1
|
Zhang ZQ, Zhu GH, Zhu R, Lei JX, Liu SY, Tu DZ, Zhang YN, Song YQ, Hou XD, Zhuang XY, Wang P, Cao YB, Ge GB. Discovery of baicalein derivatives as novel covalent inhibitors of SARS CoV-2 M pro: Structure-activity relationships and inhibitory mechanisms. Bioorg Chem 2025; 161:108560. [PMID: 40367796 DOI: 10.1016/j.bioorg.2025.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
The SARS-CoV-2 main protease (Mpro) has been validated as a promising target for the development of anti-SARS-CoV-2 agents. This work aims to explore the structure-activity relationships (SARs) of flavonoids as Mpro inhibitors, and to develop more potent Mpro inhibitors. Firstly, the anti-Mpro activity of 109 natural flavonoids were evaluated, identifying baicalein as a potent lead compound. Guided by SARs, 55 baicalein derivatives were designed and synthesized, while the C-8 bromine-substituted baicalein (BA-21) was found as the most potent Mpro inhibitor. Further investigations showed that BA-21 potently inactivate Mpro in a time-dependent manner (IC50 = 0.35 μM). Inactivation kinetics showed that BA-21 was a potent Mpro inactivator, its inactivation efficacy (555.56 M-1 s-1) was about 7.26-fold higher than that of baicalein (76.50 M-1 s-1). Both chemoproteomics and molecular docking simulations demonstrated that baicalein could covalently modify four cysteine residues of Mpro, but BA-21 could covalently modify more functional cysteines of Mpro (such as Cys44, Cys145) via forming at least three reactive intermediates. Collectively, this work uncovers several essential structural features of flavonoids responsible for Mpro inhibition and devises a novel bromine-substituted flavonoid as a more efficacious covalent inhibitor of Mpro.
Collapse
Affiliation(s)
- Zhao-Qin Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang-Hao Zhu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rong Zhu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing-Xuan Lei
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shu-Yan Liu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dong-Zhu Tu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ya-Ni Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yun-Qing Song
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xu-Dong Hou
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-Yu Zhuang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ping Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yong-Bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200433, China.
| | - Guang-Bo Ge
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Abdelall EKA, Elshemy HAH, Labib MB, Philoppes JN, Ali FEM, Ahmed AKM. Synthesis of new selective agents with dual anti-inflammatory and SARS-CoV-2 M pro inhibitory activity: Antipyrine-celecoxib hybrid analogues; COX-2, COVID-19 cytokine storm and replication inhibitory activities. Bioorg Chem 2025; 160:108429. [PMID: 40199011 DOI: 10.1016/j.bioorg.2025.108429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/28/2025] [Accepted: 03/30/2025] [Indexed: 04/10/2025]
Abstract
Herein, a great aim to introduce novel pyrazolone derivatives with multiple activities, including selective COX-2 and cytokine inhibition in addition to SARS-CoV-2 Mpro inhibitory effects. All the synthesized compounds 4a-c, 5, 6a,b, 7a-f, 8a,b, 9a,b, 10a,b and 11a-f were evaluated in vitro for investigation of selective COX-2 inhibitory activity. The results introduced the most selective compounds 7a, 7d, 7e, 9a, and 11f that were further screened in vivo to evaluate their anti-inflammatory activity, safety concerning gastric ulcer and myocardial infarction. Compounds 7e, 9a and 11f exhibited % edema inhibition (43.87-54.31) compared to celecoxib (54.17%17 %) at the same time. Histopathological examination of gastric and cardiac tissues proved the safe profiles of compounds 7e and 11 f. The reduction in cardiac biomarkers level (CK-MP, AST, LDH) and the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) ensured the cardiac safety of 7e and 11f. Also, RT-PCR results confirmed the efficacy of compounds 7e and 11f to inhibit gene expression of cytokines responsible for the overwhelming inflammation in COVID-19 infection, including TNF-α, IL-6, IL-2 and IL-1β. Additionally, SARS-CoV-2 Mpro inhibitory assay revealed the potency of the compound 7e against Mpro enzyme (IC50 = 13.24 μM). Furthermore, the proper fitting of 7e inside both COX-2 and Mpro active site through the docking study supported the affinity of 7e to inhibit both enzymes. Therefore, a belief stated that compound 7e is a promising lead compound with a safe profile, acting as a selective COX-2 and cytokine inhibitor. Also, 7e reduces the COVID-19 infection's cytokine storm and inhibits viral replication via targeting the Mpro enzyme.
Collapse
Affiliation(s)
- Eman K A Abdelall
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Heba A H Elshemy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Madlen B Labib
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - John N Philoppes
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Fares E M Ali
- Department of pharmacology and toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Amira K M Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
3
|
Popov SA, Shults EE, Baev DS, Chirkova VY, Volosnikova EA, Belenkaya SV, Shcherbakov DN, Pokrovsky MA, Hamad MS, Pokrovsky AG. Ursane hybrids with 5-amino-1,2,3,4-thiatriazole, 1-tetrazole-5-thione, and 1-tetrazole-5-amines and study of their inhibition of main SARS-CoV-2 protease. Steroids 2025; 220:109638. [PMID: 40409429 DOI: 10.1016/j.steroids.2025.109638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/18/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
A series of new heterocyclic ursane and 28-norursane hybrids - derivatives of 5-amino-1,2,3,4-thiatriazole, 1-tetrazole-5-thione, and 1-tetrazole-5-amines were prepared. Reacting triterpenoids holding NCS groups at different distances from the pentacyclic backbone with hydrazine hydrate resulted in ursane-derived hydrazinecarbothioamides. Subsequent nitrosation afforded terpenoid derivatives of 5-amino-1,2,3,4-thiatriazole. Heterocyclization of amino-thioureas with 3β-acetoxyurs-12-en-28-yl substituent under the action of Hg(OAc)2-NaN3 led to hybrids of 1-tetrazole-5-amines. 1-Tetrazole-5-thiones with different positions of heterocycle relative to the triterpene skeleton were prepared by coupling sodium azide with triterpene isothiocyanates. The activity of the new heterocyclic derivatives as inhibitors of 3CLpro of SARS-CoV-2 was investigated. Remarkable inhibition was observed for the 1-tetrazole-5-thione hybrids of triterpenoids. The highest activity among the studied compounds was provided by the combination of a 1-tetrazole-5-thione moiety at the C(28)H2 group of the ursane frame having a free OH group at the 3-position. Molecular docking assumed the covalent binding of 3CLpro via the formation of a disulfide bond between the thiol groups of the catalytic Cys145 and the tetrazole heterocycle of the new hybrid compounds. The triterpenoid backbone provided multiple external hydrophobic contacts essential for the stability of the complex. The results demonstrate the potential of heterocyclic thione hybrids as non-peptidomimetic covalent inhibitors targeting 3CLpro protease (3-Chymotrypsin-like Protease).
Collapse
Affiliation(s)
- Sergey A Popov
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia.
| | - Elvira E Shults
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia
| | - Dmitry S Baev
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia; Synchrotron Radiation Facility SKIF, G.K. Boreskov Institute of Catalysis SB RAS, Koltsovo, Russian Federation SRF "SKlF", 630559 Koltsovo, Russia
| | - Varvara Yu Chirkova
- Institute of Biology and Biotechnology, Altay State University, 656049 Barnaul, Russia
| | - Ekaterina A Volosnikova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Svetlana V Belenkaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Dmitry N Shcherbakov
- Institute of Biology and Biotechnology, Altay State University, 656049 Barnaul, Russia; State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
| | | | - Mohammad S Hamad
- Novosibirsk State University, Pirogova St. 1, Novosibirsk 630090, Russia
| | - Andrey G Pokrovsky
- Novosibirsk State University, Pirogova St. 1, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Braconi L, Sosic A, Crocetti L. Recent breakthroughs in synthetic small molecules targeting SARS-CoV-2 M pro from 2022 to 2024. Bioorg Med Chem 2025; 128:118247. [PMID: 40413978 DOI: 10.1016/j.bmc.2025.118247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/07/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025]
Abstract
Among the identified targets for developing anti-coronavirus therapies, SARS-CoV-2 Mpro stands out as one of the most promising due to its crucial role in viral replication and its low mutability across various coronaviruses, making it a potential broad-spectrum target. Currently, although the approved drugs targeting Mpro are peptidomimetic inhibitors with an adequate efficacy, they exhibit relatively poor pharmacokinetic properties commonly associated with peptide-based compounds. On the contrary, using non-peptidic small-molecules Mpro inhibitors can offer many advantages, including reduced off-target toxicity, improved metabolic stability and drug-like properties more appropriate for oral administration. This topic has sparked interest in the scientific community, leading to the publication of numerous studies in recent years. In this review, we summarize the most recent progress over the past two years in the identification and development of synthetic small-molecule inhibitors of SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Laura Braconi
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Alice Sosic
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy.
| | - Letizia Crocetti
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
5
|
Yang Q, Zong K, Zhao X, Zhang F, Li F, Li X. Design, Synthesis, Evaluation, and Molecular Dynamics Simulation of SARS-CoV-2 M pro Inhibitors. ACS Med Chem Lett 2025; 16:668-674. [PMID: 40236562 PMCID: PMC11995235 DOI: 10.1021/acsmedchemlett.5c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/05/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025] Open
Abstract
COVID-19, caused by SARS-CoV-2, is a highly contagious disease with significant transmissibility and pathogenicity. The main protease of SARS-CoV-2 (Mpro or 3CLpro) is crucial for viral replication, making it a key therapeutic target. Nirmatrelvir, a promising Mpro inhibitor, contains a trifluoroacetyl group in its P4 fragment, which presents opportunities for further optimization. This study aims to enhance the inhibitory activity of nirmatrelvir through structural modification of the P4 fragment. Using a computer-aided drug design (CADD) approach, 11 novel compounds were identified based on molecular docking scores, binding free energy, predicted ADMET properties, structural diversity, synthetic feasibility, and inhibitory activity. IC50 measurements and molecular dynamics (MD) simulations demonstrated significant inhibitory potential for most compounds, with IC50 values ranging from 0.0435-0.9989 μM. Notably, compounds 2-5a and 2-5f exhibited inhibitory activity against SARS-CoV-2 Mpro comparable to that of nirmatrelvir. These findings offer valuable insights for the development of anti-SARS-CoV-2 therapeutics.
Collapse
Affiliation(s)
- Qinghua Yang
- College of
Petrochemical Engineering, Liaoning Petrochemical
University, Liaoning 113001, China
- Beijing
Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Keli Zong
- College
of
Chemistry and Life Science, Beijing University
of Technology, Beijing 100124, P. R. China
- Beijing
Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Xu Zhao
- Department
of Hepatology, Fifth Medical Center of Chinese
PLA General Hospital, 100 West Fourth Ring Road, Beijing100071, China
| | - Fenghua Zhang
- College of
Petrochemical Engineering, Liaoning Petrochemical
University, Liaoning 113001, China
| | - Fei Li
- College of
Petrochemical Engineering, Liaoning Petrochemical
University, Liaoning 113001, China
| | - Xingzhou Li
- Beijing
Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| |
Collapse
|
6
|
Bano S, Singh J, Zehra Z, Sulaimani MN, Mohammad T, Yumlembam S, Hassan MI, Islam A, Dey SK. Biochemical Screening of Phytochemicals and Identification of Scopoletin as a Potential Inhibitor of SARS-CoV-2 M pro, Revealing Its Biophysical Impact on Structural Stability. Viruses 2025; 17:402. [PMID: 40143329 PMCID: PMC11945487 DOI: 10.3390/v17030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/23/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
The main protease (Mpro or 3CLpro or nsp5) of SARS-CoV-2 is crucial to the life cycle and pathogenesis of SARS-CoV-2, making it an attractive drug target to develop antivirals. This study employed the virtual screening of a few phytochemicals, and the resultant best compound, Scopoletin, was further investigated by a FRET-based enzymatic assay, revealing an experimental IC50 of 15.75 µM. The impact of Scopoletin on Mpro was further investigated by biophysical and MD simulation studies. Fluorescence spectroscopy identified a strong binding constant of 3.17 × 104 M⁻1 for Scopoletin binding to Mpro, as demonstrated by its effective fluorescence quenching of Mpro. Additionally, CD spectroscopy showed a significant reduction in the helical content of Mpro upon interaction with Scopoletin. The findings of thermodynamic measurements using isothermal titration calorimetry (ITC) supported the spectroscopic data, indicating a tight binding of Scopoletin to Mpro with a KA of 2.36 × 103 M-1. Similarly, interaction studies have also revealed that Scopoletin forms hydrogen bonds with the amino acids nearest to the active site, and this has been further supported by molecular dynamics simulation studies. These findings indicate that Scopoletin may be developed as a potential antiviral treatment for SARS-CoV-2 by targeting Mpro.
Collapse
Affiliation(s)
- Sarika Bano
- Laboratory for Proteins and Structural Biology, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India; (S.B.); (J.S.)
| | - Jyotishna Singh
- Laboratory for Proteins and Structural Biology, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India; (S.B.); (J.S.)
| | - Zainy Zehra
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (Z.Z.); (M.N.S.); (T.M.); (M.I.H.); (A.I.)
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (Z.Z.); (M.N.S.); (T.M.); (M.I.H.); (A.I.)
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (Z.Z.); (M.N.S.); (T.M.); (M.I.H.); (A.I.)
| | - Seemasundari Yumlembam
- Laboratory for Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India;
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (Z.Z.); (M.N.S.); (T.M.); (M.I.H.); (A.I.)
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (Z.Z.); (M.N.S.); (T.M.); (M.I.H.); (A.I.)
| | - Sanjay Kumar Dey
- Laboratory for Proteins and Structural Biology, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India; (S.B.); (J.S.)
| |
Collapse
|
7
|
Saha A, Choudhary S, Walia P, Kumar P, Tomar S. Transformative approaches in SARS-CoV-2 management: Vaccines, therapeutics and future direction. Virology 2025; 604:110394. [PMID: 39889481 DOI: 10.1016/j.virol.2025.110394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 02/03/2025]
Abstract
The global healthcare and economic challenges caused by the pandemic of COVID-19 reinforced the urgent demand for quick and effective therapeutic and preventative interventions. While vaccines served as the frontline of defense, antivirals emerged as adjunctive countermeasures, especially for people who developed infection, were immunocompromised, or were reluctant to be vaccinated. Beyond the serious complications of SARS-CoV-2 infection, the threats of long-COVID and the potential for zoonotic spillover continue to be significant health concerns that cannot be overlooked. Moreover, the incessant viral evolution, clinical safety issues, waning immune responses, and the emergence of drug-resistant variants pinpoint towards more severe viral threats in the future and call for broad-spectrum innovative therapies as a pre-pandemic preparedness measure. The present review provides a comprehensive up-to-date overview of the strategies utilized in the development of classical and next-generation vaccines against SARS-CoV-2, the clinical and experimental data obtained from clinical trials, while addressing safety risks that may arise. Besides vaccines, the review also covers recent breakthroughs in anti-SARS-CoV-2 drug discovery, emphasizing druggable viral and host targets, virus- and host-targeting antivirals, and highlighting mechanistically representative molecules that are either approved or are under clinical investigation. In conclusion, the integration of both vaccines and antiviral therapies, along with swift innovative strategies to address viral evolution and drug resistance is crucial to strengthen our preparedness against future viral outbreaks.
Collapse
Affiliation(s)
- Ankita Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Priyanshu Walia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
8
|
Alqahtani SM. Discovering broad-spectrum inhibitors for SARS-CoV-2 variants: a cheminformatics and biophysical approach targeting the main protease. Front Pharmacol 2025; 16:1459581. [PMID: 39974733 PMCID: PMC11835822 DOI: 10.3389/fphar.2025.1459581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 still lacks effective antiviral drugs. Therefore, a thorough receptor-based virtual screening study was conducted to screen different natural and synthetic drug libraries, such as the Asinex Antiviral, Seaweed Metabolite Database, Medicinal Fungi Secondary Metabolite and Therapeutics Library, and Comprehensive Marine Natural Products Database comprising 6,827, 1,191, 1,830, and 45,000 compounds, respectively, against the main protease enzyme of SARS-CoV-2. Accordingly, three drug molecules (BBB-26580140, BDE-32007849, and LAS-51378804) are highlighted as the best binding molecules to the main protease S1 pocket. The docking binding energy scores of BBB-26580140, BDE-32007849, and LAS-51378804 were -13.02, -13.0, and -12.56 kcal/mol, respectively. Compared to the control Z1741970824 molecule with a binding energy score of -11.59 kcal/mol, the lead structures identified herein showed robust hydrophilic and van der Waals interactions with the enzyme active site residues, such as His41 and Cys145, and achieved highly stable binding modes. The simulations showed a stable structure of the main protease enzyme with the shortlisted leads in the pocket, and the network of binding interactions remained intact during the simulations. The overall molecular mechanics with generalized Born and surface area solvation binding energies of the BBB-26580140, BDE-32007849, LAS-51378804, and control molecules are -53.02, -56.85, -55.44, and -48.91 kcal/mol, respectively. Similarly, the net molecular mechanics Poisson-Boltzmann surface area binding energies of BBB-26580140, BDE-32007849, LAS-51378804, and control are -53.6, -57.61, -54.41, and -50.09 kcal/mol, respectively. The binding entropy energies of these systems showed lower free energies, indicating their stable nature. Furthermore, the binding energies were revalidated using the water swap method that considers the role of the water molecules in bridging the ligands to the enzyme active site residues. The compounds also revealed good ADMET properties and followed all major rules of drug-likeness. Thus, these compounds are predicted as promising leads and can be subjected to further experimental studies for evaluation of their biological activities.
Collapse
Affiliation(s)
- Safar M. Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| |
Collapse
|
9
|
Kayumov M, Marimuthu P, Razzokov J, Mukhamedov N, Asrorov A, Berdiev NS, Ziyavitdinov JF, Yashinov A, Oshchepkova Y, Salikhov S, Mirzaakhmedov S. Computational and in vitro evaluation of sumac-derived ©Rutan compounds towards Sars-CoV-2 M pro inhibition. Front Pharmacol 2025; 16:1518463. [PMID: 39968179 PMCID: PMC11832515 DOI: 10.3389/fphar.2025.1518463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
The emergence of the SARS-CoV-2 virus caused the COVID-19 outbreak leading to a global pandemic. Natural substances started being screened for their antiviral activity by computational and in-vitro techniques. Here, we evaluated the anti-SARS-CoV-2 main protease (Mpro) efficacy of ©Rutan, which contains five polyphenols (R5, R6, R7, R7', and R8) extracted from sumac Rhus coriaria L. We obtained three fractions after large-scale purification: fraction 1 held R5, fraction 2 consisted of R6, R7 and R7', and fraction 3 held R8. In vitro results showed their anti-Mpro potential: IC50 values of R5 and R8 made 42.52 µM and 5.48 µM, respectively. Further, we studied Mpro-polyphenol interactions by in silico analysis to understand mechanistic extrapolation of Rutan binding nature with Mpro. We extensively incorporated a series of in silico techniques. Initially, for the docking protocol validation, redocking of the co-crystal ligand GC-376* to the binding pocket of Mpro was carried out. The representative docked complexes were subjected to long-range 500 ns molecular dynamics simulations. The binding free energy (BFE in kcal/mol) of components were calculated as follows: R8 (-104.636) > R6 (-93.754) > R7' (-92.113) > R5 (-81.115) > R7 (-67.243). In silico results of R5 and R8 correspond with their in vitro outcomes. Furthermore, the per-residue decomposition analysis showed C145, E166, and Q189 residues as the hotspot residues for components contributing to maximum BFE energies. All five components effectively interact with the catalytic pocket of Mpro and form stable complexes that allow the estimation of their inhibitory activity. Assay kit analyses revealed that Rutan and its components have effective anti-SARS-CoV-2 Mpro inhibitory activity.
Collapse
Affiliation(s)
- Muzaffar Kayumov
- Institute of Bioorganic Chemistry, AS of Uzbekistan, Tashkent, Uzbekistan
| | - Parthiban Marimuthu
- Pharmaceutical Science Laboratory (PSL-Pharmacy), Structural Bioinformatics Laboratory (SBL-Biochemistry), Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied Research, National Research University TIIAME, Tashkent, Uzbekistan
- Department of Natural Sciences, Shakhrisabz State Pedagogical Institute, Shahrisabz, Uzbekistan
- Department of Biotechnology, Tashkent State Technical University, Tashkent, Uzbekistan
| | - Nurkhodja Mukhamedov
- Institute of Bioorganic Chemistry, AS of Uzbekistan, Tashkent, Uzbekistan
- Department of Natural Compounds and Applied Chemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Akmal Asrorov
- Institute of Bioorganic Chemistry, AS of Uzbekistan, Tashkent, Uzbekistan
| | - Nodir S. Berdiev
- Institute of Bioorganic Chemistry, AS of Uzbekistan, Tashkent, Uzbekistan
| | | | - Ansor Yashinov
- Institute of Bioorganic Chemistry, AS of Uzbekistan, Tashkent, Uzbekistan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuliya Oshchepkova
- Institute of Bioorganic Chemistry, AS of Uzbekistan, Tashkent, Uzbekistan
| | - Shavkat Salikhov
- Institute of Bioorganic Chemistry, AS of Uzbekistan, Tashkent, Uzbekistan
| | | |
Collapse
|
10
|
Polavarapu N, Doty M, Dobrovolny HM. Exploring the treatment of SARS-CoV-2 with modified vesicular stomatitis virus. J Theor Biol 2024; 595:111959. [PMID: 39366462 DOI: 10.1016/j.jtbi.2024.111959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
SARS-CoV-2 caused a global pandemic and is now an endemic virus that will require continued antiviral and vaccine development. A possible new treatment modality was recently suggested that would use vesicular stomatitis virus (VSV) modified to express the ACE2 receptor. Since the modified VSV expresses the cell surface receptor that is used by the SARS-CoV-2 spike protein, the thought is that SARS-CoV-2 virions would bind to the modified VSV and thus be neutralized. Additionally, since SARS-CoV-2 infected cells also express the spike protein, the modified VSV could potentially infect these cells, allowing for its own replication, but also potentially interfering with replication of SARS-CoV-2. This idea has not yet been tested experimentally, but we can investigate the feasibility of this possible treatment theoretically. In this manuscript, we develop a mathematical model of this suggested treatment and explore conditions under which it might be effective. We find that treatment with modified VSV does little to change the SARS-CoV-2 time course except when the treatment is applied at the onset of the SARS-CoV-2 infection at very high doses. In this case, VSV reduces the peak SARS-CoV-2 viral load, but lengthens the duration of the SARS-CoV-2 infection. Thus, we find that modified VSV treatment is unlikely to be effective largely because it does not prevent infection of cells by SARS-CoV-2.
Collapse
Affiliation(s)
- Nishnath Polavarapu
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, United States
| | - Madison Doty
- Burnett School of Medicine at TCU, Fort Worth, TX, USA
| | - Hana M Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, United States.
| |
Collapse
|
11
|
Sugiura Y, Shimizu K, Takahashi T, Ueno S, Tanigou H, Amarbayasgalan S, Kamitani W. Amino acid T25 in the substrate-binding domain of SARS-CoV-2 nsp5 is involved in viral replication in the mouse lung. PLoS One 2024; 19:e0312800. [PMID: 39642113 PMCID: PMC11623800 DOI: 10.1371/journal.pone.0312800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/15/2024] [Indexed: 12/08/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) non-structural protein 5 (nsp5) is a cysteine protease involved in viral replication and suppression of the host immune system. The substrate-binding domain of nsp5 is important for its protease activity. However, the relationship between nsp5 protease activity and viral replication remains unclear. We confirmed the importance of amino acid T25 in the nsp5 substrate-binding domain for viral replication using a split luciferase assay. By generating recombinant viruses using bacterial artificial chromosomes, we found that the proliferation of viruses with the T25I mutation in nsp5 was cell-dependent in culture. Furthermore, mice infected with the T25I mutant recombinant virus with a mouse acclimation backbone showed weight loss and increased lung viral load, similar to the wild-type (WT) infected group, up to 3 days after infection. However, after day 4, the lung viral load was significantly reduced in the T25I-infected group compared to that in the WT-infected group. This suggests that nsp5 T25 is involved in the pathogenesis of SARS-CoV-2.
Collapse
Affiliation(s)
- Yoshiro Sugiura
- Department of Infectious Disease and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Kenta Shimizu
- Department of Infectious Disease and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Tatsuki Takahashi
- Department of Infectious Disease and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Shiori Ueno
- Department of Infectious Disease and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Haruka Tanigou
- Department of Infectious Disease and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| | | | - Wataru Kamitani
- Department of Infectious Disease and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| |
Collapse
|
12
|
Gao X, Wang C, Jiang Y, Zhang S, Zhang M, Liu L, Gao S. Evaluation of inhibition effect and interaction mechanism of antiviral drugs on main protease of novel coronavirus: Molecular docking and molecular dynamics studies. J Mol Graph Model 2024; 133:108873. [PMID: 39326254 DOI: 10.1016/j.jmgm.2024.108873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
The outbreak of pneumonia caused by the novel coronavirus (SARS-CoV-2) has presented a challenge to public health. The identification and development of effective antiviral drugs is essential. The main protease (3CLpro) plays an important role in the viral replication of SARS-CoV-2 and is considered to be an effective therapeutic target. In this study, according to the principle of drug repurposing, a variety of antiviral drugs commonly used were studied by molecular docking and molecular dynamics (MD) simulations to obtain potential inhibitors of main proteases. 24 antiviral drugs were docked with 5 potential action sites of 3CLpro, and the drugs with high binding strength were further simulated by MD and the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations. The results showed that the drugs with high flexibility could bind to 3CLpro better than those with low flexibility. The interaction mechanism between antiviral drugs and main protease was analyzed in detail by calculating the root mean square displacement (RMSD), root mean square fluctuation (RMSF) and interaction residues properties. The results showed that the six drugs with high flexibility (Remdesivir, Simnotrelvir, Sofosbuvir, Ledipasvir, Indinavir and Raltegravir) had strong binding strength with 3CLpro, and the last four antiviral drugs can be used as potential candidates for main protease inhibitors.
Collapse
Affiliation(s)
- Xin Gao
- School of Science, Tianjin Chengjian University, Tianjin, China
| | - Cuihong Wang
- School of Science, Tianjin Chengjian University, Tianjin, China.
| | - Yue Jiang
- School of Science, Tianjin Chengjian University, Tianjin, China
| | - Shouchao Zhang
- School of Science, Tianjin Chengjian University, Tianjin, China.
| | - Meiling Zhang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Lijuan Liu
- School of Science, Tianjin Chengjian University, Tianjin, China
| | - Sendan Gao
- School of Science, Tianjin Chengjian University, Tianjin, China
| |
Collapse
|
13
|
Chou AA, Lin CH, Chang YC, Chang HW, Lin YC, Pi CC, Kan YM, Chuang HF, Chen HW. Antiviral activity of Vigna radiata extract against feline coronavirus in vitro. Vet Q 2024; 44:1-13. [PMID: 38712855 PMCID: PMC11078076 DOI: 10.1080/01652176.2024.2349665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal illness caused by a mutated feline coronavirus (FCoV). This disease is characterized by its complexity, resulting from systemic infection, antibody-dependent enhancement (ADE), and challenges in accessing effective therapeutics. Extract derived from Vigna radiata (L.) R. Wilczek (VRE) exhibits various pharmacological effects, including antiviral activity. This study aimed to investigate the antiviral potential of VRE against FCoV, addressing the urgent need to advance the treatment of FIP. We explored the anti-FCoV activity, antiviral mechanism, and combinational application of VRE by means of in vitro antiviral assays. Our findings reveal that VRE effectively inhibited the cytopathic effect induced by FCoV, reduced viral proliferation, and downregulated spike protein expression. Moreover, VRE blocked FCoV in the early and late infection stages and was effective under in vitro ADE infection. Notably, when combined with VRE, the polymerase inhibitor GS-441524 or protease inhibitor GC376 suppressed FCoV more effectively than monotherapy. In conclusion, this study characterizes the antiviral property of VRE against FCoV in vitro, and VRE possesses therapeutic potential for FCoV treatment.
Collapse
Affiliation(s)
- Ai-Ai Chou
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Hui Lin
- National Taiwan University Veterinary Hospital, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- TACS-alliance Research Center, Taipei, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Chen Lin
- King’s Ground Biotech Co., Ltd., Pingtung, Taiwan
| | - Chia-Chen Pi
- King’s Ground Biotech Co., Ltd., Pingtung, Taiwan
| | - Yao-Ming Kan
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hao-Fen Chuang
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Animal Resource Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Aljuhani A, Alsehli M, Seleem MA, Alraqa SY, Ahmed HEA, Rezki N, Aouad MR. Exploring of N-phthalimide-linked 1,2,3-triazole analogues with promising -anti-SARS-CoV-2 activity: synthesis, biological screening, and molecular modelling studies. J Enzyme Inhib Med Chem 2024; 39:2351861. [PMID: 38847308 PMCID: PMC11164105 DOI: 10.1080/14756366.2024.2351861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/29/2024] [Indexed: 06/12/2024] Open
Abstract
In this study, a library of phthalimide Schiff base linked to 1,4-disubstituted-1,2,3-triazoles was designed, synthesised, and characterised by different spectral analyses. All analogues have been introduced for in vitro assay of their antiviral activity against COVID-19 virus using Vero cell as incubator with different concentrations. The data revealed most of these derivatives showed potent cellular anti-COVID-19 activity and prevent viral growth by more than 90% at two different concentrations with no or weak cytotoxic effect on Vero cells. Furthermore, in vitro assay was done against this enzyme for all analogues and the results showed two of them have IC50 data by 90 µM inhibitory activity. An extensive molecular docking simulation was run to analyse their antiviral mechanism that found the proper non-covalent interaction within the Mpro protease enzyme. Finally, we profiled two reversible inhibitors, COOH and F substituted analogues that might be promising drug candidates for further development have been discovered.
Collapse
Affiliation(s)
| | - Mosa Alsehli
- Chemistry Department, College of Sciences, Taibah University, Saudi Arabia
| | - Mohamed A. Seleem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr, City, Cairo, Egypt
| | - Shaya Y. Alraqa
- Chemistry Department, College of Sciences, Taibah University, Saudi Arabia
| | - Hany E. A. Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr, City, Cairo, Egypt
| | - Nadjet Rezki
- Chemistry Department, College of Sciences, Taibah University, Saudi Arabia
| | - Mohamed R. Aouad
- Chemistry Department, College of Sciences, Taibah University, Saudi Arabia
| |
Collapse
|
15
|
Guo L, Zeng P, Zhou X, Li W, Zhang J, Li J. Structural basis of main proteases of MERS-CoV bound to antineoplastic drug carmofur. Biochem Biophys Res Commun 2024; 735:150469. [PMID: 39106601 DOI: 10.1016/j.bbrc.2024.150469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
Recurrent epidemics of coronaviruses have posed significant threats to human life and health. The mortality rate of patients infected with the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is 35 %. The main protease (Mpro) plays a crucial role in the MERS-CoV life cycle, and Mpro exhibited a high degree of conservation among different coronaviruses. Therefore inhibition of Mpro has become an effective strategy for the development of broad-spectrum anti-coronaviral drugs. The inhibition of SARS-CoV-2 Mpro by the anti-tumor drug carmofur has been revealed, but structural studies of carmofur in complex with Mpro from other types of coronavirus have not been reported. Hence, we revealed the structure of the MERS-CoV Mpro-carmofur complex, analysed the structural basis for the binding of carmofur to MERS-CoV Mpro in detail, and compared the binding patterns of carmofur to Mpros of two different coronaviruses, MERS-CoV and SARS-CoV-2. Considering the importance of Mpros for coronavirus therapy, structural understanding of Mpro inhibition by carmofur could contribute to the design and development of novel antiviral drugs with safe and broad-spectrum efficacy.
Collapse
Affiliation(s)
- Li Guo
- Shenzhen Crystalo Biopharmaceutical Co., Ltd., Shenzhen, China
| | - Pei Zeng
- Jiangxi Jmerry Biopharmaceutical Co., Ltd., Ganzhou, China
| | - Xuelan Zhou
- Jiangxi Jmerry Biopharmaceutical Co., Ltd., Ganzhou, China
| | - Wenwen Li
- Jiangxi Jmerry Biopharmaceutical Co., Ltd., Ganzhou, China
| | - Jin Zhang
- Shenzhen Crystalo Biopharmaceutical Co., Ltd., Shenzhen, China; Jiangxi Jmerry Biopharmaceutical Co., Ltd., Ganzhou, China.
| | - Jian Li
- Shenzhen Crystalo Biopharmaceutical Co., Ltd., Shenzhen, China; Jiangxi Jmerry Biopharmaceutical Co., Ltd., Ganzhou, China.
| |
Collapse
|
16
|
Liu ZQ. How many organic small molecules might be used to treat COVID-19? From natural products to synthetic agents. Eur J Med Chem 2024; 278:116788. [PMID: 39236494 DOI: 10.1016/j.ejmech.2024.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
A large scale of pandemic coronavirus disease (COVID-19) in the past five years motivates a great deal of endeavors donating to the exploration on therapeutic drugs against COVID-19 as well as other diseases caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein is an overview on the organic small molecules that are potentially employed to treat COVID-19 and other SARS-CoV-2-related diseases. These organic small molecules are accessed from both natural resources and synthetic strategies. Notably, typical natural products presented herein consist of polyphenols, lignans, alkaloids, terpenoids, and peptides, which exert an advantage for the further discovery of novel anti-COVID-19 drugs from plant herbs. On the other hand, synthetic prodrugs are composed of a series of inhibitors towards RNA-dependent RNA polymerase (RdRp), main protease (Mpro), 3-chymotrypsin-like cysteine protease (3CLpro), spike protein, papain-like protease (PLpro) of the SARS-CoV-2 as well as the angiotensin-converting enzyme 2 (ACE2) in the host cells. Synthetic strategies are worth taken into consideration because they are beneficial for designing novel anti-COVID-19 drugs in the coming investigations. Although examples collected herein are just a drop in the bucket, developments of organic small molecules against coronavirus infections are believed to pave a promising way for the discovery of multi-targeted therapeutic drugs against not only COVID-19 but also other virus-mediated diseases.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, No.2519 Jiefang Road, Changchun, 130021, People's Republic of China.
| |
Collapse
|
17
|
Soliman SSM, Hamoda AM, Nayak Y, Mostafa A, Hamdy R. Novel compounds with dual inhibition activity against SARS-CoV-2 critical enzymes RdRp and human TMPRSS2. Eur J Med Chem 2024; 276:116671. [PMID: 39004019 DOI: 10.1016/j.ejmech.2024.116671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
COVID-19 caused major worldwide problems. The spread of variants and limited treatment encouraged the design of novel anti-SARS-CoV-2 compounds. A series of compounds RH1-23 were designed to dually target RNA-dependent RNA polymerase (RdRp) and transmembrane serine protease 2 (TMPRSS2). Compared to remdesivir, in vitro screening indicated the highest selectivity and potent activity of RH11-13 with half maximum inhibitory concentration (IC50) 3.9, 5.7, and 19.72 nM, respectively. RH11-12 showed superior inhibition activity against TMPRSS2 and RdRP with IC50 (1.7 and 4.2), and (6.1 and 4.42) nM, respectively. WaterMap analysis and molecular dynamics studies demonstrated the superior enzyme binding activity of RH11 and RH12. On Vero-E6 cells, RH11 and RH12 significantly inhibited the viral replication with 66 % and 63.2 %, and viral adsorption with 44 % and 65 %, alongside virucidal effect with 51.40 % and 90.5 %, respectively. Furthermore, the potent activity of RH12 was tested on TMPRSS2-expressing cells (Calu-3) compared to camostat. RH12 exhibited selectivity index (26.05) similar to camostat (28.01) and comparable to its SI on Vero-E6 cells (22.6). RH12 demonstrated also a significant inhibition of the viral adsorption on Calu-3 cells with 60 % inhibition at 30 nM. The designed compounds exhibited good physiochemical properties. These findings indicate a broad-spectrum antiviral efficacy of the designed compounds, particularly RH12, with a promise for further development.
Collapse
Affiliation(s)
- Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Alshaimaa M Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt; Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, 78227, United States
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
18
|
Fatima A, Geethakumari AM, Ahmed WS, Biswas KH. A potential allosteric inhibitor of SARS-CoV-2 main protease (M pro) identified through metastable state analysis. Front Mol Biosci 2024; 11:1451280. [PMID: 39310374 PMCID: PMC11413593 DOI: 10.3389/fmolb.2024.1451280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
Anti-COVID19 drugs, such as nirmatrelvir, have been developed targeting the SARS-CoV-2 main protease, Mpro, based on the critical requirement of its proteolytic processing of the viral polyproteins into functional proteins essential for viral replication. However, the emergence of SARS-CoV-2 variants with Mpro mutations has raised the possibility of developing resistance against these drugs, likely due to therapeutic targeting of the Mpro catalytic site. An alternative to these drugs is the development of drugs that target an allosteric site distant from the catalytic site in the protein that may reduce the chance of the emergence of resistant mutants. Here, we combine computational analysis with in vitro assay and report the discovery of a potential allosteric site and an allosteric inhibitor of SARS-CoV-2 Mpro. Specifically, we identified an Mpro metastable state with a deformed catalytic site harboring potential allosteric sites, raising the possibility that stabilization of this metastable state through ligand binding can lead to the inhibition of Mpro activity. We then performed a computational screening of a library (∼4.2 million) of drug-like compounds from the ZINC database and identified several candidate molecules with high predicted binding affinity. MD simulations showed stable binding of the three top-ranking compounds to the putative allosteric sites in the protein. Finally, we tested the three compounds in vitro using a BRET-based Mpro biosensor and found that one of the compounds (ZINC4497834) inhibited the Mpro activity. We envisage that the identification of a potential allosteric inhibitor of Mpro will aid in developing improved anti-COVID-19 therapy.
Collapse
|
19
|
Cui W, Duan Y, Gao Y, Wang W, Yang H. Structural review of SARS-CoV-2 antiviral targets. Structure 2024; 32:1301-1321. [PMID: 39241763 DOI: 10.1016/j.str.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
The coronavirus disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents the most disastrous infectious disease pandemic of the past century. As a member of the Betacoronavirus genus, the SARS-CoV-2 genome encodes a total of 29 proteins. The spike protein, RNA-dependent RNA polymerase, and proteases play crucial roles in the virus replication process and are promising targets for drug development. In recent years, structural studies of these viral proteins and of their complexes with antibodies and inhibitors have provided valuable insights into their functions and laid a solid foundation for drug development. In this review, we summarize the structural features of these proteins and discuss recent progress in research regarding therapeutic development, highlighting mechanistically representative molecules and those that have already been approved or are under clinical investigation.
Collapse
Affiliation(s)
- Wen Cui
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yinkai Duan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201203, China
| | - Wei Wang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201203, China.
| |
Collapse
|
20
|
Huynh PNH, Khamplong P, Phan MH, Nguyen TP, Vu PNL, Tang QV, Chamsodsai P, Seetaha S, Tuong TL, Vu TY, Vo DD, Choowongkomon K, Vo CVT. Asymmetric imidazole-4,5-dicarboxamide derivatives as SARS-CoV-2 main protease inhibitors: design, synthesis and biological evaluation. RSC Med Chem 2024:d4md00414k. [PMID: 39345712 PMCID: PMC11423687 DOI: 10.1039/d4md00414k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
The SARS-CoV-2 main protease, a vital enzyme for virus replication, is a potential target for developing drugs in COVID-19 treatment. Until now, three SARS-CoV-2 main protease inhibitors have been approved for COVID-19 treatment. This study explored the inhibitory potency of asymmetric imidazole-4,5-dicarboxamide derivatives against the SARS-CoV-2 main protease. Fourteen derivatives were designed based on the structure of the SARS-CoV-2 main protease active site, the hydrolysis mechanism, and the experience gained from the reported inhibitor structures. They were synthesized through a four-step procedure from benzimidazole and 2-methylbenzimidazole. SARS-CoV-2 main protease inhibition was evaluated in vitro by fluorogenic assay with lopinavir, ritonavir, and ebselen as positive references. N-(4-Chlorophenyl)-2-methyl-4-(morpholine-4-carbonyl)-1H-imidazole-5-carboxamide (5a2) exhibited the highest potency against the SARS-CoV-2 main protease with an IC50 of 4.79 ± 1.37 μM relative to ebselen with an IC50 of 0.04 ± 0.013 μM. Enzyme kinetic and molecular docking studies were carried out to clarify the inhibitory mechanism and to prove that the compound interacts at the active site. We also performed cytotoxicity assay to confirm that these compounds are not toxic to human cells.
Collapse
Affiliation(s)
- Phuong Nguyen Hoai Huynh
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Phatcharin Khamplong
- Department of Biochemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Minh-Hoang Phan
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Thanh-Phuc Nguyen
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Phuong Ngoc Lan Vu
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Quang-Vinh Tang
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Phumin Chamsodsai
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University Bangkok 10900 Thailand
| | - Supaphorn Seetaha
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University Bangkok 10900 Thailand
| | - Truong Lam Tuong
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Thien Y Vu
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Duc-Duy Vo
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University Husargatan 3 75237 Uppsala Sweden
- Department of Chemistry, Biomedical Centre, Uppsala University Husargatan 3 75237 Uppsala Sweden
- School of Applied Chemistry, Tra Vinh University 126 Nguyen Thien Thanh Street, Ward 5 Tra Vinh City Vietnam
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University Bangkok 10900 Thailand
| | - Cam-Van T Vo
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| |
Collapse
|
21
|
Jiang H, Li W, Zhou X, Zhang J, Li J. Crystal structures of coronaviral main proteases in complex with the non-covalent inhibitor X77. Int J Biol Macromol 2024; 276:133706. [PMID: 38981557 DOI: 10.1016/j.ijbiomac.2024.133706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Main proteases (Mpros) are a class of conserved cysteine hydrolases among coronaviruses and play a crucial role in viral replication. Therefore, Mpros are ideal targets for the development of pan-coronavirus drugs. X77, previously developed against SARS-CoV Mpro, was repurposed as a non-covalent tight binder inhibitor against SARS-CoV-2 Mpro during COVID-19 pandemic. Many novel inhibitors with favorable efficacy have been discovered using X77 as a reference, suggesting that X77 could be a valuable scaffold for drug design. However, the broad-spectrum performance of X77 and underlying mechanism remain less understood. Here, we reported the crystal structures of Mpros from SARS-CoV-2, SARS-CoV, and MERS-CoV, and several Mpro mutants from SARS-CoV-2 variants bound to X77. A detailed analysis of these structures revealed key structural determinants essential for interaction and elucidated the binding modes of X77 with different coronaviral Mpros. The potencies of X77 against these investigated Mpros were further evaluated through molecular dynamic simulation and binding free energy calculation. These data provide molecular insights into broad-spectrum inhibition against coronaviral Mpros by X77 and the similarities and differences of X77 when bound to various Mpros, which will promote X77-based design of novel antivirals with broad-spectrum efficacy against different coronaviruses and SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Haihai Jiang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Wenwen Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Xuelan Zhou
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Jin Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
22
|
Yang Y, Luo YD, Zhang CB, Xiang Y, Bai XY, Zhang D, Fu ZY, Hao RB, Liu XL. Progress in Research on Inhibitors Targeting SARS-CoV-2 Main Protease (M pro). ACS OMEGA 2024; 9:34196-34219. [PMID: 39157135 PMCID: PMC11325518 DOI: 10.1021/acsomega.4c03023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024]
Abstract
Since 2019, the novel coronavirus (SARS-CoV-2) has caused significant morbidity and millions of deaths worldwide. The Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2 and its variants, has further highlighted the urgent need for the development of effective therapeutic agents. Currently, the highly conserved and broad-spectrum nature of main proteases (Mpro) renders them of great importance in the field of inhibitor study. In this study, we categorize inhibitors targeting Mpro into three major groups: mimetic, nonmimetic, and natural inhibitors. We then present the research progress of these inhibitors in detail, including their mechanism of action, antiviral activity, pharmacokinetic properties, animal experiments, and clinical studies. This review aims to provide valuable insights and potential avenues for the development of more effective antiviral drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Yue Yang
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Yi-Dan Luo
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Chen-Bo Zhang
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Yang Xiang
- School
of Medicine, Yan’an University, Yan’an 716000, China
- College
of Physical Education, Yan’an University, Yan’an 716000, China
| | - Xin-Yue Bai
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Die Zhang
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Zhao-Ying Fu
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Ruo-Bing Hao
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Xiao-Long Liu
- School
of Medicine, Yan’an University, Yan’an 716000, China
| |
Collapse
|
23
|
Casadevall A, McConnell S, Focosi D. Considerations for the development of monoclonal antibodies to address new viral variants in COVID-19. Expert Opin Biol Ther 2024; 24:787-797. [PMID: 39088242 DOI: 10.1080/14712598.2024.2388186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Monoclonal antibody (mAb) therapies proved safe and effective in preventing progression of COVID-19 to hospitalization, but most were eventually defeated by continued viral evolution. mAb combinations and those mAbs that were deliberatively selected to target conserved regions of the SARS-CoV-2 spike protein proved more resilient to viral escape variants as evident by longer clinical useful lives. AREAS COVERED We searched PubMed for literature covering the need, development, and use of mAb therapies for COVID-19. As much of humanity now has immunity to SARS-CoV-2, the population at most risk is that of immunocompromised individuals. Hence, there continues to be a need for mAb therapies for immunocompromised patients. However, mAb use in this population carries the risk for selecting mAb-resistant variants, which could pose a public health concern if they disseminate to the general population. EXPERT OPINION Going forward, structural knowledge of the interactions of Spike with its cellular receptor has identified several regions that may be good targets for future mAb therapeutics. A focus on designing variant-resistant mAbs together with cocktails that target several epitopes and the use of other variant mitigating strategies such as the concomitant use of small molecule antivirals and polyclonal preparations could extend the clinical usefulness of future preparations.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Scott McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
24
|
Castillo F, Ramírez D, Ramos MC, Martinez-Arribas B, Domingo-Contreras E, Mackenzie TA, Peña-Varas C, Lindemann S, Montero F, Annang F, Vicente F, Genilloud O, González-Pacanowska D, Fernandez-Godino R. Repurposing the Open Global Health Library for the discovery of novel Mpro destabilizers with scope as broad-spectrum antivirals. Front Pharmacol 2024; 15:1390705. [PMID: 39050758 PMCID: PMC11267763 DOI: 10.3389/fphar.2024.1390705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 07/27/2024] Open
Abstract
The SARS coronavirus 2 (SARS-CoV-2) epidemic remains globally active. The emergence of new variants of interest and variants of concern (VoCs), which are potentially more vaccine-resistant and less sensitive to existing treatments, is evident due to their high prevalence. The prospective spread of such variants and other coronaviruses with epidemic potential demands preparedness that can be met by developing fast-track workflows to find new candidates that target viral proteins with a clear in vitro and in vivo phenotype. Mpro (or 3CLpro) is directly involved in the viral replication cycle and the production and function of viral polyproteins, which makes it an ideal target. The biological relevance of Mpro is highly conserved among betacoronaviruses like HCoV-OC43 and SARS-CoV-2, which makes the identification of new chemical scaffolds targeting them a good starting point for designing broad-spectrum antivirals. We report an optimized methodology based on orthogonal cell-free assays to identify small molecules that inhibit the binding pockets of both SARS-CoV-2-Mpro and HCoV-OC43-Mpro; this blockade correlates with antiviral activities in HCoV-OC43 cellular models. By using such a fast-tracking approach against the Open Global Health Library (Merck KGaA), we have found evidence of the antiviral activity of compound OGHL98. In silico studies dissecting intermolecular interactions between OGHL98 and both proteases and comprising docking and molecular dynamics simulations (MDSs) concluded that the binding mode was primarily governed by conserved H-bonds with their C-terminal amino acids and that the rational design of OGHL98 has potential against VoCs proteases resistant to current therapeutics.
Collapse
Affiliation(s)
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | | - Blanca Martinez-Arribas
- Instituto de Parasitología y Biomedicina Lopez-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | - Carlos Peña-Varas
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Doctorado en Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Sven Lindemann
- Strategic Innovation, Merck Healthcare KGaA, Darmstadt, Germany
| | - Fernando Montero
- Fundación MEDINA, Granada, Spain
- Department of Physical Chemistry and Institute of Biotechnology, Universidad de Granada, Granada, Spain
| | | | | | | | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina Lopez-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | |
Collapse
|
25
|
Han L, Wang B, Sun K, Sitara M, Li M, Wang P, Chen N, Yu XA, Tian J. A SARS-CoV-2 M pro fluorescent sensor for exploring pharmacodynamic substances from traditional Chinese medicine. Analyst 2024; 149:3585-3595. [PMID: 38767148 DOI: 10.1039/d4an00372a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The main protease of SARS-CoV-2 (SARS-CoV-2 Mpro) plays a critical role in the replication and life cycle of the virus. Currently, how to screen SARS-CoV-2 Mpro inhibitors from complex traditional Chinese medicine (TCM) is the bottleneck for exploring the pharmacodynamic substances of TCM against SARS-CoV-2. In this study, a simple, cost-effective, rapid, and selective fluorescent sensor (TPE-S-TLG sensor) was designed with an AIE (aggregation-induced emission) probe (TPE-Ph-In) and the SARS-CoV-2 Mpro substrate (S-TLG). The TPE-S-TLG sensor was characterized using UV-Vis absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), zeta potential, and Fourier transform infrared (FTIR) spectroscopy techniques. The limit of detection of this method to detect SARS-CoV-2 Mpro was measured to be 5 ng mL-1. Furthermore, the TPE-S-TLG sensor was also successfully applied to screen Mpro inhibitors from Xuebijing injection using the separation and collection of the HPLC-fully automatic partial fraction collector (HPLC-FC). Six active compounds, including protocatechualdehyde, chlorogenic acid, hydroxysafflower yellow A, caffeic acid, isoquercetin, and pentagalloylglucose, were identified using UHPLC-Q-TOF/MS that could achieve 90% of the Mpro inhibition rate for the Xuebijing injection. Accordingly, the strategy can be broadly applied in the detection of disease-related proteases as well as screening active substances from TCM.
Collapse
Affiliation(s)
- Lei Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Bing Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, People's Republic of China.
| | - Kunhui Sun
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, People's Republic of China.
| | - Muqadas Sitara
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Meifang Li
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, People's Republic of China.
| | - Ping Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, People's Republic of China.
| | - Ning Chen
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, People's Republic of China.
| | - Xie-An Yu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, People's Republic of China.
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
26
|
Xiao YQ, Long J, Zhang SS, Zhu YY, Gu SX. Non-peptidic inhibitors targeting SARS-CoV-2 main protease: A review. Bioorg Chem 2024; 147:107380. [PMID: 38636432 DOI: 10.1016/j.bioorg.2024.107380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
The COVID-19 pandemic continues to pose a threat to global health, and sounds the alarm for research & development of effective anti-coronavirus drugs, which are crucial for the patients and urgently needed for the current epidemic and future crisis. The main protease (Mpro) stands as an essential enzyme in the maturation process of SARS-CoV-2, playing an irreplaceable role in regulating viral RNA replication and transcription. It has emerged as an ideal target for developing antiviral agents against SARS-CoV-2 due to its high conservation and the absence of homologous proteases in the human body. Among the SARS-CoV-2 Mpro inhibitors, non-peptidic compounds hold promising prospects owing to their excellent antiviral activity and improved metabolic stability. In this review, we offer an overview of research progress concerning non-peptidic SARS-CoV-2 Mpro inhibitors since 2020. The efforts delved into molecular structures, structure-activity relationships (SARs), biological activity, and binding modes of these inhibitors with Mpro. This review aims to provide valuable clues and insights for the development of anti-SARS-CoV-2 agents as well as broad-spectrum coronavirus Mpro inhibitors.
Collapse
Affiliation(s)
- Ya-Qi Xiao
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiao Long
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang-Shuang Zhang
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Shuang-Xi Gu
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
27
|
Karasev DA, Sobolev BN, Filimonov DA, Lagunin A. Prediction of viral protease inhibitors using proteochemometrics approach. Comput Biol Chem 2024; 110:108061. [PMID: 38574417 DOI: 10.1016/j.compbiolchem.2024.108061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Being widely accepted tools in computational drug search, the (Q)SAR methods have limitations related to data incompleteness. The proteochemometrics (PCM) approach expands the applicability area by using description for both protein and ligand structures. The PCM algorithms are urgently required for the development of new antiviral agents. We suggest the PCM method using the TLMNA descriptors, combining the MNA descriptors of ligands and protein sequence N-grams. Our method was validated on the viral chymotrypsin-like proteases and their ligands. We have developed an original protocol allowing us to collect a comprehensive set of 15 protein sequences and more than 9000 ligands from the ChEMBL database. The N-grams were derived from the 3D-based alignment, accurately superposing ligand-binding regions. In testing the ligand set in SAR mode with MNA descriptors, an accuracy above 0.95 was determined that shows the perspective of the antiviral drug search in virtual chemical libraries. The effective PCM models were built with the TLMNA descriptor. The strong validation procedure with pair exclusion simulated the prediction of interactions between the new ligands and new targets, resulting in accuracy estimation up to 0.89. The PCM approach shows slightly lower accuracy caused by more uncertainty compared with SAR, but it overcomes the problem of data incompleteness.
Collapse
Affiliation(s)
- Dmitry A Karasev
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia.
| | - Boris N Sobolev
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Dmitry A Filimonov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Alexey Lagunin
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia; Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
28
|
Syed YY. Ensitrelvir Fumaric Acid: First Approval. Drugs 2024; 84:721-728. [PMID: 38795314 DOI: 10.1007/s40265-024-02039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/27/2024]
Abstract
Ensitrelvir fumaric acid (Xocova®) is an oral SARS-CoV-2 main protease inhibitor developed by Shionogi for the treatment of SARS-CoV-2 infection. It is the first single-entity, nonpeptidic, noncovalent, small molecule antiviral of its kind. Following emergency regulatory approval in Japan in November 2022, ensitrelvir received standard approval in Japan on 5 March 2024 for the treatment of SARS-CoV-2 infection. This article summarizes the milestones in the development of ensitrelvir leading to this first standard approval for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yahiya Y Syed
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand.
| |
Collapse
|
29
|
Xiong F, Zhang YJ, Jiang HY, Wang ZH. Exploring the Efficacy of Noncovalent SARS-CoV-2 Main Protease Inhibitors: A Computational Simulation Analysis Study. Chem Biodivers 2024; 21:e202302089. [PMID: 38526531 DOI: 10.1002/cbdv.202302089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
The SARS-CoV-2 main protease, as a key target for antiviral therapeutics, is instrumental in maintaining virus stability, facilitating translation, and enabling the virus to evade innate immunity. Our research focused on designing non-covalent inhibitors to counteract the action of this protease. Utilizing a 3D-QSAR model and contour map, we successfully engineered eight novel non-covalent inhibitors. Further evaluation and comparison of these novel compounds through methodologies including molecular docking, ADMET analysis, frontier molecular orbital studies, molecular dynamics simulations, and binding free energy revealed that the inhibitors N02 and N03 demonstrated superior research performance (N02 ΔGbind=-206.648 kJ/mol, N03 ΔGbind=-185.602 kJ/mol). These findings offer insightful guidance for the further refinement of molecular structures and the development of more efficacious inhibitors. Consequently, future investigations can draw upon these findings to unearth more potent inhibitors, thereby amplifying their impact in the treatment and prevention of associated diseases.
Collapse
Affiliation(s)
- Fei Xiong
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Yan-Jun Zhang
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Hui-Ying Jiang
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Zhong-Hua Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, P. R. China
| |
Collapse
|
30
|
Wang F, Liu D, Gao D, Yuan J, Zhao J, Yuan S, Cen Y, Lin GQ, Zhao J, Tian P. Discovery of natural catechol derivatives as covalent SARS-CoV-2 3CL pro inhibitors. Int J Biol Macromol 2024; 264:130377. [PMID: 38395279 DOI: 10.1016/j.ijbiomac.2024.130377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 continues to pose a threat to public health, and extensive research by scientists worldwide has also prompted the development of antiviral therapies. The 3C-like protease (3CLpro) is critical for SARS-CoV-2 replication and acts as an effective target for drug development. To date, numerous of natural products have been reported to exhibit inhibitory effects on 3CLpro, which encourages us to identify other novel inhibitors and elucidate their mechanism of action. In this study, we first screened an in-house compound library of 101 natural products using FRET assay, and found that oleuropein showed good inhibitory activity against SARS CoV-2 3CLpro with an IC50 value of 4.18 μM. Further studies revealed that the catechol core is essential for activity and can covalently bind to SARS-CoV-2 3CLpro. Among other 45 catechol derivatives, wedelolactone, capsazepine and brazilin showed better SARS-CoV-2 3CLpro inhibitory activities with IC50 values of 1.35 μM, 1.95 μM and 1.18 μM, respectively. These catechol derivatives were verified to be irreversible covalent inhibitors by time-dependent experiments, enzymatic kinetic studies, dilution and dialysis assays. It also exhibited good selectivity towards different cysteine proteases (SARS-CoV-2 PLpro, cathepsin B and cathepsin L). Subsequently, the binding affinity between brazilin and SARS-CoV-2 3CLpro was determined by SPR assay with KD value of 0.80 μM. Molecular dynamic (MD) simulations study showed the binding mode of brazilin in the target protein. In particular, brazilin displayed good anti-SARS-CoV-2 activity in A549-hACE2-TMPRSS2 cells with EC50 values of 7.85 ± 0.20 μM and 5.24 ± 0.21 μM for full time and post-infection treatments, respectively. This study provides a promising lead compound for the development of novel anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Feng Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Donglan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510320, China
| | - Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jinwei Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Shuai Yuan
- Health and Quarantine Laboratory, Guangzhou Customs District Technology Center, Guangzhou 510700, China
| | - Yixin Cen
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510320, China; Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
31
|
Desantis J, Bazzacco A, Eleuteri M, Tuci S, Bianconi E, Macchiarulo A, Mercorelli B, Loregian A, Goracci L. Design, synthesis, and biological evaluation of first-in-class indomethacin-based PROTACs degrading SARS-CoV-2 main protease and with broad-spectrum antiviral activity. Eur J Med Chem 2024; 268:116202. [PMID: 38394929 DOI: 10.1016/j.ejmech.2024.116202] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
To date, Proteolysis Targeting Chimera (PROTAC) technology has been successfully applied to mediate proteasomal-induced degradation of several pharmaceutical targets mainly related to oncology, immune disorders, and neurodegenerative diseases. On the other hand, its exploitation in the field of antiviral drug discovery is still in its infancy. Recently, we described two indomethacin (INM)-based PROTACs displaying broad-spectrum antiviral activity against coronaviruses. Here, we report the design, synthesis, and characterization of a novel series of INM-based PROTACs that recruit either Von-Hippel Lindau (VHL) or cereblon (CRBN) E3 ligases. The panel of INM-based PROTACs was also enlarged by varying the linker moiety. The antiviral activity resulted very susceptible to this modification, particularly for PROTACs hijacking VHL as E3 ligase, with one piperazine-based compound (PROTAC 6) showing potent anti-SARS-CoV-2 activity in infected human lung cells. Interestingly, degradation assays in both uninfected and virus-infected cells with the most promising PROTACs emerged so far (PROTACs 5 and 6) demonstrated that INM-PROTACs do not degrade human PGES-2 protein, as initially hypothesized, but induce the concentration-dependent degradation of SARS-CoV-2 main protease (Mpro) both in Mpro-transfected and in SARS-CoV-2-infected cells. Importantly, thanks to the target degradation, INM-PROTACs exhibited a considerable enhancement in antiviral activity with respect to indomethacin, with EC50 values in the low-micromolar/nanomolar range. Finally, kinetic solubility as well as metabolic and chemical stability were measured for PROTACs 5 and 6. Altogether, the identification of INM-based PROTACs as the first class of SARS-CoV-2 Mpro degraders demonstrating activity also in SARS-CoV-2-infected cells represents a significant advance in the development of effective, broad-spectrum anti-coronavirus strategies.
Collapse
Affiliation(s)
- Jenny Desantis
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Italy
| | | | - Michela Eleuteri
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Italy
| | - Sara Tuci
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Elisa Bianconi
- Department of Pharmaceutical Science, University of Perugia, Italy
| | | | | | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| | - Laura Goracci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Italy.
| |
Collapse
|
32
|
Amblard F, LeCher JC, De R, Zhou S, Liu P, Goh SL, Tao S, Patel D, Downs-Bowen J, Zandi K, Zhang H, Chaudhry G, McBrayer T, Muczynski M, Al-Homoudi A, Engel J, Lan S, Sarafianos SG, Kovari LC, Schinazi RF. Synthesis and biological evaluation of novel peptidomimetic inhibitors of the coronavirus 3C-like protease. Eur J Med Chem 2024; 268:116263. [PMID: 38432056 PMCID: PMC11188152 DOI: 10.1016/j.ejmech.2024.116263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and related variants, are responsible for the devastating coronavirus disease 2019 (COVID-19) pandemic. The SARS-CoV-2 main protease (Mpro) plays a central role in the replication of the virus and represents an attractive drug target. Herein, we report the discovery of novel SARS-CoV-2 Mpro covalent inhibitors, including highly effective compound NIP-22c which displays high potency against several key variants and clinically relevant nirmatrelvir Mpro E166V mutants.
Collapse
Affiliation(s)
- Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
| | - Julia C LeCher
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Ramyani De
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Shaoman Zhou
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Peng Liu
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Shu Ling Goh
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Sijia Tao
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Dharmeshkumar Patel
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Jessica Downs-Bowen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Keivan Zandi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Huanchun Zhang
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Gitika Chaudhry
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Tamara McBrayer
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Michael Muczynski
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Abdullah Al-Homoudi
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Joseph Engel
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Shuiyun Lan
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Stefan G Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Ladislau C Kovari
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Raymond F Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
| |
Collapse
|
33
|
Huang CY, Metz A, Lange R, Artico N, Potot C, Hazemann J, Müller M, Dos Santos M, Chambovey A, Ritz D, Eris D, Meyer S, Bourquin G, Sharpe M, Mac Sweeney A. Fragment-based screening targeting an open form of the SARS-CoV-2 main protease binding pocket. Acta Crystallogr D Struct Biol 2024; 80:123-136. [PMID: 38289714 PMCID: PMC10836397 DOI: 10.1107/s2059798324000329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
To identify starting points for therapeutics targeting SARS-CoV-2, the Paul Scherrer Institute and Idorsia decided to collaboratively perform an X-ray crystallographic fragment screen against its main protease. Fragment-based screening was carried out using crystals with a pronounced open conformation of the substrate-binding pocket. Of 631 soaked fragments, a total of 29 hits bound either in the active site (24 hits), a remote binding pocket (three hits) or at crystal-packing interfaces (two hits). Notably, two fragments with a pose that was sterically incompatible with a more occluded crystal form were identified. Two isatin-based electrophilic fragments bound covalently to the catalytic cysteine residue. The structures also revealed a surprisingly strong influence of the crystal form on the binding pose of three published fragments used as positive controls, with implications for fragment screening by crystallography.
Collapse
Affiliation(s)
- Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Alexander Metz
- Idorsia Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| | - Roland Lange
- Idorsia Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| | - Nadia Artico
- Idorsia Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| | - Céline Potot
- Idorsia Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| | | | - Manon Müller
- Idorsia Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| | | | | | - Daniel Ritz
- Idorsia Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| | - Deniz Eris
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Solange Meyer
- Idorsia Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| | | | - May Sharpe
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | |
Collapse
|
34
|
Yarovaya OI, Filimonov AS, Baev DS, Borisevich SS, Zaykovskaya AV, Chirkova VY, Marenina MK, Meshkova YV, Belenkaya SV, Shcherbakov DN, Gureev MA, Luzina OA, Pyankov OV, Salakhutdinov NF, Khvostov MV. The Potential of Usnic-Acid-Based Thiazolo-Thiophenes as Inhibitors of the Main Protease of SARS-CoV-2 Viruses. Viruses 2024; 16:215. [PMID: 38399993 PMCID: PMC10893357 DOI: 10.3390/v16020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Although the COVID-19 pandemic caused by SARS-CoV-2 viruses is officially over, the search for new effective agents with activity against a wide range of coronaviruses is still an important task for medical chemists and virologists. We synthesized a series of thiazolo-thiophenes based on (+)- and (-)-usnic acid and studied their ability to inhibit the main protease of SARS-CoV-2. Substances containing unsubstituted thiophene groups or methyl- or bromo-substituted thiophene moieties showed moderate activity. Derivatives containing nitro substituents in the thiophene heterocycle-just as pure (+)- and (-)-usnic acids-showed no anti-3CLpro activity. Kinetic parameters of the most active compound, (+)-3e, were investigated, and molecular modeling of the possible interaction of the new thiazolo-thiophenes with the active site of the main protease was carried out. We evaluated the binding energies of the ligand and protein in a ligand-protein complex. Active compound (+)-3e was found to bind with minimum free energy; the binding of inactive compound (+)-3g is characterized by higher values of minimum free energy; the positioning of pure (+)-usnic acid proved to be unstable and is accompanied by the formation of intermolecular contacts with many amino acids of the catalytic binding site. Thus, the molecular dynamics results were consistent with the experimental data. In an in vitro antiviral assay against six strains (Wuhan, Delta, and four Omicron sublineages) of SARS-CoV-2, (+)-3e demonstrated pronounced antiviral activity against all the strains.
Collapse
Affiliation(s)
- Olga I. Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Aleksandr S. Filimonov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Dmitriy S. Baev
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
- Synchrotron Radiation Facility SKIF, G.K. Boreskov Institute of Catalysis SB RAS, 630559 Koltsovo, Russia;
| | - Sophia S. Borisevich
- Synchrotron Radiation Facility SKIF, G.K. Boreskov Institute of Catalysis SB RAS, 630559 Koltsovo, Russia;
- Laboratory of Chemical Physics, Ufa Institute of Chemistry, Ufa Federal Research Centre, 450078 Ufa, Russia
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (A.V.Z.); (O.V.P.)
| | - Varvara Yu. Chirkova
- Institute of Biology and Biotechnology, Altay State University, 656049 Barnaul, Russia;
| | - Mariya K. Marenina
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Yulia V. Meshkova
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Svetlana V. Belenkaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (A.V.Z.); (O.V.P.)
| | - Dmitriy N. Shcherbakov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (A.V.Z.); (O.V.P.)
- Institute of Biology and Biotechnology, Altay State University, 656049 Barnaul, Russia;
| | - Maxim A. Gureev
- Laboratory of Bio- and Cheminformatics, St. Petersburg School of Physics, Mathematics and Computer Science, HSE University, 194100 St. Peterburg, Russia;
| | - Olga A. Luzina
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (A.V.Z.); (O.V.P.)
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Mikhail V. Khvostov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| |
Collapse
|
35
|
Janin YL. On the origins of SARS-CoV-2 main protease inhibitors. RSC Med Chem 2024; 15:81-118. [PMID: 38283212 PMCID: PMC10809347 DOI: 10.1039/d3md00493g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024] Open
Abstract
In order to address the world-wide health challenge caused by the COVID-19 pandemic, the 3CL protease/SARS-CoV-2 main protease (SARS-CoV-2-Mpro) coded by its nsp5 gene became one of the biochemical targets for the design of antiviral drugs. In less than 3 years of research, 4 inhibitors of SARS-CoV-2-Mpro have actually been authorized for COVID-19 treatment (nirmatrelvir, ensitrelvir, leritrelvir and simnotrelvir) and more such as EDP-235, FB-2001 and STI-1558/Olgotrelvir or five undisclosed compounds (CDI-988, ASC11, ALG-097558, QLS1128 and H-10517) are undergoing clinical trials. This review is an attempt to picture this quite unprecedented medicinal chemistry feat and provide insights on how these cysteine protease inhibitors were discovered. Since many series of covalent SARS-CoV-2-Mpro inhibitors owe some of their origins to previous work on other proteases, we first provided a description of various inhibitors of cysteine-bearing human caspase-1 or cathepsin K, as well as inhibitors of serine proteases such as human dipeptidyl peptidase-4 or the hepatitis C protein complex NS3/4A. This is then followed by a description of the results of the approaches adopted (repurposing, structure-based and high throughput screening) to discover coronavirus main protease inhibitors.
Collapse
Affiliation(s)
- Yves L Janin
- Structure et Instabilité des Génomes (StrInG), Muséum National d'Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université 75005 Paris France
| |
Collapse
|
36
|
Tian L, Qiang T, Yang X, Gao Y, Zhai X, Kang K, Du C, Lu Q, Gao H, Zhang D, Xie X, Liang C. Development of de-novo coronavirus 3-chymotrypsin-like protease (3CL pro) inhibitors since COVID-19 outbreak: A strategy to tackle challenges of persistent virus infection. Eur J Med Chem 2024; 264:115979. [PMID: 38048696 DOI: 10.1016/j.ejmech.2023.115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023]
Abstract
Although no longer a public health emergency of international concern, COVID-19 remains a persistent and critical health concern. The development of effective antiviral drugs could serve as the ultimate piece of the puzzle to curbing this global crisis. 3-chymotrypsin-like protease (3CLpro), with its substrate specificity mirroring that of the main picornavirus 3C protease and conserved across various coronaviruses, emerges as an ideal candidate for broad-spectrum antiviral drug development. Moreover, it holds the potential as a reliable contingency option to combat emerging SARS-CoV-2 variants. In this light, the approved drugs, promising candidates, and de-novo small molecule therapeutics targeting 3CLpro since the COVID-19 outbreak in 2020 are discussed. Emphasizing the significance of diverse structural characteristics in inhibitors, be they peptidomimetic or nonpeptidic, with a shared mission to minimize the risk of cross-resistance. Moreover, the authors propose an innovative optimization strategy for 3CLpro reversible covalent PROTACs, optimizing pharmacodynamics and pharmacokinetics to better prepare for potential future viral outbreaks.
Collapse
Affiliation(s)
- Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Xiuding Yang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yue Gao
- College of Pharmacy, Jinan University, Guangzhou, 511436, PR China
| | - Xiaopei Zhai
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, PR China
| | - Kairui Kang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Cong Du
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Qi Lu
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Hong Gao
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710021, PR China
| | - Dezhu Zhang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Chengyuan Liang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
37
|
Jiang H, Zou X, Zhou X, Zhang J, Li J. Crystal structure of SARS-CoV-2 main protease (M pro) mutants in complex with the non-covalent inhibitor CCF0058981. Biochem Biophys Res Commun 2024; 692:149352. [PMID: 38056159 DOI: 10.1016/j.bbrc.2023.149352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
SARS-CoV-2 constantly circulates and evolves worldwide, generating many variants and posing a menace to global health. It is urgently needed to discover effective medicines to treat the disease caused by SARS-CoV-2 and its variants. An established target for anti-SARS-CoV-2 drug discovery is the main protease (Mpro), since it exerts an irreplaceable action in viral life cycle. CCF0058981, derived from ML300, is a non-covalent inhibitor that exhibits low nanomolar potency against SARS-CoV-2 Mpro and submicromolar anti-SARS-CoV-2 activity, thereby providing a valuable starting point for drug design. However, structural basis underlying inhibition of SARS-CoV-2 Mpro by CCF0058981 remains undetermined. In this study, the crystal structures of CCF0058981 in complex with two SARS-CoV-2 Mpro mutants (M49I and V186F), which have been identified in the recently emerged Omicron subvariants, were solved. Structural analysis defined the pivotal molecular factors responsible for the interactions between CCF0058981 and these two Mpro mutants, and revealed the binding modes of CCF0058981 to Mpro M49I and V186F mutants. These data not only provide structural insights for SARS-CoV-2 Mpro inhibition by CCF0058981, but also add to develop effective broad-spectrum drugs against SARS-CoV-2 as well as its variants.
Collapse
Affiliation(s)
- Haihai Jiang
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, China
| | - Xiaofang Zou
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Xuelan Zhou
- Jiangxi Jmerry Biopharmaceutical Co., Ltd., Ganzhou, 341000, China; Shenzhen Crystalo Biopharmaceutical Co., Ltd., Shenzhen, 518118, China
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, China.
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
38
|
Khalifa HO, Al Ramahi YM. After the Hurricane: Anti-COVID-19 Drugs Development, Molecular Mechanisms of Action and Future Perspectives. Int J Mol Sci 2024; 25:739. [PMID: 38255813 PMCID: PMC10815681 DOI: 10.3390/ijms25020739] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a new coronavirus in the Coronaviridae family. The COVID-19 pandemic, caused by SARS-CoV-2, has undoubtedly been the largest crisis of the twenty-first century, resulting in over 6.8 million deaths and 686 million confirmed cases, creating a global public health issue. Hundreds of notable articles have been published since the onset of this pandemic to justify the cause of viral spread, viable preventive measures, and future therapeutic approaches. As a result, this review was developed to provide a summary of the current anti-COVID-19 drugs, as well as their timeline, molecular mode of action, and efficacy. It also sheds light on potential future treatment options. Several medications, notably hydroxychloroquine and lopinavir/ritonavir, were initially claimed to be effective in the treatment of SARS-CoV-2 but eventually demonstrated inadequate activity, and the Food and Drug Administration (FDA) withdrew hydroxychloroquine. Clinical trials and investigations, on the other hand, have demonstrated the efficacy of remdesivir, convalescent plasma, and monoclonal antibodies, 6-Thioguanine, hepatitis C protease inhibitors, and molnupiravir. Other therapeutics, including inhaled medicines, flavonoids, and aptamers, could pave the way for the creation of novel anti-COVID-19 therapies. As future pandemics are unavoidable, this article urges immediate action and extensive research efforts to develop potent specialized anti-COVID-19 medications.
Collapse
Affiliation(s)
- Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Yousef M. Al Ramahi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
| |
Collapse
|
39
|
Song L, Gao S, Ye B, Yang M, Cheng Y, Kang D, Yi F, Sun JP, Menéndez-Arias L, Neyts J, Liu X, Zhan P. Medicinal chemistry strategies towards the development of non-covalent SARS-CoV-2 M pro inhibitors. Acta Pharm Sin B 2024; 14:87-109. [PMID: 38239241 PMCID: PMC10792984 DOI: 10.1016/j.apsb.2023.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 01/22/2024] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is an attractive target in anti-COVID-19 therapy for its high conservation and major role in the virus life cycle. The covalent Mpro inhibitor nirmatrelvir (in combination with ritonavir, a pharmacokinetic enhancer) and the non-covalent inhibitor ensitrelvir have shown efficacy in clinical trials and have been approved for therapeutic use. Effective antiviral drugs are needed to fight the pandemic, while non-covalent Mpro inhibitors could be promising alternatives due to their high selectivity and favorable druggability. Numerous non-covalent Mpro inhibitors with desirable properties have been developed based on available crystal structures of Mpro. In this article, we describe medicinal chemistry strategies applied for the discovery and optimization of non-covalent Mpro inhibitors, followed by a general overview and critical analysis of the available information. Prospective viewpoints and insights into current strategies for the development of non-covalent Mpro inhibitors are also discussed.
Collapse
Affiliation(s)
- Letian Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Bing Ye
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mianling Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yusen Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Autonomous University of Madrid), Madrid 28049, Spain
| | - Johan Neyts
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven 3000, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
40
|
Tong X, Keung W, Arnold LD, Stevens LJ, Pruijssers AJ, Kook S, Lopatin U, Denison M, Kwong AD. Evaluation of in vitro antiviral activity of SARS-CoV-2 M pro inhibitor pomotrelvir and cross-resistance to nirmatrelvir resistance substitutions. Antimicrob Agents Chemother 2023; 67:e0084023. [PMID: 37800975 PMCID: PMC10649086 DOI: 10.1128/aac.00840-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/31/2023] [Indexed: 10/07/2023] Open
Abstract
The unprecedented scale of the COVID-19 pandemic and the rapid evolution of SARS-CoV-2 variants underscore the need for broadly active inhibitors with a high barrier to resistance. The coronavirus main protease (Mpro) is an essential cysteine protease required for viral polyprotein processing and is highly conserved across human coronaviruses. Pomotrelvir is a novel Mpro inhibitor that has recently completed a phase 2 clinical trial. In this report, we demonstrated that pomotrelvir is a potent competitive inhibitor of SARS-CoV-2 Mpro with high selectivity against human proteases. In the enzyme assay, pomotrelvir is also active against Mpro proteins derived from human coronaviruses CoV-229E, CoV-OC43, CoV-HKU1, CoV-NL63, MERS, and SARS-CoV. In cell-based SARS-CoV-2 replicon and SARS-CoV-2 infection assays, pomotrelvir has shown potent inhibitory activity and is broadly active against SARS-CoV-2 clinical isolates including Omicron variants. Many resistance substitutions of the Mpro inhibitor nirmatrelvir confer cross-resistance to pomotrelvir, consistent with the finding from our enzymatic analysis that pomotrelvir and nirmatrelvir compete for the same binding site. In a SARS-CoV-2 infection assay, pomotrelvir is additive when combined with remdesivir or molnupiravir, two nucleoside analogs targeting viral RNA synthesis. In conclusion, our results from the in vitro characterization of pomotrelvir antiviral activity support its further clinical development as an alternative COVID-19 therapeutic option.
Collapse
Affiliation(s)
- Xiao Tong
- Pardes Biosciences, Inc., Carlsbad, California, USA
| | - Walter Keung
- Pardes Biosciences, Inc., Carlsbad, California, USA
| | | | | | | | - Seunghyi Kook
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Uri Lopatin
- Pardes Biosciences, Inc., Carlsbad, California, USA
| | - Mark Denison
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ann D. Kwong
- Pardes Biosciences, Inc., Carlsbad, California, USA
| |
Collapse
|
41
|
Zhang FM, Huang T, Wang F, Zhang GS, Liu D, Dai J, Zhang JW, Li QH, Lin GQ, Gao D, Zhao J, Tian P. Discovery of highly potent covalent SARS-CoV-2 3CL pro inhibitors bearing 2-sulfoxyl-1,3,4-oxadiazole scaffold for combating COVID-19. Eur J Med Chem 2023; 260:115721. [PMID: 37598484 DOI: 10.1016/j.ejmech.2023.115721] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
The coronavirus disease (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as a major public health crisis, posing a significant threat to human well-being. Despite the availability of vaccines, COVID-19 continues to spread owing to the emergence of SARS-CoV-2 mutants. This highlights the urgent need for the discovery of more effective drugs to combat COVID-19. As an important target for COVID-19 treatment, 3C-like protease (3CLpro) plays a crucial role in the replication of SARS-CoV-2. In our previous research, we demonstrated the potent inhibitory activities of compound A1, which contains a 2-sulfonyl-1,3,4-oxadiazole scaffold, against SARS-CoV-2 3CLpro. Herein, we present a detailed investigation of structural optimization of A1 and conduct a study on the structure-activity relationship. Among the various compounds tested, sulfoxide D6 demonstrates a potent irreversible inhibitory activity (IC50 = 0.030 μM) against SARS-CoV-2 3CLpro, as well as a favorable selectivity towards host cysteine proteases such as cathepsin B and cathepsin L. Utilizing mass spectrometry-based peptide profiling, we found that D6 covalently binds to Cys145 of SARS-CoV-2 3CLpro. Some representative compounds, namely C11, D9 and D10 also demonstrates antiviral activity against SARS-CoV-2 in Vero E6 cells. Overall, the investigation of the 2-sulfoxyl-1,3,4-oxadiazole scaffold as a novel cysteine reactive warhead would provide valuable insights into the design of potent covalent 3CLpro inhibitors for COVID-19 treatment.
Collapse
Affiliation(s)
- Fu-Mao Zhang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ting Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Feng Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Gui-Shan Zhang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Donglan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Jun Dai
- Guangzhou Customs District Technology Center, Guangzhou, 510700, China
| | - Jian-Wei Zhang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing-Hua Li
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China.
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
42
|
Sabnis RW. Protease Inhibitors for Treating or Preventing Coronavirus Infection. ACS Med Chem Lett 2023; 14:1489-1490. [PMID: 37974953 PMCID: PMC10641920 DOI: 10.1021/acsmedchemlett.3c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Indexed: 11/19/2023] Open
Abstract
Provided herein are novel compounds as protease inhibitors, pharmaceutical compositions, use of such compounds in treating or preventing coronavirus infection, and processes for preparing such compounds.
Collapse
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell
LLP, 1105 W. Peachtree Street NE, Suite 1000, Atlanta, Georgia 30309, United States
| |
Collapse
|
43
|
Horga A, Saenz R, Yilmaz G, Simón-Campos A, Pietropaolo K, Stubbings WJ, Collinson N, Ishak L, Zrinscak B, Belanger B, Granier C, Lin K, C Hurt A, Zhou XJ, Wildum S, Hammond J. Oral bemnifosbuvir (AT-527) vs placebo in patients with mild-to-moderate COVID-19 in an outpatient setting (MORNINGSKY). Future Virol 2023; 18:10.2217/fvl-2023-0115. [PMID: 37928891 PMCID: PMC10621114 DOI: 10.2217/fvl-2023-0115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023]
Abstract
Aim: This phase III study assessed the efficacy/safety/antiviral activity/pharmacokinetics of bemnifosbuvir, a novel, oral nucleotide analog to treat COVID-19. Patients & methods: Outpatient adults/adolescents with mild-to-moderate COVID-19 were randomized 2:1 to bemnifosbuvir/placebo. Time to symptom alleviation/improvement (primary outcome), risk of hospitalization/death, viral load and safety were evaluated. Results: Although the study was discontinued prematurely and did not meet its primary end point, bemnifosbuvir treatment resulted in fewer hospitalizations (71% relative risk reduction), COVID-19-related medically attended hospital visits, and COVID-19-related complications compared with placebo. No reduction in viral load was observed. The proportion of patients with adverse events was similar; no deaths occurred. Conclusion: Bemnifosbuvir showed hospitalization reduction in patients with variable disease progression risk and was well tolerated. Clinical Trial Registration: NCT04889040 (ClinicalTrials.gov).
Collapse
Affiliation(s)
| | | | - Gürdal Yilmaz
- Karadeniz Technical University, Trabzon, 61080, Turkey
| | | | | | | | - Neil Collinson
- Roche Products Limited, Welwyn Garden City, AL7 1TW, Hertfordshire, UK
| | - Laura Ishak
- Atea Pharmaceuticals, Inc, Boston, MA 02110, USA
| | | | | | - Catherine Granier
- Roche Products Limited, Welwyn Garden City, AL7 1TW, Hertfordshire, UK
| | - Kai Lin
- Atea Pharmaceuticals, Inc, Boston, MA 02110, USA
| | - Aeron C Hurt
- F. Hoffmann-La Roche Ltd, Basel, 4070, Switzerland
| | | | | | | |
Collapse
|
44
|
Li F, Wang C, Guo X, Akutsu T, Webb GI, Coin LJM, Kurgan L, Song J. ProsperousPlus: a one-stop and comprehensive platform for accurate protease-specific substrate cleavage prediction and machine-learning model construction. Brief Bioinform 2023; 24:bbad372. [PMID: 37874948 DOI: 10.1093/bib/bbad372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
Proteases contribute to a broad spectrum of cellular functions. Given a relatively limited amount of experimental data, developing accurate sequence-based predictors of substrate cleavage sites facilitates a better understanding of protease functions and substrate specificity. While many protease-specific predictors of substrate cleavage sites were developed, these efforts are outpaced by the growth of the protease substrate cleavage data. In particular, since data for 100+ protease types are available and this number continues to grow, it becomes impractical to publish predictors for new protease types, and instead it might be better to provide a computational platform that helps users to quickly and efficiently build predictors that address their specific needs. To this end, we conceptualized, developed, tested and released a versatile bioinformatics platform, ProsperousPlus, that empowers users, even those with no programming or little bioinformatics background, to build fast and accurate predictors of substrate cleavage sites. ProsperousPlus facilitates the use of the rapidly accumulating substrate cleavage data to train, empirically assess and deploy predictive models for user-selected substrate types. Benchmarking tests on test datasets show that our platform produces predictors that on average exceed the predictive performance of current state-of-the-art approaches. ProsperousPlus is available as a webserver and a stand-alone software package at http://prosperousplus.unimelb-biotools.cloud.edu.au/.
Collapse
Affiliation(s)
- Fuyi Li
- College of Information Engineering, Northwest A&F University, Shaanxi 712100, China
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC 3000, Australia
| | - Cong Wang
- College of Information Engineering, Northwest A&F University, Shaanxi 712100, China
| | - Xudong Guo
- College of Information Engineering, Northwest A&F University, Shaanxi 712100, China
| | - Tatsuya Akutsu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Geoffrey I Webb
- Monash Data Futures Institute, Monash University, VIC 3800, Australia
| | - Lachlan J M Coin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC 3000, Australia
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Jiangning Song
- Monash Data Futures Institute, Monash University, VIC 3800, Australia
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| |
Collapse
|
45
|
Sabnis RW. Novel Compounds for Preventing SARS-CoV-2 Viral Replication and Treating COVID-19. ACS Med Chem Lett 2023; 14:1150-1151. [PMID: 37736189 PMCID: PMC10510508 DOI: 10.1021/acsmedchemlett.3c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 09/23/2023] Open
Abstract
Provided herein are novel compounds as SARS-CoV-2-related 3C-like protease inhibitors, pharmaceutical compositions, use of such compounds in preventing SARS-CoV-2 viral replication and treating COVID-19, and processes for preparing such compounds.
Collapse
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell
LLP, 1105 W. Peachtree Street NE, Suite 1000, Atlanta, Georgia 30309, United States
| |
Collapse
|
46
|
Wang Z, Yang L. The Therapeutic Potential of Natural Dietary Flavonoids against SARS-CoV-2 Infection. Nutrients 2023; 15:3443. [PMID: 37571380 PMCID: PMC10421531 DOI: 10.3390/nu15153443] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The exploration of non-toxic and cost-effective dietary components, such as epigallocatechin 3-gallate and myricetin, for health improvement and disease treatment has recently attracted substantial research attention. The recent COVID-19 pandemic has provided a unique opportunity for the investigation and identification of dietary components capable of treating viral infections, as well as gathering the evidence needed to address the major challenges presented by public health emergencies. Dietary components hold great potential as a starting point for further drug development for the treatment and prevention of SARS-CoV-2 infection owing to their good safety, broad-spectrum antiviral activities, and multi-organ protective capacity. Here, we review current knowledge of the characteristics-chemical composition, bioactive properties, and putative mechanisms of action-of natural bioactive dietary flavonoids with the potential for targeting SARS-CoV-2 and its variants. Notably, we present promising strategies (combination therapy, lead optimization, and drug delivery) to overcome the inherent deficiencies of natural dietary flavonoids, such as limited bioavailability and poor stability.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|