1
|
Lee M, Jeong D, Yoon K, Jin J, Back YW, Jang IT, Kim HJ, Kim BJ, Bae SM. Inactivated mycobacterium paragordonae delivered via microneedle patches as a novel tuberculosis booster vaccine. Hum Vaccin Immunother 2025; 21:2507473. [PMID: 40405740 PMCID: PMC12118391 DOI: 10.1080/21645515.2025.2507473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/29/2025] [Accepted: 05/13/2025] [Indexed: 05/24/2025] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge with approximately 8.2 million new cases reported in 2023, despite the century-old Bacillus Calmette-Guérin (BCG) vaccine. BCG's protective efficacy diminishes over time, especially against pulmonary TB in adults. This study evaluates ethanol-inactivated Mycobacterium paragordonae (M.pg) delivered via Microneedle Array Patches (MAPs) as a novel booster strategy to enhance BCG vaccination efficacy. Various inactivation methods including heat treatment, formalin, and ethanol were compared, with ethanol-inactivated M.pg selected for optimal preservation of morphology and immunologically significant proteins. MAPs were fabricated using the droplet extension technique (DEN). Immunological assessment was conducted in a mouse model receiving either BCG alone or BCG followed by one or two administrations of inactivated M.pg MAP. Protective efficacy was evaluated through M. tuberculosis H37Rv challenge. Ethanol inactivation uniquely preserved morphology and maintained protein integrity, particularly Ag85B. Two administrations of inactivated M.pg following BCG priming significantly enhanced protective immune responses compared to BCG alone, inducing strong Th1-polarized immunity characterized by elevated IFN-γ, TNF-α, and IL-2 production in both CD4+ and CD8+ T cells. This vaccination strategy effectively generated effector memory T cells in lung and spleen, contributing to significant reduction in bacterial burden following challenge, with the BCG+Inactivated M.pg2nd group demonstrating the greatest reduction. Inactivated M.pg delivered via microneedle patches represents an effective booster strategy for enhancing BCG-induced protection against tuberculosis, with a two-dose schedule demonstrating optimal efficacy. This approach combines the safety advantages of an inactivated vaccine with the practical benefits of MAPs, addressing key limitations of tuberculosis vaccination strategies.
Collapse
Affiliation(s)
- Moonsu Lee
- Medical Business Division, Raphas Co, Ltd, Seoul, Republic of Korea
| | - Dohyeon Jeong
- Medical Business Division, Raphas Co, Ltd, Seoul, Republic of Korea
| | - Kiyoung Yoon
- Medical Business Division, Raphas Co, Ltd, Seoul, Republic of Korea
| | - Juyoung Jin
- Medical Business Division, Raphas Co, Ltd, Seoul, Republic of Korea
| | - Yong Woo Back
- R&D Center, Myco-Rapha Inc, Daejeon, Republic of Korea
| | - In-Taek Jang
- R&D Center, Myco-Rapha Inc, Daejeon, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sung Min Bae
- Medical Business Division, Raphas Co, Ltd, Seoul, Republic of Korea
| |
Collapse
|
2
|
Itbar M, Imran Khan M, Akhtar MF, Ahmad Z, Farhan Sohail M, Madni A, Erum A, Khan A, Ali A, Naeem Qaisar M. Development and characterization of quetiapine-loaded microneedles-based transdermal patches for improved drug delivery. J Pharm Pharmacol 2025:rgaf013. [PMID: 40329822 DOI: 10.1093/jpp/rgaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/25/2025] [Indexed: 05/08/2025]
Abstract
OBJECTIVES This study was executed to prepare and characterize quetiapine (antipsychotic drug)-loaded microneedles-based transdermal patch for improved drug delivery. METHODS This study was executed to develop microneedles-based transdermal patches (MNS) for quetiapine delivery. Eight MNS patches loaded with quetiapine (MNS1-MNS8) were fabricated using varying concentrations of sodium alginate and carboxymethyl cellulose. First four MNS patches (MNS1, MNS2, MNS3, and MNS4) were prepared by keeping sodium alginate concentration constant (6%) and increasing CMC concentration from 3% to 6%, whereas MNS5, MNS6, MNS7, and MNS8 were developed using sodium alginate to CMC concentrations 7:3, 7:4, 8:3, and 8:4, respectively. Solvent casting technique was opted for preparation of MNS patches. MNS were characterized for thickness, folding endurance, insertion capacity, drug content, morphology, and ex-vivo permeation profile using Wistar rat skin. KEY FINDINGS FTIR studies revealed the compatibility of quetiapine with formulation composites. Thickness and folding endurance was ranged in between 0.53-0.55 mm and 25-264, respectively. SEM of optimized patch showed sharp pointed needles. Ex-vivo permeation studies showed percent drug release of 84.34% from MNS1 after 48 h. CONCLUSIONS The overall findings of study proposed that the quetiapine-loaded MNS patches hold promise for the improved transdermal delivery of quetiapine.
Collapse
Affiliation(s)
- Maryam Itbar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, 54000, Lahore, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, 54000, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, 54000, Lahore, Pakistan
| | - Zulcaif Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, 54000, Lahore, Pakistan
| | - Muhammad Farhan Sohail
- Department of Chemistry, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Alia Erum
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Aslam Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Ahsan Ali
- Department of Pharmacy, University of Lahore, Sargodha, Pakistan
| | | |
Collapse
|
3
|
Li F, Pang S, Hao S, Liu Y, Lei W, Zhong W, Xu K. Dendrobium polysaccharide-based microneedles loaded with Celosia cristata flavonoids and adapalene nanoparticles for efficacious treatment of acne vulgaris. Int J Biol Macromol 2025; 310:143480. [PMID: 40286952 DOI: 10.1016/j.ijbiomac.2025.143480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/06/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Acne vulgaris is a common chronic inflammatory skin disorder primarily caused by the overgrowth of Propionibacterium acnes (P. acnes). However, the therapeutic efficacy of traditional drugs is often limited due to their inability to penetrate the stratum corneum. Microneedles (MNs) are designed to penetrate the stratum corneum, enabling direct drug delivery to the epidermis. In this study, a new Dendrobium polysaccharide-based composite microneedle (DOP/CCF/PLGA@Adap-MN) delivery system was developed. Dendrobium polysaccharide (DOP) was utilized as the microneedle matrix, loaded with the Celosia cristata flavonoids (CCF) and poly(lactic-co-glycolic acid) adapalene nanoparticles (PLGA@Adap NPs). DOP not only enhanced the mechanical properties and transdermal efficiency of the microneedles but also provided intrinsic anti-inflammatory activity. CCF effectively inhibited the growth of P. acnes, while PLGA@Adap NPs slowly released adapalene to promote acne healing. In vivo studies using a P. acnes-induced mice model demonstrated that this microneedle system effectively reduced skin swelling, inhibited bacterial growth, and decreased inflammatory cell numbers in the skin. The use of bioactive DOP as a microneedle matrix, combined with sustained-release technology, provides a multifaceted and synergistic approach to acne treatment.
Collapse
Affiliation(s)
- Fanglin Li
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shuqin Pang
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shiqi Hao
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Liu
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Wenwen Lei
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Wenying Zhong
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China.
| | - Keming Xu
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
4
|
Railic M, Vucen S, Crean A. Insights into preclinical evaluation of dissolvable microarray patches. Int J Pharm 2025; 673:125361. [PMID: 39971167 DOI: 10.1016/j.ijpharm.2025.125361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
Drug-loaded dissolvable microarray patches (MAP) have gained significant attention due to their patient-friendly, economical, and environmentally beneficial attributes. Despite extensive research and advancements, only a limited number of MAP have progressed to clinical trials. While existing literature predominantly covers the initial stages of MAP development (e.g., manufacturing techniques, materials, design), there remains a notable gap in examining an experimental design during preclinical evaluation phase undertaken to inform progression to clinical studies. To address this gap, we present a comprehensive review of the experimental factors influencing MAP performance in preclinical research. Our in-depth analysis of the skin environment and its implications to in vitro MAP performance revealed that skin insertion methodology, media used for release and permeation testing, skin models for permeation studies, and skin metabolism are key factors that need to be considered. We critically assess current research trends and propose potential optimisations to enhance efficacy and biorelevance of in vitro methods for MAP. Additionally, we review factors influencing in vivo and in silico performance, underscoring the promising potential of in silico approaches. This article aims to provide insights that will facilitate the development and standardisation of reliable methodologies in preclinical studies of drug-loaded MAP, ultimately advancing their clinical translation.
Collapse
Affiliation(s)
- Maja Railic
- SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Ireland.
| | - Sonja Vucen
- SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Ireland.
| | - Abina Crean
- SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Ireland.
| |
Collapse
|
5
|
Elkhashab M, Sartawi Z, Faisal W, Crean A. Glassy Drug Microneedle Array Design: Drug Glass-Forming Ability and Stability. Mol Pharm 2025; 22:1373-1383. [PMID: 39957277 PMCID: PMC11881139 DOI: 10.1021/acs.molpharmaceut.4c01067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
Glassy microneedles, composed only of drug, provide an intradermal alternative to oral or parenteral drug delivery. Compared to microneedles composed of drug-polymer solid dispersions, they offer higher drug loading while possessing mechanical strength for skin penetration. However, their microneedle structure and associated mechanical strength are reliant on the component glass stability. This study investigates relationships between the glass stability of drug-only microneedles and drug glass-forming ability (GFA), determined by differential scanning calorimetry (DSC) analysis. The glass stability of microneedles fabricated from six drugs was evaluated at 2-8 °C under nitrogen, 25 °C/60% relative humidity (RH), and 40 °C/75% RH. Drug glass stability was determined by visual assessment of microneedle appearance, together with DSC and powder X-ray diffraction analysis of the drug melt cooled outside the microneedle molds. Glassy microneedle structure was retained for all drugs stored at 2-8 °C under nitrogen for 3 months. Drug GFA classes informed glass stability under dry (nitrogen) environments at temperatures below their glass transition temperature. Under controlled humidity conditions, all glass microneedles crystallized, except for itraconazole. Drug GFA did not inform microneedle glass stability when exposed to water vapor during storage due to water absorption and glass plasticization. Itraconazole's glass stability was attributed to the interaction of absorbed water with liquid crystalline phases present in the itraconazole glass. The results highlight how glassy microneedle stability is informed by storage below Tg and glass interaction with moisture vapor. Results also demonstrate how the skin penetration efficiency of glassy microneedles is maintained during storage by selecting stabilizing storage conditions.
Collapse
Affiliation(s)
- Mohamed Elkhashab
- SSPC,
the Research Ireland Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork T12 K8AF, Ireland
| | - Ziad Sartawi
- ArrayPatch
Ltd., Euro Business Park,
Little Island, Cork T45
FX94, Ireland
| | - Waleed Faisal
- ArrayPatch
Ltd., Euro Business Park,
Little Island, Cork T45
FX94, Ireland
| | - Abina Crean
- SSPC,
the Research Ireland Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
6
|
Ye Z, Li Y, Sun Y, Ye H, Tang J, Cao G, Feng Z, Bao Y, Zeng Y, Pan Z, Liu X, He Y. Tellurium nanoparticles and Fucoidan-loaded dissolvable microneedles for combined photothermal therapy and anti-angiogenesis in melanoma treatment. Int J Biol Macromol 2025; 292:139153. [PMID: 39736281 DOI: 10.1016/j.ijbiomac.2024.139153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 01/01/2025]
Abstract
Melanoma, an aggressive skin tumor, is prone to metastasis, significantly reducing patient survival rates once it occurs. Tumor microvascularity is a key factor in metastasis, making the inhibition of microvascular formation crucial. Emerging photothermal therapy (PTT) and microneedles (MNs) have garnered attention due to their non-invasive and controllable nature. In this study, we designed dissolvable MNs loaded with bovine serum albumin (BSA)-coated tellurium nanoparticles (Te NPs) and fucoidan for comprehensive melanoma treatment. Poly (2-ethyl-2-oxazoline) (PetOx) and chondroitin sulfate (CS) were employed to fabricate dissolvable MNs. Polycaprolactone (PCL), a non-water-soluble material, was used as the substrate. Te NPs, with their strong photothermal conversion capability, acted as the photothermal agent. Fucoidan, derived from brown algae, possesses anti-tumor and angiogenesis inhibition activities. Upon insertion into the skin, the microneedle tip dissolves in the tissue fluid, releasing Te NPs and fucoidan, while the substrate is removed. Under near-infrared (NIR) laser irradiation, Te NPs achieve PTT, effectively killing tumor cells. Fucoidan inhibits tumor growth by obstructing angiogenesis, thereby cutting off the tumor's nutrient supply. The designed MNs achieved effective tumor suppression through combination therapy with minimal in vivo side effects, providing a safe and effective melanoma treatment.
Collapse
Affiliation(s)
- Zhaoyi Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yushan Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yu Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Huiling Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Junze Tang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Guining Cao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenzhen Feng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Bao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Zhenxing Pan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
7
|
Wang Z, Tong S, Niu J, Cao C, Gao A, Jiao Y, Fu Y, Li D, Pan X, Cui D, Sheng N, Yan L, Cui S, Lin S, Liu Y. Microneedles: multifunctional devices for drug delivery, body fluid extraction, and bio-sensing. NANOSCALE 2025; 17:740-773. [PMID: 39606819 DOI: 10.1039/d4nr03538k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Microneedles represent a miniaturized mechanical structure with versatile applications, including transdermal drug delivery, vaccination, body-fluid extraction, and bio-sensing. Over the past two decades, microneedle-based devices have garnered considerable attention in the biomedicine field, exhibiting the potential for mitigating patient discomfort, enhancing treatment adherence, avoiding first-pass effects, and facilitating precise therapeutic interventions. As an application-oriented technology, the innovation of microneedles is generally carried out in response to a specific demand. Currently, three most common applications of microneedles are drug delivery, fluid extraction, and bio-sensing. This review focuses on the progress in the materials, fabrication techniques, and design of microneedles in recent years. On this basis, the progress and innovation of microneedles in the current research stage are introduced in terms of their three main applications.
Collapse
Affiliation(s)
- Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Siyu Tong
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jiaqi Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Cheng Cao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ang Gao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yingao Jiao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yanfei Fu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Dongxia Li
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xinni Pan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Nengquan Sheng
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Li Yan
- Department of Geriatric Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Shengsheng Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanlei Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
8
|
Yang C, Zhao W, Zhang L, He L, Wang S, Wang J, Xiang M, Yuan X, Gou M. Intradermal Delivery of Cell Vaccine via Ice Microneedles for Cancer Treatment. Adv Healthc Mater 2025; 14:e2400678. [PMID: 39499079 DOI: 10.1002/adhm.202400678] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/06/2024] [Indexed: 11/07/2024]
Abstract
The living tumor cell vaccine (TCV) holds a promise for cancer immunotherapy. Microneedle arrays provide a tool to improve the immune response of vaccines by the intradermal administration in a painless manner. However, it remains challenges for microneedle arrays to deliver the living TCV intradermally. Here, an ice microneedle array delivered living TCVs is shown with sustained granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion for cancer treatment. The ice microneedle array is composed of ice microneedles and a matching polymer holder, which are customized fabricated by a static optical projection lithography (SOPL) technique. The living TCV consisted of irradiated melanoma cells transfected with nanoparticle-mediated GM-CSF plasmids. After the living TCV is readily loaded into the ice microneedle via a cryopreservation process, it could be efficiently delivered into the dermis by the microneedle device. Compared to the subcutaneous injection, intradermal administration led to the recruitment of more dendritic cells at the vaccination site and the increased infiltration of CD8+ T cells in the tumor. The ice microneedle array deliveres intradermal TCVs significantly inhibited melanoma growth and effectively prevented melanoma recurrence without obvious side effects. This work demonstrates a promising TCVs for melanoma treatment, which will inspire the future of cancer immunotherapy.
Collapse
Affiliation(s)
- Chunli Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #17 Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
- Department of Oncology, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Wei Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #17 Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Li Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #17 Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
- Huahang Microcreate Technology Co., Ltd, #818 Shixing Road, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Liming He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #17 Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Siyi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #17 Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Jie Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #17 Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Maya Xiang
- Department of Chemistry, University of Washington-Seattle Campus, 1410 NE Campus Pkwy, Seattle, WA, 98195, USA
| | - Xin Yuan
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Maling Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #17 Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| |
Collapse
|
9
|
Leyba A, Francian A, Razjmoo M, Bierle A, Janardhana R, Jackson N, Chackerian B, Muttil P. Formulation, Characterization, and in vivo Immunogenicity of Heat-Stabilized Dissolvable Microneedles Containing a Novel VLP Vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628763. [PMID: 39763766 PMCID: PMC11702720 DOI: 10.1101/2024.12.16.628763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Since its introduction, vaccination has heavily improved health outcomes. However, implementing vaccination efforts can be challenging, particularly in low and middle-income countries with warmer climates. Microneedle technology has been developed for its simple and relatively painless applications of vaccines. However, no microneedle vaccine has yet been approved by the FDA. A few hurdles must be overcome, including the need to evaluate the safety and biocompatibility of the polymer used to fabricate these microneedles. Additionally, it is important to demonstrate reliable immune responses comparable to or better than those achieved through traditional administration routes. Scalability in manufacturing and the ability to maintain vaccine potency during storage and transportation are also critical factors. In this study, we developed vaccine-loaded dissolvable microneedles that showed preclinical immunogenicity after storage in extreme conditions. We developed our microneedles using the conventional micromolding technique with polyacrylic acid (PAA) polymer, incorporating a novel virus-like particle (VLP) vaccine targeting arboviruses. We performed characterization studies on these microneedles to assess needle sharpness, skin insertion force, and VLP integrity. We also investigated the thermostability of the vaccine after storing the microneedles at elevated temperatures for approximately 140 days. Finally, we evaluated the immunogenicity of this vaccine in mice, comparing transdermal (microneedle) with intramuscular (hypodermic needle) administration. We successfully fabricated and characterized VLP-loaded microneedles that could penetrate the skin and maintain vaccine integrity even after exposure to extreme storage conditions. These microneedles also elicited robust and long-lasting antibody responses similar to those achieved with intramuscular administration.
Collapse
Affiliation(s)
- Aidan Leyba
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Alexandra Francian
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Mohammad Razjmoo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Amelia Bierle
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Ranjith Janardhana
- Department of Mechanical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Nathan Jackson
- Department of Mechanical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Pavan Muttil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
10
|
Zhang J, Pan W, Wang Y, Zhang C, Wang C, Li S, Chen F, Zhu A. Enhancing vaccine efficacy: Evaluating the superiority of cationic liposome-embedded squalene adjuvant against PCV2 infection. Virology 2024; 600:110251. [PMID: 39362035 DOI: 10.1016/j.virol.2024.110251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Cationic liposome-embedded squalene (CLS) is a promising adjuvant that enhances antigen stability and mobility and improves immune response. This study compares the efficacy of a CLS-adjuvant porcine circovirus type 2 (PCV2) vaccine (CSV) with a conventional vaccine against PCV2. The CSV vaccine showed superior stability and was effective against PCV2-induced growth decline. It significantly increased serum immunoglobulin and cytokine levels, reduced serum PCV2 DNA, shortened the duration of viremia, and provided robust protection. CSV outperformed conventional vaccines, highlighting its potential for innovative vaccine development.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Wenjing Pan
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - You Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Chi Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Chunwei Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Shuang Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| | - Fan Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Aixia Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
11
|
Nainggolan ADC, Hartrianti P, Anjani QK, Donnelly RF, Putra ABN, Kho K, Kurniawan A, Andranilla RK, Rattu SA, Ramadon D. Double-layer dissolving microneedles for delivery of mesenchymal stem cell Secretome: Formulation, characterisation and skin irritation study. Eur J Pharm Biopharm 2024; 204:114495. [PMID: 39277118 DOI: 10.1016/j.ejpb.2024.114495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Regenerative therapy based on stem cells have been developed, focusing on either stem cell or secretome delivery. Most marketed cellular and gene therapy products are available as injectable dosage forms, leading to several limitations requiring alternative routes, such as the intradermal route. Microneedles, capable of penetratingthe stratum corneumbarrier, offer a potential alternative for intradermal delivery. This present study aimed to develop double-layer dissolving microneedles (DMN) for the delivery of freeze-dried mesenchymal stem cell secretome. DMNs were fabricated using a two-step casting method and composed of two polymer combinations: poly(vinyl pyrrolidone) (PVP) with poly(vinyl alcohol) (PVA) or PVP with sodium hyaluronate (SH). The manufactured DMNs underwent assessments for morphology, mechanical strength, in skin dissolution, protein content, in vitro permeation, in vivo skin irritation, and physical stability. Based on evaluations of morphology and mechanical strength, two formulas (F5 and F12) met acceptance criteria. Evaluation of protein content revealed that F12 (PVP-SH combination) had a higher protein content than F5 (PVP-PVA combination), 99.02 ± 3.24 μg and 78.36 ± 3.75 μg respectively. In vitro permeation studies showed that F5 delivered secretome protein by 100.84 ± 0.88%, while F12 delivered 99.63 ± 9.21% in 24 h. After four days of observation onSprague-Dawleyrat's skin, no signs of irritation, such as oedema and redness, was observed after applying both formulations. The safety of using PVP-PVA and PVP-SH combinations as excipients for DMN secretome delivery has been confirmed, promising significant advancements in biotherapeutic development in the future.
Collapse
Affiliation(s)
| | - Pietradewi Hartrianti
- Department of Pharmacy, School of Life Sciences, Indonesia International Institute of Life Sciences, Jakarta 13210, Indonesia
| | - Qonita Kurnia Anjani
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Agus Budiawan Naro Putra
- Research Centre for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911, Indonesia
| | - Katherine Kho
- Department of Biotechnology, School of Life Sciences, Indonesia International Institute of Life Sciences, Jakarta 13210, Indonesia
| | - Arief Kurniawan
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| | | | - Shereen Angelina Rattu
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute of Life Sciences, Jakarta 13210, Indonesia
| | - Delly Ramadon
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia.
| |
Collapse
|
12
|
Su T, Tang Z, Hu J, Zhu Y, Shen T. Innovative freeze-drying technique in the fabrication of dissolving microneedle patch: Enhancing transdermal drug delivery efficiency. Drug Deliv Transl Res 2024; 14:3112-3127. [PMID: 38431532 DOI: 10.1007/s13346-024-01531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2024] [Indexed: 03/05/2024]
Abstract
Microneedle patch (MNP) has become a hot research topic in the field of transdermal drug delivery due to its ability to overcome the stratum corneum barrier. Among the various types of microneedles, dissolving microneedles represent one of the most promising transdermal delivery methods. However, the most used method for preparing dissolving microneedles, namely microfabrication, suffers from issues such as long drying time, susceptibility to humidity, and large batch-to-batch variability, which limit the development of dissolving microneedles. In this study, we report for the first time a method for preparing dissolving microneedles using freeze-drying technology. We screened substrates suitable for freeze-dried microneedle patch (FD-MNP) and used coating technology to enhance the mechanical strength of FD-MNP, allowing them to meet the requirements for skin penetration. We successfully prepared FD-MNP using hyaluronic acid as the substrate and insulin as the model drug. Scanning electron microscopy revealed that the microneedles had a porous structure. After coating, the mechanical strength of the microneedles was 0.61 N/Needle, and skin penetration rate was 97%, with a penetration depth of 215 μm. The tips of the FD-MNP dissolved completely within approximately 60 s after skin penetration, which is much faster than conventional MNP (180 s). In vitro transdermal experiments showed that the FD-MNP shortened the lag time for transdermal delivery of rhodamine 123 and insulin compared to conventional MNP, indicating a faster transdermal delivery rate. Pharmacological experiments showed that the FD-MNP lowered mouse blood glucose levels more effectively than conventional MNP, with a relative pharmacological availability of 96.59 ± 2.84%, higher than that of conventional MNP (84.34 ± 3.87%), P = 0.0095. After storage under 40℃ for two months, the insulin content within the FD-MNP remained high at 95.27 ± 4.46%, which was much higher than that of conventional MNP (58.73 ± 3.71%), P < 0.0001. In conclusion, freeze-drying technology is a highly valuable method for preparing dissolving microneedles with potential applications in transdermal drug delivery.
Collapse
Affiliation(s)
- Tong Su
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Zequn Tang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Jiayi Hu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Yuyu Zhu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Teng Shen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China.
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
13
|
Koenitz L, Crean A, Vucen S. Pharmacokinetic differences between subcutaneous injection and intradermal microneedle delivery of protein therapeutics. Eur J Pharm Biopharm 2024; 204:114517. [PMID: 39349073 DOI: 10.1016/j.ejpb.2024.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Protein therapeutics are essential in the treatment of various diseases, but most of them require parenteral administration. Since intravenous and subcutaneous injections are associated with discomfort and pain, other routes have been investigated including intradermal microneedle delivery. Microneedles are shorter than hypodermic needles and therefore minimize contact with pain receptors in deeper skin layers. But the differences in anatomical and physiological characteristics of dermis and subcutis can potentially result in varying protein penetration through the skin, absorption, and metabolism. This review summarizes pharmacokinetic studies that compare the administration of protein therapeutics by subcutaneous injections and different types of microneedles intradermally including hollow, dissolvable, coated, and hydrogel-forming microneedles. Across animal and human studies, hollow microneedle delivery resulted in quicker and higher peak plasma levels of proteins and comparable bioavailability to subcutaneous injections potentially due to the extensive network of lymphatic and blood vessels in the dermis. In case of dissolvable and coated microneedles, drug release kinetics depend on component materials. The dissolution of polymer excipients can slow the release and permeation of protein therapeutics at the administration site and thereby delay absorption. The understanding of drug penetration through different skin layers, its absorption into blood capillaries or lymphatics, and dermal metabolism remains limited. Additionally, the effects of these processes on the differences in pharmacokinetic profiles of proteins following intradermal microneedle administration are not well understood. Greater insights are required for the development of the next generation of intradermal microneedle biotherapeutics.
Collapse
Affiliation(s)
- Laura Koenitz
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork T12 YT20, Ireland.
| | - Abina Crean
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
| | - Sonja Vucen
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
14
|
Shrestha N, Karve T, Kipping T, Banga AK. Fabrication of Poly Lactic- co-Glycolic Acid Microneedles for Sustained Delivery of Lipophilic Peptide-Carfilzomib. Mol Pharm 2024; 21:5192-5204. [PMID: 39255036 DOI: 10.1021/acs.molpharmaceut.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Transdermal drug delivery (TDD) is an attractive route of administration, providing several advantages, especially over oral and parenteral routes. However, TDD is significantly restricted due to the barrier imposed by the uppermost layer of the skin, the stratum corneum (SC). Microneedles is a physical enhancement technique that efficiently pierces the SC and facilitates the delivery of both lipophilic and hydrophilic molecules. Dissolving microneedles is a commonly used type that is fabricated utilizing various biodegradable and biocompatible polymers, such as polylactic acid, polyglycolic acid, or poly(lactide-co-glycolide) (PLGA). Such polymers also promote the prolonged release of the drug due to the slow degradation of the polymer matrix following its insertion. We selected carfilzomib, a small therapeutic peptide (MW: 719.924 g/mol, log P 4.19), as a model drug to fabricate a microneedle-based sustained delivery system. This study is a proof-of-concept investigation in which we fabricated PLGA microneedles using four types of PLGA (50-2A, 50-5A, 75-5A, and 50-7P) to evaluate the feasibility of long-acting transdermal delivery of carfilzomib. Micromolding technique was used to fabricate the PLGA microneedles and characterization tests, including Fourier transform infrared spectroscopy, insertion capability using the skin simulant Parafilm model, histological evaluation, scanning electron microscopy, and confocal microscopy were conducted. In vitro release and permeation testing were conducted in vertical Franz diffusion cells. N-methyl pyrrolidone was utilized as the organic solvent and microneedles were solidified in controlled conditions, which led to good mechanical strength. Both in vitro release and permeation testing showed sustained profiles of carfilzomib over 7 days. The release and permeation were significantly influenced by the molecular weight of PLGA and the lipophilic properties of carfilzomib.
Collapse
Affiliation(s)
- Nisha Shrestha
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia 30341, United States
| | - Tanvi Karve
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia 30341, United States
| | - Thomas Kipping
- MilliporeSigma a Business of Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Ajay K Banga
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia 30341, United States
| |
Collapse
|
15
|
Railic M, Crean AM, Vucen S. Unravelling Microarray Patch Performance: The Role of In Vitro Release Medium and Biorelevant Testing. Mol Pharm 2024; 21:5028-5040. [PMID: 39195905 PMCID: PMC11462508 DOI: 10.1021/acs.molpharmaceut.4c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The absence of established protocols for studying the in vitro performance of dissolvable microarray patches (MAPs) poses a significant challenge within the field. To overcome this challenge, it is essential to optimize testing methods in a way that closely mimics the skin's environment, ensuring biorelevance and enhancing the precision of assessing MAP performance. This study focuses on optimizing in vitro release testing (IVRT) and in vitro permeation testing (IVPT) methods for MAPs containing the antihistamine drugs loratadine (LOR) and chlorpheniramine maleate (CPM). Our primary objective is to investigate the impact of the composition of in vitro release media on the drug release rate, penetration through the skin, and permeation into the release medium. Artificial interstitial fluid is introduced as a biorelevant release medium and compared with commonly used media in IVRT and IVPT studies. Prior to these studies, we evaluated drug solubility in different release media and developed a method for LOR and CPM extraction from the skin using a design of experiment approach. Our findings highlight the effect of the in vitro release medium composition on both LOR and CPM release rate and their penetration through the skin. Furthermore, we identified the importance of considering the interplay between the physicochemical attributes of the drug molecules, the design of the MAP formulation, and the structural properties of the skin when designing IVRT and IVPT protocols.
Collapse
Affiliation(s)
- Maja Railic
- SSPC, the SFI Research Centre
for Pharmaceuticals, School of Pharmacy, University College Cork, College
Road, Cork T12 K8AF, Ireland
| | - Abina M. Crean
- SSPC, the SFI Research Centre
for Pharmaceuticals, School of Pharmacy, University College Cork, College
Road, Cork T12 K8AF, Ireland
| | - Sonja Vucen
- SSPC, the SFI Research Centre
for Pharmaceuticals, School of Pharmacy, University College Cork, College
Road, Cork T12 K8AF, Ireland
| |
Collapse
|
16
|
Yi H, Yu H, Wang L, Wang Y, Ouyang C, Keshta BE. Microneedle transdermal drug delivery as a candidate for the treatment of gouty arthritis: Material structure, design strategies and prospects. Acta Biomater 2024; 187:20-50. [PMID: 39182801 DOI: 10.1016/j.actbio.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Gouty arthritis (GA) is caused by monosodium urate (MSU) crystals deposition. GA is difficult to cure because of its complex disease mechanism and the tendency to reoccur. GA patients require long-term uric acid-lowering and anti-inflammatory treatments. In the past ten years, as a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles (MNs) administration has been continuously developed, which can realize various drug release modes to deal with various complex diseases. Compared with the traditional administration methods (oral and injection), MNs are more conducive to the long-term independent treatment of GA patients because of their safe, efficient and controllable drug delivery ability. In this review, the pathological mechanism of GA and common therapeutic drugs for GA are summarized. After that, MNs drug delivery mechanisms were summarized: dissolution release mechanism, swelling release mechanism and channel-assisted release mechanism. According to drug delivery patterns of MNs, the mechanisms and applications of rapid-release MNs, long-acting MNs, intelligent-release MNs and multiple-release MNs were reviewed. Additionally, existing problems and future trends of MNs in the treatment of GA were also discussed. STATEMENT OF SIGNIFICANCE: Gout is an arthritis caused by metabolic disease "hyperuricemia". Epidemiological studies show that the number of gouty patients is increasing rapidly worldwide. Due to the complex disease mechanism and recurrent nature of gout, gouty patients require long-term therapy. However, traditional drug delivery modes (oral and injectable) have poor adherence, low drug utilization, and lack of local localized targeting. They may lead to adverse effects such as rashes and gastrointestinal reactions. As a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles have been continuously developed, which can realize various drug release modes to deal with gouty arthritis. In this review, the material structure, design strategy and future outlook of microneedles for treating gouty arthritis will be reviewed.
Collapse
Affiliation(s)
- Hong Yi
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Basem E Keshta
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
17
|
Zhang X, Li M, Gao Q, Kang X, Sun J, Huang Y, Xu H, Xu J, Shu S, Zhuang J, Huang Y. Cutting-edge microneedle innovations: Transforming the landscape of cardiovascular and metabolic disease management. iScience 2024; 27:110615. [PMID: 39224520 PMCID: PMC11366906 DOI: 10.1016/j.isci.2024.110615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders (MDs) have surfaced as formidable challenges to global health, significantly imperiling human well-being. Recently, microneedles (MNs) have garnered substantial interest within the realms of CVD and MD research. Offering a departure from conventional diagnostic and therapeutic methodologies, MNs present a non-invasive, safe, and user-friendly modality for both monitoring and treatment, thereby marking substantial strides and attaining pivotal achievements in this avant-garde domain, while also unfurling promising avenues for future inquiry. This thorough review encapsulates the latest developments in employing MNs for both the surveillance and management of CVDs and MDs. Initially, it succinctly outlines the foundational principles and approaches of MNs in disease surveillance and therapy. Subsequently, it delves into the pioneering utilizations of MNs in the surveillance and management of CVDs and MDs. Ultimately, this discourse synthesizes and concludes the primary findings of this investigation, additionally prognosticating on the trajectory of MN technology.
Collapse
Affiliation(s)
- Xiaoning Zhang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Li
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiang Gao
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoya Kang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingyao Sun
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yao Huang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Xu
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Songren Shu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Jian Zhuang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuan Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Bao Q, Zhang X, Hao Z, Li Q, Wu F, Wang K, Li Y, Li W, Gao H. Advances in Polysaccharide-Based Microneedle Systems for the Treatment of Ocular Diseases. NANO-MICRO LETTERS 2024; 16:268. [PMID: 39136800 PMCID: PMC11322514 DOI: 10.1007/s40820-024-01477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/06/2024] [Indexed: 08/16/2024]
Abstract
The eye, a complex organ isolated from the systemic circulation, presents significant drug delivery challenges owing to its protective mechanisms, such as the blood-retinal barrier and corneal impermeability. Conventional drug administration methods often fail to sustain therapeutic levels and may compromise patient safety and compliance. Polysaccharide-based microneedles (PSMNs) have emerged as a transformative solution for ophthalmic drug delivery. However, a comprehensive review of PSMNs in ophthalmology has not been published to date. In this review, we critically examine the synergy between polysaccharide chemistry and microneedle technology for enhancing ocular drug delivery. We provide a thorough analysis of PSMNs, summarizing the design principles, fabrication processes, and challenges addressed during fabrication, including improving patient comfort and compliance. We also describe recent advances and the performance of various PSMNs in both research and clinical scenarios. Finally, we review the current regulatory frameworks and market barriers that are relevant to the clinical and commercial advancement of PSMNs and provide a final perspective on this research area.
Collapse
Affiliation(s)
- Qingdong Bao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Xiaoting Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Zhankun Hao
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Qinghua Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Fan Wu
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Kaiyuan Wang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Yang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| | - Wenlong Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China.
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China.
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China.
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China.
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China.
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China.
| |
Collapse
|
19
|
Ramadon D, Karn PR, Anjani QK, Kim MH, Cho DY, Hwang H, Kim DH, Kim DH, Kim G, Lee K, Eum JH, Im JY, Aileen V, Hamda OT, Donnelly RF. Development of ropivacaine hydrochloride-loaded dissolving microneedles as a local anesthetic agent: A proof-of-concept. Int J Pharm 2024; 660:124347. [PMID: 38885777 DOI: 10.1016/j.ijpharm.2024.124347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Ropivacaine hydrochloride (RPL) is a local anesthetic agent that has been widely used for the treatment of pain during or after surgery. However, this drug is only available in parenteral dosage form and may contribute to the infiltration of RPL into the plasma, causing some undesirable side effects. Intradermal delivery of RPL using dissolving microneedles may become a promising strategy to deliver such drugs into the skin. This research aimed to develop RPL-loaded dissolving microneedles (DMN-RPLs) as a proof of the concept of intradermal delivery of a local anesthetic. The DMN-RPLs were fabricated using either centrifugation or air-pressurized chamber methods. Several polymers, such as poly(vinyl pyrrolidone) (PVP), poly(vinyl alcohol) (PVA), and sodium hyaluronate (SH), were utilized for manufacturing the DMN-RPLs. The prepared DMN-RPLs were assessed for their thermal properties, chemical bonds, mechanical strength, insertion ability, skin-dissolution study, and drug content. Furthermore, in-skin deposition and dermatokinetic studies were also performed. The results showed that F9 (30 % w/w PVP-4 % w/w SH) and F10 (30 % w/w PVP-5 % w/w PVA) containing 5 % w/w of RPL were the most promising formulations, as shown by their needle height reduction (<10 %) and insertion depth (∼400 μm). Both formulations were also able to deliver more than 60 % of the RPL contained in the DMNs into the epidermis, dermis, and receiver compartment. This study, for the first time, has provided a proof concept to deliver RPL as a local anesthetic using DMNs and the intradermal route, aiming to minimize pain and discomfort during administration and improve the patient's experience.
Collapse
Affiliation(s)
- Delly Ramadon
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia.
| | - Pankaj Ranjan Karn
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea
| | - Qonita Kurnia Anjani
- Medical Biology Centre, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Min-Hwan Kim
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Youl Cho
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea
| | - Hana Hwang
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea
| | - Da Hye Kim
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea
| | - Dong Hwan Kim
- Daewoong Therapeutics INC., Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Gwanyoung Kim
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungmin Lee
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea
| | - Jae Hong Eum
- Daewoong Therapeutics INC., Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Ji Yeon Im
- Daewoong Therapeutics INC., Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Vania Aileen
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| | - Okto Tri Hamda
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| | - Ryan F Donnelly
- Medical Biology Centre, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
20
|
Giannachi C, Allen E, Egan G, Vucen S, Crean A. Colyophilized Sugar-Polymer Dispersions for Enhanced Processing and Storage Stability. Mol Pharm 2024; 21:3017-3026. [PMID: 38758116 DOI: 10.1021/acs.molpharmaceut.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Sucrose and trehalose pharmaceutical excipients are employed to stabilize protein therapeutics in a dried state. The mechanism of therapeutic protein stabilization is dependent on the sugars being present in an amorphous solid-state. Colyophilization of sugars with high glass transition polymers, polyvinylpyrrolidone (PVP), and poly(vinylpyrrolidone vinyl acetate) (PVPVA), enhances amorphous sugar stability. This study investigates the stability of colyophilized sugar-polymer systems in the frozen solution state, dried state postlyophilization, and upon exposure to elevated humidity. Binary systems of sucrose or trehalose with PVP or PVPVA were lyophilized with sugar/polymer ratios ranging from 2:8 to 8:2. Frozen sugar-PVPVA solutions exhibited a higher glass transition temperature of the maximally freeze-concentrated amorphous phase (Tg') compared to sugar-PVP solutions, despite the glass transition temperature (Tg) of PVPVA being lower than PVP. Tg values of all colyophilized systems were in a similar temperature range irrespective of polymer type. Greater hydrogen bonding between sugars and PVP and the lower hygroscopicity of PVPVA influenced polymer antiplasticization effects and the plasticization effects of residual water. Plasticization due to water sorption was investigated in a dynamic vapor sorption humidity ramping experiment. Lyophilized sucrose systems exhibited increased amorphous stability compared to trehalose upon exposure to the humidity. Recrystallization of trehalose was observed and stabilized by polymer addition. Lower concentrations of PVP inhibited trehalose recrystallization compared to PVPVA. These stabilizing effects were attributed to the increased hydrogen bonding between trehalose and PVP compared to trehalose and PVPVA. Overall, the study demonstrated how differences in polymer hygroscopicity and hydrogen bonding with sugars influence the stability of colyophilized amorphous dispersions. These insights into excipient solid-state stability are relevant to the development of stabilized biopharmaceutical solid-state formulations.
Collapse
Affiliation(s)
- Claudia Giannachi
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
- School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
| | - Evin Allen
- School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
| | - Gráinne Egan
- School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
| | - Sonja Vucen
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
- School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
| | - Abina Crean
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
- School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
21
|
Chudzińska J, Wawrzyńczak A, Feliczak-Guzik A. Microneedles Based on a Biodegradable Polymer-Hyaluronic Acid. Polymers (Basel) 2024; 16:1396. [PMID: 38794589 PMCID: PMC11124840 DOI: 10.3390/polym16101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Transdermal transport can be challenging due to the difficulty in diffusing active substances through the outermost layer of the epidermis, as the primary function of the skin is to protect against the entry of exogenous compounds into the body. In addition, penetration of the epidermis for substances hydrophilic in nature and particles larger than 500 Da is highly limited due to the physiological properties and non-polar nature of its outermost layer, namely the stratum corneum. A solution to this problem can be the use of microneedles, which "bypass" the problematic epidermal layer by dispensing the active substance directly into the deeper layers of the skin. Microneedles can be obtained with various materials and come in different types. Of special interest are carriers based on biodegradable and biocompatible polymers, such as polysaccharides. Therefore, this paper reviews the latest literature on methods to obtain hyaluronic acid-based microneedles. It focuses on the current advancements in this field and consequently provides an opportunity to guide future research in this area.
Collapse
Affiliation(s)
| | - Agata Wawrzyńczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (J.C.); (A.F.-G.)
| | | |
Collapse
|
22
|
Zhuang ZM, Wang Y, Feng ZX, Lin XY, Wang ZC, Zhong XC, Guo K, Zhong YF, Fang QQ, Wu XJ, Chen J, Tan WQ. Targeting Diverse Wounds and Scars: Recent Innovative Bio-design of Microneedle Patch for Comprehensive Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306565. [PMID: 38037685 DOI: 10.1002/smll.202306565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/16/2023] [Indexed: 12/02/2023]
Abstract
Wounds and the subsequent formation of scars constitute a unified and complex phased process. Effective treatment is crucial; however, the diverse therapeutic approaches for different wounds and scars, as well as varying treatment needs at different stages, present significant challenges in selecting appropriate interventions. Microneedle patch (MNP), as a novel minimally invasive transdermal drug delivery system, has the potential for integrated and programmed treatment of various diseases and has shown promising applications in different types of wounds and scars. In this comprehensive review, the latest applications and biotechnological innovations of MNPs in these fields are thoroughly explored, summarizing their powerful abilities to accelerate healing, inhibit scar formation, and manage related symptoms. Moreover, potential applications in various scenarios are discussed. Additionally, the side effects, manufacturing processes, and material selection to explore the clinical translational potential are investigated. This groundwork can provide a theoretical basis and serve as a catalyst for future innovations in the pursuit of favorable therapeutic options for skin tissue regeneration.
Collapse
Affiliation(s)
- Ze-Ming Zhuang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Zi-Xuan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Xiao-Ying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Zheng-Cai Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Xin-Cao Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Kai Guo
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Yu-Fan Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Qing-Qing Fang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| | - Xiao-Jin Wu
- Department of Ultrasound in Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, P. R. China
| | - Jian Chen
- Department of Ultrasound in Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, P. R. China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, P. R. China
| |
Collapse
|
23
|
Yu Y, Gao Y, Zeng Y, Ge W, Tang C, Xie X, Liu L. Multifunctional hyaluronic acid/gelatin methacryloyl core-shell microneedle for comprehensively treating oral mucosal ulcers. Int J Biol Macromol 2024; 266:131221. [PMID: 38554926 DOI: 10.1016/j.ijbiomac.2024.131221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Oral ulceration is the most common oral mucosal disease. Oral mucosal ulcers are extremely painful, may interfere with eating and speaking, and potentially complicate systemic symptoms in severe cases. The humid and highly dynamic environment of the oral cavity makes local drug administration for treating oral mucosal ulcers challenging. To overcome these challenges, we designed and prepared a novel dissolving microneedle (MN) patch containing multiple drugs in a core-shell to promote oral ulcer healing. The MNs contained a methacrylate gelatin shell layer of basic fibroblast growth factor (bFGF), a hyaluronic acid (HA) core loaded with dexamethasone (DXMS), and zeolite imidazoline framework-8 (ZIF-8) encapsulated in the HA-based backplane. Progressive degradation of gelatin methacryloyl (GelMA) from the tip of the MN patch in the oral mucosa resulted in sustained bFGF release at the lesion site, significantly promoting cell migration, proliferation, and angiogenesis. Moreover, the rapid release of HA and, subsequently, DXMS inhibited inflammation, and the remaining MN backing after the tip dissolved behaved as a dressing, releasing ZIF-8 for its antimicrobial effects. This novel, multifunctional, transmucosal core-shell MN patch exhibited excellent anti-inflammatory, antimicrobial, and pro-healing effects in vivo and in vitro, suggesting that it can promote oral ulcer healing.
Collapse
Affiliation(s)
- Yi Yu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yijun Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yiyu Zeng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Wenhui Ge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical university, Wenzhou 325200, China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical university, Wenzhou 325200, China..
| |
Collapse
|
24
|
Lu G, Li B, Lin L, Li X, Ban J. Mechanical strength affecting the penetration in microneedles and PLGA nanoparticle-assisted drug delivery: Importance of preparation and formulation. Biomed Pharmacother 2024; 173:116339. [PMID: 38428314 DOI: 10.1016/j.biopha.2024.116339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
Microneedles (MNs) prepared from polymeric materials are painless and minimally invasive, safe and efficient, but they hindered by low mechanical strength and single diverse drug release pattern. Due to the distinctive mechanical strength and dimensions of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), the integration of nano-technology with microneedles can effectively improve penetration and delivery efficiency through the stratum corneum. We herein designed a simple paroxetine (PAX)-loaded PLGA nanoparticles-integrated dissolving microneedles system (PAX-NPs-DMNs), aiming to improve the bioavailability of PAX through the synergistic permeation-enhancing effect of dissolving microneedles (DMNs) and NPs. PAX-NPs-DMNs had a complete tips molding rate (Neff) of (94.06 ± 2.16) %, a 15×15 quadrangular-conical microneedle array and an overall fracture force of 301.10 N, which were improved nearly 0.50 times compared with the blank microneedles (HA-DMNs) and PAX microneedles (PAX-DMNs). PAX-NPs-DMNs could extend the release duration of PAX from 1 h to 24 h and the cumulative permeability per unit area (Qn) was 47.66 times and 7.37 times higher than the PAX and the PAX-DMNs groups. PAX-NPs-DMNs could be rapidly dissolved within 10 min without hindering skin healing or causing adverse reactions. This study confirmed that PAX-NPs-DMNs can effectively improve the bioavailability of PAX and the mechanical strength of DMNs, which can easily penetrate the skin to provide sustained and painless delivery without causing adverse effects, thus offering a more convenient and effective method for central nervous diseases.
Collapse
Affiliation(s)
- Geng Lu
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Baohua Li
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Luping Lin
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Xiaofang Li
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Junfeng Ban
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.
| |
Collapse
|
25
|
Meng F, Qiao X, Xin C, Ju X, He M. Recent progress of polymeric microneedle-assisted long-acting transdermal drug delivery. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12434. [PMID: 38571937 PMCID: PMC10987780 DOI: 10.3389/jpps.2024.12434] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Microneedle (MN)-assisted drug delivery technology has gained increasing attention over the past two decades. Its advantages of self-management and being minimally invasive could allow this technology to be an alternative to hypodermic needles. MNs can penetrate the stratum corneum and deliver active ingredients to the body through the dermal tissue in a controlled and sustained release. Long-acting polymeric MNs can reduce administration frequency to improve patient compliance and therapeutic outcomes, especially in the management of chronic diseases. In addition, long-acting MNs could avoid gastrointestinal reactions and reduce side effects, which has potential value for clinical application. In this paper, advances in design strategies and applications of long-acting polymeric MNs are reviewed. We also discuss the challenges in scale manufacture and regulations of polymeric MN systems. These two aspects will accelerate the effective clinical translation of MN products.
Collapse
Affiliation(s)
- Fanda Meng
- College of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xinyu Qiao
- College of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chenglong Xin
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xiaoli Ju
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China
| | - Meilin He
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China
| |
Collapse
|
26
|
Kim E, Shin J, Ferrari A, Huang S, An E, Han D, Khan MS, Kenniston TW, Cassaniti I, Baldanti F, Jeong D, Gambotto A. Fourth dose of microneedle array patch of SARS-CoV-2 S1 protein subunit vaccine elicits robust long-lasting humoral responses in mice. Int Immunopharmacol 2024; 129:111569. [PMID: 38340419 PMCID: PMC11939117 DOI: 10.1016/j.intimp.2024.111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
The COVID-19 pandemic has underscored the pressing need for safe and effective booster vaccines, particularly in considering the emergence of new SARS-CoV-2 variants and addressing vaccine distribution inequalities. Dissolving microneedle array patches (MAP) offer a promising delivery method, enhancing immunogenicity and improving accessibility through the skin's immune potential. In this study, we evaluated a microneedle array patch-based S1 subunit protein COVID-19 vaccine candidate, which comprised a bivalent formulation targeting the Wuhan and Beta variant alongside a monovalent Delta variant spike proteins in a murine model. Notably, the second boost of homologous bivalent MAP-S1(WU + Beta) induced a 15.7-fold increase in IgG endpoint titer, while the third boost of heterologous MAP-S1RS09Delta yielded a more modest 1.6-fold increase. Importantly, this study demonstrated that the administration of four doses of the MAP vaccine induced robust and long-lasting immune responses, persisting for at least 80 weeks. These immune responses encompassed various IgG isotypes and remained statistically significant for one year. Furthermore, neutralizing antibodies against multiple SARS-CoV-2 variants were generated, with comparable responses observed against the Omicron variant. Overall, these findings emphasize the potential of MAP-based vaccines as a promising strategy to combat the evolving landscape of COVID-19 and to deliver a safe and effective booster vaccine worldwide.
Collapse
Affiliation(s)
- Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Juyeop Shin
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eunjin An
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Donghoon Han
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Muhammad S Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Thomas W Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Dohyeon Jeong
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA; Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
27
|
Kenchegowda M, Hani U, Al Fatease A, Haider N, Ramesh KVRNS, Talath S, Gangadharappa HV, Kiran Raj G, Padmanabha SH, Osmani RAM. Tiny titans- unravelling the potential of polysaccharides and proteins based dissolving microneedles in drug delivery and theranostics: A comprehensive review. Int J Biol Macromol 2023; 253:127172. [PMID: 37793514 DOI: 10.1016/j.ijbiomac.2023.127172] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
In recent years, microneedles (MNs) have emerged as a promising alternative to traditional drug delivery systems in transdermal drug delivery. The use of MNs has demonstrated significant potential in improving patient acceptance and convenience while avoiding the invasiveness of traditional injections. Dissolving, solid, hollow, coated, and hydrogel microneedles are among the various types studied for drug delivery. Dissolving microneedles (DMNs), in particular, have gained attention for their safety, painlessness, patient convenience, and high delivery efficiency. This comprehensive review primarily focuses on different types of microneedles, fabrication methods, and materials used in fabrication of DMNs such as hyaluronic acid, chitosan, alginate, gelatin, collagen, silk fibroin, albumin, cellulose and starch, to list a few. The review also provides an exhaustive discussion on the applications of DMNs, including the delivery of vaccines, cosmetic agents, contraceptives, hormone and genes, and other therapeutic applications like for treating cancer, skin diseases, and diabetes, among others, are covered in this review. Additionally, this review highlights some of the DMN systems that are presently undergoing clinical trials. Finally, the review discusses current advances and trends in DMNs, as well as future prospective directions for this ground-breaking technology in drug delivery.
Collapse
Affiliation(s)
- Madhuchandra Kenchegowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Hosahalli V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - G Kiran Raj
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Sharath Honganoor Padmanabha
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India.
| |
Collapse
|
28
|
Nainggolan ADC, Anjani QK, Hartrianti P, Donnelly RF, Kurniawan A, Ramadon D. Microneedle-Mediated Transdermal Delivery of Genetic Materials, Stem Cells, and Secretome: An Update and Progression. Pharmaceutics 2023; 15:2767. [PMID: 38140107 PMCID: PMC10747930 DOI: 10.3390/pharmaceutics15122767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Medical practitioners commonly use oral and parenteral dosage forms to administer drugs to patients. However, these forms have certain drawbacks, particularly concerning patients' comfort and compliance. Transdermal drug delivery presents a promising solution to address these issues. Nevertheless, the stratum corneum, as the outermost skin layer, can impede drug permeation, especially for macromolecules, genetic materials, stem cells, and secretome. Microneedles, a dosage form for transdermal delivery, offer an alternative approach, particularly for biopharmaceutical products. In this review, the authors will examine the latest research on microneedle formulations designed to deliver genetic materials, stem cells, and their derivatives. Numerous studies have explored different types of microneedles and evaluated their ability to deliver these products using preclinical models. Some of these investigations have compared microneedles with conventional dosage forms, demonstrating their significant potential for advancing the development of biotherapeutics in the future.
Collapse
Affiliation(s)
| | - Qonita Kurnia Anjani
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Q.K.A.); (R.F.D.)
| | - Pietradewi Hartrianti
- School of Life Sciences, Indonesia International Institute of Life Sciences, Jakarta 13210, Indonesia;
| | - Ryan F. Donnelly
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Q.K.A.); (R.F.D.)
| | - Arief Kurniawan
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia; (A.D.C.N.); (A.K.)
| | - Delly Ramadon
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia; (A.D.C.N.); (A.K.)
| |
Collapse
|
29
|
Sartawi Z, Blackshields C, Ariamanesh A, Farag FF, Griffin B, Crean A, Devine K, Elkhashab M, Aldejohann AM, Kurzai O, Faisal W. Glass Microneedles: A Case Study for Regulatory Approval Using a Quality by Design Approach. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305834. [PMID: 37950607 DOI: 10.1002/adma.202305834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/25/2023] [Indexed: 11/12/2023]
Abstract
In this paper, a roadmap is provided for the regulatory approval of one of the exciting and dynamic drug delivery fields, microneedles, by using a Quality by Design approach to pharmaceutical product development. In this regard, a quality target product profile (QTPP) and the critical quality attributes (CQA) of microneedles are identified. A case study of the recently patented method of fabricating glass microneedles entirely from a therapeutic agent, thus eliminating the requirement for additional excipients is discussed. The glass microneedle, ArrayPatch, is a propriety wearable device with platform potential consisting of an array of sharp, but painless, dissolvable microneedles manufactured with 100% drug. The microneedles penetrate the skin on application and dissolve to deliver a locally effective dose. The in vitro characterization of the microneedle CQAs under WHO-guided stability conditions will be described to assess the manufacturing readiness of ArrayPatch. A live technical video is also provided, presenting a unique procedure of jugular vein cannulation through the ear vein of a pig animal model to study the in vivo pharmacokinetics of ArrayPatch compared to standard-of-care marketed products.
Collapse
Affiliation(s)
- Ziad Sartawi
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
| | | | - Arefe Ariamanesh
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
| | - Fatma Fawzy Farag
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
- Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Brendan Griffin
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
| | - Abina Crean
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
| | - Ken Devine
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
| | - Mohamed Elkhashab
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
| | - Alexander Maximilian Aldejohann
- Institute for Hygiene and Microbiology, University of Wuerzburg, 97080, Wuerzburg, Germany
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745, Jena, Germany
| | - Oliver Kurzai
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745, Jena, Germany
| | - Waleed Faisal
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
| |
Collapse
|
30
|
Andranilla RK, Anjani QK, Hartrianti P, Donnelly RF, Ramadon D. Fabrication of dissolving microneedles for transdermal delivery of protein and peptide drugs: polymer materials and solvent casting micromoulding method. Pharm Dev Technol 2023; 28:1016-1031. [PMID: 37987717 DOI: 10.1080/10837450.2023.2285498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Proteins and peptides are rapidly developing pharmaceutical products and are expected to continue growing in the future. However, due to their nature, their delivery is often limited to injection, with drawbacks such as pain and needle waste. To overcome these limitations, microneedles technology is developed to deliver protein and peptide drugs through the skin. One type of microneedles, known as dissolving microneedles, has been extensively studied for delivering various proteins and peptides, including ovalbumin, insulin, bovine serum albumin, polymyxin B, vancomycin, and bevacizumab. This article discusses polymer materials used for fabricating dissolving microneedles, which are poly(vinylpyrrolidone), hyaluronic acid, poly(vinyl alcohol), carboxymethylcellulose, GantrezTM, as well as other biopolymers like pullulan and ulvan. The paper is focused solely on solvent casting micromoulding method for fabricating dissolving microneedles containing proteins and peptides, which will be divided into one-step and two-step casting micromoulding. Additionally, future considerations in the market plan for dissolving microneedles are discussed in this article.
Collapse
Affiliation(s)
| | - Qonita Kurnia Anjani
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Pietradewi Hartrianti
- Department of Pharmacy, School of Life Sciences, Indonesia International Institute for Life Sciences, East Jakarta, DKI Jakarta, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Delly Ramadon
- Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| |
Collapse
|
31
|
Shriky B, Babenko M, Whiteside BR. Dissolving and Swelling Hydrogel-Based Microneedles: An Overview of Their Materials, Fabrication, Characterization Methods, and Challenges. Gels 2023; 9:806. [PMID: 37888379 PMCID: PMC10606778 DOI: 10.3390/gels9100806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Polymeric hydrogels are a complex class of materials with one common feature-the ability to form three-dimensional networks capable of imbibing large amounts of water or biological fluids without being dissolved, acting as self-sustained containers for various purposes, including pharmaceutical and biomedical applications. Transdermal pharmaceutical microneedles are a pain-free drug delivery system that continues on the path to widespread adoption-regulatory guidelines are on the horizon, and investments in the field continue to grow annually. Recently, hydrogels have generated interest in the field of transdermal microneedles due to their tunable properties, allowing them to be exploited as delivery systems and extraction tools. As hydrogel microneedles are a new emerging technology, their fabrication faces various challenges that must be resolved for them to redeem themselves as a viable pharmaceutical option. This article discusses hydrogel microneedles from a material perspective, regardless of their mechanism of action. It cites the recent advances in their formulation, presents relevant fabrication and characterization methods, and discusses manufacturing and regulatory challenges facing these emerging technologies before their approval.
Collapse
Affiliation(s)
- Bana Shriky
- Faculty of Engineering and Digital Technologies, University of Bradford, Bradford BD7 1DP, UK;
| | | | - Ben R. Whiteside
- Faculty of Engineering and Digital Technologies, University of Bradford, Bradford BD7 1DP, UK;
| |
Collapse
|
32
|
Wang H, Xu J, Xiang L. Microneedle-Mediated Transcutaneous Immunization: Potential in Nucleic Acid Vaccination. Adv Healthc Mater 2023; 12:e2300339. [PMID: 37115817 DOI: 10.1002/adhm.202300339] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Efforts aimed at exploring economical and efficient vaccination have taken center stage to combat frequent epidemics worldwide. Various vaccines have been developed for infectious diseases, among which nucleic acid vaccines have attracted much attention from researchers due to their design flexibility and wide application. However, the lack of an efficient delivery system considerably limits the clinical translation of nucleic acid vaccines. As mass vaccinations via syringes are limited by low patient compliance and high costs, microneedles (MNs), which can achieve painless, cost-effective, and efficient drug delivery, can provide an ideal vaccination strategy. The MNs can break through the stratum corneum barrier in the skin and deliver vaccines to the immune cell-rich epidermis and dermis. In addition, the feasibility of MN-mediated vaccination is demonstrated in both preclinical and clinical studies and has tremendous potential for the delivery of nucleic acid vaccines. In this work, the current status of research on MN vaccines is reviewed. Moreover, the improvements of MN-mediated nucleic acid vaccination are summarized and the challenges of its clinical translation in the future are discussed.
Collapse
Affiliation(s)
- Haochen Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Junhua Xu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
33
|
Jiang X, Chen P, Niu W, Fang R, Chen H, An Y, Wang W, Jiang C, Ye J. Preparation and evaluation of dissolving tofacitinib microneedles for effective management of rheumatoid arthritis. Eur J Pharm Sci 2023; 188:106518. [PMID: 37419290 DOI: 10.1016/j.ejps.2023.106518] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/05/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Dissolving microneedles have become a focal point in transdermal drug delivery. They have the advantages of painless, rapid drug delivery and high drug utilization. The purpose of this study was to evaluate the efficacy of Tofacitinib citrate microneedles in arthritis treatment, assess the dose-effect relationship, and determine the cumulative penetration during percutaneous injection. In this study, block copolymer was utilized to prepare the dissolving microneedles. The microneedles were characterized through skin permeation tests, dissolution tests, treatment effect evaluations, and Western blot experiments. In vivo dissolution experiments revealed that the soluble microneedles completely dissolved within 2.5 min, while in vitro skin permeation experiments demonstrated the highest unit area of skin permeation of the microneedles reached 2118.13 mg/cm2. The inhibition of Tofacitinib microneedle on joint swelling in rats with Rheumatoid arthritis was better than Ketoprofen and close to that of oral Tofacitinib. Western-blot experiment comfirmed the Tofacitinib microneedle's inhibitory effect on the JAK-STAT3 pathway in rats with Rheumatoid arthritis. In conclusion, Tofacitinib microneedles effectively inhibited arthritis in rats, demonstrating potential for Rheumatoid arthritis treatment.
Collapse
Affiliation(s)
- Xiumei Jiang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China
| | - Pu Chen
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wenxin Niu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China
| | - Renhua Fang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China
| | - Hang Chen
- Collaborative Innovation Center of Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yue An
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China
| | - Weiqing Wang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China
| | - Changzhao Jiang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China.
| | - Jincui Ye
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China.
| |
Collapse
|
34
|
Zhang J, Li H, Albakr L, Zhang Y, Lu A, Chen W, Shao T, Zhu L, Yuan H, Yang G, Wheate NJ, Kang L, Wu C. Microneedle-enabled therapeutics delivery and biosensing in clinical trials. J Control Release 2023; 360:687-704. [PMID: 37442203 DOI: 10.1016/j.jconrel.2023.07.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Microneedles (MNs) are micron-sized protrusions attached to a range of devices that are used in therapeutic delivery and diagnosis. Because MNs can be self-applied, are painless, and can carry multiple therapeutic agents, they have received extensive attention, and have been widely investigated, for local and systemic therapy. Many researchers are currently working to extend the use of MNs to clinical applications. In this review, we provide an update and analysis on MN-based clinical trials since their inception in 2007. The MNs in clinical trials are classified into five types based on their appearance and properties, including: hollow MNs, MN patches, radiofrequency MNs, MN rollers, and other MNs. The various aspects of MN trials are summarized, such as MN types, clinical trial time, and trial regions. This review aims to present an overview of MN development and provide insights for future research in this field. To our knowledge, this is the first review focused on MN clinical trials which showcases the latest applications of this advanced technology in medicine.
Collapse
Affiliation(s)
- Junying Zhang
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Hailiang Li
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Lamyaa Albakr
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, NSW 2006, Australia; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11454, Saudi Arabia
| | - Yiwen Zhang
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Aiyu Lu
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Wenlin Chen
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Shao
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Luying Zhu
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Yuan
- KPC Pharmaceuticals Inc., Kunming 650106, China
| | - Gongjun Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Nial J Wheate
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, NSW 2006, Australia
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, NSW 2006, Australia.
| | - Chungyong Wu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
35
|
Tarar C, Aydın E, Yetisen AK, Tasoglu S. Machine Learning-Enabled Optimization of Interstitial Fluid Collection via a Sweeping Microneedle Design. ACS OMEGA 2023; 8:20968-20978. [PMID: 37332784 PMCID: PMC10268608 DOI: 10.1021/acsomega.3c01744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
Microneedles (MNs) allow for biological fluid sampling and drug delivery toward the development of minimally invasive diagnostics and treatment in medicine. MNs have been fabricated based on empirical data such as mechanical testing, and their physical parameters have been optimized through the trial-and-error method. While these methods showed adequate results, the performance of MNs can be enhanced by analyzing a large data set of parameters and their respective performance using artificial intelligence. In this study, finite element methods (FEMs) and machine learning (ML) models were integrated to determine the optimal physical parameters for a MN design in order to maximize the amount of collected fluid. The fluid behavior in a MN patch is simulated with several different physical and geometrical parameters using FEM, and the resulting data set is used as the input for ML algorithms including multiple linear regression, random forest regression, support vector regression, and neural networks. Decision tree regression (DTR) yielded the best prediction of optimal parameters. ML modeling methods can be utilized to optimize the geometrical design parameters of MNs in wearable devices for application in point-of-care diagnostics and targeted drug delivery.
Collapse
Affiliation(s)
- Ceren Tarar
- Department
of Biomedical Sciences and Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
| | - Erdal Aydın
- Department
of Chemical and Biological Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
- TUPRAS
Energy Center (KUTEM), Koç University, Istanbul 34450, Turkey
| | - Ali K. Yetisen
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Savas Tasoglu
- Koc
University Is Bank Artificial Intelligence Lab (KUIS AILab), Koç University, Sariyer, Istanbul 34450, Turkey
- Koç
University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
- Boğaziçi
Institute of Biomedical Engineering, Boğaziçi
University, Çengelköy, Istanbul 34684, Turkey
- Department
of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
- Koç
University Arçelik Research Center for Creative Industries
(KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
- Physical
Intelligence Department, Max Planck Institute
for Intelligent Systems, 70569 Stuttgart, Germany
| |
Collapse
|
36
|
Wang M, Li X, Du W, Sun M, Ling G, Zhang P. Microneedle-mediated treatment for superficial tumors by combining multiple strategies. Drug Deliv Transl Res 2023; 13:1600-1620. [PMID: 36735217 PMCID: PMC9897165 DOI: 10.1007/s13346-023-01297-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 02/04/2023]
Abstract
Superficial tumors are still challenging to overcome due to the high risk and toxicity of surgery and conventional chemotherapy. Microneedles (MNs) are widely used in the treatment of superficial skin tumors (SST) due to the high penetration rate of the stratum corneum (SC), excellent biocompatibility, simple preparation process, high patient compliance, and minimal invasion. Most importantly, MNs can provide not only efficient and rarely painful delivery carriers, but also combine multi-model strategies with photothermal therapy (PTT), immunotherapy, and gene therapy for synergistic efficacy. To promote an in-depth understanding of their superiorities, this paper systematically summarized the latest application progress of MNs in the treatment of SST by delivering various types of photosensitizers, immune signal molecules, genes, and chemotherapy drugs. Just as important, the advantages, limitations, and drug release mechanisms of MNs based on different materials are introduced in the paper. In addition, the application of MN technology to clinical practice is the ultimate goal of all the work. The obstacles and possible difficulties in expanding the production of MNs and achieving clinical transformation are briefly discussed in this paper. To be anticipated, our work will provide new insights into the precise and rarely painful treatment of SST in the future.
Collapse
Affiliation(s)
- Meng Wang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaodan Li
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Wenzhen Du
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Minge Sun
- Shenyang Narnia Biomedical Technology Company, Ltd, Shenyang, 110167, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
37
|
Choi Y, Lee GS, Li S, Lee JW, Mixson-Hayden T, Woo J, Xia D, Prausnitz MR, Kamili S, Purdy MA, Tohme RA. Hepatitis B vaccine delivered by microneedle patch: Immunogenicity in mice and rhesus macaques. Vaccine 2023; 41:3663-3672. [PMID: 37179166 PMCID: PMC10961677 DOI: 10.1016/j.vaccine.2023.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Vaccination against hepatitis B using a dissolving microneedle patch (dMNP) could increase access to the birth dose by reducing expertise needed for vaccine administration, refrigerated storage, and safe disposal of biohazardous sharps waste. In this study, we developed a dMNP to administer hepatitis B surface antigen (HBsAg) adjuvant-free monovalent vaccine (AFV) at doses of 5 µg, 10 µg, and 20 µg, and compared its immunogenicity to vaccination with 10 µg of standard monovalent HBsAg delivered by intramuscular (IM) injection either in an AFV format or as aluminum-adjuvanted vaccine (AAV). Vaccination was performed on a three dose schedule of 0, 3, and 9 weeks in mice and 0, 4, and 24 weeks in rhesus macaques. Vaccination by dMNP induced protective levels of anti-HBs antibody responses (≥10 mIU/ml) in mice and rhesus macaques at all three HBsAg doses studied. HBsAg delivered by dMNP induced higher anti-HBsAg antibody (anti-HBs) responses than the 10 µg IM AFV, but lower responses than 10 µg IM AAV, in mice and rhesus macaques. HBsAg-specific CD4+ and CD8+ T cell responses were detected in all vaccine groups. Furthermore, we analyzed differential gene expression profiles related to each vaccine delivery group and found that tissue stress, T cell receptor signaling, and NFκB signaling pathways were activated in all groups. These results suggest that HBsAg delivered by dMNP, IM AFV, and IM AAV have similar signaling pathways to induce innate and adaptive immune responses. We further demonstrated that dMNP was stable at room temperature (20 °C-25 °C) for 6 months, maintaining 67 ± 6 % HBsAg potency. This study provides evidence that delivery of 10 µg (birth dose) AFV by dMNP induced protective levels of antibody responses in mice and rhesus macaques. The dMNPs developed in this study could be used to improve hepatitis B birth dose vaccination coverage levels in resource limited regions to achieve and maintain hepatitis B elimination.
Collapse
Affiliation(s)
- Youkyung Choi
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
| | - Grace Sanghee Lee
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
| | - Song Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Jeong Woo Lee
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Tonya Mixson-Hayden
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
| | - Jungreem Woo
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
| | - Dengning Xia
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Saleem Kamili
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
| | - Michael A Purdy
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
| | - Rania A Tohme
- Global Immunization Division, Centers for Global Health, CDC, Atlanta, GA, USA.
| |
Collapse
|
38
|
Qu X, Guo X, Zhu T, Zhang Z, Wang W, Hao Y. Microneedle patches containing mesoporous polydopamine nanoparticles loaded with triamcinolone acetonide for the treatment of oral mucositis. Front Bioeng Biotechnol 2023; 11:1203709. [PMID: 37214298 PMCID: PMC10196213 DOI: 10.3389/fbioe.2023.1203709] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Oral mucositis (OM) is the most common disease of the oral mucosa, which affects people's daily production and life. Triamcinolone ointment is the common clinical drug for OM treatment. However, the hydrophobic properties of triamcinolone acetonide (TA) and the complex microenvironment of the oral cavity led to its low bioavailability and unstable therapeutic effects on ulcer wounds. Herein, dissolving microneedle patches (MNs) composed of mesoporous polydopamine nanoparticles (MPDA) loaded with TA (TA@MPDA), sodium hyaluronic acid (HA), and Bletilla striata polysaccharide (BSP) are prepared as the transmucosal delivery system. The prepared TA@MPDA-HA/BSP MNs exhibit well-arranged microarrays, high mechanical strength and fast solubility (<3 min) properties. In addition, the hybrid structure improves the biocompatibility of TA@MPDA and expedites oral ulcer healing in the SD rat model through the synergistic anti-inflammatory and pro-healing effects of microneedle ingredients (hormones, MPDA and Chinese herbs extracts), with 90% less amount of TA compared with Ning Zhi Zhu®. TA@MPDA-HA/BSP MNs are shown to be their great potential as novel ulcer dressings for OM management.
Collapse
Affiliation(s)
- Xiaoying Qu
- Department of Stomatology, School of Stomatology of Weifang Medical University, Weifang, China
| | - Xiaoli Guo
- School of Stomatology of Qingdao University, Qingdao, China
| | - Tingting Zhu
- School of Stomatology of Qingdao University, Qingdao, China
| | - Zhe Zhang
- School of Stomatology of Qingdao University, Qingdao, China
| | | | | |
Collapse
|
39
|
Arora G, Arora S. Medical Aesthetics - Current Trends and a Review of Its Applications. Indian Dermatol Online J 2023; 14:309-319. [PMID: 37266088 PMCID: PMC10231726 DOI: 10.4103/idoj.idoj_264_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 06/03/2023] Open
Abstract
Medical aesthetics is the use of a procedure or product for a therapeutic indication which is conventionally used for aesthetics. Several medical conditions are now being treated with products, procedures or equipment that are conventionally used for aesthetic indications. This has widened the scope of treatment modalities available for dermatologists to treat various indications that fall outside the purview of aesthetic dermatology. The authors present aesthetic treatment modalities and procedures which can be used for medical aesthetics, their present-day status and usefulness in field of therapeutics with a review of published literature from "Medline" (via "PubMed"), "Cochrane," the Virtual Health Library, and Google Scholar.
Collapse
Affiliation(s)
- Gulhima Arora
- Department of Dermatology Consultant Dermatologist, Mehektagul Dermaclinic, New Delhi, India
| | - Sandeep Arora
- Department of Dermatology, Army College of Medical Sciences, Delhi Cantt, India
| |
Collapse
|
40
|
Scarnà T, Menozzi-Arnaud M, Friede M, DeMarco K, Plopper G, Hamer M, Chakrabarti A, Gilbert PA, Jarrahian C, Mistilis J, Hesselink R, Gandrup-Marino K, Amorij JP, Giersing B. Accelerating the development of vaccine microarray patches for epidemic response and equitable immunization coverage requires investment in microarray patch manufacturing facilities. Expert Opin Drug Deliv 2023; 20:315-322. [PMID: 36649573 DOI: 10.1080/17425247.2023.2168641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION There is a need for investment in manufacturing for vaccine microarray patches (vMAPs) to accelerate vMAP development and access. vMAPs could transform vaccines deployment and reach to everyone, everywhere. AREAS COVERED We outline vMAPs' potential benefits for epidemic preparedness and for outreach in low- and lower-middle-income countries (LMICs), share lessons learned from pandemic response, and highlight that investment in manufacturing-at-risk could accelerate vMAP development. EXPERT OPINION Pilot manufacturing capabilities are needed to produce clinical trial material and enable emergency response. Funding vMAP manufacturing scale-up in parallel to clinical proof-of-concept studies could accelerate vMAP approval and availability. Incentives could mitigate the risks of establishing multi-vMAP manufacturing facilities early.
Collapse
Affiliation(s)
| | | | | | - Kerry DeMarco
- Biomedical Advanced Research and Development Authority, Seattle, Washington DC, USA
| | - George Plopper
- Biomedical Advanced Research and Development Authority, Seattle, Washington DC, USA
| | - Melinda Hamer
- Congressionally Directed Medical Research Programs, Fort Detrick, Maryland, USA.,Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Seattle, Washington DC, USA.,Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD, USA
| | | | | | | | | | - Renske Hesselink
- Coalition for Epidemics Preparedness Innovations (CEPI), Oslo, Norway
| | | | | | | |
Collapse
|
41
|
Parhi R. Recent advances in 3D printed microneedles and their skin delivery application in the treatment of various diseases. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
42
|
Choo JJY, McMillan CLD, Young PR, Muller DA. Microarray patches: scratching the surface of vaccine delivery. Expert Rev Vaccines 2023; 22:937-955. [PMID: 37846657 DOI: 10.1080/14760584.2023.2270598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Microneedles are emerging as a promising technology for vaccine delivery, with numerous advantages over traditional needle and syringe methods. Preclinical studies have demonstrated the effectiveness of MAPs in inducing robust immune responses over traditional needle and syringe methods, with extensive studies using vaccines targeted against different pathogens in various animal models. Critically, the clinical trials have demonstrated safety, immunogenicity, and patient acceptance for MAP-based vaccines against influenza, measles, rubella, and SARS-CoV-2. AREAS COVERED This review provides a comprehensive overview of the different types of microarray patches (MAPs) and analyses of their applications in preclinical and clinical vaccine delivery settings. This review also covers additional considerations for microneedle-based vaccination, including adjuvants that are compatible with MAPs, patient safety and factors for global vaccination campaigns. EXPERT OPINION MAP vaccine delivery can potentially be a game-changer for vaccine distribution and coverage in both high-income and low- and middle-income countries. For MAPs to reach this full potential, many critical hurdles must be overcome, such as large-scale production, regulatory compliance, and adoption by global health authorities. However, given the considerable strides made in recent years by MAP developers, it may be possible to see the first MAP-based vaccines in use within the next 5 years.
Collapse
Affiliation(s)
- Jovin J Y Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
43
|
Skin Vaccination with Ebola Virus Glycoprotein Using a Polyphosphazene-Based Microneedle Patch Protects Mice against Lethal Challenge. J Funct Biomater 2022; 14:jfb14010016. [PMID: 36662063 PMCID: PMC9860647 DOI: 10.3390/jfb14010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Ebolavirus (EBOV) infection in humans is a severe and often fatal disease, which demands effective interventional strategies for its prevention and treatment. The available vaccines, which are authorized under exceptional circumstances, use viral vector platforms and have serious disadvantages, such as difficulties in adapting to new virus variants, reliance on cold chain supply networks, and administration by hypodermic injection. Microneedle (MN) patches, which are made of an array of micron-scale, solid needles that painlessly penetrate into the upper layers of the skin and dissolve to deliver vaccines intradermally, simplify vaccination and can thereby increase vaccine access, especially in resource-constrained or emergency settings. The present study describes a novel MN technology, which combines EBOV glycoprotein (GP) antigen with a polyphosphazene-based immunoadjuvant and vaccine delivery system (poly[di(carboxylatophenoxy)phosphazene], PCPP). The protein-stabilizing effect of PCPP in the microfabrication process enabled preparation of a dissolvable EBOV GP MN patch vaccine with superior antigenicity compared to a non-polyphosphazene polymer-based analog. Intradermal immunization of mice with polyphosphazene-based MN patches induced strong, long-lasting antibody responses against EBOV GP, which was comparable to intramuscular injection. Moreover, mice vaccinated with the MN patches were completely protected against a lethal challenge using mouse-adapted EBOV and had no histologic lesions associated with ebolavirus disease.
Collapse
|
44
|
Kang D, Ge Q, Natabou MA, Xu W, Liu X, Xu B, Bao X, Kalia YN, Chen Y. Bolus delivery of palonosetron through skin by tip-loaded dissolving microneedles with short-duration iontophoresis: A potential strategy to rapidly relieve emesis associated with chemotherapy. Int J Pharm 2022; 628:122294. [DOI: 10.1016/j.ijpharm.2022.122294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/30/2022]
|
45
|
Recent advances in microneedle designs and their applications in drug and cosmeceutical delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Sartawi Z, Blackshields C, Faisal W. Dissolving microneedles: Applications and growing therapeutic potential. J Control Release 2022; 348:186-205. [PMID: 35662577 DOI: 10.1016/j.jconrel.2022.05.045] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
Abstract
Microneedles are a rapidly developing method for the transdermal delivery of therapeutic compounds. All types of microneedles, whether solid, hollow, coated, or dissolving function by penetrating the stratum corneum layer of the skin producing a microchannel through which therapeutic agents may be delivered. To date, coated and hollow microneedles have been the most successful, despite suffering from issues such as poor drug loading capabilities and blocked pores. Dissolving microneedles, on the other hand, have superior drug loading as well as other positive attributes that make it an ideal delivery system, including simple methods of fabrication and disposal, and abundantly available materials. Indeed, dissolvable microneedles can even be fabricated entirely from the therapeutic agent itself thus eliminating the requirement for additional excipients. This focused review presents the recent developments and trends of dissolving microneedles as well as potential future directions. The advantages, and disadvantages of dissolving microneedles as well as fabrication materials and methods are discussed. The potential applications of dissolving microneedles as a drug delivery system in different therapeutic areas in both research literature and clinical trials is highlighted. Applications including the delivery of cosmetics, vaccine delivery, diagnosis and monitoring, cancer, pain and inflammation, diabetes, hair and scalp disorders and inflammatory skin diseases are presented. The current trends observed in the microneedle landscape with particular emphasis on contemporary clinical trials and commercial successes as well as barriers impeding microneedle development and commercialisation are also discussed.
Collapse
Affiliation(s)
- Ziad Sartawi
- School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Waleed Faisal
- School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
47
|
Hassan J, Haigh C, Ahmed T, Uddin MJ, Das DB. Potential of Microneedle Systems for COVID-19 Vaccination: Current Trends and Challenges. Pharmaceutics 2022; 14:1066. [PMID: 35631652 PMCID: PMC9144974 DOI: 10.3390/pharmaceutics14051066] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
To prevent the coronavirus disease 2019 (COVID-19) pandemic and aid restoration to prepandemic normality, global mass vaccination is urgently needed. Inducing herd immunity through mass vaccination has proven to be a highly effective strategy for preventing the spread of many infectious diseases, which protects the most vulnerable population groups that are unable to develop immunity, such as people with immunodeficiencies or weakened immune systems due to underlying medical or debilitating conditions. In achieving global outreach, the maintenance of the vaccine potency, transportation, and needle waste generation become major issues. Moreover, needle phobia and vaccine hesitancy act as hurdles to successful mass vaccination. The use of dissolvable microneedles for COVID-19 vaccination could act as a major paradigm shift in attaining the desired goal to vaccinate billions in the shortest time possible. In addressing these points, we discuss the potential of the use of dissolvable microneedles for COVID-19 vaccination based on the current literature.
Collapse
Affiliation(s)
- Jasmin Hassan
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (T.A.)
| | - Charlotte Haigh
- Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK;
| | - Tanvir Ahmed
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (T.A.)
| | - Md Jasim Uddin
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (T.A.)
- Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK;
| |
Collapse
|