1
|
Han J, Wu B, Wang D. The potential efficacy of sesquiterpenes and their derivatives in treating rheumatoid arthritis: A systematic review. Int Immunopharmacol 2024; 141:112946. [PMID: 39159562 DOI: 10.1016/j.intimp.2024.112946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder primarily targeting peripheral joints. The global prevalence of RA is increasing, posing a significant challenge in patient care management. Despite therapeutic advancements, their inherent limitations highlight the need for further research on safer treatment interventions. Among potential candidates, sesquiterpenes, a subclass of plant secondary metabolites composed of three isoprene units, have exhibited remarkable efficacy in treating various inflammatory disorders, including RA. In this systematic review, we summarized the treatment evidence of sesquiterpenes and their derivatives on RA. Specific major sesquiterpenoids have been discussed in detail, as well as the possible mechanisms by which cells and chemical messengers are involved in treating RA. Our review indicated that sesquiterpenes are potential novel, bioactive compounds for RA prevention and treatment strategies.
Collapse
Affiliation(s)
- Jing Han
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bingrong Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dongsheng Wang
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
2
|
Perveen S, Hamedi A, Pasdaran A, Heidari R, Azam MSU, Tabassum S, Mehmood R, Peng J. Anti-inflammatory potential of some eudesmanolide and guaianolide sesquiterpenes. Inflammopharmacology 2024; 32:1489-1498. [PMID: 37962696 DOI: 10.1007/s10787-023-01375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Ten sesquiterpene lactones isolated from Anvillea garcinii (Burm.f.) DC ethanolic extract were assessed for their anti-inflammatory potential by myeloperoxidase (MPO) activity assignment, and mice paw swelling model. 3α,4α-10β-trihydroxy-8α-acetyloxyguaian-12,6α-olide (1), epi-vulgarin (3), 9a-hydroxyparthenolide (4), garcinamine C (7), garcinamine D (8), garcinamine E (9), and 4, 9-dihydroxyguaian-10(14)-en-12-olide (10) showed explicit anti-inflammatory activity in rodent paw edema and MPO assignment. The findings of this study showed that the α-methylene γ-lactone moiety does not always guarantee an anti-inflammatory effect, but the presence of proline at the C3 of the lactone ring improves the binding of sesquiterpene lactones with MPO isoenzymes, resulting in a more potent inhibition.
Collapse
Affiliation(s)
- Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD, 21251, USA.
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Muhammad Shafiq Ul Azam
- Department of Radiology, Yeovil district hospital Somerset foundation trust (NHS), BA21 4AT,, Yeovil, Somerset, UK
| | - Sobia Tabassum
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Pakistan
| | - Rashad Mehmood
- Department of Chemistry, Division of Science and Technology, University of Education, Township, Lahore, Pakistan
| | - Jiangnan Peng
- Department of Chemistry, School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD, 21251, USA
| |
Collapse
|
3
|
Han L, Zhao D, Li Y, Jin J, El-Kott AF, Al-Saeed FA, Eldib AM. Assessment of the Anti-Breast Cancer Effects of Urolithin with Molecular Docking Studies in the In Vitro Condition: Introducing a Novel Chemotherapeutic Drug. Mol Biotechnol 2024; 66:554-566. [PMID: 37280483 DOI: 10.1007/s12033-023-00766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023]
Abstract
A lot of research has been done on using natural items as diabetes treatment. The molecular docking study was conducted to evaluate the inhibitory activities of urolithin A against α-amylase, α-glucosidase, and aldose reductase. The molecular docking calculations indicated the probable interactions and the characteristics of these contacts at an atomic level. The results of the docking calculations showed the docking score of urolithin A against α-amylase was -5.169 kcal/mol. This value for α-glucosidase and aldose reductase was -3.657 kcal/mol and -7.635 kcal/mol, respectively. In general, the outcomes of the docking calculations revealed that urolithin A can construct several hydrogen bonds and hydrophobic contacts with the assessed enzymes and reduces their activities considerably. The properties of urolithin against common human breast cancer cell lines, i.e., SkBr3, MDA-MB-231, MCF-7, Hs578T, Evsa-T, BT-549, AU565 and 600MPE were evaluated. The IC50 of the urolithin was 400, 443, 392, 418, 397, 530, 566 and 551 against SkBr3, MDA-MB-231, MCF-7, Hs578T, Evsa-T, BT-549, AU565 and 600MPE, respectively. After doing the clinical trial studies, the recent molecule may be used as an anti-breast cancer supplement in humans. IC50 values of urolithin A on α-amylase, α-glucosidase, and aldose reductase enzymes were obtained at 16.14, 1.06 and 98.73 µM, respectively.
Collapse
Affiliation(s)
- Lu Han
- Department of General Surgery, Sijing Hospital of Songjiang District Shanghai, Shanghai, 201601, China
| | - Danbo Zhao
- Department of Oncology, Ezhou Central Hospital, Ezhou, 436000, Hubei, China
| | - Ya Li
- Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, 710061, China
| | - Jianwei Jin
- Department of Oncology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Kingdom of Saudi Arabia
- Department of Zoology, College of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Fatimah A Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Kingdom of Saudi Arabia
| | - Ali M Eldib
- Department of Zoology, College of Science, Damanhour University, Damanhour, 22511, Egypt
- Alrayan Medical Colleges (AMC), Hejrah Street, P. O. Box 41411, Madinah, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Ullah S, Ahmad T, Ikram M, Rasheed HM, Khan MI, Khan T, Alsahli TG, Alzarea SI, Althobaiti M, Shah AJ. 7-Hydroxy Frullanolide Ameliorates Isoproterenol-Induced Myocardial Injury through Modification of iNOS and Nrf2 Genes. Biomedicines 2023; 11:2470. [PMID: 37760913 PMCID: PMC10526241 DOI: 10.3390/biomedicines11092470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Myocardial infarction (MI) is the principal cause of premature death. Protecting myocardium from ischemia is the main focus of intense research. 7-hydroxy frullanolide (7-HF) is a potent anti-inflammatory agent, showing its efficacy in different acute and chronic inflammatory disorders such as atherosclerosis, suggesting it can be a potential cardioprotective agent. For the induction of MI, Sprague-Dawley rats (n = 5) were administered isoproterenol (ISO) 85 mg/kg s.c at 24 h intervals for two days. The potential cardioprotective effect of 7-HF and its mechanisms were explored by in vivo and in vitro methods. 7-HF significantly prevented the extent of myocardial injury by decreasing the infarct size, preserving the histology of myocardial tissue, and reducing the release of cardiac biomarkers. Further, 7-HF increased the mRNA expression of cardioprotective gene Nrf2 and reduced the mRNA expression of iNOS. 7-HF also improved cardiac function by decreasing the cardiac workload through its negative chronotropic and negative ionotropic effect, as well as by reducing peripheral vascular resistance due to the inhibition of voltage-dependent calcium channels and the release of calcium from intracellular calcium stores. In conclusion, 7-HF showed cardioprotective effects in the MI model, which might be due to modulating the expression of iNOS and Nrf2 genes as well as improving cardiac functions.
Collapse
Affiliation(s)
- Saif Ullah
- Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan; (S.U.); (M.I.); (T.K.)
| | - Taseer Ahmad
- Department of Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Pakistan;
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Muhammad Ikram
- Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan; (S.U.); (M.I.); (T.K.)
| | | | | | - Taous Khan
- Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan; (S.U.); (M.I.); (T.K.)
| | - Tariq G. Alsahli
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (T.G.A.); (S.I.A.)
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (T.G.A.); (S.I.A.)
| | - Musaad Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Abdul Jabbar Shah
- Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan; (S.U.); (M.I.); (T.K.)
| |
Collapse
|
5
|
Wang L, Su W, Zheng X, Lin W, Lv C, Yang S, Chen B, Zhang C. BML-111 inhibits osteoclast differentiation by suppressing the MAPK and NF-κB pathways, alleviating deterioration of the knee joints in a CIA rat model. Cell Biol Int 2023; 47:954-968. [PMID: 36740226 DOI: 10.1002/cbin.11990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 12/12/2022] [Accepted: 01/07/2023] [Indexed: 02/07/2023]
Abstract
Irreversible destruction of joints is the hallmark of rheumatoid arthritis (RA). Osteoclasts are the only bone-resorbing cells and play an important role in joint rebuilding. BML-111 (5(S),6(R),7-trihydroxyheptanoic acid methyl ester, C8 H16 O5 ) is a synthetic lipoxin A4 agonist with antioxidant and anti-inflammatory properties. The present study aimed to investigate the effect of BML-111 on osteoclasts in vivo and in vitro, to investigate its therapeutic effect on joint destruction in RA. Cell Counting Kit-8 assay and flow cytometry were used to exclude cytotoxic effects of BML-111 to bone marrow-derived macrophages (BMMs). Then, osteoclasts were differentiated in vitro from BMMs by used macrophage colony-stimulating factor and receptor activator of nuclear factor-κB ligand, and osteoclasts were observed following tartrate-resistant acid phosphatase staining with or without BML-111 treatment. Meanwhile, absorption pit assay and immunofluorescence staining of the fibrous actin ring were used to observe osteoclast function. Moreover, we examined mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) activation. We established collagen-induced arthritis in a rat model and, after treatment with BML-111, joint swelling was measured and the knee joints were processed for histology. We also examined serum and tissue for osteoclastogenesis-related markers. BML-111 inhibited osteoclast formation and differentiation in a time- and concentration-dependent manner, and downregulated the expression levels of MAPK and NF-κB in vitro. Meanwhile, BML-111 effectively alleviated joint structural damage and inhibited osteoclast formation in vivo. BML-111 inhibited osteoclast formation and differentiation in vitro and in vivo, and delayed the progression of joint destruction.
Collapse
Affiliation(s)
- Lu Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Su
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohang Zheng
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenjun Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chen Lv
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengwu Yang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bicheng Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunwu Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Chimplee S, Smythe C, Tipmanee V, Sukrong S, Kanokwiroon K. Anticancer mechanism of 7-α-hydroxyfrullanolide on microtubules and computational prediction of its target binding in triple-negative breast cancer cells. PeerJ 2022; 10:e13508. [PMID: 35651747 PMCID: PMC9150694 DOI: 10.7717/peerj.13508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/06/2022] [Indexed: 01/17/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) responds poorly to the available drugs; thus, the mortality rate associated with TNBC remains high. 7-α-Hydroxyfrullanolide (7HF) possesses anticancer properties and arrests cells in the G2/M-phase via modulation of several proteins involved in the G2/M-phase transition, as well as the mitotic checkpoint in MDA-MB-468 (TNBC) cells. Microtubules (MTs) dynamically regulate cell division in the G2/M phase and are related to cancer cell stress response. However, antimitotic drug cytotoxicity to multiple cancer resistance developed in response to drugs are obstacles faced to date. Here, the activity and mechanism via which 7HF controls MTs dynamics was investigated in MDA-MB-468 cells. Methods 7HF uptake by MDA-MB-468 cells was assessed using spectrophotometry. The drug-like properties of 7HF were predicted using the Swiss-absorption, distribution, metabolism, and excretion (ADME) webtool. Then, the effect of 7HF treatment (6, 12, and 24 µM) on the dynamic arrangement of MTs was assessed for 1, 12, and 24 h using indirect immunofluorescence. Polymerization of α- and β-tubulin was assessed using different 7HF concentrations in a cell-free system for 1 h. Cell proliferation assay with bromodeoxyuridine plus propidium iodide staining and flow cytometry was performed at different 7HF concentrations and time points. The mechanism of action was assessed by detecting the expression of proteins, including Bub3, cyclin B1, p-Cdk1 (Tyr15), Rb, p-Rb (Ser780), Chk1, p-Chk1 (Ser345), Chk2, p-Chk2 (Ser516), and p-H2AX (Ser139), using western blotting. Molecular docking was used to predict the molecular interactions between 7HF and tubulins in MTs. Results We observed that 7HF was able to enter the MDA-MB-468 cells. The ADME webtool analysis predicted that it possesses the high passive permeation and gastrointestinal absorption properties of drugs. Various concentrations of 7HF disrupted the dynamic arrangement of spindle MTs by causing radial spindle array shrinkage and expansion of fibrous spindle density and radial array lengths in a time-dependent manner. 7HF reduced polymerization of α-, β-tubulin in dose-dependent manner. 7HF also triggered DNA damage response by inducing G2/M and G1 phase arrests in a concentration and time-dependent manner, which occurred due to the upregulation of Bub3, Chk1, p-Chk1 (Ser345), p-Cdk1 (Tyr15), and cyclin B1. According to molecular docking analysis, 7HF preferred to bind to β-tubulin over α-tubulin. The lactone, ketone, and hydroxyl groups of 7HF supported the 7HF-tubulin interactions. Hydrogen bonding with a hydrocarbon ring and salt bridge attractive forces were responsible for the binding versatility of 7HF. Conclusions This is the first study to investigate the molecular mechanism, MTs interacting sites, and the internalization and drug-like properties of 7HF in TNBC cells. The findings will be useful for developing 7HF-based treatment for patients with TNBC.
Collapse
Affiliation(s)
- Siriphorn Chimplee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Carl Smythe
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Suchada Sukrong
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kanyanatt Kanokwiroon
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
7
|
Anti-Inflammatory and Immunoregulatory Action of Sesquiterpene Lactones. Molecules 2022; 27:molecules27031142. [PMID: 35164406 PMCID: PMC8839508 DOI: 10.3390/molecules27031142] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 01/21/2023] Open
Abstract
Sesquiterpene lactones (SL), characterized by their high prevalence in the Asteraceae family, are one of the major groups of secondary metabolites found in plants. Researchers from distinct research fields, including pharmacology, medicine, and agriculture, are interested in their biological potential. With new SL discovered in the last years, new biological activities have been tested, different action mechanisms (synergistic and/or antagonistic effects), as well as molecular structure–activity relationships described. The review identifies the main sesquiterpene lactones with interconnections between immune responses and anti-inflammatory actions, within different cellular models as well in in vivo studies. Bioaccessibility and bioavailability, as well as molecular structure–activity relationships are addressed. Additionally, plant metabolic engineering, and the impact of sesquiterpene lactone extraction methodologies are presented, with the perspective of biological activity enhancement. Sesquiterpene lactones derivatives are also addressed. This review summarizes the current knowledge regarding the therapeutic potential of sesquiterpene lactones within immune and inflammatory activities, highlighting trends and opportunities for their pharmaceutical/clinical use.
Collapse
|
8
|
Chimplee S, Roytrakul S, Sukrong S, Srisawat T, Graidist P, Kanokwiroon K. Anticancer Effects and Molecular Action of 7-α-Hydroxyfrullanolide in G2/M-Phase Arrest and Apoptosis in Triple Negative Breast Cancer Cells. Molecules 2022; 27:407. [PMID: 35056723 PMCID: PMC8779136 DOI: 10.3390/molecules27020407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a breast cancer subtype characterized by the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 expression. TNBC cells respond poorly to targeted chemotherapies currently in use and the mortality rate of TNBC remains high. Therefore, it is necessary to identify new chemotherapeutic agents for TNBC. In this study, the anti-cancer effects of 7-α-hydroxyfrullanolide (7HF), derived from Grangea maderaspatana, on MCF-7, MDA-MB-231 and MDA-MB-468 breast cancer cells were assessed using MTT assay. The mode of action of 7HF in TNBC cells treated with 6, 12 and 24 µM of 7HF was determined by flow cytometry and propidium iodide (PI) staining for cell cycle analysis and annexin V/fluorescein isothiocyanate + PI staining for detecting apoptosis. The molecular mechanism of action of 7HF in TNBC cells was investigated by evaluating protein expression using proteomic techniques and western blotting. Subsequently, 7HF exhibited the strongest anti-TNBC activity toward MDA-MB-468 cells and a concomitantly weak toxicity toward normal breast cells. The molecular mechanism of action of low-dose 7HF in TNBC cells primarily involved G2/M-phase arrest through upregulation of the expression of Bub3, cyclin B1, phosphorylated Cdk1 (Tyr 15) and p53-independent p21. Contrastingly, the upregulation of PP2A-A subunit expression may have modulated the suppression of various cell survival proteins such as p-Akt (Ser 473), FoxO3a and β-catenin. The concurrent apoptotic effect of 7HF on the treated cells was mediated via both intrinsic and extrinsic modes through the upregulation of Bax and active cleaved caspase-7-9 expression and downregulation of Bcl-2 and full-length caspase-7-9 expression. Notably, the proteomic approach revealed the upregulation of the expression of pivotal protein clusters associated with G1/S-phase arrest, G2/M-phase transition and apoptosis. Thus, 7HF exhibits promising anti-TNBC activity and at a low dose, it modulates signal transduction associated with G2/M-phase arrest and apoptosis.
Collapse
Affiliation(s)
- Siriphorn Chimplee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.C.); (P.G.)
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Suchada Sukrong
- Research Unit of DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Theera Srisawat
- Faculty of Science and Industrial Technology, Surat Thani Campus, Prince of Songkla University, Surat Thani 84000, Thailand;
- Faculty of Innovative Agriculture and Fisheries, Surat Thani Campus, Prince of Songkla University, Surat Thani 84000, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.C.); (P.G.)
| | - Kanyanatt Kanokwiroon
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.C.); (P.G.)
| |
Collapse
|
9
|
Matos MS, Anastácio JD, Nunes dos Santos C. Sesquiterpene Lactones: Promising Natural Compounds to Fight Inflammation. Pharmaceutics 2021; 13:pharmaceutics13070991. [PMID: 34208907 PMCID: PMC8309091 DOI: 10.3390/pharmaceutics13070991] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a crucial and complex process that reestablishes the physiological state after a noxious stimulus. In pathological conditions the inflammatory state may persist, leading to chronic inflammation and causing tissue damage. Sesquiterpene lactones (SLs) are composed of a large and diverse group of highly bioactive plant secondary metabolites, characterized by a 15-carbon backbone structure. In recent years, the interest in SLs has risen due to their vast array of biological activities beneficial for human health. The anti-inflammatory potential of these compounds results from their ability to target and inhibit various key pro-inflammatory molecules enrolled in diverse inflammatory pathways, and prevent or reduce the inflammatory damage on tissues. Research on the anti-inflammatory mechanisms of SLs has thrived over the last years, and numerous compounds from diverse plants have been studied, using in silico, in vitro, and in vivo assays. Besides their anti-inflammatory potential, their cytotoxicity, structure–activity relationships, and pharmacokinetics have been investigated. This review aims to gather the most relevant results and insights concerning the anti-inflammatory potential of SL-rich extracts and pure SLs, focusing on their effects in different inflammatory pathways and on different molecular players.
Collapse
Affiliation(s)
- Melanie S. Matos
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal; (M.S.M.); (J.D.A.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - José D. Anastácio
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal; (M.S.M.); (J.D.A.)
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Cláudia Nunes dos Santos
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal; (M.S.M.); (J.D.A.)
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
10
|
Santos SMD, de Oliveira Junior PC, de Matos Balsalobre N, Kassuya CAL, Cardoso CAL, Pereira ZV, Silva RMMF, Formagio ASN. Variation in essential oil components and anti-inflammatory activity of Allophylus edulis leaves collected in central-western Brazil. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113495. [PMID: 33091493 DOI: 10.1016/j.jep.2020.113495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE An infusion obtained from the leaves of "chal-chal" (Allophylus edulis Radlk.) is used for popular treatment of intestinal disorders and as an anti-inflammatory throat treatment. Because of the anti-inflammatory medicinal folk use, a previous work reported scientific research confirming the anti-inflammatory activity of A. edulis essential oil collected in Dourados, MS, Brazil, in March 2015. AIM OF THE STUDY The aim of this study was to evaluate the variation in the chemical profile of the essential oil of A. edulis plants collected in Dourados (EOAE-D) and Bonito (EOAE-B), two cities in Mato Grosso do Sul State, Brazil. Additionally, we evaluated the anti-inflammatory effects of the essential oil, as well as that of the major compounds (caryophyllene oxide and α-zingiberene), in experimental in vivo models of inflammation in mice. MATERIALS AND METHODS Leaves were collected from plants at both sites in July 2018. The composition of the essential oil (EOAE-D and EOAE-B) was determined by GC/MS, and major compounds (caryophyllene oxide and α-zingiberene) were isolated and identified by chromatographic methods and NMR spectroscopy. Anti-inflammatory capacities were assessed using two classical models of inflammatory models, carrageenan- and CFA-induced paw inflammation (mechanical and thermal hyperalgesia). RESULTS Both EOAE-D and EOAE-B showed sesquiterpenes as a major constituent, namely, caryophyllene oxide (29.5%) and α-zingiberene (45.0%), respectively. In tests, EOAE, caryophyllene oxide and α-zingiberene-induced antiedematogenic and antihyperalgesic effects were found in the different utilized models. CONCLUSIONS The results indicate that samples from the two cities differed in chemical composition but not in their anti-inflammatory and antihyperalgesic effects. This finding corroborates the use of A. edulis as a medicinal plant and indicates its potential in the therapy of inflammatory conditions.
Collapse
Affiliation(s)
- Sidney Mariano Dos Santos
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, University City of Dourados, Dourados-Itahum Highway, 79804-970, Dourados, MS, Brazil.
| | - Pedro Cruz de Oliveira Junior
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, University City of Dourados, Dourados-Itahum Highway, 79804-970, Dourados, MS, Brazil.
| | - Natália de Matos Balsalobre
- Faculty of Health Sciences, Federal University of Grande Dourados, University City of Dourados, Dourados-Itahum Highway, 79804-970, Dourados, MS, Brazil.
| | - Candida Aparecida Leite Kassuya
- Faculty of Health Sciences, Federal University of Grande Dourados, University City of Dourados, Dourados-Itahum Highway, 79804-970, Dourados, MS, Brazil.
| | - Claudia Andrea Lima Cardoso
- State University of Mato Grosso do Sul, University City of Dourados, Dourados-Itahum Highway, 79804-970, Dourados, MS, Brazil.
| | - Zefa Valdivina Pereira
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, University City of Dourados, Dourados-Itahum Highway, 79804-970, Dourados, MS, Brazil.
| | - Rosilda Mara Mussury Franco Silva
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, University City of Dourados, Dourados-Itahum Highway, 79804-970, Dourados, MS, Brazil.
| | - Anelise Samara Nazari Formagio
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, University City of Dourados, Dourados-Itahum Highway, 79804-970, Dourados, MS, Brazil; Faculty of Health Sciences, Federal University of Grande Dourados, University City of Dourados, Dourados-Itahum Highway, 79804-970, Dourados, MS, Brazil.
| |
Collapse
|
11
|
Alabi QK, Akomolafe RO. Kolaviron Diminishes Diclofenac-Induced Liver and Kidney Toxicity in Wistar Rats Via Suppressing Inflammatory Events, Upregulating Antioxidant Defenses, and Improving Hematological Indices. Dose Response 2020; 18:1559325819899256. [PMID: 32165871 PMCID: PMC7054740 DOI: 10.1177/1559325819899256] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
Diclofenac (DF) is widely used in the treatment of pain and fever. Despite it
therapeutic benefits, it triggered hepatorenal injury. Thus, the present study
investigated the protective roles of kolaviron (KV) against DF-induced hepatic
and renal toxicity in rats. The rats were allotted into groups: control group
received propylene glycol and treatment groups received DF, which induced
hepatorenal toxicity in rats and different doses of KV that prevented systemic
toxicity of DF in rats. Twenty-four hours after the last treatment, all the rats
were killed. Pro-inflammatory levels, markers of liver and kidney functions,
oxidative stress, hematological indices, and histopathological alterations were
evaluated. Diclofenac caused significant increase in the plasma levels of
creatinine and urea and activities of liver enzymes, including bilirubin level,
pro-inflammatory markers, and plasma prostaglandin E2
(PGE2). It also caused significant alteration in renal and
hepatic PGE2, antioxidants, lipid peroxidation (malondialdehyde), and
hematological indices. These toxic effects were confirmed by histological
studies and levels of inflammatory infiltration (myeloperoxidase). However, KV
significantly prevented or reduced the adverse effects of DF in the plasma,
liver, and kidney of the rats pretreated with KV before DF administration. This
study showed the efficacy of KV as hepatic and renal protector in DF-induced
hepatorenal toxicity through reduction of oxidative stress and suppression of
inflammation.
Collapse
Affiliation(s)
- Quadri K Alabi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria.,Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Rufus O Akomolafe
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| |
Collapse
|
12
|
Pandey P, Singh D, Hasanain M, Ashraf R, Maheshwari M, Choyal K, Singh A, Datta D, Kumar B, Sarkar J. 7-hydroxyfrullanolide, isolated from Sphaeranthus indicus, inhibits colorectal cancer cell growth by p53-dependent and -independent mechanism. Carcinogenesis 2019; 40:791-804. [PMID: 30535334 DOI: 10.1093/carcin/bgy176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 11/06/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022] Open
Abstract
Sphaeranthus indicus Linn. is commonly used in Indian traditional medicine for management of multiple pathological conditions. However, there are limited studies on anticancer activity of this plant and its underlying molecular mechanisms. Here, we isolated an active constituent, 7-hydroxyfrullanolide (7-HF), from the flowers of this plant, which showed promising chemotherapeutic potential. The compound was more effective in inhibiting in vitro proliferation of colon cancers cells through G2/M phase arrest than other cancer cell lines that were used in this study. Consistent with in vitro data, 7-HF caused substantial regression of tumour volume in a syngeneic mouse model of colon cancer. The molecule triggered extrinsic apoptotic pathway, which was evident as upregulation of DR4 and DR5 expression as well as induction of their downstream effector molecules (FADD, Caspase-8). Concurrent activation of intrinsic pathway was demonstrated with loss of ΔΨm to release pro-apoptotic cytochrome c from mitochondria and activation of downstream caspase cascades (Caspase -9, -3). Loss of p53 resulted in decreased sensitivity of cells towards pro-apoptotic effect of 7-HF with increased number of viable cells indicating p53-dependent arrest of cancer cell growth. This notion was further supported with 7-HF-mediated elevation of endogenous p53 level, decreased expression of MDM2 and transcriptional upregulation of p53 target genes in apoptotic pathway. However, 7-HF was equally effective in preventing progression of HCT116 p53+/+ and p53-/- cell derived xenografts in nude mice, which suggests that differences in p53 status may not influence its in vivo efficacy. Taken together, our results support 7-HF as a potential chemotherapeutic agent and provided a new mechanistic insight into its anticancer activity.
Collapse
Affiliation(s)
- Praveen Pandey
- Biochemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh, India
| | - Deepika Singh
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh, India
| | - Mohammad Hasanain
- Biochemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Raghib Ashraf
- Biochemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh, India
| | - Mayank Maheshwari
- Biochemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh, India
| | - Kuldeep Choyal
- Biochemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh, India
| | - Akhilesh Singh
- Biochemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh, India
| | - Dipak Datta
- Biochemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Brijesh Kumar
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Jayanta Sarkar
- Biochemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India.,Laboratory Animal Facility, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh, India
| |
Collapse
|
13
|
Upadhyay KD, Dodia NM, Khunt RC, Chaniara RS, Shah AK. Evaluation and in vivo efficacy study of pyrano[3,2‐c]quinoline analogues as TNF‐α inhibitors. Chem Biol Drug Des 2019; 94:1647-1655. [DOI: 10.1111/cbdd.13566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/25/2022]
Affiliation(s)
| | | | | | | | - Anamik K. Shah
- National Facility for Drug Discovery (NFDD) Saurashtra University Rajkot India
| |
Collapse
|
14
|
Alabi QK, Akomolafe RO, Omole JG, Adefisayo MA, Ogundipe OL, Aturamu A, Sanya JO. Polyphenol-rich extract of Ocimum gratissimum leaves ameliorates colitis via attenuating colonic mucosa injury and regulating pro-inflammatory cytokines production and oxidative stress. Biomed Pharmacother 2018; 103:812-822. [PMID: 29684860 DOI: 10.1016/j.biopha.2018.04.071] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022] Open
Abstract
Colitis is a chronic inflammation and ulcer on the inner lining of the large intestine. For many centuries Ocimum gratissimum (OG) leaves have been used in folk medicine in Nigeria to treat inflammatory bowel diseases, however, to date, the anti-colitis effects of OG have not been scientifically proven. In this study we investigated the effects of polyphenol rich extract of Ocimum gratissimum (PREOG) leaf on colonic mucosa injury in colitis, its mechanisms, initial administration time and dosage. Dextran sodium sulfate (DSS)-induced rat colitis models was used. PREOG administration was initiated at 3 and 7 d after the model was established at doses of 200, 400 and 800 mg/kg for 7 d. 5-aminosalicylic acid (5-ASA) was used as a reference drug. The disease activity index (DAI), vascular permeability, markers of oxidative stress, granulocyte infiltration, inflammation and histopathological alteration were evaluated. Obvious colonic inflammation and mucosa injuries were observed in DSS-induced colitis groups. PREOG administration promoted repair of colonic mucosa injuries, attenuated inflammation, and decreased DAI scores in rats with colitis. PREOG also decreased the plasma concentrations of Interleukin-(IL)-6 and tumor necrosis factor (TNF)-α, and concentrations of myeloperoxidase, nitric oxide, cyclooxygenase-2 and malondialdehyde in the colon, and increased the plasma concentrations of IL-4 and IL-10 as well as the concentration of superoxide dismutase, catalase and reduced glutathione in the colon. The efficacy of PREOG was dosage dependent. In conclusion, OG repairs colonic mucosa injury in experimental colitis through its ant-inflammatory and ant-oxidant. Its efficacy related to initial administration time and dose.
Collapse
Affiliation(s)
- Quadri K Alabi
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria.
| | - Rufus O Akomolafe
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Joseph G Omole
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Modinat A Adefisayo
- Department of Physiology, Faculty of Basic Medical Sciences, University of Medical Sciences,Ondo State, Nigeria
| | - Olaofe L Ogundipe
- Department of Public Health and Community Medicine, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria
| | - Ayodeji Aturamu
- Health Center College of Education, Ikere Ekiti, Ekiti State, Nigeria
| | - Joseph O Sanya
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria
| |
Collapse
|
15
|
Srivastava RAK, Mistry S, Sharma S. A novel anti-inflammatory natural product from Sphaeranthus indicus inhibits expression of VCAM1 and ICAM1, and slows atherosclerosis progression independent of lipid changes. Nutr Metab (Lond) 2015; 12:20. [PMID: 26064179 PMCID: PMC4462118 DOI: 10.1186/s12986-015-0018-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/29/2015] [Indexed: 11/11/2022] Open
Abstract
A large body of evidence suggests that atherosclerosis is an inflammatory disease, in which cytokines and growth factors play a major role in disease progression. The methanolic extracts of Sphaeranthus indicus as well as its active ingredient, 7-hydroxy frullanoide (7-HF), are shown to suppress LPS-induced cytokine production from mononuclear cells, and inhibit the expression of VCAM1, ICAM1 and E-selectin by TNF-α- stimulated HUVECs in a concentration-dependent manner. We tested the hypothesis that the inhibition of cytokines and adhesion molecules should attenuate the progression of atherosclerosis, independent of changes in the lipid profile. Studies were carried out in two animal models: a high fat-fed LDLr-/- mouse and a high fat-fed hyperlipidemic hamster. Methanolic extract of S. indicus was dosed to hyperlipidemic LDLr-/- at 100 and 300 mg (equivalent to 20 and 60 mg 7-HF)/kg body weight/ day for 8 weeks, and plasma lipids as well as aortic lesion area were quantitated. Hyperlipidemic hamsters were treated with one dose of 200 mg/kg/day. S. indicus extract treatment did not alter the lipid profile in both animal models, but reduced aortic lesion area in LDLr-/- mice and hyperlipidemic hamsters by 22 % and 45 %, respectively. Fenofibrate, included as a reference agent, decreased aortic lesions by 26 % in LDLr -/- mice and 84 % in hyperlipidemic hamsters, respectively, which was driven by massive reductions in proatherogenic lipoproteins. The lipid-independent anti-atherosclerotic activity of S. indicus was associated with the reductions in the circulating levels of MCP-1, TNF-α, and IL-6 via phosphorylation and degradation of IkB-α that prevents translocation of NF-kB in the nucleus to induce proinflammatory cytokines. Our findings demonstrate that anti-inflammatory agents that lower pro-inflammatory proteins inhibit the progression of atherosclerosis. The methanolic extract of S. inducus, currently being used to treat psoriasis, offer promise to benefit individuals who have high circulating pro-inflammatory cytokines, and predisposed to coronary artery disease.
Collapse
Affiliation(s)
- Rai Ajit K Srivastava
- Department of Pharmacology, Piramal Life Sciences Ltd, Mumbai, India ; Present address: Integrated Pharma Solutions, Philadelphia, Department of Pharmacology & Physiology, Drexel University School of Medicine, Philadelphia, USA
| | - Sapna Mistry
- Department of Pharmacology, Piramal Life Sciences Ltd, Mumbai, India ; Present address: BioMarin Pharmaceuticals, Novato, CA USA
| | - Somesh Sharma
- Department of Pharmacology, Piramal Life Sciences Ltd, Mumbai, India
| |
Collapse
|
16
|
Wang M, Li Q. Parthenolide could become a promising and stable drug with anti-inflammatory effects. Nat Prod Res 2014; 29:1092-101. [DOI: 10.1080/14786419.2014.981541] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Ramachandran S. Review on Sphaeranthus indicus Linn. (Koṭṭaikkarantai). Pharmacogn Rev 2014; 7:157-69. [PMID: 24347924 PMCID: PMC3841994 DOI: 10.4103/0973-7847.120517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/10/2013] [Accepted: 10/25/2013] [Indexed: 11/04/2022] Open
Abstract
Sphaeranthus indicus Linn. is from the aroma family Asteraceae. It is also known with other synonyms such as Munditika, Mundi, Shravana, Bhikshu, Tapodhana, Mahashravani, Shravanahva, Shravanashirshaka. It is abundantly distributed in damp areas in plains and also as a weed in the rice fields. In the Indian system of medicine, the plant as a whole plant or its different anatomical parts viz., leaf, stem, bark, root, flower and seed are widely used for curing many diseases. The plant is bitter, stomachic, restorative, alterative, pectoral, demulcent and externally soothing. The whole plant and its anatomical parts have been reported with different types of secondary metabolites which include eudesmanolides, sesquiterpenoids, sesquiterpene lactones, sesquiterpene acids, flavone glycosides, flavonoid C-glycosides, isoflavone glycoside, sterols, sterol glycoside, alkaloid, peptide alkaloids, amino acids and sugars. The essential oils obtained from the flowers and whole plants were analyzed by different authors and reported the presence of many monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpene hydrocarbons and oxygenated sesquiterpenes. The whole plants, its isolated secondary metabolites and different anatomical parts have been reported for ovicidal, antifeedant, anthelmintic, antimicrobial, antiviral, macrofilaricidal, larvicidal, analgesic, antipyretic, hepatoprotective, antitussive, wound healing, bronchodilatory, mast cell stabilizing activity, anxiolytic, neuroleptic, immunomodulatory, anti-diabetic, antihyperlipidemic and antioxidant, antioxidant, central nervous system depressant, anti-arthritic, nephroprotective, anticonvulsant activities and many other activities. It is also effective on psoriasis. In the present paper, the plant is reviewed for its phytochemical and pharmacological reports in detail.
Collapse
Affiliation(s)
- Shakila Ramachandran
- Department of Chemistry, Siddha Central Research Institute (Central Council for Research in Siddha), Anna Hospital Campus, Arumbakkam, Chennai, Tamil Nadu, India
| |
Collapse
|
18
|
de Almeida ABA, Sánchez-Hidalgo M, Martín AR, Luiz-Ferreira A, Trigo JR, Vilegas W, dos Santos LC, Souza-Brito ARM, de la Lastra CA. Anti-inflammatory intestinal activity of Arctium lappa L. (Asteraceae) in TNBS colitis model. JOURNAL OF ETHNOPHARMACOLOGY 2013; 146:300-310. [PMID: 23313393 DOI: 10.1016/j.jep.2012.12.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/28/2012] [Accepted: 12/29/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Brazilian traditional medicine, Arctium lappa (Asteraceae), has been reported to relieve gastrointestinal symptoms. AIM OF THE STUDY In the present study, we investigated the effects of the lactone sesquiterpene onopordopicrin enriched fraction (ONP fraction) from Arctium lappa in an experimental colitis model induced by 2,4,6 trinitrobenzene sulfonic acid and performed experiments to elucidate the underlying action mechanisms involved in that effect. MATERIALS AND METHODS ONP fraction (25 and 50 mg/kg/day) was orally administered 48, 24 and 1 h prior to the induction of colitis and 24 h after. The inflammatory response was assessed by gross appearance, myeloperoxidase (MPO) activity, tumor necrosis factor alpha (TNF-α) levels and a histological study of the lesions. We determined cyclooxygenase (COX)-1 and -2 protein expressions by western blotting and immunohistochemistry assays. RESULTS TNBS group was characterized by increased colonic wall thickness, edema, diffuse inflammatory cell infiltration, increased MPO activity and TNF-α levels. On the contrary, ONP fraction (25 and 50 mg/kg) treatment significantly reduced the macroscopic inflammation scores (p<0.05 and p<0.01, respectively) and morphological alterations associated with an increase in the mucus secretion. Similarly, the degree of neutrophil infiltration and the cytokine levels were significantly ameliorated. Moreover, COX-2 expression was up regulated in TNBS-treated rats. In contrast, ONP fraction (50 mg/kg) administration reduced COX-2 overexpression. CONCLUSIONS We have shown that the ONP fraction obtained from Arctium lappa exert marked protective effects in acute experimental colitis, confirming and justifying, at least in part, the popular use of this plant to treat gastrointestinal diseases.
Collapse
|
19
|
Sesquiterpene lactones as drugs with multiple targets in cancer treatment: focus on parthenolide. Anticancer Drugs 2013; 23:883-96. [PMID: 22797176 DOI: 10.1097/cad.0b013e328356cad9] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sesquiterpene lactones (SLs) constitute a large and diverse group of biologically active plant compounds that possess anti-inflammatory and antitumor activity. The subclass germacranolides is one of the major groups of SLs. It includes parthenolide, a highly cytotoxic SL that is being tested in clinical trials as an anti-cancer agent. In this review, we focus on SL antitumor activity related to cell-cycle arrest, differentiation, apoptosis induction through the intrinsic pathway, and sensitization of the extrinsic pathway. We also address the regression of tumors in response to cotreatment with conventional chemotherapeutics. We review the nuclear factor-κB-targeted anti-inflammatory activity in vitro and in vivo and relate it to the SL structural features involved in the molecular mechanisms. It is obvious that SLs are emerging as promising anticancer agents, but more investigations are required to fully understand the molecular mechanisms of known SLs in different cell death modalities and how these mechanisms contribute toward the potent antitumor and anti-inflammatory activities of SLs.
Collapse
|
20
|
Yao R, Fu Y, Li S, Tu L, Zeng X, Kuang N. Regulatory effect of daphnetin, a coumarin extracted from Daphne odora, on the balance of Treg and Th17 in collagen-induced arthritis. Eur J Pharmacol 2011; 670:286-94. [DOI: 10.1016/j.ejphar.2011.08.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/28/2011] [Accepted: 08/17/2011] [Indexed: 01/29/2023]
|
21
|
Mutheeswaran S, Pandikumar P, Chellappandian M, Ignacimuthu S. Documentation and quantitative analysis of the local knowledge on medicinal plants among traditional Siddha healers in Virudhunagar district of Tamil Nadu, India. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:523-33. [PMID: 21718779 DOI: 10.1016/j.jep.2011.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 06/01/2011] [Accepted: 06/05/2011] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE India has a population with high degree of medical pluralism. Siddha system of Indian traditional medicine is practiced dominantly by the people in Tamil Nadu. The traditionally trained Siddha healers still play an important role in the rural health care. Their knowledge is comparatively more vulnerable than the documented traditional knowledge. Thus, the present study was aimed to document and quantitatively analyze the local knowledge of the traditional Siddha healers in Virudhunagar district of Tamil Nadu, India. MATERIALS AND METHODS The results presented in this paper are the outcome of series of interviews conducted between January and August, 2010 consisting of 196 field days. After getting prior informed consent, interviews were conducted and successive free-listing was used in the interviews in order to make informants cite the medicinal plants that they have used. By this way 96 healers were interviewed and their data were quantitatively analyzed using various indices such as Informant Consensus Factor (F(ic)), Fidelity Level (FL), Informant Agreement on Remedies (IAR) and Cultural Importance Index (CII). RESULTS This study recorded the ethno-medicinal usage of 227 species which were used to prepare 611 formulations for the treatment of 36 illness categories. The knowledge holders had the experience of minimum 20 years. There was unevenness in male-female ratio. Regarding the medicinal plants, easily available plants were holding significantly high number of citations, IAR and CII values. Nine illness categories had a high F(ic) value, compared to others. Species with high citations in these groups were Moringa oleifera (aphrodisiacs), Acalypha indica (dermatological ailments), Dodonaea viscosa (musculo-skeletal disorders), Solanum trilobatum (pulmonary ailments), Phyllanthus amarus (jaundice), Piper nigrum (adjuvant) Allium cepa (hemorrhoids), Azadirachta indica (antiseptic) and Tribulus terrestris (urinary ailments). CONCLUSION Quantitative analysis of the data had revealed that the easily available species hold a high consensus and cultural importance. Future biomedical studies using the medicinal plants enumerated in this study, particularly those with high number of citations and high F(ic) values might yield some novel prototypes. Such studies will also be useful to assess the efficacy and safety of these herbal treatments to take decisions on the health care of rural India.
Collapse
Affiliation(s)
- S Mutheeswaran
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai 600 034, Tamil Nadu, India
| | | | | | | |
Collapse
|
22
|
NF-κB-mediated anti-inflammatory activity of the sesquiterpene lactone 7-hydroxyfrullanolide. Eur J Pharmacol 2011; 657:41-50. [DOI: 10.1016/j.ejphar.2011.01.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/06/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|