1
|
Cong L, Ma J, Zhang Y, Zhou Y, Cong X, Hao M. Effect of anti-skin disorders of ginsenosides- A Systematic Review. J Ginseng Res 2023; 47:605-614. [PMID: 37720567 PMCID: PMC10499590 DOI: 10.1016/j.jgr.2023.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 09/19/2023] Open
Abstract
Ginsenosides are bioactive components of Panax ginseng with many functions such as anti-aging, anti-oxidation, anti-inflammatory, anti-fatigue, and anti-tumor. Ginsenosides are categorized into dammarane, oleanene, and ocotillol type tricyclic triterpenoids based on the aglycon structure. Based on the sugar moiety linked to C-3, C-20, and C-6, C-20, dammarane type was divided into protopanaxadiol (PPD) and protopanaxatriol (PPT). The effects of ginsenosides on skin disorders are noteworthy. They play anti-aging roles by enhancing immune function, resisting melanin formation, inhibiting oxidation, and elevating the concentration of collagen and hyaluronic acid. Thus, ginsenosides have previously been widely used to resist skin diseases and aging. This review details the role of ginsenosides in the anti-skin aging process from mechanisms and experimental research.
Collapse
Affiliation(s)
- Lele Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jinli Ma
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yundong Zhang
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Xianling Cong
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Miao Hao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Antioxidant, Wound Healing Potential and In Silico Assessment of Naringin, Eicosane and Octacosane. Molecules 2023; 28:molecules28031043. [PMID: 36770709 PMCID: PMC9919607 DOI: 10.3390/molecules28031043] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
1. Diabetic chronic wounds, mainly foot ulcers, constitute one of the most common complications of poorly managed diabetes mellitus. The most typical reasons are insufficient glycemic management, latent neuropathy, peripheral vascular disease, and neglected foot care. In addition, it is a common cause of foot osteomyelitis and amputation of the lower extremities. Patients are admitted in larger numbers attributable to chronic wounds compared to any other diabetic disease. In the United States, diabetes is currently the most common cause of non-traumatic amputations. Approximately five percent of diabetics develop foot ulcers, and one percent require amputation. Therefore, it is necessary to identify sources of lead with wound-healing properties. Redox imbalance due to excessive oxidative stress is one of the causes for the development of diabetic wounds. Antioxidants have been shown to decrease the progression of diabetic neuropathy by scavenging ROS, regenerating endogenous and exogenous antioxidants, and reversing redox imbalance. Matrix metalloproteinases (MMPs) play vital roles in numerous phases of the wound healing process. Antioxidant and fibroblast cell migration activity of Marantodes pumilum (MP) crude extract has previously been reported. Through their antioxidant, epithelialization, collagen synthesis, and fibroblast migration activities, the authors hypothesise that naringin, eicosane and octacosane identified in the MP extract may have wound-healing properties. 2. The present study aims to identify the bioactive components present in the dichloromethane (DCM) extract of M. pumilum and evaluate their antioxidant and wound healing activity. Bioactive components were identified using LCMS, HPTLC and GCMS. Excision wound on STZ-induced diabetic rat model, human dermal fibroblast (HDF) cell line and colorimetric antioxidant assays were used to evaluate wound healing and antioxidant activities, respectively. Molecular docking and pkCMS software would be utilised to predict binding energy and affinity, as well as ADME parameters. 3. Naringin (NAR), eicosane (EIC), and octacosane (OCT) present in MP displayed antioxidant action and wound excision closure. Histological examination HDF cell line demonstrates epithelialization, collagen production, fibroblast migration, polymorphonuclear leukocyte migration (PNML), and fibroblast movement. The results of molecular docking indicate a substantial attraction and contact between MMPs. pkCMS prediction indicates inadequate blood-brain barrier permeability, low toxicity, and absence of hepatotoxicity. 4. Wound healing properties of (NEO) naringin, eicosane and octacosane may be the result of their antioxidant properties and possible interactions with MMP.
Collapse
|
3
|
Ginsenoside Rb1 from Panax notoginseng Suppressed TNF-α-Induced Matrix Metalloproteinase-9 via the Suppression of Double-Strand RNA-Dependent Protein Kinase (PKR)/NF-κB Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228050. [PMID: 36432152 PMCID: PMC9692425 DOI: 10.3390/molecules27228050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Chronic inflammation is commonly accompanied by the stimulation of matrix metalloproteinases (MMPs) production and the degradation of the extracellular matrix. The overexpression of MMP-9 (Gelatinase B) highly participates in the progression of pathetic cardiac remodeling and liver cancer metastasis. Panax notoginseng (Burkill) F. H. Chen (Sanqi), a widely used traditional Chinese medicinal herb, shows myocardial protective and anti-tumor effects. In this study, we examined the inhibitory effect of different PNG extracts on tumor necrosis factor (TNF)-α-induced MMP-9 expression in cardiac myoblast H9c2 cells. Using a bioassay-guided fractionation scheme, the most active extract was fractionated by silica gel column chromatography and high-performance liquid chromatography until an active compound was obtained. The compound was identified as Ginsenoside Rb1 by nuclear magnetic resonance. Ginsenoside Rb1 inhibited TNF-α-induced MMP-9 production in both H9c2 and liver carcinoma HepG-2 cells. Interestingly, it did not affect the MMP-2 (Gelatinase A) level and the cell proliferation of the two cell lines. The inhibitory effects of Ginsenoside Rb1 may be due to its modulation of double-strand RNA-dependent protein kinase and nuclear factor kappa B signaling pathways. The results reveal the potential use of Ginsenoside Rb1 for the treatment of inflammatory and MMP-9-related cardiac remodeling and metastasis of hepatocellular carcinomas.
Collapse
|
4
|
Antimicrobial Fibrous Bandage-like Scaffolds Using Clove Bud Oil. J Funct Biomater 2022; 13:jfb13030136. [PMID: 36135571 PMCID: PMC9501437 DOI: 10.3390/jfb13030136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Wounds are characterised by an anatomical disruption of the skin; this leaves the body exposed to opportunistic pathogens which contribute to infections. Current wound healing bandages do little to protect against this and when they do, they can often utilise harmful additions. Historically, plant-based constituents have been extensively used for wound treatment and are proven beneficial in such environments. In this work, the essential oil of clove bud (Syzygium aromaticum) was incorporated in a polycaprolactone (PCL) solution, and 44.4% (v/v) oil-containing fibres were produced through pressurised gyration. The antimicrobial activity of these bandage-like fibres was analysed using in vitro disk diffusion and the physical fibre properties were also assessed. The work showed that advantageous fibre morphologies were achieved with diameters of 10.90 ± 4.99 μm. The clove bud oil fibres demonstrated good antimicrobial properties. They exhibited inhibition zone diameters of 30, 18, 11, and 20 mm against microbial colonies of C. albicans, E. coli, S. aureus, and S. pyogenes, respectively. These microbial species are commonly problematic in environments where the skin barrier is compromised. The outcomes of this study are thus very promising and suggest that clove bud oil is highly suitable to be applied as a natural sustainable alternative to modern medicine.
Collapse
|
5
|
Li J, Huang Q, Yao Y, Ji P, Mingyao E, Chen J, Zhang Z, Qi H, Liu J, Chen Z, Zhao D, Zhou L, Li X. Biotransformation, Pharmacokinetics, and Pharmacological Activities of Ginsenoside Rd Against Multiple Diseases. Front Pharmacol 2022; 13:909363. [PMID: 35928281 PMCID: PMC9343777 DOI: 10.3389/fphar.2022.909363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 12/19/2022] Open
Abstract
Panax ginseng C.A. Mey. has a history of more than 4000 years and is widely used in Asian countries. Modern pharmacological studies have proved that ginsenosides and their compounds have a variety of significant biological activities on specific diseases, including neurodegenerative diseases, certain types of cancer, gastrointestinal disease, and metabolic diseases, in which most of the interest has focused on ginsenoside Rd. The evidentiary basis showed that ginsenoside Rd ameliorates ischemic stroke, nerve injury, cancer, and other diseases involved in apoptosis, inflammation, oxidative stress, mitochondrial damage, and autophagy. In this review, we summarized available reports on the molecular biological mechanisms of ginsenoside Rd in neurological diseases, cancer, metabolic diseases, and other diseases. We also discussed the main biotransformation pathways of ginsenoside Rd obtained by fermentation.
Collapse
Affiliation(s)
- Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yao Yao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Ji
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - E. Mingyao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaqi Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhaoqiang Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lei Zhou
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Lei Zhou, ; Xiangyan Li,
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Lei Zhou, ; Xiangyan Li,
| |
Collapse
|
6
|
Insights into Recent Studies on Biotransformation and Pharmacological Activities of Ginsenoside Rd. Biomolecules 2022; 12:biom12040512. [PMID: 35454101 PMCID: PMC9031344 DOI: 10.3390/biom12040512] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
It is well known that ginsenosides—major bioactive constituents of Panax ginseng—are attracting more attention due to their beneficial pharmacological activities. Ginsenoside Rd, belonging to protopanaxadiol (PPD)-type ginsenosides, exhibits diverse and powerful pharmacological activities. In recent decades, nearly 300 studies on the pharmacological activities of Rd—as a potential treatment for a variety of diseases—have been published. However, no specific, comprehensive reviews have been documented to date. The present review not only summarizes the in vitro and in vivo studies on the health benefits of Rd, including anti-cancer, anti-diabetic, anti-inflammatory, neuroprotective, cardioprotective, ischemic stroke, immunoregulation, and other pharmacological effects, it also delves into the inclusion of potential molecular mechanisms, providing an overview of future prospects for the use of Rd in the treatment of chronic metabolic diseases and neurodegenerative disorders. Although biotransformation, pharmacokinetics, and clinical studies of Rd have also been reviewed, clinical trial data of Rd are limited; the only data available are for its treatment of acute ischemic stroke. Therefore, clinical evidence of Rd should be considered in future studies.
Collapse
|
7
|
Liu Y, Liu N, Li X, Luo Z, Zhang J. Ginsenoside Rb1 Modulates the Migration of Bone-Derived Mesenchymal Stem Cells through the SDF-1/CXCR4 Axis and PI3K/Akt Pathway. DISEASE MARKERS 2022; 2022:5196682. [PMID: 35308137 PMCID: PMC8930258 DOI: 10.1155/2022/5196682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 11/18/2022]
Abstract
Methods Wound-healing assay and Transwell assay were utilized to evaluate the effect of ginsenoside Rb1 on the migration of BMSCs. RT-PCR and Western blotting were performed to evaluate the expression of stromal-derived factor 1 (SDF-1), C-X-C chemokine receptor type 4 (CXCR4), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (PKB; AKT). Results Ginsenoside Rb1 significantly enhanced the migration of BMSCs through the activation of SDF-1, CXCR4, p-PI3K/PI3K, and p-Akt/Akt relative expression. Furthermore, this stimulus was blocked by the pretreatment with AMD3100 and LY294002. Conclusions Ginsenoside Rb1 facilitated the migration of BMSCs through the activation of the SDF-1/CXCR4 axis and PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yimei Liu
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Ninghua Liu
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
| | - Xiangyang Li
- Department of Nursing, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jing Zhang
- Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
| |
Collapse
|
8
|
Advanced drug delivery systems containing herbal components for wound healing. Int J Pharm 2022; 617:121617. [PMID: 35218900 DOI: 10.1016/j.ijpharm.2022.121617] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 12/18/2022]
Abstract
Management of chronic wound has an immense impact on social and economic conditions in the world. Healthcare costs, aging population, physical trauma, and comorbidities of diabetes and obesity seem to be the major factors of this increasing incidence of chronic wounds. Conditions of chronic wound could not restore functional epidermis; thus, delaying the closure of the wound opening in an expected manner. Failures in restoration of skin integrity delay healing due to changes in skin pathology, such as chronic ulceration or nonhealing. The role of different traditional medicines has been explored for use in the healing of cutaneous wounds, where several phytochemicals, such as flavonoids, alkaloids, phenolic acids, tannins are known to provide potential wound healing properties. However, the delivery of plant-based therapeutics could be improved by the novel platform of nanotechnology. Thus, the objectives of novel delivery strategies of principal bioactive from plant sources are to accelerate the wound healing process, avoid wound complications and enhance patient compliance. Therefore, the opportunities of nanotechnology-based drug delivery of natural wound healing therapeutics have been included in the present discussion with special emphasis on nanofibers, vesicular structures, nanoparticles, nanoemulsion, and nanogels.
Collapse
|
9
|
Pinto KB, Santos PHBD, Krause LC, Caramão EB, Bjerk TR. Preliminary prospection of phytotherapic compounds from the essential oils from barks and leaves of Umburana (Commiphora Leptophloeos). BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e21609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
| | | | | | - Elina Bastos Caramão
- Universidade Tiradentes, Brasil; Instituto de Tecnologia e Pesquisa, Brasil; INCT, Brasil
| | | |
Collapse
|
10
|
Ramalingam S, Chandrasekar MJN, Nanjan MJ. Plant-based Natural Products for Wound Healing: A Critical Review. Curr Drug Res Rev 2022; 14:37-60. [PMID: 35549848 DOI: 10.2174/2589977513666211005095613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 06/15/2023]
Abstract
Wound healing is an intricate process consisting of four overlapping phases, namely hemostasis, inflammation, proliferation, and remodelling. Effective treatment of wounds depends upon the interaction of appropriate cell types, cell surface receptors, and the extracellular matrix with the therapeutic agents. Several approaches currently used for treating wounds, such as advanced wound dressing, growth factor therapy, stem cell therapy, and gene therapy, are not very effective and lead to impaired healing. Further, repeated use of antibiotics to treat open wounds leads to multi- drug resistance. Today there is considerable interest in plant-based drugs as they are believed to be safe, inexpensive, and more suitable for chronic wounds. For example, a large number of plant- based extracts and their bioactive compounds have been investigated for wound healing. In recent years the structural and mechanistic diversity of natural products have become central players in the search for newer therapeutic agents. In the present review, a thorough critical survey of the traditionally used plant-based drugs used worldwide for wound healing with special reference to the natural products/bioactive compounds isolated and screened is presented. It is hoped that this review will attract the attention of the research community involved in newer drug design and development for wound healing.
Collapse
Affiliation(s)
- Shalini Ramalingam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris-643001, Tamil Nadu, India
| | - Moola Joghee Nanjan Chandrasekar
- School of Life Science, JSS Academy of Higher Education & Research (Ooty Campus), Longwood, Mysuru Road, Ooty, The Nilgiris-643001, Nilgiris-643001, Tamilnadu, India
| | | |
Collapse
|
11
|
Mandale V, Thomas A, Wavhale R, Chitlange S. In-silico Screening of Phytoconstituents on Wound Healing Targets-Approaches and Current Status. Curr Drug Discov Technol 2021; 19:e301121198426. [PMID: 34847843 DOI: 10.2174/1570163819666211130141442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022]
Abstract
Over recent years, there has been tremendous research focused on the effective utilization of natural products in wound management. Natural or herbal products contain several phytoconstituents that may act on various stages in wound healing and thereby provide a multi-targeted approach especially in the treatment of chronic wounds. Currently, attempts have been made to screen the phytoconstituents present in herbs on various targets involved in wound healing. This review includes a systematic evaluation of scientific reports by various groups of researchers on the herbals evaluated for wound management, their phytochemical profiling, pre-clinical studies, and molecular modeling studies. Various wound targets discussed include Interleukin-1, Interleukin-6, Tumor necrosis factor-α (TNF-α), Thymosin beta-4 (Tβ-4) that regulate the early inflammatory stage and the novel T cell immune response cDNA 7(TIRC7) that regulates angiogenesis. Also, neuropeptides P and Y act on the inflammatory, migratory, and proliferation phases, and growth factors like vascular endothelial growth factor family (VEGF) and placental growth factor family (PGF) are involved in angiogenesis, while the role of Fibroblast growth factor in tissue remodeling is discussed. As many of the natural products include polyherbal systems, this approach can help in the judicious selection of a combination of herbs that will act on multiple targets in the wound healing process and provide a multi-factorial approach in wound management.
Collapse
Affiliation(s)
- Vijaya Mandale
- Department of Pharmaceutical Chemistry, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, MS. India
| | - Asha Thomas
- Department of Pharmaceutical Chemistry, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, MS. India
| | - Ravindra Wavhale
- Department of Pharmaceutical Chemistry, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, MS. India
| | - Sohan Chitlange
- Department of Pharmaceutical Chemistry, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, MS. India
| |
Collapse
|
12
|
You L, Cho JY. The regulatory role of Korean ginseng in skin cells. J Ginseng Res 2021; 45:363-370. [PMID: 34025129 PMCID: PMC8134839 DOI: 10.1016/j.jgr.2020.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/16/2020] [Accepted: 08/26/2020] [Indexed: 01/07/2023] Open
Abstract
As the largest organ in our body, the skin acts as a barrier against external stress and damages. There are various cell types of skin, such as keratinocytes, melanocytes, fibroblasts, and skin stem cells. Korean ginseng, which is one of the biggest distributions of ginseng worldwide, is processed into different products, such as functional food, cosmetics, and medical supplies. This review aims to introduce the functional role of Korean ginseng on different dermal cell types, including the impact of Korean ginseng in anti-photodamaging, anti-inflammatory, anti-oxidative, anti-melanogenic, and wound healing activities, etc. We propose that this information could form the basis of future research of ginseng-derived components in skin health.
Collapse
Affiliation(s)
- Long You
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
13
|
Protective Activity and Underlying Mechanism of Ginseng Seeds against UVB-Induced Damage in Human Fibroblasts. Antioxidants (Basel) 2021; 10:antiox10030403. [PMID: 33800272 PMCID: PMC8001990 DOI: 10.3390/antiox10030403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/23/2022] Open
Abstract
Ginseng seeds are rich in phytosterols, ginsenosides, and fatty acids, and can therefore be used in skincare to delay the aging process. Ginseng seed embryo (GSE) and ginseng seed coat (GSC) were separated from ginseng seeds (Panax ginseng Meyer). This study evaluated the protective activity and underlying mechanism of GSE and GSC on UVB irradiation-induced skin photoaging using Hs68 cells. Their bioactive compounds, including phytosterols, ginsenosides, tocopherols, tocotrienols, and fatty acids were determined by HPLC and GC. The levels of reactive oxygen species, matrix metalloproteinases (MMPs), and collagen levels were measured in human dermal fibroblast cell line, Hs68 cells. The antioxidant capacity and contents of total polyphenols and flavonoids were higher in GSC than those in GSE. Linoleic acid was the major fatty acid in both GSE and GSC. GSE and GSC treatment alleviated UVB-induced increase of reactive oxygen species (ROS), matrix metalloproteinase (MMP)-1, and MMP-3, resulting in reduced collagen degradation. Increased UVB-mediated phosphorylation of mitogen activated protein kinase (MAPK) and activator protein-1 (AP-1) was inhibited by GSE and GSC treatment. Moreover, GSE and GSC effectively upregulated transforming growth factor-β (TGF-β) 1 levels. It was found that ginseng seeds regulate the expression of TGF-β/Smad and MAPK/AP-1 pathways. Ginseng seeds contain various bioactive compounds and have protective activity against UVB-induced skin photoaging. Therefore, ginseng seeds have the potential for use in cosmeceutical preparations.
Collapse
|
14
|
Carmo J, Cavalcante-Araújo P, Silva J, Ferro J, Correia AC, Lagente V, Barreto E. Uvaol Improves the Functioning of Fibroblasts and Endothelial Cells and Accelerates the Healing of Cutaneous Wounds in Mice. Molecules 2020; 25:molecules25214982. [PMID: 33126422 PMCID: PMC7662923 DOI: 10.3390/molecules25214982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Uvaol is a natural pentacyclic triterpene that is widely found in olives and virgin olive oil, exerting various pharmacological properties. However, information remains limited about how it affects fibroblasts and endothelial cells in events associated with wound healing. Here, we report the effect of uvaol in the in vitro and in vivo healing process. We show the positive effects of uvaol on migration of fibroblasts and endothelial cells in the scratch assay. Protein synthesis of fibronectin and laminin (but not collagen type I) was improved in uvaol-treated fibroblasts. In comparison, tube formation by endothelial cells was enhanced after uvaol treatment. Mechanistically, the effects of uvaol on cell migration involved the PKA and p38-MAPK signaling pathway in endothelial cells but not in fibroblasts. Thus, the uvaol-induced migratory response was dependent on the PKA pathway. Finally, topical treatment with uvaol caused wounds to close faster than in the control treatment using experimental cutaneous wounds model in mice. In conclusion, uvaol positively affects the behavior of fibroblasts and endothelial cells, potentially promoting cutaneous healing.
Collapse
Affiliation(s)
- Julianderson Carmo
- Laboratory of Cell Biology, Federal University of Alagoas, 57072-900 Maceió, Brazil; (J.C.); (P.C.-A.); (J.S.); (J.F.)
| | - Polliane Cavalcante-Araújo
- Laboratory of Cell Biology, Federal University of Alagoas, 57072-900 Maceió, Brazil; (J.C.); (P.C.-A.); (J.S.); (J.F.)
| | - Juliane Silva
- Laboratory of Cell Biology, Federal University of Alagoas, 57072-900 Maceió, Brazil; (J.C.); (P.C.-A.); (J.S.); (J.F.)
| | - Jamylle Ferro
- Laboratory of Cell Biology, Federal University of Alagoas, 57072-900 Maceió, Brazil; (J.C.); (P.C.-A.); (J.S.); (J.F.)
| | - Ana Carolina Correia
- Garanhuns College of Science, Education and Technology, University of Pernambuco, 55294-902 Garanhuns, Brazil;
| | - Vincent Lagente
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Université de Rennes, INSERM, INRA, F-35000 Rennes, France;
| | - Emiliano Barreto
- Laboratory of Cell Biology, Federal University of Alagoas, 57072-900 Maceió, Brazil; (J.C.); (P.C.-A.); (J.S.); (J.F.)
- Correspondence: ; Tel.: +55-82-3214-1704
| |
Collapse
|
15
|
Calabrese EJ. Hormesis and Ginseng: Ginseng Mixtures and Individual Constituents Commonly Display Hormesis Dose Responses, Especially for Neuroprotective Effects. Molecules 2020; 25:E2719. [PMID: 32545419 PMCID: PMC7321326 DOI: 10.3390/molecules25112719] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
This paper demonstrates that ginseng mixtures and individual ginseng chemical constituents commonly induce hormetic dose responses in numerous biological models for endpoints of biomedical and clinical relevance, typically providing a mechanistic framework. The principal focus of ginseng hormesis-related research has been directed toward enhancing neuroprotection against conditions such as Alzheimer's and Parkinson's Diseases, stroke damage, as well as enhancing spinal cord and peripheral neuronal damage repair and reducing pain. Ginseng was also shown to reduce symptoms of diabetes, prevent cardiovascular system damage, protect the kidney from toxicities due to immune suppressant drugs, and prevent corneal damage, amongst other examples. These findings complement similar hormetic-based chemoprotective reports for other widely used dietary-type supplements such as curcumin, ginkgo biloba, and green tea. These findings, which provide further support for the generality of the hormetic dose response in the biomedical literature, have potentially important public health and clinical implications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
16
|
Kim JH, Oh JM, Chun S, Park HY, Im WT. Enzymatic Biotransformation of Ginsenoside Rb 2 into Rd by Recombinant α-L-Arabinopyranosidase from Blastococcus saxobsidens. J Microbiol Biotechnol 2020; 30:391-397. [PMID: 31893597 PMCID: PMC9728169 DOI: 10.4014/jmb.1910.10065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we used a novel α-L-arabinopyranosidase (AbpBs) obtained from ginsenoside-converting Blastococcus saxobsidens that was cloned and expressed in Escherichia coli BL21 (DE3), and then applied it in the biotransformation of ginsenoside Rb2 into Rd. The gene, termed AbpBs, consisting of 2,406 nucleotides (801 amino acid residues), and with a predicted translated protein molecular mass of 86.4 kDa, was cloned into a pGEX4T-1 vector. A BLAST search using the AbpBs amino acid sequence revealed significant homology with a family 2 glycoside hydrolase (GH2). The over-expressed recombinant AbpBs in Escherichia coli BL21 (DE3) catalyzed the hydrolysis of the arabinopyranose moiety attached to the C-20 position of ginsenoside Rb2 under optimal conditions (pH 7.0 and 40°;C). Kinetic parameters for α-Larabinopyranosidase showed apparent Km and Vmax values of 0.078 ± 0.0002 micrometer and 1.4 ± 0.1 μmol/min/mg of protein against p-nitrophenyl-α-L-arabinopyranoside. Using a purified AbpBs (1 μg/ml), 0.1% of ginsenoside Rb2 was completely converted to ginsenoside Rd within 1 h. The recombinant AbpBs could be useful for high-yield, rapid, and low-cost preparation of ginsenoside Rd from Rb2.
Collapse
Affiliation(s)
- Ju-Hyeon Kim
- Department of Biotechnology, Hankyong National University, Anseong 7579, Republic of Korea,HK Ginseng Research Center, Hankyong National University, Anseong 17579, Republic of Korea
| | - Jung-Mi Oh
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Sungkun Chun
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Hye Yoon Park
- National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Wan Taek Im
- Department of Biotechnology, Hankyong National University, Anseong 7579, Republic of Korea,HK Ginseng Research Center, Hankyong National University, Anseong 17579, Republic of Korea,AceEMzyme Co., Ltd., Anseong 1779, Republic of Korea,Corresponding author Phone: +82-31-6705335 Fax: +82-31-6705339 E-mail:
| |
Collapse
|
17
|
Wound Healing and the Use of Medicinal Plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2684108. [PMID: 31662773 PMCID: PMC6778887 DOI: 10.1155/2019/2684108] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/03/2019] [Accepted: 09/01/2019] [Indexed: 02/06/2023]
Abstract
Cutaneous wound healing is the process by which skin repairs itself. It is generally accepted that cutaneous wound healing can be divided into 4 phases: haemostasis, inflammation, proliferation, and remodelling. In humans, keratinocytes re-form a functional epidermis (reepithelialization) as rapidly as possible, closing the wound and reestablishing tissue homeostasis. Dermal fibroblasts migrate into the wound bed and proliferate, creating “granulation tissue” rich in extracellular matrix proteins and supporting the growth of new blood vessels. Ultimately, this is remodelled over an extended period, returning the injured tissue to a state similar to that before injury. Dysregulation in any phase of the wound healing cascade delays healing and may result in various skin pathologies, including nonhealing, or chronic ulceration. Indigenous and traditional medicines make extensive use of natural products and derivatives of natural products and provide more than half of all medicines consumed today throughout the world. Recognising the important role traditional medicine continues to play, we have undertaken an extensive survey of literature reporting the use of medical plants and plant-based products for cutaneous wounds. We describe the active ingredients, bioactivities, clinical uses, formulations, methods of preparation, and clinical value of 36 medical plant species. Several species stand out, including Centella asiatica, Curcuma longa, and Paeonia suffruticosa, which are popular wound healing products used by several cultures and ethnic groups. The popularity and evidence of continued use clearly indicates that there are still lessons to be learned from traditional practices. Hidden in the myriad of natural products and derivatives from natural products are undescribed reagents, unexplored combinations, and adjunct compounds that could have a place in the contemporary therapeutic inventory.
Collapse
|
18
|
Park S, Ko E, Lee JH, Song Y, Cui CH, Hou J, Jeon BM, Kim HS, Kim SC. Gypenoside LXXV Promotes Cutaneous Wound Healing In Vivo by Enhancing Connective Tissue Growth Factor Levels Via the Glucocorticoid Receptor Pathway. Molecules 2019; 24:molecules24081595. [PMID: 31018484 PMCID: PMC6515290 DOI: 10.3390/molecules24081595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 12/17/2022] Open
Abstract
Cutaneous wound healing is a well-orchestrated event in which many types of cells and growth factors are involved in restoring the barrier function of skin. In order to identify whether ginsenosides, the main active components of Panax ginseng, promote wound healing, the proliferation and migration activities of 15 different ginsenosides were tested by MTT assay and scratched wound closure assay. Among ginsenosides, gypenoside LXXV (G75) showed the most potent wound healing effects. Thus, this study aimed to investigate the effects of G75 on wound healing in vivo and characterize associated molecular changes. G75 significantly increased proliferation and migration of keratinocytes and fibroblasts, and promoted wound closure in an excision wound mouse model compared with madecassoside (MA), which has been used to treat wounds. Additionally, RNA sequencing data revealed G75-mediated significant upregulation of connective tissue growth factor (CTGF), which is known to be produced via the glucocorticoid receptor (GR) pathway. Consistently, the increase in production of CTGF was confirmed by western blot and ELISA. In addition, GR-competitive binding assay and GR translocation assay results demonstrated that G75 can be bound to GR and translocated into the nucleus. These results demonstrated that G75 is a newly identified effective component in wound healing.
Collapse
Affiliation(s)
- Sungjoo Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Eunsu Ko
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Jun Hyoung Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Yoseb Song
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Chang-Hao Cui
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea.
| | - Jingang Hou
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea.
| | - Byeong Min Jeon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Hun Sik Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea.
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea.
| |
Collapse
|
19
|
Pereira Beserra F, Xue M, Maia GLDA, Leite Rozza A, Helena Pellizzon C, Jackson CJ. Lupeol, a Pentacyclic Triterpene, Promotes Migration, Wound Closure, and Contractile Effect In Vitro: Possible Involvement of PI3K/Akt and p38/ERK/MAPK Pathways. Molecules 2018; 23:molecules23112819. [PMID: 30380745 PMCID: PMC6278408 DOI: 10.3390/molecules23112819] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/27/2022] Open
Abstract
Skin wound healing is a dynamic and complex process involving several mediators at the cellular and molecular levels. Lupeol, a phytoconstituent belonging to the triterpenes class, is found in several fruit plants and medicinal plants that have been the object of study in the treatment of various diseases, including skin wounds. Various medicinal properties of lupeol have been reported in the literature, including anti-inflammatory, antioxidant, anti-diabetic, and anti-mutagenic effects. We investigated the effects of lupeol (0.1, 1, 10, and 20 μg/mL) on in vitro wound healing assays and signaling mechanisms in human neonatal foreskin keratinocytes and fibroblasts. Results showed that, at high concentrations, Lupeol reduced cell proliferation of both keratinocytes and fibroblasts, but increased in vitro wound healing in keratinocytes and promoted the contraction of dermal fibroblasts in the collagen gel matrix. This triterpene positively regulated matrix metalloproteinase (MMP)-2 and inhibited the NF-κB expression in keratinocytes, suggesting an anti-inflammatory effect. Lupeol also modulated the expression of keratin 16 according to the concentration tested. Additionally, in keratinocytes, lupeol treatment resulted in the activation of Akt, p38, and Tie-2, which are signaling proteins involved in cell proliferation and migration, angiogenesis, and tissue repair. These findings suggest that lupeol has therapeutic potential for accelerating wound healing.
Collapse
Affiliation(s)
- Fernando Pereira Beserra
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil.
| | - Meilang Xue
- Sutton Research Laboratory, Kolling Institute of Medical Research, the University of Sydney at Royal North Shore Hospital, St Leonard, NSW 2065, Australia.
| | | | - Ariane Leite Rozza
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil.
| | - Cláudia Helena Pellizzon
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil.
| | - Christopher John Jackson
- Sutton Research Laboratory, Kolling Institute of Medical Research, the University of Sydney at Royal North Shore Hospital, St Leonard, NSW 2065, Australia.
| |
Collapse
|
20
|
Hou J, Kim S. Possible role of ginsenoside Rb1 in skin wound healing via regulating senescent skin dermal fibroblast. Biochem Biophys Res Commun 2018; 499:381-388. [DOI: 10.1016/j.bbrc.2018.03.170] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/17/2022]
|
21
|
Li F, Li X, Peng X, Sun L, Jia S, Wang P, Ma S, Zhao H, Yu Q, Huo H. Ginsenoside Rg1 prevents starvation-induced muscle protein degradation via regulation of AKT/mTOR/FoxO signaling in C2C12 myotubes. Exp Ther Med 2017; 14:1241-1247. [PMID: 28781621 DOI: 10.3892/etm.2017.4615] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/19/2016] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle atrophy is often caused by catabolic conditions including fasting, disuse, aging and chronic diseases, such as chronic obstructive pulmonary disease. Atrophy occurs when the protein degradation rate exceeds the rate of protein synthesis. Therefore, maintaining a balance between the synthesis and degradation of protein in muscle cells is a major way to prevent skeletal muscle atrophy. Ginsenoside Rg1 (Rg1) is a primary active ingredient in Panax ginseng, which is considered to be one of the most valuable herbs in traditional Chinese medicine. In the current study, Rg1 was observed to inhibit the expression of MuRF-1 and atrogin-1 in C2C12 muscle cells in a starvation model. Rg1 also activated the phosphorylation of mammalian target of rapamycin (mTOR), protein kinase B (AKT), and forkhead transcription factor O, subtypes 1 and 3a. This phosphorylation was inhibited by LY294002, a phosphatidylinositol 3-kinase inhibitor. These data suggest that Rg1 may participate in the regulation of the balance between protein synthesis and degradation, and that the function of Rg1 is associated with the AKT/mTOR/FoxO signaling pathway.
Collapse
Affiliation(s)
- Fengyu Li
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Xiaoxue Li
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Xuewei Peng
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Lili Sun
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Shengnan Jia
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Ping Wang
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Shuang Ma
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Hongyan Zhao
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Qingmiao Yu
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Hongliang Huo
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| |
Collapse
|
22
|
Kim GW, Jo HK, Chung SH. Ginseng seed oil ameliorates hepatic lipid accumulation in vitro and in vivo. J Ginseng Res 2017; 42:419-428. [PMID: 30344430 PMCID: PMC6191945 DOI: 10.1016/j.jgr.2017.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 01/14/2023] Open
Abstract
Background Despite the large number of studies on ginseng, pharmacological activities of ginseng seed oil (GSO) have not been established. GSO is rich in unsaturated fatty acids, mostly oleic and linoleic acids. Unsaturated fatty acids are known to exert a therapeutic effect in nonalcoholic fatty liver disease (NAFLD). In this study, we investigated the protective effect and underlying mechanisms of GSO against NAFLD using in vitro and in vivo models. Methods In vitro lipid accumulation was induced by free fatty acid mixture in HepG2 cells and by 3 wk of high fat diet (HFD)-feeding in Sprague-Dawley rats prior to hepatocyte isolation. The effects of GSO against diet-induced hepatic steatosis were further examined in C57BL/6J mice fed a HFD for 12 wk. Results Oil Red O staining and intracellular triglyceride levels showed marked accumulation of lipid droplets in both HepG2 cells and rat hepatocytes, and these were attenuated by GSO treatment. In HFD-fed mice, GSO improved HFD-induced dyslipidemia and hepatic insulin resistance. Increased hepatic lipid contents were observed in HFD-fed mice and it was lowered in GSO (500 mg/kg)-treated mice by 26.4% which was evident in histological analysis. Pathway analysis of hepatic global gene expression indicated that GSO increased the expression of genes associated with β-oxidation (Ppara, Ppargc1a, Sirt1, and Cpt1a) and decreased the expression of lipogenic genes (Srebf1 and Mlxipl), and these were confirmed with reverse transcription and quantitative polymerase-chain reaction. Conclusion These findings suggest that GSO has a beneficial effect on NAFLD through the suppression of lipogenesis and stimulation of fatty acid degradation pathway.
Collapse
Affiliation(s)
- Go Woon Kim
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Hee Kyung Jo
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Hyun Chung
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Effect of Topical Administration of Fractions and Isolated Molecules from Plant Extracts on Skin Wound Healing: A Systematic Review of Murine Experimental Models. Mediators Inflamm 2016; 2016:4916068. [PMID: 27829707 PMCID: PMC5086515 DOI: 10.1155/2016/4916068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/16/2016] [Indexed: 12/21/2022] Open
Abstract
Background and Purpose. Skin wound healing is a dynamic process driven by molecular events responsible for the morphofunctional repair of the injured tissue. In a systematic review, we analyzed the relevance of plant fractions and isolates on skin wound healing. By revising preclinical investigations with murine models, we investigated if the current evidence could support clinical trials. Methods. Studies were selected in the MEDLINE/PubMed and Scopus databases according to the PRISMA statement. All 32 identified studies were submitted to data extraction and the methodological bias was investigated according to ARRIVE strategy. Results. The studies demonstrated that plant fractions and isolates are able to modulate the inflammatory process during skin wound healing, being also effective in attenuating the oxidative tissue damage in the scar tissue and stimulating cell proliferation, neoangiogenesis, collagen synthesis, granulation tissue expansion, reepithelialization, and the wound closure rate. However, we identified serious methodological flaws in all studies, such as the high level of reporting bias and absence of standardized experimental designs, analytical methods, and outcome measures. Conclusion. Considering these limitations, the current evidence generated from flawed methodological animal studies makes it difficult to determine the relevance of herbal medicines to treat skin wounds and derails conducting clinical studies.
Collapse
|
24
|
Hwang SH, Lee BH, Choi SH, Kim HJ, Won KJ, Lee HM, Rhim H, Kim HC, Nah SY. Effects of gintonin on the proliferation, migration, and tube formation of human umbilical-vein endothelial cells: involvement of lysophosphatidic-acid receptors and vascular-endothelial-growth-factor signaling. J Ginseng Res 2015; 40:325-333. [PMID: 27746684 PMCID: PMC5052429 DOI: 10.1016/j.jgr.2015.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/08/2015] [Accepted: 10/19/2015] [Indexed: 11/22/2022] Open
Abstract
Background Ginseng extracts are known to have angiogenic effects. However, to date, only limited information is available on the molecular mechanism underlying the angiogenic effects and the main components of ginseng that exert these effects. Human umbilical-vein endothelial cells (HUVECs) are used as an in vitro model for screening therapeutic agents that promote angiogenesis and wound healing. We recently isolated gintonin, a novel ginseng-derived lysophosphatidic acid (LPA) receptor ligand, from ginseng. LPA plays a key role in angiogenesis and wound healing. Methods In the present study, we investigated the in vitro effects of gintonin on proliferation, migration, and tube formation of HUVECs, which express endogenous LPA1/3 receptors. Results Gintonin stimulated proliferation and migration of HUVECs. The LPA1/3 receptor antagonist, Ki16425, short interfering RNA against LPA1 or LPA3 receptor, and the Rho kinase inhibitor, Y-27632, significantly decreased the gintonin-induced proliferation, migration, and tube formation of HUVECs, which indicates the involvement of LPA receptors and Rho kinase activation. Further, gintonin increased the release of vascular endothelial growth factors from HUVECs. The cyclooxygenase-2 inhibitor NS-398, nuclear factor kappa B inhibitor BAY11-7085, and c-Jun N-terminal kinase inhibitor SP600125 blocked the gintonin-induced migration, which shows the involvement of cyclooxygenase-2, nuclear factor kappa B, and c-Jun N-terminal kinase signaling. Conclusion The gintonin-mediated proliferation, migration, and vascular-endothelial-growth-factor release in HUVECs via LPA-receptor activation may be one of in vitro mechanisms underlying ginseng-induced angiogenic and wound-healing effects.
Collapse
Affiliation(s)
- Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju, Korea
| | - Byung-Hwan Lee
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Sun-Hye Choi
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Hyeon-Joong Kim
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Kyung Jong Won
- Department of Physiology, School of Medicine, Konkuk University, Chungju, Korea
| | - Hwan Myung Lee
- Department of Cosmetic Science, College of Natural Science, Hoseo University, Asan, Korea
| | - Hyewon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Korea
| | - Seung-Yeol Nah
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| |
Collapse
|
25
|
Agra LC, Ferro JNS, Barbosa FT, Barreto E. Triterpenes with healing activity: A systematic review. J DERMATOL TREAT 2015; 26:465-70. [PMID: 25893368 DOI: 10.3109/09546634.2015.1021663] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/01/2014] [Accepted: 01/25/2015] [Indexed: 12/14/2022]
Abstract
The purpose of this review was to systematically evaluate the literature on the efficacy of triterpenes for wound healing. We searched for original studies in the Medline, SCIDIRECT and LILACS databases published from 1910 to 2013. For each study, the title, abstract and full article were evaluated by two reviewers. We identified 2181 studies; however, after application of the inclusion and exclusion criteria, only 12 studies were subjected to further review. In surgical wounds, the triterpenes induced a reduction in time to closure, and this effect was reported in virtually all wound types. Triterpenes also modulate the production of ROS in the wound microenvironment, accelerating the process of tissue repair. Triterpenes may also induce cell migration, cell proliferation and collagen deposition. Although the pharmacological effects of triterpenes are well characterized, little is known about their effects in cells involved in healing, such as keratinocytes and fibroblasts. In addition, the lack of studies on the risks associated with the therapeutic use of triterpenes is worrisome. Our study reveals that triterpenes seem to favor wound healing; however, toxicological studies with these compounds are required. Taken together, these findings show that the triterpenes are a class of molecules with significant promise that leads for the development of new drugs to treat skin injury.
Collapse
Affiliation(s)
- Lais C Agra
- a Laboratório de Biologia Celular , Universidade Federal de Alagoas , Maceió-AL , Brazil and
| | - Jamylle N S Ferro
- a Laboratório de Biologia Celular , Universidade Federal de Alagoas , Maceió-AL , Brazil and
| | - Fabiano T Barbosa
- b Faculdade de Medicina , Universidade Federal de Alagoas , Maceió-AL , Brazil
| | - Emiliano Barreto
- a Laboratório de Biologia Celular , Universidade Federal de Alagoas , Maceió-AL , Brazil and
| |
Collapse
|
26
|
Park SY, Shin YK, Kim HT, Kim YM, Lee DG, Hwang E, Cho BG, Yin CS, Kim KY, Yi TH. A single-center, randomized, double-blind, placebo-controlled study on the efficacy and safety of "enzyme-treated red ginseng powder complex (BG11001)" for antiwrinkle and proelasticity in individuals with healthy skin. J Ginseng Res 2015; 40:260-8. [PMID: 27616902 PMCID: PMC5005355 DOI: 10.1016/j.jgr.2015.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 07/03/2015] [Accepted: 08/23/2015] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND During the aging process, skin shows visible changes, characterized by a loss of elasticity and the appearance of wrinkles due to reduced collagen production and decreased elasticity of elastin fibers. Panax ginseng Meyer has been used as a traditional medicine for various diseases due to its wide range of biological activities including skin protective effects. Ginsenosides are the main components responsible for the biological activities of ginseng. However, the protective activities of an enzymatic preparation of red ginseng against human skin aging have not been investigated. METHODS The efficacy of an enzyme-treated powder complex of red ginseng (BG11001) in preventing human skin aging was evaluated by oral administration to 78 randomized individuals. All patients were requested to take three daily capsules containing either 750 mg of BG11001 or a placebo vehicle for 24 wk; at the end of the testing period, skin roughness, elasticity, and skin water content were measured. RESULTS BG11001 significantly reduced the average roughness of eye wrinkles and the Global Photo Damage Score compared with the placebo, although there were no significant differences in arithmetic roughness average between the groups. In addition, gross elasticity and net elasticity values increased, and transepidermal water loss level decreased, indicating improved skin elasticity and moisture content. CONCLUSION In conclusion, enzyme-treated red ginseng extract significantly improved eye wrinkle roughness, skin elasticity, and moisture content. Moreover, enzyme-treated red ginseng extract would be useful substance as a bio-health skin care product.
Collapse
Affiliation(s)
- Sang-Yong Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Yu-Kyong Shin
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Hee-Taek Kim
- College of Oriental Medicine, Semyung University, Jecheon, Korea
| | - Yong Min Kim
- College of Oriental Medicine, Semyung University, Jecheon, Korea
| | - Don-Gil Lee
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Eunson Hwang
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Byung-Goo Cho
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Korea
| | - Chang Shik Yin
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Ki-Young Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Tae Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| |
Collapse
|
27
|
Effects of ascorbic acid on α-l-arabinofuranosidase and α-l-arabinopyranosidase activities from Bifidobacterium longum RD47 and its application to whole cell bioconversion of ginsenoside. ACTA ACUST UNITED AC 2015; 58:857-865. [PMID: 26612991 PMCID: PMC4648979 DOI: 10.1007/s13765-015-0113-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/08/2015] [Indexed: 12/03/2022]
Abstract
Bifidobacterium longum RD47 was cultured in 24 kinds of modified MRS broths containing various ingredients to select the most promising source that induces microbial enzymes. Among the various ingredients, ascorbic acid significantly enhanced α-l-arabinofuranosidase and α-l-arabinopyranosidase activities in Bifidobacterium longum RD47. Addition of 2 % ascorbic acid (w/v) to MRS showed the maximum enzyme activities. Both whole cell and disrupted cell homogenates showed efficient ρ-nitrophenyl-β-d-glucopyranoside and ρ-nitrophenyl-β-d-glucofuranoside hydrolysis activities. The initially enhanced α-l-arabinopyranosidase and α-l-arabinofuranosidase activities by ascorbic acid were maintained over the cell disruption process. The optimal pH of α-l-arabinofuranosidase and α-l-arabinopyranosidase was 5.0 and 7.0, respectively. Both enzymes showed the maximum activities at 40.0 °C. Under the controlled condition using Bifidobacterium longum RD47, ginsenoside Rb2, and Rc were converted to ginsenoside Rd.
Collapse
|
28
|
Enrichment of ginsenoside Rd in Panax ginseng extract with combination of enzyme treatment and high hydrostatic pressure. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0857-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Lim TG, Lee CC, Dong Z, Lee KW. Ginsenosides and their metabolites: a review of their pharmacological activities in the skin. Arch Dermatol Res 2015; 307:397-403. [DOI: 10.1007/s00403-015-1569-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 03/17/2015] [Accepted: 04/29/2015] [Indexed: 01/24/2023]
|
30
|
Lim TG, Jeon AJ, Yoon JH, Song D, Kim JE, Kwon JY, Kim JR, Kang NJ, Park JS, Yeom MH, Oh DK, Lim Y, Lee CC, Lee CY, Lee KW. 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol, a metabolite of ginsenoside Rb1, enhances the production of hyaluronic acid through the activation of ERK and Akt mediated by Src tyrosin kinase in human keratinocytes. Int J Mol Med 2015; 35:1388-94. [PMID: 25738334 DOI: 10.3892/ijmm.2015.2121] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/29/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to determine the mechanisms through which 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol (20GPPD) promotes the production of hyaluronic acid (HA) in human keratinocytes. 20GPPD is the primary bioactive metabolite of Rb1, a major ginsenoside found in ginseng (Panax ginseng). We sought to elucidate the underlying mechanisms behind the 20GPPD-induced production of HA. We found that 20GPPD induced an increase in HA production by elevating hyaluronan synthase 2 (HAS2) expression in human keratinocytes. The phosphorylation of extracellular signal-regulated kinase (ERK) and Akt was also enhanced by 20GPPD in a dose-dependent manner. The pharmacological inhibition of ERK (using U0126) or Akt (using LY294002) suppressed the 20GPPD-induced expression of HAS2, whereas treatment with an epidermal growth factor receptor (EGFR) inhibitor (AG1478) or an intracellular Ca2+ chelator (BAPTA/AM) did not exert any observable effects. The increased Src phosphorylation was also confirmed following treatment with 20GPPD in the human keratinocytes. Following pre-treatment with the Src inhibitor, PP2, both HA production and HAS2 expression were attenuated. Furthermore, the 20GPPD-enhanced ERK and Akt signaling decreased following treatment with PP2. Taken together, our results suggest that Src kinase plays a critical role in the 20GPPD-induced production of HA by acting as an upstream modulator of ERK and Akt activity in human keratinocytes.
Collapse
Affiliation(s)
- Tae-Gyu Lim
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| | - Ae Ji Jeon
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| | - Ji Hye Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Dasom Song
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Institute on Aging, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jong-Eun Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Institute on Aging, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jung Yeon Kwon
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| | - Jong Rhan Kim
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| | - Nam Joo Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jun-Seong Park
- Skin Research Institute, Amorepacific Corporation R&D Center, Yongin 341-1, Republic of Korea
| | - Myeong Hun Yeom
- Skin Research Institute, Amorepacific Corporation R&D Center, Yongin 341-1, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Yoongho Lim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Charles C Lee
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Chang Yong Lee
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Ki Won Lee
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| |
Collapse
|
31
|
Cao G, Li Q, Wu X, Zhang J, Zhang H, Jiang J. Coupling needle-trap devices with comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry to rapidly reveal the chemical transformation of volatile components from sulfur-fumigatedginseng. J Sep Sci 2015; 38:1248-53. [PMID: 25598346 DOI: 10.1002/jssc.201401362] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/30/2014] [Accepted: 01/05/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Gang Cao
- Research Center of TCM Processing Technology; Zhejiang Chinese Medical University; Hangzhou P. R. China
| | - Qinglin Li
- Zhejiang Cancer Hospital; Hangzhou P. R. China
| | - Xin Wu
- Research Center of TCM Processing Technology; Zhejiang Chinese Medical University; Hangzhou P. R. China
| | - Jida Zhang
- College of Basic Medical Science, Zhejiang Chinese Medical University; Hangzhou P. R. China
| | | | - Jianping Jiang
- The First Affiliated Hospital of Zhejiang Chinese Medical University; Hangzhou P. R. China
| |
Collapse
|
32
|
Yu SH, Huang CY, Lee SD, Hsu MF, Wang RY, Kao CL, Kuo CH. Decreased eccentric exercise-induced macrophage infiltration in skeletal muscle after supplementation with a class of ginseng-derived steroids. PLoS One 2014; 9:e114649. [PMID: 25500579 PMCID: PMC4263678 DOI: 10.1371/journal.pone.0114649] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/12/2014] [Indexed: 11/19/2022] Open
Abstract
Dammarane steroids (DS) are a class of chemical compounds present in Panax ginseng. Here, we evaluated the effect of 10 weeks of DS supplementation on inflammatory modulation in the soleus muscle following eccentric exercise (EE)-induced muscle damage (downhill running). Eighty rats were randomized into 4 groups of DS supplementation (saline, 20, 60, 120 mg/kg body weight). Inflammatory markers were measured at rest and again 1 h after EE. At rest, NFκB signaling, TNF-alpha and IL-6 mRNAs, 3-nitrotyrosine, glutathione peroxidase, and GCS (glutamylcysteine synthetase) levels were significantly elevated in the skeletal muscle of DS-treated rats in a dose-dependent manner. Additionally, there were no detectable increases in the number of necrotic muscle fibers or CD68+ M1 macrophages. However, muscle strength, centronucleation, IL-10 mRNA expression, and the number of CD163+ M2 macrophages increased significantly over controls with DS treatment in rat soleus muscle. Under EE-challenged conditions, significant increases in muscle fiber necrosis, CD68+ M1 macrophage distribution, and 3-nitrotyrosine were absent in rats that received low and medium doses (20 and 60 mg/kg) of DS treatment, suggesting that DS possess anti-inflammatory action protecting against a muscle-damaging challenge. However, this protective activity was diminished when a high dose of DS (120 mg/kg) was administered, suggesting that DS possess hormetic properties. In conclusion, our study provides new evidence suggesting that DS is an ergogenic component of ginseng that potentiate inflammation at baseline but that produce anti-inflammatory effects on skeletal muscle following muscle-damaging exercise. Furthermore, high doses should be avoided in formulating ginseng-based products.
Collapse
Affiliation(s)
- Szu-Hsien Yu
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei City, Taiwan, Republic of China
- Department of Leisure Industry and Health Promotion, National Ilan University, Yilan County, Taiwan, Republic of China
| | - Chih-Yang Huang
- Institute of Basic Medical Science, China Medical University, Taichung City, Taiwan, Republic of China
- Department of Health and Biotechnology, Asia University, Taichung City, Taiwan, Republic of China
| | - Shin-Da Lee
- Institute of Basic Medical Science, China Medical University, Taichung City, Taiwan, Republic of China
- Department of Health and Biotechnology, Asia University, Taichung City, Taiwan, Republic of China
| | - Ming-Fen Hsu
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei City, Taiwan, Republic of China
| | - Ray-Yau Wang
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei City, Taiwan, Republic of China
| | - Chung-Lan Kao
- Institute of Basic Medical Science, China Medical University, Taichung City, Taiwan, Republic of China
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei City, Taiwan, Republic of China
| |
Collapse
|
33
|
Ponnuraj SP, Siraj F, Kang S, Noh HY, Min JW, Kim YJ, Yang DC. Amelioration of insulin resistance by Rk1 + Rg5 complex under endoplasmic reticulum stress conditions. Pharmacognosy Res 2014; 6:292-6. [PMID: 25276065 PMCID: PMC4166816 DOI: 10.4103/0974-8490.138257] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/11/2014] [Accepted: 08/06/2014] [Indexed: 11/12/2022] Open
Abstract
Background: Diabetes mellitus is a metabolic syndrome exaggerated by stress conditions. Endoplasmic reticulum stress (ERS) impairs the insulin signaling pathway making the diabetic conditions worsen. Pharmacological agents are supplied externally to overcome this malfunction. Ginsenosides from Panax ginseng C.A Meyer possesses many pharmacological properties and are used for the treatment of diabetes. Objective: To investigate the effects of the Rk1 +Rg5 complex on the amelioration of insulin resistance in 3T3-L1 cells under endoplasmic reticulum stress conditions. Materials and Methods: Heat-processed ginseng extracts are found to contain many pharmacologically active ginsenosides. Among them Rk1 +Rg5 is found to be present in higher concentrations than the other minor ginsenosides. The Rk1 +Rg5 complex was tested for its effect in the 3T3-L1 insulin-resistant model and subjected to the MTT assay, glucose oxidase assay and gene expression studies using RT-PCR and real-time PCR under endoplasmic reticulum stress conditions. Results: Rk1 +Rg5 treatment is found to increase the glucose uptake into the cells when compared to that of a positive control (tunicamycin treatment group, TM). Further we have analyzed the role at gene expression level. The Rk1 +Rg5 complex was found to show an effect on the IGF 2R receptor, CHOP-10, and C/EBP gene at a particular treated concentration (50 μM). Moreover, stress condition (about 50% decreases) was overcome by the ginsenoside treatments at 50 μM. Conclusion: The present results showed that under endoplasmic reticulum stress conditions Rk1 +Rg5 complex exhibits a potential protective role in insulin-resistant 3T3-L1 cells.
Collapse
Affiliation(s)
- Shree Priya Ponnuraj
- Department of Oriental Medicinal Materials and Processing, Kyung Hee University, Suwon, Korea
| | - Fayeza Siraj
- Department of Oriental Medicinal Materials and Processing, Kyung Hee University, Suwon, Korea
| | - Sera Kang
- Department of Oriental Medicinal Materials and Processing, Kyung Hee University, Suwon, Korea
| | - Hae Yong Noh
- Department of Oriental Medicinal Materials and Processing, Kyung Hee University, Suwon, Korea
| | - Jin-Woo Min
- Department of Oriental Medicinal Materials and Processing, Kyung Hee University, Suwon, Korea
| | - Yeon-Ju Kim
- Department of Oriental Medicinal Materials and Processing, Kyung Hee University, Suwon, Korea
| | - Deok-Chun Yang
- Department of Oriental Medicinal Materials and Processing, Kyung Hee University, Suwon, Korea
| |
Collapse
|
34
|
Shin HS, Yu M, Kim M, Choi HS, Kang DH. Renoprotective effect of red ginseng in gentamicin-induced acute kidney injury. J Transl Med 2014; 94:1147-60. [PMID: 25111692 DOI: 10.1038/labinvest.2014.101] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/26/2014] [Accepted: 06/13/2014] [Indexed: 12/21/2022] Open
Abstract
Aminoglycoside-induced nephrotoxicity is one of the prevalent causes of acute kidney injury (AKI). Oxidative stress-mediated apoptosis of renal tubular cells is known to be a major mechanism of renal injury. Red ginseng extract (RGE) has been reported to possess antioxidant and immune-modulatory activities. We investigated the effect of RGE on gentamicin (GM)-induced apoptosis and oxidative stress in cultured renal tubular cells and animal model of GM-induced AKI. GM induced the generation of reactive oxygen species (ROS) with an increase in NADPH oxidase (NOX) activity and mitochondrial oxidation in NRK-52E cells that were ameliorated with RGE. GM-induced apoptosis of NRK-52E cells, which was associated with an increased expression of mitochondrial Bax, cytosolic cytochrome c, and cleaved caspase-9 and -3, along with a decrease in bcl-2 expression, was also blocked by RGE. In an animal model of GM-induced AKI, RGE treatment significantly attenuated renal dysfunction, cell apoptosis, and tubular damage. RGE ameliorated ROS production in rats with GM-induced AKI, as demonstrated by an increase in the reduced form of glutathione in renal cortex and a decrease in urinary excretion of 8-hydroxy-2'-deoxyguanosine. Our results suggest that RGE protects the kidney from GM-induced AKI via the mechanism of modulation of oxidative stress.
Collapse
Affiliation(s)
- Hyun-Soo Shin
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Korea
| | - Mina Yu
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Korea
| | - Mijin Kim
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Korea
| | - Hack Sun Choi
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Korea
| | - Duk-Hee Kang
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Korea
| |
Collapse
|
35
|
Bae HW, Kim JH, Kim S, Kim M, Lee N, Hong S, Seong GJ, Kim CY. Effect of Korean Red Ginseng supplementation on dry eye syndrome in glaucoma patients - A randomized, double-blind, placebo-controlled study. J Ginseng Res 2014; 39:7-13. [PMID: 25535471 PMCID: PMC4268561 DOI: 10.1016/j.jgr.2014.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Many patients with glaucoma have difficulty using antiglaucoma eye drops because of dry eye symptom. In this prospective, randomized, double-blind, placebo-controlled study, we evaluated the effect of Korean Red Ginseng on dry eye syndrome in patients with glaucoma treated with antiglaucoma eye drops. METHODS Forty-nine participants were allocated to the Korean Red Ginseng (3 g/day; n = 24) or placebo (n = 25) groups for 8 weeks. Tear film stability, fluorescein corneal staining, conjunctival hyperemia, tear production, grade of meibomian gland dysfunction, and dry eye questionnaire (Ocular Surface Disease Index) were evaluated at baseline and on completion of the treatment. RESULTS Almost all patients displayed dry eye symptoms and signs at baseline. After the 8-week intervention, Korean Red Ginseng supplementation significantly improved the tear film stability and total Ocular Surface Disease Index score, as compared to placebo (p < 0.01). CONCLUSION Korean Red Ginseng supplementation may provide an additional treatment option for dry eye and patients with glaucoma using antiglaucoma eye drops.
Collapse
Affiliation(s)
- Hyoung Won Bae
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | | | - Sangah Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Minkyo Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Naeun Lee
- Department of Ophthalmology, Hallym Hospital, Incheon, Korea
| | - Samin Hong
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Gong Je Seong
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Chan Yun Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
A survey of chinese medicinal herbal treatment for chemotherapy-induced oral mucositis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:284959. [PMID: 24285975 PMCID: PMC3830834 DOI: 10.1155/2013/284959] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/21/2013] [Indexed: 02/07/2023]
Abstract
Oral mucositis is one of the common side effects of chemotherapy treatment with potentially severe implications. Despite several treatment approaches by conventional and complementary western medicine, the therapeutic outcome is often not satisfactory. Traditional Chinese Medicine (TCM) offers empirical herbal formulas for the treatment of oral ulceration which are used in adaptation to chemotherapy-induced mucositis. While standard concepts for TCM treatment do not exist and acceptance by conventional oncologists is still low, we conducted a review to examine the evidence of Chinese herbal treatment in oral mucositis. Eighteen relevant studies on 4 single herbs, 2 combinations of 2 herbs, and 11 multiherbal prescriptions involving 3 or more compounds were included. Corresponding molecular mechanisms were investigated. The knowledge about detailed herbal mechanisms, especially in multi-herbal prescriptions is still limited. The quality of clinical trials needs further improvement. Meta-analysis on the existent database is not possible but molecular findings on Chinese medicinal herbs indicate that further research is still promising for the treatment of chemotherapy-induced oral mucositis.
Collapse
|