded significantly by the end of the treatments although variations were found among the fungal strains, proposing a degradation mechanism based on the 12 tobacco alkaloid transformation products identified. Leachates from CBs showed a total inhibition of germination on Raphanus sativus seeds whereas those obtained after 6 weeks of treatment displayed a significant decrease of phytotoxicity (7-20 % inhibition of germination) exhibiting sublethal effects. The results obtained in this work support the development of CBs fungal treatment for waste detoxification on a larger scale.
Collapse
Affiliation(s)
- María Del Pilar Núñez
- Laboratorio de Micología Experimental y Liquenología, InMiBo UBA-CONICET, Departamento de Biodiversidad y Biología, Experimental (DBBE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad de Buenos Aires, Argentina
| | - Elsa Gabriela López Loveira
- Instituto de Investigación e Ingeniería Ambiental (3iA), Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Sofía Eugenia Domínguez
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Laura Mariel Calfayan
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Raúl Fabio Itria
- Laboratorio de Micología Experimental y Liquenología, InMiBo UBA-CONICET, Departamento de Biodiversidad y Biología, Experimental (DBBE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad de Buenos Aires, Argentina; Instituto Nacional de Tecnología Industrial (INTI), Avenida General Paz 5445, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Matías Butler
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina.
| |
Collapse
|
2
|
Hasanović M, Durmić-Pašić A, Karalija E. Enhancing nickel stress tolerance in Micro-Tom tomatoes through biopriming with Paraburkholderia phytofirmans PsJN: insights into growth and physiological responses. Front Microbiol 2025; 16:1561924. [PMID: 40182281 PMCID: PMC11966406 DOI: 10.3389/fmicb.2025.1561924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction The strategic utilization of plant growth-promoting (PGP) rhizospheric bacteria is a sustainable approach to mitigating the negative effects of anthropogenic activities and excessive nickel (Ni) accumulation in plants. Given that the specific effects of symbiotic interactions depend on the direct relationship between the plant species, bacterial strain, and heavy metals (HMs), this study aimed to investigate the effects of Paraburkholderia phytofirmans PsJN seed priming on Ni tolerance in adult Micro-Tom tomato plants (Solanum lycopersicum L.). Methods Sterilized Micro-Tom seeds were bioprimed with P. phytofirmans PsJN for 24 hours and then sown into the soil. Non-primed, imbibed seeds were used as a control. After 10 days, the seedlings were transferred to a Hoagland nutrient solution. Chronic (10 μM Ni) and acute (50 μM Ni) stress conditions were induced by supplementing the Hoagland solution with Ni salt. The experiment lasted approximately 75 days, covering the complete life cycle of the plants. Various physiological and biochemical parameters were analyzed. Results Significant differences (p < 0.05) were observed between non-primed and bioprimed tomato plants in terms of fruit yield. Bioprimed tomatoes exhibited higher resilience to Ni stress, particularly under acute stress conditions. Non-primed tomatoes treated with 50 μM Ni showed statistically lower concentrations of chlorophyll a and total chlorophylls compared to bioprimed tomatoes. Moreover, proline content was generally lower and more stable in bioprimed plants, indicating reduced oxidative stress.The activity of antioxidant enzymes exhibited distinct patterns between nonprimed and bioprimed tomatoes. Conclusion The findings suggest that biopriming with P. phytofirmans PsJN enhances Micro-Tom tomato resilience and growth under Ni stress. This technique appears to mitigate Ni-induced stress effects, particularly at higher Ni concentrations, making it a promising strategy for improving tomato performance in Ni-contaminated environments. Future studies should explore the underlying molecular mechanisms and field applications of this biopriming approach.
Collapse
Affiliation(s)
- Mujo Hasanović
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Adaleta Durmić-Pašić
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Erna Karalija
- University of Sarajevo, Faculty of Science, Department of Biology, Laboratory for Plant Physiology, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
3
|
Pieraccini R, Whatley L, Koedam N, Vanreusel A, Dolch T, Dierick J, Van der Stocken T. Gibberellic acid and light effects on seed germination in the seagrass Zostera marina. PHYSIOLOGIA PLANTARUM 2025; 177:e70137. [PMID: 40065515 PMCID: PMC11894247 DOI: 10.1111/ppl.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 02/09/2025] [Indexed: 03/14/2025]
Abstract
Seagrass meadows have been heavily affected by human activities, with Zostera marina L. (Zosteraceae) being one of the most impacted species. Seed-based methods are currently the preferred approach for their restoration, yet low germination rates and poor seedling establishment remain significant challenges. This study explored the combined effects of light spectra (white, red, and darkness), photoperiod, and gibberellic acid (GA3-0, 50, 500, and 1000 mg L-1) on Z. marina seed germination using a fully crossed incubation experiment. Penalised logistic regression and Cox proportional hazards analysis were chosen to account for low germination events and to analyse the temporal dynamics of germination. We found that light conditions, particularly red light and darkness, when combined with GA3, significantly enhanced germination probability. Furthermore, mid (50 mg L-1) and high (500 mg L-1) GA3 concentrations reduced time-to-germination. Morphometric analysis of the cotyledonary and leaf tissue development indicates no adverse effects of the treatments on seedling development. Our findings suggest that light and GA3 treatments effectively improve germination success and reduce dormancy in Z. marina seeds. Seed treatments can mitigate stress- or manipulation-induced dormancy and can represent a viable strategy for on-demand germination, such as in the context of seed-based restoration efforts.
Collapse
Affiliation(s)
| | - Lawrence Whatley
- Marine Biology research group, Department of BiologyGhent UniversityBelgium
- Marine Data CentreVlaams Instituut voor de ZeeBelgium
| | - Nico Koedam
- Marine Biology research group, Department of BiologyGhent UniversityBelgium
| | - Ann Vanreusel
- Marine Biology research group, Department of BiologyGhent UniversityBelgium
| | - Tobias Dolch
- Coastal EcologyAlfred‐Wegener‐Institut Helmholtz‐Zentrum für Polar‐ und Meeresforschung – Wattenmeerstation SyltGermany
| | - Jasper Dierick
- Ecology, Evolution and Genetics research group (bDIV), Biology DepartmentVrije Universiteit BrusselBelgium
| | - Tom Van der Stocken
- Ecology, Evolution and Genetics research group (bDIV), Biology DepartmentVrije Universiteit BrusselBelgium
| |
Collapse
|
4
|
Acheampong A, Bondzie-Quaye P, Fetisoa MR, Huang Q. Applications of low-temperature plasma technology in microalgae cultivation and mutant breeding: A comprehensive review. BIORESOURCE TECHNOLOGY 2025; 419:132019. [PMID: 39725362 DOI: 10.1016/j.biortech.2024.132019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Low-temperature plasma (LTP) has gained significant attention recently due to its unique properties and potentially wide applications in agriculture, medicine, and food industry. Microalgae have become important to human life since they provide raw materials and bioactive products to industries. This review especially examines how LTP technology can be utilized to enhance microalgae growth and production of various metabolites and bioactive compounds such as astaxanthin, biofuel, lipid, proteins, and polysaccharides through mutagenesis and/or stimulation. Also, this review suggests that LTP may be combined with multi-omics tools such as proteomics, transcriptome, metabolomics and advanced methods such as single-cell analysis techniques to provide a promising strategy for acquiring desirable strains in algal mutant breeding and for enhancing the production of bioactive compounds in the microalgae. By shedding light on the benefits and applications of LTP, we hope to inspire new solutions to the challenges of commercial-scale microalgae development.
Collapse
Affiliation(s)
- Adolf Acheampong
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Monia Ravelonandrasana Fetisoa
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
5
|
Sperdouli I, Giannousi K, Moustaka J, Antonoglou O, Dendrinou-Samara C, Moustakas M. Responses of Tomato Photosystem II Photochemistry to Pegylated Zinc-Doped Ferrite Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:288. [PMID: 39997850 PMCID: PMC11858530 DOI: 10.3390/nano15040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Various metal-based nanomaterials have been the focus of research regarding their use in controlling pests and diseases and in improving crop yield and quality. In this study, we synthesized via a solvothermal procedure pegylated zinc-doped ferrite (ZnFer) NPs and characterized their physicochemical properties by X-ray diffraction (XRD), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), FT-IR and UV-Vis spectroscopies, as well as transmission electron microscopy (TEM). Subsequently, their impact on tomato photosynthetic efficiency was evaluated by using chlorophyll a fluorescence imaging analysis to estimate the light energy use efficiency of photosystem II (PSII), 30, 60, and 180 min after foliar spray of tomato plants with distilled water (control plants) or 15 mg L-1 and 30 mg L-1 ZnFer NPs. The PSII responses of tomato leaves to foliar spray with ZnFer NPs showed time- and dose-dependent biphasic hormetic responses, characterized by a short-time inhibitory effect by the low dose and stimulatory effect by the high dose, while at a longer exposure period, the reverse phenomenon was recorded by the low and high doses. An inhibitory effect on PSII function was observed after more than ~120 min exposure to both ZnFer NPs concentrations, implying a negative effect on PSII photochemistry. We may conclude that the synthesized ZnFer NPs, despite their ability to induce hormesis of PSII photochemistry, have a negative impact on photosynthetic function.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, 57001 Thessaloniki, Greece
| | - Kleoniki Giannousi
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.G.); (O.A.); (C.D.-S.)
| | - Julietta Moustaka
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Orestis Antonoglou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.G.); (O.A.); (C.D.-S.)
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.G.); (O.A.); (C.D.-S.)
| | - Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Chávez Montes RA, Mary MA, Rashel RH, Fokar M, Herrera-Estrella L, Lopez-Arredondo D, Patiño R. Hormetic and transcriptomic responses of the toxic alga Prymnesium parvum to glyphosate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176451. [PMID: 39317257 DOI: 10.1016/j.scitotenv.2024.176451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Growth of the toxic alga Prymnesium parvum is hormetically stimulated with environmentally relevant concentrations of glyphosate. The mechanisms of glyphosate hormesis in this species, however, are unknown. We evaluated the transcriptomic response of P. parvum to glyphosate at concentrations that stimulate maximum growth and where growth is not different from control values, the zero-equivalent point (ZEP). Maximum growth occurred at 0.1 mg l-1 and the ZEP was 2 mg l-1. At 0.1 mg l-1, upregulated transcripts outnumbered downregulated transcripts by one order of magnitude. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that the upregulated transcriptome is primarily associated with metabolism and biosynthesis. Transcripts encoding heat shock proteins and co-chaperones were among the most strongly upregulated, and several others were associated with translation, Redox homeostasis, cell replication, and photosynthesis. Although most of the same transcripts were also upregulated at concentrations ≥ZEP, the proportion of downregulated transcripts greatly increased as glyphosate concentrations increased. At the ZEP, downregulated transcripts were associated with photosynthesis, cell replication, and anion transport, indicating that specific interference with these processes is responsible for the nullification of hormetic growth. Transcripts encoding the herbicidal target of glyphosate, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), were upregulated at concentrations ≥ZEP but not at 0.1 mg l-1, indicating that disruption of EPSPS activity occurred at high concentrations and that nullification of hormetic growth involves the direct interaction of glyphosate with this enzyme. Results of this study may contribute to a better understanding of glyphosate hormesis and of anthropogenic factors that influence P. parvum biogeography and bloom formation.
Collapse
Affiliation(s)
- Ricardo A Chávez Montes
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, USA
| | - Mousumi A Mary
- Department of Biological Sciences and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX, USA
| | - Rakib H Rashel
- Department of Biological Sciences and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX, USA
| | - Mohamed Fokar
- Center for Biotechnology and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, USA
| | - Damar Lopez-Arredondo
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, USA
| | - Reynaldo Patiño
- U.S. Geological Survey and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
7
|
Gąsecka M, Drzewiecka K, Magdziak Z, Krzesiński W, Proch J, Niedzielski P. Early Response of the Populus nigra L. × P. maximowiczii Hybrid to Soil Enrichment with Metals. Int J Mol Sci 2024; 25:12520. [PMID: 39684231 DOI: 10.3390/ijms252312520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
This study aimed to investigate the response of Populus nigra L. × Populus maximowiczii to the addition of selected metals in soil. Rooted cuttings were planted in pots containing soil enriched with equimolar concentrations of Pb, Zn, Al, Ni, and Cu (500 mL of 4 mM solutions of single metal salts: (Pb(NO3)2; Zn(NO3)2 × 6H2O; Al(NO3)3 × 9H2O; Ni(NO3)2 × 6H2O; or Cu(NO3)2 × 3H2O). Growth parameters, metal accumulation, and physiological and biochemical parameters were assessed after four weeks of cultivation, simulating early response conditions. The results showed diverse metal accumulation in poplar organs, along with an increase in biomass and minor changes in gas exchange parameters or chlorophyll fluorescence. Among low-molecular-weight organic acids, citric and succinic acids were dominant in the rhizosphere, and roots with malonic acid were also present in the shoots. Only p-coumaric acid was found in the phenolic profile of the roots. The shoots contained both phenolic acids and flavonoids, and their profile was diversely modified by particular metals. Sucrose and fructose content increased in shoots that underwent metal treatments, with glucose increasing only in Cu and Al treatments. Principal component analysis (PCA) revealed variations induced by metal treatments across all parameters. Responses to Pb and Zn were partially similar, while Cu, Ni, or Al triggered distinct reactions. The results indicate the adaptation of P. nigra L. × P. maximowiczii to soil containing elevated levels of metals, along with potential for soil remediation and metal removal. However, further studies are needed to evaluate the effect of differences in early responses to particular metals on plant conditions from a long-term perspective.
Collapse
Affiliation(s)
- Monika Gąsecka
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland
| | - Kinga Drzewiecka
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland
| | - Zuzanna Magdziak
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland
| | - Włodzimierz Krzesiński
- Department of Vegetable Crops, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznan, Poland
| | - Jędrzej Proch
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| | - Przemysław Niedzielski
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| |
Collapse
|
8
|
Beringue A, Queffelec J, Le Lann C, Sulmon C. Sublethal pesticide exposure in non-target terrestrial ecosystems: From known effects on individuals to potential consequences on trophic interactions and network functioning. ENVIRONMENTAL RESEARCH 2024; 260:119620. [PMID: 39032619 DOI: 10.1016/j.envres.2024.119620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Over the last decades, the intensification of agriculture has resulted in an increasing use of pesticides, which has led to widespread contamination of non-target ecosystems in agricultural landscapes. Plants and arthropods inhabiting these systems are therefore chronically exposed to, at least, low levels of pesticides through direct pesticide drift, but also through the contamination of their nutrient sources (e.g. soil water or host/prey tissues). Pesticides (herbicides, acaricides/insecticides and fungicides) are chemical substances used to control pests, such as weeds, phytophagous arthropods and pathogenic microorganisms. These molecules are designed to disturb specific physiological mechanisms and induce mortality in targeted organisms. However, under sublethal exposure, pesticides also affect biological processes including metabolism, development, reproduction or inter-specific interactions even in organisms that do not possess the molecular target of the pesticide. Despite the broad current knowledge on sublethal effects of pesticides on organisms, their adverse effects on trophic interactions are less investigated, especially within terrestrial trophic networks. In this review, we provide an overview of the effects, both target and non-target, of sublethal exposures to pesticides on traits involved in trophic interactions between plants, phytophagous insects and their natural enemies. We also discuss how these effects may impact ecosystem functioning by analyzing studies investigating the responses of Plant-Phytophage-Natural enemy trophic networks to pesticides. Finally, we highlight the current challenges and research prospects in the understanding of the effects of pesticides on trophic interactions and networks in non-target terrestrial ecosystems.
Collapse
Affiliation(s)
- Axel Beringue
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, évolution)], UMR, 6553, Rennes, France
| | | | - Cécile Le Lann
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, évolution)], UMR, 6553, Rennes, France
| | - Cécile Sulmon
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, évolution)], UMR, 6553, Rennes, France.
| |
Collapse
|
9
|
Garbin VP, Yoshitani UY, Molento MB. Linalyl acetate against larvae of Haemonchus spp. and Trichostrongylus spp. that affects ruminants: considerations about the hormetic effect. J Helminthol 2024; 98:e59. [PMID: 39463344 DOI: 10.1017/s0022149x24000488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Active components from plants are an alternative therapy to parasite control, addressing the widespread multidrug resistance populations. Linalyl acetate (LA), an ester abundantly found in plants of the genus Lavandula, was tested in vitro against third-stage larvae (L3) of Haemonchus spp. and Trichostrongylus spp. using the larval migration test at 0.89, 2.24, 4.47, 8.95, 17.9, 35.8, 71.6, and 143.2 mg/ml. After an initial incubation of 18 h, the total content of each tube was transferred to a 24-well plate that allowed active L3 to migrate through a nylon mesh (second incubation). Although LA exhibited 100% efficacy in reducing larval migration at 8.95 and 17.9 mg/ml, it showed reduced activity (5%) at 143.2 mg/ml. The data revealed a hormetic biphasic response characterised by an inverted U-shaped concentration-response curve. While hormesis has been previously documented in insecticidal and allelopathic contexts, this study reports the occurrence of hormesis induced by a phytochemical component against two species of nematodes for the first time. This distinctive stimulation-and-inhibition effect should be considered when selecting new compounds for preclinical testing.
Collapse
Affiliation(s)
- V P Garbin
- Laboratory of Veterinary Clinical Parasitology, Department of Veterinary Medicine, Federal University of Paraná. R: dos Funcionários, 1540. Curitiba, Paraná, Brazil. CEP: 80.035-050
| | - U Y Yoshitani
- Laboratory of Veterinary Clinical Parasitology, Department of Veterinary Medicine, Federal University of Paraná. R: dos Funcionários, 1540. Curitiba, Paraná, Brazil. CEP: 80.035-050
| | - M B Molento
- Laboratory of Veterinary Clinical Parasitology, Department of Veterinary Medicine, Federal University of Paraná. R: dos Funcionários, 1540. Curitiba, Paraná, Brazil. CEP: 80.035-050
| |
Collapse
|
10
|
Jiao Q, Li G, Li L, Lin D, Xu Z, Fan L, Zhang J, Shen F, Liu S, Seth CS, Liu H. Hormetic responses to cadmium exposure in wheat seedlings: insights into morphological, physiological, and biochemical adaptations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57701-57719. [PMID: 39292310 DOI: 10.1007/s11356-024-34915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024]
Abstract
Cadmium is commonly recognized as toxic to plant growth, low-level Cd has promoting effects on growth performance, which is so-called hormesis. Although Cd toxicity in wheat has been widely investigated, knowledge of growth response to a broad range of Cd concentrations, especially extremely low concentrations, is still unknown. In this study, the morphological, physiological, and biochemical performance of wheat seedlings to a wide range of Cd concentrations (0-100 µΜ) were explored. Low Cd treatment (0.1-0.5 µM) improved wheat biomass and root development by enhancing the photosynthetic system and antioxidant system ability. Photosynthetic rate (Pn) was improved by 5.72% under lower Cd treatment (1 µΜ), but inhibited by 6.05-49.85% from 5 to 100 µΜ. Excessive Cd accumulation induced oxidative injury manifesting higher MDA content, resulting in lower photosynthetic efficiency, stunted growth, and reduction of biomass. Further, the contents of ascorbate, glutathione, non-protein thiols, and phytochelatins were improved under 5-100 µΜ Cd treatment. The ascorbate peroxidase activity in the leaf showed a hormetic dose-response characteristic. Correlation analysis and partial least squares (PLS) results indicated that antioxidant enzymes and metabolites were closely correlated with Cd tolerance and accumulation. The results of the element network, correlation analysis, and PLS showed a crucial role for exogenous Cd levels in K, Fe, Cu, and Mn uptake and accumulation. These results provided a deeper understanding of the hormetic effect of Cd in wheat, which would be beneficial for improving the quality of hazard and risk assessments.
Collapse
Affiliation(s)
- Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Gezi Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Lantao Li
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Di Lin
- College of Forestry, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Zhengyang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Lina Fan
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Jingjing Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Fengmin Shen
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | | | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China.
| |
Collapse
|
11
|
Jahanimoghadam F, Javidan A, Ranjbar M, Torabi M, Kakooei S, Sharififar F. The healing effect of nano emulsified Plantago major L extract on oral wounds in a wistar rat model. BMC Complement Med Ther 2024; 24:327. [PMID: 39227926 PMCID: PMC11370219 DOI: 10.1186/s12906-024-04621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/18/2024] [Indexed: 09/05/2024] Open
Abstract
INTRODUCTION Oral lesions are a common clinical symptom arising from various etiologies and disrupt the patient's quality of life. However, no definite treatment is not yet possible, due to the constantly changing environment of the mouth. In recent years, herbal treatments have gained popularity among patients and physicians due to their availability, safety, affordability, and antimicrobial properties. This research aims to investigate the therapeutic effects of a nano-emulsion of Plantago major standardized extract (PMSE) on oral ulcers in a Wistar rat model using histomorphometry and stereological parameters. MATERIALS AND METHODS The study involved 72 Wistar rats divided randomly into 24 groups of 3 each: groups A1 to A4 received one dose to 4 doses of 5% PMSE nano emulsion, groups B1 to B4 received one dose to 4 doses of 10% PMSE nano emulsion, and groups C1 to C4 received one dose to 4 doses of 20% PMSE nano emulsion, groups D1 to D4 received one dose to 4 doses of nano-emulsion without PMSE, groups E1 to E4 received one dose to 4 doses of PMSE, and group F served as the control group. An incision measuring 2 mm in diameter was made in the animals' hard palate using a biopsy punch. A swab containing the necessary material was used to administer the medication orally to the wound. Histological samples were collected on days 2, 4, 6, and 8 and sent to the pathology laboratory for examination. Data analysis was performed using SPSS 26 and setting statistical significance at p < 0.05. RESULTS Group A showed a high rate of complete and normal re-epithelialization of the wound at 66.7%, compared to the other groups. Group D had a re-epithelialization rate of 50%, while groups C, E, and F had rates of 7.41% and group B had 7.16%. In terms of inflammation reduction, 23.88% of group A had no inflammation, a higher percentage compared to the other groups. Group B and D had no inflammation in 3.33% of cases, lower than the other groups. The study evaluated frequency of re-epithelialization and inflammation levels in different groups on days 2, 4, 6, and 8 after four doses of the drug with no significant differences found among the groups. CONCLUSION None of the nano emulsions or PMSE enhanced the healing rate of oral ulcers. However, a 5% PMSE nano emulsion displayed an increase in lesion re-epithelialization.
Collapse
Affiliation(s)
- Fatemeh Jahanimoghadam
- Social Determinants on Oral Health Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mehdi Ranjbar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Molook Torabi
- Kerman Social Determinants on Oral Health Research Center, Department of Oral Pathology, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Sina Kakooei
- Dental and Oral Diseases Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
12
|
Veresoglou SD, Begum N. Dose-response curves: the next frontier in plant ecology. TRENDS IN PLANT SCIENCE 2024; 29:971-977. [PMID: 38653637 DOI: 10.1016/j.tplants.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
A large fraction of experimental work in plant ecology, and thus also on ecosystem functioning and the delivery of ecosystem services, describes experiments that have been carried out under controlled (glasshouse) conditions. Controlled growth settings commonly sacrifice realism through, for example, reducing the densities of plant species in the pots and controlling how environmental settings such as moisture and light vary in favor of a higher mechanistic resolution, which makes these studies particularly suitable for subsequent syntheses. We explore the possibility that further integration of dose-response curves can maximize the impact of existing studies. We suggest that we can expand considerably the scope of the dose and response variables that are considered in plant ecology.
Collapse
Affiliation(s)
- Stavros D Veresoglou
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Naheeda Begum
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
13
|
Dong S, Chen T, Xi R, Gao S, Li G, Zhou X, Song X, Ma Y, Hu C, Yuan X. Crop Safety and Weed Control of Foliar Application of Penoxsulam in Foxtail Millet. PLANTS (BASEL, SWITZERLAND) 2024; 13:2296. [PMID: 39204732 PMCID: PMC11359421 DOI: 10.3390/plants13162296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Grass damage has become an important factor restricting foxtail millet production; chemical weeding can help resolve this issue. However, special herbicides in foxtail millet fields are lacking. Penoxsulam has a broad weed control spectrum and a good control effect. In this project, Jingu 21 was used as the test material, and five different concentrations of penoxsulam were used for spraying test in the three-five leaf stage. In this experiment, the effects on the growth of foxtail millet were discussed by measuring the agronomic characters and antioxidant capacity of foxtail millet after spraying penoxsulam. The results showed that: (1) penoxsulam is particularly effective in controlling Amaranthus retroflexus L. (A. retroflexus) and Echinochloa crus-galli (L.) Beauv. (E. crus-galli), but is ineffective in controlling Chenopodium album L. (C. album) and Digitaria sanguinalis (L.) Scop. (D. sanguinalis); (2) the stem diameter, fresh weight, and dry weight of the above-ground parts decreased with the increase in spraying amount; (3) as the spraying dosage increased, the superoxide (SOD), peroxidase (POD), and catalase (CAT) activities in the foxtail millet initially increased and subsequently decreased; the malonaldehyde (MDA) content increased. Our experiment found that 1/2X and 1X spraying dosages had certain application value in controlling gramineous weeds in foxtail millet field. Other spraying dosages are not recommended as they may harm the crops. Our findings provide reference for identifying new herbicides in the foxtail millet field.
Collapse
Affiliation(s)
- Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030800, China; (S.D.); (T.C.); (R.X.); (S.G.); (G.L.); (X.S.)
| | - Tingting Chen
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030800, China; (S.D.); (T.C.); (R.X.); (S.G.); (G.L.); (X.S.)
| | - Ruize Xi
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030800, China; (S.D.); (T.C.); (R.X.); (S.G.); (G.L.); (X.S.)
| | - Shulin Gao
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030800, China; (S.D.); (T.C.); (R.X.); (S.G.); (G.L.); (X.S.)
| | - Gaofeng Li
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030800, China; (S.D.); (T.C.); (R.X.); (S.G.); (G.L.); (X.S.)
| | - Xuena Zhou
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030800, China;
| | - Xie Song
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030800, China; (S.D.); (T.C.); (R.X.); (S.G.); (G.L.); (X.S.)
| | - Yongqing Ma
- Institute of Soil and Water Conservation, Chinese Academy of Sciences (CAS) & Ministry of Water Resources (MWR), Xianyang 712100, China;
| | - Chunyan Hu
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030800, China;
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030800, China; (S.D.); (T.C.); (R.X.); (S.G.); (G.L.); (X.S.)
| |
Collapse
|
14
|
Li Y, Zhang K, Chen J, Zhang L, Feng F, Cheng J, Ma L, Li M, Wang Y, Jiang W, Yu X. Rhizosphere Bacteria Help to Compensate for Pesticide-Induced Stress in Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12542-12553. [PMID: 38967661 DOI: 10.1021/acs.est.4c04196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Although exogenous chemicals frequently exhibit a biphasic response in regulating plant growth, characterized by low-dose stimulation and high-dose inhibition, the underlying mechanisms remain elusive. This study demonstrates, for the first time, the compensatory function of rhizosphere microbiota in assisting plants to withstand pesticide stress. It was observed that pak choi plants, in response to foliar-spraying imidacloprid at both low and high doses, could increase the total number of rhizosphere bacteria and enrich numerous beneficial bacteria. These bacteria have capabilities for promoting plant growth and degrading the pesticide, such as Nocardioides, Brevundimonas, and Sphingomonas. The beneficial bacterial communities were recruited by stressed plants through increasing the release of primary metabolites in root exudates, such as amino acids, fatty acids, and lysophosphatidylcholines. At low doses of pesticide application, the microbial compensatory effect overcame pesticide stress, leading to plant growth promotion. However, with high doses of pesticide application, the microbial compensatory effect was insufficient to counteract pesticide stress, resulting in plant growth inhibition. These findings pave the way for designing improved pesticide application strategies and contribute to a better understanding of how rhizosphere microbiota can be used as an eco-friendly approach to mitigate chemical-induced stress in crops.
Collapse
Affiliation(s)
- Yong Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Kaiwei Zhang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Jian Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Leigang Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Fayun Feng
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Jinjin Cheng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Liya Ma
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Mei Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Ya Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Wayne Jiang
- Department of Entomology, Michigan State University, 288 Farm Lane, Room 243, East Lansing, Michigan 48824, United States
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, 50 Kaifang Avenue, Yancheng 224000, China
| |
Collapse
|
15
|
Li J, Lardon R, Mangelinckx S, Geelen D. A practical guide to the discovery of biomolecules with biostimulant activity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3797-3817. [PMID: 38630561 DOI: 10.1093/jxb/erae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
The growing demand for sustainable solutions in agriculture, which are critical for crop productivity and food quality in the face of climate change and the need to reduce agrochemical usage, has brought biostimulants into the spotlight as valuable tools for regenerative agriculture. With their diverse biological activities, biostimulants can contribute to crop growth, nutrient use efficiency, and abiotic stress resilience, as well as to the restoration of soil health. Biomolecules include humic substances, protein lysates, phenolics, and carbohydrates have undergone thorough investigation because of their demonstrated biostimulant activities. Here, we review the process of the discovery and development of extract-based biostimulants, and propose a practical step-by-step pipeline that starts with initial identification of biomolecules, followed by extraction and isolation, determination of bioactivity, identification of active compound(s), elucidation of mechanisms, formulation, and assessment of effectiveness. The different steps generate a roadmap that aims to expedite the transfer of interdisciplinary knowledge from laboratory-scale studies to pilot-scale production in practical scenarios that are aligned with the prevailing regulatory frameworks.
Collapse
Affiliation(s)
- Jing Li
- HortiCell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Robin Lardon
- HortiCell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Sven Mangelinckx
- SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Danny Geelen
- HortiCell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Lanoue J, St Louis S, Little C, Hao X. Photosynthetic adaptation strategies in peppers under continuous lighting: insights into photosystem protection. FRONTIERS IN PLANT SCIENCE 2024; 15:1372886. [PMID: 38882573 PMCID: PMC11176547 DOI: 10.3389/fpls.2024.1372886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/29/2024] [Indexed: 06/18/2024]
Abstract
Energy efficient lighting strategies have received increased interest from controlled environment producers. Long photoperiods (up to 24 h - continuous lighting (CL)) of lower light intensities could be used to achieve the desired daily light integral (DLI) with lower installed light capacity/capital costs and low electricity costs in regions with low night electricity prices. However, plants grown under CL tend to have higher carbohydrate and reactive oxygen species (ROS) levels which may lead to leaf chlorosis and down-regulation of photosynthesis. We hypothesize that the use of dynamic CL using a spectral change and/or light intensity change between day and night can negate CL-injury. In this experiment we set out to assess the impact of CL on pepper plants by subjecting them to white light during the day and up to 150 µmol m-2 s-1 of monochromatic blue light at night while controlling the DLI at the same level. Plants grown under all CL treatments had similar cumulative fruit number and weight compared to the 16h control indicating no reduction in production. Plants grown under CL had higher carbohydrate levels and ROS-scavenging capacity than plants grown under the 16h control. Conversely, the amount of photosynthetic pigment decreased with increasing nighttime blue light intensity. The maximum quantum yield of photosystem II (Fv/Fm), a metric often used to measure stress, was unaffected by light treatments. However, when light-adapted, the operating efficiency of photosystem II (ΦPSII) decreased and non-photochemical quenching (NPQ) increased with increasing nighttime blue light intensity. This suggests that both acclimated and instantaneous photochemistry during CL can be altered and is dependent on the nighttime light intensity. Furthermore, light-adapted chlorophyll fluorescence measurements may be more adept at detecting altered photochemical states than the conventional stress metric using dark-adapted measurements.
Collapse
Affiliation(s)
- Jason Lanoue
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| | - Sarah St Louis
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| | - Celeste Little
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| | - Xiuming Hao
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| |
Collapse
|
17
|
Wan Y, Liu J, Mai Y, Hong Y, Jia Z, Tian G, Liu Y, Liang H, Liu J. Current advances and future trends of hormesis in disease. NPJ AGING 2024; 10:26. [PMID: 38750132 PMCID: PMC11096327 DOI: 10.1038/s41514-024-00155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024]
Abstract
Hormesis, an adaptive response, occurs when exposure to low doses of a stressor potentially induces a stimulatory effect, while higher doses may inhibit it. This phenomenon is widely observed across various organisms and stressors, significantly advancing our understanding and inspiring further exploration of the beneficial effects of toxins at doses both below and beyond traditional thresholds. This has profound implications for promoting biological regulation at the cellular level and enhancing adaptability throughout the biosphere. Therefore, conducting bibliometric analysis in this field is crucial for accurately analyzing and summarizing its current research status. The results of the bibliometric analysis reveal a steady increase in the number of publications in this field over the years. The United States emerges as the leading country in both publication and citation numbers, with the journal Dose-Response publishing the highest number of papers in this area. Calabrese E.J. is a prominent person with significant contributions and influence among authors. Through keyword co-occurrence and trend analysis, current hotspots in this field are identified, primarily focusing on the relationship between hormesis, oxidative stress, and aging. Analysis of highly cited references predicts that future research trends may center around the relationship between hormesis and stress at different doses, as well as exploring the mechanisms and applications of hormesis. In conclusion, this review aims to visually represent hormesis-related research through bibliometric methods, uncovering emerging patterns and areas of focus within the field. It provides a summary of the current research status and forecasts trends in hormesis-related research.
Collapse
Affiliation(s)
- Yantong Wan
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinxi Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiyin Mai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yinghao Hong
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zixuan Jia
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Guijie Tian
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunzhuo Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Huaping Liang
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China.
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Liu S, Ni J, Guan Y, Tao J, Wu L, Hou M, Wu S, Xu W, Zhang C, Ye J. Changes in physiology, antioxidant system, and gene expression in Microcystis aeruginosa under fenoxaprop-p-ethyl stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28754-28763. [PMID: 38558345 DOI: 10.1007/s11356-024-32927-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Fenoxaprop-p-ethyl (FE) is one of the typical aryloxyphenoxypropionate herbicides. FE has been widely applied in agriculture in recent years. Human health and aquatic ecosystems are threatened by the cyanobacteria blooms caused by Microcystis aeruginosa, which is one of the most common cyanobacteria responsible for freshwater blooming. Few studies have been reported on the physiological effects of FE on M. aeruginosa. This study analyzed the growth curves, the contents of chlorophyll a and protein, the oxidative stress, and the microcystin-LR (MC-LR) levels of M. aeruginosa exposed to various FE concentrations (i.e., 0, 0.5, 1, 2, and 5 mg/L). FE was observed to stimulate the cell density, chlorophyll a content, and protein content of M. aeruginosa at 0.5- and 1-mg/L FE concentrations but inhibit them at 2 and 5 mg/L FE concentrations. The superoxide dismutase and catalase activities were enhanced and the malondialdehyde concentration was increased by FE. The intracellular (intra-) and extracellular (extra-) MC-LR contents were also affected by FE. The expression levels of photosynthesis-related genes psbD1, psaB, and rbcL varied in response to FE exposure. Moreover, the expressions of microcystin synthase-related genes mcyA and mcyD and microcystin transportation-related gene mcyH were significantly inhibited by the treatment with 2 and 5 mg/L FE concentrations. These results might be helpful in evaluating the ecotoxicity of FE and guiding the rational application of herbicides in modern agriculture.
Collapse
Affiliation(s)
- Sijia Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jiawei Ni
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Ying Guan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jianwei Tao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Liang Wu
- Los Angeles Regional Water Quality Control Board, Los Angeles, CA, 90013, USA
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Shichao Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Wenwu Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Chu Zhang
- School of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
19
|
Klátyik S, Takács E, Barócsi A, Lenk S, Kocsányi L, Darvas B, Székács A. Hormesis, the Individual and Combined Phytotoxicity of the Components of Glyphosate-Based Formulations on Algal Growth and Photosynthetic Activity. TOXICS 2024; 12:257. [PMID: 38668480 PMCID: PMC11055126 DOI: 10.3390/toxics12040257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024]
Abstract
The occurrence of the market-leading glyphosate active ingredient in surface waters is a globally observed phenomenon. Although co-formulants in pesticide formulations were considered inactive components from the aspects of the required main biological effect of the pesticide, several studies have proven the high individual toxicity of formulating agents, as well as the enhanced combined toxicity of the active ingredients and other components. Since the majority of active ingredients are present in the form of chemical mixtures in our environment, the possible combined toxicity between active ingredients and co-formulants is particularly important. To assess the individual and combined phytotoxicity of the components, glyphosate was tested in the form of pure active ingredient (glyphosate isopropylammonium salt) and herbicide formulations (Roundup Classic and Medallon Premium) formulated with a mixture of polyethoxylated tallow amines (POEA) or alkyl polyglucosides (APG), respectively. The order of acute toxicity was as follows for Roundup Classic: glyphosate < herbicide formulation < POEA. However, the following order was demonstrated for Medallon Premium: herbicide formulation < glyphosate < APG. Increased photosynthetic activity was detected after the exposure to the formulation (1.5-5.8 mg glyphosate/L and 0.5-2.2 mg POEA/L) and its components individually (glyphosate: 13-27.2 mg/L, POEA: 0.6-4.8 mg/L), which indicates hormetic effects. However, decreased photosynthetic activity was detected at higher concentrations of POEA (19.2 mg/L) and Roundup Classic (11.6-50.6 mg glyphosate/L). Differences were demonstrated in the sensitivity of the selected algae species and, in addition to the individual and combined toxicity of the components presented in the glyphosate-based herbicides. Both of the observed inhibitory and stimulating effects can adversely affect the aquatic ecosystems and water quality of surface waters.
Collapse
Affiliation(s)
- Szandra Klátyik
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (S.K.); (E.T.)
| | - Eszter Takács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (S.K.); (E.T.)
| | - Attila Barócsi
- Department of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (A.B.); (S.L.); (L.K.)
| | - Sándor Lenk
- Department of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (A.B.); (S.L.); (L.K.)
| | - László Kocsányi
- Department of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (A.B.); (S.L.); (L.K.)
| | - Béla Darvas
- Hungarian Society of Ecotoxicology, H-1022 Budapest, Hungary;
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (S.K.); (E.T.)
| |
Collapse
|
20
|
Cesco VJS, Krenchinski FH, Rodrigues DM, Alcántara-de la Cruz R, Duke SO, Velini ED, Carbonari CA. Glyphosate hormesis effects on the vegetative and reproductive development of glyphosate-susceptible and -resistant Conyza sumatrensis biotypes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123504. [PMID: 38325509 DOI: 10.1016/j.envpol.2024.123504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Low glyphosate doses that produce hormesis may alter the susceptibility to herbicides of weeds or enhance their propagation and dispersal. The objective of this work was to evaluate the hormetic effects of glyphosate on the vegetative, phenological and reproductive development in resistant (R) and susceptible (S) Conyza sumatrensis biotypes. The glyphosate resistance level of biotype R was 11.2-fold compared to the S biotype. Glyphosate doses <11.25 g ae ha-1 induced temporary and permanent hormetic effects for the number of leaves, plant height and dry mass accumulation up to 28 d after application in both R and S biotypes. The S biotype required 15-19% fewer thermal units at 1.4 and 2.8 g ae ha-1 glyphosate than untreated plants to reach the bolting stage. Also, this biotype had less thermal units associated with the appearance (1225 vs 1408 units) and opening (1520 vs 1765 units) of the first capitulum than the R biotype. In addition, glyphosate affected reproductive traits of both biotypes compared to their controls, increasing the number of capitulum's and seeds per plant up to 37 and 41% (at 2.8 and 0.7 g ae h-1, respectively) in the S biotype, and by 48 and 114% (both at 5.6 g ae ha-1) in the R biotype. Depending on environmental parameters, glyphosate may or may not cause hormetic effects on the vegetative and phenological development of C. sumatrenis biotypes; however, this herbicide increases the speed and fecundity of reproduction, regardless of the glyphosate susceptibility level, which can alter the population dynamics and glyphosate susceptibility of future generations.
Collapse
Affiliation(s)
- Victor José Salomão Cesco
- Center for Advanced Research in Weed Science, Department of Plant Protection, College of Agricultural Sciences, São Paulo State University, 18610-034, Botucatu, Brazil
| | - Fábio Henrique Krenchinski
- Center for Advanced Research in Weed Science, Department of Plant Protection, College of Agricultural Sciences, São Paulo State University, 18610-034, Botucatu, Brazil
| | - Danilo Morilha Rodrigues
- Center for Advanced Research in Weed Science, Department of Plant Protection, College of Agricultural Sciences, São Paulo State University, 18610-034, Botucatu, Brazil
| | - Ricardo Alcántara-de la Cruz
- Center for Advanced Research in Weed Science, Department of Plant Protection, College of Agricultural Sciences, São Paulo State University, 18610-034, Botucatu, Brazil.
| | - Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Mississippi, 38677, USA
| | - Edivaldo D Velini
- Center for Advanced Research in Weed Science, Department of Plant Protection, College of Agricultural Sciences, São Paulo State University, 18610-034, Botucatu, Brazil
| | - Caio A Carbonari
- Center for Advanced Research in Weed Science, Department of Plant Protection, College of Agricultural Sciences, São Paulo State University, 18610-034, Botucatu, Brazil
| |
Collapse
|
21
|
Zhang Y, Sun D, Gao W, Zhang X, Ye W, Zhang Z. The metabolic mechanisms of Cd-induced hormesis in photosynthetic microalgae, Chromochloris zofingiensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168966. [PMID: 38043816 DOI: 10.1016/j.scitotenv.2023.168966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Cadmium, an environmental pollutant, is highly toxic and resistant to degradation. It exhibits toxicity at elevated doses but triggers excitatory effects at low doses, a phenomenon referred to as hormesis. Microalgae, as primary producers in aquatic ecosystems, demonstrate hormesis induced by cadmium, though the specific mechanisms are not yet fully understood. Consequently, we examined the hormesis of cadmium in Chromochloris zofingiensis. A minimal Cd2+ concentration (0.05 mg L-1) prompted cell proliferation, whereas higher concentrations (2.50 mg L-1) inhibited growth. The group exposed to higher doses exhibited increased levels of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). Contrastingly, the group exposed to low doses exhibited a moderate antioxidant response without significantly increasing ROS. This implies that increased levels of antioxidative components counteract excessive ROS, maintaining cellular redox balance and promoting growth under conditions of low Cd2+. Validation experiments have established that NADPH oxidase-derived ROS primarily coordinates the hormesis effect in microalgae. Comparative transcriptome analysis has proved the involvement of antioxidant systems and photosynthesis in regulating hormesis. Notably, Aurora A kinases consistently displayed varying expression levels across all Cd2+ treatments, and their role in microalgal hormesis was confirmed through validation with SNS-314 mesylate. This study unveils the intricate regulatory mechanisms of Cd-induced hormesis in C. zofingiensis, with implications for environmental remediation and industrial microalgae applications.
Collapse
Affiliation(s)
- Yushu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Dongzhe Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Weizheng Gao
- Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Xinwei Zhang
- Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Wenqi Ye
- Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Zhao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China; Hebei Innovation Center for Bioengineering and Biotechnology, Baoding 071000, China.
| |
Collapse
|
22
|
Khan A, Ahmad N, Fazal H, Ali M, Akbar F, Khan I, Tayyab M, Uddin MN, Ahmad N, Abdel-Maksoud MA, Saleh IA, Zomot N, AbdElgawad H, Rauf K, Iqbal B, Teixeira Filho MCM, El-Tayeb MA, Jalal A. Biogenic synthesis of silver nanoparticles using Rubus fruticosus extract and their antibacterial efficacy against Erwinia caratovora and Ralstonia solanacearum phytopathogens. RSC Adv 2024; 14:5754-5763. [PMID: 38362085 PMCID: PMC10864949 DOI: 10.1039/d3ra06723h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/13/2024] [Indexed: 02/17/2024] Open
Abstract
In the current research, we produced green, cost-effective, eco-friendly silver nanoparticles using a single-step approach. Plants are considered highly desirable systems for nanoparticle synthesis because they possess a variety of secondary metabolites with significant reduction potential. In the current research, the dried leaf extract of Rubus fruticosus was utilized as a capping and reducing agent for the fabrication of silver nanoparticles, to prepare reliable biogenic silver nanoparticles and subsequently to investigate their potential against some common phytopathogens. The prepared silver nanoparticles were exploited to quantify the total flavonoid content (TFC), total phenolic content (TPC) and DPPH-based antioxidant activity. Different concentrations of aqueous extracts of plant leaves and silver nitrate (AgNO3) were reacted, and the color change of the reactant mixture confirmed the formation of Rubus fruticosus leaf-mediated silver nanoparticles (RFL-AgNPs). A series of characterization techniques such as UV-vis spectroscopy, transmission electron microscopy, energy dispersive X-ray analysis and X-ray diffraction revealed the successful synthesis of silver nanoparticles. The surface plasmon resonance peak appeared at 449 nm. XRD analysis demonstrated the crystalline nature, EDX confirmed the purity, and TEM demonstrated that the nanoparticles are mostly spherical in form. Furthermore, the biosynthesized nanoparticles were screened for in vitro antibacterial activity, antioxidant activity, and total phenolic and flavonoid content. The nanoparticles were used in different concentrations alone and in combination with plant extracts to inhibit Erwinia caratovora and Ralstonia solanacearum. In high-throughput assays used to inhibit these plant pathogens, the nanoparticles were highly toxic against bacterial pathogens. This study can be exploited for planta assays against phytopathogens utilizing the same formulations for nanoparticle synthesis and to develop potent antibacterial agents to combat plant diseases.
Collapse
Affiliation(s)
- Adnan Khan
- Centre for Biotechnology and Microbiology, University of Swat Swat-19200 Pakistan
| | - Nisar Ahmad
- Centre for Biotechnology and Microbiology, University of Swat Swat-19200 Pakistan
| | - Hina Fazal
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Peshawar 25120 Pakistan
| | - Mohammad Ali
- Centre for Biotechnology and Microbiology, University of Swat Swat-19200 Pakistan
| | - Fazal Akbar
- Centre for Biotechnology and Microbiology, University of Swat Swat-19200 Pakistan
| | - Ishaq Khan
- Centre for Biotechnology and Microbiology, University of Swat Swat-19200 Pakistan
| | - Mohammad Tayyab
- IBGE, The University of Agriculture, Peshawar Peshawar 25120 Pakistan
| | - Muhammad Nazir Uddin
- Centre for Biotechnology and Microbiology, University of Swat Swat-19200 Pakistan
| | - Naveed Ahmad
- Department of Horticulture, The University of Agriculture Peshawar Khyber Pakhtunkhwa 22620 Pakistan
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | | | - Naser Zomot
- Faculty of Science, Zarqa University Zarqa 13110 Jordan
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp 2020 Antwerp Belgium
| | - Kamran Rauf
- Department of Horticulture, The University of Agriculture Peshawar Khyber Pakhtunkhwa 22620 Pakistan
| | - Babar Iqbal
- School of Environment and Safety Engineering, Jiangsu University Zhenjiang 212000 China
| | - Marcelo Carvalho Minhoto Teixeira Filho
- School of Engineering, Department of Plant Health, Soil and Rural Engineering, Sao Paulo State University Campus of Ilha Solteira 15385-000 Sao Paulo Brazil
| | - Mohamed A El-Tayeb
- Botany and Microbiology Department, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Arshad Jalal
- School of Engineering, Department of Plant Health, Soil and Rural Engineering, Sao Paulo State University Campus of Ilha Solteira 15385-000 Sao Paulo Brazil
| |
Collapse
|
23
|
Trela-Makowej A, Orzechowska A, Szymańska R. Less is more: The hormetic effect of titanium dioxide nanoparticles on plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168669. [PMID: 37989395 DOI: 10.1016/j.scitotenv.2023.168669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Titanium dioxide nanoparticles have attracted considerable attention due to their extensive applications; however, their multifaceted influence on plant physiology and the broader environment remains a complex subject. This review systematically synthesizes recent studies on the hormetic effects of TiO2 nanoparticles on plants - a phenomenon characterized by dual dose-response behavior that impacts various plant functions. It provides crucial insights into the molecular mechanisms underlying these hormetic effects, encompassing their effects on photosynthesis, oxidative stress response and gene regulation. The significance of this article consists in its emphasis on the necessity to establish clear regulatory frameworks and promote international collaboration to standardize the responsible adoption of nano-TiO2 technology within the agricultural sector. The findings are presented with the intention of stimulating interdisciplinary research and serving as an inspiration for further exploration and investigation within this vital and continually evolving field.
Collapse
Affiliation(s)
- Agnieszka Trela-Makowej
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Reymonta 19, 30-059 Kraków, Poland
| | - Aleksandra Orzechowska
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Reymonta 19, 30-059 Kraków, Poland
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Reymonta 19, 30-059 Kraków, Poland.
| |
Collapse
|
24
|
Lu B, Meng R, Wang Y, Xiong W, Ma Y, Gao P, Ren J, Zhang L, Zhao Z, Fan G, Wen Y, Yuan X. Distinctive physiological and molecular responses of foxtail millet and maize to nicosulfuron. FRONTIERS IN PLANT SCIENCE 2024; 14:1308584. [PMID: 38293619 PMCID: PMC10824897 DOI: 10.3389/fpls.2023.1308584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024]
Abstract
Introduction Nicosulfuron is the leading acetolactate synthase inhibitor herbicide product, and widely used to control gramineous weeds. Here, we investigated the metabolic process of nicosulfuron into foxtail millet and maize, in order to clarify the mechanism of the difference in sensitivity of foxtail millet and maize to nicosulfuron from the perspective of physiological metabolism and provide a theoretical basis for the breeding of nicosulfuron-resistant foxtail millet varieties. Methods We treated foxtail millet (Zhangzagu 10, Jingu 21) and maize (Nongda 108, Ditian 8) with various doses of nicosulfuron in both pot and field experiments. The malonaldehyde (MDA) content, target enzymes, detoxification enzymes, and antioxidant enzymes, as well as related gene expression levels in the leaf tissues of foxtail millet and maize were measured, and the yield was determined after maturity. Results The results showed that the recommended dose of nicosulfuron caused Zhangzagu 10 and Jingu 21 to fail to harvest; the yield of the sensitive maize variety (Ditian 8) decreased by 37.09%, whereas that of the resistant maize variety (Nongda 108) did not decrease. Nicosulfuron stress increased the CYP450 enzyme activity, MDA content, and antioxidant enzyme activity of foxtail millet and maize, reduced the acetolactate synthase (ALS) activity and ALS gene expression of foxtail millet and Ditian 8, and reduced the glutathione S-transferase (GST) activity and GST gene expression of foxtail millet. In conclusion, target enzymes, detoxification enzymes, and antioxidant enzymes were involved in the detoxification metabolism of nicosulfuron in plants. ALS and GST are the main factors responsible for the metabolic differences among foxtail millet, sensitive maize varieties, and resistant maize varieties. Discussion These findings offer valuable insights for exploring the target resistance (TSR) and non-target resistance (NTSR) mechanisms in foxtail millet under herbicide stress and provides theoretical basis for future research of develop foxtail millet germplasm with diverse herbicide resistance traits.
Collapse
Affiliation(s)
- Boyu Lu
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Ru Meng
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yiru Wang
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Wei Xiong
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yuchao Ma
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Peng Gao
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Jianhong Ren
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Liguang Zhang
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Zhihai Zhao
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Guangyu Fan
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Yinyuan Wen
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Xiangyang Yuan
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| |
Collapse
|
25
|
Kazakova E, Gorbatova I, Khanova A, Shesterikova E, Pishenin I, Prazyan A, Podlutskii M, Blinova Y, Bitarishvili S, Bondarenko E, Smirnova A, Lychenkova M, Bondarenko V, Korol M, Babina D, Makarenko E, Volkova P. Radiation Hormesis in Barley Manifests as Changes in Growth Dynamics Coordinated with the Expression of PM19L-like, CML31-like, and AOS2-like. Int J Mol Sci 2024; 25:974. [PMID: 38256048 PMCID: PMC10815718 DOI: 10.3390/ijms25020974] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The stimulation of growth and development of crops using ionising radiation (radiation hormesis) has been reported by many research groups. However, specific genes contributing to the radiation stimulation of plant growth are largely unknown. In this work, we studied the impact of the low-dose γ-irradiation of barley seeds on the growth dynamics and gene expression of eight barley cultivars in a greenhouse experiment. Our findings confirmed that candidate genes of the radiation growth stimulation, previously established in barley seedlings (PM19L-like, CML31-like, and AOS2-like), are significant in radiation hormesis throughout ontogeny. In γ-stimulated cultivars, the expression of these genes was aligned with the growth dynamics, yield parameters, and physiological conditions of plants. We identified contrasting cultivars for future gene editing and found that the γ-stimulated cultivar possessed some specific abiotic stress-responsive elements in the promotors of candidate genes, possibly revealing a new level of radiation hormesis effect execution. These results can be used in creating new productive barley cultivars, ecological toxicology of radionuclides, and eustress biology studies.
Collapse
Affiliation(s)
- Elizaveta Kazakova
- Laboratory of Molecular and Cellular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia; (E.K.); (I.G.); (A.K.); (E.S.); (I.P.); (A.P.); (Y.B.); (S.B.); (E.B.); (A.S.); (M.L.); (V.B.); (M.K.); (D.B.)
| | - Irina Gorbatova
- Laboratory of Molecular and Cellular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia; (E.K.); (I.G.); (A.K.); (E.S.); (I.P.); (A.P.); (Y.B.); (S.B.); (E.B.); (A.S.); (M.L.); (V.B.); (M.K.); (D.B.)
| | - Anastasia Khanova
- Laboratory of Molecular and Cellular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia; (E.K.); (I.G.); (A.K.); (E.S.); (I.P.); (A.P.); (Y.B.); (S.B.); (E.B.); (A.S.); (M.L.); (V.B.); (M.K.); (D.B.)
| | - Ekaterina Shesterikova
- Laboratory of Molecular and Cellular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia; (E.K.); (I.G.); (A.K.); (E.S.); (I.P.); (A.P.); (Y.B.); (S.B.); (E.B.); (A.S.); (M.L.); (V.B.); (M.K.); (D.B.)
| | - Ivan Pishenin
- Laboratory of Molecular and Cellular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia; (E.K.); (I.G.); (A.K.); (E.S.); (I.P.); (A.P.); (Y.B.); (S.B.); (E.B.); (A.S.); (M.L.); (V.B.); (M.K.); (D.B.)
| | - Alexandr Prazyan
- Laboratory of Molecular and Cellular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia; (E.K.); (I.G.); (A.K.); (E.S.); (I.P.); (A.P.); (Y.B.); (S.B.); (E.B.); (A.S.); (M.L.); (V.B.); (M.K.); (D.B.)
| | - Mikhail Podlutskii
- Laboratory of Molecular and Cellular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia; (E.K.); (I.G.); (A.K.); (E.S.); (I.P.); (A.P.); (Y.B.); (S.B.); (E.B.); (A.S.); (M.L.); (V.B.); (M.K.); (D.B.)
| | - Yana Blinova
- Laboratory of Molecular and Cellular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia; (E.K.); (I.G.); (A.K.); (E.S.); (I.P.); (A.P.); (Y.B.); (S.B.); (E.B.); (A.S.); (M.L.); (V.B.); (M.K.); (D.B.)
| | - Sofia Bitarishvili
- Laboratory of Molecular and Cellular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia; (E.K.); (I.G.); (A.K.); (E.S.); (I.P.); (A.P.); (Y.B.); (S.B.); (E.B.); (A.S.); (M.L.); (V.B.); (M.K.); (D.B.)
| | - Ekaterina Bondarenko
- Laboratory of Molecular and Cellular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia; (E.K.); (I.G.); (A.K.); (E.S.); (I.P.); (A.P.); (Y.B.); (S.B.); (E.B.); (A.S.); (M.L.); (V.B.); (M.K.); (D.B.)
| | - Alena Smirnova
- Laboratory of Molecular and Cellular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia; (E.K.); (I.G.); (A.K.); (E.S.); (I.P.); (A.P.); (Y.B.); (S.B.); (E.B.); (A.S.); (M.L.); (V.B.); (M.K.); (D.B.)
| | - Maria Lychenkova
- Laboratory of Molecular and Cellular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia; (E.K.); (I.G.); (A.K.); (E.S.); (I.P.); (A.P.); (Y.B.); (S.B.); (E.B.); (A.S.); (M.L.); (V.B.); (M.K.); (D.B.)
| | - Vladimir Bondarenko
- Laboratory of Molecular and Cellular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia; (E.K.); (I.G.); (A.K.); (E.S.); (I.P.); (A.P.); (Y.B.); (S.B.); (E.B.); (A.S.); (M.L.); (V.B.); (M.K.); (D.B.)
| | - Marina Korol
- Laboratory of Molecular and Cellular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia; (E.K.); (I.G.); (A.K.); (E.S.); (I.P.); (A.P.); (Y.B.); (S.B.); (E.B.); (A.S.); (M.L.); (V.B.); (M.K.); (D.B.)
| | - Daria Babina
- Laboratory of Molecular and Cellular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia; (E.K.); (I.G.); (A.K.); (E.S.); (I.P.); (A.P.); (Y.B.); (S.B.); (E.B.); (A.S.); (M.L.); (V.B.); (M.K.); (D.B.)
| | - Ekaterina Makarenko
- Laboratory of Molecular and Cellular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia; (E.K.); (I.G.); (A.K.); (E.S.); (I.P.); (A.P.); (Y.B.); (S.B.); (E.B.); (A.S.); (M.L.); (V.B.); (M.K.); (D.B.)
| | | |
Collapse
|
26
|
Arenas-Salazar AP, Schoor M, Parra-Pacheco B, García-Trejo JF, Torres-Pacheco I, Feregrino-Pérez AA. Intercropping Systems to Modify Bioactive Compounds and Nutrient Profiles in Plants: Do We Have Enough Information to Take This as a Strategy to Improve Food Quality? A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:194. [PMID: 38256749 PMCID: PMC10818617 DOI: 10.3390/plants13020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/17/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Various environmental, food security and population health problems have been correlated with the use of intensive agriculture production systems around the world. This type of system leads to the loss of biodiversity and natural habitats, high usage rates of agrochemicals and natural resources, and affects soil composition, human health, and nutritional plant quality in rural areas. Agroecological intercropping systems that respect agrobiodiversity, on the other hand, can significantly benefit ecosystems, human health, and food security by modifying the nutritional profile and content of some health-promoting bioactive compounds in the species cultivated in this system. However, research on intercropping strategies focuses more on the benefits they can offer to ecosystems, and less on plant nutrient composition, and the existing information is scattered. The topic merits further study, given the critical impact that it could have on human nutrition. The aim of this review is therefore to collect viable details on the status of research into the profile of nutrients and bioactive compounds in intercropping systems in different regions of the world with unique mixed crops using plant species, along with the criteria for combining them, as well as the nutrients and bioactive compounds analyzed, to exemplify the possible contributions of intercropping systems to food availability and quality.
Collapse
|
27
|
de Faria GS, Carlos L, Jakelaitis A, de Freitas STF, Vicentini TA, Silva IOF, Vasconcelos Filho SC, Lourenço LL, Farnese FS, Batista MA, Vitorino LC. Hormetic Effect Caused by Sublethal Doses of Glyphosate on Toona ciliata M. Roem. PLANTS (BASEL, SWITZERLAND) 2023; 12:4163. [PMID: 38140490 PMCID: PMC10747235 DOI: 10.3390/plants12244163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
This study aimed to evaluate the response of Toona ciliata seedlings to sublethal doses of glyphosate. The increasing use of glyphosate in agriculture concerns the scientific community, as the drift of this pollutant into aquatic systems or atmospheric currents can affect non-target species. Therefore, we need to understand how non-target species respond to small doses of this herbicide. T. ciliata seedlings (clone BV-1110) were exposed to sublethal doses of glyphosate (0, 9.6, 19.2, 38.4, 76.8 g ae ha-1). Anatomical, physiological, and photochemical analyses were performed 60 days after herbicide application, and growth assessments were carried out after 160 days of cultivation. We found that sublethal doses of glyphosate above 19.2 g ae ha-1 induced toxicity symptoms in Toona ciliata leaves. These symptoms were mild in some cases, such as chlorosis, but severe in other cases, such as tissue necrosis. We observed a positive relationship between increased plant height and photochemical yield with plant exposure to sub-doses 9.6 and 19.2 g ae ha-1. A sublethal dose of 38.4 g ae ha-1 improved the photosynthetic rate and carboxylation efficiency. Thus, we confirmed the hypothesis of a hormetic effect when T. ciliata was exposed to sub-doses of glyphosate equal to or lower than 38.4 g ae ha-1. However, the sublethal dose of 76.8 g ae ha-1 must be considered toxic, impacting photosynthetic activity and, consequently, the height of T. ciliata. The stem diameter of T. ciliata responded positively to increasing glyphosate doses. This occurs to compensate for the negative effect of glyphosate on water absorption. Further research will provide valuable information for harnessing the potential benefits of hormesis to improve the productivity of T. ciliata.
Collapse
Affiliation(s)
- Giselle Santos de Faria
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (G.S.d.F.); (L.C.); (A.J.); (S.T.F.d.F.); (I.O.F.S.)
| | - Leandro Carlos
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (G.S.d.F.); (L.C.); (A.J.); (S.T.F.d.F.); (I.O.F.S.)
| | - Adriano Jakelaitis
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (G.S.d.F.); (L.C.); (A.J.); (S.T.F.d.F.); (I.O.F.S.)
| | - Samylla Tassia Ferreira de Freitas
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (G.S.d.F.); (L.C.); (A.J.); (S.T.F.d.F.); (I.O.F.S.)
| | - Taíza Andressa Vicentini
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (T.A.V.); (S.C.V.F.); (L.L.L.); (F.S.F.)
| | - Igor Olacir Fernandes Silva
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (G.S.d.F.); (L.C.); (A.J.); (S.T.F.d.F.); (I.O.F.S.)
| | - Sebastião Carvalho Vasconcelos Filho
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (T.A.V.); (S.C.V.F.); (L.L.L.); (F.S.F.)
| | - Lucas Loram Lourenço
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (T.A.V.); (S.C.V.F.); (L.L.L.); (F.S.F.)
| | - Fernanda Santos Farnese
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (T.A.V.); (S.C.V.F.); (L.L.L.); (F.S.F.)
| | - Marco Aurélio Batista
- Programa de Pós-Graduação em Recursos Naturais do Cerrado, Universidade Estadual de Goiás, BR-153, Km 99, Qd. Área, Km 99, Campus Bairro São João, Anápolis 75132-903, GO, Brazil;
| | - Luciana Cristina Vitorino
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde 75901-970, GO, Brazil; (T.A.V.); (S.C.V.F.); (L.L.L.); (F.S.F.)
| |
Collapse
|
28
|
Ilyas MZ, Sa KJ, Ali MW, Lee JK. Toxic effects of lead on plants: integrating multi-omics with bioinformatics to develop Pb-tolerant crops. PLANTA 2023; 259:18. [PMID: 38085368 DOI: 10.1007/s00425-023-04296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION Lead disrupts plant metabolic homeostasis and key structural elements. Utilizing modern biotechnology tools, it's feasible to develop Pb-tolerant varieties by discovering biological players regulating plant metabolic pathways under stress. Lead (Pb) has been used for a variety of purposes since antiquity despite its toxic nature. After arsenic, lead is the most hazardous heavy metal without any known beneficial role in the biological system. It is a crucial inorganic pollutant that affects plant biochemical and morpho-physiological attributes. Lead toxicity harms plants throughout their life cycle and the extent of damage depends on the concentration and duration of exposure. Higher levels of lead exposure disrupt numerous key metabolic activities of plants including oxygen-evolving complex, organelles integrity, photosystem II connectivity, and electron transport chain. This review summarizes the detrimental effects of lead toxicity on seed germination, crop growth, and yield, oxidative and ultra-structural alterations, as well as nutrient absorption, transport, and assimilation. Further, it discusses the Pb-induced toxic modulation of stomatal conductance, photosynthesis, respiration, metabolic-enzymatic activity, osmolytes accumulation, and antioxidant activity. It is a comprehensive review that reports on omics-based studies along with morpho-physiological and biochemical modifications caused by lead stress. With advances in DNA sequencing technologies, genomics and transcriptomics are gradually becoming popular for studying Pb stress effects in plants. Proteomics and metabolomics are still underrated and there is a scarcity of published data, and this review highlights both their technical and research gaps. Besides, there is also a discussion on how the integration of omics with bioinformatics and the use of the latest biotechnological tools can aid in developing Pb-tolerant crops. The review concludes with core challenges and research directions that need to be addressed soon.
Collapse
Affiliation(s)
- Muhammad Zahaib Ilyas
- Department of Applied Plant Sciences, College of Bio-Resource Sciences, Kangwon National University, Chuncheon, 24341, South Korea
| | - Kyu Jin Sa
- Department of Crop Science, College of Ecology & Environmental Sciences, Kyungpook National University, Sangju, 37224, Korea
| | - Muhammad Waqas Ali
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Crop Genetics, John Innes Center, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Bio-Resource Sciences, Kangwon National University, Chuncheon, 24341, South Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
29
|
Patriarcheas D, Momtareen T, Gallagher JEG. Yeast of Eden: microbial resistance to glyphosate from a yeast perspective. Curr Genet 2023; 69:203-212. [PMID: 37269314 PMCID: PMC10716058 DOI: 10.1007/s00294-023-01272-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/05/2023]
Abstract
First marketed as RoundUp, glyphosate is history's most popular herbicide because of its low acute toxicity to metazoans and broad-spectrum effectiveness across plant species. The development of glyphosate-resistant crops has led to increased glyphosate use and consequences from the use of glyphosate-based herbicides (GBH). Glyphosate has entered the food supply, spurred glyphosate-resistant weeds, and exposed non-target organisms to glyphosate. Glyphosate targets EPSPS/AroA/Aro1 (orthologs across plants, bacteria, and fungi), the rate-limiting step in the production of aromatic amino acids from the shikimate pathway. Metazoans lacking this pathway are spared from acute toxicity and acquire their aromatic amino acids from their diet. However, glyphosate resistance is increasing in non-target organisms. Mutations and natural genetic variation discovered in Saccharomyces cerevisiae illustrate similar types of glyphosate resistance mechanisms in fungi, plants, and bacteria, in addition to known resistance mechanisms such as mutations in Aro1 that block glyphosate binding (target-site resistance (TSR)) and mutations in efflux drug transporters non-target-site resistance (NTSR). Recently, genetic variation and mutations in an amino transporter affecting glyphosate resistance have uncovered potential off-target effects of glyphosate in fungi and bacteria. While glyphosate is a glycine analog, it is transported into cells using an aspartic/glutamic acid (D/E) transporter. The size, shape, and charge distribution of glyphosate closely resembles D/E, and, therefore, glyphosate is a D/E amino acid mimic. The mitochondria use D/E in several pathways and mRNA-encoding mitochondrial proteins are differentially expressed during glyphosate exposure. Mutants downstream of Aro1 are not only sensitive to glyphosate but also a broad range of other chemicals that cannot be rescued by exogenous supplementation of aromatic amino acids. Glyphosate also decreases the pH when unbuffered and many studies do not consider the differences in pH that affect toxicity and resistance mechanisms.
Collapse
Affiliation(s)
- Dionysios Patriarcheas
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, WV, 26506, USA
| | - Taizina Momtareen
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, WV, 26506, USA
| | - Jennifer E G Gallagher
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, WV, 26506, USA.
| |
Collapse
|
30
|
Moustakas M, Sperdouli I, Adamakis IDS, Şaş B, İşgören S, Moustaka J, Morales F. Mechanistic Approach on Melatonin-Induced Hormesis of Photosystem II Function in the Medicinal Plant Mentha spicata. PLANTS (BASEL, SWITZERLAND) 2023; 12:4025. [PMID: 38068660 PMCID: PMC10708495 DOI: 10.3390/plants12234025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 05/12/2024]
Abstract
Melatonin (MT) is considered a new plant hormone having a universal distribution from prokaryotic bacteria to higher plants. It has been characterized as an antistress molecule playing a positive role in the acclimation of plants to stress conditions, but its impact on plants under non-stressed conditions is not well understood. In the current research, we evaluated the impact of MT application (10 and 100 μM) on photosystem II (PSII) function, reactive oxygen species (ROS) generation, and chlorophyll content on mint (Mentha spicata L.) plants in order to elucidate the molecular mechanism of MT action on the photosynthetic electron transport process that under non-stressed conditions is still unclear. Seventy-two hours after the foliar spray of mint plants with 100 μM MT, the improved chlorophyll content imported a higher amount of light energy capture, which caused a 6% increase in the quantum yield of PSII photochemistry (ΦPSII) and electron transport rate (ETR). Nevertheless, the spray with 100 μM MT reduced the efficiency of the oxygen-evolving complex (OEC), causing donor-side photoinhibition, with a simultaneous slight increase in ROS. Even so, the application of 100 μM MT decreased the excess excitation energy at PSII implying superior PSII efficiency. The decreased excitation pressure at PSII, after 100 μM MT foliar spray, suggests that MT induced stomatal closure through ROS production. The response of ΦPSII to MT spray corresponds to a J-shaped hormetic curve, with ΦPSII enhancement by 100 μM MT. It is suggested that the hormetic stimulation of PSII functionality was triggered by the non-photochemical quenching (NPQ) mechanism that stimulated ROS production, which enhanced the photosynthetic function. It is concluded that MT molecules can be used under both stress and non-stressed conditions as photosynthetic biostimulants for enhancing crop yields.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (B.Ş.); (S.İ.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thessaloniki, Greece;
| | | | - Begüm Şaş
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (B.Ş.); (S.İ.)
- School of Life Sciences, Faculty of Biotechnology, ITMO University, Kronverkskiy Prospekt 49, 19710 Saint-Petersburg, Russia
| | - Sumrunaz İşgören
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (B.Ş.); (S.İ.)
- Department of Molecular Biology and Genetics, Istanbul Kültür University, Ataköy 7-8-9-10, 34158 Bakırköy, Turkey
| | - Julietta Moustaka
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark;
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain
| |
Collapse
|
31
|
López HL, Beltrán Beache M, Ochoa Fuentes YM, Cerna Chavez E, del Ángel EC, Delgado Ortiz JC. Phytotoxicity of Extracts of Argemone mexicana and Crotalaria longirostrata on Tomato Seedling Physiology. PLANTS (BASEL, SWITZERLAND) 2023; 12:3856. [PMID: 38005753 PMCID: PMC10675373 DOI: 10.3390/plants12223856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Phytotoxicity caused by secondary metabolites of botanical extracts is a drawback in agriculture. The objective of this study was to evaluate the phytotoxic effects of methanolic extracts of Crotalaria longirostrata and Argemone mexicana on the germination and physiological variables of tomato seedlings. The results indicated that high doses of both extracts (Clong500 and Amex500) inhibited tomato seed germination, while their mixture (Cl50 + Am50) promoted germination by 100%. At 30 days after transplanting (dat), the plant height increased by 15.4% with a high dose of C. longirostrata (Clong500) compared to the control. At 30 dat, the vigor index displayed a notable increase with Cl50 + Am50, reaching 29.5%. The root length increased with the mean dose of A. mexicana (Amex95) at 10, 20, and 30 dat (59.7%, 15.1%, and 22.4%, respectively). The chlorophyll content increased with Amex95 by 66.1% in 10 dat, 22.6% at 20 dat, and 19.6% at 30 dat. On the other hand, Amex95 had a higher nitrogen content throughout the trial. Amex95 produced the greatest increase in root dry weight by 731.5% and 209.4% at 10 and 20 dat. The foliage dry weight increased by 85.7% at 10 dat with Amex95 and up to 209.7% with Amex50 at 30 dat. The present investigation reveals the ability of the extracts to stimulate tomato growth at low and medium doses, though at high doses they exhibit allelopathic effects.
Collapse
Affiliation(s)
- Henry López López
- Parasitología Agrícola, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro, Saltillo C.P. 25315, Mexico; (H.L.L.); (E.C.C.); (E.C.d.Á.)
| | - Mariana Beltrán Beache
- Centro de Ciencias Agropecuarias, Epartamento de Fitotecnia, Universidad Autónoma de Aguascalientes, Aguascalientes C.P. 20700, Mexico
| | - Yisa María Ochoa Fuentes
- Parasitología Agrícola, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro, Saltillo C.P. 25315, Mexico; (H.L.L.); (E.C.C.); (E.C.d.Á.)
| | - Ernesto Cerna Chavez
- Parasitología Agrícola, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro, Saltillo C.P. 25315, Mexico; (H.L.L.); (E.C.C.); (E.C.d.Á.)
| | - Epifanio Castro del Ángel
- Parasitología Agrícola, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro, Saltillo C.P. 25315, Mexico; (H.L.L.); (E.C.C.); (E.C.d.Á.)
| | | |
Collapse
|
32
|
Dominici F, Puglia D, Luzi F, Governatori C, Tosti G, Benincasa P. The Bran and Grain Grinding Level Affect the Tensile Characteristics of Bioplastics Derived from Wholegrain Wheat Flours. Polymers (Basel) 2023; 15:4381. [PMID: 38006105 PMCID: PMC10674300 DOI: 10.3390/polym15224381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The mechanical performance of thermoplastic bulk samples obtained by plasticizing wheat flours differing in grain hardness, alveographic parameters, absence or presence of bran, and grinding level was assessed. Grains of four bread wheat (Triticum aestivum L.) cultivars (Altamira, Aubusson, Blasco, and Bologna) were milled with the aim of producing single-cultivar refined flour (R), or wholegrain flour with fine (F) or coarse (C) grinding. The flours were plasticized, injection molded and tested for tensile properties. The results confirmed that the presence of bran increased the strength (σ) and reduced the elongation at break (ε) of thermoplastics obtained from the flours of each cultivar. The grinding level had an effect, since σ was higher and ε was lower in F than in C samples. SEM analysis of samples revealed that the bran and its texture affected the exposure of starch granules to plasticizer. Composting experiments also revealed that the formulations are able to disintegrate within 21 days with a mass loss rate higher in plastics from F than C flours, while germination tests carried out with cress seeds indicated that it takes two months before the compost loses its phytotoxic effects. Overall, the refining and bran particle size of wheat flours, besides their gluten composition and baking properties, represent novel choice factors to be considered when tailoring the manufacturing of plastic materials for selected requirements and uses.
Collapse
Affiliation(s)
- Franco Dominici
- Civil and Environmental Engineering Department, University of Perugia, UdR INSTM, 05100 Terni, Italy;
| | - Debora Puglia
- Civil and Environmental Engineering Department, University of Perugia, UdR INSTM, 05100 Terni, Italy;
| | - Francesca Luzi
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), 60131 Ancona, Italy;
| | - Catia Governatori
- AMAP, Agenzia Marche Agricoltura Pesca, Via Giulio Latini, 64, 60035 Jesi, Italy;
| | - Giacomo Tosti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06124 Perugia, Italy; (G.T.); (P.B.)
| | - Paolo Benincasa
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06124 Perugia, Italy; (G.T.); (P.B.)
| |
Collapse
|
33
|
González-Moscoso M, Meza-Figueroa D, Martínez-Villegas NV, Pedroza-Montero MR. GLYPHOSATE IMPACT on human health and the environment: Sustainable alternatives to replace it in Mexico. CHEMOSPHERE 2023; 340:139810. [PMID: 37598951 DOI: 10.1016/j.chemosphere.2023.139810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Glyphosate is a broad-spectrum, non-selective herbicide used to control weeds and protect agricultural crops, and it is classified as potentially carcinogenic by the International Agency for Research on Cancer. In Mexico, the use of pesticides is a common practice, including glyphosate. However, on December 31st, 2020, the Mexican government decreed the prohibition of this herbicide as of January 2024. In this review, we investigate the association between glyphosate and cancer risk and found that most of the studies focused using animals showing negative effects such as genotoxicity, cytotoxicity and neurotoxicity, some studies used cancer cell lines showing proliferative effects due to glyphosate exposure. To our knowledge, in Mexico, there are no scientific reports on the association of glyphosate with any type of cancer. In addition, we reviewed the toxicological effects of the herbicide glyphosate, and the specific case of the current situation of the use and environmental damage of this herbicide in Mexico. We found that few studies have been published on glyphosate, and that the largest number of publications are from the International Agency for Research on Cancer classification to date. Additionally, we provide data on glyphosate stimulation at low doses as a biostimulant in crops and analytical monitoring techniques for the detection of glyphosates in different matrices. Finally, we have tried to summarize the actions of the Mexican government to seek sustainable alternatives and replace the use of glyphosate, to obtain food free of this herbicide and take care of the health of the population and the environment.
Collapse
Affiliation(s)
- Magín González-Moscoso
- Departamento de Nanotecnología, Universidad Politécnica de Chiapas (UPChiapas), Carretera Tuxtla Gutierrez.-Portillo Zaragoza Km 21+500, Col. Las Brisas, Suchiapa, 29150, Chiapas, Mexico.
| | - Diana Meza-Figueroa
- Departamento de Geología, Universidad de Sonora, Rosales y Encinas, Hermosillo, 83000, Sonora, Mexico
| | | | - Martín Rafael Pedroza-Montero
- Departamento de Investigación en Física, Universidad de Sonora, Rosales y Encinas, Hermosillo, 83000, Sonora, Mexico
| |
Collapse
|
34
|
Burdová H, Nebeská D, Suhail Al Souki K, Pilnaj D, Kwoczynski Z, Kříženecká S, Auer Malinská H, Vaněk M, Kuráň P, Pidlisnyuk V, Trögl J. Miscanthus x giganteus stress tolerance and phytoremediation capacities in highly diesel contaminated soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118475. [PMID: 37406491 DOI: 10.1016/j.jenvman.2023.118475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Second generation biofuel crop Miscanthus x giganteus (Mxg) was studied as a candidate for petroleum hydrocarbons (PHs) contaminated soil phytomanagement. The soil was polluted by diesel in wide concentration gradient up to 50 g⋅kg-1 in an ex-situ pot experiment. The contaminated soil/plant interactions were investigated using plant biometric and physiological parameters, soil physico-chemical and microbial community's characteristics. The plant parameters and chlorophyll fluorescence indicators showed an inhibitory effect of diesel contamination; however much lower than expected from previously published results. Moreover, lower PHs concentrations (5 and 10 g⋅kg-1) resulted in positive reinforcement of electron transport as a result of hormesis effect. The soil pH did not change significantly during the vegetation season. The decrease of total organic carbon was significantly lower in planted pots. Soil respiration and dehydrogenases activity increased with the increasing contamination indicating ongoing PHs biodegradation. In addition, microbial biomass estimated by phospholipid fatty acids increased only at higher PHs concentrations. Higher dehydrogenases values were obtained in planted pots compared to unplanted. PHs degradation followed the first-order kinetics and for the middle range of contamination (10-40 g⋅kg-1) significantly lower PHs half-lives were determined in planted than unplanted soil pointing on phytoremediation. Diesel degradation was in range 35-70 % according to pot variant. Results confirmed the potential of Mxg for diesel contaminated soils phytomanagement mainly in PHs concentrations up to 20 g⋅kg-1 where phytoremediation was proved, and biomass yield was reduced only by 29 %.
Collapse
Affiliation(s)
- Hana Burdová
- Faculty of Environment, Jan Evangelista Purkyně University, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic.
| | - Diana Nebeská
- Faculty of Environment, Jan Evangelista Purkyně University, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic
| | - Karim Suhail Al Souki
- Faculty of Environment, Jan Evangelista Purkyně University, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic
| | - Dominik Pilnaj
- Faculty of Environment, Jan Evangelista Purkyně University, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic
| | - Zdenka Kwoczynski
- Faculty of Environment, Jan Evangelista Purkyně University, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic
| | - Sylvie Kříženecká
- Faculty of Environment, Jan Evangelista Purkyně University, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic
| | - Hana Auer Malinská
- Faculty of Environment, Jan Evangelista Purkyně University, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic; Faculty of Science, Jan Evangelista Purkyně University, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic
| | - Martin Vaněk
- Faculty of Environment, Jan Evangelista Purkyně University, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic; Faculty of Science, Jan Evangelista Purkyně University, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic
| | - Pavel Kuráň
- Faculty of Environment, Jan Evangelista Purkyně University, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic
| | - Valentina Pidlisnyuk
- Faculty of Environment, Jan Evangelista Purkyně University, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic
| | - Josef Trögl
- Faculty of Environment, Jan Evangelista Purkyně University, Pasteurova 3632/15, 40096, Ústí nad Labem, Czech Republic
| |
Collapse
|
35
|
Fan D, Sun Y, Chen M, Zhu Y, Agathokleous E, Zhu F, Han J. The role of the ABF1 gene in regulation of Cd-induced hormesis in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131991. [PMID: 37459756 DOI: 10.1016/j.jhazmat.2023.131991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/26/2023]
Abstract
Hormesis is important in plant performance in contaminated environments, but the underlying genetic mechanisms are poorly understood. This study aimed at mining key genes in regulating Cd-induced hormesis in Arabidopsis thaliana and verifying their biological function. Hormesis of fresh weight, dry weight, and root length occurred at concentrations of 0.003-2.4, 0.03-0.6, and 0.03-0.6 µM Cd, respectively. Superoxide dismutase and catalase activities, and chlorophyll content displayed inverted U-shaped curves, indicating that the antioxidant defense system and photosynthesis system played roles in hormesis. Based on KEGG pathway analysis with the trend chart of differentially expressed genes and weighted correlation network analysis, the key gene ABF1 in the metabolic pathway of abscisic acid was identified. Subsequently, genetic experiments with wild, overexpressing, and knockdown lines of A. thaliana were conducted to further verify the biological function of ABF1 involving Cd-induced hormesis in A. thaliana. The results revealed that the resistance capability of the overexpressing type to Cd stress was significantly enhanced and implicated that the ABF1 gene is essential for Cd-induced hormesis in A. thaliana. Mining key genes that regulate Cd-induced hormesis in plants and stimulate them could have a transformative impact on the phytoremediation of metal-contaminated environments.
Collapse
Affiliation(s)
- Diwu Fan
- College of Ecology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Yong Sun
- College of Ecology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Moxian Chen
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yongli Zhu
- College of Ecology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, Jiangsu 210044, China
| | - Fuyuan Zhu
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Jiangang Han
- College of Ecology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| |
Collapse
|
36
|
Li HY, Guo Y, Jin BY, Yang XF, Kong CH. Phytochemical Cue for the Fitness Costs of Herbicide-Resistant Weeds. PLANTS (BASEL, SWITZERLAND) 2023; 12:3158. [PMID: 37687404 PMCID: PMC10490342 DOI: 10.3390/plants12173158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Despite increasing knowledge of the fitness costs of viability and fecundity involved in the herbicide-resistant weeds, relatively little is known about the linkage between herbicide resistance costs and phytochemical cues in weed species and biotypes. This study demonstrated relative fitness and phytochemical responses in six herbicide-resistant weeds and their susceptible counterparts. There were significant differences in the parameters of viability (growth and photosynthesis), fecundity fitness (flowering and seed biomass) and a ubiquitous phytochemical (-)-loliolide levels between herbicide-resistant weeds and their susceptible counterparts. Fitness costs occurred in herbicide-resistant Digitaria sanguinalis and Leptochloa chinensis but they were not observed in herbicide-resistant Alopecurus japonicas, Eleusine indica, Ammannia arenaria, and Echinochloa crus-galli. Correlation analysis indicated that the morphological characteristics of resistant and susceptible weeds were negatively correlated with (-)-loliolide concentration, but positively correlated with lipid peroxidation malondialdehyde and total phenol contents. Principal component analysis showed that the lower the (-)-loliolide concentration, the stronger the adaptability in E. crus-galli and E. indica. Therefore, not all herbicide-resistant weeds have fitness costs, but the findings showed several examples of resistance leading to improved fitness even in the absence of herbicides. In particular, (-)-loliolide may act as a phytochemical cue to explain the fitness cost of herbicide-resistant weeds by regulating vitality and fecundity.
Collapse
Affiliation(s)
- Hong-Yu Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (H.-Y.L.); (Y.G.); (B.-Y.J.)
| | - Yan Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (H.-Y.L.); (Y.G.); (B.-Y.J.)
| | - Bo-Yan Jin
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (H.-Y.L.); (Y.G.); (B.-Y.J.)
| | - Xue-Fang Yang
- College of Life Science, Hebei University, Baoding 071000, China
| | - Chui-Hua Kong
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (H.-Y.L.); (Y.G.); (B.-Y.J.)
| |
Collapse
|
37
|
Chahardoli A. Hormetic dose responses induced by nickel oxide nanoparticles (NiONPs) on growth, biochemical, and antioxidant defense systems of Dracocephalum kotschyi. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100078-100094. [PMID: 37624496 DOI: 10.1007/s11356-023-29359-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
The application of nickel oxide nanoparticles (NiONPs) in various fields leads to their release into soil and water and, consequently, interaction with plants. Unlike its bulk counterpart, the phytotoxic potential of NiONPs is relatively less studied, particularly in a hormesis framework. Hormesis is an interesting phenomenon characterized by low-dose stimulation and high-dose inhibition. Therefore, this study demonstrates the stimulatory and inhibitory effects of NiONPs on Dracocephalum kotschyi Boiss as a medicinal plant cultivated in a pot experiment carried out in a greenhouse for 3 weeks. High bioaccumulation of nickel (Ni) in roots of treated plants relative to shoots indicates higher oxidative damage. NiONPs induced hormetic effects on photosynthetic pigments, as at low concentration of 50 mg/L stimulated chlorophyll (2.8-46.7%), carotenoid (16%), and anthocyanin (5.9%) contents and at higher concentrations inhibited the content of these pigments. A hormetic response was observed in growth parameters, i.e., NiONPs induced shoot height (7.2%) and weight (33%) at 100 mg/L, while inhibited shoot and root length (14.5-16.1% and 28.7-42.7%) and weight (46.8-48.1% and 37-40.6%), respectively, at 1000 and 2500 mg/L. The treated plants declined the toxic effects and oxidative stress caused by NiONPs by activating non-enzymatic antioxidants (phenolic compounds and proline) and enzymatic antioxidants, i.e., increasing the levels of SOD, POD, CAT, and APX. Therefore, the present study investigated for the first time the different mechanisms and responses of D. kotschyi plants to NiONPs in a wide range of concentrations. The results suggest that NiONPs may act as an elicitor at lower concentrations in medicinal plants according to specific conditions. However, these NPs at higher concentrations induce oxidative stress and harmful effects on plants, so their use poses serious risks to human health and the environment.
Collapse
Affiliation(s)
- Azam Chahardoli
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| |
Collapse
|
38
|
Costa RN, Bevilaqua NDC, Krenchinski FH, Giovanelli BF, Pereira VGC, Velini ED, Carbonari CA. Hormetic Effect of Glyphosate on the Morphology, Physiology and Metabolism of Coffee Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2249. [PMID: 37375876 DOI: 10.3390/plants12122249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Glyphosate is a nonselective herbicide of systemic action that inhibits the enzyme 5-enolpyruvylshikimate-3-phosphate synthase, thus compromising amino acid production and consequently the growth and development of susceptible plants. The objective of this study was to evaluate the hormetic effect of glyphosate on the morphology, physiology, and biochemistry of coffee plants. Coffee seedlings (Coffea arabica cv Catuaí Vermelho IAC-144) were transplanted into pots filled with a mixture of soil and substrate and subjected to ten doses of glyphosate: 0, 11.25, 22.5, 45, 90, 180, 360, 720, 1440, and 2880 g acid equivalent (ae) ha-1. Evaluations were performed using the morphological, physiological, and biochemical variables. Data analysis for the confirmation of hormesis occurred with the application of mathematical models. The hormetic effect of glyphosate on coffee plant morphology was determined by the variables plant height, number of leaves, leaf area, and leaf, stem, and total dry mass. Doses from 14.5 to 30 g ae ha-1 caused the highest stimulation. In the physiological analyses, the highest stimulation was observed upon CO2 assimilation, transpiration, stomatal conductance, carboxylation efficiency, intrinsic water use efficiency, electron transport rate, and photochemical efficiency of photosystem II at doses ranging from 4.4 to 55 g ae ha-1. The biochemical analyses revealed significant increases in the concentrations of quinic acid, salicylic acid, caffeic acid, and coumaric acid, with maximum stimulation at doses between 3 and 140 g ae ha-1. Thus, the application of low doses of glyphosate has positive effects on the morphology, physiology, and biochemistry of coffee plants.
Collapse
Affiliation(s)
- Renato Nunes Costa
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University (Universidade "Júlio de Mesquita Filho" UNESP), Botucatu 18610-034, SP, Brazil
| | - Natalia da Cunha Bevilaqua
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University (Universidade "Júlio de Mesquita Filho" UNESP), Botucatu 18610-034, SP, Brazil
| | - Fábio Henrique Krenchinski
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University (Universidade "Júlio de Mesquita Filho" UNESP), Botucatu 18610-034, SP, Brazil
| | - Bruno Flaibam Giovanelli
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University (Universidade "Júlio de Mesquita Filho" UNESP), Botucatu 18610-034, SP, Brazil
| | - Vinicius Gabriel Caneppele Pereira
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University (Universidade "Júlio de Mesquita Filho" UNESP), Botucatu 18610-034, SP, Brazil
| | - Edivaldo Domingues Velini
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University (Universidade "Júlio de Mesquita Filho" UNESP), Botucatu 18610-034, SP, Brazil
| | - Caio Antonio Carbonari
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University (Universidade "Júlio de Mesquita Filho" UNESP), Botucatu 18610-034, SP, Brazil
| |
Collapse
|
39
|
Subpiramaniyam S, Hong SC, Yi PI, Jang SH, Suh JM, Jung ES, Park JS, Palanivel V, Song YC, Cho LH, Park YH, Kim JS. Biochemical responses and phytoremediation potential of Azolla imbricata (Roxb.) Nakai in water and nutrient media exposed to waste metal cutting fluid along with temperature and humidity stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131101. [PMID: 36878030 DOI: 10.1016/j.jhazmat.2023.131101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/04/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Phytoremediation of metals from water (WM) and nutrient (NM) media exposed to waste metal cutting fluid (WMCF) along with temperature (T) and humidity (H) stress was tested using Azolla imbricata (Roxb.) Nakai. In the absence of WMCF, biomass was higher in NM than in WM during all tests. Surprisingly, opposite results were noted in the presence of WMCF, with growth failing at exposure to > 0.1% and > 0.5% in NM and WM, respectively. Further, correlation analysis of the growth data following WM exposure revealed that biomass was affected positively by T and negatively by H and metal accumulation. Simultaneously, metal accumulation was affected negatively by T and positively by H. The average accumulations of Al, Cd, Cr, Fe, Pb, and Zn across all T/H tests were 540, 282, 71, 1645, 2494 and 1110 mg·kg-1, respectively. The observed bioconcentration factor indicated that A. imbricata acts as a hyperaccumulator or accumulator of Zn (>10) and as either accumulator (>1) or excluder (<1) of the other metals. Overall, the phytoremediation performance of A. imbricata in multi-metal-contaminated WMCF was high in WM under all environmental conditions. Therefore, the use of WM is an economically feasible approach for the removal of metals from WMCF.
Collapse
Affiliation(s)
- Sivakumar Subpiramaniyam
- Department of Bioenvironmental Energy, College of Natural Resource and Life Sciences, Pusan National University, Miryang-si, Gyeongsangnam-do 50463, Republic of Korea.
| | - Sung-Chul Hong
- Department of Bioenvironmental Energy, College of Natural Resource and Life Sciences, Pusan National University, Miryang-si, Gyeongsangnam-do 50463, Republic of Korea
| | - Pyong-In Yi
- Department of Bioenvironmental Energy, College of Natural Resource and Life Sciences, Pusan National University, Miryang-si, Gyeongsangnam-do 50463, Republic of Korea
| | - Seong-Ho Jang
- Department of Bioenvironmental Energy, College of Natural Resource and Life Sciences, Pusan National University, Miryang-si, Gyeongsangnam-do 50463, Republic of Korea
| | - Jeong-Min Suh
- Department of Bioenvironmental Energy, College of Natural Resource and Life Sciences, Pusan National University, Miryang-si, Gyeongsangnam-do 50463, Republic of Korea
| | - Eun-Sang Jung
- Department of Bioenvironmental Energy, College of Natural Resource and Life Sciences, Pusan National University, Miryang-si, Gyeongsangnam-do 50463, Republic of Korea
| | - Je-Sung Park
- Department of Bioenvironmental Energy, College of Natural Resource and Life Sciences, Pusan National University, Miryang-si, Gyeongsangnam-do 50463, Republic of Korea
| | - Velmurugan Palanivel
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai 600073, Tamil Nadu, India
| | - Young-Chae Song
- Major in Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do 50463, Republic of Korea
| | - Young-Hoon Park
- Department of Horticultural Bioscience, College of Natural Resource and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do 50463, Republic of Korea
| | - Ji-Suk Kim
- Jungbu Parks and Landscape Management Office, Samil-daero, Jung-gu, Seoul 04628, Republic of Korea
| |
Collapse
|
40
|
Xu N, Sun Y, Wang Y, Cui Y, Jiang Y, Zhang C. Hormesis effects in tomato plant growth and photosynthesis due to acephate exposure based on physiology and transcriptomic analysis. PEST MANAGEMENT SCIENCE 2023; 79:2029-2039. [PMID: 36693821 DOI: 10.1002/ps.7381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Hormesis is a common phenomenon in toxicology described as low-dose stimulation due to a toxin which causes inhibition at a high dose. Pesticide hormesis in plants has attracted considerable research interest in recent years; however, the specific mechanism has not yet been clarified. Acephate is an organophosphorus insecticide that is used worldwide. Here, hormesis in tomato (Solanum lycopersicum L.) plant growth and photosynthesis after acephate exposure is confirmed, as stimulation occurred at low stress levels, whereas inhibition occurred after exposure to high concentrations. RESULTS We found that low acephate concentration (5-fold lower than recommended application dosage) could enhance chlorophyll biosynthesis and stimulate photosynthesis effects, and thus improve S. lycopersicum growth. A high level of acephate (5-fold higher than recommended application dosage) stress inhibited chlorophyll accumulation, decreased photosystem II efficiency and blocked antioxidant reactions in leaves, increasing reactive oxygen species levels and damaging plant growth. Transcriptomic analysis and quantitative real-time PCR results revealed that the photosynthesis - antenna proteins pathway played a crucial role in the hormesis effect, and that LHCB7 as well as LHCP from the pathway were the most sensitive to acephate hormesis. CONCLUSION Our results showed that acephate could induce hormesis in tomato plant growth and photosynthesis, and that photosystem II and the photosynthesis - antenna proteins pathway played important roles in hormesis. These results provide novel insights into the scientific and safe application of chemical pesticides, and new guidance for investigation into utilizing pesticide hormesis in agriculture. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nuo Xu
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei, China
- College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yang Sun
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yuru Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei, China
- College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yidi Cui
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei, China
- College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yuanjin Jiang
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei, China
- College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Chao Zhang
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei, China
- College of Resources and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
41
|
Holzinger A, Keiblinger K, Holub P, Zatloukal K, Müller H. AI for life: Trends in artificial intelligence for biotechnology. N Biotechnol 2023; 74:16-24. [PMID: 36754147 DOI: 10.1016/j.nbt.2023.02.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/05/2023] [Accepted: 02/05/2023] [Indexed: 02/08/2023]
Abstract
Due to popular successes (e.g., ChatGPT) Artificial Intelligence (AI) is on everyone's lips today. When advances in biotechnology are combined with advances in AI unprecedented new potential solutions become available. This can help with many global problems and contribute to important Sustainability Development Goals. Current examples include Food Security, Health and Well-being, Clean Water, Clean Energy, Responsible Consumption and Production, Climate Action, Life below Water, or protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss. AI is ubiquitous in the life sciences today. Topics include a wide range from machine learning and Big Data analytics, knowledge discovery and data mining, biomedical ontologies, knowledge-based reasoning, natural language processing, decision support and reasoning under uncertainty, temporal and spatial representation and inference, and methodological aspects of explainable AI (XAI) with applications of biotechnology. In this pre-Editorial paper, we provide an overview of open research issues and challenges for each of the topics addressed in this special issue. Potential authors can directly use this as a guideline for developing their paper.
Collapse
Affiliation(s)
- Andreas Holzinger
- University of Natural Resources and Life Sciences Vienna, Austria; Medical University Graz, Austria; Alberta Machine Intelligence Institute Edmonton, Canada.
| | | | | | | | | |
Collapse
|
42
|
Fiaz M, Ahmed I, Hassan SMU, Niazi AK, Khokhar MF, Farooq MA, Arshad M. Antibiotics induced changes in nitrogen metabolism and antioxidative enzymes in mung bean (Vigna radiata). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162449. [PMID: 36841411 DOI: 10.1016/j.scitotenv.2023.162449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Excessive use and release of antibiotics into the soil environment in the developing world have resulted in altered soil processes affecting terrestrial organisms and posing a serious threat to crop growth and productivity. The present study investigated the influence of exogenously applied oxytetracycline (OXY) and levofloxacin (LEV) on plant physiological responses, key enzymes involved in nitrogen metabolism (e.g., nitrate reductase, glutamine synthetase), nitrogen contents and oxidative stress response of mung bean (Vigna radiata). Plants were irrigated weekly with antibiotics containing water for exposing the plants to different concentrations i.e., 1, 10, 20, 50, and 100 mg L-1. Results showed a significant decrease in nitrate reductase activity in both antibiotic treatments and their mixtures and increased antioxidant enzymatic activities in plants. At lower concentrations of antibiotics (≤20 mg L-1), 53.9 % to 78.4 % increase in nitrogen content was observed in levofloxacin and mixtures compared to the control, resulting in an increase in the overall plant biomass. Higher antibiotic (≥50 mg L-1) concentration showed 58 % decrease in plant biomass content and an overall decrease in plant nitrogen content upon exposure to the mixtures. This was further complemented by 22 % to 42 % increase in glutamine synthetase activity observed in the plants treated with levofloxacin and mixtures. The application of low doses of antibiotics throughout the experiments resulted in lower toxicity symptoms in the plants. However, significantly higher malondialdehyde (MDA) concentrations at higher doses (20 mg L-1 and above) than the control showed that plants' tolerance against oxidative stress was conceded with increasing antibiotic concentrations. The toxicity trend was: levofloxacin > mixture > oxytetracycline.
Collapse
Affiliation(s)
- Marium Fiaz
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Iftikhar Ahmed
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agriculture Research Center (NARC), Islamabad, Pakistan
| | - Sumara Masood Ul Hassan
- School of Social Sciences and Humanities, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Adnan Khan Niazi
- Centre for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Fahim Khokhar
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Ansar Farooq
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
43
|
Cabral CM, Souza MDF, Alencar BTB, Ferreira EA, Silva DV, Reginaldo LTRT, Dos Santos JB. Sensibility, multiple tolerance and degradation capacity of forest species to sequential contamination of herbicides in groundwaters. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130914. [PMID: 36758438 DOI: 10.1016/j.jhazmat.2023.130914] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Herbicides have already reported environmental contamination in several countries with intense agricultural activity. The transport of these molecules due to leaching and surface runoff has frequently caused contamination of rivers, groundwater and soil in non-agricultural areas. Thereby, we propose to investigate the sensitivity and phytoremediation capacity of 5 native Cerrado species to sequential exposure to 2,4-D, atrazine, diuron and hexazinone. We hypothesized that species have different sensitivity levels to sequential exposure to these herbicides absorbed from contaminated simulated groundwater model. The objectives of this work were: i) to determine the sensitivity of native cerrado species by sequential exposure to 2,4-D, atrazine, diuron and hexazinone via contaminated simulated groundwater model; ii) to evaluate the presence and degradation capacity of these herbicides in the soil and water leached by tolerant species. Some species showed high phytoremediation potential for groundwater already contaminated with 2,4-D, atrazine, diuron and hexazinone. S. macranthera and C. antiphilitica are tolerant and reduce the concentration of herbicides in simulated groundwater model. Among these species, C. antiphilitica reduces the concentration of all herbicides, suggesting greater adaptability to compose decontamination strategies in areas close to agricultural systems that use 2,4-D herbicides, atrazine, diuron and hexazinone. Also, our results show that herbicides can act as a selection factor for Cerrado forest species, however, two species can mitigate the effects of contamination due to their ability to degrade herbicides.
Collapse
Affiliation(s)
- Cássia Michelle Cabral
- Department of Agronomy, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | | | | | | | | | | | - José Barbosa Dos Santos
- Department of Agronomy, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| |
Collapse
|
44
|
Coman V, Scurtu VF, Coman C, Clapa D, Iancu ȘD, Leopold N, Leopold LF. Effects of polystyrene nanoplastics exposure on in vitro-grown Stevia rebaudiana plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107634. [PMID: 36965317 DOI: 10.1016/j.plaphy.2023.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Nanoplastics (NPs) as environmental contaminants have received increased attention in recent years. Numerous studies have suggested possible negative effects of plants exposure to NPs, but more data are needed with various plants under different exposure conditions to clarify the underlying phytotoxicity mechanisms. In this study, we investigated the effect of polystyrene nanoplastics (PSNPs; 28.65 nm average diameter) exposure (10, 100 and 250 mg/L) on plant morphology and production of relevant metabolites (steviol glycosides, chlorophylls, carotenoids, and vitamins) of in vitro-grown Stevia rebaudiana plantlets. Additionally, we used dark field microscopy combined with fluorescence hyperspectral imaging for the visualization of internalized PSNPs inside plant tissues. At higher concentrations (>100 mg/L), PSNPs were shown to aggregate in roots and to be transported to leaves, having a significantly negative impact on plant growth (reduced size and biomass), while increasing the production of metabolites compared to controls, most probably because of response to stress. The production of steviol glycosides presented a biphasic dose-response suggestive of hormesis, with the highest values at 10 mg/L PSNPs (1.5-2.2-fold increase compared to controls), followed by a decline in production at higher concentrations (100 and 250 mg/L), but with values comparable to controls. These results are promising for future in vivo studies evaluating the effect of NP exposure on the production of steviol glycosides, the natural sweeteners from stevia.
Collapse
Affiliation(s)
- Vasile Coman
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372, Cluj-Napoca, Romania; Life Sciences Institute, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372, Cluj-Napoca, Romania.
| | - Violeta-Florina Scurtu
- Life Sciences Institute, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372, Cluj-Napoca, Romania.
| | - Cristina Coman
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372, Cluj-Napoca, Romania.
| | - Doina Clapa
- Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372, Cluj-Napoca, Romania.
| | - Ștefania D Iancu
- Faculty of Physics, Babeș-Bolyai University, 1 Kogalniceanu, 400084, Cluj-Napoca, Romania.
| | - Nicolae Leopold
- Faculty of Physics, Babeș-Bolyai University, 1 Kogalniceanu, 400084, Cluj-Napoca, Romania.
| | - Loredana-Florina Leopold
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăștur, 400372, Cluj-Napoca, Romania.
| |
Collapse
|
45
|
Panwar R, Mathur J. Comparative analysis of remediation efficiency and ultrastructural translocalization of polycyclic aromatic hydrocarbons in Medicago sativa, Helianthus annuus, and Tagetes erecta. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1743-1761. [PMID: 36935611 DOI: 10.1080/15226514.2023.2189967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are semi-volatile anthropogenic contaminants that can damage soil fertility and threaten the environment due to their hazardous effects on various ecological parameters. The experimental objective was divided into two parts because PAHs are always present in mixtures. The toxicity of anthracene, phenanthrene, pyrene, and fluoranthene was examined and investigated the potential of three phytoremediator plants species viz Tagetes erecta, Helianthus annuus, and Medicago sativa for remediation and translocation of individual PAH. PAHs were shown to have inhibitory or stimulating effects on growth, antioxidant properties, and impact on the structure of plant cells. The result showed that M. sativa significantly enhances the removal rate of PAHs in the soil. The dissipation rate reached 96.2% in M. sativa planted soil, followed by H. annuus and T. erecta. Among the plant species, M. sativa exhibited the highest root and shoot concentrations (314.37 and 169.55 mg kg-1), while the lowest concentration was 187.56 and 76.60 mg kg-1 in T. erecta. SEM-EDX and fluorescence micrographs confirmed that pyrene altered plant tissue's ultrastructure and cell viability and was found to be the most toxic and resistant. M. sativa was proven to be the most effective plant for the mitigation of PAHs.
Collapse
Affiliation(s)
- Ritu Panwar
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, India
| | - Jyoti Mathur
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, India
| |
Collapse
|
46
|
Pagano G, Brouziotis AA, Lyons D, Čarapar I, Oral R, Tez S, Thomas PJ, Tommasi F, Libralato G, Guida M, Trifuoggi M. Hormetic Effects of Cerium, Lanthanum and Their Combination at Sub-micromolar Concentrations in Sea Urchin Sperm. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:65. [PMID: 36922429 PMCID: PMC10017572 DOI: 10.1007/s00128-023-03701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Rare earth elements (REEs) cerium (Ce) and lanthanum (La) and their combination were tested across a concentration range, from toxic (10-4 to 10-5 M) to lower concentrations (10-6 to 10-8 M) for their effects on sea urchin (Sphaerechinus granularis) sperm. A significantly decreased fertilization rate (FR) was found for sperm exposed to 10-5 M Ce, La and their combination, opposed to a significant increase of FR following 10-7 and 10-8 M REE sperm exposure. The offspring of REE-exposed sperm showed significantly increased developmental defects following sperm exposure to 10-5 M REEs vs. untreated controls, while exposure to 10-7 and 10-8 M REEs resulted in significantly decreased rates of developmental defects. Both of observed effects-on sperm fertilization success and on offspring quality-were closely exerted by Ce or La or their combination.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126, Naples, Italy.
| | - Antonios Apostolos Brouziotis
- Department of Chemical Sciences, Federico II Naples University, I-80126, Naples, Italy
- Department of Biology, Federico II Naples University, I-80126, Naples, Italy
| | - Daniel Lyons
- Center for Marine Research, Ruđer Bošković Institute, HR-52210, Rovinj, Croatia
| | - Ivana Čarapar
- Center for Marine Research, Ruđer Bošković Institute, HR-52210, Rovinj, Croatia
| | - Rahime Oral
- Faculty of Fisheries, Ege University, Bornova, TR-35100, İzmir, Turkey
| | - Serkan Tez
- Faculty of Fisheries, Ege University, Bornova, TR-35100, İzmir, Turkey
| | - Philippe J Thomas
- Environment and Climate Change Canada, Science & Technology Branch, National Wildlife Research Center, Carleton University, K1A 0H3, Ottawa, ON, Canada
| | - Franca Tommasi
- Department of Biology, "Aldo Moro" Bari University, I-70125, Bari, Italy
| | - Giovanni Libralato
- Department of Biology, Federico II Naples University, I-80126, Naples, Italy
| | - Marco Guida
- Department of Biology, Federico II Naples University, I-80126, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126, Naples, Italy
| |
Collapse
|
47
|
Georgieva M, Vassileva V. Stress Management in Plants: Examining Provisional and Unique Dose-Dependent Responses. Int J Mol Sci 2023; 24:ijms24065105. [PMID: 36982199 PMCID: PMC10049000 DOI: 10.3390/ijms24065105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The purpose of this review is to critically evaluate the effects of different stress factors on higher plants, with particular attention given to the typical and unique dose-dependent responses that are essential for plant growth and development. Specifically, this review highlights the impact of stress on genome instability, including DNA damage and the molecular, physiological, and biochemical mechanisms that generate these effects. We provide an overview of the current understanding of predictable and unique dose-dependent trends in plant survival when exposed to low or high doses of stress. Understanding both the negative and positive impacts of stress responses, including genome instability, can provide insights into how plants react to different levels of stress, yielding more accurate predictions of their behavior in the natural environment. Applying the acquired knowledge can lead to improved crop productivity and potential development of more resilient plant varieties, ensuring a sustainable food source for the rapidly growing global population.
Collapse
|
48
|
Karcz W, Burdach Z, Rudnicka M. The Effects of 1,4-Naphthoquinone (NQ) and Naphthazarin (5,8-Dihydroxy-1,4-naphthoquinone, DHNQ) Individually and in Combination on Growth and Oxidative Stress in Maize ( Zea mays L.) Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:900. [PMID: 36840254 PMCID: PMC9959526 DOI: 10.3390/plants12040900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the effects of 1,4-naphthoquinone (NQ) and naphthazarin (5,8-dihydroxy-1,4-naphthoquinone, DHNQ) individually and in combination, applied at low concentrations (0.1, 1, and 10 nM), on growth, hydrogen peroxide (H2O2) production, catalase activity, and lipid peroxidation in maize seedlings. It was found that NQ at 0.1 and 1 nM and DHNQ at 0.1 nM significantly stimulated the fresh weight of the aboveground parts of the seedlings (APS), while the fresh weight of the underground parts of the seedlings (UPS) was enhanced only at 0.1 nM NQ. Interestingly, DHNQ at higher concentrations (1 and 10 nM) significantly diminished the fresh weight of the APS and UPS. When NQ and DHNQ were applied together, an increase in the fresh weight of the APS at all of the concentrations studied was observed. It was also found that NQ and DHNQ individually and in combination, at all concentrations studied, decreased the H2O2 production in the aboveground and underground parts of maize seedlings. The presence of the DHNQ at higher concentrations (1 and 10 nM) triggered an increase in the catalase (CAT) activity of the UPS and APS compared to the control. However, NQ added at 1 nM decreased the CAT activity of both the UPS and APS, while 10 nM increased the CAT activity of UPS. NQ and DHNQ applied together at 0.1 and 10 nM almost completely inhibited catalase activity in the UPS and APS. The data that were obtained for lipid peroxidation, measured as the malondialdehyde (MDA) concentration, indicated that NQ and DHNQ at all concentrations studied decreased the MDA content of the UPS, while both naphthoquinones increased it in APS. The data presented here are discussed taking into account the mechanisms via which naphthoquinones interact with biological systems.
Collapse
|
49
|
Yang H, Zhou J, Fei J, Ci K, Li D, Fan J, Wei C, Liang J, Xia R, Zhou J. Soil ammonium (NH 4+) toxicity thresholds for restoration grass species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120869. [PMID: 36528204 DOI: 10.1016/j.envpol.2022.120869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Ionic rare earth mining has resulted in large amounts of bare soils, and revegetation success plays an important role in mine site rehabilitation and environmental management. However, the mining soils still maintain high NH4+ concentrations that inhibit plant growth and NH4+ toxicity thresholds for restoration plants have not been established. Here we investigated the NH4+ toxicological effects and provided toxicity thresholds for grasses (Lolium perenne L. and Medicago sativa L.) commonly used in restoration. The results show that high NH4+ concentration not only reduces the plant biomass and soluble sugars in leaves but also increases the H2O2 and MDA content, and SOD, POD, and GPX activities in roots. The SOD activities and root biomass can be adopted as the most NH4+ sensitive biomarkers. Six ecotoxicological endpoints (root biomass, soluble sugars, proline, H2O2, MDA, and GSH) of ryegrass, eight ecotoxicological endpoints (root biomass, soluble sugars, proline, MDA, SOD, POD, GPX, and GSH) of alfalfa were selected to determine the threshold concentrations. The toxicity thresholds of NH4+ concentrations were proposed as 171.9 (EC5), 207.8 (EC10), 286.6 (EC25), 382.3 (EC50) mg kg-1 for ryegrass and 171.9 (EC5), 193.2 (EC10), 234.7 (EC25), 289.6 (EC50) mg kg-1 for alfalfa. The toxicity thresholds and the relation between plant physiological indicators and NH4+ concentrations can be used to assess the suitability of the investigated plants for ecological restoration strategies.
Collapse
Affiliation(s)
- Huixian Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China.
| | - Jiasai Fei
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaidong Ci
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Demin Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Jianbo Fan
- National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Chaoyang Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiani Liang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Ruizhi Xia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| |
Collapse
|
50
|
Patouna A, Vardakas P, Skaperda Z, Spandidos DA, Kouretas D. Evaluation of the antioxidant potency of Greek honey from the Taygetos and Pindos mountains using a combination of cellular and molecular methods. Mol Med Rep 2023; 27:54. [PMID: 36660937 PMCID: PMC9879079 DOI: 10.3892/mmr.2023.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Honey is a complex mixture, containing ~180 compounds, produced by the Apis melifera bees, with promising antimicrobial and antioxidant properties. Nevertheless, the mechanisms through which honey exerts its effects remain under investigation. Plant antioxidants are found in honey and other bee products exhibiting a high bioactivity and molecular diversity. The aim of the present study was to estimate the antioxidant capacity of honey collected from areas in Greece by small‑scale producers by i) using in vitro cell free assays; and ii) by investigating the effects of honey varieties on the redox status of a liver cancer cell line (HepG2) using non‑cytotoxic concentrations. The findings of the present study will allow for the identification of Greek honeys with promising antioxidant capacity. For this purpose, six types of honey with various floral origins were examined in cell‑free assays followed by cell‑based techniques using flow cytometric analysis and redox biomarker level determination in order to evaluate the potential alterations in the intracellular redox system. The results indicated various mechanisms of action that are dependent on the honey type, concentration dependency and high antioxidant capacity. The extended findings from the literature confirm the ability of raw honey to influence the redox status of HepG2 cells. Nevertheless additional investigations are required to elucidate their mechanisms of action in cell line models.
Collapse
Affiliation(s)
- Anastasia Patouna
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Periklis Vardakas
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Zoi Skaperda
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece,Correspondence to: Professor Demetrios Kouretas, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece, E-mail:
| |
Collapse
|