1
|
Zhang F, Wang Y, Song X, Wen Y, Wang H, Zhang Y. The hydroxytyrosol-typed phenylpropanoidglycosides: A phenylpropanoid glycoside family with significant biological activity. Fitoterapia 2024; 178:106155. [PMID: 39089596 DOI: 10.1016/j.fitote.2024.106155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Hydroxytyrosol-typed phenylpropanoid glycosides (HPGs), composed of phenylethanol and various complex oligosaccharides, are widespread and abundant in different plant, and have a diverse range of biological activities. All HPGs reported previously have been isolated from natural sources, and most of them showed significant bioactivities, such as anti-inflamatory, anti-cancer, cytoprotection, neuro-protective effects, enzyme-inhibitory, anti-microbial effects, and cardiovascular activity. The goal of this review is to summarize the structures of HPGs reported over the past few decades, as well as to introduce their pharmacological effects. We also introduce the possible relationship between the structures of HPGs and their source plants, as well as the structure-activity relationships of some important activities. This review will serve as a resource for future research into this class of compounds, and demonstrate their potential value.
Collapse
Affiliation(s)
- Feixun Zhang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China
| | - Yiping Wang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China
| | - Xiaoping Song
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China
| | - Yingming Wen
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China
| | - Hong Wang
- College of Bioengineering, Beijing Polytechnic, No. 9 Liangshuihe 1st Street, Beijing 100176, China.
| | - Yanxin Zhang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China; Glycobiology and Glycotechnology Research center, College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an 710069, China; College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| |
Collapse
|
2
|
Korkina L, Kharaeva Z, Shokarova A, Barokova E, Mayer W, Trakhtman I, Dal Toso R, De Luca C. Effects of Plant Meristem-Cell-Based Cosmetics on Menopausal Skin: Clinical Data and Mechanisms. Biomolecules 2024; 14:1176. [PMID: 39334942 PMCID: PMC11429794 DOI: 10.3390/biom14091176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
A randomised open clinical/laboratory study was performed to evaluate the safety and cosmetic efficacy of facial cosmetics for females during the menopausal period. The cosmetics contain active ingredients of meristem cells derived from the medicinal plants Leontopodium alpinum, Buddeleja davidii, Centella asiatica, and Echinacea angustifolia. Recently, the major bioactive molecules of these medicinal plants (leontopodic acid, verbascoside, asiaticoside, and echinacoside, respectively) have been thoroughly evaluated in vitro for molecular pathways and cellular mechanisms and their preventive/curative effects on human skin cells exposed to factors promoting premature skin ageing and cellular senescence. Nevertheless, clinical data on their safety/efficacy to ageing human skin are scarce. This clinical study enrolled 104 Caucasian females in pre-menopause, menopause, or post-menopause periods. They applied cosmetic serums daily for 1 month. Questionnaires and instrumental and biochemical methods were used to assess dermatological/ophthalmological safety and cosmetic efficacy through changes of the skin physiology markers characteristic of ageing/menopause (elasticity, barrier functions, moisture, sebum, ultrasonic properties, and collagen content and structure). Quantitative microbiological tests were carried out for skin microbiota fluctuations. Data showed that the cosmetics were safe, and they shifted the skin physiology parameters to a younger biological age, enhanced collagen synthesis, inhibited lipid peroxidation, and favoured normal microbiota.
Collapse
Affiliation(s)
- Liudmila Korkina
- Centre for Innovative Biotechnological Investigations Nanolab (CIBI-NANOLAB), 119991 Moscow, Russia
- R&D Department, Swiss Dekotra GmbH, 8001 Zurich, Switzerland;
| | - Zaira Kharaeva
- Immunology, Microbiology and Virology Department, Kabardino-Balkar State Medical University, 360040 Nal’chik, Russia; (Z.K.); (A.S.); (E.B.)
| | - Albina Shokarova
- Immunology, Microbiology and Virology Department, Kabardino-Balkar State Medical University, 360040 Nal’chik, Russia; (Z.K.); (A.S.); (E.B.)
| | - Elena Barokova
- Immunology, Microbiology and Virology Department, Kabardino-Balkar State Medical University, 360040 Nal’chik, Russia; (Z.K.); (A.S.); (E.B.)
| | - Wolfgang Mayer
- R&D Department, Medena AG, 8910 Affoltern-am-Albis, Switzerland; (W.M.); (C.D.L.)
| | - Ilya Trakhtman
- R&D Department, Swiss Dekotra GmbH, 8001 Zurich, Switzerland;
| | - Roberto Dal Toso
- Department of Life Sciences and Biotechnologies, University of Ferrara, 44121 Ferrara, Italy;
| | - Chiara De Luca
- R&D Department, Medena AG, 8910 Affoltern-am-Albis, Switzerland; (W.M.); (C.D.L.)
| |
Collapse
|
3
|
Saha R, Majie A, Baidya R, Sarkar B. Verbascoside: comprehensive review of a phenylethanoid macromolecule and its journey from nature to bench. Inflammopharmacology 2024:10.1007/s10787-024-01555-3. [PMID: 39162902 DOI: 10.1007/s10787-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Polyphenolic compounds are among the most widely researched compounds for various therapeutic applications. However, naturally occurring phenylethanoid glycosides are least explored under this class of compounds. One such phenylethanoid glycoside, verbascoside (Vb), abundantly found among 200 species of 23 families, has gained recent attention due to its wide-spectrum therapeutic properties such as antioxidant, antimicrobial, anti-inflammatory, neuroprotective, cardioprotective, skin-protective, and anti-cancer. Despite having multiple therapeutic benefits, due to its large size, the compound has poor bioavailability for oral and topical applications. To meet these limitations, current research on Vb focuses on delivering it through nanoformulations. Presently, most developed formulations are liposome based for various applications, such as corneal epithelial wound healing, anti-neuropathic, anti-wrinkle, anti-hyperalgesia, atopic dermatitis, alopecia, and cutaneous wound healing. Multiple studies have confirmed the least acute and sub-acute toxicity for Vb. Few clinical studies have been performed for the therapeutic application of Vb to manage COVID-19, nephropathy, platelet aggregation, chronic primary glomerulonephritis, and acute hepatitis. Recent studies have shown the immense therapeutic potential of Vb in wound healing, dermatitis, neuroprotection, and anti-cancer activities, which creates a need for developing novel formulations for their respective uses. Long-term toxicity studies and techniques for scaling up Vb production by biotechnological approaches should be emphasized.
Collapse
Affiliation(s)
- Rajdeep Saha
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Ankit Majie
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Ritika Baidya
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Biswatrish Sarkar
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| |
Collapse
|
4
|
Zhiyan C, Min Z, Yida D, Chunying H, Xiaohua H, Yutong L, Huan W, Linjuan S. Bioinformatic analysis of hippocampal histopathology in Alzheimer's disease and the therapeutic effects of active components of traditional Chinese medicine. Front Pharmacol 2024; 15:1424803. [PMID: 39221152 PMCID: PMC11362046 DOI: 10.3389/fphar.2024.1424803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Background and aim Pathological changes in the central nervous system (CNS) begin before the clinical symptoms of Alzheimer's Disease (AD) manifest, with the hippocampus being one of the first affected structures. Current treatments fail to alter AD progression. Traditional Chinese medicine (TCM) has shown potential in improving AD pathology through multi-target mechanisms. This study investigates pathological changes in AD hippocampal tissue and explores TCM active components that may alleviate these changes. Methods GSE5281 and GSE173955 datasets were downloaded from GEO and normalized to identify differentially expressed genes (DEGs). Key functional modules and hub genes were analyzed using Cytoscape and R. Active TCM components were identified from literature and the Pharmacopoeia of the People's Republic of China. Enrichment analyses were performed on target genes overlapping with DEGs. Result From the datasets, 76 upregulated and 363 downregulated genes were identified. Hub genes included SLAMF, CD34, ELN (upregulated) and ATP5F1B, VDAC1, VDAC2, HSPA8, ATP5F1C, PDHA1, UBB, SNCA, YWHAZ, PGK1 (downregulated). Literature review identified 33 active components from 23 herbal medicines. Target gene enrichment and analysis were performed for six components: dihydroartemisinin, berberine, naringenin, calycosin, echinacoside, and icariside II. Conclusion Mitochondrial to synaptic vesicle dysfunction pathways were enriched in downregulated genes. Despite downregulation, UBB and SNCA proteins accumulate in AD brains. TCM studies suggest curcumin and echinacoside may improve hippocampal pathology and cognitive impairment in AD. Further investigation into their mechanisms is needed.
Collapse
Affiliation(s)
- Chen Zhiyan
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Zhan Min
- Department of Neurology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
| | - Du Yida
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - He Chunying
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Hu Xiaohua
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Yutong
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Wang Huan
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Sun Linjuan
- Department of Neurology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
| |
Collapse
|
5
|
Zhao Y, Wang S, Pan J, Ma K. Verbascoside: A neuroprotective phenylethanoid glycosides with anti-depressive properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155027. [PMID: 37657207 DOI: 10.1016/j.phymed.2023.155027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Verbascoside is a natural and water-soluble phenylethanoid glycoside found in several medicinal plants. It has extensive pharmacological effects, including antioxidative and antineoplastic actions, and a wide range of therapeutic effects against depression. PURPOSE In this review, we appraised preclinical and limited clinical evidence to fully discuss the anti-depression capacity of verbascoside and its holistic characteristics that can contribute to better management of depression in vivo and in vitro models, as well as, its toxicities and medicinal value. METHODS This review was prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A systematic review of 32 preclinical trials published up to April 2023, combined with a comprehensive bioinformatics analysis of network pharmacology and molecular docking, was conducted to elucidate the antidepressant mechanism of action of verbascoside. Studies included in the systematic review were obtained from 7 electronic databases: PubMed, Scopus, Web of Science, Cochrane, ResearchGate, ScienceDirect, and Google Scholar. RESULTS Studies on the antidepressant effects of verbascoside showed that various pharmacological mechanisms and pathways, such as modulating the levels of monoamine neurotransmitters, inhibiting hypothalamic-pituitary-adrenal (HPA) axis hyperfunction and promoting neuroprotection may be involved in the process of its action against depression. Verbascoside promotes dopamine (DA) biosynthesis by promoting the expression of tyrosine hydroxylase mRNA and protein, upregulates the expression of 5-hydroxytryptamine receptor 1B (5-HT1B), prominence protein, microtubule-associated protein 2 (MAP2), hemeoxygenase-1 (HO-1), SQSTM1, Recombinant Autophagy Related Protein 5 (ATG5) and Beclin-1, and decreases the expression of caspase-3 and a-synuclein, thus exerting antidepressant effects. We identified seven targets (CCL2, FOS, GABARAPL1, CA9, TYR, CA12, and SQSTM1) and three signaling pathways (glutathione metabolism, metabolism of xenobiotics by cytochrome P450, fluid shear stress and atherosclerosis) as potential molecular biological sites for verbascoside. CONCLUSIONS These findings provide strong evidence that verbascoside exerts its antidepressant effects through various pharmacological mechanisms. However, further multicentre clinical case-control and molecularly targeted fishing studies are required to confirm the clinical efficacy of verbascoside and its underlying direct targets.
Collapse
Affiliation(s)
- Yi Zhao
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Sijia Wang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jin Pan
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ke Ma
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
6
|
Lei P, Lü J, Yao T, Zhang P, Chai X, Wang Y, Jiang M. Verbascoside exerts an anti-atherosclerotic effect by regulating liver glycerophospholipid metabolism. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
7
|
Cortés-Fernández I, Sureda A, Adrover M, Caprioli G, Maggi F, Gil-Vives L, Capó X. Antioxidant and anti-inflammatory potential of rhizome aqueous extract of sea holly (Eryngium maritimum L.) on Jurkat cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116120. [PMID: 36610674 DOI: 10.1016/j.jep.2022.116120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Eryngium is known for producing a wide range of bioactive compounds with proved medicinal properties. In the last years, research has focused on E. maritimum, with previous studies reporting anticancer, antimicrobial, antioxidant, and anti-inflammatory activities. Ethnobotanical literature suggests that it has been traditionally used to treat a wide range of illnesses, having antitussive, diuretic and aphrodisiac properties. Being rhizome one of the most bioactive organs, much of the available references from traditional uses suggest that it has been specifically used to treat renal diseases. In this sense, inflammation and oxidative processes play a major role in kidney dysfunctions, which could be associated to the mechanism of action of the plant extracts. AIM OF THE STUDY The main aim of the study was to investigate the effects of E. maritimum rhizome extract on the antioxidant and inflammatory response in human immune cells. MATERIAL AND METHODS Rhizome extracts were obtained from plants growing in Mallorca (Balearic Islands), and its composition was determined using HPLC-DAD, highlighting simple phenolic compounds such as trans-ferulic acid, catechin, chlorogenic acid, epicatechin and rosmarinic acid as the major constituents. Total antioxidant capacity was determined using the FRAP assay. Jurkat cells were cultured to analyse cytotoxicity by cell viability assay. In parallel, cells were stimulated with phytohemagglutinin and treated with different extract concentrations. Gene and protein expression, as well as nitrite and cytokine levels were evaluated as indicators of metabolic responses. RESULTS The plant extract showed a high diversity of pharmacologically bioactive compounds with potential therapeutic uses. The extract presented null cytotoxicity and exerted antioxidant and anti-inflammatory effects on Jurkat cells by inducing an antioxidant response and reducing cytokine and nitric oxide release and the expression of pro-inflammatory genes. CONCLUSION The present findings suggest that E. maritimum is a promising phytotherapeutic species because of its strong antioxidant and anti-inflammatory potential, which could explain some of its traditional uses.
Collapse
Affiliation(s)
- Iván Cortés-Fernández
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands (UIB), E- 07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands-IUNICS, E-07122, Palma de Mallorca, Balearic Islands, Spain; Health Research Institute of Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| | - Miquel Adrover
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut d'Investigació Sanitària Illes Balears (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra, Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain.
| | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, 62032, Camerino, Italy.
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, 62032, Camerino, Italy.
| | - Lorenzo Gil-Vives
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands (UIB), E- 07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Xavier Capó
- Research Group on Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands-IUNICS, E-07122, Palma de Mallorca, Balearic Islands, Spain; Translational Research in Aging and Longevity (TRIAL) group, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain.
| |
Collapse
|
8
|
Bioactive Compounds (BACs): A Novel Approach to Treat and Prevent Cardiovascular Diseases. Curr Probl Cardiol 2023; 48:101664. [PMID: 36841315 DOI: 10.1016/j.cpcardiol.2023.101664] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023]
Abstract
Cardiovascular diseases (CVDs) are one of the leading disorders of serious death and cause huge economic loss to patients and society. It is estimated that about 18 million people have a high death ratio due to the incidence of CVDs such as (stroke, coronary heart disease, and non-ischemic heart failure). Bioactive compounds (BACs) are healthy nutritional ingredients providing beneficial effects and nutritional value to the human body. Epidemiological studies strongly shed light on several bioactive compounds that are favorable candidates for CVDs treatment. Globally, the high risk of CVDs and related results on human body parts made them a serious scenario in all communities. In this present review, we intend to collect previously published data concerned over the years concerning green-colored foods and their BACs that aim to work in the prevention, diagnosis, and/or systematic treating CVDs. We also comprehensively discussed the oral delivery of several bioactive compounds derived from fruits and vegetables and their bioavailability and physiological effects on human health. Moreover, their important characteristics, such as anti-inflammatory, lowering blood pressure, anti-obesity, antioxidant, anti-diabetics, lipid-lowering responses, improving atherosclerosis, and cardioprotective properties, will be elaborated further. More precisely, medicinal plants' advantages and multifaceted applications have been reported in this literature to treat CVDs. To the best of our knowledge, this is our first attempt that will open a new window in the area of CVDs with the opportunity to achieve a better prognosis and effective treatment for CVDs.
Collapse
|
9
|
Andersen J, Bosetti M, Mancini A, Solovyev P, Nardin T, Bontempo L, Larcher R, Franciosi E. Improvement of Caciotta-like cheese nutritional value by means of enrichment with blackcurrant ( Ribes nigrum) and Cornelian cherry ( Cornus mas). Front Nutr 2023; 9:1023490. [PMID: 36846023 PMCID: PMC9950642 DOI: 10.3389/fnut.2022.1023490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/08/2022] [Indexed: 02/12/2023] Open
Abstract
Introduction In this study, we supplemented models of Caciotta-like cheese with blackcurrant (Ribes nigrum) and Cornelian cherry (Cornus mas), as they have a high content of polyphenols, known as phytochemicals associated with health benefits. We evaluated the microbial composition, organoleptic aspects, total phenolic content, and chemical composition of model cheeses enriched with blackcurrant and Cornelian cherry. Methods Two different suppliers have been tested: a conventional and an organic one. Two different conditions of preparation (freeze-dried and not freeze-dried) were tested in two different amounts (0.3 and 0.6% dry weight w/v milk volume). Polyphenols were determined using Folin-Ciocalteu reaction and spectrometry; microbial community was determined with selective 24 media and plate counts; composition was determined using nuclear magnetic resonance spectrometry. Organoleptic tests with an untrained panel have been performed. Results The enrichments with blackcurrant and Cornelian cherry increased the total polyphenol content in model cheeses, in particular, when blackcurrant and Cornelian cherry were from conventional farming. Blackcurrant-enriched cheeses showed higher counts of lactic acid bacteria, higher levels of organic acids, amino acids, gamma-aminobutyric acid, histamine, and lower amount of monosaccharides deriving from bacterial lactose fermentation in cheese, suggesting a positive effect of blackcurrant compounds on the growth and activity of lactic acid bacteria. The enrichments did not affect the acceptance of the cheese, neither by blackcurrant nor by Cornelian cherry incorporation, with the exception of the appearance. Discussion Overall, we showed that cheeses enriched with blackcurrant or Cornelian cherry from conventional farming increased the bioactive potential of the dairy product without having an adverse effect on the microbial community, physiochemical properties, or organoleptic properties.
Collapse
Affiliation(s)
- Jonas Andersen
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Maddalena Bosetti
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Andrea Mancini
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Pavel Solovyev
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Tiziana Nardin
- Technology Transfer Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Luana Bontempo
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Roberto Larcher
- Technology Transfer Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Elena Franciosi
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy,*Correspondence: Elena Franciosi ✉
| |
Collapse
|
10
|
Torres‐Fuentes C, Suárez M, Aragonès G, Mulero M, Ávila‐Román J, Arola‐Arnal A, Salvadó MJ, Arola L, Bravo FI, Muguerza B. Cardioprotective Properties of Phenolic Compounds: A Role for Biological Rhythms. Mol Nutr Food Res 2022; 66:e2100990. [PMID: 35279936 PMCID: PMC9786928 DOI: 10.1002/mnfr.202100990] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/25/2022] [Indexed: 12/30/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of deaths worldwide and their prevalence is continuously increasing. Available treatments may present several side effects and therefore the development of new safer therapeutics is of interest. Phenolic compounds have shown several cardioprotective properties helpful in reducing different CVD risk factors such as inflammation, elevated blood pressure, hyperlipidemia, or endothelial dysfunction. These factors are significantly influenced by biological rhythms which are in fact emerging as key modulators of important metabolic and physiological processes. Thus, increased events of CVD have been observed under circadian rhythm disruption or in winter versus other seasons. These rhythms can also affect the functionality of phenolic compounds. Indeed, different effects have been observed depending on the administration time or under different photoperiods. Therefore, in this review the focus will be on the potential of phenolic compounds as therapeutics to prevent CVD via biological rhythm modulation.
Collapse
Affiliation(s)
- Cristina Torres‐Fuentes
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Manuel Suárez
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Gerard Aragonès
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Miquel Mulero
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Javier Ávila‐Román
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Anna Arola‐Arnal
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Maria Josepa Salvadó
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Lluís Arola
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Francisca Isabel Bravo
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Begoña Muguerza
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| |
Collapse
|
11
|
Agampodi VA, Katavic P, Collet C, Collet T. Antibacterial and Anti-inflammatory Activity of Extracts and Major Constituents Derived from Stachytarpheta indica Linn. Leaves and Their Potential Implications for Wound Healing. Appl Biochem Biotechnol 2022; 194:6213-6254. [PMID: 35904675 DOI: 10.1007/s12010-021-03635-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/19/2021] [Indexed: 11/02/2022]
Abstract
Wounds of various types continue to have a severe socioeconomic impact on the cost of health care. Globally, there has been increased interest surrounding the identification of bioactive compounds that promote or modulate the wound healing process. Stachytarpheta indica Linn. is traditionally used to heal wounds and relieve inflammation; however, the theorised pharmacological properties have not yet been scientifically validated. In this study, dried and ground plant leaves were extracted with water and methanol, which were then subjected to various analyses. The antimicrobial activity of the plant extracts and isolated compounds was determined using well diffusion assays, while the minimum inhibitory concentrations were determined with a colorimetric assay. Morphological changes of human keratinocytes in response to plant extracts were observed with differential interference contrast microscope imaging. Cell viability, proliferation, and migratory effects post-treatment with the plant extracts were also evaluated via colorimetric cytotoxicity assays and a real-time cell analyser protocol. Anti-inflammatory effects of plant extracts and isolated compounds were evaluated by flow cytometry and cyclooxygenase and lipoxygenase enzyme inhibition assays. Three active compounds, i.e. ipolamiide, verbascoside and iso-verbascoside, were isolated from S. indica leaves. Verbascoside demonstrated broad-range antibacterial activity and imposed strong inhibition at 9.77 μg/mL against Staphylococci spp. S. indica extracts (0.1-0.2 mg/mL) were shown to improve human keratinocyte proliferation up to 60% and induce morphological changes by producing cytoplasmic projections at concentrations higher than 0.4 mg/mL. Plant extracts (6.25-100 μg/mL) and individual compounds (3.125-50 μg/mL) elicited strong anti-inflammatory effects by suppressing the expression of interleukin-8 and inhibiting cyclooxygenase-1 and 5-lipoxygenase enzymes. Collectively, these results indicate that plant extracts and isolated compounds derived from S. indica have the potential to inhibit bacterial growth, promote tissue regeneration and reduce inflammation, hence, potentially providing the basis for a novel therapeutic for the treatment of wounds.
Collapse
Affiliation(s)
- Vajira Asela Agampodi
- Innovative Medicines Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia.
| | - Peter Katavic
- Innovative Medicines Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Christopher Collet
- Innovative Medicines Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Trudi Collet
- Innovative Medicines Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
| |
Collapse
|
12
|
Pillai SC, Borah A, Jacob EM, Kumar DS. Nanotechnological approach to delivering nutraceuticals as promising drug candidates for the treatment of atherosclerosis. Drug Deliv 2021; 28:550-568. [PMID: 33703990 PMCID: PMC7954496 DOI: 10.1080/10717544.2021.1892241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is Caesar's sword, which poses a huge risk to the present generation. Understanding the atherosclerotic disease cycle would allow ensuring improved diagnosis, better care, and treatment. Unfortunately, a highly effective and safe way of treating atherosclerosis in the medical community remains a continuous challenge. Conventional treatments have shown considerable success, but have some adverse effects on the human body. Natural derived medications or nutraceuticals have gained immense popularity in the treatment of atherosclerosis due to their decreased side effects and toxicity-related issues. In hindsight, the contribution of nutraceuticals in imparting enhanced clinical efficacy against atherosclerosis warrants more experimental evidence. On the other hand, nanotechnology and drug delivery systems (DDS) have revolutionized the way therapeutics are performed and researchers have been constantly exploring the positive effects that DDS brings to the field of therapeutic techniques. It could be as exciting as ever to apply nano-mediated delivery of nutraceuticals as an additional strategy to target the atherosclerotic sites boasting high therapeutic efficiency of the nutraceuticals and fewer side effects.
Collapse
Affiliation(s)
- Sindhu C. Pillai
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - Ankita Borah
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - Eden Mariam Jacob
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - D. Sakthi Kumar
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| |
Collapse
|
13
|
Şenol H, Tulay P, Ergören MÇ, Hanoğlu A, Çalış İ, Mocan G. Cytotoxic Effects of Verbascoside on MCF-7 and MDA-MB-231. Turk J Pharm Sci 2021; 18:637-644. [PMID: 34719192 DOI: 10.4274/tjps.galenos.2021.36599] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objectives Verbascoside, also known as acteoside/kusaginin, has attracted a great attention due to its pharmacological features. In this study, we aimed to determine the cytotoxic effects of pure verbascoside isolated from Phlomis nissolii L. plant in both MCF-7 and MDA-MB-231 cell lines in vitro. Materials and Methods MCF-7 and MDA-MB 231 cells were treated with verbascoside (100, 48, 25, 10, 1, 0.5, and 0.1 μM) for 24, 48, and 72 hours. Cytotoxic effect of verbascoside in MCF-7 and MDA-MB-231 cells was assessed using TEBU-BIO cell counting kit 8. Results and Conclusion IC50 values for 24, 48, and 72 h verbascoside exposure of MCF-7 cells were determined as 0.127, 0.2174, and 0.2828 μM, respectively. R2 values were calculated as 0.9630, 0.8789 and 0.8752, respectively. Two-Way ANOVA multiple comparison test results showed that 100 μM verbascoside has the highest cytotoxic effect on MCF-7 breast cancer (BC) cells after 72 h of exposure. IC50 values for 24, 48 and 72 h verbascoside exposure of MDA-MB 231 cells were determined as 0.1597, 0.2584 and 0.2563 μM, respectively and R2 values were calculated as 0.8438, 0.5107 and 0.9203, respectively. Two-Way ANOVA multiple comparisons test results showed that 100 μM verbascoside has the highest cytotoxic effect on MDA-MB 231 BC cells after 24, 48 and 72 h of exposure.
Collapse
Affiliation(s)
- Hülya Şenol
- Near East University Faculty of Medicine, Department of Medical Biology, Nicosia, North Cyprus
| | - Pınar Tulay
- Near East University Faculty of Medicine, Department of Medical Genetics, Nicosia, North Cyprus,Near East University, Desam Research Institute, Nicosia, Cyprus
| | - Mahmut Çerkez Ergören
- Near East University Faculty of Medicine, Department of Medical Genetics, Nicosia, North Cyprus,Near East University, Desam Research Institute, Nicosia, Cyprus
| | - Azmi Hanoğlu
- Near East University Faculty of Pharmacy, Department of Pharmacognosy, Nicosia, North Cyprus
| | - İhsan Çalış
- Near East University Faculty of Pharmacy, Department of Pharmacognosy, Nicosia, North Cyprus
| | - Gamze Mocan
- Near East University Faculty of Medicine, Department of Medical Pathology, Nicosia, North Cyprus
| |
Collapse
|
14
|
Bertelli A, Biagi M, Corsini M, Baini G, Cappellucci G, Miraldi E. Polyphenols: From Theory to Practice. Foods 2021; 10:2595. [PMID: 34828876 PMCID: PMC8621732 DOI: 10.3390/foods10112595] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The importance of polyphenols in human health is well known; these compounds are common in foods, such as fruits, vegetables, spices, extra virgin olive oil and wine. On the other hand, the different factors that modulate the biological activity of these compounds are less well known. Conceptualization of the work: In this review we took into account about 200 relevant and recent papers on the following topics: "polyphenols bioavailability", "polyphenols matrix effect", "food matrix effect", "polyphenols-cytochromes interaction", after having reviewed and updated information on chemical classification and main biological properties of polyphenols, such as the antioxidant, anti-radical and anti-inflammatory activity, together with the tricky link between in vitro tests and clinical trials. KEY FINDINGS the issue of polyphenols bioavailability and matrix effect should be better taken into account when health claims are referred to polyphenols, thus considering the matrix effect, enzymatic interactions, reactions with other foods or genetic or gender characteristics that could interfere. We also discovered that in vitro studies often underrate the role of phytocomplexes and thus we provided practical hints to describe a clearer way to approach an investigation on polyphenols for a more resounding transfer to their use in medicine.
Collapse
Affiliation(s)
- Alberto Bertelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy; (M.B.); (G.B.); (G.C.)
| | - Maddalena Corsini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Giulia Baini
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy; (M.B.); (G.B.); (G.C.)
| | - Giorgio Cappellucci
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy; (M.B.); (G.B.); (G.C.)
| | - Elisabetta Miraldi
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy; (M.B.); (G.B.); (G.C.)
| |
Collapse
|
15
|
Abstract
As inflammatory lifestyle factors become more prevalent and as the population ages, the management of inflammation will become increasingly relevant. Plant polyphenols are powerful antioxidants that are known to have beneficial effects in a number of diseases with an inflammatory or oxidative component, such as malignancy, cardiovascular disease and arthritis. Polyphenol-rich sugarcane extract (PRSE) is a novel preparation with high concentrations of polyphenolic antioxidants, with some evidence to show benefits in health, but there is limited research investigating its effects on immunomodulation. This study determined the effects of PRSE on human monocyte cells in vitro. We show that PRSE has an immunomodulatory effect in U937 human monocyte cells, altering the expression of cellular surface markers, with an increased expression of CD16 and CD11b, as well as small changes in CD40, CD80, CD80, CD206 and MHCI. It also modulates the profile of secreted cytokines, increasing IL-1β, TNFα, IL-6, IL-8, IL-4 and IL-10. These changes are consistent with the advanced differentiation of the monocyte, as well as the switch from the M1 to M2 phenotype in macrophages. We also demonstrate that this effect is likely to be independent of the NF-κB signalling pathway, suggesting that other mechanisms drive this effect. PRSE exerts an immunomodulatory effect on U937 monocytes in vitro, potentially facilitating the conversion from inflammation to healing. Future studies should identify specific mechanisms underlying the changes and evaluate their effectiveness in animal models of disease.
Collapse
|
16
|
Carrara M, Kelly MT, Roso F, Larroque M, Margout D. Potential of Olive Oil Mill Wastewater as a Source of Polyphenols for the Treatment of Skin Disorders: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7268-7284. [PMID: 34180235 DOI: 10.1021/acs.jafc.1c00296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Current trends toward naturally occurring compounds of therapeutic interest have contributed to an increasing number of studies on olive oil phenolics in the treatment of diseases with oxidative and inflammatory origins. Recent focus has been on olive oil wastewater, which is richer in phenolic compounds than olive oil itself. In this review, we present findings demonstrating the potential use of olive mill wastewater in dermatology. Particular attention is given to compounds with proven benefits in topical pharmacology: caffeic and ferulic acids, tyrosol and hydroxytyrosol, verbascoside, and oleuropein. The review is divided into different sections: inflammatory skin diseases, microbial effects, wound healing in addition to the antimelanoma properties of olive mill waste phenolics, and their potential in sun protection agents. There is strong evidence to support further studies into the valorization of this abundant and sustainable source of phenolic compounds for use in dermatology and dermo-cosmetic preparations.
Collapse
Affiliation(s)
- Morgane Carrara
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France
| | - Mary T Kelly
- Faculté de Pharmacie, Université Montpellier, 15 Avenue Charles Flahault, 34093 Montpellier, France
| | - Florence Roso
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France
| | - Michel Larroque
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France
| | - Delphine Margout
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France
| |
Collapse
|
17
|
Effects of Folic Acid Supplementation on Inflammatory Markers: A Grade-Assessed Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials. Nutrients 2021; 13:nu13072327. [PMID: 34371837 PMCID: PMC8308638 DOI: 10.3390/nu13072327] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022] Open
Abstract
It has been theorized that folic acid supplementation improves inflammation. However, its proven effects on inflammatory markers are unclear as clinical studies on this topic have produced inconsistent results. To bridge this knowledge gap, this systematic review and meta-analysis of randomized controlled trials (RCTs) aimed to evaluate the effects of folic acid supplementation on serum concentrations of the inflammatory markers C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Methods: To identify eligible RCTs, a systematic search up to April 2021 was completed in PubMed/Medline, Scopus, Web of Science, EMBASE, Cochrane databases, and Google Scholar using relevant keywords. A fix or random-effects model was utilized to estimate the weighted mean difference (WMD) and 95% confidence interval (95% CI). Results: Twelve RCTs were included in the present meta-analysis. The pooled analysis revealed that serum concentrations of CRP (WMD: −0.59 mg/L, 95% CI −0.85 to −0.33, p < 0.001) were significantly reduced following folic acid supplementation compared to placebo, but did not affect serum concentrations of IL-6 (WMD: −0.12, 95% CI −0.95 to 0.72 pg/mL, p = 0.780) or TNF-α (WMD: −0.18, 95% CI −0.86 to 0.49 pg/mL, p = 0.594). The dose–response analysis demonstrated a significant relationship between an elevated dosage of folic acid supplementation and lower CRP concentrations (p = 0.002). Conclusions: We found that folic acid supplementation may improve inflammation by attenuating serum concentrations of CRP but without significant effects on IL-6 and TNF-α. Future RCTs including a larger number of participants and more diverse populations are needed to confirm and expand our findings.
Collapse
|
18
|
Sun Y, He L, Wang W, Wang T, Hua W, Li T, Wang L, Gao T, Chen F, Tang L. Polyphenols from Penthorum chinense Pursh. Attenuates high glucose-induced vascular inflammation through directly interacting with Keap1 protein. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113617. [PMID: 33307053 DOI: 10.1016/j.jep.2020.113617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/04/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Penthorum chinense Pursh is used for promoting diuresis and alleviating "heat"-associated disorders, which were considered to be related to diabetic in Traditional Chinese Medicine (TCM). AIMS OF THIS STUDY Here, we aimed to evaluate the ability and underlying mechanism of the ethyl acetate fraction of Penthorum chinense Pursh stems (PSE) to inhibit vascular inflammation in high glucose (HG)-induced human umbilical vein endothelial cells (HUVEC cells). MATERIALS AND METHODS HUVEC cells were pre-treated with PSE following HG treatment. The cell viability, mitochondrial membrane potential (MMP), lactate dehydrogenase (LDH) levels, reactive oxygen species (ROS) generation were analyzed. Inflammatory, and antioxidant,-related proteins were analyzed using western blotting. Molecular docking and drug affinity targeting experiments (DARTS) were utilized to analyze and verify the binding of the Keap1 protein and polyphenols of PSE. RESULTS HG can significantly increase the activity of lactic dehydrogenase (LDH), destroy the mitochondrial membrane potential (MMP), and promote the generation of reactive oxygen species (ROS), while PSE treatment reversed these changes. Mechanistically, PSE inhibited NF-κB and inflammatory cytokines activation induced by HG through activating the expression of Nrf2 and its downstream antioxidant proteins Heme oxygenase-1 (HO-1), NAD (P)H Quinone Dehydrogenase 1 (NQO1), Glutamate cysteine ligase catalytic subunit (GCLC), Glutamate-cysteine ligase modifier (GCLM). Further study indicated that PSE activated Nrf2 antioxidant pathway mainly by the binding of primary polyphenols from PSE and the Keap1 protein. CONCLUSION Taken together, the present data highlight the health benefits of polyphenols from Penthorum chinense Pursh. regarding diabetes, proving it to be an important source of health care products. Besides, binding of the Keap1 protein may be an effective strategy to activate Nrf2 antioxidant pathway and prevent diabetes.
Collapse
Affiliation(s)
- Yiran Sun
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Libo He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wang Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Taoyu Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Wan Hua
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Tingting Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Li Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Tingyan Gao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Fang Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Lin Tang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China.
| |
Collapse
|
19
|
Coppari S, Colomba M, Fraternale D, Brinkmann V, Romeo M, Rocchi MBL, Di Giacomo B, Mari M, Guidi L, Ramakrishna S, Ventura N, Albertini MC. Antioxidant and Anti-Inflammaging Ability of Prune ( Prunus Spinosa L.) Extract Result in Improved Wound Healing Efficacy. Antioxidants (Basel) 2021; 10:antiox10030374. [PMID: 33801467 PMCID: PMC7999414 DOI: 10.3390/antiox10030374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Prunus spinosa L. fruit (PSF) ethanol extract, showing a peculiar content of biologically active molecules (polyphenols), was investigated for its wound healing capacity, a typical feature that declines during aging and is negatively affected by the persistence of inflammation and oxidative stress. To this aim, first, PSF anti-inflammatory properties were tested on young and senescent LPS-treated human umbilical vein endothelial cells (HUVECs). As a result, PSF treatment increased miR-146a and decreased IRAK-1 and IL-6 expression levels. In addition, the PSF antioxidant effect was validated in vitro with DPPH assay and confirmed by in vivo treatments in C. elegans. Our findings showed beneficial effects on worms’ lifespan and healthspan with positive outcomes on longevity markers (i.e., miR-124 upregulation and miR-39 downregulation) as well. The PSF effect on wound healing was tested using the same cells and experimental conditions employed to investigate PSF antioxidant and anti-inflammaging ability. PSF treatment resulted in a significant improvement of wound healing closure (ca. 70%), through cell migration, both in young and older cells, associated to a downregulation of inflammation markers. In conclusion, PSF extract antioxidant and anti-inflammaging abilities result in improved wound healing capacity, thus suggesting that PSF might be helpful to improve the quality of life for its beneficial health effects.
Collapse
Affiliation(s)
- Sofia Coppari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.C.); (M.C.); (D.F.); (M.B.L.R.); (B.D.G.); (M.M.); (L.G.)
| | - Mariastella Colomba
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.C.); (M.C.); (D.F.); (M.B.L.R.); (B.D.G.); (M.M.); (L.G.)
| | - Daniele Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.C.); (M.C.); (D.F.); (M.B.L.R.); (B.D.G.); (M.M.); (L.G.)
| | - Vanessa Brinkmann
- Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University and the IUF- Leibniz Research Institute for Environmental Medicine Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (N.V.)
| | - Margherita Romeo
- Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University and the IUF- Leibniz Research Institute for Environmental Medicine Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (N.V.)
| | - Marco Bruno Luigi Rocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.C.); (M.C.); (D.F.); (M.B.L.R.); (B.D.G.); (M.M.); (L.G.)
| | - Barbara Di Giacomo
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.C.); (M.C.); (D.F.); (M.B.L.R.); (B.D.G.); (M.M.); (L.G.)
| | - Michele Mari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.C.); (M.C.); (D.F.); (M.B.L.R.); (B.D.G.); (M.M.); (L.G.)
| | - Loretta Guidi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.C.); (M.C.); (D.F.); (M.B.L.R.); (B.D.G.); (M.M.); (L.G.)
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore 119077, Singapore;
| | - Natascia Ventura
- Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University and the IUF- Leibniz Research Institute for Environmental Medicine Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (N.V.)
| | - Maria Cristina Albertini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.C.); (M.C.); (D.F.); (M.B.L.R.); (B.D.G.); (M.M.); (L.G.)
- Correspondence: ; Tel.: +39-0722-305260
| |
Collapse
|
20
|
Immunomodulatory Effects of Dietary Polyphenols. Nutrients 2021; 13:nu13030728. [PMID: 33668814 PMCID: PMC7996139 DOI: 10.3390/nu13030728] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
Functional and nutraceutical foods provide an alternative way to improve immune function to aid in the management of various diseases. Traditionally, many medicinal products have been derived from natural compounds with healing properties. With the development of research into nutraceuticals, it is becoming apparent that many of the beneficial properties of these compounds are at least partly due to the presence of polyphenols. There is evidence that dietary polyphenols can influence dendritic cells, have an immunomodulatory effect on macrophages, increase proliferation of B cells, T cells and suppress Type 1 T helper (Th1), Th2, Th17 and Th9 cells. Polyphenols reduce inflammation by suppressing the pro-inflammatory cytokines in inflammatory bowel disease by inducing Treg cells in the intestine, inhibition of tumor necrosis factor-alpha (TNF-α) and induction of apoptosis, decreasing DNA damage. Polyphenols have a potential role in prevention/treatment of auto-immune diseases like type 1 diabetes, rheumatoid arthritis and multiple sclerosis by regulating signaling pathways, suppressing inflammation and limiting demyelination. In addition, polyphenols cause immunomodulatory effects against allergic reaction and autoimmune disease by inhibition of autoimmune T cell proliferation and downregulation of pro-inflammatory cytokines (interleukin-6 (IL-6), IL-1, interferon-γ (IFN-γ)). Herein, we summarize the immunomodulatory effects of polyphenols and the underlying mechanisms involved in the stimulation of immune responses.
Collapse
|
21
|
Ali MY, Sina AAI, Khandker SS, Neesa L, Tanvir EM, Kabir A, Khalil MI, Gan SH. Nutritional Composition and Bioactive Compounds in Tomatoes and Their Impact on Human Health and Disease: A Review. Foods 2020; 10:E45. [PMID: 33375293 PMCID: PMC7823427 DOI: 10.3390/foods10010045] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Tomatoes are consumed worldwide as fresh vegetables because of their high contents of essential nutrients and antioxidant-rich phytochemicals. Tomatoes contain minerals, vitamins, proteins, essential amino acids (leucine, threonine, valine, histidine, lysine, arginine), monounsaturated fatty acids (linoleic and linolenic acids), carotenoids (lycopene and β-carotenoids) and phytosterols (β-sitosterol, campesterol and stigmasterol). Lycopene is the main dietary carotenoid in tomato and tomato-based food products and lycopene consumption by humans has been reported to protect against cancer, cardiovascular diseases, cognitive function and osteoporosis. Among the phenolic compounds present in tomato, quercetin, kaempferol, naringenin, caffeic acid and lutein are the most common. Many of these compounds have antioxidant activities and are effective in protecting the human body against various oxidative stress-related diseases. Dietary tomatoes increase the body's level of antioxidants, trapping reactive oxygen species and reducing oxidative damage to important biomolecules such as membrane lipids, enzymatic proteins and DNA, thereby ameliorating oxidative stress. We reviewed the nutritional and phytochemical compositions of tomatoes. In addition, the impacts of the constituents on human health, particularly in ameliorating some degenerative diseases, are also discussed.
Collapse
Affiliation(s)
- Md Yousuf Ali
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (M.Y.A.); (S.S.K.); (A.K.)
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka 1344, Bangladesh
| | - Abu Ali Ibn Sina
- Center for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Shahad Saif Khandker
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (M.Y.A.); (S.S.K.); (A.K.)
| | - Lutfun Neesa
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh;
| | - E. M. Tanvir
- Veterinary Drug Residue Analysis Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Savar, Dhaka 1349, Bangladesh;
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Alamgir Kabir
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (M.Y.A.); (S.S.K.); (A.K.)
| | - Md Ibrahim Khalil
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (M.Y.A.); (S.S.K.); (A.K.)
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka 1344, Bangladesh
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| |
Collapse
|
22
|
Hussain T, Murtaza G, Yang H, Kalhoro MS, Kalhoro DH. Exploiting Anti-Inflammation Effects of Flavonoids in Chronic Inflammatory Diseases. Curr Pharm Des 2020; 26:2610-2619. [PMID: 32268861 DOI: 10.2174/1381612826666200408101550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/08/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Inflammation is a complex response of the host defense system to different internal and external stimuli. It is believed that persistent inflammation may lead to chronic inflammatory diseases such as, inflammatory bowel disease, neurological and cardiovascular diseases. Oxidative stress is the main factor responsible for the augmentation of inflammation via various molecular pathways. Therefore, alleviating oxidative stress is effective a therapeutic option against chronic inflammatory diseases. METHODS This review article extends the knowledge of the regulatory mechanisms of flavonoids targeting inflammatory pathways in chronic diseases, which would be the best approach for the development of suitable therapeutic agents against chronic diseases. RESULTS Since the inflammatory response is initiated by numerous signaling molecules like NF-κB, MAPK, and Arachidonic acid pathways, their encountering function can be evaluated with the activation of Nrf2 pathway, a promising approach to inhibit/prevent chronic inflammatory diseases by flavonoids. Over the last few decades, flavonoids drew much attention as a potent alternative therapeutic agent. Recent clinical evidence has shown significant impacts of flavonoids on chronic diseases in different in-vivo and in-vitro models. CONCLUSION Flavonoid compounds can interact with chronic inflammatory diseases at the cellular level and modulate the response of protein pathways. A promising approach is needed to overlook suitable alternative compounds providing more therapeutic efficacy and exerting fewer side effects than commercially available antiinflammatory drugs.
Collapse
Affiliation(s)
- Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB), P.O. Box: 128, Jhang Road, Faisalabad, 38000, Pakistan,Pakistan Institute of Engineering and Applied Sciences (PIEAS) Nilore, Islamabad, Pakistan
| | - Ghulam Murtaza
- Shaheed Benazir Bhutto University of Veterinary & Animal Sciences (SBBUVAS), Sakrand, 67210, Sindh, Pakistan
| | - Huansheng Yang
- Hunan International Joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Muhammad S Kalhoro
- Food Engineering and Bioprocess Technology, Asian Institute of Technology, Bangkok, 12120, Thailand
| | - Dildar H Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh
Agriculture University, Tandojam, Sindh, 70050, Pakistan
| |
Collapse
|
23
|
Polyphenols and Other Bioactive Compounds of Sideritis Plants and Their Potential Biological Activity. Molecules 2020; 25:molecules25163763. [PMID: 32824863 PMCID: PMC7464829 DOI: 10.3390/molecules25163763] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/05/2023] Open
Abstract
Due to the growing problem of obesity associated with type 2 diabetes and cardiovascular diseases, causes of obesity are extensively investigated. In addition to a high caloric diet and low physical activity, gut microbiota disturbance may have a potential impact on excessive weight gain. Some reports indicate differences in the composition of the intestinal microflora of obese people in comparison to lean. Bioactive compounds of natural origin with beneficial and multifaceted effects on the body are more frequently used in prevention and treatment of many metabolic diseases including obesity. Sideritis scardica is traditionally consumed as mountain tea in the Balkans to strengthen the body and improve mood. Many reports indicate a positive effect on digestive system, weight loss, and prevention of insulin resistance. Additionally, it exhibits antioxidant activity and anti-inflammatory effects. The positive effect of Sideritis scardica extracts on memory and general cognitive abilities is indicated as well. The multilevel positive effect on the body appears to originate from the abundant occurrence of phenolic compounds, especially phenolic acids in Sideritis scardica extracts. However, mechanisms underlying their action require careful discussion and further research. Therefore, the objective of this review is to summarize the available knowledge on the role and mechanism of action of biologically active compounds of Sideritis scardica and other related species from the genus Sideritis.
Collapse
|
24
|
Zhang J, Liu S, Xia L, Wen Z, Hu N, Wang T, Deng X, He J, Wang J. Verbascoside Protects Mice From Clostridial Gas Gangrene by Inhibiting the Activity of Alpha Toxin and Perfringolysin O. Front Microbiol 2020; 11:1504. [PMID: 32760362 PMCID: PMC7371946 DOI: 10.3389/fmicb.2020.01504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 06/10/2020] [Indexed: 01/24/2023] Open
Abstract
Gas gangrene, caused mainly by the anaerobic bacterium Clostridium perfringens (C. perfringens), causes death within 48 h of onset. Limited therapeutic strategies are available, and it is associated with extremely high mortality. Both C. perfringens alpha toxin (CPA) and perfringolysin O (PFO) are important virulence factors in the development of gas gangrene, suggesting that they are therapeutic targets. Here, we found that verbascoside, a phenylpropanoid glycoside widely distributed in Chinese herbal medicines, could effectively inhibit the biological activity of both CPA and PFO in hemolytic assays. The oligomerization of PFO was remarkably inhibited by verbascoside. Although no antibacterial activity was observed, verbascoside treatment protected Caco-2 cells from the damage caused by CPA and PFO. Additionally, infected mice treated with verbascoside showed significantly alleviated damage, reduced bacterial burden, and decreased mortality. In summary, verbascoside has an effective therapeutic effect against C. perfringens virulence both in vitro and in vivo by simultaneously targeting CPA and PFO. Our results provide a promising strategy and a potential lead compound for C. perfringens infections, especially gas gangrene.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shui Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lining Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, China
| | - Zhongmei Wen
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Naiyu Hu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Tingting Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiakang He
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.,College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jianfeng Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
25
|
Laouali N, Berrandou T, A. Rothwell J, Shah S, El Fatouhi D, Romana Mancini F, Boutron-Ruault MC, Fagherazzi G. Profiles of Polyphenol Intake and Type 2 Diabetes Risk in 60,586 Women Followed for 20 Years: Results from the E3N Cohort Study. Nutrients 2020; 12:nu12071934. [PMID: 32610657 PMCID: PMC7400616 DOI: 10.3390/nu12071934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022] Open
Abstract
Most studies on dietary polyphenol intake and type 2 diabetes (T2D) risk have focused on total or specific subclasses of polyphenols. Since polyphenols are often consumed simultaneously, the joint effect of an intake of multiple subclasses should be explored. We aimed to identify profiles of the dietary polyphenol subclasses intake associated with T2D. A total of 60,586 women from the Etude Epidémiologique auprès de femmes de l'Education Nationale (E3N) cohort study were followed for 20 years between 1993 and 2014. T2D cases were identified and validated. The individual energy-adjusted daily intakes of 15 subclasses of polyphenols were estimated at baseline using a food frequency questionnaire and the PhenolExplorer database. We used Bayesian profile regression to perform the clustering of the covariates by identifying exposure profiles of polyphenol intakes and, simultaneously, link these to T2D risk by using multivariable Cox regression models. We validated 2740 incident T2D cases during follow-up, and identified 15 distinct clusters with different intake profiles and T2D risk. When compared to the largest cluster (n = 6298 women), higher risks of T2D were observed in three of those clusters, which were composed of women with low or medium intakes of anthocyanins, dihydroflavonols, catechins, flavonols, hydroxybenzoic acids, lignans, and stilbenes. One cluster (n = 4243), characterized by higher intakes of these polyphenol subclasses, exhibited lower T2D risk when compared to the reference cluster. These results highlight the importance of a varied diet of polyphenol-rich foods such as nuts, fruits, and vegetables to prevent T2D risk.
Collapse
Affiliation(s)
- Nasser Laouali
- Center for Research in Epidemiology and Population Health (CESP), Institut Gustave Roussy, U1018 Inserm, 94800 Villejuif CEDEX, France; (J.A.R.); (S.S.); (D.E.F.); (F.R.M.); (M.-C.B.-R.); (G.F.)
- Faculty of Medicine, Paris-South Paris Saclay University, 94800 Villejuif, France
- Correspondence: ; Tel.: +33-1-42-11-63-73
| | - Takiy Berrandou
- Cardiovascular Research Center, University of Paris, UMR 970 Inserm, 75015 Paris, France;
| | - Joseph A. Rothwell
- Center for Research in Epidemiology and Population Health (CESP), Institut Gustave Roussy, U1018 Inserm, 94800 Villejuif CEDEX, France; (J.A.R.); (S.S.); (D.E.F.); (F.R.M.); (M.-C.B.-R.); (G.F.)
- Faculty of Medicine, Paris-South Paris Saclay University, 94800 Villejuif, France
| | - Sanam Shah
- Center for Research in Epidemiology and Population Health (CESP), Institut Gustave Roussy, U1018 Inserm, 94800 Villejuif CEDEX, France; (J.A.R.); (S.S.); (D.E.F.); (F.R.M.); (M.-C.B.-R.); (G.F.)
- Faculty of Medicine, Paris-South Paris Saclay University, 94800 Villejuif, France
| | - Douae El Fatouhi
- Center for Research in Epidemiology and Population Health (CESP), Institut Gustave Roussy, U1018 Inserm, 94800 Villejuif CEDEX, France; (J.A.R.); (S.S.); (D.E.F.); (F.R.M.); (M.-C.B.-R.); (G.F.)
- Faculty of Medicine, Paris-South Paris Saclay University, 94800 Villejuif, France
| | - Francesca Romana Mancini
- Center for Research in Epidemiology and Population Health (CESP), Institut Gustave Roussy, U1018 Inserm, 94800 Villejuif CEDEX, France; (J.A.R.); (S.S.); (D.E.F.); (F.R.M.); (M.-C.B.-R.); (G.F.)
- Faculty of Medicine, Paris-South Paris Saclay University, 94800 Villejuif, France
| | - Marie-Christine Boutron-Ruault
- Center for Research in Epidemiology and Population Health (CESP), Institut Gustave Roussy, U1018 Inserm, 94800 Villejuif CEDEX, France; (J.A.R.); (S.S.); (D.E.F.); (F.R.M.); (M.-C.B.-R.); (G.F.)
- Faculty of Medicine, Paris-South Paris Saclay University, 94800 Villejuif, France
| | - Guy Fagherazzi
- Center for Research in Epidemiology and Population Health (CESP), Institut Gustave Roussy, U1018 Inserm, 94800 Villejuif CEDEX, France; (J.A.R.); (S.S.); (D.E.F.); (F.R.M.); (M.-C.B.-R.); (G.F.)
- Faculty of Medicine, Paris-South Paris Saclay University, 94800 Villejuif, France
- Digital Epidemiology Hub, Department of Population Health, Luxembourg Institute of Health (LIH), 1445 Strassen, Luxembourg
| |
Collapse
|
26
|
An Evaluation of the DNA-Protective Effects of Extracts from Menyanthes trifoliata L. Plants Derived from In Vitro Culture Associated with Redox Balance and Other Biological Activities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9165784. [PMID: 31737178 PMCID: PMC6816005 DOI: 10.1155/2019/9165784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/24/2019] [Indexed: 12/19/2022]
Abstract
Menyanthes trifoliata L. is a valuable medical plant found in Europe, North America, and Asia, which grows on peat bogs and swamps. It has long been used in folk medicine as a remedy for various ailments. This is the first report to demonstrate the protective antioxidant and anti-inflammatory properties of aqueous methanolic extracts derived from the aerial parts (MtAPV) and roots (MtRV) of in vitro grown plants on human umbilical vein endothelial cells (HUVECs). It describes the influence of the tested extracts on the expression of antioxidant (HO-1, NQO1, NRF2, kEAP1, and GCLC) and inflammation-related genes (IL-1α, IL-1β, IL-6, TNF-α, and IFN-γ) in cells stimulated with H2O2 or LPS, respectively. In addition, M. trifoliata extracts were found to moderately affect the growth of certain bacterial and fungal pathogens, with the strongest antibacterial effect found against Pseudomonas aeruginosa and Enterococcus faecalis. M. trifoliata extracts demonstrated protective effects against mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) damage caused by ROS, decreasing the numbers of mtDNA lesions in the ND1 and ND2 genes and nDNA damage in the TP53 and HPRT1 genes and reducing cleavage in PARP1- and γ-H2A.X-positive cells. The root extract of in vitro M. trifoliata (MtRV) appears to have better anti-inflammatory, antioxidant, antimicrobial, and protective properties than the extract from the aerial part (MtAPV). These differences in biological properties may result from the higher content of selected phenolic compounds and betulinic acid in the MtRV than in the MtAPV extract.
Collapse
|
27
|
Pourmirzaee Sheikhali Kelayeh T, Abedinzade M, Ghorbani A. A review on biological effects of Lamium album (white dead nettle) and its components. JOURNAL OF HERBMED PHARMACOLOGY 2019. [DOI: 10.15171/jhp.2019.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Lamium album, commonly known as white dead nettle, is a plant in the family of Lamiaceae. This plant is distributed all over Asia, Europe, and Africa. In the traditional medicine of Asia, it has been used for the treatment of a number of diseases such as trauma, fracture, paralysis, leucorrhoea, hypertension women’s pain, uterine hemorrhage, menorrhagia, vaginal and cervical inflammation. In recent years, L. album has been the subject of intensive experimental studies to evaluate its traditional use to reveal new biological properties. A wide range of pharmacological effects, including antimicrobial, anti-inflammatory, anticancer, and antidiabetic properties have been reported by these studies. This review presents an up-to-date overview of the current literature on the pharmacological and physiological effects of L. album. Also, phytochemical constituents responsible for the biological properties of L. album are presented and discussed.
Collapse
Affiliation(s)
| | - Mahmood Abedinzade
- Medical Biotechnology Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Dimitrova P, Alipieva K, Stojanov K, Milanova V, Georgiev MI. Plant-derived verbascoside and isoverbascoside regulate Toll-like receptor 2 and 4-driven neutrophils priming and activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:105-118. [PMID: 30668420 DOI: 10.1016/j.phymed.2018.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/13/2018] [Accepted: 07/22/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Neutrophils have a short live in circulation and accelerate greatly local immune responses via increased granulopoiesis and migration at high numbers to infected or inflamed tissue. HYPOTHESIS Since neutrophils produce a variety of factors with destructive and pro-inflammatory potential the regulation of their homeostasis and functions might be eventually beneficial in inflammation-related pathological conditions. Herein we investigated the effect of natural-derived verbascoside (Verb) and its positional isomer isoverbascoside (IsoVerb) on neutrophil functions. METHODS We used purified murine bone marrow (BM) neutrophils to study cell responsiveness to priming or activation via Toll-like receptors (TLRs) 2 and 4. The expression of CD11b, chemokine (CXC motif) receptor 2 (CXCR2), the intracellular level of phosphorylated p38 mitogen-activated protein kinase (MAPK) and tumor necrosis factor (TNF)-α in neutrophils were determined by flow cytometry while the release of macrophage inflammatory protein (MIP)-2 in culture supernatant was determined by enzyme-linked immunosorbent assay (ELISA). RESULTS We found that Verb appeared less powerful inhibitor of TLR2 and TLR4-mediated apoptosis than IsoVerb. However at concentrations below 16 µM and in LPS priming conditions Verb was more selective inhibitor of CD11b and CXCR2 expression than IsoVerb. Both compounds showed similar activity on integrin/chemokine receptor expression when neutrophils were stimulated with ZY or were activated with LPS. Verb sustained CXCR2 expression and turnover via regulation of the cell responsiveness to its ligand KC (CXCL1) and via the release of MIP-2 (CXCL2). Both Verb and IsoVerb increased TNF-α production and inhibited p38 phosphorylation in TNF-α+ cells. We fail to discriminate sharply between Verb's and IsoVerb's efficacy when studying p38 phosphorylation in LPS stimulated neutrophils. The multi-parametric analysis provides critical insight on the range of on-target effects of Verb and IsoVerb. CONCLUSION The strength and selectivity of Verb and IsoVerb depended on the degree of activation and functional state of neutrophils, and both compounds are with potential to affect neutrophil-related pathologies/conditions in heterogenic populations.
Collapse
Affiliation(s)
- Petya Dimitrova
- Department of Immunology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd.,1113 Sofia, Bulgaria
| | - Kalina Alipieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Kalin Stojanov
- Faculty of Medicine, University of Sofia Kliment Ohridski, 1407 Sofia, Bulgaria
| | - Viktoriya Milanova
- Department of Immunology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd.,1113 Sofia, Bulgaria
| | - Milen I Georgiev
- Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
29
|
Ginwala R, Bhavsar R, Chigbu DI, Jain P, Khan ZK. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants (Basel) 2019; 8:antiox8020035. [PMID: 30764536 PMCID: PMC6407021 DOI: 10.3390/antiox8020035] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/21/2019] [Accepted: 01/30/2019] [Indexed: 12/18/2022] Open
Abstract
Inflammation has been reported to be intimately linked to the development or worsening of several non-infectious diseases. A number of chronic conditions such as cancer, diabetes, cardiovascular disorders, autoimmune diseases, and neurodegenerative disorders emerge as a result of tissue injury and genomic changes induced by constant low-grade inflammation in and around the affected tissue or organ. The existing therapies for most of these chronic conditions sometimes leave more debilitating effects than the disease itself, warranting the advent of safer, less toxic, and more cost-effective therapeutic alternatives for the patients. For centuries, flavonoids and their preparations have been used to treat various human illnesses, and their continual use has persevered throughout the ages. This review focuses on the anti-inflammatory actions of flavonoids against chronic illnesses such as cancer, diabetes, cardiovascular diseases, and neuroinflammation with a special focus on apigenin, a relatively less toxic and non-mutagenic flavonoid with remarkable pharmacodynamics. Additionally, inflammation in the central nervous system (CNS) due to diseases such as multiple sclerosis (MS) gives ready access to circulating lymphocytes, monocytes/macrophages, and dendritic cells (DCs), causing edema, further inflammation, and demyelination. As the dearth of safe anti-inflammatory therapies is dire in the case of CNS-related disorders, we reviewed the neuroprotective actions of apigenin and other flavonoids. Existing epidemiological and pre-clinical studies present considerable evidence in favor of developing apigenin as a natural alternative therapy against chronic inflammatory conditions.
Collapse
Affiliation(s)
- Rashida Ginwala
- Department of Microbiology and Immunology, and Center for Molecular Virology and Neuroimmunology, Center for Cancer Biology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | | | | | | | | |
Collapse
|
30
|
Henn JG, Steffens L, de Moura Sperotto ND, de Souza Ponce B, Veríssimo RM, Boaretto FBM, Hassemer G, Péres VF, Schirmer H, Picada JN, Saffi J, Moura DJ. Toxicological evaluation of a standardized hydroethanolic extract from leaves of Plantago australis and its major compound, verbascoside. JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:145-156. [PMID: 30316886 DOI: 10.1016/j.jep.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/27/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plantago australis is a perennial plant widely distributed in Latin America, and its seeds and leaves are used in folk medicine to treat many diseases and conditions. Among its various chemical compounds, verbascoside is one of the most present, and has several pharmacological activities described, but there is not much information about its toxicity. AIMS OF THE STUDY The aims of this study were to optimize the extraction of verbascoside from P. australis leaves with ultrasound methods, to develop a validated HPLC method to quantify verbascoside, and to evaluate the toxicological safety of the extract and verbascoside using in vitro and in vivo assays. MATERIALS AND METHODS Dried leaves of P. australis were submitted to different extraction methods (percolation and ultrasound). The optimization of the ultrasound extraction was carried out by complete factorial design (22) and response surface methodology (RSM), followed by HPLC analysis for marker compounds. HPLC analysis was performed to verify the presence of the marker compounds aucubin, baicalein, oleanolic acid, ursolic acid and verbascoside. Mutagenicity was assessed by Salmonella/microsome mutagenicity assay. Cytotoxicity and genotoxicity were evaluated in V79 cells by reduction of tetrazolium salt (MTT) and neutral red uptake (NRU) assays, and alkaline comet assay, respectively. Verbascoside phototoxicity was assessed in 3T3 cells by the NRU phototoxicity assay. Wistar rats were used to perform the acute and sub-chronic toxicity tests. RESULTS Among the marker compounds, only verbascoside was found in the hydroethanolic extract of P. australis leaves (PAHE); its highest concentration was obtained with the ultrasound-assisted extraction (UAE) method, optimized in 40 min and 25 °C, and the method validation was successfully applied. Neither PAHE nor verbascoside showed mutagenic or genotoxic activities. Cytotoxicity assays demonstrated that both PAHE and verbascoside reduced cell viability only at the highest concentrations, and verbascoside had no phototoxic properties. The in vivo toxicity evaluation of PAHE suggested that the LD50 is higher than 5000 mg/Kg, indicating that this extract is safe for use. In addition, no signs of toxicity were found in subchronic exposure. CONCLUSION The HPLC method to quantify verbascoside was validated, and the extraction of verbascoside from P. australis leaves through ultrasound method was optimized, yielding an extract with 6% verbascoside. Our results suggest the toxicological safety of PAHE and verbascoside, corroborating the use of P. australis in folk medicine, and also indicate verbascoside as a potential ingredient in topical formulations.
Collapse
Affiliation(s)
- Jeferson Gustavo Henn
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Luiza Steffens
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | | | - Betânia de Souza Ponce
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Rodrigo Moisés Veríssimo
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | | | - Gustavo Hassemer
- Statens Naturhistoriske Museum, Københavns Universitet, Sølvgade 83S, 1307 Copenhagen, Denmark
| | - Valéria Flores Péres
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Helena Schirmer
- Laboratório de Análises Clínicas, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | | | - Jenifer Saffi
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Dinara Jaqueline Moura
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
31
|
de Moura Sperotto ND, Steffens L, Veríssimo RM, Henn JG, Péres VF, Vianna P, Chies JAB, Roehe A, Saffi J, Moura DJ. Wound healing and anti-inflammatory activities induced by a Plantago australis hydroethanolic extract standardized in verbascoside. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:178-188. [PMID: 30009976 DOI: 10.1016/j.jep.2018.07.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plantago australis is a popular plant found to be widely spread in Latin America. In folk medicine, the seeds and leaves are used mainly for anti-inflammatory, wound healing, among others. The verbascoside, a phenolic glycoside, is an active chemical component described in this species of plant, which has antioxidant, anti-inflammatory and healing effects. PURPOSE The aim of the present study was to evaluate whether P. australis hydroethanolic extract (PAHE) standardized in verbascoside could promote wound healing associated with anti-inflammatory action within both in vitro and in vivo models. METHODS For the wound healing activity, we used a Scratch Test, an assay capable of evaluating the migratory ability of keratinocyte cells (HaCat) in vitro and thereby confirming the activity in rats. For the anti-inflammatory activity, the inflammation was induced with LPS in microglial murine cells (N9). Inflammatory mediators (IL-6, IL-10, IL-12p70, INFγ, MCP-1 and TNFα) were measured and the activity of superoxide dismutase (SOD), catalase (CAT), and mitochondrial membrane potential were evaluated. In addition, using paw edema induced by carrageenan in rats, the anti-inflammatory activity in vivo was analyzed. RESULTS The PAHE and verbascoside, induced a significant increase in migration of keratinocytes, at all concentrations tested when compared to the negative control. The wound healing activity in vivo showed that the PAHE accelerated the process. The treatments with PAHE and verbascoside induce increases in the antioxidants enzymes, suggesting a possible activation of these enzymes. However, this did not result in an increase in the expression of inflammatory mediators in microglial cells. In LPS activated cells the verbascoside displayed a significant reduction of TNFα, IL-6, IL-12p70, MCP-1 and INFγ, while the PAHE only displayed statistically significant reduction in TNFα. Interestingly, both the compounds could reduce the oxidative parameters in N9 cells activated by LPS. Additionally, pretreatment with PAHE inhibited the paw edema in rats. CONCLUSION The results suggest that PAHE has wound healing activity, improving cells migration and, as well as was able to reverse the oxidation effect in LPS-activated N9 cells. The wound-healing and anti-inflammatory activities of PAHE were confirmed in vivo. In addition, the presence of verbascoside can be related to PAHE effects, since this compound was capable of increase keratinocytes migration and inhibiting inflammation mediators.
Collapse
Affiliation(s)
| | - Luiza Steffens
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| | - Rodrigo Moisés Veríssimo
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| | - Jeferson Gustavo Henn
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| | - Valéria Flores Péres
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| | - Priscila Vianna
- Laboratório Imunogenética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - José Artur Bogo Chies
- Laboratório Imunogenética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Adriana Roehe
- Laboratório de Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| | - Jenifer Saffi
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| | - Dinara Jaqueline Moura
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
32
|
Jahan S, Abid A, Khalid S, Afsar T, Qurat-Ul-Ain, Shaheen G, Almajwal A, Razak S. Therapeutic potentials of Quercetin in management of polycystic ovarian syndrome using Letrozole induced rat model: a histological and a biochemical study. J Ovarian Res 2018; 11:26. [PMID: 29615083 PMCID: PMC5883607 DOI: 10.1186/s13048-018-0400-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/19/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND PCOS is a leading endocrinopathy of young women instigating androgens elevation, insulin resistance, obesity, cardiometabolic and menstrual complications. The study investigated the effects of quercetin in a letrozole induced rat model of polycystic ovarian syndrome, which displayed both clinical and metabolic features as in PCOS women. METHODS Female Sprague Dawley (SD) rats were divided into four groups; control group received aqueous solution of carboxymethyl (CMC 0.5%); PCOS group administered with letrozole (1 mg/kg) dissolved in solution (CMC 0.5%); Metformin group given with metformin (20 mg/kg) + letrozole (1 mg/kg); and Quercetin group provided with quercetin (30 mg/kg) + letrozole (1 mg/kg). All doses were given orally via gavage, for 21 consecutive days and colpocytological analysis was carried till end. After 21rst day, blood was taken out, centrifuged and plasma was kept for biochemical analysis (ELISA, anti-oxidant enzymes, lipid profile) and the reproductive organs were dissected out for histopathological evaluation. RESULTS Quercetin as a chief member of flavonoid, showed beneficial effects by decreasing body weight, ovarian diameter, cysts and restoring healthy follicles, follicle's extra-glandular layers, and corpora lutea in contrast to the positive control. Additionally, lipid profile and anti-oxidant status were also maintained to baseline which was very high in diseased rats (p < 0.001).Quercetin depicted a mark regulation in steroidogenesis by decreasing the levels of testosterone (0.78 ng/ml ± 0.14 in quercetin vs. PCOS positive control 1.69 ng/ml ± 0.17, p < 0.001) and estradiol (8.85 pg/ml ± 0.19 in quercetin vs. PCOS positive 1.61 pg/ml ± 0.29) and increasing progesterone levels (34.47 ng/ml ± 1.65 in quercetin vs. 11.08 ng/ml ± 1.17 in PCOS positive). The effects of quercetin were moderately parallel to the standard drug available in market i.e. metformin. CONCLUSION The present study has confirmed that quercetin has the potentials to alleviate the hormonal and metabolic disturbances occurring in PCOS.
Collapse
Affiliation(s)
- Sarwat Jahan
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abira Abid
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sidra Khalid
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Qurat-Ul-Ain
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ghazala Shaheen
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Islamabad, Saudi Arabia
| | - Suhail Razak
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan. .,Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Islamabad, Saudi Arabia.
| |
Collapse
|
33
|
Cheimonidi C, Samara P, Polychronopoulos P, Tsakiri EN, Nikou T, Myrianthopoulos V, Sakellaropoulos T, Zoumpourlis V, Mikros E, Papassideri I, Argyropoulou A, Halabalaki M, Alexopoulos LG, Skaltsounis AL, Tsitsilonis OE, Aligiannis NN, Trougakos IP. Selective cytotoxicity of the herbal substance acteoside against tumor cells and its mechanistic insights. Redox Biol 2018; 16:169-178. [PMID: 29505920 PMCID: PMC5952579 DOI: 10.1016/j.redox.2018.02.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/11/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022] Open
Abstract
Natural products are characterized by extreme structural diversity and thus they offer a unique source for the identification of novel anti-tumor agents. Herein, we report that the herbal substance acteoside being isolated by advanced phytochemical methods from Lippia citriodora leaves showed enhanced cytotoxicity against metastatic tumor cells; acted in synergy with various cytotoxic agents and it sensitized chemoresistant cancer cells. Acteoside was not toxic in physiological cellular contexts, while it increased oxidative load, affected the activity of proteostatic modules and suppressed matrix metalloproteinases in tumor cell lines. Intraperitoneal or oral (via drinking water) administration of acteoside in a melanoma mouse model upregulated antioxidant responses in the tumors; yet, only intraperitoneal delivery suppressed tumor growth and induced anti-tumor-reactive immune responses. Mass-spectrometry identification/quantitation analyses revealed that intraperitoneal delivery of acteoside resulted in significantly higher, vs. oral administration, concentration of the compound in the plasma and tumors of treated mice, suggesting that its in vivo anti-tumor effect depends on the route of administration and the achieved concentration in the tumor. Finally, molecular modeling studies and enzymatic activity assays showed that acteoside inhibits protein kinase C. Conclusively, acteoside holds promise as a chemical scaffold for the development of novel anti-tumor agents. Acteoside was not toxic in physiological cellular or tissue contexts. This natural compound modulated antioxidant responses and proteostatic modules. Acteoside showed in vitro and in vivo selective cytotoxicity against tumor cells. IP administration of acteoside in a mouse tumor model activated immune responses. Acteoside inhibited Protein Kinase C.
Collapse
Affiliation(s)
- Christina Cheimonidi
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784, Greece
| | - Pinelopi Samara
- Department of Animal and Human Physiology, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Panagiotis Polychronopoulos
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Eleni N Tsakiri
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784, Greece
| | - Theodora Nikou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Vassilios Myrianthopoulos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 116 35 Athens, Greece
| | - Emmanuel Mikros
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Issidora Papassideri
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784, Greece
| | - Aikaterini Argyropoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Halabalaki
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Leonidas G Alexopoulos
- School of Mechanical Engineering, National Technical University of Athens, Athens 15780, Greece
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Ourania E Tsitsilonis
- Department of Animal and Human Physiology, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Nektarios N Aligiannis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784, Greece.
| |
Collapse
|
34
|
Hossen MS, Ali MY, Jahurul MHA, Abdel-Daim MM, Gan SH, Khalil MI. Beneficial roles of honey polyphenols against some human degenerative diseases: A review. Pharmacol Rep 2017; 69:1194-1205. [PMID: 29128800 DOI: 10.1016/j.pharep.2017.07.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/11/2017] [Accepted: 07/03/2017] [Indexed: 01/01/2023]
Abstract
Honey contains many active constituents and antioxidants such as polyphenols. Polyphenols are phytochemicals, a generic term for the several thousand plant-based molecules with antioxidant properties. Many in vitro studies in human cell cultures as well as many animal studies confirm the protective effect of polyphenols on a number of diseases such as cardiovascular diseases (CVD), diabetes, cancer, neurodegenerative diseases, pulmonary diseases, liver diseases and so on. Nevertheless, it is challenging to identify the specific biological mechanism underlying individual polyphenols and to determine how polyphenols impact human health. To date, several studies have attempted to elucidate the molecular pathway for specific polyphenols acting against particular diseases. In this review, we report on the various polyphenols present in different types of honey according to their classification, source, and specific functions and discuss several of the honey polyphenols with the most therapeutic potential to exert an effect on the various pathologies of some major diseases including CVD, diabetes, cancer, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Md Sakib Hossen
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh.
| | - Md Yousuf Ali
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh.
| | - M H A Jahurul
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt; Department of Ophthalmology and Micro-Technology, Yokohama City University, Yokohama, Japan.
| | - Siew Hua Gan
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.
| | - Md Ibrahim Khalil
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh; Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
35
|
Lou Z, Li X, Zhao X, Du K, Li X, Wang B. Resveratrol attenuates hydrogen peroxide‑induced apoptosis, reactive oxygen species generation, and PSGL‑1 and VWF activation in human umbilical vein endothelial cells, potentially via MAPK signalling pathways. Mol Med Rep 2017; 17:2479-2487. [PMID: 29207192 DOI: 10.3892/mmr.2017.8124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/24/2017] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species (ROS) are implicated in the pathogenesis of thrombosis. Studies have reported that resveratrol exhibits antioxidative activities, however, the effect and underlying mechanisms of resveratrol on venous thrombosis remain largely unknown. To investigate the effect of resveratrol on venous thrombosis and the underlying mechanisms, the present study investigated the effects of resveratrol on cell viability, apoptosis, ROS generation and the expression of thrombosis‑associated markers in human umbilical vein endothelial cells (HUVECs). HUVECs were pretreated with resveratrol for 2 h and incubated with hydrogen peroxide (H2O2) for 24 h prior to the evaluation of cell viability, ROS generation, apoptosis and thrombosis‑associated marker expression by performing MTT assays, 2',7'‑dichlorofluorescin diacetate reagent, flow cytometry, and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis, respectively. Subsequently, to validate whether resve-ratrol functions via mitogen‑activated protein kinase (MAPK) pathways, the expression of thrombosis‑associated markers was detected by western blot analysis and RT‑qPCR following treatment of cells with resveratrol and the MAPK pathway activators anisomycin and curcumin. The results demonstrated that cell viability was markedly reduced by H2O2, and resveratrol treatment reversed the reductions in cell viability in a dose‑dependent manner. In addition, the levels of cell apoptosis and ROS generation were significantly increased by H2O2 alone, and resveratrol also reduced these effects in a dose‑dependent manner. Furthermore, the mRNA and protein expression of caspase‑3, P‑selectin glycoprotein ligand‑1 and von Willebrand factor was upregulated by H2O2 treatment in HUVECs. However, resveratrol decreased the protein expression these proteins in a dose‑dependent manner. Resveratrol also significantly inhibited the induction of phosphorylated (p)‑p38, P‑c‑Jun N‑terminal kinase and P‑extracellular signal‑regulated kinase by H2O2, and these effects were attenuated by the MAPK pathway activators anisomycin and curcumin. In conclusion, these results indicate that resveratrol protected HUVECs against oxidative stress and apoptosis. Furthermore, to the best of our knowledge, the present study is the first to demonstrate that resveratrol attenuates the expression of thrombosis‑associated markers induced by H2O2, which may occur through the suppression of the MAPK signalling pathways, indicating a potential novel therapeutic approach to prevent venous thrombosis.
Collapse
Affiliation(s)
- Zhenkai Lou
- Department of Orthopaedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xingguo Li
- Department of Orthopaedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xueling Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Kaili Du
- Department of Orthopaedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xing Li
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Bing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
36
|
Washington KS, Bashur CA. Delivery of Antioxidant and Anti-inflammatory Agents for Tissue Engineered Vascular Grafts. Front Pharmacol 2017; 8:659. [PMID: 29033836 PMCID: PMC5627016 DOI: 10.3389/fphar.2017.00659] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/05/2017] [Indexed: 01/21/2023] Open
Abstract
The treatment of patients with severe coronary and peripheral artery disease represents a significant clinical need, especially for those patients that require a bypass graft and do not have viable veins for autologous grafting. Tissue engineering is being investigated to generate an alternative graft. While tissue engineering requires surgical intervention, the release of pharmacological agents is also an important part of many tissue engineering strategies. Delivery of these agents offers the potential to overcome the major concerns for graft patency and viability. These concerns are related to an extended inflammatory response and its impact on vascular cells such as endothelial cells. This review discusses the drugs that have been released from vascular tissue engineering scaffolds and some of the non-traditional ways that the drugs are presented to the cells. The impact of antioxidant compounds and gasotransmitters, such as nitric oxide and carbon monoxide, are discussed in detail. The application of tissue engineering and drug delivery principles to biodegradable stents is also briefly discussed. Overall, there are scaffold-based drug delivery techniques that have shown promise for vascular tissue engineering, but much of this work is in the early stages and there are still opportunities to incorporate additional drugs to modulate the inflammatory process.
Collapse
Affiliation(s)
| | - Chris A. Bashur
- Department of Biomedical Engineering, Florida Institute of Technology, MelbourneFL, United States
| |
Collapse
|
37
|
Bioavailable Concentrations of Delphinidin and Its Metabolite, Gallic Acid, Induce Antioxidant Protection Associated with Increased Intracellular Glutathione in Cultured Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9260701. [PMID: 29081896 PMCID: PMC5610832 DOI: 10.1155/2017/9260701] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/22/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023]
Abstract
Despite limited bioavailability and rapid degradation, dietary anthocyanins are antioxidants with cardiovascular benefits. This study tested the hypothesis that the antioxidant protection conferred by the anthocyanin, delphinidin, is mediated by modulation of endogenous antioxidant defences, driven by its degradation product, gallic acid. Delphinidin was found to degrade rapidly (t1/2 ~ 30 min), generating gallic acid as a major degradation product. Both delphinidin and gallic acid generated oxygen-centred radicals at high (100 μM) concentrations in vitro. In a cultured human umbilical vein endothelial cell model of oxidative stress, the antioxidant protective effects of both delphinidin and gallic acid displayed a hormesic profile; 100 μM concentrations of both were cytotoxic, but relatively low concentrations (100 nM–1 μM) protected the cells and were associated with increased intracellular glutathione. We conclude that delphinidin is intrinsically unstable and unlikely to confer any direct antioxidant activity in vivo yet it offered antioxidant protection to cells at low concentrations. This paradox might be explained by the ability of the degradation product, gallic acid, to confer benefit. The findings are important in understanding the mode of protection conferred by anthocyanins and reinforce the necessity to conduct in vitro experiments at biologically relevant concentrations.
Collapse
|
38
|
Sakai O, Yasuzawa T, Sumikawa Y, Ueta T, Imai H, Sawabe A, Ueshima S. Role of GPx4 in human vascular endothelial cells, and the compensatory activity of brown rice on GPx4 ablation condition. ACTA ACUST UNITED AC 2016; 24:9-15. [PMID: 27964880 DOI: 10.1016/j.pathophys.2016.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/13/2016] [Accepted: 11/18/2016] [Indexed: 01/19/2023]
Abstract
Oxidative stress is implicated in the pathologies of vascular endothelial cells. However, the importance of specific antioxidant enzymes in vascular endothelial cells is not fully understood. The purpose of this study was to elucidate the importance of Glutathione peroxidase 4 (GPx4), and the involvement of ferroptosis on cell death induced by GPx4 loss in human vascular endothelial cells. In addition, we examined the compensatory activity of brown rice on GPx4 ablation condition. Human umbilical vein endothelial cells were transfected with GPx4 or scramble control siRNA. GPx4 knockdown caused the increase in the levels of lipid oxidation, and induced cytotoxicity. On the other hand, α-tocopherol (vitamin E) and extract of brown rice, ameliorated lipid peroxidation, cytotoxicity, and delay of proliferation induced by GPx4 knockdown. Furthermore, ferrostatin-1, inhibitor of ferroptosis, also prevented cytotoxicity and delay of proliferation. In conclusion, our data demonstrated that GPx4 is an essential antioxidant enzyme for protecting lipid peroxidation, and is a regulator of ferroptosis in vascular endothelial cells. Furthermore, vitamin E rich food, such as brown rice, can compensate for GPx4 loss by protecting cells against lipid peroxidation.
Collapse
Affiliation(s)
- Osamu Sakai
- Senju Laboratory, Senju Pharmaceutical Co., Ltd., Kobe, Japan
| | - Toshinori Yasuzawa
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Yoshie Sumikawa
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Takashi Ueta
- Department of Ophthalmology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirotaka Imai
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Akiyoshi Sawabe
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Shigeru Ueshima
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara, Japan; Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan; Antiaging Centre, Kindai University, Higashi-osaka, Japan.
| |
Collapse
|
39
|
Zheng J, Liu B, Lun Q, Gu X, Pan B, Zhao Y, Xiao W, Li J, Tu P. Longxuetongluo capsule inhibits atherosclerosis progression in high-fat diet-induced ApoE−/− mice by improving endothelial dysfunction. Atherosclerosis 2016; 255:156-163. [DOI: 10.1016/j.atherosclerosis.2016.08.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/05/2016] [Accepted: 08/19/2016] [Indexed: 12/18/2022]
|
40
|
Del Bo' C, Roursgaard M, Porrini M, Loft S, Møller P, Riso P. Different effects of anthocyanins and phenolic acids from wild blueberry (Vaccinium angustifolium) on monocytes adhesion to endothelial cells in a TNF-α stimulated proinflammatory environment. Mol Nutr Food Res 2016; 60:2355-2366. [DOI: 10.1002/mnfr.201600178] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Cristian Del Bo'
- Department of Food; Environmental and Nutritional Sciences, Division of Human Nutrition; Università degli Studi di Milano; Milan Italy
| | - Martin Roursgaard
- Department of Public Health; University of Copenhagen; Copenhagen Denmark
| | - Marisa Porrini
- Department of Food; Environmental and Nutritional Sciences, Division of Human Nutrition; Università degli Studi di Milano; Milan Italy
| | - Steffen Loft
- Department of Public Health; University of Copenhagen; Copenhagen Denmark
| | - Peter Møller
- Department of Public Health; University of Copenhagen; Copenhagen Denmark
| | - Patrizia Riso
- Department of Food; Environmental and Nutritional Sciences, Division of Human Nutrition; Università degli Studi di Milano; Milan Italy
| |
Collapse
|
41
|
Supplementation with nanomolar concentrations of verbascoside during in vitro maturation improves embryo development by protecting the oocyte against oxidative stress: a large animal model study. Reprod Toxicol 2016; 65:204-211. [PMID: 27522010 DOI: 10.1016/j.reprotox.2016.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/27/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023]
Abstract
The effects of verbascoside (VB), added at nanomolar concentrations during in vitro maturation (IVM) of juvenile sheep oocytes, on in vitro embryo development and its mechanisms of action at the oocyte level were analyzed. Developmental rates, after IVM in the presence/absence of VB (1nM for 24h; 1nM for 2h; 10nM for 2h), were evaluated. The bioenergetic/oxidative status of oocytes matured after IVM in the presence/absence of 1nM VB for 24h was assessed by confocal analysis of mitochondria and reactive oxygen species (ROS), lipid peroxidation (LPO) assay, and quantitative PCR of bioenergy/redox-related genes. The addition of 1nM VB during 24h IVM significantly increased blastocyst formation and quality. Verbascoside reduced oocyte ROS and LPO and increased mitochondria/ROS colocalization while keeping mitochondria activity and gene expression unchanged. In conclusion, supplementation with nanomolar concentrations of VB during IVM, in the juvenile sheep model, promotes embryo development by protecting the oocyte against oxidative stress.
Collapse
|
42
|
Kerimi A, Williamson G. At the interface of antioxidant signalling and cellular function: Key polyphenol effects. Mol Nutr Food Res 2016; 60:1770-88. [PMID: 26887821 PMCID: PMC5021119 DOI: 10.1002/mnfr.201500940] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 12/18/2022]
Abstract
The hypothesis that dietary (poly)phenols promote well‐being by improving chronic disease‐risk biomarkers, such as endothelial dysfunction, chronic inflammation and plasma uric acid, is the subject of intense current research, involving human interventions studies, animal models and in vitro mechanistic work. The original claim that benefits were due to the direct antioxidant properties of (poly)phenols has been mostly superseded by detailed mechanistic studies on specific molecular targets. Nevertheless, many proposed mechanisms in vivo and in vitro are due to modulation of oxidative processes, often involving binding to specific proteins and effects on cell signalling. We review the molecular mechanisms for 3 actions of (poly)phenols on oxidative processes where there is evidence in vivo from human intervention or animal studies. (1) Effects of (poly) phenols on pathways of chronic inflammation leading to prevention of some of the damaging effects associated with the metabolic syndrome. (2) Interaction of (poly)phenols with endothelial cells and smooth muscle cells, leading to effects on blood pressure and endothelial dysfunction, and consequent reduction in cardiovascular disease risk. (3) The inhibition of xanthine oxidoreductase leading to modulation of intracellular superoxide and plasma uric acid, a risk factor for developing type 2 diabetes.
Collapse
Affiliation(s)
- Asimina Kerimi
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| |
Collapse
|
43
|
Lovelace ES, Wagoner J, MacDonald J, Bammler T, Bruckner J, Brownell J, Beyer R, Zink EM, Kim YM, Kyle JE, Webb-Robertson BJ, Waters KM, Metz TO, Farin F, Oberlies NH, Polyak SJ. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling. JOURNAL OF NATURAL PRODUCTS 2015; 78:1990-2000. [PMID: 26186142 PMCID: PMC4703094 DOI: 10.1021/acs.jnatprod.5b00288] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Silymarin, a characterized extract of the seeds of milk thistle (Silybum marianum), suppresses cellular inflammation. To define how this occurs, transcriptional profiling, metabolomics, and signaling studies were performed in human liver and T cell lines. Cellular stress and metabolic pathways were modulated within 4 h of silymarin treatment: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed silymarin suppression of glycolytic, tricarboxylic acid (TCA) cycle, and amino acid metabolism. Anti-inflammatory effects arose with prolonged (i.e., 24 h) silymarin exposure, with suppression of multiple pro-inflammatory mRNAs and signaling pathways including nuclear factor kappa B (NF-κB) and forkhead box O (FOXO). Studies with murine knock out cells revealed that silymarin inhibition of both mTOR and NF-κB was partially AMPK dependent, whereas silymarin inhibition of mTOR required DDIT4. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Thus, natural products activate stress and repair responses that culminate in an anti-inflammatory cellular phenotype. Natural products like silymarin may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation.
Collapse
Affiliation(s)
- Erica S. Lovelace
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States, 98104
| | - Jessica Wagoner
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States, 98104
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, United States, 98105
| | - Theo Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, United States, 98105
| | - Jacob Bruckner
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States, 98104
| | | | - Richard Beyer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, United States, 98105
| | - Erika M. Zink
- Biological Sciences Division Pacific Northwest National Laboratory, Richland, WA, United States
| | - Young-Mo Kim
- Biological Sciences Division Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jennifer E. Kyle
- Biological Sciences Division Pacific Northwest National Laboratory, Richland, WA, United States
| | | | - Katrina M. Waters
- Biological Sciences Division Pacific Northwest National Laboratory, Richland, WA, United States
| | - Thomas O. Metz
- Biological Sciences Division Pacific Northwest National Laboratory, Richland, WA, United States
| | - Federico Farin
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, United States, 98105
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, NC, United States
| | - Stephen J. Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States, 98104
- Department of Global Health, University of Washington, Seattle, WA, United States, 98104
- Department of Microbiology, University of Washington, Seattle, WA, United States, 98104Center for Ecogenetics and Environmental Health, University of Washington, Seattle, United States, 98105
| |
Collapse
|
44
|
Quesada IM, Lucero A, Amaya C, Meijles DN, Cifuentes ME, Pagano PJ, Castro C. Selective inactivation of NADPH oxidase 2 causes regression of vascularization and the size and stability of atherosclerotic plaques. Atherosclerosis 2015; 242:469-75. [PMID: 26298737 DOI: 10.1016/j.atherosclerosis.2015.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/23/2015] [Accepted: 08/06/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND A variety of NADPH oxidase (Nox) isoforms including Noxs 1, 2, 4 and 5 catalyze the formation of reactive oxygen species (ROS) in the vascular wall. The Nox2 isoform complex has arguably received the greatest attention in the progression of atherogenesis in animal models. Thus, in the current study we postulated that specific Nox2 oxidase inhibition could reverse or attenuate atherosclerosis in mice fed a high-fat diet. METHODS We evaluated the effect of isoform-selective Nox2 assembly inhibitor on the progression and vascularization of atheromatous plaques. Apolipoprotein E-deficient mice (ApoE-/-) were fed a high fat diet for two months and treated over 15 days with Nox2ds-tat or control sequence (scrambled); 10 mg/kg/day, i.p. Mice were sacrificed and superoxide production in arterial tissue was detected by cytochrome C reduction assay and dihydroethidium staining. Plaque development was evaluated and the angiogenic markers VEGF, HIF1-α and visfatin were quantified by real time qRT-PCR. MMP-9 protein release and gelatinolytic activity was determined as a marker for vascularization. RESULTS Nox2ds-tat inhibited Nox-derived superoxide determined by cytochrome C in carotid arteries (2.3 ± 0.1 vs 1.7 ± 0.1 O2(•-) nmol/min*mg protein; P < 0.01) and caused a significant regression in atherosclerotic plaques in aorta (66 ± 6 μm(2) vs 37 ± 1 μm(2); scrmb vs. Nox2ds-tat; P < 0.001). Increased VEGF, HIF-1α, MMP-9 and visfatin expression in arterial tissue in response to high-fat diet were significantly attenuated by Nox2ds-tat which in turn impaired both MMP-9 protein expression and activity. CONCLUSION Given these results, it is quite evident that selective Nox inhibitors can reverse vascular pathology arising with atherosclerosis.
Collapse
Affiliation(s)
- I M Quesada
- Vascular Biology Lab, Institute of Medicine and Experimental Biology of Cuyo (IMBECU) CONICET, School of Medical Sciences, National University of Cuyo, Mendoza, Argentina
| | - A Lucero
- Vascular Biology Lab, Institute of Medicine and Experimental Biology of Cuyo (IMBECU) CONICET, School of Medical Sciences, National University of Cuyo, Mendoza, Argentina
| | - C Amaya
- Cellular and Molecular Biology Lab, Institute of Histology and Embryology (IHEM) CONICET, Mendoza, Argentina
| | - D N Meijles
- Department of Pharmacology & Chemical Biology and Vascular Medicine Institute, 200 Lothrop Street, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - M E Cifuentes
- Department of Pharmacology & Chemical Biology and Vascular Medicine Institute, 200 Lothrop Street, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - P J Pagano
- Department of Pharmacology & Chemical Biology and Vascular Medicine Institute, 200 Lothrop Street, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - C Castro
- Vascular Biology Lab, Institute of Medicine and Experimental Biology of Cuyo (IMBECU) CONICET, School of Medical Sciences, National University of Cuyo, Mendoza, Argentina.
| |
Collapse
|
45
|
Ma W, Ding B, Yu H, Yuan L, Xi Y, Xiao R. Genistein alleviates β-amyloid-induced inflammatory damage through regulating Toll-like receptor 4/nuclear factor κB. J Med Food 2015; 18:273-9. [PMID: 25384233 PMCID: PMC4350449 DOI: 10.1089/jmf.2014.3150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 09/05/2014] [Indexed: 01/28/2023] Open
Abstract
Genistein (GEN), a major soybean isoflavone (SIF), might possess neuroprotective properties through its anti-inflammatory activity. We hypothesized that GEN could prevent the inflammatory damage detected in C6 cells induced by β-amyloid peptides 25-35 (Aβ25-35). Accordingly, we evaluated the inflammatory damage induced by Aβ25-35 and the protective effect of GEN against Aβ25-35 in C6 cells. In our study, the C6 glial cells (rats glioma cell lines) were preincubated with or without GEN for 2 h following incubation with Aβ25-35 for another 24 h. Then, methylthiazolyl tetrazolium (MTT) assay was used to assess the cell viability. Immunofluorescence staining was used to identify the C6 cells. Inflammatory factors tumor necrosis factor (TNF)-α and interleukin (IL)-1β were analyzed by using enzyme-linked immunosorbent assay (ELISA). Western blot analysis and reverse transcription-polymerase chain reaction analysis were performed to assess the expression of Toll-like receptors 4 (TLR4), inhibitor of kappaB-alpha (IκB-α). The current results showed that GEN could alleviate Aβ25-35-induced cell apoptosis and prevent Aβ25-35-induced TNF-α and IL-1β release from C6 cells. In addition, GEN prevented Aβ25-35-induced upregulation of the gene and protein expression of TLR4, and GEN significantly upregulated the expression of IκB-α in C6 cells damaged by Aβ25-35. These results suggest that GEN can alleviate the inflammatory stress caused by Aβ25-35 treatment, which might be associated with the neuroprotective effect of GEN regulating the TLR4/NFκB signaling pathway.
Collapse
Affiliation(s)
- Weiwei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University , Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Li AN, Li S, Zhang YJ, Xu XR, Chen YM, Li HB. Resources and biological activities of natural polyphenols. Nutrients 2014; 6:6020-47. [PMID: 25533011 PMCID: PMC4277013 DOI: 10.3390/nu6126020] [Citation(s) in RCA: 516] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 02/07/2023] Open
Abstract
The oxidative stress imposed by reactive oxygen species (ROS) plays an important role in many chronic and degenerative diseases. As an important category of phytochemicals, phenolic compounds universally exist in plants, and have been considered to have high antioxidant ability and free radical scavenging capacity, with the mechanism of inhibiting the enzymes responsible for ROS production and reducing highly oxidized ROS. Therefore, phenolic compounds have attracted increasing attention as potential agents for preventing and treating many oxidative stress-related diseases, such as cardiovascular diseases, cancer, ageing, diabetes mellitus and neurodegenerative diseases. This review summarizes current knowledge of natural polyphenols, including resource, bioactivities, bioavailability and potential toxicity.
Collapse
Affiliation(s)
- An-Na Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Sha Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Yu-Jie Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
47
|
Kim HI, Kim JA, Choi EJ, Harris JB, Jeong SY, Son SJ, Kim Y, Shin OS. In vitro and in vivo antimicrobial efficacy of natural plant-derived compounds against Vibrio cholerae of O1 El Tor Inaba serotype. Biosci Biotechnol Biochem 2014; 79:475-83. [PMID: 25516242 DOI: 10.1080/09168451.2014.991685] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study, we investigated antibacterial activities of 20 plant-derived natural compounds against Gram-negative enteric pathogens. We found that both flavonoids and non-flavonoids, including honokiol and magnolol, possess specific antibacterial activities against V. cholerae, but not against other species of Gram-negative bacterium which we tested. Using various antibacterial assays, we determined that there was a dose-dependent bactericidal and biofilm inhibitory activity of honokiol and magnolol against Vibrio cholerae. In addition to antibacterial activities, these molecules also induced an attenuating effect on reactive oxygen species (ROS) production and pro-inflammatory responses generated by macrophages in response to lipopolysaccharides (LPS). Additionally, Caenorhabditis elegans lethality assay revealed that honokiol and magnolol have an ability to extend a lifespan of V. cholerae-infected worms, contributing to prolonged survival of worms after lethal infection. Altogether, our data show for the first time that honokiol and magnolol may be considered as attractive protective or preventive food adjuncts for cholera.
Collapse
Affiliation(s)
- Hyung-Ip Kim
- a Department of Biomedical Sciences , College of Medicine, Korea University , Seoul , Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
48
|
D'Imperio M, Cardinali A, D'Antuono I, Linsalata V, Minervini F, Redan B, Ferruzzi M. Stability–activity of verbascoside, a known antioxidant compound, at different pH conditions. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.09.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Risitano R, Currò M, Cirmi S, Ferlazzo N, Campiglia P, Caccamo D, Ientile R, Navarra M. Flavonoid fraction of Bergamot juice reduces LPS-induced inflammatory response through SIRT1-mediated NF-κB inhibition in THP-1 monocytes. PLoS One 2014; 9:e107431. [PMID: 25260046 PMCID: PMC4178028 DOI: 10.1371/journal.pone.0107431] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/20/2014] [Indexed: 12/12/2022] Open
Abstract
Plant polyphenols exert anti-inflammatory activity through both anti-oxidant effects and modulation of pivotal pro-inflammatory genes. Recently, Citrus bergamia has been studied as a natural source of bioactive molecules with antioxidant activity, but few studies have focused on molecular mechanisms underlying their potential beneficial effects. Several findings have suggested that polyphenols could influence cellular function by acting as activators of SIRT1, a nuclear histone deacetylase, involved in the inhibition of NF-κB signaling. On the basis of these observations we studied the anti-inflammatory effects produced by the flavonoid fraction of the bergamot juice (BJe) in a model of LPS-stimulated THP-1 cell line, focusing on SIRT1-mediated NF-κB inhibition. We demonstrated that BJe inhibited both gene expression and secretion of LPS-induced pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) by a mechanism involving the inhibition of NF-κB activation. In addition, we showed that BJe treatment reversed the LPS-enhanced acetylation of p65 in THP-1 cells. Interestingly, increasing concentrations of Sirtinol were able to suppress the inhibitory effect of BJe via p65 acetylation, underscoring that NF-κB-mediated inflammatory cytokine production may be directly linked to SIRT1 activity. These results suggest that BJe may be useful for the development of alternative pharmacological strategies aimed at reducing the inflammatory process.
Collapse
Affiliation(s)
- Roberto Risitano
- Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Monica Currò
- Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Santa Cirmi
- Department of Drug Sciences and Products for Health, University of Messina, Messina, Italy
| | - Nadia Ferlazzo
- Department of Drug Sciences and Products for Health, University of Messina, Messina, Italy
| | - Pietro Campiglia
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Fisciano, Salerno, Italy
| | - Daniela Caccamo
- Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Riccardo Ientile
- Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Michele Navarra
- Department of Drug Sciences and Products for Health, University of Messina, Messina, Italy
- * E-mail:
| |
Collapse
|
50
|
Alipieva K, Korkina L, Orhan IE, Georgiev MI. Verbascoside--a review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnol Adv 2014; 32:1065-76. [PMID: 25048704 DOI: 10.1016/j.biotechadv.2014.07.001] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/17/2014] [Accepted: 07/07/2014] [Indexed: 01/04/2023]
Abstract
Phenylethanoid glycosides are naturally occurring water-soluble compounds with remarkable biological properties that are widely distributed in the plant kingdom. Verbascoside is a phenylethanoid glycoside that was first isolated from mullein but is also found in several other plant species. It has also been produced by in vitro plant culture systems, including genetically transformed roots (so-called 'hairy roots'). Verbascoside is hydrophilic in nature and possesses pharmacologically beneficial activities for human health, including antioxidant, anti-inflammatory and antineoplastic properties in addition to numerous wound-healing and neuroprotective properties. Recent advances with regard to the distribution, (bio)synthesis and bioproduction of verbascoside are summarised in this review. We also discuss its prominent pharmacological properties and outline future perspectives for its potential application.
Collapse
Affiliation(s)
- Kalina Alipieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Liudmila Korkina
- Molecular Pathology Laboratory, Russian Research Medical University, Ostrovityanova St. 1A, Moscow 117449, Russia
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Milen I Georgiev
- Laboratory of Applied Biotechnologies, Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.
| |
Collapse
|