1
|
He L, Zhang L, Peng Y, He Z. Selenium in cancer management: exploring the therapeutic potential. Front Oncol 2025; 14:1490740. [PMID: 39839762 PMCID: PMC11746096 DOI: 10.3389/fonc.2024.1490740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Selenium (Se) is important and plays significant roles in many biological processes or physiological activities. Prolonged selenium deficiency has been conclusively linked to an elevated risk of various diseases, including but not limited to cancer, cardiovascular disease, inflammatory bowel disease, Keshan disease, and acquired immunodeficiency syndrome. The intricate relationship between selenium status and health outcomes is believed to be characterized by a non-linear U-shaped dose-response curve. This review delves into the significance of maintaining optimal selenium levels and the detrimental effects that can arise from selenium deficiency. Of particular interest is the important role that selenium plays in both prevention and treatment of cancer. Finally, this review also explores the diverse classes of selenium entities, encompassing selenoproteins, selenium compounds and selenium nanoparticles, while examining the mechanisms and molecular targets of their anticancer efficacy.
Collapse
Affiliation(s)
- Lingwen He
- Department of Oncology, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Lu Zhang
- Department of Oncology, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Yulong Peng
- Department of Oncology, Dongguan Tungwah Hospital, Dongguan, China
| | - Zhijun He
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Nagano S, Kurokawa Y, Hagi T, Yoshioka R, Takahashi T, Saito T, Yamamoto K, Momose K, Yamashita K, Tanaka K, Makino T, Nakajima K, Eguchi H, Doki Y. Extensive methylation analysis of circulating tumor DNA in plasma of patients with gastric cancer. Sci Rep 2024; 14:30739. [PMID: 39730450 DOI: 10.1038/s41598-024-79252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/07/2024] [Indexed: 12/29/2024] Open
Abstract
DNA methylation is known to be involved in tumor progression. This is the first study to perform an extensive methylation analysis of plasma circulating tumor DNA (ctDNA) using targeted bisulfite sequencing in gastric cancer (GC) patients to evaluate the usefulness of ctDNA methylation as a new biomarker. Sixteen patients who received chemotherapy for recurrent GC were included. After confirmation of the methylation status of 63 genes using the Cancer Genome Atlas (TCGA) dataset, the methylation status in paired tumor and non-tumor tissues and plasma were investigated using targeted bisulfite sequencing in these genes. Forty-four of the 63 genes were significantly hypermethylated in GC patients in the TCGA cohort. Of these 44 genes, hierarchical clustering showed that five (SPG20, FBN1, SDC2, TFPI2, SEPT9) were particularly hypermethylated in tumor compared to non-tumor tissues in our GC cohort. In plasma methylation analysis, patients with high methylation of these genes had significantly worse overall survival than those with low methylation (log-rank P = 0.009). In a patient who underwent blood sampling at multiple points, the methylation levels of these five genes varied closely with clinical tumor status. The plasma ctDNA methylation levels of these five genes could be useful as a noninvasive prognostic biomarker for GC.
Collapse
Affiliation(s)
- Shinnosuke Nagano
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan.
| | - Takaomi Hagi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| | - Ryo Yoshioka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| | - Kazuyoshi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| | - Kota Momose
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| | - Kotaro Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Wang Y, Liu H, Zhang M, Xu J, Zheng L, Liu P, Chen J, Liu H, Chen C. Epigenetic reprogramming in gastrointestinal cancer: biology and translational perspectives. MedComm (Beijing) 2024; 5:e670. [PMID: 39184862 PMCID: PMC11344282 DOI: 10.1002/mco2.670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
Gastrointestinal tumors, the second leading cause of human mortality, are characterized by their association with inflammation. Currently, progress in the early diagnosis and effective treatment of gastrointestinal tumors is limited. Recent whole-genome analyses have underscored their profound heterogeneity and extensive genetic and epigenetic reprogramming. Epigenetic reprogramming pertains to dynamic and hereditable alterations in epigenetic patterns, devoid of concurrent modifications in the underlying DNA sequence. Common epigenetic modifications encompass DNA methylation, histone modifications, noncoding RNA, RNA modifications, and chromatin remodeling. These modifications possess the potential to invoke or suppress a multitude of genes associated with cancer, thereby governing the establishment of chromatin configurations characterized by diverse levels of accessibility. This intricate interplay assumes a pivotal and indispensable role in governing the commencement and advancement of gastrointestinal cancer. This article focuses on the impact of epigenetic reprogramming in the initiation and progression of gastric cancer, esophageal cancer, and colorectal cancer, as well as other uncommon gastrointestinal tumors. We elucidate the epigenetic landscape of gastrointestinal tumors, encompassing DNA methylation, histone modifications, chromatin remodeling, and their interrelationships. Besides, this review summarizes the potential diagnostic, therapeutic, and prognostic targets in epigenetic reprogramming, with the aim of assisting clinical treatment strategies.
Collapse
Affiliation(s)
- Yingjie Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Mengsha Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jing Xu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Liuxian Zheng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Pengpeng Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jingyao Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
5
|
Uomoto M, Ota Y, Suzuki Y, Yumori A, Narimatsu H, Koizume S, Sato S, Nakamura Y, Myoba S, Ohtake N, Saji H, Miyagi E, Miyagi Y. Tissue factor pathway inhibitor 2 as a serum biomarker for endometrial cancer: a single-center retrospective study. BMC Cancer 2024; 24:1058. [PMID: 39192208 DOI: 10.1186/s12885-024-12827-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Endometrial cancer is the most common gynecological malignancy; however, there is no useful blood diagnostic biomarker. This study aimed to determine the utility of tissue factor pathway inhibitor 2 (TFPI2), a biomarker of ovarian cancer, as a diagnostic marker for endometrial cancer. METHODS We examined serum TFPI2 levels in patients with endometrial cancer (n = 328) compared to those in healthy controls (n = 65) and evaluated the performance of serum TFPI2 levels as a diagnostic marker. We investigated the clinicopathological characteristics of patients with TFPI2-negative and TFPI2-positive endometrial cancer. Using immunohistochemistry (IHC), we examined TFPI2 expression in tumor tissues of 105 patients with type II endometrial carcinoma and evaluated the correlation between serum and tissue TFPI2 positivity. RESULTS Patients with endometrial cancer had significantly higher serum TFPI2 levels than controls (196.7 pg/mL vs. 83.3 pg/mL; p < 0.001). The sensitivity and specificity were 54.3% and 95.4%, respectively (cutoff value, 191 pg/mL). Serum TFPI2 levels were significantly elevated along with the stage progression (stage I, 189.6 pg/mL; stage III, 230.9 pg/mL; stage IV, 312.5 pg/mL; p < 0.001). Patients with high-risk histology showed significantly elevated serum TFPI2 levels than those with low-risk histology (220.8 pg/mL vs. 187.7 pg/mL; p < 0.001). The positivity rate for TFPI2 was the highest among tumor markers, including CA125, CA19-9, and CEA. Serum TFPI2 and CA125 levels were almost independent (r = 0.203, p < 0.001), and the combined sensitivity increased to 58.8%. The 5-year survival rate was significantly worse in TFPI2-positive patients (≥ 191 pg/mL, n = 178) than in TFPI2-negative patients (< 191 pg/mL, n = 150) (hazard ratio, 8.22; 95% confidence interval, 2.49-27.1; p < 0.001). TFPI2 immunostaining revealed that 37.1% (39/105) of the samples were positive for TFPI2, with an IHC score of > 0. There was no significant difference in the immunostaining score according to histological type. Serum TFPI2 levels and immunostaining score showed poor agreement (kappa coefficient, -0.039). CONCLUSIONS The serum TFPI2 level is a promising marker for diagnosing and predicting the prognosis of endometrial cancer. No correlation exists between serum and tissue TFPI2 levels. Further multicenter clinical trials are needed to test the utility of TFPI2 as a diagnostic marker.
Collapse
Affiliation(s)
- Mari Uomoto
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2, Nakao, Asahi-ku, Yokohama, 241-8515, Japan
- Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
- Department of Gynecology, Kanagawa Cancer Center, Yokohama, Japan
| | - Yukihide Ota
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2, Nakao, Asahi-ku, Yokohama, 241-8515, Japan
- Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St Louis, MO, USA
| | - Yukio Suzuki
- Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
- Department of Gynecology, Kanagawa Cancer Center, Yokohama, Japan
| | - Asuna Yumori
- Department of Gynecology, Kanagawa Cancer Center, Yokohama, Japan
| | - Hiroto Narimatsu
- Cancer Prevention and Cancer Control Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2, Nakao, Asahi-ku, Yokohama, 241-8515, Japan
| | - Shinya Sato
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2, Nakao, Asahi-ku, Yokohama, 241-8515, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Yoshiyasu Nakamura
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2, Nakao, Asahi-ku, Yokohama, 241-8515, Japan
| | - Shohei Myoba
- Bioscience Division, Tosoh Corporation, Ayase, Kanagawa, Japan
| | - Norihisa Ohtake
- Bioscience Division, Tosoh Corporation, Ayase, Kanagawa, Japan
| | - Haruya Saji
- Department of Gynecology, Kanagawa Cancer Center, Yokohama, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2, Nakao, Asahi-ku, Yokohama, 241-8515, Japan.
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan.
| |
Collapse
|
6
|
Liu Y, Zhang L, Lei X, Yin X, Liu S. Development of an immunogenic cell death prognostic signature for predicting clinical outcome and immune infiltration characterization in stomach adenocarcinoma. Aging (Albany NY) 2023; 15:11389-11411. [PMID: 37862109 PMCID: PMC10637829 DOI: 10.18632/aging.205132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023]
Abstract
Stomach adenocarcinoma (STAD) is a common gastric histological cancer type with a high mortality rate. Immunogenic cell death (ICD) plays a key factor during carcinogenesis progress, whereas the prognostic value and role of ICD-related genes (ICDRGs) in STAD remain unclear. The MSigDB database collecting ICDRGs were selected by univariate Cox regression analysis and LASSO algorithm to establish a novel risk model. The Kaplan-Meier survival analysis indicated a significant difference of OS rate of patients by risk score stratification. ESTIMATE, CIBERSORT, and single sample gene set enrichment analysis (ssGSEA) algorithms were conducted to estimate the immune infiltration landscape by risk stratification. Subgroup analysis and tumor mutation burden analysis were also analyzed to identify characteristics between groups. Differences in therapeutic responsiveness to chemotherapeutic drugs and targeted drugs were also analyzed between high-risk group and low-risk group. The impact of one ICDRG, GPX1, on the proliferation, migration and invasiveness of was confirmed by in vitro experiments in GC cells to test the reliability of bioinformatics results. This study gives evidence of the involvement of ICD process in STAD and provides a new perspective for further accurate assessment of prognosis and therapeutic efficacy in STAD patients. Stomach adenocarcinoma (STAD) is a common gastric histological cancer type with a high mortality rate. Immunogenic cell death (ICD) plays a key factor during carcinogenesis progress, whereas the prognostic value and role of ICD-related genes (ICDRGs) in STAD remains unclear. The MSigDB database collected ICDRGs were selected by univariate Cox regression analysis and LASSO algorithm to establish a novel risk model. The Kaplan-Meier survival analysis indicated a significant difference of OS rate of patients by risk score stratification. ESTIMATE, CIBERSORT, and single sample gene set enrichment analysis (ssGSEA) algorithms were conducted to estimate the immune infiltration landscape by risk stratification. Subgroup analysis and tumor mutation burden analysis were also analyzed to identify characteristics between groups. Differences in therapeutic responsiveness to chemotherapeutic drugs and targeted drugs were also analyzed between high-risk group and low-risk group. The impact of one ICDRG, GPX1, on the proliferation, migration and invasiveness of was confirmed by in vitro experiments in GC cells to test the reliability of bioinformatics results. This study gives evidence of the involvement of ICD process in STAD and provides a new perspective for further accurate assessment of prognosis and therapeutic efficacy in STAD patients.
Collapse
Affiliation(s)
- Ye Liu
- Department of Intensive Care Unit, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Lijia Zhang
- Ethics Committee Office, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Xue Lei
- Department of Clinical Specialty of Integrated Traditional Chinese and Western Medicine, Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Xinyu Yin
- Department of Clinical Specialty of Integrated Traditional Chinese and Western Medicine, Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Songjiang Liu
- Department of Oncology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| |
Collapse
|
7
|
Xing Y, Chen H, Guo Z, Zhou X. Circular RNA circ0007360 Attenuates Gastric Cancer Progression by Altering the miR-762/IRF7 Axis. Front Cell Dev Biol 2022; 10:789073. [PMID: 35252169 PMCID: PMC8891931 DOI: 10.3389/fcell.2022.789073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer is a major health burden worldwide. Circular RNAs (circRNAs) are a novel family of noncoding RNAs that are involved in multiple types of cancers, including gastric cancer. As biological functions and the underlying molecular mechanisms of the newly identified circRNA circ0007360 have not been investigated, our present study focused on the role of circ0007360 in the progression of gastric cancer. After characterizing circ0007360 as a cytoplasmic circRNA, we revealed the inhibitory effects of circ0007260 on the survival, migration, invasion, and stemness of gastric cancer cells. Subsequently, miR-762 was identified as a direct target microRNA (miRNA) of circ0007360 and was proved to act as a vital downstream transcript to fulfill the tumor-promoting effects in the absence of circ0007360. Furthermore, we demonstrated that interferon regulatory factor 7 (IRF7), which was validated as a target gene of miR-762, serves as an indirect target of circ0007360 to attenuate the progression of gastric cancer. Moreover, in vivo experiments confirmed the potentiation of gastric cancer cell growth and stemness upon depletion of circ0007360. In summary, our results revealed that activation of the circ0007360/miR-762/IRF7 axis is a novel mechanism for the attenuation of gastric cancer progression. Our study unveils the diagnostic and therapeutic values of circ0007360 in patients with gastric cancer.
Collapse
Affiliation(s)
- Yawei Xing
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongxia Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zixiang Guo
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaodong Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xiaodong Zhou,
| |
Collapse
|
8
|
Ren J, Lu P, Zhou X, Liao Y, Liu X, Li J, Wang W, Wang J, Wen L, Fu W, Tang F. Genome-Scale Methylation Analysis of Circulating Cell-Free DNA in Gastric Cancer Patients. Clin Chem 2021; 68:354-364. [PMID: 34791072 DOI: 10.1093/clinchem/hvab204] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Aberrant DNA hypermethylation of CpG islands (CGIs) occurs frequently and is genome-wide in human gastric cancer (GC). A DNA methylation approach in plasma cell-free DNA (cfDNA) is attractive for the noninvasive detection of GC. Here, we performed genome-scale cfDNA methylation analysis in patients with GC. METHODS We used MCTA-Seq, a genome-scale DNA methylation analysis method, on the plasma samples of patients with GC (n = 89) and control participants (n = 82), as well as 28 pairs of GC and adjacent noncancerous tissues. The capacity of the method for detecting GC and discriminating GC from colorectal cancer (CRC) and hepatocellular carcinoma (HCC) was assessed. RESULTS We identified 153 cfDNA methylation biomarkers, including DOCK10, CABIN1, and KCNQ5, for detecting GC in blood. A panel of these biomarkers gave a sensitivity of 44%, 59%, 78%, and 100% for stage I, II, III, and IV tumors, respectively, at a specificity of 92%. CpG island methylation phenotype (CIMP) tumors and NON-CIMP tumors could be distinguished and detected effectively. We also identified several hundreds of cfDNA biomarkers differentially methylated between GC, CRC, and HCC, and showed that MCTA-Seq can discriminate early-stage GC, CRC, and HCC in blood by using a high specificity (approximately 100%) algorithm. CONCLUSIONS Our comprehensive analyses provided valuable data on cfDNA methylation biomarkers of GC and showed the promise of cfDNA methylation for the blood-based noninvasive detection of GC.
Collapse
Affiliation(s)
- Jie Ren
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ping Lu
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Xin Zhou
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Yuhan Liao
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Xiaomeng Liu
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Jingyi Li
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Wendong Wang
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Jilian Wang
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Lu Wen
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Wei Fu
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
9
|
Zong Z, Xin L, Tang X, Guo H. The clinical characteristics and prognostic value of IGFBP6 in glioma. Neurol Res 2021; 44:113-120. [PMID: 34396926 DOI: 10.1080/01616412.2021.1963620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Glioma is the most common intrinsic tumor in central nervous system and is characterized by their diffuse infiltration of the brain tissue. Insulin-like Growth Factor Binding Protein-6 (IGFBP6) was associated with the insulin-like growth factor binding and insulin-like growth factor II binding processes in many cancers. Herein, we aimed to investigate the biological functions and clinical features of IGFBP6 in gliomas. METHODS Totally, we collected 325 RNA sequencing data from CGGA dataset as training cohort, and 969 RNA sequencing data from TCGA dataset as validation cohort. The clinical and molecular characteristics analysis and gene ontology analysis of IGFBP6 were performed. All analyses and graphs were produced based on R language. RESULTS We found that IGFBP6 expression was significantly upregulated in GBM patients and downregulated in IDH mutant patients. Receiver Operating Characteristic (ROC) analysis revealed that IGFBP6 could be used as a biomarker to predict TCGA mesenchymal subtype. GO analysis revealed that IGFBP6 was correlated with immunological functions and inflammation activities. Meanwhile, higher expression of IGFBP6 suggested significant relationship with worse prognosis in glioma patients. CONCLUSIONS Our findings improved the understanding of IGFBP6 in glioma, and IGFBP6 might be a potential therapeutic target for glioma patients in future clinical trials.
Collapse
Affiliation(s)
- Zhitao Zong
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Li Xin
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Xueping Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| |
Collapse
|
10
|
Yang S, Gao T, Zheng Z, Lai B, Sheng L, Xu Z, Yan X, Wang J, Duan S, Ouyang G. GPX3 methylation is associated with hematologic improvement in low-risk myelodysplastic syndrome patients treated with Pai-Neng-Da. J Int Med Res 2020; 48:300060520956894. [PMID: 32967500 PMCID: PMC7520939 DOI: 10.1177/0300060520956894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Objective The aim of this prospective randomized controlled clinical trial was to explore the relationship between GPX3 methylation and Pai-Neng-Da (PND) in the treatment of patients with low-risk myelodysplastic syndrome (MDS). Methods There were 82 low-risk MDS patients who were randomly divided into the following two groups: androl, thalidomide, and PND capsule (ATP group, n = 41); or androl and thalidomide (AT group, n = 41). Hemoglobin and neutrophil and platelet counts and changes in GPX3 methylation level were assessed. Results The plasma hemoglobin level increased in both groups after treatment. However, the platelet count increased only in the ATP group. Patients in the ATP group had a better platelet response than the AT group, and GPX3 methylation markedly decreased after treatment with ATP but not after treatment with AT. Moreover, male patients had a significantly lower GPX3 methylation level than female patients, while platelet counts from male patients increased dramatically after the ATP regimens compared with female patients. GPX3 methylation changes were negatively correlated with platelet changes in ATP group. Conclusion PND can improve hematological parameters and decrease the GPX3 methylation level. Decreasing GPX3 methylation is associated with the hematologic response that includes platelet in GPX3 methylation. China Clinical Trial Bureau (ChiCTR;http://www.chictr.org.cn/) registration number: ChiCTR-IOR-15006635.
Collapse
Affiliation(s)
- Shujun Yang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Tong Gao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Zhonghua Zheng
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Binbin Lai
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Lixia Sheng
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Zhijuan Xu
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Xiao Yan
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Jiaping Wang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
11
|
Bianconi E, Casadei R, Frabetti F, Ventura C, Facchin F, Canaider S. Sex-Specific Transcriptome Differences in Human Adipose Mesenchymal Stem Cells. Genes (Basel) 2020; 11:909. [PMID: 32784482 PMCID: PMC7464371 DOI: 10.3390/genes11080909] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
In humans, sexual dimorphism can manifest in many ways and it is widely studied in several knowledge fields. It is increasing the evidence that also cells differ according to sex, a correlation still little studied and poorly considered when cells are used in scientific research. Specifically, our interest is on the sex-related dimorphism on the human mesenchymal stem cells (hMSCs) transcriptome. A systematic meta-analysis of hMSC microarrays was performed by using the Transcriptome Mapper (TRAM) software. This bioinformatic tool was used to integrate and normalize datasets from multiple sources and allowed us to highlight chromosomal segments and genes differently expressed in hMSCs derived from adipose tissue (hADSCs) of male and female donors. Chromosomal segments and differentially expressed genes in male and female hADSCs resulted to be related to several processes as inflammation, adipogenic and neurogenic differentiation and cell communication. Obtained results lead us to hypothesize that the donor sex of hADSCs is a variable influencing a wide range of stem cell biologic processes. We believe that it should be considered in biologic research and stem cell therapy.
Collapse
Affiliation(s)
- Eva Bianconi
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
| | - Raffaella Casadei
- Department for Life Quality Studies (QuVi), University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy;
| | - Flavia Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Federica Facchin
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Silvia Canaider
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| |
Collapse
|
12
|
Malyshev BS, Netesova NA, Smetannikova NA, Abdurashitov MA, Akishev AG, Dubinin EV, Azanov AZ, Vihlyanov IV, Nikitin MK, Karpov AB, Degtyarev SK. GLAD-PCR Assay of R(5mC)GY Sites in the Regulatory Region of Tumor-Suppressor Genes Associated with Gastric Cancer. Acta Naturae 2020; 12:124-133. [PMID: 33173602 PMCID: PMC7604892 DOI: 10.32607/actanaturae.11070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/22/2020] [Indexed: 11/23/2022] Open
Abstract
At early stages of carcinogenesis, the regulatory regions of some tumor suppressor genes become aberrantly methylated at RCGY sites, which are substrates of DNA methyltransferase Dnmt3. Identification of aberrantly methylated sites in tumor DNA is considered to be the first step in the development of epigenetic PCR test systems for early diagnosis of cancer. Recently, we have developed a GLAD-PCR assay, a method for detecting the R(5mC)GY site in the genome position of interest even at significant excess of DNA molecules with a non-methylated RCGY site in this location. The aim of the present work is to use the GLAD-PCR assay to detect the aberrantly methylated R(5mC)GY sites in the regulatory regions of tumor suppressor genes (brinp1, bves, cacna2d3, cdh11, cpeb1, epha7, fgf2, galr1, gata4, hopx, hs3st2, irx1, lrrc3b, pcdh10, rprm, runx3, sfrp2, sox17, tcf21, tfpi2, wnt5a, zfp82, and znf331) in DNA samples obtained from gastric cancer (GC) tissues. The study of the DNA samples derived from 29 tumor and 25 normal gastric tissue samples demonstrated a high diagnostic potential of the selected RCGY sites in the regulatory regions of the irx1, cacna2d3, and epha7 genes; the total indices of sensitivity and specificity for GC detection being 96.6% and 100%, respectively.
Collapse
Affiliation(s)
- B. S. Malyshev
- State Research Center of Virology and Biotechnology «Vector», Novosibirsk region, Koltsovo, 630559 Russia
| | - N. A. Netesova
- State Research Center of Virology and Biotechnology «Vector», Novosibirsk region, Koltsovo, 630559 Russia
| | - N. A. Smetannikova
- State Research Center of Virology and Biotechnology «Vector», Novosibirsk region, Koltsovo, 630559 Russia
| | | | | | | | - A. Z. Azanov
- Regional Clinical Oncology Center, Kemerovo, 650036 Russia
| | - I. V. Vihlyanov
- Altai Regional Oncology, CenterAltai region, Barnaul, 656049 Russia
| | - M. K. Nikitin
- Altai Regional Oncology, CenterAltai region, Barnaul, 656049 Russia
| | - A. B. Karpov
- Seversk Biophysical Research Centre, Tomsk region, Seversk, 636039 Russia
| | - S. Kh. Degtyarev
- State Research Center of Virology and Biotechnology «Vector», Novosibirsk region, Koltsovo, 630559 Russia
- EpiGene LLC, Novosibirsk, 630090 Russia
| |
Collapse
|
13
|
Stolwijk JM, Garje R, Sieren JC, Buettner GR, Zakharia Y. Understanding the Redox Biology of Selenium in the Search of Targeted Cancer Therapies. Antioxidants (Basel) 2020; 9:E420. [PMID: 32414091 PMCID: PMC7278812 DOI: 10.3390/antiox9050420] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/24/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022] Open
Abstract
Selenium (Se) is an essential trace nutrient required for optimal human health. It has long been suggested that selenium has anti-cancer properties. However, clinical trials have shown inconclusive results on the potential of Se to prevent cancer. The suggested role of Se in the prevention of cancer is centered around its role as an antioxidant. Recently, the potential of selenium as a drug rather than a supplement has been uncovered. Selenium compounds can generate reactive oxygen species that could enhance the treatment of cancer. Transformed cells have high oxidative distress. As normal cells have a greater capacity to meet oxidative challenges than tumor cells, increasing the flux of oxidants with high dose selenium treatment could result in cancer-specific cell killing. If the availability of Se is limited, supplementation of Se can increase the expression and activities of Se-dependent proteins and enzymes. In cell culture, selenium deficiency is often overlooked. We review the importance of achieving normal selenium biology and how Se deficiency can lead to adverse effects. We examine the vital role of selenium in the prevention and treatment of cancer. Finally, we examine the properties of Se-compounds to better understand how each can be used to address different research questions.
Collapse
Affiliation(s)
- Jeffrey M. Stolwijk
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, USA;
| | - Rohan Garje
- Department of Internal Medicine, Division of Medical Oncology and Hematology, The University of Iowa Hospital and Clinics—Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA;
| | - Jessica C. Sieren
- Departments of Radiology and Biomedical Engineering, The University of Iowa, Iowa City, IA 52242, USA;
| | - Garry R. Buettner
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, USA;
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - Yousef Zakharia
- Department of Internal Medicine, Division of Medical Oncology and Hematology, The University of Iowa Hospital and Clinics—Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA;
| |
Collapse
|
14
|
Geng G, Liu X, Xu A, Lu Z, Chen K, He J, Qi D, Yuan X. Low abundance of TFPI-2 by both promoter methylation and miR-27a-3p regulation is linked with poor clinical outcome in gastric cancer. J Gene Med 2020; 22:e3166. [PMID: 31984574 DOI: 10.1002/jgm.3166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The tumor suppressor role of tissue factor pathway inhibitor 2 (TFPI-2) has been reported in various tumors. The present study aimed to improve the understanding of the oncogenic properties of TFPI-2 in gastric cancer. METHODS Relative expression of TFPI-2 was determined by a real-time polymerase chain reaction (PCR) and western blotting, respectively. Cell viability was measured via a cell counting kit-8 assay and proliferation was evaluated by a colony formation assay. Cell apoptosis was assessed with a caspase-3 activity kit and invasion was evaluated by a transwell chamber assay. The methylation level of TFPI-2 promoter was assayed by methylation-specific PCR. The regulatory effect of miR-27a-3p on TFPI-2 was analyzed with a luciferase reporter assay. The direct association between miR-27a-3p and TFPI-2 was shown by biotin-labelling pulldown. RESULTS TFPI-2 was down-regulated in gastric cancer, which associated with an unfavorable prognosis clinically. Ectopic introduction of TFPI-2 greatly compromised cell viability, colony formation and invasive capacity, and also induced cell apoptosis simultaneously. The promoter region of TFPI-2 was extensively methylated in gastric cancer tissues compared to normal tissues, suggesting the epigenetic inhibition of TFPI-2 expression. We further identified that TFPI-2 functioned as sponge RNA against miR-27a-3p. Most importantly, miR-27a-3p-specific inhibitor significantly exerted a tumor suppressor function akin to TFPI-2 itself, and the anti-tumoral activities were completely abolished by TFPI-2 knockdown. CONCLUSIONS We found that the epigenetically suppressed TFPI-2 compromised sponging effects with respect to miR-27a-3p in gastric cancer, which consequently and mechanistically contributed to the tumor biology of gastric cancer.
Collapse
Affiliation(s)
- Guangyong Geng
- Department of General Surgery, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Liu
- PET-CT Center, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Aman Xu
- Department of General Surgery, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhen Lu
- Department of General Surgery, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kaiwei Chen
- Department of General Surgery, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Juntong He
- Department of General Surgery, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dongjiang Qi
- Department of General Surgery, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao Yuan
- Department of General Surgery, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
15
|
Ma XY, Ma Y, Zhou H, Zhang HJ, Sun MJ. Identification of the lncRNA-miRNA-mRNA network associated with gastric cancer via integrated bioinformatics analysis. Oncol Lett 2019; 18:5769-5784. [PMID: 31788050 PMCID: PMC6865131 DOI: 10.3892/ol.2019.10922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to investigate the long non-coding RNA (lncRNA)-microRNA (miRNA)-mRNA regulatory network in gastric cancer (GC) using bioinformatics analysis. Two mRNA gene expression profiles, GSE79973 and GSE54129, and two miRNA expression profiles, GSE93415 and GSE78091, were downloaded from the Gene Expression Omnibus database. The differentially expressed mRNAs (DEMs) and the differentially expressed miRNAs (DEMis) were merged separately. Gene ontology and pathway enrichment analysis were conducted using the Database for Annotation, Visualization and Integrated Discovery. A protein-protein interaction (PPI) network was then constructed and the 10 top hub genes in the network were analyzed using the Search Tool for the Retrieval of Interacting Genes. The lncRNA-miRNA-mRNA networks were visualized using Cytoscape software. As a result, 158 shared DEMs (40 upregulated and 118 downregulated) were identified from two mRNA datasets. A total of 30 upregulated miRNAs and 1 downregulated miRNA functioned as DEMis. The PPI network consisted of 129 nodes and 572 interactions. The 10 top hub genes were selected by degree using Cytohubba, including Jun proto-oncogene, mitogen-activated protein kinase (MAPK)3, transforming growth factor-β1, Fos proto-oncogene, AP-1 transcription factor subunit, interleukin (IL)-8, MAPK1, RELA proto-oncogene nuclear factor-κB subunit, interferon regulatory factor 7, ubiquitin like modifier and vascular endothelial growth factor A. In the lncRNA-miRNA-mRNA network, a total of 1,215 regulatory associations were constructed using Cytoscape. In conclusion, the present study provides a novel perspective of the molecular mechanisms underlying GC by identifying the lncRNA-miRNA-mRNA regulatory network via bioinformatics analysis.
Collapse
Affiliation(s)
- Xiao-Yu Ma
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yu Ma
- Department of Nuclear Medicine, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Huan Zhou
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hui-Jing Zhang
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ming-Jun Sun
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
16
|
Zhou C, Pan R, Li B, Huang T, Zhao J, Ying J, Duan S. GPX3 hypermethylation in gastric cancer and its prognostic value in patients aged over 60. Future Oncol 2019; 15:1279-1289. [PMID: 30924352 DOI: 10.2217/fon-2018-0674] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AIM This study investigated the association between GPX3 methylation and gastric cancer (GC), and explored its prognostic value in patients undergoing radical gastrectomy. MATERIALS & METHODS The methylation levels of tumor and paracancerous tissues were detected by quantitative methylation-specific PCR method. RESULTS GPX3 was hypermethylated in GC (p = 4E-4), and was specific for patients with lymphatic metastasis (+), tumor invasion depth >3 cm and patients with poor differentiation. Additionally, GPX3 hypermethylation predicts a tumor recurrence in patients aged >60 (p = 0.019). Data from The Cancer Genome Atlas (TCGA) further confirmed GPX3 hypermethylation (cg21504918: -0.08 vs -0.25, p = 0.001). Additionally, TCGA showed an inverse correlation between GPX3 methylation and expression (p = 7E-18, r = -0.427). Data analysis of Gene Expression Omnibus (GEO) database showed that 5-aza-2'-deoxycytidine demethylating agent increased GPX3 expression (fold-change >2.19, p = 0.001). CONCLUSION Our results indicated GPX3 hypermethylation in GC, and predicted a shorter tumor recurrence time in patients aged >60.
Collapse
Affiliation(s)
- Cong Zhou
- Medical Genetics Center, Department of Genetics, School of Medicine, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ranran Pan
- Medical Genetics Center, Department of Genetics, School of Medicine, Ningbo University, Ningbo, Zhejiang, PR China
| | - Bin Li
- Medical Genetics Center, Department of Genetics, School of Medicine, Ningbo University, Ningbo, Zhejiang, PR China
| | - Tianyi Huang
- Medical Genetics Center, Department of Genetics, School of Medicine, Ningbo University, Ningbo, Zhejiang, PR China
| | - Jun Zhao
- Medical Genetics Center, Department of Genetics, School of Medicine, Ningbo University, Ningbo, Zhejiang, PR China
| | - Jieer Ying
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, PR China
| | - Shiwei Duan
- Medical Genetics Center, Department of Genetics, School of Medicine, Ningbo University, Ningbo, Zhejiang, PR China
| |
Collapse
|
17
|
Abstract
Insulin-like growth factor-binding proteins (IGFBPs) 1-6 bind IGFs but not insulin with high affinity. They were initially identified as serum carriers and passive inhibitors of IGF actions. However, subsequent studies showed that, although IGFBPs inhibit IGF actions in many circumstances, they may also potentiate these actions. IGFBPs are widely expressed in most tissues, and they are flexible endocrine and autocrine/paracrine regulators of IGF activity, which is essential for this important physiological system. More recently, individual IGFBPs have been shown to have IGF-independent actions. Mechanisms underlying these actions include (i) interaction with non-IGF proteins in compartments including the extracellular space and matrix, the cell surface and intracellular space, (ii) interaction with and modulation of other growth factor pathways including EGF, TGF-β and VEGF, and (iii) direct or indirect transcriptional effects following nuclear entry of IGFBPs. Through these IGF-dependent and IGF-independent actions, IGFBPs modulate essential cellular processes including proliferation, survival, migration, senescence, autophagy and angiogenesis. They have been implicated in a range of disorders including malignant, metabolic, neurological and immune diseases. A more complete understanding of their cellular roles may lead to the development of novel IGFBP-based therapeutic opportunities.
Collapse
Affiliation(s)
- L A Bach
- Department of Medicine (Alfred)Monash University, Melbourne, Australia
- Department of Endocrinology and DiabetesAlfred Hospital, Melbourne, Australia
| |
Collapse
|
18
|
Abstract
Insulinlike growth factor (IGF) binding proteins (IGFBPs) 1 to 6 are high-affinity regulators of IGF activity. They generally inhibit IGF actions by preventing binding to the IGF-I receptor but can also enhance their actions under some conditions. Posttranslational modifications such as glycosylation and phosphorylation modulate IGFBP properties, and IGFBP proteolysis results in IGF release. IGFBPs have more recently been shown to have IGF-independent actions. A number of mechanisms are involved, including modulation of other growth factor pathways, nuclear localization and transcriptional regulation, interaction with the sphingolipid pathway, and binding to non-IGF biomolecules in the extracellular space and matrix, on the cell surface and intracellularly. IGFBPs modulate important biological processes, including cell proliferation, survival, migration, senescence, autophagy, and angiogenesis. Their actions have been implicated in growth, metabolism, cancer, stem cell maintenance and differentiation, and immune regulation. Recent studies have shown that epigenetic mechanisms are involved in the regulation of IGFBP abundance. A more complete understanding of IGFBP biology is necessary to further define their cellular roles and determine their therapeutic potential.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Endocrinology and Diabetes, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Bachu M, Dey A, Ozato K. Chromatin Landscape of the IRF Genes and Role of the Epigenetic Reader BRD4. J Interferon Cytokine Res 2018; 36:470-5. [PMID: 27379869 DOI: 10.1089/jir.2015.0179] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Histone post-translational modification patterns represent epigenetic states of genomic genes and denote the state of their transcription, past history, and future potential in gene expression. Genome-wide chromatin modification patterns reported from various laboratories are assembled in the ENCODE database, providing a fertile ground for understanding epigenetic regulation of any genes of interest across many cell types. The IRF family genes critically control innate immunity as they direct expression and activities of interferons. While these genes have similar structural and functional traits, their chromatin landscapes and epigenetic features have not been systematically evaluated. Here, by mining ENCODE database using an imputational approach, we summarize chromatin modification patterns for 6 of 9 IRF genes and show characteristic features that connote their epigenetic states. BRD4 is a BET bromodomain protein that "reads and translates" epigenetic marks into transcription. We review recent findings that BRD4 controls constitutive and signal-dependent transcription of many genes, including IRF genes. BRD4 dynamically binds to various genomic genes with a spatial and temporal specificity. Of particular importance, BRD4 is shown to critically regulate IRF-dependent anti-pathogen protection, inflammatory responses triggered by NF-κB, and the growth and spread of many cancers. The advent of small molecule inhibitors that disrupt binding of BET bromdomain to acetylated histone marks has opened new therapeutic possibilities for cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Mahesh Bachu
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland
| | - Anup Dey
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
20
|
Hu H, Chen X, Wang C, Jiang Y, Li J, Ying X, Yang Y, Li B, Zhou C, Zhong J, Wu D, Ying J, Duan S. The role of TFPI2 hypermethylation in the detection of gastric and colorectal cancer. Oncotarget 2017; 8:84054-84065. [PMID: 29137404 PMCID: PMC5663576 DOI: 10.18632/oncotarget.21097] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/28/2017] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal cancer is a prevalent disease with high morbidity and mortality. Tissue factor pathway inhibitor 2 (TFPI2) gene could protect the extracellular matrix of cancer cells from degradation and tumor invasion. The goal of our study was to estimate the diagnostic value of TFPI2 hypermethylation in gastric cancer (GC) and colorectal cancer (CRC). TFPI2 methylation was measured by quantitative methylation-specific polymerase chain reaction (qMSP) method in 114 GC and 80 CRC tissues and their paired non-tumor tissues. Our results showed that TFPI2 methylation was significantly higher in tumor tissues (GC: 29.940% vs. 12.785%, P < 0.001; CRC: 26.930% vs. 5.420%, P < 0.001). The methylation level of TFPI2 in colorectal tumor tissues was significantly higher than that in colorectal normal tissues (26.930% versus 0.002%, P < 0.00001). In GC, TFPI2 hypermethylation yielded an area under the curve (AUC) of 0.762 (95% CI: 0.696–0.828) with a sensitivity of 68% and a specificity of 83%. In CRC, TFPI2 hypermethylation yielded an AUC of 0.759 (95% CI: 0.685–0.834) with a sensitivity of 61% and a specificity of 84%. Similarly, TCGA data also supported TFPI2 hypermethylation was a promising diagnostic marker for GC and CRC. Moreover, the dual-luciferase reporter assay showed TFPI2 fragment could upregulate gene expression (fold change = 5, P = 0.005). Data mining further indicated that TFPI2 expression in CRC cell lines was significantly increased after 5’-AZA-deoxycytidine treatment (fold change > 1.37). In conclusion, TFPI2 hypermethylation might be a promising diagnostic biomarker for GC and CRC.
Collapse
Affiliation(s)
- Haochang Hu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaoying Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Cheng Wang
- Department of Medical Oncology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Zhejiang 312000, China
| | - Yuting Jiang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jingjing Li
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Xiuru Ying
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yong Yang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jie Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Dongping Wu
- Department of Medical Oncology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Zhejiang 312000, China
| | - Jieer Ying
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
21
|
Abstract
Chemopreventive activity of selenium (Se) may influence epigenome. In this review, we have discussed two aspects of Se and epigenetics in cancer, related to (1) the association between Se and epigenetic regulation in cancer development and prevention; (2) epigenetic modification of selenoprotein-encoding genes in different cancers. In both issues, we focused on DNA methylation as the most investigated epigenetic mechanism. The existing evidence from experimental data in human cancer cell lines, rodents, and human studies in cancer-free subjects indicates that: high Se exposure leads to the inhibition of DNA methyltransferase expression/activity; the association between Se and global methylation remains unclear and requires further investigation with respect to the underlying mechanisms and possible nonlinear character of this relationship; Se affects methylation of specific tumor suppressor genes, possibly in a sex-dependent manner; and cancer phenotype is often characterized by altered methylation of selenoprotein-encoding genes, mainly glutathione peroxidase 3.
Collapse
Affiliation(s)
- Ewa Jabłońska
- Nofer Institute of Occupational Medicine, Lodz, Poland.
| | - Edyta Reszka
- Nofer Institute of Occupational Medicine, Lodz, Poland
| |
Collapse
|
22
|
Nemtsova MV, Strelnikov VV, Tanas AS, Bykov II, Zaletaev DV, Rudenko VV, Glukhov AI, Kchorobrich TV, Li Y, Tarasov VV, Barreto GE, Aliev G. Implication of Gastric Cancer Molecular Genetic Markers in Surgical Practice. Curr Genomics 2017; 18:408-415. [PMID: 29081696 PMCID: PMC5635646 DOI: 10.2174/1389202918666170329110021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/17/2016] [Accepted: 03/20/2016] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION We have investigated aberrant methylation of genes CDH1, RASSF1A, MLH1, N33, DAPK, expression of genes hTERT, MMP7, MMP9, BIRC5 (survivin), PTGS2, and activity of telomerase of 106 gastric tumor samples obtained intra-operatively and 53 gastric tumor samples from the same group of patients obtained endoscopically before surgery. Biopsy specimens obtained from 50 patients with chronic calculous cholecystitis were used as a control group. Together with tissue samples obtained from different sites remote to tumors, a total of 727 samples have been studied. The selected parameters comprise a system of molecular markers that can be used in both diagnostics of gastric cancer and in dynamic monitoring of patients after surgery. Special attention was paid to the use of molecular markers for the diagnostics of malignant process in the material obtained endoscopically since the efficacy of morphological diagnostics in biopsies is compromised by intratumoral heterogeneity, which may prevent reliable identification of tumor cells in the sampling. Our data indicated that certain molecular genetic events provided more sensitive yet specific markers of the tumor. CONCLUSION We demonstrated that molecular profiles detected in preoperative biopsies were confirmed by the material obtained intra-operatively. The use of endoscopic material facilitates gastric tumors pre-operative diagnostics, improving early detection of gastric cancer and potential effective treatment strategies.
Collapse
Affiliation(s)
- Marina V Nemtsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Russian Ministry of Health, Trubetskaya St. 8/2, Moscow, 119991, Russian Federation.,Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, Ministry of Health of the Russian Federation, Moscow, 119991, Russian Federation
| | | | - Alexander S Tanas
- Research Centre for Medical Genetics, Moskvorechie St. 1, 115472, Moscow, Russia
| | - Igor I Bykov
- Department No 1, Medical Faculty, Faculty Surgery, Sechenov First Moscow State Medical University, Russian Ministry of Health, Trubetskaya St. 8/2, Moscow, 119991, Russian Federation
| | - Dmitry V Zaletaev
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Russian Ministry of Health, Trubetskaya St. 8/2, Moscow, 119991, Russian Federation.,Research Centre for Medical Genetics, Moskvorechie St. 1, 115472, Moscow, Russia
| | - Viktoria V Rudenko
- Research Centre for Medical Genetics, Moskvorechie St. 1, 115472, Moscow, Russia
| | - Alexander I Glukhov
- Department of Biochemistry, Sechenov First Moscow State Medical University, Russian Ministry of Health, Trubetskaya, 8/2, Moscow, 119991, Russian Federation.,National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Tatiana V Kchorobrich
- Department No 1, Medical Faculty, Faculty Surgery, Sechenov First Moscow State Medical University, Russian Ministry of Health, Trubetskaya St. 8/2, Moscow, 119991, Russian Federation
| | - Yi Li
- Department of Human Sciences, Texas A&M University-Kingsville, TX 78363, USA
| | - Vadim V Tarasov
- Institute of Pharmacy and Translational Medicine, Sechenov First Moscow State Medical University, 119991Moscow, Russia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, BogotáD.C., Colombia
| | - Gjumrakch Aliev
- "GALLY" International Biomedical Research Consulting LLC, San Antonio, TX78229, USA.,School of Health Sciences, University of Atlanta, Johns Creek, GA 30097, USA.,Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| |
Collapse
|
23
|
Wang LL, Chen ZS, Zhou WD, Shu J, Wang XH, Jin R, Zhuang LL, Hoda MA, Zhang H, Zhou GP. Down-regulated GATA-1 up-regulates interferon regulatory factor 3 in lung adenocarcinoma. Sci Rep 2017; 7:2551. [PMID: 28566697 PMCID: PMC5451405 DOI: 10.1038/s41598-017-02700-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/19/2017] [Indexed: 12/18/2022] Open
Abstract
Interferon regulatory factor 3 (IRF-3) is widely known for its prompt response against viral infection by activating the interferon system. We previously reported that E2F1, Sp1 and Sp3 regulated transcriptional activity of IRF-3. Recently, different expression patterns of IRF-3 were found in lung cancer, leading to the alternation of the immunomodulatory function in tumorigenesis. However, the mechanism of transcriptional regulation of IRF-3 in lung cancer has not been extensively studied. Here, we investigated the characterization of IRF-3 promoter and found that GATA-1 bound to a specific domain of IRF-3 promoter in vitro and in vivo. We found elevated IRF-3 and decreased GATA-1 gene expression in lung adenocarcinoma in Oncomine database. Additionally, higher IRF-3 gene expression was observed in human lung adenocarcinoma, accompanied by aberrant GATA-1 protein expression. We further analyzed the relationship of GATA-1 and IRF-3 expression in lung adenocarcinoma cell lines and found that inhibition of GATA-1 by siRNA increased the promoter activity, mRNA and protein levels of IRF-3, while over-expression of GATA-1 down-regulated IRF-3 gene expression. Taken together, we conclude that reduced GATA-1 could be responsible for the upregulation of IRF-3 in lung adenocarcinoma cells through binding with a specific domain of IRF-3 promoter.
Collapse
Affiliation(s)
- Lu-Lu Wang
- Dpartment of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zheng-Sen Chen
- Department of Urology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wen-Di Zhou
- Dpartment of Pediatrics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Jin Shu
- Department of Pediatric Respiration, Affiliated Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Xiao-Hua Wang
- Dpartment of Pediatrics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Rui Jin
- Dpartment of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li-Li Zhuang
- Dpartment of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Mir Alireza Hoda
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Hao Zhang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| | - Guo-Ping Zhou
- Dpartment of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
24
|
Bach LA. Current ideas on the biology of IGFBP-6: More than an IGF-II inhibitor? Growth Horm IGF Res 2016; 30-31:81-86. [PMID: 27681092 DOI: 10.1016/j.ghir.2016.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 12/22/2022]
Abstract
IGFBP-6 binds IGF-II with higher affinity than IGF-I and it is a relatively specific inhibitor of IGF-II actions. More recently, IGFBP-6 has also been reported to have IGF-independent effects on cell proliferation, survival, differentiation and migration. IGFBP-6 binds to several ligands in the extracellular space, cytoplasm and nucleus. These interactions, together with activation of distinct intracellular signaling pathways, may contribute to its IGF-independent actions; for example, IGF-independent migration induced by IGFBP-6 involves interaction with prohibitin-2 and activation of MAP kinase pathways. A major challenge for the future is delineating the relative roles of the IGF-dependent and -independent actions of IGFBP-6, which may lead to the development of therapeutic approaches for diseases including cancer.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Medicine (Alfred), Monash University, Prahran 3181, Australia; Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne 3004, Australia.
| |
Collapse
|
25
|
An BC, Jung NK, Park CY, Oh IJ, Choi YD, Park JI, Lee SW. Epigenetic and Glucocorticoid Receptor-Mediated Regulation of Glutathione Peroxidase 3 in Lung Cancer Cells. Mol Cells 2016; 39:631-8. [PMID: 27484907 PMCID: PMC4990756 DOI: 10.14348/molcells.2016.0164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 11/27/2022] Open
Abstract
Glutathione peroxidase 3 (GPx3), an antioxidant enzyme, acts as a modulator of redox signaling, has immunomodulatory function, and catalyzes the detoxification of reactive oxygen species (ROS). GPx3 has been identified as a tumor suppressor in many cancers. Although hyper-methylation of the GPx3 promoter has been shown to down-regulate its expression, other mechanisms by which GPx3 expression is regulated have not been reported. The aim of this study was to further elucidate the mechanisms of GPx3 regulation. GPx3 gene analysis predicted the presence of ten glucocorticoid response elements (GREs) on the GPx3 gene. This result prompted us to investigate whether GPx3 expression is regulated by the glucocorticoid receptor (GR), which is implicated in tumor response to chemotherapy. The corticosteroid dexamethasone (Dex) was used to examine the possible relationship between GR and GPx3 expression. Dex significantly induced GPx3 expression in H1299, H1650, and H1975 cell lines, which exhibit low levels of GPx3 expression under normal conditions. The results of EMSA and ChIP-PCR suggest that GR binds directly to GRE 6 and 7, both of which are located near the GPx3 promoter. Assessment of GPx3 transcription efficiency using a luciferase reporter system showed that blocking formation of the GR-GRE complexes reduced luciferase activity by 7-8-fold. Suppression of GR expression by siRNA transfection also induced down-regulation of GPx3. These data indicate that GPx3 expression can be regulated independently via epigenetic or GR-mediated mechanisms in lung cancer cells, and suggest that GPx3 could potentiate glucocorticoid (GC)-mediated anti-inflammatory signaling in lung cancer cells.
Collapse
Affiliation(s)
- Byung Chull An
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128,
Korea
| | - Nak-Kyun Jung
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128,
Korea
- Research Institute of Medical Sciences, Chonnam National University, Hwasun 58128,
Korea
| | - Chun Young Park
- Department of Pathology, Chonnam National University Medical School, Hwasun 58128,
Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun 58128,
Korea
| | - Yoo-Duk Choi
- Department of Pathology, Chonnam National University Medical School, Hwasun 58128,
Korea
| | - Jae-Il Park
- Animal Facility of Aging Science, Korea Basic Science Institute, Gwangju 61186,
Korea
| | - Seung-won Lee
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128,
Korea
- Research Institute of Medical Sciences, Chonnam National University, Hwasun 58128,
Korea
| |
Collapse
|
26
|
Nguyen A, Duquette N, Mamarbachi M, Thorin E. Epigenetic Regulatory Effect of Exercise on Glutathione Peroxidase 1 Expression in the Skeletal Muscle of Severely Dyslipidemic Mice. PLoS One 2016; 11:e0151526. [PMID: 27010651 PMCID: PMC4806847 DOI: 10.1371/journal.pone.0151526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/28/2016] [Indexed: 11/19/2022] Open
Abstract
Exercise is an effective approach for primary and secondary prevention of cardiovascular diseases (CVD) and loss of muscular mass and function. Its benefits are widely documented but incompletely characterized. It has been reported that exercise can induce changes in the expression of antioxidant enzymes including Sod2, Trx1, Prdx3 and Gpx1 and limits the rise in oxidative stress commonly associated with CVD. These enzymes can be subjected to epigenetic regulation, such as DNA methylation, in response to environmental cues. The aim of our study was to determine whether in the early stages of atherogenesis, in young severely dyslipidemic mice lacking LDL receptors and overexpressing human ApoB100 (LDLR-/-; hApoB+/+), exercise regulates differentially the expression of antioxidant enzymes by DNA methylation in the skeletal muscles that consume high levels of oxygen and thus generate high levels of reactive oxygen species. Expression of Sod2, Txr1, Prdx3 and Gpx1 was altered by 3 months of exercise and/or severe dyslipidemia in 6-mo dyslipidemic mice. Of these genes, only Gpx1 exhibited changes in DNA methylation associated with dyslipidemia and exercise: we observed both increased DNA methylation with dyslipidemia and a transient decrease in DNA methylation with exercise. These epigenetic alterations are found in the second exon of the Gpx1 gene and occur alongside with inverse changes in mRNA expression. Inhibition of expression by methylation of this specific locus was confirmed in vitro. In conclusion, Gpx1 expression in the mouse skeletal muscle can be altered by both exercise and dyslipidemia through changes in DNA methylation, leading to a fine regulation of free radical metabolism.
Collapse
Affiliation(s)
- Albert Nguyen
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Natacha Duquette
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Maya Mamarbachi
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Eric Thorin
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
27
|
Kashyap MK. Role of insulin-like growth factor-binding proteins in the pathophysiology and tumorigenesis of gastroesophageal cancers. Tumour Biol 2015; 36:8247-8257. [PMID: 26369544 DOI: 10.1007/s13277-015-3972-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/21/2015] [Indexed: 02/07/2023] Open
Abstract
The insulin family of proteins include insulin-like growth factor binding proteins (IGFBPs) that are classified into two groups based on their differential affinities to IGFs: IGF high-affinity binding proteins (IGFBP1-6) and IGF low-affinity IGFBP-related proteins (IGFBP-rP1-10). IGFBPs interact with many proteins, including their canonical ligands insulin-like growth factor 1 (IGF-I) and IGF-II. Together with insulin-like growth factor 1 (IGF1) receptor (IGF1R), IGF2R, and ligands (IGF1 and IGF2), IGFBPs participate in a complex signaling axis called IGF-IGFR-IGFBP. Numerous studies have demonstrated that the IGF-IGFR-IGFBP axis is relevant in gastrointestinal (GI) and other cancers. The presence of different IGFBPs have been reported in gastrointestinal cancers, including esophageal squamous cell carcinoma (ESCC), esophageal adenocarcinoma (EAD or EAC), and gastric adenocarcinoma (GAD or GAC). A literature-based survey clearly indicates that an urgent need exists for a focused review of the role of IGFBPs in gastrointestinal cancers. The aim of this review is to present the biochemical and molecular characteristics of IGFBPs with an emphasis specifically on the role of these proteins in the pathophysiology and tumorigenesis of gastroesophageal cancers.
Collapse
Affiliation(s)
- Manoj K Kashyap
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA.
- Department of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India.
| |
Collapse
|
28
|
Tan RYC, Ngeow J. Hereditary diffuse gastric cancer: What the clinician should know. World J Gastrointest Oncol 2015; 7:153-160. [PMID: 26380059 PMCID: PMC4569593 DOI: 10.4251/wjgo.v7.i9.153] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 02/05/2023] Open
Abstract
Hereditary diffuse gastric cancer (HDGC) is an inherited autosomal dominant syndrome with a penetrance of up to 80% affecting diverse geographic populations. While it has been shown to be caused mainly by germline alterations in the E-cadherin gene (CDH1), problematically, the genetic diagnosis remains unknown in up to 60% of patients. Given the important knowledge gaps regarding the syndrome, asymptomatic carriers of CDH1 mutations are advised for a prophylactic total gastrectomy. Intensive annual endoscopic surveillance is the alternative for carriers who decline gastrectomy. As HDGCs have a prolonged indolent phase, this provides a window of opportunity for surveillance and treatment. Recent findings of other gene defects in CTNNA1 and MAP3K6, as well as further characterization of CDH1 mutations and their pathogenicity will change the way HDGC patients are counselled for screening, surveillance and treatment. This review will bring the reader up to date with these changes and discuss future directions for research; namely more accurate risk stratification and surveillance methods to improve clinical care of HDGC patients.
Collapse
|
29
|
Potential of DNA methylation in rectal cancer as diagnostic and prognostic biomarkers. Br J Cancer 2015; 113:1035-45. [PMID: 26335606 PMCID: PMC4651135 DOI: 10.1038/bjc.2015.303] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 06/17/2015] [Accepted: 07/30/2015] [Indexed: 12/15/2022] Open
Abstract
Background: Aberrant DNA methylation is more prominent in proximal compared with distal colorectal cancers. Although a number of methylation markers were identified for colon cancer, yet few are available for rectal cancer. Methods: DNA methylation differences were assessed by a targeted DNA microarray for 360 marker candidates between 22 fresh frozen rectal tumour samples and 8 controls and validated by microfluidic high-throughput and methylation-sensitive qPCR in fresh frozen and formalin-fixed paraffin-embedded (FFPE) samples, respectively. The CpG island methylator phenotype (CIMP) was assessed by MethyLight in FFPE material from 78 patients with pT2 and pT3 rectal adenocarcinoma. Results: We identified and confirmed two novel three-gene signatures in fresh frozen samples that can distinguish tumours from adjacent tissue as well as from blood with a high sensitivity and specificity of up to 1 and an AUC of 1. In addition, methylation of individual CIMP markers was associated with specific clinical parameters such as tumour stage, therapy or patients' age. Methylation of CDKN2A was a negative prognostic factor for overall survival of patients. Conclusions: The newly defined methylation markers will be suitable for early disease detection and monitoring of rectal cancer.
Collapse
|
30
|
Kanda M, Shimizu D, Fujii T, Sueoka S, Tanaka Y, Ezaka K, Takami H, Tanaka H, Hashimoto R, Iwata N, Kobayashi D, Tanaka C, Yamada S, Nakayama G, Sugimoto H, Koike M, Fujiwara M, Kodera Y. Function and diagnostic value of Anosmin-1 in gastric cancer progression. Int J Cancer 2015; 138:721-30. [PMID: 26270236 DOI: 10.1002/ijc.29803] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/20/2015] [Indexed: 12/15/2022]
Abstract
Gastric cancer (GC) is a major global health problem that urgently requires novel molecular biomarkers for patient stratification as well as therapeutic targets. Anosmin-1 (ANOS1) gene encodes a cell adhesion molecule that plays diverse roles in multiple malignancies. We performed global expression profiling of GC cell lines and small interfering RNA (siRNA) experiments to determine the effect of ANOS1 expression on phenotype. We evaluated the association of ANOS1 mRNA and protein levels in patients' tissue and sera with clinicopathological factors of GC subtypes. Differential expression of ANOS1 mRNA by GC cell lines correlated positively to levels of ITGAV, FOXC2 and NODAL mRNAs and inversely with those of TFPI2. Inhibiting ANOS1 expression decreased the proliferation, invasion and migration of GC cells. The mean level of ANOS1 mRNA was significantly higher in 237 GC tissues compared with the corresponding noncancerous adjacent tissues. Elevated ANOS1 levels associated significantly with the phenotypes of GC, shorter disease-free and overall survival. ANOS1 expression was a more significant prognostic marker for diffuse and distal nondiffuse GC. ANOS1 concentrations in sera increased sequentially in sera of healthy subjects, localized GC and disseminated GCs. Prognosis was worse for patients with preoperative serum ANOS1 ≥ 600 pg/ml compared with those with <600 pg/ml. ANOS1 may represent a biomarker for GC phenotypes and as a target for therapy.
Collapse
Affiliation(s)
- Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Sueoka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuri Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Ezaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haruyoshi Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryoji Hashimoto
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Iwata
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Kobayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Sugimoto
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
31
|
Cao S, Yan B, Lu Y, Zhang G, Li J, Zhai W, Guo W, Zhang S. Methylation of promoter and expression silencing of GPX3 gene in hepatocellular carcinoma tissue. Clin Res Hepatol Gastroenterol 2015; 39:198-204. [PMID: 25445749 DOI: 10.1016/j.clinre.2014.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND/AIMS Accumulating evidence has identified transcriptional silencing by aberrant methylation of CpG islands as a potential mechanism for the inactivation of tumor suppressor genes. The role of aberrant methylation of the GPX3 promoter in hepatocellular carcinoma (HCC) is not yet clear. We investigated the association of the status of GPX3 promoter methylation and GPX3 protein expression with the clinicopathological progression of HCC. METHODOLOGY Sixty HCC tumor and matched non-cancerous tissues were included in this study, and methylation was examined using MSP. GPX3 mRNA and protein levels were evaluated using RT-PCR and western blot analysis, respectively. Clinicopathological data were compiled for correlation analyses. RESULTS Among the 60 HCC cases, 76.7% (46/60) showed at elevated DNA methylation and displayed significantly lower levels of GPX3 mRNA and protein expression. Low or undetectable GPX3 protein expression was observed in 10 of 60 tumors. GPX3 promoter methylation was detected in 46 of 60 (76.7%) tumors, while no GPX3 gene promoter methylation was observed in the matched non-cancerous specimens. There was a negative correlation between promoter methylation and GPX3 mRNA levels (P<0.05). Analysis of clinicopathological data revealed that both mRNA and protein were significantly associated with portal tumor thrombosis, metastasis and differentiation. In additional, GPX3 methylation showed a relationship with portal tumor thrombosis, metastasis and differentiation. CONCLUSIONS Our results suggest that promoter methylation may be a mechanism for inactivation of GPX3, possibly leading to subsequent carcinogenesis and progression of HCC.
Collapse
Affiliation(s)
- Shengli Cao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Bing Yan
- Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yantao Lu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Gong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
32
|
Bach LA. Recent insights into the actions of IGFBP-6. J Cell Commun Signal 2015; 9:189-200. [PMID: 25808083 DOI: 10.1007/s12079-015-0288-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/16/2015] [Indexed: 12/28/2022] Open
Abstract
IGFBP-6 is an O-linked glycoprotein that preferentially binds IGF-II over IGF-I. It is a relatively selective inhibitor of IGF-II actions including proliferation, survival and differentiation of a wide range of cells. IGFBP-6 has recently been shown to have a number of IGF-independent actions, including promotion of apoptosis in some cells and inhibition of angiogenesis. IGFBP-6 also induces migration of tumour cells including rhabdomyosarcomas by an IGF-independent mechanism. This chemotactic effect is mediated by MAP kinases. IGFBP-6 binds to prohibitin-2 on the cell surface and the latter is required for IGFBP-6-induced migration by a mechanism that is independent of MAP kinases. IGFBP-6 may enter the nucleus and modulate cell survival and differentiation. IGFBP-6 expression is decreased in a number of cancer cells and it has been postulated to act as a tumour suppressor. IGFBP-6 expression is increased in a smaller number of cancers, which may reflect a compensatory mechanism to control IGF-II actions or IGF-independent actions. The relative balance of IGF-dependent and IGF-independent actions of IGFBP-6 in vivo together with the related question regarding the roles of IGFBP-6 binding to IGF and non-IGF ligands are keys to understanding the physiological role of this protein.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Medicine (Alfred), Monash University, Prahran, 3181, Australia,
| |
Collapse
|
33
|
Theophilou G, Paraskevaidi M, Lima KMG, Kyrgiou M, Martin-Hirsch PL, Martin FL. Extracting biomarkers of commitment to cancer development: potential role of vibrational spectroscopy in systems biology. Expert Rev Mol Diagn 2015; 15:693-713. [DOI: 10.1586/14737159.2015.1028372] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Shigeyasu K, Nagasaka T, Mori Y, Yokomichi N, Kawai T, Fuji T, Kimura K, Umeda Y, Kagawa S, Goel A, Fujiwara T. Clinical Significance of MLH1 Methylation and CpG Island Methylator Phenotype as Prognostic Markers in Patients with Gastric Cancer. PLoS One 2015; 10:e0130409. [PMID: 26121593 PMCID: PMC4488282 DOI: 10.1371/journal.pone.0130409] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/20/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND To improve the outcome of patients suffering from gastric cancer, a better understanding of underlying genetic and epigenetic events in this malignancy is required. Although CpG island methylator phenotype (CIMP) and microsatellite instability (MSI) have been shown to play pivotal roles in gastric cancer pathogenesis, the clinical significance of these events on survival outcomes in patients with gastric cancer remains unknown. METHODS This study included a patient cohort with pathologically confirmed gastric cancer who had surgical resections. A cohort of 68 gastric cancers was analyzed. CIMP and MSI statuses were determined by analyzing promoter CpG island methylation status of 28 genes/loci, and genomic instability at 10 microsatellite markers, respectively. A Cox's proportional hazards model was performed for multivariate analysis including age, stage, tumor differentiation, KRAS mutation status, and combined CIMP/MLH1 methylation status in relation to overall survival (OS). RESULTS By multivariate analysis, longer OS was significantly correlated with lower pathologic stage (P = 0.0088), better tumor differentiation (P = 0.0267) and CIMP-high and MLH1 3' methylated status (P = 0.0312). Stratification of CIMP status with regards to MLH1 methylation status further enabled prediction of gastric cancer prognosis. CONCLUSIONS CIMP and/or MLH1 methylation status may have a potential to be prognostic biomarkers for patients with gastric cancer.
Collapse
Affiliation(s)
- Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
- Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, United States of America
| | - Takeshi Nagasaka
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
- * E-mail: (TN); (AG)
| | - Yoshiko Mori
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Naosuke Yokomichi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Takashi Kawai
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Tomokazu Fuji
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Keisuke Kimura
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Yuzo Umeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Ajay Goel
- Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, United States of America
- * E-mail: (TN); (AG)
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| |
Collapse
|
35
|
Lee KJ, Ye JS, Choe H, Nam YR, Kim N, Lee U, Joo CH. Serine cluster phosphorylation liberates the C-terminal helix of IFN regulatory factor 7 to bind histone acetyltransferase p300. THE JOURNAL OF IMMUNOLOGY 2014; 193:4137-48. [PMID: 25225665 DOI: 10.4049/jimmunol.1401290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
IFN regulatory factor 7 (IRF7) is a major regulator of type I (αβ) IFN secretion. A growing body of evidence shows that IRF7 is involved in a wide variety of pathologic conditions in addition to infections; however, the detailed mechanism of IRF7 transactivation remains elusive. Our current knowledge of IRF7 transactivation is based on studies of IRF3, another major regulator of IFN-β secretion. IRF3 and IRF7 are closely related homologs with high sequence similarity in their C-terminal regions, and both proteins are activated by phosphorylation of a specific serine cluster (SC). Nevertheless, the functional domains of the two proteins are arranged in an inverted manner. We generated a model structure of the IRF7 C-terminal region using homology modeling and used it to guide subsequent functional domain studies. The model structure led to the identification of a tripod-helix structure containing the SC. Based on the model and experimental data, we hypothesized that phosphorylation-mediated IRF7 transactivation is controlled by a tripod-helix structure. Inducible IκB kinase binds a tripod-helix structure. Serial phosphorylation of the SC by the kinase liberates C-terminal helix from an inhibitory hydrophobic pocket. A histone acetyltransferase P300 binds the liberated helix. The difference in the P300 binding sites explains why the domain arrangement of IRF7 is inverted relative to that of IRF3.
Collapse
Affiliation(s)
- Kyoung Jin Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Jung Sook Ye
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Han Choe
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736, Korea; Department of Physiology, University of Ulsan College of Medicine, Seoul 138-736, Korea; and
| | - Young Ran Nam
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Nari Kim
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Uk Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Chul Hyun Joo
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 138-736, Korea; Cell Dysfunction Research Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| |
Collapse
|
36
|
Nakamura J, Tanaka T, Kitajima Y, Noshiro H, Miyazaki K. Methylation-mediated gene silencing as biomarkers of gastric cancer: A review. World J Gastroenterol 2014; 20:11991-12006. [PMID: 25232236 PMCID: PMC4161787 DOI: 10.3748/wjg.v20.i34.11991] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/29/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Despite a decline in the overall incidence of gastric cancer (GC), the disease remains the second most common cause of cancer-related death worldwide and is thus a significant global health problem. The best means of improving the survival of GC patients is to screen for and treat early lesions. However, GC is often diagnosed at an advanced stage and is associated with a poor prognosis. Current diagnostic and therapeutic strategies have not been successful in decreasing the global burden of the disease; therefore, the identification of reliable biomarkers for an early diagnosis, predictive markers of recurrence and survival and markers of drug sensitivity and/or resistance is urgently needed. The initiation and progression of GC depends not only on genetic alterations but also epigenetic changes, such as DNA methylation and histone modification. Aberrant DNA methylation is the most well-defined epigenetic change in human cancers and is associated with inappropriate gene silencing. Therefore, an increasing number of genes methylated at the promoter region have been targeted as possible biomarkers for different purposes, including early detection, classification, the assessment of the tumor prognosis, the development of therapeutic strategies and patient follow-up. This review article summarizes the current understanding and recent evidence regarding DNA methylation markers in GC with a focus on the clinical potential of these markers.
Collapse
|
37
|
Lai YH, He RY, Chou JL, Chan MWY, Li YF, Tai CK. Promoter hypermethylation and silencing of tissue factor pathway inhibitor-2 in oral squamous cell carcinoma. J Transl Med 2014; 12:237. [PMID: 25179542 PMCID: PMC4160550 DOI: 10.1186/s12967-014-0237-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/21/2014] [Indexed: 02/02/2023] Open
Abstract
Background The treatment of oral squamous cell carcinoma (OSCC) following early detection is associated with good outcomes. Therefore, the survival and prognosis of OSCC patients could be hugely improved by identifying reliable biomarkers for the early diagnosis of the disease. Our previous methylation microarray analysis results have suggested that the gene encoding tissue factor pathway inhibitor-2 (TFPI-2) is a potential clinical predictor as well as a key regulator involved in OSCC malignancy. Methods Methylation of the TFPI-2 promoter in oral tissue specimens was evaluated by bisulfite sequencing assay, quantitative methylation-specific PCR, and pyrosequencing assay. The differences in methylation levels among the groups were compared using the Mann–Whitney U test. The area under the receiver operating characteristic curve (AUROC) was used to evaluate the discrimination ability for detecting OSCC. Cellular TFPI-2 expression was analyzed by quantitative reverse-transcription PCR before and after treatment with 5′-aza-2′-deoxycytidine and trichostatin A, to confirm whether TFPI-2 was epigenetically silenced in OSCC cells. We investigated whether TFPI-2 plays a role as a tumor suppressor by establishing TFPI-2-overexpressing OSCC cells and subjecting them to in vitro cellular proliferation, migration, and invasion assays, as well as an in vivo metastasis assay. Results TFPI-2 was hypermethylated in OSCC tissues versus normal oral tissues (P < 0.0001), with AUROC = 0.91, when using a pyrosequencing assay to quantify the methylation level. TFPI-2 silencing in OSCC was regulated by both DNA methylation and chromatin histone modification. Restoration of TFPI-2 counteracted the invasiveness of OSCC by inhibiting the enzymatic activity of matrix metalloproteinase-2, and consequently interfered with OSCC metastasis in vivo. Conclusions Our data suggest strongly that TFPI-2 is a down-regulated tumor suppressor gene in OSCC, probably involving epigenetic silencing mechanisms. The loss of TFPI-2 expression is a key event for oral tumorigenesis, especially in the process of tumor metastasis.
Collapse
Affiliation(s)
| | | | | | | | - Yu-Fen Li
- Department of Life Science and Institutes of Molecular Biology and Biomedical Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.
| | | |
Collapse
|
38
|
Cho M, Eze O, Xu R. Molecular genetics of gastric adenocarcinoma in clinical practice. World J Med Genet 2014; 4:58-68. [DOI: 10.5496/wjmg.v4.i3.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 05/16/2014] [Indexed: 02/06/2023] Open
Abstract
The molecular genetics of gastric carcinoma (GC) dictates their biology and clinical behavior. The two morphologically distinct types of gastric carcinoma by Lauren classification, i.e., intestinal and diffuse cell types, have a significant difference in clinical outcome. These two types of GC have different molecular pathogenetic pathways with unique genetic alterations. In addition to environmental and other etiologies, intestinal type GC is associated with Helicobacter pylori (H. pylori) infection and involves a multistep molecular pathway driving the normal epithelium to intestinal metaplasia, dysplasia, and malignant transformation by chromosomal and/or microsatellite instability (MSI), mutation of tumor suppressor genes, and loss of heterozygosity among others. Diffuse type shows no clear causal relationship with H. pylori infection, but is commonly associated with deficiency of cell-cell adhesion due to mutation of the E-cadherin gene (CDH1), and a manifestation of the hereditary gastric cancer syndrome. Thus, detection of CDH1 mutation or loss of expression of E-cadherin may aid in early diagnosis or screening of diffuse type GC. Detection of certain genetic markers, for example, MSI and matrix metalloproteinases, may provide prognostic information, particularly for intestinal type. The common genetic alterations may offer therapeutic targets for treatment of GC. Polymorphisms in Thymidylate synthase to metabolize 5-fluorouracil, glutathione S-transferase for degradation of Cisplatin, and amplification/overexpression of human epidermal growth factor receptor 2 targeted by monoclonal antibody Trastuzumab, are a few examples. P13K/Akt/mTOR pathway, c-Met pathways, epidermal growth factor receptor, insulin-like growth factor receptor, vascular endothelial growth factor receptor fibroblast growth factor receptor, and micro RNAs are several potential therapeutic biomarkers for GC under investigation.
Collapse
|
39
|
Li X, Zhou F, Jiang C, Wang Y, Lu Y, Yang F, Wang N, Yang H, Zheng Y, Zhang J. Identification of a DNA methylome profile of esophageal squamous cell carcinoma and potential plasma epigenetic biomarkers for early diagnosis. PLoS One 2014; 9:e103162. [PMID: 25050929 PMCID: PMC4106874 DOI: 10.1371/journal.pone.0103162] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/26/2014] [Indexed: 01/05/2023] Open
Abstract
DNA methylation is a critical epigenetic mechanism involved in key cellular processes. Its deregulation has been linked to many human cancers including esophageal squamous cell carcinoma (ESCC). This study was designed to explore the whole methylation status of ESCC and to identify potential plasma biomarkers for early diagnosis. We used Infinium Methylation 450k array to analyze ESCC tissues (n = 4), paired normal surrounding tissues (n = 4) and normal mucosa from healthy individuals (n = 4), and combined these with gene expression data from the GEO database. One hundred and sixty eight genes had differentially methylated CpG sites in their promoter region and a gene expression pattern inverse to the direction of change in DNA methylation. These genes were involved in several cancer-related pathways. Three genes were validated in additional 42 ESCC tissues and paired normal surrounding tissues. The methylation frequency of EPB41L3, GPX3, and COL14A1 were higher in tumor tissues than in normal surrounding tissues (P<0.017). The higher methylation frequency of EPB41l3 was correlated with large tumor size (P = 0.044) and advanced pT tumor stage (P = 0.001). The higher methylation frequency of GPX3 and COL14A1 were correlated with advanced pN tumor stage (P = 0.001 and P<0.001). The methylation of EPB41L3, GPX3, and COL14A1 genes were only found in ESCC patients' plasma, but not in normal individuals upon testing 42 ESCC patients and 50 healthy individuals. Diagnostic sensitivity was increased when methylation of any of the 3 genes were counted (64.3% sensitivity and 100% specificity). These differentially methylated genes in plasma may be used as biomarkers for early diagnosis of ESCC.
Collapse
Affiliation(s)
- Xufeng Li
- Oncology Center, ZhuJiang Hospital of Southern Medical University, Guangzhou, China
| | | | - Chunyu Jiang
- Oncology Center, ZhuJiang Hospital of Southern Medical University, Guangzhou, China
| | - Yinuo Wang
- Institute of Targeted Molecular Medicine, Shanghai, China
| | - Yanqiang Lu
- Institute of Targeted Molecular Medicine, Shanghai, China
| | - Fei Yang
- Institute of Targeted Molecular Medicine, Shanghai, China
| | | | | | - Yanfang Zheng
- Oncology Center, ZhuJiang Hospital of Southern Medical University, Guangzhou, China
- * E-mail: (YZ); (JZ)
| | - Jiren Zhang
- Oncology Center, ZhuJiang Hospital of Southern Medical University, Guangzhou, China
- Institute of Targeted Molecular Medicine, Shanghai, China
- * E-mail: (YZ); (JZ)
| |
Collapse
|
40
|
Barroso M, Florindo C, Kalwa H, Silva Z, Turanov AA, Carlson BA, de Almeida IT, Blom HJ, Gladyshev VN, Hatfield DL, Michel T, Castro R, Loscalzo J, Handy DE. Inhibition of cellular methyltransferases promotes endothelial cell activation by suppressing glutathione peroxidase 1 protein expression. J Biol Chem 2014; 289:15350-62. [PMID: 24719327 PMCID: PMC4140892 DOI: 10.1074/jbc.m114.549782] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
S-adenosylhomocysteine (SAH) is a negative regulator of most methyltransferases and the precursor for the cardiovascular risk factor homocysteine. We have previously identified a link between the homocysteine-induced suppression of the selenoprotein glutathione peroxidase 1 (GPx-1) and endothelial dysfunction. Here we demonstrate a specific mechanism by which hypomethylation, promoted by the accumulation of the homocysteine precursor SAH, suppresses GPx-1 expression and leads to inflammatory activation of endothelial cells. The expression of GPx-1 and a subset of other selenoproteins is dependent on the methylation of the tRNA(Sec) to the Um34 form. The formation of methylated tRNA(Sec) facilitates translational incorporation of selenocysteine at a UGA codon. Our findings demonstrate that SAH accumulation in endothelial cells suppresses the expression of GPx-1 to promote oxidative stress. Hypomethylation stress, caused by SAH accumulation, inhibits the formation of the methylated isoform of the tRNA(Sec) and reduces GPx-1 expression. In contrast, under these conditions, the expression and activity of thioredoxin reductase 1, another selenoprotein, is increased. Furthermore, SAH-induced oxidative stress creates a proinflammatory activation of endothelial cells characterized by up-regulation of adhesion molecules and an augmented capacity to bind leukocytes. Taken together, these data suggest that SAH accumulation in endothelial cells can induce tRNA(Sec) hypomethylation, which alters the expression of selenoproteins such as GPx-1 to contribute to a proatherogenic endothelial phenotype.
Collapse
Affiliation(s)
- Madalena Barroso
- From the Cardiovascular and ,the Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) and
| | - Cristina Florindo
- the Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) and
| | | | - Zélia Silva
- the Chronic Diseases Research Center, Departamento de Imunologia, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1099-085 Lisbon, Portugal
| | - Anton A. Turanov
- Genetics Divisions, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Bradley A. Carlson
- the Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Isabel Tavares de Almeida
- the Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) and ,Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, 1649-004 Lisbon, Portugal
| | - Henk J. Blom
- the Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, University Hospital, 79106 Freiburg, Germany
| | - Vadim N. Gladyshev
- Genetics Divisions, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Dolph L. Hatfield
- the Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, and
| | | | - Rita Castro
- the Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) and ,Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, 1649-004 Lisbon, Portugal
| | | | - Diane E. Handy
- From the Cardiovascular and , To whom correspondence should be addressed: Cardiovascular Div., Dept. of Medicine, Brigham and Women's Hospital and Harvard Medical School, 77 Ave. Louis Pasteur, Boston, MA, 02115. Tel.: 617-525-4845; Fax: 617-525-4830; E-mail:
| |
Collapse
|
41
|
Abstract
The six members of the family of insulin-like growth factor (IGF) binding proteins (IGFBPs) were originally characterized as passive reservoirs of circulating IGFs, but they are now understood to have many actions beyond their endocrine role in IGF transport. IGFBPs also function in the pericellular and intracellular compartments to regulate cell growth and survival - they interact with many proteins, in addition to their canonical ligands IGF-I and IGF-II. Intranuclear roles of IGFBPs in transcriptional regulation, induction of apoptosis and DNA damage repair point to their intimate involvement in tumour development, progression and resistance to treatment. Tissue or circulating IGFBPs might also be useful as prognostic biomarkers.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| |
Collapse
|
42
|
Zhang X, Zheng Z, Yingji S, Kim H, Jin R, Renshu L, Lee DY, Roh MR, Yang S. Downregulation of glutathione peroxidase 3 is associated with lymph node metastasis and prognosis in cervical cancer. Oncol Rep 2014; 31:2587-92. [PMID: 24788695 DOI: 10.3892/or.2014.3152] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/21/2014] [Indexed: 11/06/2022] Open
Abstract
Glutathione peroxidase 3 (GPX3) is a member of the glutathione peroxidase family of selenoproteins and is one of the key defensive enzymes against oxidative damages to host cells. Downregulation of GPX3 due to its promoter hypermethylation has been documented in several different types of cancer, indicating that GPX3 functions as a possible tumor suppressor. In the present study, we showed that GPX3 is also significantly downregulated in cervical cancer tissues compared to normal cervical tissues by qRT-PCR analyses and immunohistostainings. GPX3 expression was significantly related to lymph node metastasis and prognosis in cervical cancer patients. Treatment of cervical cancer cells with 5-aza-2'-deoxycytidine restored the expression of GPX3 and methylation-specific PCR (MSP) confirmed the CpG methylation of the GPX3 gene. Our results indicate that promoter methylation is one of the major causes of GPX3 downregulation in cervical cancer and GPX3 could serve as a predictive biomarker for lymph node metastasis and prognosis of cervical cancer.
Collapse
Affiliation(s)
- Xianglan Zhang
- Department of Pathology, Yanbian University Hospital, Yanji, Jilin, P.R. China
| | - Zhenlong Zheng
- Department of Dermatology, Yanbian University Hospital, Yanji, Jilin, P.R. China
| | - Shen Yingji
- Department of Gynecology, Maternal and Child Health Hospital, Dalian, Liaoning, P.R. China
| | - Hyeyeon Kim
- Department of Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Renshun Jin
- Department of Pathology, Yanbian University Hospital, Yanji, Jilin, P.R. China
| | - Li Renshu
- Department of Anesthesia and Pain, Yanbian University Hospital, Yanji, Jilin, P.R. China
| | - Doo Young Lee
- Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Mi Ryung Roh
- Department of Dermatology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sanghwa Yang
- National Creative Research Initiatives Center for Inflammatory Response Modulation, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
43
|
Zerrouqi A, Pyrzynska B, Brat DJ, Van Meir EG. P14ARF suppresses tumor-induced thrombosis by regulating the tissue factor pathway. Cancer Res 2014; 74:1371-8. [PMID: 24398474 DOI: 10.1158/0008-5472.can-13-1951] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
How necrotic areas develop in tumors is incompletely understood but can impact progression. Recent findings suggest that the formation of vascular microthrombi contributes to tumor necrosis, prompting investigation of coagulation cascades. Here, we report that loss of tumor suppressor P14ARF can contribute to activating the clotting cascade in glioblastoma. P14ARF transcriptionally upregulated TFPI2, a Kunitz-type serine protease in the tissue factor pathway that inhibits the initiation of thrombosis reactions. P14ARF activation in tumor cells delayed their ability to activate plasma clotting. Mechanistically, P14ARF activated the TFPI2 promoter in a p53-independent manner that relied upon c-JUN, SP1, and JNK activity. Taken together, our results identify the critical signaling pathways activated by P14ARF to prevent vascular microthrombosis triggered by glioma cells. Stimulation of this pathway might be used as a therapeutic strategy to reduce aggressive phenotypes associated with necrotic tumors, including glioblastoma.
Collapse
Affiliation(s)
- Abdessamad Zerrouqi
- Authors' Affiliations: Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery; Departments of Pathology and Laboratory Medicine and Hematology and Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | | | | | | |
Collapse
|
44
|
Wrangle J, Wang W, Koch A, Easwaran H, Mohammad HP, Vendetti F, VanCriekinge W, DeMeyer T, Du Z, Parsana P, Rodgers K, Yen RW, Zahnow CA, Taube JM, Brahmer JR, Tykodi SS, Easton K, Carvajal RD, Jones PA, Laird PW, Weisenberger DJ, Tsai S, Juergens RA, Topalian SL, Rudin CM, Brock MV, Pardoll D, Baylin SB. Alterations of immune response of Non-Small Cell Lung Cancer with Azacytidine. Oncotarget 2013; 4:2067-79. [PMID: 24162015 PMCID: PMC3875770 DOI: 10.18632/oncotarget.1542] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 10/25/2013] [Indexed: 12/14/2022] Open
Abstract
Innovative therapies are needed for advanced Non-Small Cell Lung Cancer (NSCLC). We have undertaken a genomics based, hypothesis driving, approach to query an emerging potential that epigenetic therapy may sensitize to immune checkpoint therapy targeting PD-L1/PD-1 interaction. NSCLC cell lines were treated with the DNA hypomethylating agent azacytidine (AZA - Vidaza) and genes and pathways altered were mapped by genome-wide expression and DNA methylation analyses. AZA-induced pathways were analyzed in The Cancer Genome Atlas (TCGA) project by mapping the derived gene signatures in hundreds of lung adeno (LUAD) and squamous cell carcinoma (LUSC) samples. AZA up-regulates genes and pathways related to both innate and adaptive immunity and genes related to immune evasion in a several NSCLC lines. DNA hypermethylation and low expression of IRF7, an interferon transcription factor, tracks with this signature particularly in LUSC. In concert with these events, AZA up-regulates PD-L1 transcripts and protein, a key ligand-mediator of immune tolerance. Analysis of TCGA samples demonstrates that a significant proportion of primary NSCLC have low expression of AZA-induced immune genes, including PD-L1. We hypothesize that epigenetic therapy combined with blockade of immune checkpoints - in particular the PD-1/PD-L1 pathway - may augment response of NSCLC by shifting the balance between immune activation and immune inhibition, particularly in a subset of NSCLC with low expression of these pathways. Our studies define a biomarker strategy for response in a recently initiated trial to examine the potential of epigenetic therapy to sensitize patients with NSCLC to PD-1 immune checkpoint blockade.
Collapse
Affiliation(s)
- John Wrangle
- The Johns Hopkins University, School of Medicine, Oncology Center-Hematology/Medical Oncology, Baltimore, Maryland
| | - Wei Wang
- The Johns Hopkins University, School of Medicine, Human Genetics Graduate Program, Baltimore, Maryland
| | - Alexander Koch
- Departments of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Hariharan Easwaran
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Helai P. Mohammad
- GlaxoSmithKline Pharmaceuticals, Cancer Epigenetics and Oncology, Collegeville, Pennsylvania
| | - Frank Vendetti
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Wim VanCriekinge
- Departments of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tim DeMeyer
- Departments of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Zhengzong Du
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Princy Parsana
- The Johns Hopkins University, Advanced Academic Bioinformatics, Baltimore, Maryland
| | - Kristen Rodgers
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Ray-Whay Yen
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Cynthia A. Zahnow
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Janis M. Taube
- The Johns Hopkins University, School of Medicine, Dermatology and Oral Pathology, Baltimore, Maryland
| | - Julie R. Brahmer
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Scott S. Tykodi
- University of Washington and Fred Hutchison Cancer Research Center, Seattle Cancer Care Alliance, Seattle, Washington
| | - Keith Easton
- University of Washington and Fred Hutchison Cancer Research Center, Seattle Cancer Care Alliance, Seattle, Washington
| | | | - Peter A. Jones
- USC Epigenome Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Peter W. Laird
- USC Epigenome Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Daniel J. Weisenberger
- USC Epigenome Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Salina Tsai
- The Johns Hopkins University, School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland
| | - Rosalyn A. Juergens
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Suzanne L. Topalian
- The Johns Hopkins University, School of Medicine, Surgery, Baltimore, Maryland
| | - Charles M. Rudin
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Malcolm V. Brock
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Drew Pardoll
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| | - Stephen B. Baylin
- The Johns Hopkins University, School of Medicine, Oncology, Baltimore, Maryland
| |
Collapse
|
45
|
Shen L, He YL, Zhang WW, Geng CX. Clinical significance of expression of glutathione peroxidase 3 in esophageal squamous cell carcinoma. Shijie Huaren Xiaohua Zazhi 2013; 21:3252-3256. [DOI: 10.11569/wcjd.v21.i30.3252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of glutathione peroxidase 3 (GPX3) in esophageal squamous cell carcinoma and to analyze its clinical significance.
METHODS: GPX3 protein expression was detected by immunohistochemistry in 42 cases of esophageal intraepithelial neoplasia, 86 cases of esophageal squamous cell carcinoma and 37 cases of normal esophageal mucosa tissue.
RESULTS: The expression of GPX3 in normal esophageal mucosa was significantly higher than that in esophageal intraepithelial neoplasia and esophageal squamous cell carcinoma (75.7% vs 38.1%, 18.6%, both P < 0.01). Moreover, the expression of GPX3 in esophageal intraepithelial neoplasia was significantly higher than that in esophageal squamous cell carcinoma (P < 0.05). The expression of GPX3 was significantly higher in esophageal squamous cell carcinoma without lymph node metastasis than in that with lymph node metastasis (30.8% vs 8.5%, P < 0.01).
CONCLUSION: The expression of GPX3 in esophageal intraepithelial neoplasia and esophageal squamous cell carcinomas is significantly lower than that in normal esophageal mucosa, and the expression of GPX3 is associated with lymph node metastasis. GPX3 may be used as a candidate marker for esophageal squamous cell carcinoma.
Collapse
|
46
|
Association of COX2 gene hypomethylation with intestinal type gastric cancer in samples of patients from northern Brazil. Tumour Biol 2013; 35:1107-11. [PMID: 24014049 DOI: 10.1007/s13277-013-1148-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/26/2013] [Indexed: 12/28/2022] Open
Abstract
To verify the methylation status of THBS1, GPX3, and COX2 genes and to evaluate their association with Helicobacter pylori in gastric adenocarcinomas. Methylation-sensitive restriction enzyme PCR assay was performed in 16 diffuse type gastric cancer samples, 23 intestinal type, and 15 normal stomach tissue. The presence of H. pylori was performed by amplification of the fragment of the 16S rRNA. Statistical analyses were performed using Fisher's exact test. The hypermethylation of GPX3, THBS1, and COX2 occurred in 18 (n = 7), 5 (n = 2), and 36 % (n = 14) of gastric cancer samples, respectively, whereas in normal samples, it was found in 13, 7, and 67 %. The presence of H. pylori was detected in 67 % of gastric cancer samples and 67 % in normal gastric samples. The methylation of THBS1 and GPX3 was not significantly different between the types of tumors, normal sample, the presence of H. pylori, or clinicopathological variables studied (P > 0.05). However, the methylation status of the gene COX2 is significantly different between normal tissue and intestinal type gastric cancer (P = 0.02). Therefore, our results suggest that the methylation status of the gene COX2 is associated with the intestinal type of gastric cancer.
Collapse
|
47
|
Xu E, Gu J, Hawk ET, Wang KK, Lai M, Huang M, Ajani J, Wu X. Genome-wide methylation analysis shows similar patterns in Barrett's esophagus and esophageal adenocarcinoma. Carcinogenesis 2013; 34:2750-6. [PMID: 23996928 DOI: 10.1093/carcin/bgt286] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Barrett's esophagus (BE) is a precursor of esophageal adenocarcinoma (EAC). To identify novel tumor suppressors involved in esophageal carcinogenesis and potential biomarkers for the malignant progression of BE, we performed a genome-wide methylation profiling of BE and EAC tissues. Using Illumina's Infinium HumanMethylation27 BeadChip microarray, we examined the methylation status of 27 578 CpG sites in 94 normal esophageal (NE), 77 BE and 117 EAC tissue samples. The overall methylation of CpG sites within the CpG islands was higher, but outside of the CpG islands was lower in BE and EAC tissues than in NE tissues. Hierarchical clustering analysis showed an excellent separation of NE tissues from BE and EAC tissues; however, the clustering of BE and EAC tissues was less clear, suggesting that methylation occurs early during the progression of EAC. We confirmed many previously reported hypermethylated genes and identified a large number of novel hypermethylated genes in BE and EAC tissues, particularly genes encoding ADAM (A Disintegrin And Metalloproteinase) peptidase proteins, cadherins and protocadherins, and potassium voltage-gated channels. Pathway analysis showed that a number of channel and transporter activities were enriched for hypermethylated genes. We used pyrosequencing to validate selected candidate genes and found high correlations between the array and pyrosequencing data (rho > 0.8 for each validated gene). The differentially methylated genes and pathways may provide biological insights into the development and progression of BE and become potential biomarkers for the prediction and early detection of EAC.
Collapse
Affiliation(s)
- Enping Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Dong YQ, Liang JS, Zhu SB, Zhang XM, Ji T, Xu JH, Yin GL. Effect of 5-aza-2'-deoxycytidine on Cell Proliferation of Non-small Cell Lung Cancer Cell Line A549 Cells and Expression of the TFPI-2 Gene. Asian Pac J Cancer Prev 2013; 14:4421-6. [DOI: 10.7314/apjcp.2013.14.7.4421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
49
|
Tänzer M, Liebl M, Quante M. Molecular biomarkers in esophageal, gastric, and colorectal adenocarcinoma. Pharmacol Ther 2013; 140:133-47. [PMID: 23791941 DOI: 10.1016/j.pharmthera.2013.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 02/06/2023]
Abstract
Cancers of the esophagus, stomach and colon contribute to a major health burden worldwide and over 20% of all cancer deaths. Biomarkers that should indicate pathogenic process and are measureable in an objective manner for these tumors are rare and not established in the clinical setting. In general biomarkers can be very useful for cancer management as they can improve clinical decision-making regarding diagnosis, surveillance, and therapy. Biomarkers can be different types of molecular entities (such as DNA, RNA or proteins), which can be detected, in different tissues or body fluids. However, more important is the type of biomarker itself, which allows diagnostic, prognostic or predictive analyses for different clinical problems. This review aims to systematically summarize the recent findings of genetic and epigenetic markers for gastrointestinal tumors within the last decade. While many biomarkers seem to be very promising, especially if used as panels, further development is urgently needed to address practical considerations of biomarkers in cancer treatment.
Collapse
Affiliation(s)
- Marc Tänzer
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München, Germany
| | | | | |
Collapse
|
50
|
Qu Y, Dang S, Hou P. Gene methylation in gastric cancer. Clin Chim Acta 2013; 424:53-65. [PMID: 23669186 DOI: 10.1016/j.cca.2013.05.002] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 02/07/2023]
Abstract
Gastric cancer is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide. Over 70% of new cases and deaths occur in developing countries. In the early years of the molecular biology revolution, cancer research mainly focuses on genetic alterations, including gastric cancer. Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer, including DNA methylation, histone modifications, nucleosome positioning, noncoding RNAs, and microRNAs. Aberrant DNA methylation in the promoter regions of gene, which leads to inactivation of tumor suppressor and other cancer-related genes in cancer cells, is the most well-defined epigenetic hallmark in gastric cancer. The advantages of gene methylation as a target for detection and diagnosis of cancer in biopsy specimens and non-invasive body fluids such as serum and gastric washes have led to many studies of application in gastric cancer. This review focuses on the most common and important phenomenon of epigenetics, DNA methylation, in gastric cancer and illustrates the impact epigenetics has had on this field.
Collapse
Key Words
- 5-hmC
- 5-hydroxymethylcytosine
- 5-mC
- 5-methylcytosine
- ADAM metallopeptidase domain 23
- ADAM metallopeptidase with thrombospondin type 1 motif, 9
- ADAM23
- ADAMTS9
- AML
- APC
- ARID1A
- AT motif-binding factor 1
- AT rich interactive domain 1A (SWI-like)
- ATBF1
- Acute myelocytic leukemia
- Adenomatosis polyposis coli
- B-cell translocation gene 4
- BCL2/adenovirus E1B 19kDa interacting protein 3
- BMP-2
- BNIP3
- BS
- BTG4
- Biomarkers
- Bisulfite sequencing
- Bone morphogenetic protein 2
- C-MET
- CACNA1G
- CACNA2D3
- CD44
- CD44 molecule (Indian blood group)
- CDH1
- CDK4
- CDK6
- CDKN1C
- CDKN2A
- CDX2
- CGI
- CHD5
- CHFR
- CKLF-like MARVEL transmembrane domain containing 3
- CMTM3
- CNS
- CRBP1
- Cadherin 1 or E-cadherin
- Calcium channel, voltage-dependent, T type, alpha 1G subunit
- Calcium channel, voltage-dependent, alpha 2/delta subunit 3
- Caudal type homeobox 2
- Central nervous system
- Checkpoint with forkhead and ring finger domains, E3 ubiquitin protein ligase
- Chromodomain helicase DNA binding protein 5
- Chromosome 2 open reading frame 40
- Clinical outcomes
- CpG islands
- Cyclin-dependent kinase 4
- Cyclin-dependent kinase 6
- Cyclin-dependent kinase inhibitor 1A
- Cyclin-dependent kinase inhibitor 1B
- Cyclin-dependent kinase inhibitor 1C
- Cyclin-dependent kinase inhibitor 2A
- Cyclin-dependent kinase inhibitor 2B
- DAB2 interacting protein
- DACT1
- DAPK
- DNA
- DNA methylatransferases
- DNA mismatch repair
- DNMT
- Dapper, antagonist of beta-catenin, homolog 1 (Xenopus laevis)
- Death-associated protein kinase
- Deoxyribose Nucleic Acid
- Dickkopf 3 homolog (Xenopus laevis)
- Dkk-3
- EBV
- ECRG4
- EDNRB
- EGCG
- ERBB4
- Endothelin receptor type B
- Epigallocatechin gallate
- Epigenetics
- Epstein–Barr Virus
- FDA
- FLNc
- Filamin C
- Food and Drug Administration
- GC
- GDNF
- GI endoscopy
- GPX3
- GRIK2
- GSTP1
- Gastric cancer
- Gene methylation
- Glutamate receptor, ionotropic, kainate 2
- Glutathione S-transferase pi 1
- Glutathione peroxidase 3 (plasma)
- H. pylori
- HACE1
- HAI-2/SPINT2
- HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1
- HGFA
- HLTF
- HOXA1
- HOXA10
- HRAS-like suppressor
- HRASLS
- Helicase-like transcription factor
- Helicobacter pylori
- Homeobox A1
- Homeobox A10
- Homeobox D10
- HoxD10
- IGF-1
- IGF-1R
- IGFBP3
- IL-1β
- ITGA4
- Insulin-like growth factor 1 (somatomedin C)
- Insulin-like growth factor I receptor
- Insulin-like growth factor binding protein 3
- Integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor)
- Interleukin 1, beta
- KL
- KRAS
- Klotho
- LL3
- LMP2A
- LOX
- LRP1B
- Low density lipoprotein receptor-related protein 1B
- Lysyl oxidase
- MAPK
- MBPs
- MDS
- MGMT
- MINT25
- MLF1
- MLL
- MMR
- MSI
- MSP
- Matrix metallopeptidase 24 (membrane-inserted)
- Met proto-oncogene (hepatocyte growth factor receptor)
- Methyl-CpG binding proteins
- Methylation-specific PCR
- Microsatellite instability
- Myeloid leukemia factor 1
- Myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila)
- Myeloid/lymphoid or mixed-lineage leukemia 3
- NDRG family member 2
- NDRG2
- NPR1
- NR3C1
- Natriuretic peptide receptor A/guanylate cyclase A
- Notch 1
- Nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)
- O-6-methylguanine-DNA methyltransferase
- PCDH10
- PCDH17
- PI3K/Akt
- PIK3CA
- PR domain containing 5
- PRDM5
- PTCH1
- Patched 1
- Phosphatidylethanolamine binding protein 1
- Protein tyrosine phosphatase, non-receptor type 6
- Protocadherin 10
- Protocadherin 17
- Q-MSP
- Quantitative methylation-specific PCR
- RAR-related orphan receptor A
- RARRES1
- RARß
- RAS/RAF/MEK/ERK
- RASSF1A
- RASSF2
- RBP1
- RKIP
- RORA
- ROS
- RUNX3
- Ras association (RalGDS/AF-6) domain family member 1
- Ras association (RalGDS/AF-6) domain family member 2
- Rb
- Retinoic acid receptor responder (tazarotene induced) 1
- Retinoic acid receptor, beta
- Retinol binding protein 1, cellular
- Runt-related transcription factor 3
- S-adenosylmethionine
- SAM
- SFRP2
- SFRP5
- SHP1
- SOCS-1
- STAT3
- SYK
- Secreted frizzled-related protein 2
- Secreted frizzled-related protein 5
- Serine peptidase inhibitor, Kunitz type, 2
- Spleen tyrosine kinase
- Suppressor of cytokine signaling 1
- TCF4
- TET
- TFPI2
- TGF-β
- TIMP metallopeptidase inhibitor 3
- TIMP3
- TNM
- TP73
- TSP1
- Thrombospondin 1
- Tissue factor pathway inhibitor 2
- Transcription factor 4
- Tumor Node Metastasis
- Tumor protein p73
- V-erb-a erythroblastic leukemia viral oncogene homolog 4
- ZFP82 zinc finger protein
- ZIC1
- ZNF545
- Zinc finger protein of the cerebellum 1
- gastrointestinal endoscopy
- glial cell derived neurotrophic factor
- hDAB2IP
- hMLH1
- hepatocyte growth factor activator
- latent membrane protein
- mutL homolog 1
- myelodysplastic syndromes
- p15
- p16
- p21
- p27
- p53
- p73
- phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha
- phosphoinositide 3-kinase (PI3K)/Akt
- reactive oxygen species
- retinoblastoma
- signal transducer and activator of transcription-3
- ten-eleven translocation
- transforming growth factor-β
- tumor protein p53
- tumor protein p73
- v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
Collapse
Affiliation(s)
- Yiping Qu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, People's Republic of China
| | | | | |
Collapse
|