1
|
Wang H, Wu S, Bai X, Pan D, Ning Y, Wang C, Guo L, Guo J, Gu Y. Mesenchymal Stem Cell-Derived Exosomes Hold Promise in the Treatment of Diabetic Foot Ulcers. Int J Nanomedicine 2025; 20:5837-5857. [PMID: 40351704 PMCID: PMC12065540 DOI: 10.2147/ijn.s516533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025] Open
Abstract
Diabetic foot ulcers (DFU) represent one of the most common side effects of diabetes, significantly impacting patients' quality of life and imposing considerable financial burdens on families and society at large. Despite advancements in therapies targeting lower limb revascularization and various medications and dressings, outcomes for patients with severe lesions remain limited. A recent breakthrough in DFU treatment stems from the development of mesenchymal stem cells (MSCs). MSCs have shown promising results in treating various diseases and skin wounds due to their ability for multidirectional differentiation and immunomodulation. Recent studies highlight that MSCs primarily repair tissue through their paracrine activities, with exosomes playing a crucial role as the main biologically active components. These exosomes transport proteins, mRNA, DNA, and other substances, facilitating DFU treatment through immunomodulation, antioxidant effects, angiogenesis promotion, endothelial cell migration and proliferation, and collagen remodeling. Mesenchymal stem cell-derived exosomes (MSC-Exo) not only deliver comparable therapeutic effects to MSCs but also mitigate adverse reactions like immune rejection associated with MSCs transplantation. This article provides an overview of DFU pathophysiology and explores the mechanisms and research progress of MSC-Exo in DFU therapy.
Collapse
Affiliation(s)
- Hui Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Sensen Wu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Xinyu Bai
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Dikang Pan
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Yachan Ning
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Lianrui Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| |
Collapse
|
2
|
Ashrafi F, Emami A, Sefidbakht S, Aghayan H, Soleimani F, Omidfar K. Accelerated healing of full-thickness skin wounds by multifunctional exosome-loaded scaffolds of alginate hydrogel/PCL nanofibers with hemostatic efficacy. Int J Biol Macromol 2025; 307:142271. [PMID: 40112978 DOI: 10.1016/j.ijbiomac.2025.142271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Although employing exosomes (EXOs) for promoting tissue repair is already in the pipeline as a new cell-free wound treatment, the rapid clearance of EXOs is still a challenge. This study assesses the effectiveness of a hybrid design of nanofibers and hydrogel in the controlled delivery of EXOs to wounds for an enhanced healing process. EXOs are isolated from the human placenta-derived stem cells and characterized by a novel nano-fluorescent dot blot assay. They are incorporated into an alginate hydrogel composited with a nanofibrous layer of poly(ε-caprolactone) to mimic the bilayer structure of the dermis and epidermis. The scaffold characteristics, including morphology, mechanobiological properties, physical properties, anti-inflammatory activity, and cytocompatibility are comprehensively evaluated. The tailored hydrophilic/hydrophobic design of the scaffolds presents controlled degradability, controlled EXOs release, enhanced cell proliferation, hemostatic activity with insignificant hemolysis, and a balance of strength and conformability suitable for full-thickness wound milieu. The repair of full-thickness wounds is further investigated in a rat model. Animal study results indicate that the EXO-loaded scaffolds accelerate wound closure, inflammation reduction, re-epithelialization, and collagen synthesis. For the latter, a collagen content of 22 % and 33 % higher than that for the unloaded scaffold and the control was observed, respectively.
Collapse
Affiliation(s)
- Fatemeh Ashrafi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Asrin Emami
- Iranian tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Salma Sefidbakht
- Department of Pathology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Foad Soleimani
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Li L, Yao Z, Salimian KJ, Kong J, Zaheer A, Parian A, Gearhart SL, Mao HQ, Selaru FM. Extracellular Vesicles Delivered by a Nanofiber-Hydrogel Composite Enhance Healing In Vivo in a Model of Crohn's Disease Perianal Fistula. Adv Healthc Mater 2025; 14:e2402292. [PMID: 39240055 PMCID: PMC11882933 DOI: 10.1002/adhm.202402292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/24/2024] [Indexed: 09/07/2024]
Abstract
Perianal fistulas represent a common, aggressive, and disabling complication of Crohn's disease (CD). Despite recent drug developments, novel surgical interventions as well as multidisciplinary treatment approaches, the outcome is dismal, with >50% therapy failure rates. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) offer potential therapeutic benefits for treating fistulizing CD, due to the pro-regenerative paracrine signals. However, a significant obstacle to clinical translation of EV-based therapy is the rapid clearance and short half-life of EVs in vivo. Here, an injectable, biodegradable nanofiber-hydrogel composite (NHC) microgel matrix that serves as a carrier to deliver MSC-derived EVs to a rat model of CD perianal fistula (PAF) is reported. It is found that EV-loaded NHC (EV-NHC) yields the best fistula healing when compared to other treatment arms. The MRI assessment reveals that the EV-NHC reduces inflammation at the fistula site and promotes tissue healing. The enhanced therapeutic outcomes are contributed by extended local retention and sustained release of EVs by NHC. In addition, the EV-NHC effectively reduces inflammation at the fistula site and promotes tissue healing and regeneration via macrophage polarization and neo-vascularization. This EV-NHC platform provides an off-the-shelf solution that facilitates its clinical translation.
Collapse
Affiliation(s)
- Ling Li
- Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University; Baltimore, Maryland, USA
| | - Zhicheng Yao
- Institute for NanoBioTechnology, Johns Hopkins University; Baltimore, Maryland, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University; Baltimore, Maryland, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
| | - Kevan J. Salimian
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiayuan Kong
- Institute for NanoBioTechnology, Johns Hopkins University; Baltimore, Maryland, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University; Baltimore, Maryland, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
| | - Atif Zaheer
- Department of Radiology & Radiological Sciences, School of Medicine, Johns Hopkins University; Baltimore, Maryland, USA
| | - Alyssa Parian
- Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University; Baltimore, Maryland, USA
| | - Susan L. Gearhart
- Division of Colorectal Surgery, Department of Surgery, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Johns Hopkins University; Baltimore, Maryland, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University; Baltimore, Maryland, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
| | - Florin M. Selaru
- Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University; Baltimore, Maryland, USA
- Institute for NanoBioTechnology, Johns Hopkins University; Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University; Baltimore, Maryland, USA
| |
Collapse
|
4
|
Jin W, Li Y, Yu M, Ren D, Han C, Guo S. Advances of exosomes in diabetic wound healing. BURNS & TRAUMA 2025; 13:tkae078. [PMID: 39980588 PMCID: PMC11836438 DOI: 10.1093/burnst/tkae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/11/2024] [Accepted: 11/09/2024] [Indexed: 02/22/2025]
Abstract
Poor wound healing is a refractory process that places an enormous medical and financial burden on diabetic patients. Exosomes have recently been recognized as crucial players in the healing of diabetic lesions. They have excellent stability, homing effects, biocompatibility, and reduced immunogenicity as novel cell-free therapies. In addition to transporting cargos to target cells to enhance intercellular communication, exosomes are beneficial in nearly every phase of diabetic wound healing. They participate in modulating the inflammatory response, accelerating proliferation and reepithelization, increasing angiogenesis, and regulating extracellular matrix remodeling. Accumulating evidence indicates that hydrogels or dressings in conjunction with exosomes can prolong the duration of exosome residency in diabetic wounds. This review provides an overview of the mechanisms, delivery, clinical application, engineering, and existing challenges of the use of exosomes in diabetic wound repair. We also propose future directions for biomaterials incorporating exosomes: 2D or 3D scaffolds, biomaterials loaded with wound healing-promoting gases, intelligent biomaterials, and the prospect of systematic application of exosomes. These findings may might shed light on future treatments and enlighten some studies to improve quality of life among diabetes patients.
Collapse
Affiliation(s)
- Weixue Jin
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
| | - Yi Li
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
| | - Meirong Yu
- Center for Basic and Translational Research, Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| | - Danyang Ren
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
| | - Chunmao Han
- Department of Burns and Wound Repair, Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| | - Songxue Guo
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
5
|
Ren C, Zhang S, Zhang Z, Li H, Sheng W, Wang X, Li P, Zhang X, Li X, Lin H, Duan H, Guan S, Wang L. Injectable and self-healing carboxymethyl chitosan/carboxymethyl cellulose/marine snail peptide hydrogel for infected wound healing. Int J Biol Macromol 2025; 288:138784. [PMID: 39675611 DOI: 10.1016/j.ijbiomac.2024.138784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/17/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Treatment of bacterial infected full-thickness wounds remains a great challenge in clinic. Herein, a HYP hydrogel was prepared using carboxymethyl chitosan, dialdehyde carboxymethyl cellulose, and marine snail peptide (Tyr-Ile-Ala-Glu-Asp-Ala-Glu-Arg) as starting materials. The marine snail peptide with good antioxidant activity could remove the reactive oxygen species in wound sites, thereby alleviating the excessive inflammatory response. The dynamic Schiff-base bonds endowed HYP with good injectable and self-healing abilities. HYP exhibited suitable gelation time, good rheological properties, and unique porosity structure, which were conducive to wound healing. In vitro biological studies indicated that HYP showed good biocompatibility, low hemolysis ratio, and improved antibacterial and antioxidant activities. In vivo study revealed that HYP could promote wound healing in a bacterial infected full-thickness skin defect rat model. The wound tissues showed reduced number of inflammatory cells, newly formed hair follicles, and obvious collagen deposition. The expression of inflammatory and angiogenesis related biomarkers (IL-6, IL-10, CD31, and α-SMA) significantly improved. Therefore, HYP hydrogel showed great application prospect as a wound dressing for bacterial infected wound.
Collapse
Affiliation(s)
- Chengkun Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Zhihan Zhang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hui Li
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Peihai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Xuanming Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Houwen Lin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China; Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hongdong Duan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Shibing Guan
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China.
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China.
| |
Collapse
|
6
|
Hwang HS, Lee CS. Exosome-Integrated Hydrogels for Bone Tissue Engineering. Gels 2024; 10:762. [PMID: 39727520 DOI: 10.3390/gels10120762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Exosome-integrated hydrogels represent a promising frontier in bone tissue engineering, leveraging the unique biological properties of exosomes to enhance the regenerative capabilities of hydrogels. Exosomes, as naturally occurring extracellular vesicles, carry a diverse array of bioactive molecules that play critical roles in intercellular communication and tissue regeneration. When combined with hydrogels, these exosomes can be spatiotemporally delivered to target sites, offering a controlled and sustained release of therapeutic agents. This review aims to provide a comprehensive overview of the recent advancements in the development, engineering, and application of exosome-integrated hydrogels for bone tissue engineering, highlighting their potential to overcome current challenges in tissue regeneration. Furthermore, the review explores the mechanistic pathways by which exosomes embedded within hydrogels facilitate bone repair, encompassing the regulation of inflammatory pathways, enhancement of angiogenic processes, and induction of osteogenic differentiation. Finally, the review addresses the existing challenges, such as scalability, reproducibility, and regulatory considerations, while also suggesting future directions for research in this rapidly evolving field. Thus, we hope this review contributes to advancing the development of next-generation biomaterials that synergistically integrate exosome and hydrogel technologies, thereby enhancing the efficacy of bone tissue regeneration.
Collapse
Affiliation(s)
- Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Chung-Sung Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| |
Collapse
|
7
|
Xiong S, Zhang J, Zhao Z, Liu J, Yao C, Huang J. NORAD accelerates skin wound healing through extracellular vesicle transfer from hypoxic adipose derived stem cells: miR-524-5p pathway and Pumilio protein mechanism. Int J Biol Macromol 2024; 279:135621. [PMID: 39276896 DOI: 10.1016/j.ijbiomac.2024.135621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Skin wound healing is a multifaceted biological process that encompasses a variety of cell types and intricate signaling pathways. Recent research has uncovered that exosomes derived from adipose stem cells, commonly referred to as ADSC exosomes, play a crucial role in facilitating the healing process. Moreover, it has been demonstrated that an anoxic, or low-oxygen, environment significantly enhances the effectiveness of these exosomes in promoting skin repair. The primary objective of this study was to investigate the underlying mechanisms through which ADSC exosomes contribute to Skin wound healing, particularly by regulating the long non-coding RNA known as NORAD under hypoxic conditions. A significant focus of our research was to examine the interplay between the microRNA miR-524-5p and the Pumilio protein, as we aimed to understand how these molecular interactions might influence the overall healing process. In this study, ADSC exosomes were extracted by simulating hypoxia in vitro and their effects on the proliferation and migration of skin fibroblasts (FB) were evaluated. The expression levels of NORAD, miR-524-5p and Pumilio were analyzed by fluorescence quantitative PCR. Pumilio protein was silenced by siRNA technique to evaluate its role in ADSC exosome-mediated wound healing. The experimental results showed that under hypoxia conditions, NORAD levels in ADSC exosomes increased significantly and could effectively regulate the expression of miR-524-5p. After Pumilio protein silencing, the proliferation and migration ability of fibroblasts were significantly reduced, indicating that Pumilio protein played a role in the process of wound healing. By inhibiting miR-524-5p, the expression of Pumilio protein was restored, further confirming its regulatory mechanism.
Collapse
Affiliation(s)
- Shi Xiong
- Nanjing University of Chinese Medicine, No.138 Xianlin Road, Nanjing 210023, Jiangsu, China; Plastic Surgery Department, Ningbo No.2 Hospital, No.41 Xibei Street, Ningbo City, Zhejiang Province 315099, China
| | - Jun Zhang
- Department of Plastic Surgery, Affiliated Hospital Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210000, China
| | - Zhijie Zhao
- Nanjing University of Chinese Medicine, No.138 Xianlin Road, Nanjing 210023, Jiangsu, China
| | - Jia Liu
- Department of Plastic Surgery, Affiliated Hospital Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210000, China
| | - Chang Yao
- Department of Breast Surgery, Affiliated Hospital Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210000, China
| | - Jinlong Huang
- Department of Plastic Surgery, Affiliated Hospital Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210000, China.
| |
Collapse
|
8
|
Ding K, Kong J, Li L, Selaru FM, Parian A, Mao HQ. Current and emerging therapeutic strategies for perianal fistula in Crohn's disease patients. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:159-182. [PMID: 39521599 PMCID: PMC11753511 DOI: 10.1016/bs.apha.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The long-term remission rates achieved with current treatment options for Crohn's disease with perianal fistula (CD-PAF)-including antibiotics, biologics, immunomodulators, and Janus kinase inhibitors, often combined with advanced surgical interventions-remain unsatisfactory. This chapter explores several innovative biomaterials-based solutions, such as plugs, adhesives, fillers, and stem cell-based therapies. The key approaches and treatment outcomes of these advanced therapies are examined, focusing on their ability to modulate the immune response, promote tissue healing, and improve patient outcomes. Additionally, the chapter discusses future directions, including the optimization of biomaterial designs, enhancement of delivery and retention of regenerative therapies, and a deeper understanding of the underlying mechanisms of healing.
Collapse
Affiliation(s)
- Kailei Ding
- Institute for NanoBioTechnology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Materials Science and Engineering, Whiting School of Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jiayuan Kong
- Institute for NanoBioTechnology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Materials Science and Engineering, Whiting School of Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ling Li
- Division of Gastroenterology and Hepatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Florin M Selaru
- Institute for NanoBioTechnology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Division of Gastroenterology and Hepatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alyssa Parian
- Division of Gastroenterology and Hepatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Materials Science and Engineering, Whiting School of Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
9
|
Zhang Y, Wu D, Zhou C, Bai M, Wan Y, Zheng Q, Fan Z, Wang X, Yang C. Engineered extracellular vesicles for tissue repair and regeneration. BURNS & TRAUMA 2024; 12:tkae062. [PMID: 39439545 PMCID: PMC11495891 DOI: 10.1093/burnst/tkae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are heterogeneous membrane-like vesicles secreted by living cells that are involved in many physiological and pathological processes and act as intermediaries of intercellular communication and molecular transfer. Recent studies have shown that EVs from specific sources regulate tissue repair and regeneration by delivering proteins, lipids, and nucleic acids to target cells as signaling molecules. Nanotechnology breakthroughs have facilitated the development and exploration of engineered EVs for tissue repair. Enhancements through gene editing, surface modification, and content modification have further improved their therapeutic efficacy. This review summarizes the potential of EVs in tissue repair and regeneration, their mechanisms of action, and their research progress in regenerative medicine. This review highlights their design logic through typical examples and explores the development prospects of EVs in tissue repair. The aim of this review is to provide new insights into the design of EVs for tissue repair and regeneration applications, thereby expanding their use in regenerative medicine.
Collapse
Affiliation(s)
- Yan Zhang
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
- School of Public Health, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Dan Wu
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Chen Zhou
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025 Shennan Middle Road, Futian District, Shenzhen, China
| | - Muran Bai
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Yucheng Wan
- Hospital of Stomatology, Zunyi Medical University, No. 89, Wujiang East Road, Xinpu New District, Zunyi City, Guizhou Province, China
| | - Qing Zheng
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Zhijin Fan
- Institute for Engineering Medicine, Kunming Medical University, No. 1168 Chunrong West Road, Yuhua Street, Chenggong District, Kunming City, Yunnan Province China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, No.81 Meishan Road, Shushan District, Hefei 230032, China
| | - Chun Yang
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| |
Collapse
|
10
|
Villani C, Murugan P, George A. Exosome-Laden Hydrogels as Promising Carriers for Oral and Bone Tissue Engineering: Insight into Cell-Free Drug Delivery. Int J Mol Sci 2024; 25:11092. [PMID: 39456873 PMCID: PMC11508290 DOI: 10.3390/ijms252011092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Mineralization is a key biological process that is required for the development and repair of tissues such as teeth, bone and cartilage. Exosomes (Exo) are a subset of extracellular vesicles (~50-150 nm) that are secreted by cells and contain genetic material, proteins, lipids, nucleic acids, and other biological substances that have been extensively researched for bone and oral tissue regeneration. However, Exo-free biomaterials or exosome treatments exhibit poor bioavailability and lack controlled release mechanisms at the target site during tissue regeneration. By encapsulating the Exos into biomaterials like hydrogels, these disadvantages can be mitigated. Several tissue engineering approaches, such as those for wound healing processes in diabetes mellitus, treatment of osteoarthritis (OA) and cartilage degeneration, repair of intervertebral disc degeneration, and cardiovascular diseases, etc., have been exploited to deliver exosomes containing a variety of therapeutic and diagnostic cargos to target tissues. Despite the significant efficacy of Exo-laden hydrogels, their use in mineralized tissues, such as oral and bone tissue, is very sparse. This review aims to explore and summarize the literature related to the therapeutic potential of hydrogel-encapsulated exosomes for bone and oral tissue engineering and provides insight and practical procedures for the development of future clinical techniques.
Collapse
Affiliation(s)
| | | | - Anne George
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.V.); (P.M.)
| |
Collapse
|
11
|
Britton D, Almanzar D, Xiao Y, Shih HW, Legocki J, Rabbani P, Montclare JK. Exosome Loaded Protein Hydrogel for Enhanced Gelation Kinetics and Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:5992-6000. [PMID: 39173187 PMCID: PMC11409212 DOI: 10.1021/acsabm.4c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Exosomes are being increasingly explored in biomedical research for wound healing applications. Exosomes can improve blood circulation and endocrine signaling, resulting in enhanced cell regeneration. However, exosome treatments suffer from low retention and bioavailability of exosomes at the wound site. Hydrogels are a popular tool for drug delivery due to their ability to encapsulate drugs in their network and allow for targeted release. Recently, hydrogels have proven to be an effective method to provide increased rates of wound healing when combined with exosomes that can be applied noninvasively. We have designed a series of single-domain protein-based hydrogels capable of physical cross-linking and upper critical solution temperature (UCST) behavior. Hydrogel variant Q5, previously designed with improved UCST behavior and a significantly enhanced gelation rate, is selected as a candidate for encapsulation release of exosomes dubbed Q5Exo. Q5Exo exhibits low critical gelation times and significant decreases in wound healing times in a diabetic mouse wound model showing promise as an exosome-based drug delivery tool and for future hybrid, noninvasive protein-exosome design.
Collapse
Affiliation(s)
- Dustin Britton
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Dianny Almanzar
- Hansjörg
Wyss Department of Plastic Surgery, New
York University School of Medicine, New York, New York, 10016, United States
| | - Yingxin Xiao
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Hao-Wei Shih
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jakub Legocki
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Piul Rabbani
- Hansjörg
Wyss Department of Plastic Surgery, New
York University School of Medicine, New York, New York, 10016, United States
| | - Jin Kim Montclare
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, 10016, United
States
- Department
of Chemistry, New York University, New York, New York, 10012, United
States
- Department
of Biomaterials, New York University College
of Dentistry, New York, New York, 10010, United States
- Department
of Biomedical Engineering, New York University, New York, New York 11201, United States
| |
Collapse
|
12
|
Lan Z, Fletcher A, Bender EC, Huang W, Suggs LJ, Cosgriff-Hernandez E. Hydrogel foam dressings with angiogenic and immunomodulatory factors from mesenchymal stem cells. J Biomed Mater Res A 2024; 112:1388-1398. [PMID: 38270241 DOI: 10.1002/jbm.a.37678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Stem cell therapy and skin substitutes address the stalled healing of chronic wounds in order to promote wound closure; however, the high cost and regulatory hurdles of these treatments limit patient access. A low-cost method to induce bioactive healing has the potential to substantially improve patient care and prevent wound-induced limb loss. A previous study reported that bioactive factors derived from apoptotic-like mesenchymal stem cells (MSCs) demonstrated anti-inflammatory and proangiogenic effects and improved ischemic muscle regeneration. In this work, these MSC-derived bioactive factors were loaded into a hydrogel foam to harness immunomodulatory and angiogenic properties from MSC components to facilitate chronic wound healing without the high cost and translational challenges of cell therapies. After incorporation of bioactive factors, the hydrogel foam retained high absorbency, moisture retention, and target water vapor transmission rate. High loading efficiency was confirmed and release studies indicated that over 90% of loaded factors were released within 24 h. Ethylene oxide sterilization and 4-week storage did not affect the bioactive factor release profile or physical properties of the hydrogel foam dressing. Bioactivity retention of the released factors was also confirmed for as-sterilized, 4°C-stored, and -20°C-stored bioactive hydrogel foams as determined by relevant gene expression levels in treated pro-inflammatory (M1) macrophages. These results support the use of the bioactive dressings as an off-the-shelf product. Overall, this work reports a new method to achieve a first-line wound dressing with the potential to reduce persistent inflammation and promote angiogenesis in chronic wounds.
Collapse
Affiliation(s)
- Ziyang Lan
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Alan Fletcher
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Elizabeth C Bender
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Wenbai Huang
- School of Physical Education, Jinan University, Guangzhou, China
| | - Laura J Suggs
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
13
|
Ni Y, Hua Y, He Z, Hu W, Chen Z, Wang D, Li X, Sun Y, Jiang G. Release of exosomes from injectable silk fibroin and alginate composite hydrogel for treatment of myocardial infarction. J Biomater Appl 2024; 39:139-149. [PMID: 38688330 DOI: 10.1177/08853282241251610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Myocardial infarction (MI) is considered as a significant cause of death globally. Exosomes (EXOs) are essential for intercellular communication and pathophysiology of several cardiovascular diseases. Nevertheless, the short half-life and rapid clearance of EXOs leads to a lack of therapeutic doses delivered to the lesioned area. Therefore, an injectable silk fibroin and alginate (SF/Alg) composite hydrogel was developed to bind folate receptor-targeted EXOs (FA-EXOs) derived from H9C2 cells for the therapy of myocardial injury following myocardial infarction-ischemia/reperfusion (MI-I/R). The resulting composite exhibits a variety of properties, including adjustable gelation kinetics, shear-thinning injectability, soft and dynamic stability that adapts to the heartbeat, and outstanding cytocompatibility. After injected into the damaged rat heart, administration of SF/Alg + FA-EXOs significantly enhanced cardiac function as demonstrated by improved ejection fraction, fractional shortening and decreased fibrosis area. The results of real-time PCR and immunofluorescence staining show a remarkable up-regulation in the expression of proteins (CD31) and genes (VWF and Serca2a) related to the heart. Conversely, expression of fibrosis-related genes (TGF-β1) decreased significantly. Therefore, the obtained SF/Alg + FA-EXOs system remarkably enhanced the intercellular interactions, promoted cell proliferation and angiogenesis, and achieved an outstanding therapeutic effect on MI.
Collapse
Affiliation(s)
- Yunjie Ni
- Department of Cardiology, The First People's Hospital of Fuyang, Hangzhou, China
| | - Yinjian Hua
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, China
| | - Zhengfei He
- Department of Cardiology, The First People's Hospital of Fuyang, Hangzhou, China
| | - Weilv Hu
- Department of Cardiology, The First People's Hospital of Fuyang, Hangzhou, China
| | - Zhiyun Chen
- Department of Cardiology, The First People's Hospital of Fuyang, Hangzhou, China
| | - Diqing Wang
- Department of Cardiology, The First People's Hospital of Fuyang, Hangzhou, China
| | - Xintong Li
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
| | - Yanfang Sun
- School of Life Science and Medicines, Zhejiang Sci-Tech University, Hangzhou, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, China
| |
Collapse
|
14
|
Liu Q, Zhang H, Zhu Y, Jia L, Guo R, Sun Y, Xu J. Exploring the landscape of extracellular vesicle application for skin and plastic surgery: A bibliometric analysis from 2003 to 2023. Skin Res Technol 2024; 30:e13879. [PMID: 39081098 PMCID: PMC11289423 DOI: 10.1111/srt.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND Exosomes and other secretory membrane vesicles, collectively referred to as extracellular vesicles (EVs), have garnered increasing attention in research due to their biological characteristics. Notably, studies have shown promising results regarding the role of stem cell-derived extracellular vesicles (SC-EVs) in skin and plastic surgery applications. This study aims to elucidate current trends in SC-EVs within the context of skin and plastic surgery and offer insights for future research directions in advancing this critical field. METHODS A comprehensive search was conducted for relevant studies on SC-EVs in skin and plastic surgery spanning from 2003 to 2023, utilizing the Web of Science database. Subsequently, data analysis was performed using VOSviewer and CiteSpace. RESULTS A total of 1089 studies were identified, with a noticeable annual increase in publications on SC-EVs' application in skin and plastic surgery. China emerged as the leading contributor to this field, with Shanghai Jiao Tong University being a notable institution. Stem Cell Research & Therapy and the International Journal of Molecular Sciences were the top journals publishing relevant articles. Author Fu Xiaobing from the Chinese People's Liberation Army General Hospital had the highest publication count in this area. Keyword co-occurrence analysis revealed six distinct clusters, with "exosomes" being the most prevalent keyword in recent years. Wound healing and skin rejuvenation emerged as primary research focuses and hotspots in this field. CONCLUSION This comprehensive review offers insights into global trends surrounding SC-EVs in skin and plastic surgery. Analysis of journals, institutions, references, and keywords provides valuable guidance for researchers in determining future research directions.
Collapse
Affiliation(s)
- Qian Liu
- Department of StomatologySijing HospitalShanghaiChina
| | - Hao Zhang
- College of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Yanan Zhu
- College of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Lingling Jia
- Department of Plastic SurgeryShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Rong Guo
- Department of Plastic SurgeryShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yulin Sun
- Department of Plastic SurgeryShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Juan Xu
- Department of StomatologySijing HospitalShanghaiChina
| |
Collapse
|
15
|
Maiullari F, Milan M, Chirivì M, Ceraolo MG, Bousselmi S, Fratini N, Galbiati M, Fortunato O, Costantini M, Brambilla F, Mauri P, Di Silvestre D, Calogero A, Sciarra T, Rizzi R, Bearzi C. Enhancing neovascularization post-myocardial infarction through injectable hydrogel functionalized with endothelial-derived EVs. Biofabrication 2024; 16:045009. [PMID: 38986455 DOI: 10.1088/1758-5090/ad6190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Over the past three decades, cell therapy development has fallen short of expectations, with many cellular sources demonstrating a 'Janus effect' and raising safety concerns. Extracellular vesicles (EVs), supported by advanced technologies, present a promising avenue in regenerative medicine, offering benefits such as immune tolerance and avoidance of negative aspects associated with cell transplants. Our previous research showcased enhanced and organized subcutaneous vascularization using three-dimensional bioprinted patches containing HUVEC-derived EVs in immunodeficient animal models. In this context, stress conditions on the cells of origin further boosted the EVs' neoangiogenic potential. Since neovascularization is the first regenerative target requiring restoration, the present study aims to complement our previous work by employing an injectable gelatin methacrylate (GelMA) hydrogel functionalized with HUVEC-derived EVs in a pathological condition of acute myocardial infarction. This bioactive hydrogel resulted in reduced fibrosis, improved contractility, and promoted angiogenesis, showing promise in countering tissue deterioration and addressing vascular deficits. Moreover, the molecular characterization of EVs through miRNome and proteomic analyses further supports their potential as bio-additives for hydrogel functionalization. This cell-free approach mitigates immune rejection and oncogenic risks, offering innovative therapeutic advantages.
Collapse
Affiliation(s)
- Fabio Maiullari
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza, 35, 20122 Milan, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome 'Tor Vergata', Via della RicercaScientifica, 1, 00133 Rome, Italy
| | - Marika Milan
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza, 35, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maila Chirivì
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Maria Grazia Ceraolo
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza, 35, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Salma Bousselmi
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome 'Tor Vergata', Via della RicercaScientifica, 1, 00133 Rome, Italy
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Nicole Fratini
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza, 35, 20122 Milan, Italy
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Matteo Galbiati
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza, 35, 20122 Milan, Italy
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, 20054 Segrate, Milan, Italy
| | - Orazio Fortunato
- Tumor Genomics Unit, Department of Research, IRCCS Fondazione Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Marco Costantini
- Institute of Physical Chemistry-Polish Academy of Sciences, MarcinaKasprzaka 44/52, 01-224 Warsaw, Poland
| | - Francesca Brambilla
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, 20054 Segrate, Milan, Italy
| | - Pierluigi Mauri
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, 20054 Segrate, Milan, Italy
| | - Dario Di Silvestre
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, 20054 Segrate, Milan, Italy
| | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Tommaso Sciarra
- Joint Veteran Center, Scientific Department, Army Medical Center, 00184 Rome, Italy
| | - Roberto Rizzi
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza, 35, 20122 Milan, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Claudia Bearzi
- Fondazione Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Via Francesco Sforza, 35, 20122 Milan, Italy
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, 20054 Segrate, Milan, Italy
| |
Collapse
|
16
|
Liu X, Liu C, Lin Q, Shi T, Liu G. Exosome-loaded hydrogels for craniofacial bone tissue regeneration. Biomed Mater 2024; 19:052002. [PMID: 38815606 DOI: 10.1088/1748-605x/ad525c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
It is common for maladies and trauma to cause significant bone deterioration in the craniofacial bone, which can cause patients to experience complications with their appearance and their ability to function. Regarding grafting procedures' complications and disadvantages, the newly emerging field of tissue regeneration has shown promise. Tissue -engineered technologies and their applications in the craniofacial region are increasingly gaining prominence with limited postoperative risk and cost. MSCs-derived exosomes are widely applied in bone tissue engineering to provide cell-free therapies since they not only do not cause immunological rejection in the same way that cells do, but they can also perform a cell-like role. Additionally, the hydrogel system is a family of multipurpose platforms made of cross-linked polymers with considerable water content, outstanding biocompatibility, and tunable physiochemical properties for the efficient delivery of commodities. Therefore, the promising exosome-loaded hydrogels can be designed for craniofacial bone regeneration. This review lists the packaging techniques for exosomes and hydrogel and discusses the development of a biocompatible hydrogel system and its potential for exosome continuous delivery for craniofacial bone healing.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Plastic Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Chang Liu
- Department of Plastic Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Qingquan Lin
- Institute of Applied Catalysis, College of Chemistry and Chemical Engineering, Yantai University, Yantai, People's Republic of China
| | - Ting Shi
- Department of Plastic Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Guanying Liu
- Department of Hand and Foot Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| |
Collapse
|
17
|
Erkoc-Biradli FZ, Erenay B, Ozgun A, Öztatlı H, Işık F, Ateş U, Rasier R, Garipcan B. Mesenchymal stem cells derived-exosomes enhanced amniotic membrane extract promotes corneal keratocyte proliferation. Biotechnol Prog 2024; 40:e3465. [PMID: 38602120 DOI: 10.1002/btpr.3465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
Amniotic membrane extract (AME) and Wharton's jelly mesenchymal stem cells derived-exosomes (WJ-MSC-Exos) are promising therapeutic solutions explored for their potential in tissue engineering and regenerative medicine, particularly in skin and corneal wound healing applications. AME is an extract form of human amniotic membrane and known to contain a plethora of cytokines and growth factors, making it a highly attractive option for topical applications. Similarly, WJ-MSC-Exos have garnered significant interest for their wound healing properties. Although WJ-MSC-Exos and AME have been used separately for wound healing research, their combined synergistic effects have not been studied extensively. In this study, we evaluated the effects of both AME and WJ-MSC-Exos, individually and together, on the proliferation of corneal keratocytes as well as their ability to promote in vitro cell migration, wound healing, and their impact on cellular morphology. Our findings indicated that the presence of both exosomes (3 × 105 Exo/mL) and AME (50 μg/mL) synergistically enhance the proliferation of corneal keratocytes. Combined use of these solutions (3 × 105 Exo/mL + 50 μg/mL) increased cell proliferation compared to only 50 μg/mL AME treatment on day 3 (**** p < 0.0001). This mixture treatment (3 × 105 Exo/mL + 50 μg/mL) increased wound closure rate compared to isolated WJ-MSC-Exo treatment (3 × 105 Exo/mL) (*p < 0.05). Overall, corneal keratocytes treated with AME and WJ-MSC-Exo (3 × 105 Exo/mL + 50 μg/mL) mixture resulted in enhanced proliferation and wound healing tendency. Utilization of combined use of AME and WJ-MSC-Exo can pave the way for a promising foundation for corneal repair research.
Collapse
Affiliation(s)
- Fatma Zehra Erkoc-Biradli
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Bogaziçi University, Istanbul, Turkey
| | - Berkay Erenay
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Bogaziçi University, Istanbul, Turkey
| | - Alp Ozgun
- Ottawa Hospital Research Institute, Ottawa, Canada
| | - Hayriye Öztatlı
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Bogaziçi University, Istanbul, Turkey
| | - Ferda Işık
- Stembio Cord Blood Cell & Tissue Center, Kocaeli, Turkey
| | - Utku Ateş
- Stembio Cord Blood Cell & Tissue Center, Kocaeli, Turkey
| | - Rıfat Rasier
- Department of Ophthalmology, İstinye University, Istanbul, Turkey
| | - Bora Garipcan
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Bogaziçi University, Istanbul, Turkey
| |
Collapse
|
18
|
Wang K, Yang Z, Zhang B, Gong S, Wu Y. Adipose-Derived Stem Cell Exosomes Facilitate Diabetic Wound Healing: Mechanisms and Potential Applications. Int J Nanomedicine 2024; 19:6015-6033. [PMID: 38911504 PMCID: PMC11192296 DOI: 10.2147/ijn.s466034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/08/2024] [Indexed: 06/25/2024] Open
Abstract
Wound healing in diabetic patients is frequently hampered. Adipose-derived stem cell exosomes (ADSC-eoxs), serving as a crucial mode of intercellular communication, exhibit promising therapeutic roles in facilitating wound healing. This review aims to comprehensively outline the molecular mechanisms through which ADSC-eoxs enhance diabetic wound healing. We emphasize the biologically active molecules released by these exosomes and their involvement in signaling pathways associated with inflammation modulation, cellular proliferation, vascular neogenesis, and other pertinent processes. Additionally, the clinical application prospects of the reported ADSC-eoxs are also deliberated. A thorough understanding of these molecular mechanisms and potential applications is anticipated to furnish a theoretical groundwork for combating diabetic wound healing.
Collapse
Affiliation(s)
- Kang Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zihui Yang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Boyu Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Song Gong
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
19
|
Bicer M. Revolutionizing dermatology: harnessing mesenchymal stem/stromal cells and exosomes in 3D platform for skin regeneration. Arch Dermatol Res 2024; 316:242. [PMID: 38795200 PMCID: PMC11127839 DOI: 10.1007/s00403-024-03055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 04/26/2024] [Indexed: 05/27/2024]
Abstract
Contemporary trends reveal an escalating interest in regenerative medicine-based interventions for addressing refractory skin defects. Conventional wound healing treatments, characterized by high costs and limited efficacy, necessitate a more efficient therapeutic paradigm to alleviate the economic and psychological burdens associated with chronic wounds. Mesenchymal stem/stromal cells (MSCs) constitute cell-based therapies, whereas cell-free approaches predominantly involve the utilization of MSC-derived extracellular vesicles or exosomes, both purportedly safe and effective. Exploiting the impact of MSCs by paracrine signaling, exosomes have emerged as a novel avenue capable of positively impacting wound healing and skin regeneration. MSC-exosomes confer several advantages, including the facilitation of angiogenesis, augmentation of cell proliferation, elevation of collagen production, and enhancement of tissue regenerative capacity. Despite these merits, challenges persist in clinical applications due to issues such as poor targeting and facile removal of MSC-derived exosomes from skin wounds. Addressing these concerns, a three-dimensional (3D) platform has been implemented to emend exosomes, allowing for elevated levels, and constructing more stable granules possessing distinct therapeutic capabilities. Incorporating biomaterials to encapsulate MSC-exosomes emerges as a favorable approach, concentrating doses, achieving intended therapeutic effectiveness, and ensuring continual release. While the therapeutic potential of MSC-exosomes in skin repair is broadly recognized, their application with 3D biomaterial scenarios remains underexplored. This review synthesizes the therapeutic purposes of MSCs and exosomes in 3D for the skin restoration, underscoring their promising role in diverse dermatological conditions. Further research may establish MSCs and their exosomes in 3D as a viable therapeutic option for various skin conditions.
Collapse
Affiliation(s)
- Mesude Bicer
- Department of Bioengineering, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, 38080, Turkey.
| |
Collapse
|
20
|
Lv Y, Li L, Zhang J, Li J, Cai F, Huang Y, Li X, Zheng Y, Shi X, Yang J. Visible-Light Cross-Linkable Multifunctional Hydrogels Loaded with Exosomes Facilitate Full-Thickness Skin Defect Wound Healing through Participating in the Entire Healing Process. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25923-25937. [PMID: 38725122 DOI: 10.1021/acsami.4c05512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The management of severe full-thickness skin defect wounds remains a challenge due to their irregular shape, uncontrollable bleeding, high risk of infection, and prolonged healing period. Herein, an all-in-one OD/GM/QCS@Exo hydrogel was prepared with catechol-modified oxidized hyaluronic acid (OD), methylacrylylated gelatin (GM), and quaternized chitosan (QCS) and loaded with adipose mesenchymal stem cell-derived exosomes (Exos). Cross-linking of the hydrogel was achieved using visible light instead of ultraviolet light irradiation, providing injectability and good biocompatibility. Notably, the incorporation of catechol groups and multicross-linked networks in the hydrogels conferred strong adhesion properties and mechanical strength against external forces such as tensile and compressive stress. Furthermore, our hydrogel exhibited antibacterial, anti-inflammatory, and antioxidant properties along with wound-healing promotion effects. Our results demonstrated that the hydrogel-mediated release of Exos significantly promotes cellular proliferation, migration, and angiogenesis, thereby accelerating skin structure reconstruction and functional recovery during the wound-healing process. Overall, the all-in-one OD/GM/QCS@Exo hydrogel provided a promising therapeutic strategy for the treatment of full-thickness skin defect wounds through actively participating in the entire process of wound healing.
Collapse
Affiliation(s)
- Yicheng Lv
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Liang Li
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jingyuan Zhang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jingsi Li
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Fengying Cai
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yufeng Huang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xiaomeng Li
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yunquan Zheng
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| |
Collapse
|
21
|
Zhang X, Huang J, Zhao J, Li L, Miao F, Zhang T, Chen Z, Zhou X, Tai Z, Zhu Q. Exosome-mimetic vesicles derived from fibroblasts carrying matrine for wound healing. BURNS & TRAUMA 2024; 12:tkae015. [PMID: 38752203 PMCID: PMC11095412 DOI: 10.1093/burnst/tkae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 03/17/2024] [Indexed: 05/18/2024]
Abstract
Background Chronic skin wounds are a leading cause of hospital admissions and reduced life expectancy among older people and individuals with diabetes. Delayed wound healing is often attributed to a series of cellular abnormalities. Matrine, a well-studied component found in Sophora flavescens, is recognized for its anti-inflammatory effects. However, its impact on wound healing still remains uncertain. This study aims to explore the potential of matrine in promoting wound healing. Methods In this study, we utilized gradient extrusion to produce fibroblast-derived exosome-mimetic vesicles as carriers for matrine (MHEM). MHEM were characterized using transmission electron microscopy and dynamic light scattering analysis. The therapeutic effect of MHEM in wound healing was explored in vitro and in vivo. Results Both matrine and MHEM enhanced the cellular activity as well as the migration of fibroblasts and keratinocytes. The potent anti-inflammatory effect of matrine diluted the inflammatory response in the vicinity of wounds. Furthermore, MHEM worked together to promote angiogenesis and the expression of transforming growth factor β and collagen I. MHEM contained growth factors of fibroblasts that regulated the functions of fibroblasts, keratinocytes and monocytes, which synergistically promoted wound healing with the anti-inflammatory effect of matrine. Conclusions MHEM showed enhanced therapeutic efficacy in the inflammatory microenvironment, for new tissue formation and angiogenesis of wound healing.
Collapse
Affiliation(s)
- Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Jiahua Huang
- Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai 201500, China
| | - Jing Zhao
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan 430014, Hubei, China
| | - Lisha Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Xing Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 Chunrong West Road, Kunming 650500, Yunnan, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| |
Collapse
|
22
|
Poddar N, Chonzom D, Sen S, Malsawmtluangi, Parihar N, Patil PM, Balani J, Upadhyayula SM, Pemmaraju DB. Biocompatible arabinogalactan-chitosan scaffolds for photothermal pharmacology in wound healing and tissue regeneration. Int J Biol Macromol 2024; 268:131837. [PMID: 38663707 DOI: 10.1016/j.ijbiomac.2024.131837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Delayed wound healing is often caused by bacterial infections and persistent inflammation. Multifunctional materials with anti-bacterial, anti-inflammatory, and hemostatic properties are crucial for accelerated wound healing. In this study, we report a biomacromolecule-based scaffold (ArCh) by uniquely combining arabinogalactan (Ar) and chitosan (Ch) using a Schiff-based reaction. Further, the optimized ArCh scaffolds were loaded with Glycyrrhizin (GA: anti-inflammatory molecule) conjugated NIR light-absorbing Copper sulfide (CuS) nanoparticles. The resultant GACuS ArCh scaffolds were characterized for different wound healing parameters in in-vitro and in-vivo models. Our results indicated that GACuS ArCh scaffolds showed excellent swelling, biodegradation, and biocompatibility in vitro. Further results obtained indicated that GACuS ArCh scaffolds demonstrated mild hyperthermia and enhanced hemostatic, anti-oxidant, anti-bacterial, and wound-healing effects when exposed to NIR light. The scaffolds, upon further validation, may be beneficial in accelerating wound healing and tissue regeneration response.
Collapse
Affiliation(s)
- Nidhi Poddar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Donker Chonzom
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Santimoy Sen
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Malsawmtluangi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Nidhi Parihar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Prathamesh Mahadev Patil
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Jagdish Balani
- Central Animal house facility (CAF), National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Suryanarayana Murty Upadhyayula
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Deepak B Pemmaraju
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India.
| |
Collapse
|
23
|
Huang L, Chen X, Yang X, Zhang Y, Qiu X. GelMA-based hydrogel biomaterial scaffold: A versatile platform for regenerative endodontics. J Biomed Mater Res B Appl Biomater 2024; 112:e35412. [PMID: 38701383 DOI: 10.1002/jbm.b.35412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/26/2024] [Accepted: 04/13/2024] [Indexed: 05/05/2024]
Abstract
Endodontic therapy, while generally successful, is primarily limited to mature teeth, hence the pressing need to explore regenerative approaches. Gelatin methacryloyl (GelMA) hydrogels have emerged as pivotal biomaterials, promising a bright future for dental pulp regeneration. Despite advancements in tissue engineering and biomaterials, achieving true pulp tissue regeneration remains a formidable task. GelMA stands out for its injectability, rapid gelation, and excellent biocompatibility, serving as the cornerstone of scaffold materials. In the pursuit of dental pulp regeneration, GelMA holds significant potential, facilitating the delivery of stem cells, growth factors, and other vital substances crucial for tissue repair. Presently, in the field of dental pulp regeneration, researchers have been diligently utilizing GelMA hydrogels as engineering scaffolds to transport various effective substances to promote pulp regeneration. However, existing research is relatively scattered and lacks comprehensive reviews and summaries. Therefore, the primary objective of this article is to elucidate the application of GelMA hydrogels as regenerative scaffolds in this field, thereby providing clear direction for future researchers. Additionally, this article provides a comprehensive discussion on the synthesis, characterization, and application of GelMA hydrogels in root canal therapy regeneration. Furthermore, it offers new application strategies and profound insights into future challenges, such as optimizing GelMA formulations to mimic the complex microenvironment of pulp tissue and enhancing its integration with host tissues.
Collapse
Affiliation(s)
| | - Xuan Chen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - XiaoXia Yang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yinchun Zhang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | | |
Collapse
|
24
|
Wu S, Sun S, Fu W, Yang Z, Yao H, Zhang Z. The Role and Prospects of Mesenchymal Stem Cells in Skin Repair and Regeneration. Biomedicines 2024; 12:743. [PMID: 38672102 PMCID: PMC11048165 DOI: 10.3390/biomedicines12040743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have been recognized as a cell therapy with the potential to promote skin healing. MSCs, with their multipotent differentiation ability, can generate various cells related to wound healing, such as dermal fibroblasts (DFs), endothelial cells, and keratinocytes. In addition, MSCs promote neovascularization, cellular regeneration, and tissue healing through mechanisms including paracrine and autocrine signaling. Due to these characteristics, MSCs have been extensively studied in the context of burn healing and chronic wound repair. Furthermore, during the investigation of MSCs, their unique roles in skin aging and scarless healing have also been discovered. In this review, we summarize the mechanisms by which MSCs promote wound healing and discuss the recent findings from preclinical and clinical studies. We also explore strategies to enhance the therapeutic effects of MSCs. Moreover, we discuss the emerging trend of combining MSCs with tissue engineering techniques, leveraging the advantages of MSCs and tissue engineering materials, such as biodegradable scaffolds and hydrogels, to enhance the skin repair capacity of MSCs. Additionally, we highlight the potential of using paracrine and autocrine characteristics of MSCs to explore cell-free therapies as a future direction in stem cell-based treatments, further demonstrating the clinical and regenerative aesthetic applications of MSCs in skin repair and regeneration.
Collapse
Affiliation(s)
- Si Wu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Shengbo Sun
- School of Basic Medical Sciences, Capital Medical University, Beijing 100050, China
| | - Wentao Fu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| |
Collapse
|
25
|
Wang L, Wei X, He X, Xiao S, Shi Q, Chen P, Lee J, Guo X, Liu H, Fan Y. Osteoinductive Dental Pulp Stem Cell-Derived Extracellular Vesicle-Loaded Multifunctional Hydrogel for Bone Regeneration. ACS NANO 2024; 18:8777-8797. [PMID: 38488479 DOI: 10.1021/acsnano.3c11542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Stem cell-derived extracellular vesicles (EVs) show great potential for promoting bone tissue regeneration. However, normal EVs (Nor-EVs) have a limited ability to direct tissue-specific regeneration. Therefore, it is necessary to optimize the osteogenic capacity of EV-based systems for repairing extensive bone defects. Herein, we show that hydrogels loaded with osteoinductive dental pulp stem cell-derived EVs (Ost-EVs) enhanced bone tissue remodeling, resulting in a 2.23 ± 0.25-fold increase in the expression of bone morphogenetic protein 2 (BMP2) compared to the hydrogel control group. Moreover, Ost-EVs led to a higher expression of alkaline phosphatase (ALP) (1.88 ± 0.16 of Ost-EVs relative to Nor-EVs) and the formation of orange-red calcium nodules (1.38 ± 0.10 of Ost-EVs relative to Nor-EVs) in vitro. RNA sequencing revealed that Ost-EVs showed significantly high miR-1246 expression. An ideal hydrogel implant should also adhere to surrounding moist tissues. In this study, we were drawn to mussel-inspired adhesive modification, where the hydrogel carrier was crafted from hyaluronic acid (HA) and polyethylene glycol derivatives, showcasing impressive tissue adhesion, self-healing capabilities, and the ability to promote bone growth. The modified HA (mHA) hydrogel was also responsive to environmental stimuli, making it an effective carrier for delivering EVs. In an ectopic osteogenesis animal model, the Ost-EV/hydrogel system effectively alleviated inflammation, accelerated revascularization, and promoted tissue mineralization. We further used a rat femoral condyle defect model to evaluate the in situ osteogenic ability of the Ost-EVs/hydrogel system. Collectively, our results suggest that Ost-EVs combined with biomaterial-based hydrogels hold promising potential for treating bone defects.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Xi He
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Shengzhao Xiao
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Qiusheng Shi
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Peng Chen
- Department of Ultrasound, The Third Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Jesse Lee
- Arova Biosciences, Inc., Life Sciences Innovation Hub, Calgary Alberta T2L 1Y8, Canada
| | - Ximin Guo
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| |
Collapse
|
26
|
Zheng X, Ai H, Qian K, Li G, Zhang S, Zou Y, Lei C, Fu W, Hu S. Small extracellular vesicles purification and scale-up. Front Immunol 2024; 15:1344681. [PMID: 38469310 PMCID: PMC10925713 DOI: 10.3389/fimmu.2024.1344681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
Exosomes are small extracellular vesicles (sEVs) secreted by cells. With advances in the study of sEVs, they have shown great potential in the diagnosis and treatment of disease. However, sEV therapy usually requires a certain dose and purity of sEVs to achieve the therapeutic effect, but the existing sEV purification technology exists in the form of low yield, low purity, time-consuming, complex operation and many other problems, which greatly limits the application of sEVs. Therefore, how to obtain high-purity and high-quality sEVs quickly and efficiently, and make them realize large-scale production is a major problem in current sEV research. This paper discusses how to improve the purity and yield of sEVs from the whole production process of sEVs, including the upstream cell line selection and cell culture process, to the downstream isolation and purification, quality testing and the final storage technology.
Collapse
Affiliation(s)
- Xinya Zheng
- Department of Biomedical Engineering, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongru Ai
- Department of Biomedical Engineering, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Kewen Qian
- Department of Biomedical Engineering, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Guangyao Li
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Shuyi Zhang
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Yitan Zou
- Department of Biomedical Engineering, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Changhai Lei
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Wenyan Fu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Fahe Life Science and Technology Inc., Shanghai, China
| | - Shi Hu
- Department of Biomedical Engineering, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
27
|
Wang Y, Wu Y, Shen S, Liu Y, Xia Y, Xia H, Xie Z, Xu Y. Engineered plant extracellular vesicles for natural delivery across physiological barriers. Food Funct 2024; 15:1737-1757. [PMID: 38284549 DOI: 10.1039/d3fo03503d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Extracellular vesicles (EVs) are nanoscale luminal vesicles that participate in the information transfer of proteins, nucleic acids, and lipids between cells, thereby playing a role in the treatment of diseases and the delivery of nutrients. In recent years, plant-derived EVs (PDEVs) containing bioactive compounds have attracted increasing interest due to their better biocompatibility and lower cytotoxicity in healthy tissues. In the biomedical field, PDEVs have been used as cargo carriers to achieve various functions through engineering modification techniques. This review focuses on the biogenesis, isolation, and identification of PDEVs. We discuss the surface functionalization of PDEVs to enhance therapeutic efficacy, thereby improving their efficiency as a next-generation drug delivery vehicle and their feasibility to treat diseases across the physiological barriers, while critically analyzing the current challenges and opportunities.
Collapse
Affiliation(s)
- Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Yifang Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Si Shen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Yinyin Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Ying Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Zili Xie
- Anhui Institute for Food and Drug Control, Hefei 230051, China
| | - Yinxiang Xu
- Zhaoke (Hefei) Pharmaceutical Co., Ltd, Hefei 230088, China
| |
Collapse
|
28
|
Hashemi A, Ezati M, Nasr MP, Zumberg I, Provaznik V. Extracellular Vesicles and Hydrogels: An Innovative Approach to Tissue Regeneration. ACS OMEGA 2024; 9:6184-6218. [PMID: 38371801 PMCID: PMC10870307 DOI: 10.1021/acsomega.3c08280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 02/20/2024]
Abstract
Extracellular vesicles have emerged as promising tools in regenerative medicine due to their inherent ability to facilitate intercellular communication and modulate cellular functions. These nanosized vesicles transport bioactive molecules, such as proteins, lipids, and nucleic acids, which can affect the behavior of recipient cells and promote tissue regeneration. However, the therapeutic application of these vesicles is frequently constrained by their rapid clearance from the body and inability to maintain a sustained presence at the injury site. In order to overcome these obstacles, hydrogels have been used as extracellular vesicle delivery vehicles, providing a localized and controlled release system that improves their therapeutic efficacy. This Review will examine the role of extracellular vesicle-loaded hydrogels in tissue regeneration, discussing potential applications, current challenges, and future directions. We will investigate the origins, composition, and characterization techniques of extracellular vesicles, focusing on recent advances in exosome profiling and the role of machine learning in this field. In addition, we will investigate the properties of hydrogels that make them ideal extracellular vesicle carriers. Recent studies utilizing this combination for tissue regeneration will be highlighted, providing a comprehensive overview of the current research landscape and potential future directions.
Collapse
Affiliation(s)
- Amir Hashemi
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Masoumeh Ezati
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Minoo Partovi Nasr
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Inna Zumberg
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Valentine Provaznik
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| |
Collapse
|
29
|
Zheng Y, Pan C, Xu P, Liu K. Hydrogel-mediated extracellular vesicles for enhanced wound healing: the latest progress, and their prospects for 3D bioprinting. J Nanobiotechnology 2024; 22:57. [PMID: 38341585 PMCID: PMC10858484 DOI: 10.1186/s12951-024-02315-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Extracellular vesicles have shown promising tissue recovery-promoting effects, making them increasingly sought-after for their therapeutic potential in wound treatment. However, traditional extracellular vesicle applications suffer from limitations such as rapid degradation and short maintenance during wound administration. To address these challenges, a growing body of research highlights the role of hydrogels as effective carriers for sustained extracellular vesicle release, thereby facilitating wound healing. The combination of extracellular vesicles with hydrogels and the development of 3D bioprinting create composite hydrogel systems boasting excellent mechanical properties and biological activity, presenting a novel approach to wound healing and skin dressing. This comprehensive review explores the remarkable mechanical properties of hydrogels, specifically suited for loading extracellular vesicles. We delve into the diverse sources of extracellular vesicles and hydrogels, analyzing their integration within composite hydrogel formulations for wound treatment. Different composite methods as well as 3D bioprinting, adapted to varying conditions and construction strategies, are examined for their roles in promoting wound healing. The results highlight the potential of extracellular vesicle-laden hydrogels as advanced therapeutic tools in the field of wound treatment, offering both mechanical support and bioactive functions. By providing an in-depth examination of the various roles that these composite hydrogels can play in wound healing, this review sheds light on the promising directions for further research and development. Finally, we address the challenges associated with the application of composite hydrogels, along with emerging trends of 3D bioprinting in this domain. The discussion covers issues such as scalability, regulatory considerations, and the translation of this technology into practical clinical settings. In conclusion, this review underlines the significant contributions of hydrogel-mediated extracellular vesicle therapy to the field of 3D bioprinting and wound healing and tissue regeneration. It serves as a valuable resource for researchers and practitioners alike, fostering a deeper understanding of the potential benefits, applications, and challenges involved in utilizing composite hydrogels for wound treatment.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Chuqiao Pan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Peng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| |
Collapse
|
30
|
Saberian M, Abak N. Hydrogel-mediated delivery of platelet-derived exosomes: Innovations in tissue engineering. Heliyon 2024; 10:e24584. [PMID: 38312628 PMCID: PMC10835177 DOI: 10.1016/j.heliyon.2024.e24584] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
In this scholarly review, we conduct a thorough examination of the significant role played by platelet-derived exosomes (Plt-Exos) and hydrogels in the fields of tissue engineering and regenerative medicine. Our detailed investigation highlights the central involvement of Plt-Exos in various physiological and pathological processes, underscoring their potential contributions to diverse areas such as wound healing, neural rejuvenation, and cancer progression. Despite the promising therapeutic aspects, the notable variability in the isolation and characterization of pEVs underscores the need for a more rigorous and standardized methodology. Shifting our focus to hydrogels, they have emerged as promising biomaterials relevant to tissue engineering and regenerative medicine. Their unique characteristics, especially their chemical and physical adaptability, along with the modifiability of their biochemical properties, make hydrogels a captivating subject. These exceptional features open avenues for numerous tissue engineering applications, facilitating the delivery of essential growth factors, cytokines, and microRNAs. This analysis explores the innovative integration of Plt-Exos with hydrogels, presenting a novel paradigm in tissue engineering. Through the incorporation of Plt-Exos into hydrogels, there exists an opportunity to enhance tissue regeneration endeavors by combining the bioactive features of Plt-Exos with the restorative capabilities of hydrogel frameworks. In conclusion, the cooperative interaction between platelet-derived exosomes and hydrogels indicates a promising path in tissue engineering and regenerative medicine. Nevertheless, the successful execution of this approach requires a deep understanding of molecular dynamics, coupled with a dedication to refining isolation techniques.
Collapse
Affiliation(s)
- Mostafa Saberian
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Abak
- Hematology and Transfusion Science Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Kim H, Lee SK, Hong S, Park TS, Kim J, Kim S, Kim TM. Pan PPAR agonist stimulation of induced MSCs produces extracellular vesicles with enhanced renoprotective effect for acute kidney injury. Stem Cell Res Ther 2024; 15:9. [PMID: 38167146 PMCID: PMC10763307 DOI: 10.1186/s13287-023-03577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Acute kidney injury (AKI) has a complex pathophysiology and imposes serious health concerns worldwide. Extracellular vesicles (EVs) derived from induced mesenchymal stem cells (iMSCs) have been recognized as novel cell-free therapeutics for various inflammatory and degenerative disorders. In this study, we investigated whether iMSCs stimulated with a pan-peroxisome proliferator-activated receptor (PPAR) agonist could enhance the therapeutic efficacy of EVs against AKI. METHODS Human iMSCs were primed with or without lanifibranor, a PPAR agonist for 24 h, and EVs were collected after an additional 24 h. The basic characteristics of EVs were evaluated using cryo-transmission electron microscopy imaging, immunoblot detection of EV markers, nanoparticle tracking analysis, and localization in AKI kidneys. In vitro, the potential of the EVs to promote the growth and survival of HK-2 cells undergoing cisplatin-induced apoptosis and anti-inflammatory effects in M1-polarized THP-1 was compared. Subsequently, AKI was induced in BALB/c mice using cisplatin. After 8 and 24 h of cisplatin treatment, iMSC-EVs or pan-PPAR-iMSC-EVs were injected intravascularly. At 96 h after cisplatin administration, the renoprotective effects of iMSC-EVs or pan-PPAR-iMSC-EVs in inhibiting inflammation and apoptosis were compared using serum biochemistry, histology, immunohistochemistry, and gene expression analysis by qPCR. RESULTS Both EV types expressed EV markers and had typical EV morphology, and their localization in the renal tissue was confirmed. The proliferation and survival of HK-2 cells were higher in pan-PPAR-iMSC-EVs than those in iMSC-EVs. In M1-polarized THP-1 cells, the reduction in the mRNA expression of inflammatory cytokines was more significant in pan-PPAR-iMSC-EVs than that in iMSC-EVs. In the mouse model of cisplatin-induced AKI, pan-PPAR-iMSC-EVs markedly enhanced renoprotective effects compared to iMSC-EVs. Specifically, pan-PPAR-iMSC-EVs reduced tissue inflammation, immune cell infiltration, and apoptosis. Pan-PPAR-iMSC-EVs also increased renal capillary density. CONCLUSION Priming iMSCs with a PPAR agonist significantly improved the therapeutic potential of EVs by reducing inflammation and apoptosis. The reported strategy may contribute to the development of a novel cell-free option for AKI treatment. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Hongduk Kim
- Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, 25354, South Korea
| | - Seul Ki Lee
- Brexogen Research Center, Brexogen Inc., Songpa-gu, Seoul, 05855, South Korea
| | - Sungok Hong
- Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, 25354, South Korea
| | - Tae Sub Park
- Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, 25354, South Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang Daero 1447, Pyeongchang, Gangwon-do, 25354, South Korea
| | - Jimin Kim
- Brexogen Research Center, Brexogen Inc., Songpa-gu, Seoul, 05855, South Korea
| | - Soo Kim
- Brexogen Research Center, Brexogen Inc., Songpa-gu, Seoul, 05855, South Korea
| | - Tae Min Kim
- Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, 25354, South Korea.
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang Daero 1447, Pyeongchang, Gangwon-do, 25354, South Korea.
| |
Collapse
|
32
|
Yang C, Xue Y, Duan Y, Mao C, Wan M. Extracellular vesicles and their engineering strategies, delivery systems, and biomedical applications. J Control Release 2024; 365:1089-1123. [PMID: 38065416 DOI: 10.1016/j.jconrel.2023.11.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024]
Abstract
Extracellular vesicles are nanoscale vesicles that can be secreted by all cell types, are intracellular in origin and have the same composition as their parent cells, play a key role in intercellular communication in organismal health and disease, and are now often used as biomarkers of disease and therapeutic agents in biomedical research. When injected locally or systemically, they have the ability to provide a variety of therapeutic effects, for example, regeneration of skin damage or restoration of cardiac function. However, direct injection of extracellular vesicles may result in their rapid clearance from the injection site.In order to maintain the biological activity of extracellular vesicles and to control the release of effective concentrations for better therapeutic efficacy during long-term disease treatment, the design of an optimized drug delivery system is necessary and different systems for the continuous delivery of extracellular vesicles have been developed. This paper first provides an overview of the biogenesis, composition and physiological function of extracellular vesicles, followed by a review of different strategies for extracellular vesicle isolation and methods for engineering extracellular vesicles. In addition, this paper reviews the latest extracellular vesicle delivery platforms such as micro-nanoparticles, injectable hydrogels, microneedles and scaffold patches. At the same time, the research progress and key cases of extracellular vesicle delivery systems in the field of biomedical therapeutics are described. Finally, the challenges and future trends of extracellular vesicle delivery are discussed.
Collapse
Affiliation(s)
- Chunhao Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yunxin Xue
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yu Duan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
33
|
Simon L, Lapinte V, Morille M. Exploring the role of polymers to overcome ongoing challenges in the field of extracellular vesicles. J Extracell Vesicles 2023; 12:e12386. [PMID: 38050832 PMCID: PMC10696644 DOI: 10.1002/jev2.12386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Extracellular vesicles (EVs) are naturally occurring nanoparticles released from all eucaryotic and procaryotic cells. While their role was formerly largely underestimated, EVs are now clearly established as key mediators of intercellular communication. Therefore, these vesicles constitute an attractive topic of study for both basic and applied research with great potential, for example, as a new class of biomarkers, as cell-free therapeutics or as drug delivery systems. However, the complexity and biological origin of EVs sometimes complicate their identification and therapeutic use. Thus, this rapidly expanding research field requires new methods and tools for the production, enrichment, detection, and therapeutic application of EVs. In this review, we have sought to explain how polymer materials actively contributed to overcome some of the limitations associated to EVs. Indeed, thanks to their infinite diversity of composition and properties, polymers can act through a variety of strategies and at different stages of EVs development. Overall, we would like to emphasize the importance of multidisciplinary research involving polymers to address persistent limitations in the field of EVs.
Collapse
Affiliation(s)
| | | | - Marie Morille
- ICGM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
- Institut universitaire de France (IUF)ParisFrance
| |
Collapse
|
34
|
Liu S, Cheng S, Chen B, Xiao P, Zhan J, Liu J, Chen Z, Liu J, Zhang T, Lei Y, Huang W. Microvesicles-hydrogel breaks the cycle of cellular senescence by improving mitochondrial function to treat osteoarthritis. J Nanobiotechnology 2023; 21:429. [PMID: 37968657 PMCID: PMC10652587 DOI: 10.1186/s12951-023-02211-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is an age-related disease characterised by the accumulation of senescent chondrocytes, which drives its pathogenesis and progression. Senescent cells exhibit distinct features, including mitochondrial dysfunction and the excessive accumulation and release of reactive oxygen species (ROS), which are highly correlated and lead to a vicious cycle of increasing senescent cells. Stem cell therapy has proven effective in addressing cellular senescence, however, it still has issues such as immune rejection and ethical concerns. Microvesicles (MVs) constitute the primary mechanism through which stem cell therapy exerts its effects, offering a cell-free approach that circumvents these risks and has excellent anti-ageing potential. Nonetheless, MVs have a short in vivo half-life, and their secretion composition varies considerably under diverse conditions. This study aims to address these issues by constructing a ROS-responsive hydrogel loaded with pre-stimulant MVs. Through responding to ROS levels this hydrogel intelligently releases MVs, and enhancing mitochondrial function in chondrocytes to improving cellular senescence. RESULT We employed Interferon-gamma (IFN-γ) as a stem cell-specific stimulus to generate IFN-γ-microvesicles (iMVs) with enhanced anti-ageing effects. Simultaneously, we developed a ROS-responsive carrier utilising 3-aminophenylboronic acid (APBA)-modified silk fibroin (SF) and polyvinyl alcohol (PVA). This carrier served to protect MVs, prolong longevity, and facilitate intelligent release. In vitro experiments demonstrated that the Hydrogel@iMVs effectively mitigated cell senescence, improved mitochondrial function, and enhanced cellular antioxidant capacity. In vivo experiments further substantiated the anti-ageing capabilities of the Hydrogel@iMVs. CONCLUSION The effect of MVs can be significantly enhanced by appropriate pre-stimulation and constructing a suitable carrier. Therefore, we have developed a ROS-responsive hydrogel containing IFN-γ pre-stimulated iMVs to target the characteristics of ageing chondrocytes in OA for therapeutic purposes. Overall, this novel approach effectively improving mitochondrial dysfunction by regulating the balance between mitochondrial fission and fusion, and the accumulation of reactive oxygen species was reduced, finally, alleviates cellular senescence, offering a promising therapeutic strategy for OA.
Collapse
Affiliation(s)
- Senrui Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shengwen Cheng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bowen Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Pengcheng Xiao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jingdi Zhan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jiacheng Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhuolin Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Junyan Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Tao Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yiting Lei
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
35
|
Ho J, Yue D, Cheema U, Hsia HC, Dardik A. Innovations in Stem Cell Therapy for Diabetic Wound Healing. Adv Wound Care (New Rochelle) 2023; 12:626-643. [PMID: 35176896 PMCID: PMC10468561 DOI: 10.1089/wound.2021.0104] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/22/2022] [Indexed: 12/20/2022] Open
Abstract
Significance: The global burden of diabetic wounds, particularly diabetic foot ulcers, continues to have large economic and social impact throughout the world. Current strategies are not sufficient to overcome this burden of disease. Finding newer, more advanced regenerative cell and tissue-based strategies to reduce morbidity remains paramount. Recent Advances: Recent advances in stem cell therapies are discussed. We also highlight the practical issues of translating these advancing technologies into the clinical setting. Critical Issues: We discuss the use of somatic and induced pluripotent stem cells and the stromal vascular fraction, as well as innovations, including the use of 3D bioprinting of skin. We also explore related issues of using regenerative techniques in clinical practice, including the current regulatory landscape and translatability of in vivo research. Future Directions: Advances in stem cell manipulation showcase the best therapeutic resources available to enhance mechanisms of wound healing such as angiogenesis, cell proliferation, and collagen synthesis; potential methods include changing the scaffold microenvironment, including relative oxygen tension, and the use of gene modification and nanotechnology. Secretome engineering, particularly the use of extracellular vesicles, may be another potential cell-derived therapeutic that may enable use of cell-free translational therapy.
Collapse
Affiliation(s)
- Jasmine Ho
- UCL Centre for 3D Models of Health and Disease, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
- Vascular Biology and Therapeutics Program and The Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dominic Yue
- Plastic Surgery Unit, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom
| | - Umber Cheema
- UCL Centre for 3D Models of Health and Disease, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Henry C. Hsia
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program and The Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
36
|
Amini H, Namjoo AR, Narmi MT, Mardi N, Narimani S, Naturi O, Khosrowshahi ND, Rahbarghazi R, Saghebasl S, Hashemzadeh S, Nouri M. Exosome-bearing hydrogels and cardiac tissue regeneration. Biomater Res 2023; 27:99. [PMID: 37803483 PMCID: PMC10559618 DOI: 10.1186/s40824-023-00433-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND In recent years, cardiovascular disease in particular myocardial infarction (MI) has become the predominant cause of human disability and mortality in the clinical setting. The restricted capacity of adult cardiomyocytes to proliferate and restore the function of infarcted sites is a challenging issue after the occurrence of MI. The application of stem cells and byproducts such as exosomes (Exos) has paved the way for the alleviation of cardiac tissue injury along with conventional medications in clinics. However, the short lifespan and activation of alloreactive immune cells in response to Exos and stem cells are the main issues in patients with MI. Therefore, there is an urgent demand to develop therapeutic approaches with minimum invasion for the restoration of cardiac function. MAIN BODY Here, we focused on recent data associated with the application of Exo-loaded hydrogels in ischemic cardiac tissue. Whether and how the advances in tissue engineering modalities have increased the efficiency of whole-based and byproducts (Exos) therapies under ischemic conditions. The integration of nanotechnology and nanobiology for designing novel smart biomaterials with therapeutic outcomes was highlighted. CONCLUSION Hydrogels can provide suitable platforms for the transfer of Exos, small molecules, drugs, and other bioactive factors for direct injection into the damaged myocardium. Future studies should focus on the improvement of physicochemical properties of Exo-bearing hydrogel to translate for the standard treatment options.
Collapse
Affiliation(s)
- Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran
| | - Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Taghavi Narmi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Narimani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ozra Naturi
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Nafiseh Didar Khosrowshahi
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran.
| | - Solmaz Saghebasl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran.
| | - Shahriar Hashemzadeh
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran.
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
37
|
Mehryab F, Taghizadeh F, Goshtasbi N, Merati F, Rabbani S, Haeri A. Exosomes as cutting-edge therapeutics in various biomedical applications: An update on engineering, delivery, and preclinical studies. Biochimie 2023; 213:139-167. [PMID: 37207937 DOI: 10.1016/j.biochi.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Exosomes are cell-derived nanovesicles, circulating in different body fluids, and acting as an intercellular mechanism. They can be purified from culture media of different cell types and carry an enriched content of various protein and nucleic acid molecules originating from their parental cells. It was indicated that the exosomal cargo can mediate immune responses via many signaling pathways. Over recent years, the therapeutic effects of various exosome types were broadly investigated in many preclinical studies. Herein, we present an update on recent preclinical studies on exosomes as therapeutic and/or delivery agents for various applications. The exosome origin, structural modifications, natural or loaded active ingredients, size, and research outcomes were summarized for various diseases. Overall, the present article provides an overview of the latest exosome research interests and developments to clear the way for the clinical study design and application.
Collapse
Affiliation(s)
- Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taghizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Merati
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Hao M, Wang D, Duan M, Kan S, Li S, Wu H, Xiang J, Liu W. Functional drug-delivery hydrogels for oral and maxillofacial wound healing. Front Bioeng Biotechnol 2023; 11:1241660. [PMID: 37600316 PMCID: PMC10434880 DOI: 10.3389/fbioe.2023.1241660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
The repair process for oral and maxillofacial injuries involves hemostasis, inflammation, proliferation, and remodeling. Injury repair involves a variety of cells, including platelets, immune cells, fibroblasts, and various cytokines. Rapid and adequate healing of oral and maxillofacial trauma is a major concern to patients. Functional drug-delivery hydrogels play an active role in promoting wound healing and have shown unique advantages in wound dressings. Functional hydrogels promote wound healing through their adhesive, anti-inflammatory, antioxidant, antibacterial, hemostatic, angiogenic, and re-epithelialization-promoting properties, effectively sealing wounds and reducing inflammation. In addition, functional hydrogels can respond to changes in temperature, light, magnetic fields, pH, and reactive oxygen species to release drugs, enabling precise treatment. Furthermore, hydrogels can deliver various cargos that promote healing, including nucleic acids, cytokines, small-molecule drugs, stem cells, exosomes, and nanomaterials. Therefore, functional drug-delivery hydrogels have a positive impact on the healing of oral and maxillofacial injuries. This review describes the oral mucosal structure and healing process and summarizes the currently available responsive hydrogels used to promote wound healing.
Collapse
Affiliation(s)
- Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Mengna Duan
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shuangji Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Han Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingcheng Xiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
39
|
Safarpour F, Kharaziha M, Mokhtari H, Emadi R, Bakhsheshi-Rad HR, Ramakrishna S. Kappa-carrageenan based hybrid hydrogel for soft tissue engineering applications. Biomed Mater 2023; 18:055005. [PMID: 37348489 DOI: 10.1088/1748-605x/ace0ec] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023]
Abstract
Biological materials such as cell-derived membrane vesicles have emerged as alternative sources for molecular delivery systems, owing to multicomponent features, the inherent functionalities and signaling networks, and easy-to-carry therapeutic agents with various properties. Herein, red blood cell membrane (RBCM) vesicle-laden methacrylate kappa-carrageenan (KaMA) composite hydrogel is introduced for soft tissue engineering. Results revealed that the characteristics of hybrid hydrogels were significantly modulated by changing the RBCM vesicle content. For instance, the incorporation of 20% (v/v) RBCM significantly enhanced compressive strength from 103 ± 26 kPa to 257 ± 18 kPa and improved toughness under the cyclic loading from 1.0 ± 0.4 kJ m-3to 4.0 ± 0.5 kJ m-3after the 5thcycle. RBCM vesicles were also used for the encapsulation of curcumin (CUR) as a hydrophobic drug molecule. Results showed a controlled release of CUR over three days of immersion in PBS solution. The RBCM vesicles laden KaMA hydrogels also supportedin vitrofibroblast cell growth and proliferation. In summary, this research sheds light on KaMA/RBCM hydrogels, that could reveal fine-tuned properties and hydrophobic drug release in a controlled manner.
Collapse
Affiliation(s)
- F Safarpour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - M Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - H Mokhtari
- Division of Polymer Chemistry, Department of Chemistry-Ångstrom Laboratory, Uppsala University, Uppsala 75121, Sweden
| | - R Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - H R Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Seeram Ramakrishna
- Nanoscience and Nanotechnology Initiative, National University of Singapore, 9 Engineering Drive 1, Singapore 1157, Singapore
| |
Collapse
|
40
|
Zhao W, Zhang H, Liu R, Cui R. Advances in Immunomodulatory Mechanisms of Mesenchymal Stem Cells-Derived Exosome on Immune Cells in Scar Formation. Int J Nanomedicine 2023; 18:3643-3662. [PMID: 37427367 PMCID: PMC10327916 DOI: 10.2147/ijn.s412717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023] Open
Abstract
Pathological scars are the result of over-repair and excessive tissue proliferation of the skin injury. It may cause serious dysfunction, resulting in psychological and physiological burdens on the patients. Currently, mesenchymal stem cells-derived exosomes (MSC-Exo) displayed a promising therapeutic effect on wound repair and scar attenuation. But the regulatory mechanisms are opinions vary. In view of inflammation has long been proven as the initial factor of wound healing and scarring, and the unique immunomodulation mechanism of MSC-Exo, the utilization of MSC-Exo may be promising therapeutic for pathological scars. However, different immune cells function differently during wound repair and scar formation. The immunoregulatory mechanism of MSC-Exo would differ among different immune cells and molecules. Herein, this review gave a comprehensive summary of MSC-Exo immunomodulating different immune cells in wound healing and scar formation to provide basic theoretical references and therapeutic exploration of inflammatory wound healing and pathological scars.
Collapse
Affiliation(s)
- Wen Zhao
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Huimin Zhang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Rui Liu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Rongtao Cui
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
41
|
Hao Z, Ren L, Zhang Z, Yang Z, Wu S, Liu G, Cheng B, Wu J, Xia J. A multifunctional neuromodulation platform utilizing Schwann cell-derived exosomes orchestrates bone microenvironment via immunomodulation, angiogenesis and osteogenesis. Bioact Mater 2023; 23:206-222. [DOI: 10.1016/j.bioactmat.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/15/2022] Open
|
42
|
Koçak P, Unsal N, Canikyan S, Kul Y, Cohen SR, Tiryaki T, Duncan D, Schlaudraff KU, Ascher B, Tiryaki TE. The Effect of Hybrosome (Umbilical Cord Blood Exosome-Liposome Hybrid Vesicles) on Human Dermal Cells In Vitro. Aesthet Surg J Open Forum 2023; 5:ojad039. [PMID: 37214180 PMCID: PMC10195566 DOI: 10.1093/asjof/ojad039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Background Wound healing is a process that involves multiple physiological steps, and despite the availability of various wound treatment methods, their effectiveness is still limited due to several factors, including cost, efficiency, patient-specific requirements, and side effects. In recent years, nanovesicles called exosomes have gained increasing attention as a potential wound care solution due to their unique cargo components which enable cell-to-cell communication and regulate various biological processes. Umbilical cord blood plasma (UCBP) exosomes have shown promise in triggering beneficial signaling pathways that aid in cell proliferation and wound healing. However, there is still very limited information about the wound-healing effect of UCBP exosomes in the literature. Objectives The primary objective of this study was to investigate the "hybrosome" technology generated with calf UCBP-derived exosome-liposome combination. Methods The authors developed hybrosome technology by fusing cord blood exosome membranes with liposomes. Nanovesicle characterization, cell proliferation assay, wound-healing scratch assay, immunohistochemistry analysis, anti-inflammation assay, real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay, and cellular uptake studies were performed using the novel hybrid exosomes. Results Experimental results showed that hybrosome increases cell proliferation and migration by 40% to 50%, depending on the dose, and induces an anti-inflammatory effect on different cell lines as well as increased wound healing-related gene expression levels in dermal cells in vitro. All in all, this research widens the scope of wound-healing therapeutics to the novel hybrosome technology. Conclusions UCBP-based applications have the potential for wound treatments and are promising in the development of novel therapies. This study shows that hybrosomes have outstanding abilities in wound healing using in vitro approaches. Level of Evidence 3
Collapse
Affiliation(s)
| | | | | | | | | | - Tunç Tiryaki
- Corresponding Author: Dr Tunc Tiryaki, 120 Sloane Street, London, UK. E-mail: ; Instagram: drtunctiryaki
| | | | | | | | | |
Collapse
|
43
|
Safari B, Aghazadeh M, Aghanejad A. Osteogenic differentiation of human adipose-derived mesenchymal stem cells in a bisphosphonate-functionalized polycaprolactone/gelatin scaffold. Int J Biol Macromol 2023; 241:124573. [PMID: 37100325 DOI: 10.1016/j.ijbiomac.2023.124573] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Recent trends in bone tissue engineering have focused on the development of biomimetic constructs with appropriate mechanical and physiochemical properties. Here, we report the fabrication of an innovative biomaterial scaffold based on a new bisphosphonate-containing synthetic polymer combined with gelatin. To this end, zoledronate (ZA)-functionalized polycaprolactone (PCL-ZA) was synthesized by a chemical grafting reaction. After adding gelatin to the PCL-ZA polymer solution, the porous PCL-ZA/gelatin scaffold was fabricated by the freeze-casting method. A scaffold with aligned pores and a porosity of 82.04 % was obtained. During in vitro biodegradability test, 49 % of its initial weight lost after 5 weeks. The elastic modulus of the PCL-ZA/gelatin scaffold was 31.4 MPa, and its tensile strength was 4.2 MPa. Based on the results of MTT assay, the scaffold had good cytocompatibility with human Adipose-Derived Mesenchymal Stem Cells (hADMSCs). Furthermore, cells grown in PCL-ZA/gelatin scaffold showed the highest mineralization and ALP activity compared to other test groups. Results of the RT-PCR test revealed that RUNX2, COL 1A1, and OCN genes were expressed in PCL-ZA/gelatin scaffold at the highest level, suggesting its good osteoinductive capacity. These results revealed that PCL-ZA/gelatin scaffold could be considered a proper biomimetic platform for bone tissue engineering.
Collapse
Affiliation(s)
- Banafsheh Safari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Aghazadeh
- Oral Medicine Department of Dental Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
44
|
Liu ZJ, Wang MJ, Luo J, Tan YT, Hou M, Wang SC. A bibliometric analysis of hotpots and trends for the relationship between skin inflammation and regeneration. Front Surg 2023; 10:1180624. [PMID: 37151861 PMCID: PMC10160476 DOI: 10.3389/fsurg.2023.1180624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Skin regeneration is a challenging issue worldwide. Increasing research has highlighted the role of immune cells in healing and the underlying regulatory mechanism. The purpose of this study was to identify the hotspots and trends in skin regeneration and inflammation research through bibliometrics and to provide insights into the future development of fundamental research and disease treatment. METHODS Publications were collected from the Web of Science Core Collection on March 1, 2022. Articles and reviews published in English from January 1, 1999, to December 31, 2022, were selected, and statistical analyses of countries, institutions, authors, references, and keywords were performed using VOSviewer 1.6.18 and CiteSpace 5.8. RESULTS A total of 3,894 articles and reviews were selected. The number of publications on skin inflammation and regeneration showed an increasing trend over time. Additionally, authors and institutions in the United States, United Kingdom, Canada, and China appeared to be at the forefront of research in the field of skin inflammation and regeneration. Werner Sabine published some of the most cited papers. Wound Repair and Regeneration was the most productive journal, while Journal of Investigative Dermatology was the most cited journal. Angiogenesis, diamonds, collagen, cytokine, and keratinocytes were the five most commonly used keywords. CONCLUSION The number of publications on skin inflammation and regeneration show an increasing trend. Moreover, a series of advanced technologies and treatments for skin regeneration, such as exosomes, hydrogels, and wound dressings, are emerging, which will provide precise information for the treatment of skin wounds. This study can enhance our understanding of current hotspots and future trends in skin inflammation and regeneration research, as well as provide guidelines for fundamental research and clinical treatment.
Collapse
Affiliation(s)
- Zhen-jiang Liu
- Department of Cardiology, Cardiac Catheterization Lab, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mei-juan Wang
- Medical Imaging Center, Qingdao West Coast New District People's Hospital, Qingdao, China
| | - Jia Luo
- Hunan key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Ya-ting Tan
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Min Hou
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China
- Party Committee Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shu-chao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
45
|
Chen Y, Wu Y, Guo L, Yuan S, Sun J, Zhao K, Wang J, An R. Exosomal Lnc NEAT1 from endothelial cells promote bone regeneration by regulating macrophage polarization via DDX3X/NLRP3 axis. J Nanobiotechnology 2023; 21:98. [PMID: 36941678 PMCID: PMC10029245 DOI: 10.1186/s12951-023-01855-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Bone regeneration is a complex procedure that involves an interaction between osteogenesis and inflammation. Macrophages in the microenvironment are instrumental in bone metabolism. Amount evidence have revealed that exosomes transmitting lncRNA is crucial nanocarriers for cellular interactions in various biotic procedures, especially, osteogenesis. However, the underlying mechanisms of the regulatory relationship between the exosomes and macrophages are awaiting clarification. In the present time study, we aimed to explore the roles of human umbilical vein endothelial cells (HUVECs)-derived exosomes carrying nuclear enrichment enriched transcript 1 (NEAT1) in the osteogenesis mediated by M2 polarized macrophages and elucidate the underlying mechanisms. RESULTS We demonstrated HUVECs-derived exosomes expressing NEAT1 significantly enhanced M2 polarization and attenuated LPS-induced inflammation in vitro. Besides, the conditioned medium from macrophages induced by the exosomes indirectly facilitated the migration and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Mechanically, Exos carrying NEAT1 decreased remarkably both expression of dead-box helicase 3X-linked (DDX3X) and nod-like receptor protein 3 (NLRP3). The level of NLRP3 protein increased significantly after RAW264.7 cells transfected with DDX3X overexpression plasmid. Additionally, the knockdown of NEAT1 in exosomes partially counteracted the aforementioned effect of Exos. The results of air pouch rat model demonstrated that HUVECs-derived exosomes increased anti-inflammatory cytokines (IL-10) and decreased pro-inflammatory cytokines (IL-1β and IL-6) significantly in vivo, contributing to amelioration of LPS-induced inflammation. Afterwards, we further confirmed that the HUVECs-derived exosomes encapsulated in alginate/gelatin methacrylate (GelMA) interpenetrating polymer network (IPN) hydrogels could promote the bone regeneration, facilitate the angiogenesis, increase the infiltration of M2 polarized macrophages as well as decrease NLRP3 expression in the rat calvarial defect model. CONCLUSIONS HUVECs-derived exosomes enable transmitting NEAT1 to alleviate inflammation by inducing M2 polarization of macrophages through DDX3X/NLRP3 regulatory axis, which finally contributes to osteogenesis with the aid of alginate/GelMA IPN hydrogels in vivo. Thus, our study provides insights in bone healing with the aid of HUVECs-derived exosomes-encapsulated composite hydrogels, which exhibited potential towards the use of bone tissue engineering in the foreseeable future.
Collapse
Affiliation(s)
- Yuxuan Chen
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuanhao Wu
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Linlin Guo
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shijie Yuan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kangcheng Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
46
|
Joorabloo A, Liu T. Engineering exosome-based biomimetic nanovehicles for wound healing. J Control Release 2023; 356:463-480. [PMID: 36907562 DOI: 10.1016/j.jconrel.2023.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Complexity and difficulties in wound management are pressing concerns that affect patients' quality of life and may result in tissue infection, necrosis, and loss of local and systemic functions. Hence, novel approaches to accelerate wound healing are being actively explored over the last decade. Exosomes as important mediators of intercellular communications are promising natural nanocarriers due to their biocompatibility, low immunogenicity, drug loading and targeting capacities, and innate stability. More importantly, exosomes are developed as a versatile pharmaceutical engineering platform for wound repair. This review provides an overview of the biological and physiological functions of exosomes derived from a variety of biological origins during wound healing phases, strategies for exosomal engineering, and therapeutic applications in skin regeneration.
Collapse
Affiliation(s)
- Alireza Joorabloo
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, Australia.
| |
Collapse
|
47
|
Amengual-Tugores AM, Ráez-Meseguer C, Forteza-Genestra MA, Monjo M, Ramis JM. Extracellular Vesicle-Based Hydrogels for Wound Healing Applications. Int J Mol Sci 2023; 24:ijms24044104. [PMID: 36835516 PMCID: PMC9967521 DOI: 10.3390/ijms24044104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Hydrogels and extracellular vesicle-based therapies have been proposed as emerging therapeutic assets in wound closure. The combination of these elements has given good results in managing chronic and acute wounds. The intrinsic characteristics of the hydrogels in which the extracellular vesicles (EVs) are loaded allow for overcoming barriers, such as the sustained and controlled release of EVs and the maintenance of the pH for their conservation. In addition, EVs can be obtained from different sources and through several isolation methods. However, some barriers must be overcome to transfer this type of therapy to the clinic, for example, the production of hydrogels containing functional EVs and identifying long-term storage conditions for EVs. The aim of this review is to describe the reported EV-based hydrogel combinations, along with the obtained results, and analyze future perspectives.
Collapse
Affiliation(s)
- Andreu Miquel Amengual-Tugores
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa km 7.5, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Carmen Ráez-Meseguer
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa km 7.5, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Maria Antònia Forteza-Genestra
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa km 7.5, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Marta Monjo
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa km 7.5, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Departament de Biologia Fonamental i Ciències de la Salut, University of the Balearic Islands (UIB), 07122 Palma, Spain
- Correspondence: (M.M.); (J.M.R.); Tel.: +34-971-25-96-07 (J.M.R.)
| | - Joana M. Ramis
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa km 7.5, 07122 Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Departament de Biologia Fonamental i Ciències de la Salut, University of the Balearic Islands (UIB), 07122 Palma, Spain
- Correspondence: (M.M.); (J.M.R.); Tel.: +34-971-25-96-07 (J.M.R.)
| |
Collapse
|
48
|
Casajuana Ester M, Day RM. Production and Utility of Extracellular Vesicles with 3D Culture Methods. Pharmaceutics 2023; 15:pharmaceutics15020663. [PMID: 36839984 PMCID: PMC9961751 DOI: 10.3390/pharmaceutics15020663] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
In recent years, extracellular vesicles (EVs) have emerged as promising biomarkers, cell-free therapeutic agents, and drug delivery carriers. Despite their great clinical potential, poor yield and unscalable production of EVs remain significant challenges. When using 3D culture methods, such as scaffolds and bioreactors, large numbers of cells can be expanded and the cell environment can be manipulated to control the cell phenotype. This has been employed to successfully increase the production of EVs as well as to enhance their therapeutic effects. The physiological relevance of 3D cultures, such as spheroids, has also provided a strategy for understanding the role of EVs in the pathogenesis of several diseases and to evaluate their role as tools to deliver drugs. Additionally, 3D culture methods can encapsulate EVs to achieve more sustained therapeutic effects as well as prevent premature clearance of EVs to enable more localised delivery and concentrated exosome dosage. This review highlights the opportunities and drawbacks of different 3D culture methods and their use in EV research.
Collapse
|
49
|
Ju Y, Hu Y, Yang P, Xie X, Fang B. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration. Mater Today Bio 2023; 18:100522. [PMID: 36593913 PMCID: PMC9803958 DOI: 10.1016/j.mtbio.2022.100522] [Citation(s) in RCA: 175] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are a collective term for nanoscale or microscale vesicles secreted by cells that play important biological roles. Mesenchymal stem cells are a class of cells with the potential for self-healing and multidirectional differentiation. In recent years, numerous studies have shown that EVs, especially those secreted by mesenchymal stem cells, can promote the repair and regeneration of various tissues and, thus, have significant potential in regenerative medicine. However, due to the rapid clearance capacity of the circulatory system, EVs are barely able to act persistently at specific sites for repair of target tissues. Hydrogels have good biocompatibility and loose and porous structural properties that allow them to serve as EV carriers, thereby prolonging the retention in certain specific areas and slowing the release of EVs. When EVs are needed to function at specific sites, the EV-loaded hydrogels can stand as an excellent approach. In this review, we first introduce the sources, roles, and extraction and characterization methods of EVs and describe their current application status. We then review the different types of hydrogels and discuss factors influencing their abilities to carry and release EVs. We summarize several strategies for loading EVs into hydrogels and characterizing EV-loaded hydrogels. Furthermore, we discuss application strategies for EV-loaded hydrogels and review their specific applications in tissue regeneration and repair. This article concludes with a summary of the current state of research on EV-loaded hydrogels and an outlook on future research directions, which we hope will provide promising ideas for researchers.
Collapse
Key Words
- 4-arm-PEG-MAL, four-armed polyethylene glycol (PEG) functionalized with maleimide group
- AD/CS/RSF, alginate-dopamine chondroitin sulfate and regenerated silk fibroin
- ADSC, Adipose derived mesenchymal stem cells
- ADSC-EVs, adipose mesenchymal stem cells derived EVs
- ADSC-Exos, adipose mesenchymal stem cells derived exosomes
- ATRP, Atom transfer radical polymerization
- BCA, bicinchoninic acid
- BMSC, Bone marrow mesenchymal stem cells
- BMSC-EVs, bone marrow mesenchymal stem cells derived EVs
- BMSC-Exos, bone marrow mesenchymal stem cells derived exosomes
- CGC, chitosan-gelatin-chondroitin sulfate
- CL, chitosan lactate
- CNS, central nervous system
- CPCs, cardiac progenitor cells
- CS-g-PEG, chitosan-g-PEG
- DPSC-Exos, dental pulp stem cells derived exosomes
- ECM, extracellular matrix
- EGF, epidermal growth factor
- EVMs, extracellular vesicles mimetics
- EVs, Extracellular vesicles
- Exos, Exosomes
- Exosome
- Extracellular vesicle
- FEEs, functionally engineered EVs
- FGF, fibroblast growth factor
- GelMA, Gelatin methacryloyl
- HA, Hyaluronic acid
- HAMA, Hyaluronic acid methacryloyl
- HG, nano-hydroxyapatite-gelatin
- HIF-1 α, hypoxia-inducible factor-1 α
- HS-HA, hypoxia-sensitive hyaluronic acid
- HUVEC, human umbilical vein endothelial cell
- Hydrogel
- LAP, Lithium Phenyl (2,4,6-trimethylbenzoyl) phosphinate
- LSCM, laser scanning confocal microscopy
- MC-CHO, Aldehyde methylcellulose
- MMP, matrix metalloproteinase
- MNs, microneedles
- MSC-EVs, mesenchymal stem cells derived EVs
- MSC-Exos, mesenchymal stem cells derived exosomes
- MSCs, mesenchymal stem cells
- NPCs, neural progenitor cells
- NTA, nanoparticle tracking analysis
- OHA, oxidized hyaluronic acid
- OSA, oxidized sodium alginate
- PDA, Polydopamine
- PDLLA, poly(D l-lactic acid)
- PDNPs-PELA, Polydopamine nanoparticles incorporated poly (ethylene glycol)-poly(ε-cap-rolactone-co-lactide)
- PEG, Polyethylene glycol
- PF-127, Pluronic F-127
- PHEMA, phenoxyethyl methacrylate
- PIC, photo-induced imine crosslinking
- PKA, protein kinase A system
- PLA, Poly lactic acid
- PLGA, polylactic acid-hydroxy acetic acid copolymer
- PLLA, poly(l-lactic acid)
- PPy, polypyrrole
- PVA, polyvinyl alcohol
- RDRP, Reversible deactivation radical polymerization
- Regeneration
- SCI, spinal cord injury
- SEM, Scanning electron microscopy
- SF, Silk fibroin
- SPT, single-particle tracking
- TEM, transmission electron microscopy
- Tissue repair
- UMSC, umbilical cord mesenchymal stem cells
- UMSC-EVs, umbilical cord mesenchymal stem cells derived EVs
- UMSC-Exos, umbilical cord mesenchymal stem cells derived exosomes
- UV, ultraviolet
- VEGF, vascular endothelial growth factor
- VEGF-R, vascular endothelial growth factor receptor
- WB, western blotting
- dECM, decellularized ECM
- hiPS-MSC-Exos, human induced pluripotent stem cell-MSC-derived exosomes
- iPS-CPCs, pluripotent stem cell-derived cardiac progenitors
- nHP, nanohydroxyapatite/poly-ε-caprolactone
- sEVs, small extracellular vesicles
- β-TCP, β-Tricalcium Phosphate
Collapse
Affiliation(s)
- Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Yue Hu
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| |
Collapse
|
50
|
Liu Z, Yang S, Li X, Wang S, Zhang T, Huo N, Duan R, Shi Q, Zhang J, Xu J. Local transplantation of GMSC-derived exosomes to promote vascularized diabetic wound healing by regulating the Wnt/β-catenin pathways. NANOSCALE ADVANCES 2023; 5:916-926. [PMID: 36756513 PMCID: PMC9890890 DOI: 10.1039/d2na00762b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
With the increasing number of diabetic patients, chronic wound healing remains a great challenge in clinical medicine. As one of the main components secreted by stem cells, the exosome is considered to be a promising candidate for promoting chronic wound healing. Here, gingival mesenchymal stem cell (GMSC)-derived exosomes (GMSC-Exo) were isolated and demonstrated to promote the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) by regulating the Wnt/β-catenin signaling pathway in a diabetic-mimicking high glucose environment. In order to deliver GMSCs-Exo to the target site and prolong their local retention, porous microspheres consisting of poly-lactic-co-glycolic acid (PLGA), amphiphilic block copolymer (PLLA-PEG-PLLA), nano-hydroxyapatite (nHAP), and poly-ε-l-lysine (EPL) coating were fabricated through a double emulsion method and following surface treatment, hereafter referred to as PHE microspheres. PHE microspheres loaded with GMSCs-Exo were implanted into the full-thickness skin wound of a diabetic mouse model, resulting in significant vascularized wound healing when compared to a control group only injected with GMSCs-Exo suspension or filled with PHE microspheres. These findings indicated that the GMSCs-Exo-loaded porous microspheres could efficiently treat diabetic wounds and have promising potential for future clinical translations.
Collapse
Affiliation(s)
- Ziwei Liu
- Medical School of Chinese PLA Beijing 100853 China
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital Beijing 100853 China
- Orthopedic Laboratory of PLA General Hospital Beijing 100853 China
| | - Shuo Yang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital Beijing 100853 China
| | - Xiaoming Li
- College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Situo Wang
- Medical School of Chinese PLA Beijing 100853 China
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital Beijing 100853 China
- Orthopedic Laboratory of PLA General Hospital Beijing 100853 China
| | - Tong Zhang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital Beijing 100853 China
| | - Na Huo
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital Beijing 100853 China
| | - Ruixin Duan
- Department of Stomatology, The People's Hospital of Anyang City Henan 455000 China
| | - Quan Shi
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital Beijing 100853 China
| | - Jianjun Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Juan Xu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital Beijing 100853 China
| |
Collapse
|