1
|
Kim J, Park J, Choe G, Jeong SI, Kim HS, Lee JY. A Gelatin/Alginate Double Network Hydrogel Nerve Guidance Conduit Fabricated by a Chemical-Free Gamma Radiation for Peripheral Nerve Regeneration. Adv Healthc Mater 2024; 13:e2400142. [PMID: 38566357 DOI: 10.1002/adhm.202400142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Nerve guidance conduits (NGCs) are widely developed using various materials for the functional repair of injured or diseased peripheral nerves. Especially, hydrogels are considered highly suitable for the fabrication of NGCs due to their beneficial tissue-mimicking characteristics (e.g., high water content, softness, and porosity). However, the practical applications of hydrogel-based NGCs are hindered due to their poor mechanical properties and complicated fabrication processes. To bridge this gap, a novel double-network (DN) hydrogel using alginate and gelatin by a two-step crosslinking process involving chemical-free gamma irradiation and ionic crosslinking, is developed. DN hydrogels (1% alginate and 15% gelatin), crosslinked with 30 kGy gamma irradiation and barium ions, exhibit substantially improved mechanical properties, including tensile strength, elastic modulus, and fracture stain, compared to single network (SN) gelatin hydrogels. Additionally, the DN hydrogel NGC exhibits excellent kink resistance, mechanical stability to successive compression, suture retention, and enzymatic degradability. In vivo studies with a sciatic defect rat model indicate substantially improved nerve function recovery with the DN hydrogel NGC compared to SN gelatin and commercial silicone NGCs, as confirm footprint analysis, electromyography, and muscle weight measurement. Histological examination reveals that, in the DN NGC group, the expression of Schwann cell and neuronal markers, myelin sheath, and exon diameter are superior to the other controls. Furthermore, the DN NGC group demonstrates increased muscle fiber formation and reduced fibrotic scarring. These findings suggest that the mechanically robust, degradable, and biocompatible DN hydrogel NGC can serve as a novel platform for peripheral nerve regeneration and other biomedical applications, such as implantable tissue constructs.
Collapse
Affiliation(s)
- Junghyun Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Goeun Choe
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Sung-In Jeong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| |
Collapse
|
2
|
Accogli A, Addour-Boudrahem N, Srour M. Neurogenesis, neuronal migration, and axon guidance. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:25-42. [PMID: 32958178 DOI: 10.1016/b978-0-444-64150-2.00004-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Development of the central nervous system (CNS) is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical factors from early embryonic stages to postnatal life. Duringthe past decade, great strides have been made to unravel mechanisms underlying human CNS development through the employment of modern genetic techniques and experimental approaches. In this chapter, we review the current knowledge regarding the main developmental processes and signaling mechanisms of (i) neurogenesis, (ii) neuronal migration, and (iii) axon guidance. We discuss mechanisms related to neural stem cells proliferation, migration, terminal translocation of neuronal progenitors, and axon guidance and pathfinding. For each section, we also provide a comprehensive overview of the underlying regulatory processes, including transcriptional, posttranscriptional, and epigenetic factors, and a myriad of signaling pathways that are pivotal to determine the fate of neuronal progenitors and newly formed migrating neurons. We further highlight how impairment of this complex regulating system, such as mutations in its core components, may cause cortical malformation, epilepsy, intellectual disability, and autism in humans. A thorough understanding of normal human CNS development is thus crucial to decipher mechanisms responsible for neurodevelopmental disorders and in turn guide the development of effective and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Accogli
- Unit of Medical Genetics, Istituto Giannina Gaslini Pediatric Hospital, Genova, Italy; Departments of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Science, Università degli Studi di Genova, Genova, Italy
| | | | - Myriam Srour
- Research Institute, McGill University Health Centre, Montreal, QC, Canada; Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Zhao X, Li Z, Liang S, Li S, Ren J, Li B, Zhu Y, Xia M. Different epidermal growth factor receptor signaling pathways in neurons and astrocytes activated by extracellular matrix after spinal cord injury. Neurochem Int 2019; 129:104500. [PMID: 31295509 DOI: 10.1016/j.neuint.2019.104500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/25/2019] [Accepted: 07/07/2019] [Indexed: 12/26/2022]
Abstract
Spinal cord injury (SCI) is a serious central nervous system (CNS) trauma that results in permanent and severe disability. The extracellular matrix (ECM) can affect the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) by interacting with the ERK integrin subunits. In this study, we built a model of SCI with glial fibrillary acidic protein-green fluorescent protein (GFAP-GFP) and thymus cell antigen 1-yellow fluorescent protein-H (Thy1-YFPH) in mice that express specific transgenes in their astrocytes or neurons. Then, we collected spinal cord neurons or astrocytes by fluorescence-activated cell sorting (FACS). In this way, we investigated the SCI-induced phosphorylation of ERK1/2 and epidermal growth factor receptor (EGFR) in neurons and astrocytes, and we discovered that the SCI-induced EGFR signaling pathways differed between neurons and astrocytes. In the present study, we found that the Src-dependent phosphorylation of EGFR induced by SCI occurred only in neurons, not in astrocytes. This phenomenon may be due to the involvement of Thy-1, which promoted the binding between Src and EGFR in neurons after SCI. In addition, the expression of the integrin subunits after SCI differed between neurons and astrocytes. Our present study shows that the EGFR signaling pathway triggered by SCI in neurons differed from the EGFR signaling pathway triggered in astrocytes, a finding that may help to pave the way for clinical trials of therapies that inhibit EGFR signaling pathways after SCI.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, People's Republic of China; Department of Operating Room, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Zexiong Li
- Practical Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Shanshan Liang
- Practical Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Shuai Li
- Practical Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Jiaan Ren
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Baoman Li
- Practical Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China. http://
| | - Yue Zhu
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, People's Republic of China. http://
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
4
|
Nieuwenhuis B, Haenzi B, Andrews MR, Verhaagen J, Fawcett JW. Integrins promote axonal regeneration after injury of the nervous system. Biol Rev Camb Philos Soc 2018; 93:1339-1362. [PMID: 29446228 PMCID: PMC6055631 DOI: 10.1111/brv.12398] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/23/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Integrins are cell surface receptors that form the link between extracellular matrix molecules of the cell environment and internal cell signalling and the cytoskeleton. They are involved in several processes, e.g. adhesion and migration during development and repair. This review focuses on the role of integrins in axonal regeneration. Integrins participate in spontaneous axonal regeneration in the peripheral nervous system through binding to various ligands that either inhibit or enhance their activation and signalling. Integrin biology is more complex in the central nervous system. Integrins receptors are transported into growing axons during development, but selective polarised transport of integrins limits the regenerative response in adult neurons. Manipulation of integrins and related molecules to control their activation state and localisation within axons is a promising route towards stimulating effective regeneration in the central nervous system.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
| | - Barbara Haenzi
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
| | | | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
- Centre for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVrije Universiteit Amsterdam1081 HVAmsterdamThe Netherlands
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Centre of Reconstructive NeuroscienceInstitute of Experimental Medicine142 20Prague 4Czech Republic
| |
Collapse
|
5
|
Sethi R, Sethi R, Redmond A, Lavik E. Olfactory ensheathing cells promote differentiation of neural stem cells and robust neurite extension. Stem Cell Rev Rep 2015; 10:772-85. [PMID: 24996386 DOI: 10.1007/s12015-014-9539-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS The goal of this study was to gain insight into the signaling between olfactory ensheathing cells (OECs) and neural stem cells (NSCs). We sought to understand the impact of OECs on NSC differentiation and neurite extension and to begin to elucidate the factors involved in these interactions to provide new targets for therapeutic interventions. MATERIALS AND METHODS We utilized lines of OECs that have been extremely well characterized in vitro and in vivo along with well studied NSCs in gels to determine the impact of the coculture in three dimensions. To further elucidate the signaling, we used conditioned media from the OECs as well as fractioned components on NSCs to determine the molecular weight range of the soluble factors that was most responsible for the NSC behavior. RESULTS We found that the coculture of NSCs and OECs led to robust NSC differentiation and extremely long neural processes not usually seen with NSCs in three dimensional gels in vitro. Through culture of NSCs with fractioned OEC media, we determined that molecules larger than 30 kDa have the greatest impact on the NSC behavior. CONCLUSIONS Overall, our findings suggest that cocultures of NSCs and OECs may be a novel combination therapy for neural injuries including spinal cord injury (SCI). Furthermore, we have identified a class of molecules which plays a substantial role in the behavior that provides new targets for investigating pharmacological therapies.
Collapse
Affiliation(s)
- Rosh Sethi
- Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA,
| | | | | | | |
Collapse
|
6
|
Arahara K, Matsumoto T, Morimatsu F, Arai K. Fibronectin modified expression of Sonic hedgehog in ATRA-mediated neuronal differentiation. J Vet Med Sci 2015; 77:1503-6. [PMID: 26051001 PMCID: PMC4667672 DOI: 10.1292/jvms.15-0122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, the effect of fibronectin on the neurite outgrowth from embryoid bodies (EBs) in neurodifferentiated embryonal carcinoma P19 cells was examined. The neurite outgrowth on fibronectin was maintained for a longer time in comparison with those on collagen or laminin. Quantitative RT-PCR revealed that mRNA level corresponding to sonic hedgehog (Shh) in neurodifferentiated P19 cells was upregulated on fibronectin, whereas collagen or laminin did not affect. Further knockdown of integrin αv subunit in P19 cells demonstrated that expression of Shh was mediated through interaction between fibronectin and integrin. Additionally, exogenous Shh agonist accelerated neurite outgrowth from embryonic stem cell-derived EBs without large change of neuronal phenotype expression. Taken together, fibronectin could maintain neurite outgrowth via increased Shh expression.
Collapse
Affiliation(s)
- Kazuhiko Arahara
- Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | | | | |
Collapse
|
7
|
Roles of Integrins and Intracellular Molecules in the Migration and Neuritogenesis of Fetal Cortical Neurons: MEK Regulates Only the Neuritogenesis. NEUROSCIENCE JOURNAL 2013; 2013:859257. [PMID: 26317102 PMCID: PMC4437273 DOI: 10.1155/2013/859257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/16/2012] [Indexed: 11/24/2022]
Abstract
The roles of integrin subunits and intracellular molecules in regulating the migration and neuritogenesis of neurons isolated from 16.5 gestation days rat fetal cortices were examined using in vitro assays.
Results showed that laminin supported the migration of fetal cortical neurons better than fibronectin and that the fetal cortical neurons migrated on laminin using β1 and α3 integrin subunits which make up the α3β1 integrin receptor. On fibronectin, the migration was mediated by β1 integrin subunit. Perturbation of src kinase, phospholipase C, or protein kinase C activity, inhibition of IP3 receptor mediated calcium release, or chelation of intracellular calcium inhibited both migration and neuritogenesis, whereas inhibition of growth factor signaling via MEK inhibited only the neuritogenesis. The detection of α1 and α9 transcripts suggested that the migration of fetal cortical neurons may also be mediated by α1β1 and α9β1 integrin receptors.
Results showed that calcium may regulate migration and neuritogenesis by maintaining optimum levels of microtubules in the fetal cortical neurons.
It is concluded that the fetal cortical neurons are fully equipped with the integrin signaling cascade required for their migration and neuritogenesis, whereas crosstalk between the integrin and growth-factor signaling regulate only the neuritogenesis.
Collapse
|
8
|
Loubet D, Dakowski C, Pietri M, Pradines E, Bernard S, Callebert J, Ardila-Osorio H, Mouillet-Richard S, Launay JM, Kellermann O, Schneider B. Neuritogenesis: the prion protein controls β1 integrin signaling activity. FASEB J 2011; 26:678-90. [PMID: 22038049 DOI: 10.1096/fj.11-185579] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cytoskeleton modifications are required for neuronal stem cells to acquire neuronal polarization. Little is known, however, about mechanisms that orchestrate cytoskeleton remodeling along neuritogenesis. Here, we show that the silencing of the cellular prion protein (PrP(C)) impairs the initial sprouting of neurites upon induction of differentiation of the 1C11 neuroectodermal cell line, indicating that PrP(C) is necessary to neuritogenesis. Such PrP(C) function relies on its capacity to negatively regulate the clustering, activation, and signaling activity of β1 integrins at the plasma membrane. β1 Integrin aggregation caused by PrP(C) depletion triggers overactivation of the RhoA-Rho kinase-LIMK-cofilin pathway, which, in turn, alters the turnover of focal adhesions, increases the stability of actin microfilaments, and in fine impairs neurite formation. Inhibition of Rho kinases is sufficient to compensate for the lack of PrP(C) and to restore neurite sprouting. We also observe an increased secretion of fibronectin in the surrounding milieu of PrP(C)-depleted 1C11 cells, which likely self-sustains β1 integrin signaling overactivation and contributes to neuritogenesis defect. Our overall data reveal that PrP(C) contributes to the acquisition of neuronal polarization by modulating β1 integrin activity, cell interaction with fibronectin, and cytoskeleton dynamics.
Collapse
Affiliation(s)
- Damien Loubet
- Institut National Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR-S) 747, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Piens M, Muller M, Bodson M, Baudouin G, Plumier JC. A short upstream promoter region mediates transcriptional regulation of the mouse doublecortin gene in differentiating neurons. BMC Neurosci 2010; 11:64. [PMID: 20509865 PMCID: PMC2891791 DOI: 10.1186/1471-2202-11-64] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 05/28/2010] [Indexed: 11/23/2022] Open
Abstract
Background Doublecortin (Dcx), a MAP (Microtubule-Associated Protein), is transiently expressed in migrating and differentiating neurons and thereby characterizes neuronal precursors and neurogenesis in developing and adult neurogenesis. In addition, reduced Dcx expression during development has been related to appearance of brain pathologies. Here, we attempt to unveil the molecular mechanisms controlling Dcx gene expression by studying its transcriptional regulation during neuronal differentiation. Results To determine and analyze important regulatory sequences of the Dcx promoter, we studied a putative regulatory region upstream from the mouse Dcx coding region (pdcx2kb) and several deletions thereof. These different fragments were used in vitro and in vivo to drive reporter gene expression. We demonstrated, using transient expression experiments, that pdcx2kb is sufficient to control specific reporter gene expression in cerebellar cells and in the developing brain (E14.5). We determined the temporal profile of Dcx promoter activity during neuronal differentiation of mouse embryonic stem cells (mESC) and found that transcriptional activation of the Dcx gene varies along with neuronal differentiation of mESC. Deletion experiments and sequence comparison of Dcx promoters across rodents, human and chicken revealed the importance of a highly conserved sequence in the proximal region of the promoter required for specific and strong expression in neuronal precursors and young neuronal cells. Further analyses revealed the presence in this short sequence of several conserved, putative transcription factor binding sites: LEF/TCF (Lymphoid Enhancer Factor/T-Cell Factor) which are effectors of the canonical Wnt pathway; HNF6/OC2 (Hepatocyte Nuclear Factor-6/Oncecut-2) members of the ONECUT family and NF-Y/CAAT (Nuclear Factor-Y). Conclusions Studies of Dcx gene regulatory sequences using native, deleted and mutated constructs suggest that fragments located upstream of the Dcx coding sequence are sufficient to induce specific Dcx expression in vitro: in heterogeneous differentiated neurons from mESC, in primary mouse cerebellar neurons (PND3) and in organotypic slice cultures. Furthermore, a region in the 3'-end region of the Dcx promoter is highly conserved across several species and exerts positive control on Dcx transcriptional activation. Together, these results indicate that the proximal 3'-end region of the mouse Dcx regulatory sequence is essential for Dcx gene expression during differentiation of neuronal precursors.
Collapse
Affiliation(s)
- Marie Piens
- Laboratory for Animal Physiology, Université de Liège, B-4000 Liège, Sart-Tilman, Belgium
| | | | | | | | | |
Collapse
|
10
|
Suzuki Y, Yanagisawa M, Yagi H, Nakatani Y, Yu RK. Involvement of beta1-integrin up-regulation in basic fibroblast growth factor- and epidermal growth factor-induced proliferation of mouse neuroepithelial cells. J Biol Chem 2010; 285:18443-51. [PMID: 20371608 DOI: 10.1074/jbc.m110.114645] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In neural stem cells, basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) promote cell proliferation and self-renewal. In the bFGF- and EGF-responsive neural stem cells, beta1-integrin also plays important roles in crucial cellular processes, including proliferation, migration, and apoptosis. The cross-talk of the signaling pathways mediated by these growth factors and beta1-integrin, however, has not been fully elucidated. Here we report a novel molecular mechanism through which bFGF or EGF promotes the proliferation of mouse neuroepithelial cells (NECs). In the NECs, total beta1-integrin expression levels and proliferation were dose-dependently increased by bFGF but not by EGF. EGF rather than bFGF strongly induced the increase of beta1-integrin localization on the NEC surface. bFGF- and EGF-induced beta1-integrin up-regulation and proliferation were inhibited after treatment with a mitogen-activated protein kinase kinase inhibitor, U0126, which indicates the dependence on the mitogen-activated protein kinase pathway. Involvement of beta1-integrin in bFGF- and EGF-induced proliferation was confirmed by the finding that NEC proliferation and adhesion to fibronectin-coated dishes were inhibited by knockdown of beta1-integrin using small interfering RNA. On the other hand, apoptosis was induced in NECs treated with RGD peptide, a small beta1-integrin inhibitor peptide with the Arg-Gly-Asp motif, but it was independent of beta1-integrin expression levels. Those results suggest that regulation of beta1-integrin expression/localization is involved in cellular processes, such as proliferation, induced by bFGF and EGF in NECs. The mechanism underlying the proliferation through beta1-integrin would not be expected to be completely identical, however, for bFGF and EGF.
Collapse
Affiliation(s)
- Yusuke Suzuki
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
11
|
Neural progenitor cells as models for high-throughput screens of developmental neurotoxicity: State of the science. Neurotoxicol Teratol 2010; 32:4-15. [DOI: 10.1016/j.ntt.2009.06.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 06/01/2009] [Accepted: 06/08/2009] [Indexed: 02/01/2023]
|
12
|
Li J, Zhang S, Chen J, Du T, Wang Y, Wang Z. Modeled microgravity causes changes in the cytoskeleton and focal adhesions, and decreases in migration in malignant human MCF-7 cells. PROTOPLASMA 2009; 238:23-33. [PMID: 19730978 DOI: 10.1007/s00709-009-0068-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 08/08/2009] [Indexed: 05/28/2023]
Abstract
Because cells are sensitive to mechanical forces,microgravity might act on stress-dependent cell changes. Regulation of focal adhesions (FAs) and cytoskeletal activity plays a role in cell maintenance, cell movement,and migration. Human MCF-7 cells were exposed to modeled microgravity (MMG) to test the hypothesis that migration responsiveness to microgravity is associated with cytoskeleton and FA anomalies. MMG acts on MCF-7 cells by disorganizing cytoskeleton filaments (microfilaments and microtubules). Microfilaments in MMG did not display their typical radial array. Likewise, microtubules were disrupted in MCF-7 cells within 4 h of initiation of MMG and were partly reestablished by 48 h. FAs generated inmicrogravity were less mature than those established in controls, shown by reduced FAs number and clustering. In parallel, MMG decreased kinases activity (such as FAK,PYK2, and ILK) of FAs in MCF-7 cells. The expression of both integrinbeta1 and integrinbeta4 were downregulated by MMG. We conclude that cytoskeletal alterations and FAs changes in MMG are concomitant with cell invasion and migration retardation. We suggest that reduced migration response in MCF-7 cells following MMG is linked to changes of cytoskeleton and FAs.
Collapse
Affiliation(s)
- Jing Li
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
13
|
Mruthyunjaya S, Manchanda R, Godbole R, Pujari R, Shiras A, Shastry P. Laminin-1 induces neurite outgrowth in human mesenchymal stem cells in serum/differentiation factors-free conditions through activation of FAK-MEK/ERK signaling pathways. Biochem Biophys Res Commun 2009; 391:43-8. [PMID: 19895795 DOI: 10.1016/j.bbrc.2009.10.158] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 10/29/2009] [Indexed: 11/15/2022]
Abstract
Mesenchymal stem cells (MSCs) can be differentiated into cell types derived from all three germ layers by manipulating culture conditions in vitro. A multitude of growth and differentiation factors have been employed for driving MSCs towards a neuronal phenotype. In the present study, we investigated the potential of extracellular matrix (ECM) proteins-fibronectin, collagen-1, collagen-IV, laminin-1, and laminin-10/11, to induce a neuronal phenotype in bone marrow derived human MSCs in the absence of growth factors/differentiating agents. All of the ECM proteins tested were found to support adhesion of MSCs to different extents. However, direct interaction only with laminin-1 triggered sprouting of neurite-like processes. Cells plated on laminin-1 exhibited neurite out growth as early as 3h, and by 24h, the cells developed elaborate neurites with contracted cell bodies and neuronal-like morphology. Function-blocking antibodies directed against alpha6 and beta1 integrin subunits inhibited neurite formation on laminin-1 which confirmed the involvement of integrin alpha6beta1 in neurite outgrowth. Mechanistic studies revealed that cell adhesion to laminin-1 activated focal adhesion kinase (FAK), and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathways. Abrogation of FAK phosphorylation by herbimycin-A inhibited neurite formation and also decreased activities of MEK and ERK. Pharmacological inhibitors of MEK (U0126) and ERK (PD98059) also blocked neurite outgrowth in cells plated on laminin-1. Our study demonstrates the involvement of integrin alpha6beta1 and FAK-MEK/ERK signaling pathways in laminin-1-induced neurite outgrowth in MSCs in the absence of serum and differentiation factors.
Collapse
Affiliation(s)
- S Mruthyunjaya
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | | | | | | | | | | |
Collapse
|
14
|
Nakamura M, Mie M, Mihara H, Nakamura M, Kobatake E. Construction of a multi-functional extracellular matrix protein that increases number of N1E-115 neuroblast cells having neurites. J Biomed Mater Res B Appl Biomater 2009; 91:425-32. [DOI: 10.1002/jbm.b.31418] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Harper MM, Ye EA, Blong CC, Jacobson ML, Sakaguchi DS. Integrins contribute to initial morphological development and process outgrowth in rat adult hippocampal progenitor cells. J Mol Neurosci 2009; 40:269-83. [PMID: 19499350 DOI: 10.1007/s12031-009-9211-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
Abstract
Adult rat hippocampal progenitor cells (AHPCs) are self-renewing, multipotent neural progenitor cells (NPCs) that can differentiate into neurons, oligodendrocytes, and astrocytes. AHPCs contact a variety of molecular cues within their surrounding microenvironment via integrins. We hypothesize that integrin receptors are important for NPCs. In this study, we have examined the distribution of integrins in neuronal-like, oligodendrocyte-like, and astrocyte-like AHPCs when grown on substrates that support integrin-mediated adhesion (laminin, fibronectin), and those that do not (poly-L: -ornithine, PLO) using immunocytochemistry as well as characterized the phenotypic differentiation of AHPCs plated on laminin and fibronectin. Focal adhesions were prominent in AHPCs plated on purified substrates, but were also found in AHPCs plated on PLO. The focal adhesions observed in AHPCs plated on PLO substrates may be formed by self-adhesion to the endogenously produced laminin or fibronectin. We have demonstrated that integrins contribute to the initial morphological differentiation of AHPCs, as inhibition of fibronectin binding with the competitive inhibitor echistatin significantly decreased the number of processes and microspikes present in treated cells, and also decreased overall cell area. Finally, we have characterized the genetic profile of a subset of integrins and integrin-related genes in the AHPCs using reverse transcriptase polymerase chain reaction. These results demonstrate an important role of integrins, in vitro, for the initial morphological differentiation of AHPCs.
Collapse
|
16
|
Sun YM, Cooper M, Finch S, Lin HH, Chen ZF, Williams BP, Buckley NJ. Rest-mediated regulation of extracellular matrix is crucial for neural development. PLoS One 2008; 3:e3656. [PMID: 18987749 PMCID: PMC2573962 DOI: 10.1371/journal.pone.0003656] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 10/10/2008] [Indexed: 01/13/2023] Open
Abstract
Neural development from blastocysts is strictly controlled by intricate transcriptional programmes that initiate the down-regulation of pluripotent genes, Oct4, Nanog and Rex1 in blastocysts followed by up-regulation of lineage-specific genes as neural development proceeds. Here, we demonstrate that the expression pattern of the transcription factor Rest mirrors those of pluripotent genes during neural development from embryonic stem (ES) cells and an early abrogation of Rest in ES cells using a combination of gene targeting and RNAi approaches causes defects in this process. Specifically, Rest ablation does not alter ES cell pluripotency, but impedes the production of Nestin+ neural stem cells, neural progenitor cells and neurons, and results in defective adhesion, decrease in cell proliferation, increase in cell death and neuronal phenotypic defects typified by a reduction in migration and neurite elaboration. We also show that these Rest-null phenotypes are due to the dysregulation of its direct or indirect target genes, Lama1, Lamb1, Lamc1 and Lama2 and that these aberrant phenotypes can be rescued by laminins.
Collapse
Affiliation(s)
- Yuh-Man Sun
- Centre for the Cellular Basis of Behaviour, The James Black Centre, Institute of Psychiatry, King's College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
17
|
Effect of NeuroD2 expression on neuronal differentiation in mouse embryonic stem cells. Cell Biol Int 2008; 33:174-9. [PMID: 18996208 DOI: 10.1016/j.cellbi.2008.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 08/26/2008] [Accepted: 10/13/2008] [Indexed: 11/21/2022]
Abstract
A basic helix-loop-helix transcriptional factor, NeuroD2, plays important roles in neuronal differentiation and survival. We introduced the tetracycline-dependent NeuroD2 expression system to embryonic stem (ES) cells and studied the role of NeuroD2 in the neuronal differentiation. The addition of doxycycline induced the expression of NeuroD2 after 24h and the differentiation to neurons after 3 days in ES cells, which are transfected with vectors composed of reverse tetracycline-controlled transactivator with cytomegarovirus promoter and NeuroD2 with tetracycline response element. Treatment with doxycycline for 3 days induced neuronal differentiation, but not within 1 day; furthermore NeuroD2 was detected in the nucleus 3 days after treatment, but also not within 1 day. The results suggest that the expression of NeuroD2 requires an appropriate period of about 3 days to elicit neuronal differentiation in ES cells.
Collapse
|
18
|
Kässmeyer S, Plendl J, Custodis P, Bahramsoltani M. New insights in vascular development: vasculogenesis and endothelial progenitor cells. Anat Histol Embryol 2008; 38:1-11. [PMID: 18983622 DOI: 10.1111/j.1439-0264.2008.00894.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the course of new blood vessel formation, two different processes--vasculogenesis and angiogenesis--have to be distinguished. The term vasculogenesis describes the de novo emergence of a vascular network by endothelial progenitors, whereas angiogenesis corresponds to the generation of vessels by sprouting from pre-existing capillaries. Until recently, it was thought that vasculogenesis is restricted to the prenatal period. During the last decade, one of the most fascinating innovations in the field of vascular biology was the discovery of endothelial progenitor cells and vasculogenesis in the adult. This review aims at introducing the concept of adult vasculogenesis and discusses the efforts to identify and characterize adult endothelial progenitors. The different sources of adult endothelial progenitors like haematopoietic stem cells, myeloid cells, multipotent progenitors of the bone marrow, side population cells and tissue-residing pluripotent stem cells are considered. Moreover, a survey of cellular and molecular control mechanisms of vasculogenesis is presented. Recent advances in research on endothelial progenitors exert a strong impact on many different disciplines and provide the knowledge for functional concepts in basic fields like anatomy, histology as well as embryology.
Collapse
Affiliation(s)
- S Kässmeyer
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
19
|
Greve F, Frerker S, Bittermann AG, Burkhardt C, Hierlemann A, Hall H. Molecular design and characterization of the neuron-microelectrode array interface. Biomaterials 2007; 28:5246-58. [PMID: 17826828 DOI: 10.1016/j.biomaterials.2007.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 08/07/2007] [Indexed: 11/23/2022]
Abstract
Electrophysiological activities of neuronal networks can be recorded on microelectrode arrays (MEAs). This technique requires tight coupling between MEA-surfaces and cells. Therefore, this study investigated the interface between DRG neurons and MEA-surface materials after adsorption of neurite promoting proteins: laminin-111, fibronectin, L1Ig6 and poly-l-lysine. Moreover, substrate-induced effects on neuronal networks with time were analyzed. The thickness of adsorbed protein layers was found between approximately 1 nm for poly-l-lysine and approximately 80 nm for laminin-111 on platinum, gold and silicon nitride. The neuron-to-substrate interface was characterized by Scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and SEM after in situ focused-ion-beam milling demonstrating that the ventral cell membrane adhered inhomogeneously to laminin-111 or L1Ig6 surfaces. Tight areas of 20-30 nm and distant areas <1 microm alternated and even tightest areas did not correlate with the physical thickness of the protein layers. This study illustrates the difficulties to predict cell-to-material interfaces that contribute substantially to the success of in vitro or in vivo systems. Moreover, focused ion beam (FIB)/SEM is explored as a new technique to analyze such interfaces.
Collapse
Affiliation(s)
- Frauke Greve
- Physics Electronics Laboratory, Department of Physics, ETH Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
20
|
Belvindrah R, Hankel S, Walker J, Patton BL, Müller U. Beta1 integrins control the formation of cell chains in the adult rostral migratory stream. J Neurosci 2007; 27:2704-17. [PMID: 17344408 PMCID: PMC6672488 DOI: 10.1523/jneurosci.2991-06.2007] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The subventricular zone (SVZ) of the lateral ventricle is the major site of neurogenesis in the adult brain. Neuroblasts that are born in the SVZ migrate as chains along the rostral migratory stream (RMS) to the olfactory bulb. Little is known about the mechanisms that control interactions between neuroblasts during their migration. Here we show that migrating neuroblasts express beta1 integrins and that the integrin ligand laminin is localized to cell chains. Using genetically modified mice and time-lapse video recordings of SVZ explants, we demonstrate that beta1 integrins and laminin promote the formation of cell chains. Laminin also induces the aggregation of purified neuroblasts. We conclude that the formation of cell chains in the RMS is controlled in part by beta1 integrins via binding to laminin. In addition, we provide evidence that beta1 class integrins are required for the maintenance of the glial tubes and that defects in the glial tubes lead to the ectopic migration of neuroblasts into the surrounding tissue.
Collapse
Affiliation(s)
- Richard Belvindrah
- The Scripps Research Institute, Department of Cell Biology, Institute for Childhood and Neglected Disease, La Jolla, California 92037
| | - Sabine Hankel
- The Scripps Research Institute, Department of Cell Biology, Institute for Childhood and Neglected Disease, La Jolla, California 92037
| | - John Walker
- Genomic Institute of the Novartis Research Foundation, San Diego, California 92121, and
| | - Bruce L. Patton
- Oregon Health and Science University, Portland, Oregon 97239
| | - Ulrich Müller
- The Scripps Research Institute, Department of Cell Biology, Institute for Childhood and Neglected Disease, La Jolla, California 92037
| |
Collapse
|
21
|
Faria J, Romão L, Martins S, Alves T, Mendes FA, de Faria GP, Hollanda R, Takiya C, Chimelli L, Morandi V, de Souza JM, Abreu JG, Moura Neto V. Interactive properties of human glioblastoma cells with brain neurons in culture and neuronal modulation of glial laminin organization. Differentiation 2006; 74:562-72. [PMID: 17177853 DOI: 10.1111/j.1432-0436.2006.00090.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The harmonious development of the central nervous system depends on the interactions of the neuronal and glial cells. Extracellular matrix elements play important roles in these interactions, especially laminin produced by astrocytes, which has been shown to be a good substrate for neuron growth and axonal guidance. Glioblastomas are the most common subtypes of primary brain tumors and may be astrocytes in origin. As normal laminin-producing glial cells are the preferential substrate for neurons, and glial tumors have been shown to produce laminin, we questioned whether glioblastoma retained the same normal glial-neuron interactive properties with respect to neuronal growth and differentiation. Then, rat neurons were co-cultured onto rat normal astrocytes or onto three human glioblastoma cell lines obtained from neurosurgery. The co-culture confirmed that human glioblastoma cells as well as astrocytes maintained the ability to support neuritogenesis, but non-neural normal or tumoral cells failed to do so. However, glioblastoma cells did not distinguish embryonic from post-natal neurons in relation to neurite pattern in the co-cultures, as normal astrocytes did. Further, the laminin organization on both normal and tumoral glial cells was altered from a filamentous arrangement to a mixed punctuate/filamentous pattern when in co-culture with neurons. Together, these results suggest that glioblastoma cells could identify neuronal cells as partners, to support their growth and induce complex neurites, but they lost the normal glia property to distinguish neuronal age. In addition, our results show for the first time that neurons modulate the organization of astrocytes and glioblastoma laminin on the extracellular matrix.
Collapse
Affiliation(s)
- Jane Faria
- Departamento de Anatomia, Universidade Federal do Rio de Janeiro, Bloco F sala 20, Rio de Janeiro 21949-590, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|