1
|
Amirian R, Mohammadi Pour P, Maleki H, Fakhri S, Asgary S, Farzaei MH, Echeverría J. Evaluating the anti-neuropathic effects of the thymol-loaded nanofibrous scaffold in a rat model of spinal cord injury. Front Pharmacol 2025; 16:1507397. [PMID: 40255564 PMCID: PMC12006068 DOI: 10.3389/fphar.2025.1507397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/20/2025] [Indexed: 04/22/2025] Open
Abstract
Background Spinal cord injury (SCI) is a debilitating condition characterized by partial or complete loss of motor and sensory function caused by mechanical trauma to the spinal cord. Novel therapeutic approaches are continuously explored to enhance spinal cord regeneration and functional recovery. Purpose In this study, we investigated the efficacy of the poly(vinyl alcohol) and chitosan (PVA/CS) scaffold loaded with different thymol concentrations (5, 10, and 15 wt%) in a rat compression model for SCI treatment compare to other (e.g., thymol and scaffold) control groups. Results and discussion The thymol-loaded scaffold exhibited a smooth surface and a three-dimensional nanofibrous structure with nanoscale diameter. The conducted analyses verified the successful incorporation of thymol into the scaffold and its high water absorption, porosity, and wettability attributes. Behavioral assessment of functional recovery showed improving sensory and locomotor impairment. Furthermore, histopathological examinations indicated the regenerative potential of the thymol-loaded nanofiber scaffold, by neuronal survival. Conclusion Therefore, these findings suggest that the thymol-loaded nanofibrous scaffolds have promising pharmacological activities for alleviating neuropathic pain and addressing complications induced by SCI.
Collapse
Affiliation(s)
- Roshanak Amirian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pardis Mohammadi Pour
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Maleki
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
2
|
Morvaridi M, Aryaeian N, Alavinejad P, Seyedian SS, Ghafourian M, Bakhtiari N, Seyedtabib M. Zatariamultiflora hydroalcoholic extract: A triple-blind randomized controlled trial on immune genes, inflammation, and ulcerative colitis symptoms. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119527. [PMID: 39987994 DOI: 10.1016/j.jep.2025.119527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/02/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zataria multiflora Boiss. (Shirazi thyme) is traditionally used for digestive disorders and inflammatory conditions. Despite its known anti-inflammatory, immunomodulatory, and antioxidant properties, there is limited clinical evidence on its efficacy for ulcerative colitis (UC). AIM OF THE STUDY To evaluate the effectiveness of Zataria multiflora Boiss. (Z. multiflora) extract in alleviating UC symptoms, reducing inflammatory markers, and modulating immune-related gene expression. MATERIALS AND METHODS In a multicenter, randomized, placebo-controlled, triple-blind trial in Iran, 92 participants received Z. multiflora extract (6 mg/kg/day) or a placebo for two months. Inflammatory markers and gene expression were analyzed from blood samples. Disease activity was assessed using the Partial Mayo Score (p-Mayo) and the Gastrointestinal Symptom Rating Scale (GSRS). Data were analyzed with SPSS software. RESULTS The Z. multiflora group showed significant reductions in C-reactive protein (CRP) (p < 0.001), Interleukin-17 (IL-17) (p = 0.001), Interferon-gamma (IFN-γ) (p = 0.002), Nuclear Factor kappa B (NF-κB) (p = 0.002), T-box Transcription Factor T-bet (T-bet) (p = 0.006), and Retinoic Acid-Related Orphan Receptor gamma t (ROR-γt) (p < 0.001). No significant changes were observed in Erythrocyte Sedimentation Rate (ESR) (p = 0.25), GATA Binding Protein 3 (GATA3) (p = 0.09), and Forkhead Box P3 (FOXP3) (p = 0.17). Symptoms such as heartburn, acid reflux, bloating, diarrhea, and fecal urgency improved (p < 0.05). The GSRS score improved (p < 0.001), while the p-Mayo score did not show a significant change (p = 0.24). CONCLUSION Z. multiflora extract significantly alleviated UC symptoms and reduced inflammatory markers, indicating its potential as a complementary treatment for UC. However, the study was limited by its short intervention period and the absence of biopsy analysis to assess local tissue effects. Further longitudinal studies are required to validate these findings and determine long-term efficacy.
Collapse
Affiliation(s)
- Mehrnaz Morvaridi
- Department of Nutrition Sciences, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Naheed Aryaeian
- Department of Nutrition Sciences, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Nutritional Sciences Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Pezhman Alavinejad
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Saeed Seyedian
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehri Ghafourian
- Department of Immunology, Fertility, Infertility and Perinatology Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nima Bakhtiari
- Pain Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Iran
| | - Maryam Seyedtabib
- Department of Biostatistics and Epidemiology, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Yahia R, Hassan GG, Abo-Youssef AM, Mahmoud HM. Piribedil and thymol mitigate vancomycin-evoked nephrotoxicity in rats through modulation of Keap-1/Nrf2/HO-1 and NF-κB/Bax/caspase 3 signalings. Drug Chem Toxicol 2025:1-16. [PMID: 40143539 DOI: 10.1080/01480545.2025.2481857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/18/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025]
Abstract
Nephrotoxicity is a sign in which endogenous or exogenous toxicants have damaged the kidney-specific detoxification and excretion processes. Vancomycin (VAN) exposure mostly causes kidney damage and a loss of body homeostasis regulation. This study aimed to investigate the protective effects of piribedil and thymol and its basic mechanisms against nephrotoxicity caused by VAN. Randomly, the animals were categorized into six groups (n = 8). For 7 d, Group I only received vehicles, Group II received piribedil (5 mg/kg/once daily, i.p.), Group III received thymol (25 mg/kg/once daily, i.p), Group IV was administered a single daily dose of VAN (200 mg/kg, i.p.), VAN+ piribedil was administered to Group V, and VAN + thymol was administered to Group VI. The findings showed that piribedil or thymol improved renal function parameters by an increase in serum albumin level in parallel to a decrease in serum creatinine and blood urea nitrogen (BUN) levels in addition to decreased levels of KIM-1 and serum cystatin C. Furthermore, enhanced oxidative stress biomarkers as GSH, myeloperoxidase (MPO), and malondialdehyde (MDA) as well as tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β), indicators of inflammatory mediators, were markedly reduced compared to VAN group. Moreover, piribedil or thymol markedly improved the histopathological aberrations provoked by VAN, increased the Nrf-2 and HO-1 renal protein expressions and reduced VAN-induced elevation of Keap-1 protein expression. In addition, NF-kB, Bax, and caspase 3 expression levels were considerably declined after piribedil or thymol co-treatment. These findings revealed that co-administration of piribedil or thymol with VAN may be a sensible therapeutic approach for reducing renal intoxication caused by VAN.
Collapse
Affiliation(s)
- Rania Yahia
- Department of Pharmacology, Egyptian Drug Authority, Cairo, Egypt
| | - Gehad Gamal Hassan
- Central Administration of Pharmaceutical Products, Egyptian Drug Authority, Cairo, Egypt
| | - Amira M Abo-Youssef
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Heba M Mahmoud
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
4
|
Bekheit SO, Kolieb E, El-Awady ESE, Alwaili MA, Alharthi A, Khodeer DM. Cardioprotective Effects of Ferulic Acid Through Inhibition of Advanced Glycation End Products in Diabetic Rats with Isoproterenol-Induced Myocardial Infarction. Pharmaceuticals (Basel) 2025; 18:319. [PMID: 40143098 PMCID: PMC11944864 DOI: 10.3390/ph18030319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND/OBJECTIVES Myocardial infarction (MI) and diabetes pose significant health challenges globally, necessitating the development of innovative medication strategies to improve outcomes in affected populations. This research aimed to determine the defensive impact of ferulic acid (FA) against isoproterenol-induced myocardial infarction (MI) in diabetic rats. METHODS A group of male rats was partitioned into five distinct groups: control group, diabetic group, diabetic + MI, diabetic + MI + 20 mg/kg FA, and diabetic + MI + 40 mg/kg FA. The experimental groups received isoproterenol (ISO) subcutaneously at a dosage of 50 mg/kg body weight for two consecutive days. RESULTS The outcome was severe cardiac toxicity, as shown by changes in electrocardiogram (ECG) rhythm and a substantial increase in blood cardiac enzymes such as creatinine kinase (CK-MB), cardiac troponin I (cTnI), and lactate dehydrogenase (LDH). Additionally, there was a surge in inflammatory cytokines, like tumor necrosis factor-alpha (TNF-α), and a disruption of the antioxidant system, evidenced by a rise in malondialdehyde (MDA) content. Moreover, there was a rise in cardiac receptor of advanced glycation end products (RAGE). Treatment with FA with escalating dosages of 20 and 40 mg/kg b.w. effectively mitigated changes in serum cardiac enzymes and improved the cellular architecture, which was evaluated by histopathological examination. CONCLUSIONS In conclusion, in a dose-dependent manner, FA successfully showed a cardioprotective effect against ISO-induced cardiac toxicity in diabetic rats, as shown by the improvement in ECG findings, normalization of serum cardiac biomarkers, and augmentation of the endogenous antioxidant system. Therefore, the aforementioned data indicate that ferulic acid may potentially have a protective effect on MI patients who have diabetes mellitus.
Collapse
Affiliation(s)
- Sarah Ouda Bekheit
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (S.O.B.); (E.-S.E.E.-A.)
| | - Eman Kolieb
- Department of Medical Physiology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - El-Sayed E. El-Awady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (S.O.B.); (E.-S.E.E.-A.)
| | - Maha Abdullah Alwaili
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Dina M. Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (S.O.B.); (E.-S.E.E.-A.)
| |
Collapse
|
5
|
Cai Z, Xu S, Liu C. Cathepsin B in cardiovascular disease: Underlying mechanisms and therapeutic strategies. J Cell Mol Med 2024; 28:e70064. [PMID: 39248527 PMCID: PMC11382359 DOI: 10.1111/jcmm.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Cathepsin B (CTSB) is a member of the cysteine protease family, primarily responsible for degrading unnecessary organelles and proteins within the acidic milieu of lysosomes to facilitate recycling. Recent research has revealed that CTSB plays a multifaceted role beyond its function as a proteolytic enzyme in lysosomes. Importantly, recent data suggest that CTSB has significant impacts on different cardiac pathological conditions, such as atherosclerosis (AS), myocardial infarction, hypertension, heart failure and cardiomyopathy. Especially in the context of AS, preclinical models and clinical sample imaging data indicate that the cathepsin activity-based probe can reliably image CTSB activity in foam cells and atherosclerotic plaques; concurrently, it allows synchronous diagnostic and therapeutic interventions. However, our knowledge of CTSB in cardiovascular disease is still in the early stage. This paper aims to provide a comprehensive review of the significance of CTSB in cardiovascular physiology and pathology, with the objective of laying a theoretical groundwork for the development of drugs targeting CTSB.
Collapse
Affiliation(s)
- Zhulan Cai
- Department of Cardiology, Peking University Third Hospital, Beijing, P.R. China
| | - Shunyao Xu
- Department of Critical Care Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, P.R. China
| | - Chen Liu
- Department of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, P.R. China
| |
Collapse
|
6
|
Anwar F, Mahrye, Khan R, Qadir R, Saadi S, Gruczynska-Sekowska E, Saari N, Hossain Brishti F. Exploring the Biochemical and Nutra-Pharmaceutical Prospects of Some Thymus Species - A Review. Chem Biodivers 2024; 21:e202400500. [PMID: 38719739 DOI: 10.1002/cbdv.202400500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/08/2024] [Indexed: 06/27/2024]
Abstract
The Thymus genus includes various medicinal and aromatic species, cultivated worldwide for their unique medicinal and economic value. Besides, their conventional use as a culinary flavoring agent, Thymus species are well-known for their diverse biological effects, such as antioxidant, anti-fungal, anti-bacterial, anti-viral, anti-tumor, anti-inflammatory, anti-cancer, and anti-hypertensive properties. Hence, they are used in the treatment of fever, colds, and digestive and cardiovascular diseases. The pharmaceutical significance of Thymus plants is due to their high levels of bioactive components such as natural terpenoid phenol derivatives (p-cymene, carvacrol, thymol, geraniol), flavonoids, alkaloids, and phenolic acids. This review examines the phytochemicals, biological properties, functional food, and nutraceutical attributes of some important Thymus species, with a specific focus on their potential uses in the nutra-pharmaceutical industries. Furthermore, the review provides an insight into the mechanisms of biological activities of key phytochemicals of Thymus species exploring their potential for the development of novel natural drugs.
Collapse
Affiliation(s)
- Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Mahrye
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Rahman Qadir
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Sami Saadi
- Institute de la Nutrition, de l'Alimentation et des Technologies Agroalimetaires INATAA, Universitédes Frères Mentouri Constantine 1, Route de Ain El Bey-Constantine, Algeria
- Laboratoire de Génie Agro-Alimentaire (GeniAAl), INATAA, Université Frères Mentouri Constantine 1 UFC1, Route de Ain, El Bey-Constantine, Algeria
| | - Eliza Gruczynska-Sekowska
- Institute of Food Sciences, Department of Chemistry, Warsaw University of Life Sciences, Nowoursynowska 159 C, PL-02-776, Warsaw, Poland
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Fatema Hossain Brishti
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
7
|
Jghef MM, Boukholda K, Chtourou Y, Fiebich BL, Kebieche M, Soulimani R, Chigr F, Fetoui H. Punicalagin attenuates myocardial oxidative damage, inflammation, and apoptosis in isoproterenol-induced myocardial infarction in rats: Biochemical, immunohistochemical, and in silico molecular docking studies. Chem Biol Interact 2023; 385:110745. [PMID: 37806379 DOI: 10.1016/j.cbi.2023.110745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Myocardial infarction (MI) is a life-threatening ischemic disease and is one of the leading causes of morbidity and mortality worldwide. Punicalagin (PU), the major ellagitannin found in pomegranates, is characterized by multiple antioxidant activities. The aim of this study is to assess the protective effects of PU against isoproterenol (ISO)-induced acute myocardial damage and to investigate its underlying vascular mechanisms using rat model. METHODS: Rats were randomly divided into five groups and were treated orally (p.o.) with PU (25 and 50 mg/kg) for 14 days. ISO was administered subcutaneously (S.C.) (85 mg/kg) on the 15th and 16th days to induce Myocardial infarction. Cardiac markers, oxidative stress markers, and inflammatory cytokines levels were determined in the heart tissue. Immunohistochemistry analysis was performed to determine the protein expression pathways of inflammation, apoptosis and oxidative stress (Nuclear factor erythroid 2-related factor 2 (Nrf-2), and heme oxygenase-1 (HO-1) in all the groups. In silico study was carried out to evaluate the molecular interaction of PU with some molecular targets. RESULTS: Our results showed that ISO-induced cardiac tissue injury was evidenced by increased serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), and lactate dehydrogenase (LDH), associated with several histopathological changes. ISO also induced an increase of MDA, PCO, NO, and 8-hydroxy-2-deoxyguanosine (8-OHdG), along with a decrease of antioxidant enzyme activities in the myocardial tissues. In addition, an increase of TNF-α, NF-κB, IL-6, IL-1β, iNOS, Nrf2 and (HO-1) was observed. Pre-treatment with PU reduced myocardial infract area, ameliorated histopathological alterations in myocardium, and decreased activities of myocardial injury marker enzymes in ISO-induced rats. In addition, PU remarkably restored ISO-induced elevation of lipid peroxidation and decrease of antioxidants, significantly reduced myocardial pro-inflammatory cytokines concentrations in this animal model. Molecular docking analysis of PU with protein targets showed potent interactions with negative binding energies. In conclusion, PU can protect the myocardium from oxidative injury, inflammatory response, and cell death induced by ISO by upregulating Nrf2/HO-1 signaling and antioxidants.
Collapse
Affiliation(s)
- Muthana M Jghef
- Department of Radiology, Medical Technical College, Alkitab University, Alton Kubri, Kirkuk, Iraq; Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| | - Khadija Boukholda
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| | - Yassine Chtourou
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| | - Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany.
| | - Mohammed Kebieche
- Faculty of Natural and Life Sciences, LMAGECA and BMBP Research Laboratories, University of Batna2, Route de Constantine, 05078, Fesdis, Batna2, Algeria.
| | - Rachid Soulimani
- Université de Lorraine, LCOMS/Neurotoxicologie Alimentaire et Bioactivité, 57000, Metz, France.
| | - Fatiha Chigr
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco.
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| |
Collapse
|
8
|
Abd-Elhakim YM, Saber TM, Metwally MMM, Abd-Allah NA, Mohamed RMSM, Ahmed GA. Thymol abates the detrimental impacts of imidacloprid on rat brains by lessening oxidative damage and apoptotic and inflammatory reactions. Chem Biol Interact 2023; 383:110690. [PMID: 37648049 DOI: 10.1016/j.cbi.2023.110690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/29/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Imidacloprid (IMID) is one of the most widely used neonicotinoid insecticides globally and, consequently, a probable widespread environmental contaminant. The potential neurotoxic effects of IMID have been previously reported. This study aimed to investigate the possible beneficial effect of thymol (TML) in relieving IMID-induced harmful effects on the brain of male Sprague-Dawley rats. For this aim, four groups (10 rats/group) were orally administered corn oil, TML (30 mg/kg b.wt), IMID (22.5 mg/kg b.wt), or TML + IMID for 56 days. The brain tissues were biochemically, histopathologically, and immunohistochemically evaluated. The results displayed that TML significantly restored the IMID-induced depletion of the total antioxidant capacity of the brain tissues. At the same time, the IMID-associated increased levels of lipid peroxidation in terms of malondialdehyde content were markedly suppressed in the TML + IMID group. Also, TML oral dosing markedly reduced the release of inflammatory elements, including nitric oxide and myeloperoxidase, resulting from IMID exposure. Furthermore, the IMID-induced decrease in gamma-aminobutyric acid but the increase in acetylcholinesterase was considerably reversed by TML oral dosing. Additionally, TML oral administration significantly counteracted the IMID-induced brainepatic DNA damage, as revealed by the comet assay. Besides, a significant downregulatibrainepatic Caspase-3 was evident in the TML + IMID group compared to the IMID group. However, TML oral dosing has not significantly altered the IMID-induced nuclear factor (NF-κB p65) increase. Therefore, TML could be a protective agent against IMID-induced detrimental impacts on brain tissue, possibly through its antioxidant, antiapoptotic, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Taghred M Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Noura A Abd-Allah
- Clinical Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Rasha M S M Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Gehan A Ahmed
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Yalameha B, Nejabati HR, Nouri M. Cardioprotective potential of vanillic acid. Clin Exp Pharmacol Physiol 2023; 50:193-204. [PMID: 36370144 DOI: 10.1111/1440-1681.13736] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
Nowadays, cardiovascular diseases (CVDs) are a global threat to public health, accounting for almost one-third of all deaths worldwide. One of the key mechanistic pathways contributing to the development of CVDs, including cardiotoxicity (CTX) and myocardial ischaemia-reperfusion injury (MIRI) is oxidative stress (OS). Increased generation of reactive oxygen species (ROS) is closely associated with decreased antioxidant capacity and mitochondrial dysfunction. Currently, despite the availability of modern pharmaceuticals, dietary-derived antioxidants are becoming more popular in developed societies to delay the progression of CVDs. One of the antioxidants derived from herbs, fruits, whole grains, juices, beers, and wines is vanillic acid (VA), which, as a phenolic compound, possesses different therapeutic properties, including cardioprotective. Based on experimental evidence, VA improves mitochondrial function as a result of the reduction in ROS production, aggravates antioxidative status, scavenges free radicals, and reduces levels of lipid peroxidation, thereby decreasing cardiac dysfunction, in particular CTX and MIRI. Considering the role of OS in the pathophysiology of CVDs, the purpose of this study is to comprehensively address recent evidence on the antioxidant importance of VA in the cardiovascular system.
Collapse
Affiliation(s)
- Banafsheh Yalameha
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Hussein RM, Arafa ESA, Raheem SA, Mohamed WR. Thymol protects against bleomycin-induced pulmonary fibrosis via abrogation of oxidative stress, inflammation, and modulation of miR-29a/TGF-β and PI3K/Akt signaling in mice. Life Sci 2023; 314:121256. [PMID: 36549352 DOI: 10.1016/j.lfs.2022.121256] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/19/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
Idiopathic pulmonary fibrosis is a terminal lung ailment that shares several pathological and genetic mechanisms with severe COVID-19. Thymol (THY) is a dietary compound found in thyme species that showed therapeutic effects against various diseases. However, the effect of THY against bleomycin (BLM)-induced lung fibrosis was not previously investigated. The current study investigated the ability of THY to modulate oxidative stress, inflammation, miR-29a/TGF-β expression, and PI3K/phospho-Akt signaling in lung fibrosis. Mice were divided into Normal, THY (100 mg/kg, p.o.), BLM (15 mg/kg, i.p.), BLM + THY (50 mg/kg, p.o.), and BLM + THY (100 mg/kg, p.o.) groups and treated for four weeks. The obtained results showed that BLM + THY (50 mg/kg) and BLM + THY (100 mg/kg) reduced fibrotic markers; α-SMA and fibronectin, inflammatory mediators; TNF-α, IL-1β, IL-6, and NF-kB and oxidative stress biomarkers; MDA, GSH, and SOD, relative to BLM group. Lung histopathological examination by H&E and Masson's trichrome stains confirmed the obtained results. Remarkably, expression levels of TGF-β, PI3K, and phospho-Akt were decreased while miR-29a expression was elevated. In conclusion, THY effectively prevented BLM-induced pulmonary fibrosis by exerting significant anti-oxidant and anti-inflammatory effects. Our novel findings that THY upregulated lung miR-29a expression while decreased TGF-β and PI3K/Akt signaling are worthy of further investigation as a possible molecular mechanism for THY's anti-fibrotic actions.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, 61710 Al-Karak, Jordan; Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - El-Shaimaa A Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Sayed Abdel Raheem
- Department of Pathology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
11
|
Liu Y, Yan H, Yu B, He J, Mao X, Yu J, Zheng P, Huang Z, Luo Y, Luo J, Wu A, Chen D. Protective Effects of Natural Antioxidants on Inflammatory Bowel Disease: Thymol and Its Pharmacological Properties. Antioxidants (Basel) 2022; 11:antiox11101947. [PMID: 36290669 PMCID: PMC9598597 DOI: 10.3390/antiox11101947] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a gastrointestinal disease that involves chronic mucosal or submucosal lesions that affect tissue integrity. Although IBD is not life-threatening, it sometimes causes severe complications, such as colon cancer. The exact etiology of IBD remains unclear, but several risk factors, such as pathogen infection, stress, diet, age, and genetics, have been involved in the occurrence and aggravation of IBD. Immune system malfunction with the over-production of inflammatory cytokines and associated oxidative stress are the hallmarks of IBD. Dietary intervention and medical treatment suppressing abnormal inflammation and oxidative stress are recommended as potential therapies. Thymol, a natural monoterpene phenol that is mostly found in thyme, exhibits multiple biological functions as a potential adjuvant for IBD. The purpose of this review is to summarize current findings on the protective effect of thymol on intestinal health in the context of specific animal models of IBD, describe the role of thymol in the modulation of inflammation, oxidative stress, and gut microbiota against gastrointestinal disease, and discuss the potential mechanism for its pharmacological activity.
Collapse
Affiliation(s)
| | - Hui Yan
- Correspondence: (H.Y.); (D.C.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Antioxidant and Anti-Inflammatory Effects of Thyme (Thymus vulgaris L.) Essential Oils Prepared at Different Plant Phenophases on Pseudomonas aeruginosa LPS-Activated THP-1 Macrophages. Antioxidants (Basel) 2022; 11:antiox11071330. [PMID: 35883820 PMCID: PMC9311800 DOI: 10.3390/antiox11071330] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Thyme (Thymus vulgaris L.) essential oil (TEO) is widely used as an alternative therapy especially for infections of the upper respiratory tract. TEO possesses antiviral, antibacterial, and antifungal properties. The emerging antibiotic resistance of bacterial strains, including Pseudomonas aeruginosa, has prompted the urge to find alternative treatments. In the present study, we examined the anti-inflammatory and antioxidant effects of thymol, the main compound of TEO, and two TEOs prepared at the beginning and at the end of the flowering period that may make these oils promising candidates as complementary or alternative therapies against P. aeruginosa infections. The activity measurements of the antioxidant enzymes peroxidase (PX), catalase (CAT), and superoxide dismutase (SOD) as well as the determination of total antioxidant capacity of P. aeruginosa-activated THP-1 cells revealed that thymol and both TEOs increased CAT and SOD activity as well as the antioxidant capacity of the THP-1 cells. The measurements of the proinflammatory cytokine mRNA expression and secreted protein level of LPS-activated THP-1 cells showed that from the two TEOs, only TEO prepared at the beginning of the flowering period acted as a potent inhibitor of the synthesis of IL-6, IL-8, IL-β, and TNF-α. Our results suggest that not only thymol, but also the synergism or the antagonistic effects of the additional compounds of the essential oils are responsible for the anti-inflammatory activity of TEOs.
Collapse
|
13
|
Medhet M, El-Bakly WM, Badr AM, Awad A, El-Demerdash E. Thymoquinone attenuates isoproterenol-induced myocardial infarction by inhibiting cytochrome C and matrix metalloproteinase-9 expression. Clin Exp Pharmacol Physiol 2022; 49:391-405. [PMID: 34767666 DOI: 10.1111/1440-1681.13614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
Thymoquinone (TQ) is the main active constituent of Nigella sativa. The present study aimed to investigate the effect of TQ on apoptotic parameters and MMP-9 expression in isoproterenol (ISP)-induced myocardial infarction (MI). TQ was given once daily for 7 days at doses of 10 and 20 mg/kg orally with ISP (86 mg/kg; s.c.) administered on the sixth and seventh days. TQ pre-treatment protected against ISP-induced MI as approved by normalisation of electrocardiogram (ECG) and b (CK)-MB, minimal histopathological changes, and reduction of the infarction size. Effects of TQ could be supported by its antioxidant activity, evidenced by the increase of cardiac reduced glutathione and total serum antioxidant capacity, and the inhibition of ISO-induced lipid peroxidation. TQ anti-inflammatory activity was associated with reduced expression of NF-κB and TNF-α. TQ ameliorated cardiomyocytes, apoptotic pathways by inhibiting both the intrinsic pathway, via reducing cytoplasmic cytochrome C, and the extrinsic pathway, by inhibiting TNF-α and caspases, and the effect of TQ was dose-dependent. Moreover, TQ reduced the expression of metalloproteinase (MMP)-9, which is considered as a prognostic marker of ventricular remodelling, recommending that TQ can be used as a possible supplement to minimise post-MI changes. So, we conclude that TQ antiapoptotic activity and the inhibitory modulation of MMP-9 expression contribute to TQ protective effects in MI. To our knowledge, this is the first study reporting the effect of TQ on cytochrome c activity and MMP-9 expression in MI.
Collapse
Affiliation(s)
- Marwa Medhet
- Department of Crime Investigation Research, The National Centre for Social & Criminological Research, Cairo, Egypt
| | - Wesam M El-Bakly
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amira M Badr
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azza Awad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Ahmed OM, Galaly SR, Mostafa MAMA, Eed EM, Ali TM, Fahmy AM, Zaky MY. Thyme Oil and Thymol Counter Doxorubicin-Induced Hepatotoxicity via Modulation of Inflammation, Apoptosis, and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6702773. [PMID: 35178158 PMCID: PMC8844103 DOI: 10.1155/2022/6702773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/26/2021] [Accepted: 01/02/2022] [Indexed: 12/14/2022]
Abstract
Doxorubicin (DOX) is an effective anticancer agent with a wide spectrum of activities. However, it has many adverse effects on various organs especially on the liver. Thymol, one of the major components of thyme oil, has biological properties that include anti-inflammatory and antioxidant activities. Thus, this study was designed to examine thyme oil and thymol for their ability to prevent doxorubicin-induced hepatotoxicity in Wistar rats. Hepatotoxicity was induced by an intraperitoneal injection of doxorubicin, at a dose of 2 mg/kg bw/week, for seven weeks. Doxorubicin-injected rats were supplemented with thyme oil and thymol at doses 250 and 100 mg/kg bw, respectively, four times/week by oral gavage for the same period. Treatment of rats with thyme oil and thymol reversed the high serum activities of AST, ALT, and ALP and total bilirubin, AFP, and CA19.9 levels, caused by doxorubicin. Thyme oil and thymol also reduced the high levels of TNF-α and the decreased levels of both albumin and IL-4. These agents ameliorated doxorubicin-induced elevation in hepatic lipid peroxidation and associated reduction in GSH content and GST and GPx activities. Further, the supplementation with thyme oil and thymol significantly augmented mRNA expression of the level of antiapoptotic protein Bcl-2 and significantly downregulated nuclear and cytoplasmic levels of the hepatic apoptotic mediator p53. Thus, thyme oil and thymol successfully counteracted doxorubicin-induced experimental hepatotoxicity via their anti-inflammatory, antioxidant, and antiapoptotic properties.
Collapse
Affiliation(s)
- Osama M. Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Sanaa R. Galaly
- Cell Biology and Histology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mennah-Allah M. A. Mostafa
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Emad M. Eed
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Tarek M. Ali
- Department of Physiology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Alzhraa M. Fahmy
- Tropical Medicine and Infectious Diseases Department, Beni-Suef University Faculty of Medicine, Beni-Suef, Egypt
| | - Mohamed Y. Zaky
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
- Department of Medical Oncology Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| |
Collapse
|
15
|
Silva EAP, Santos DM, de Carvalho FO, Menezes IAC, Barreto AS, Souza DS, Quintans-Júnior LJ, Santos MRV. Monoterpenes and their derivatives as agents for cardiovascular disease management: A systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153451. [PMID: 33483251 DOI: 10.1016/j.phymed.2020.153451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/16/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Monoterpenes are one of the most studied plant's secondary metabolites, they are found abundantly in essential oils of aromatic plants. They also have a great range of pharmacological properties, such as antihypertensive, bradycardic, antiarrhythmic and hypotensive. In the face of the burden caused by cardiovascular disease (CVDs) worldwide, studies using monoterpenes to assess their cardiovascular effects have increased over the years. PURPOSE This systematic review aimed to summarize the use of monoterpenes in animal models of any CVDs. METHODS PubMed, SCOPUS, LILACS and Web of Science databases were used to search for articles that used monoterpenes, in any type of administration, to treat or prevent CVDs in animal models. The PRISMA guidelines were followed. Two independent researchers extracted main characteristics of studies, methods and outcomes. Data obtained were analyzed qualitatively and quantitatively. RESULTS At the ending of the search process, 33 articles were selected for the systematic review. Of these, 17 articles were included in the meta-analysis. A total of 16 different monoterpenes were found for the treatment of hypertension, myocardial infarction, pulmonary hypertension, cardiac hypertrophy and arrhythmia. The main actions include hypotension, bradycardia, vasodilatation, antiarrhythmic, and antioxidant and antiapoptotic properties. From our data, it can be suggested that monoterpenes may be a significant source for new drug development. However, there is still a need to apply these knowledge into clinical research and a long path to pursue before putting them in the market. CONCLUSION The variability of cardiovascular effects demonstrated by the monoterpenes highlighted them as a promising candidates for treatment or prevention of CVDs. Nevertheless, studies that investigate their biological sites of action needs to be further encouraged.
Collapse
Affiliation(s)
- Eric Aian P Silva
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Biotechnology Graduate Program - Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil
| | - Danillo M Santos
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil
| | - Fernanda Oliveira de Carvalho
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil
| | - Igor A Cortes Menezes
- Hospital de Clínicas, Universidade Federal do Paraná, Rua General Carneiro, 181, Curitiba-PR, 80060-900, Brazil
| | - André S Barreto
- Department of Health Education, Universidade Federal de Sergipe, Av. Governador Marcelo Deda, 13, Centro, Lagarto-SE, CEP 49400-000, Brazil
| | - Diego S Souza
- Department of Anesthesiology, University of Arizona, Tucson, AZ, USA
| | - Lucindo J Quintans-Júnior
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil
| | - Márcio R V Santos
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil; Biotechnology Graduate Program - Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil.
| |
Collapse
|
16
|
Pharmacological potential of ferulic acid for the treatment of metabolic diseases and its mechanism of action: A review. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.4.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Rababa'h AM, Alzoubi MA. Origanum majorana L. Extract Protects Against Isoproterenol-Induced Cardiotoxicity in Rats. Cardiovasc Toxicol 2021; 21:543-552. [PMID: 33786740 DOI: 10.1007/s12012-021-09645-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/15/2021] [Indexed: 11/28/2022]
Abstract
Coronary artery diseases are the major causes of disabilities and death worldwide. Evidence from the literature has demonstrated that Origanum majorana L. (marjoram) acts as an antioxidant, anti-inflammatory, antiplatelet, and assists in hormonal regulation. However, there is limited scientific evidence describing the signaling pathways associated with the marjoram's positive effect on cardiac injury. Therefore, we aimed to understand the mechanistic protective effects of marjoram on isoproterenol (ISO)-induced myocardial injury in rats. Sprague Dawley rats were randomly assigned into six groups. Marjoram was administrated by oral gavage and isoproterenol was administrated subcutaneously (ISO; 85 mg/kg). Heart weight, cardiac enzymes, inflammatory, and oxidative stress biomarkers were measured. The ISO-induced cardiac injury was confirmed by the significant increase in the levels of cardiac enzymes (P value < 0.05), whereas pre-treatment with marjoram normalized these cardiac injury parameters. We also determined that marjoram had a protective effect against ISO-induced increase in C-reactive protein (CRP), IL-6, IL-13, and TNF-α. Additionally, marjoram significantly decreased cardiac thiobarbituric acid reactive substances (TBARS) levels (P value < 0.05) and protected against ISO-induced oxidative stress. We have demonstrated that marjoram decreased both cardiac oxidative stress and inflammation, thus establishing the beneficial effects of marjoram on ISO-induced cardiac injury in rats.
Collapse
Affiliation(s)
- Abeer M Rababa'h
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, PO Box 3030, Irbid, 22110, Jordan.
| | - Miya A Alzoubi
- Department of Forensic Medicine and Toxicology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
18
|
Meeran MFN, Laham F, Azimullah S, Sharma C, Al Kaabi AJ, Tariq S, Adeghate E, Goyal SN, Ojha S. β-Caryophyllene, a natural bicyclic sesquiterpene attenuates β-adrenergic agonist-induced myocardial injury in a cannabinoid receptor-2 dependent and independent manner. Free Radic Biol Med 2021; 167:348-366. [PMID: 33588052 DOI: 10.1016/j.freeradbiomed.2021.01.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/26/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
The downregulation of cannabinoid type-2 receptors (CB2R) have been reported in numerous diseases including cardiovascular diseases (CVDs). The activation of CB2R has recently emerged as an important therapeutic target to mitigate myocardial injury. We examined whether CB2R activation can protect against isoproterenol (ISO)-induced myocardial injury (MI) in rats. In the present study, we investigated the cardioprotective effect of β-caryophyllene (BCP), a naturally occurring dietary cannabinoid in rat model of MI. Rats were pre- and co-treated with BCP (50 mg/kg, orally) twice daily for 10 days along with subcutaneous injection of ISO (85 mg/kg) at an interval of 24 h for two days (9th and 10th days). AM630 (1 mg/kg), a CB2 receptor antagonist, was injected intraperitoneal as a pharmacological challenge prior to BCP treatment to reveal CB2R-mediated cardioprotective mechanisms of BCP. Desensitization of beta-adrenergic receptor (β-AR) signaling, receptor phosphorylation and recruitment of adapter β-arrestins were observed in ISO-induced MI in rats. ISO injections caused impaired cardiac function, elevated the levels of serum cardiac marker enzymes, and enhanced oxidative stress markers along with altered PI3K/Akt and NrF2/Keap1/HO-1 signaling pathways. ISO also promoted lysosomal dysfunction along with activation of NLRP3 inflammasomes and TLR4-NFκB/MAPK signaling and triggered rise in proinflammatory cytokines. There was a concomitant mitochondrial dysfunction followed by the activation of endoplasmic reticulum (ER) stress-mediated Hippo signaling and intrinsic pathway of apoptosis as well as altered autophagic flux/mTOR signaling in ISO-induced MI. Furthermore, ISO also triggered dyslipidemia evidenced by altered lipids, lipoproteins and lipid marker enzymes along with ionic homeostasis malfunction. However, treatment with BCP resulted in significant protective effects on all biochemical and molecular parameters analyzed. The cardioprotective effects were further strengthened by preservation of cardiomyocytes and cell organelles as observed in histopathological and ultrastructural studies. Interestingly, treatment with AM630, a CB2R antagonist was observed to abrogate the protective effects of BCP on the biochemical and molecular parameters except hyperlipidemia and ionic homeostasis in ISO-induced MI in rats. The present study findings demonstrate that BCP possess the potential to protect myocardium against ISO-induced MI in a CB2-dependent and independent manner.
Collapse
Affiliation(s)
- M F Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box - 17666, Al Ain, United Arab Emirates
| | - Farah Laham
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box - 17666, Al Ain, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box - 17666, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box - 17666, Al Ain, United Arab Emirates
| | - Ahmed Juma Al Kaabi
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box - 17666, Al Ain, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box - 17666, Al Ain, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box - 17666, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box - 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
19
|
Salehi B, Quispe C, Imran M, Ul-Haq I, Živković J, Abu-Reidah IM, Sen S, Taheri Y, Acharya K, Azadi H, del Mar Contreras M, Segura-Carretero A, Mnayer D, Sethi G, Martorell M, Abdull Razis AF, Sunusi U, Kamal RM, Rasul Suleria HA, Sharifi-Rad J. Nigella Plants - Traditional Uses, Bioactive Phytoconstituents, Preclinical and Clinical Studies. Front Pharmacol 2021; 12:625386. [PMID: 33981219 PMCID: PMC8107825 DOI: 10.3389/fphar.2021.625386] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
Nigella is a small genus of the family Ranunculaceae, which includes some popular species due to their culinary and medicinal properties, especially in Eastern Europe, Middle East, Western, and Central Asia. Therefore, this review covers the traditional uses and phytochemical composition of Nigella and, in particular, Nigella sativa. The pharmacological studies reported in vitro, in vivo, and in humans have also been reviewed. One of the main strength of the use of Nigella is that the seeds are rich in the omega-6 fatty acid linoleic acid and provide an extra-source of dietary phytochemicals, including the bioactive thymoquinone, and characteristics saponins, alkaloids, and flavonoids. Among Nigella species, N. sativa L. is the most studied plant from the genus. Due to the phytochemical composition and pharmacological properties, the seed and seed oil from this plant can be considered as good candidates to formulate functional ingredients on the basis of folklore and scientific knowledge. Nonetheless, the main limations are that more studies, especially, clinical trials are required to standardize the results, e.g. to establish active molecules, dosage, chemical profile, long-term effects and impact of cooking/incorporation into foods.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Muhammad Imran
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Iahtisham Ul-Haq
- Department of Diet and Nutritional Sciences, Faculty of Health and Allied Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Belgrade, Serbia
| | - Ibrahim M. Abu-Reidah
- Department of Environmental Science/Boreal Ecosystem Research Initiative, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
- Department of Botany, Fakir Chand College, Diamond Harbour, India
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Hamed Azadi
- Department of Agronomy and Plant Breeding Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Jaén, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
- Research and Development Functional Food Centre (CIDAF), Bioregión Building, Health Science Technological Park, Granada, Spain
| | - Dima Mnayer
- Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Concepción, Chile
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Biochemistry, Bayero University Kano, Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Pharmacology, Federal University Dutse, Dutse, Nigeria
| | | | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
20
|
Meeran MFN, Azimullah S, Adeghate E, Ojha S. Nootkatone attenuates myocardial oxidative damage, inflammation, and apoptosis in isoproterenol-induced myocardial infarction in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153405. [PMID: 33636578 DOI: 10.1016/j.phymed.2020.153405] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Myocardial infarction (MI) is a lethal manifestation of cardiovascular diseases. Oxidative stress, inflammation, and subsequent cell death are known to play crucial roles in the pathogenesis of MI. Despite tremendous developments in interventional cardiology, there is need for novel drugs for the prevention and treatment of MI. For the development of novel drugs, usage of natural products has gained attention as a therapeutic approach for ischemic myocardial injury. Among many popular plant-derived compounds, Nootkatone (NKT), a natural bioactive sesquiterpene, abundantly found in grapefruit, has attracted attention for its plausible health benefits and pharmacological properties. PURPOSE The present study investigated the cardioprotective effects of NKT in rats against MI induced by isoproterenol (ISO), a synthetic catecholamine and β-adrenergic agonist that produces MI in a physiologically relevant manner. METHODS MI was induced in male Wistar albino rats by subcutaneous injection of ISO (85 mg/kg body weight) on 9th and 10th day. Rats were pre- and co-treated with NKT (10 mg/kg) through daily oral administration for eleven days. RESULTS ISO-induced MI was characterized by a significant decline in cardiac function, increased serum levels of cardiomyocyte injury markers, enhanced oxidative stress, and altered PI3K/Akt and NrF2/Keap1/HO-1 signaling pathways. ISO also elevated the levels of myocardial pro-inflammatory cytokines, promoted lysosomal dysfunction, altered TLR4-NFκB/MAPK signaling, and triggered intrinsic apoptotic pathway in heart tissues. However, NKT administration significantly restored or modulated majority of the altered biochemical and molecular parameters in ISO-treated rats. Furthermore, histopathological observations confirmed the myocardial restoring effect of NKT. CONCLUSION The present study concludes the cardioprotective effects and underlying mechanisms of NKT against ISO-induced MI in rats, and suggests that NKT or plants containing NKT could be an alternative to cardioprotective agents in ischemic heart diseases.
Collapse
Affiliation(s)
- M F Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box - 17666, Al Ain, UAE
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box - 17666, Al Ain, UAE
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box - 17666, Al Ain, UAE
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box - 17666, Al Ain, UAE.
| |
Collapse
|
21
|
Effects of dietary organic acids and nature identical compounds on growth, immune parameters and gut microbiota of European sea bass. Sci Rep 2020; 10:21321. [PMID: 33288837 PMCID: PMC7721706 DOI: 10.1038/s41598-020-78441-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/19/2020] [Indexed: 11/08/2022] Open
Abstract
A 71-day study was conducted to explore the effect of increasing dietary levels (0, 250, 500, 1000 mg kg feed−1; D0, D250, D500 and D1000, respectively) of a blend of microencapsulated organic acids (OA, specifically citric and sorbic acid) and nature identical compounds (NIC, specifically thymol and vanillin), on growth, intestinal immune parameters and gut microbiota (GM) of European sea bass juveniles reared under normal and subsequently suboptimal environmental conditions (high temperature, 30.0 ± 0.4 °C and low oxygen, 4.6 ± 0.6 mg L−1). OA and NIC did not promote growth, feed utilisation and feed intake at the inclusion tested but induced a significantly upregulation of IL-8, IL-10 and TGFβ. GM analyzed by next-generation sequencing showed that OA and NIC were able to exert prebiotic properties stimulating the development of beneficial bacteria taxa such as Lactobacillus, Leuconostoc, and Bacillus sp. Picrust analyses displayed a significant potential functional reconfiguration of GM promoting a decrease in inflammation-promoting and homeostatic functions at increasing OA and NIC administration. For the first time on this species the exposure to suboptimal rearing conditions was able to modify GM structure reducing LAB and increasing Proteobacteria, findings which were consistent with the inflammatory process observed at mRNA level.
Collapse
|
22
|
Pelusio NF, Rossi B, Parma L, Volpe E, Ciulli S, Piva A, D'Amico F, Scicchitano D, Candela M, Gatta PP, Bonaldo A, Grilli E. Effects of increasing dietary level of organic acids and nature-identical compounds on growth, intestinal cytokine gene expression and gut microbiota of rainbow trout (Oncorhynchus mykiss) reared at normal and high temperature. FISH & SHELLFISH IMMUNOLOGY 2020; 107:324-335. [PMID: 33096247 DOI: 10.1016/j.fsi.2020.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 05/10/2023]
Abstract
Organic acids (OA) and nature-identical compounds (NIC) such as monoterpenes and aldehydes are well-known growth and health promoters in terrestrial livestock while their application for fish production is recent and their mechanisms of action require further study. Hence, this study tested the increasing dietary level (D0, D250, D500, D1000; 0, 250, 500 and 1000 mg kg feed-1 respectively) of a microencapsulated blend containing citric and sorbic acid, thymol and vanillin over 82 days on rainbow trout to assess the effects on growth, feed utilization, intestine cytokine gene expression and gut microbiota (GM). Furthermore, the effects on intestinal cytokine gene expression and GM were also explored after one week at high water temperature (23 °C). OA and NIC improved specific growth rate (SGR) and feed conversion rate (FCR) during the second half (day 40-82) of the feeding trial, while at the end of the trial protein (PER) and lipid efficiency (LER) increased with increasing dietary level. GM diversity and composition and cytokine gene expression analysis showed no significant differences in fish fed with increasing doses of OA and NIC (82 days) demonstrating the absence of inflammatory activity in the intestinal mucosa. Although there were no statistical differences, GM structure showed a tendency in clustering D0 group separately from the other dietary groups and a trend towards reduction of Streptococcus spp. was observed in the D250 and D1000 groups. After exposure to high water temperature, lower GM diversity and increased gene expression of inflammatory intestinal cytokines were observed for both inclusions (D0 vs. D1000) compared to groups in standard condition. However, the gene up-regulation involved a limited number of cytokines showing the absence of a substantial inflammation process able to compromise the functional activity of the intestine. Despite further study should be conducted to fully clarify this mechanism, cytokines up-regulation seems to be concomitant to the reduction of the GM diversity and, particularly, to the reduction of specific lactic acid bacteria such as Leuconostoc. The application of the microencapsulate blend tested can be a useful strategy to improve growth and feed utilization in rainbow trout under normal temperature conditions. According to the results organic acids and nature-identical compounds did not revert the effects triggered by the increased temperature of water.
Collapse
Affiliation(s)
- Nicole Francesca Pelusio
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Barbara Rossi
- Vetagro S.p.A., Via Porro 2, 42124, Reggio Emilia, Italy
| | - Luca Parma
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy.
| | - Enrico Volpe
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Sara Ciulli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Andrea Piva
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy; Vetagro S.p.A., Via Porro 2, 42124, Reggio Emilia, Italy
| | - Federica D'Amico
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Daniel Scicchitano
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Marco Candela
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Pier Paolo Gatta
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Alessio Bonaldo
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Ester Grilli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| |
Collapse
|
23
|
Nootkatone, a Dietary Fragrant Bioactive Compound, Attenuates Dyslipidemia and Intramyocardial Lipid Accumulation and Favorably Alters Lipid Metabolism in a Rat Model of Myocardial Injury: An In Vivo and In Vitro Study. Molecules 2020; 25:molecules25235656. [PMID: 33266249 PMCID: PMC7730250 DOI: 10.3390/molecules25235656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
In the present study, we assessed whether nootkatone (NKT), a sesquiterpene in edible plants, can provide protection against dyslipidemia, intramyocardial lipid accumulation, and altered lipid metabolism in a rat model of myocardial infarction (MI) induced by subcutaneous injections of isoproterenol (ISO, 85 mg/kg) on days 9 and 10. The rats were pre- and co-treated with NKT (10 mg/kg, p.o.) administered daily for 11 days. A significant reduction in the activities of myocardial creatine kinase and lactate dehydrogenase, as well as non-enzymatic antioxidants, and alterations in lipids and lipoproteins, along with a rise in plasma lipid peroxidation and intramyocardial lipid accumulation, were observed in ISO-treated rats. ISO administration induced alterations in the activities of enzymes/expressions that played a significant role in altering lipid metabolism. However, NKT treatment favorably modulated all biochemical and molecular parameters altered by ISO and showed protective effects against oxidative stress, dyslipidemia, and altered lipid metabolism, attributed to its free-radical-scavenging and antihyperlipidemic activities in rats with ISO-induced MI. Additionally, NKT decreased the accumulation of lipids in the myocardium as evidenced from Oil red O staining. Furthermore, the in vitro observations demonstrate the potent antioxidant property of NKT. The present study findings are suggestive of the protective effects of NKT on dyslipidemia and the underlying mechanisms. Based on our findings, it can be suggested that NKT or plants rich in NKT can be promising for use as a phytopharmaceutical or nutraceutical in protecting the heart and correcting lipid abnormalities and dyslipidemia, which are risk factors for ischemic heart diseases.
Collapse
|
24
|
Hassanien MA. Ameliorating Effects of Ginger on Isoproterenol-Induced Acute Myocardial Infarction in Rats and its Impact on Cardiac Nitric Oxide. J Microsc Ultrastruct 2020; 8:96-103. [PMID: 33282684 PMCID: PMC7703011 DOI: 10.4103/jmau.jmau_70_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/01/2020] [Accepted: 01/30/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Myocardial infarction is a major heart disease and is considered a significant reason for mortality and morbidity around the world. The model of Isoproterenol (ISO)-induced myocardial infarction provides a supported method for investigating the impacts of numerous possible cardioprotective bioactive substances. Nitric Oxide (NO) could react with reactive oxygen intermediates and free radicals to create harmful species. For several years, researchers have investigated the use of herbs and natural products as antioxidants to protect the body's organs against toxins and drug metabolites. However, studies on the antioxidant effects of ginger against cardiotoxicity induced by drugs and toxic agents remain insufficient, especially its effects on NO. Aims and Objectives: This study aimed to investigate the possible antioxidant and protective role of ginger in ISO-induced acute myocardial infarction in experimental rats. Special emphasis was given to the impact of ginger on NO levels. Materials and Methods: Forty adult male albino rats were used in this study. The animals were randomly divided into four equal groups. Group I served as control and received a normal mouse diet. Group II received ginger extract orally, Group III received normal diet for eight weeks, followed by ISO administration subcutaneously to induce myocardial infarction, Group IV received ginger extracts, followed by ISO. Results and Conclusions: The results of this study illustrated ginger's protective role against ISO-induced acute myocardial infarction. This role is mainly due to ginger's antioxidant and anti-inflammatory properties. We assume that sufficient intake of ginger by individuals who are regularly exposed to ISO would be beneficial in overcoming the cardiotoxicity of ISO. The effects of ginger may take place through inhibition of NOS enzymes, which needs further immunohistochemical and biochemical studies to reveal the underlying different mechanisms of the effects of ginger at the molecular and structural levels.
Collapse
Affiliation(s)
- Mohammed Ahmed Hassanien
- Department of Pharmacy Practice, College of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
25
|
Sousa C, Leitão AJ, Neves BM, Judas F, Cavaleiro C, Mendes AF. Standardised comparison of limonene-derived monoterpenes identifies structural determinants of anti-inflammatory activity. Sci Rep 2020; 10:7199. [PMID: 32350292 PMCID: PMC7190660 DOI: 10.1038/s41598-020-64032-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/30/2020] [Indexed: 01/09/2023] Open
Abstract
Mint species are widely used in traditional and conventional medicine as topical analgesics for osteoarthritic pain and for disorders of the gastrointestinal and respiratory tracts which are all associated with chronic inflammation. To identify the structural determinants of anti-inflammatory activity and potency which are required for chemical optimization towards development of new anti-inflammatory drugs, a selected group of monoterpenes especially abundant in mint species was screened by measuring bacterial lipopolysacharide (LPS)-induced nitric oxide (NO) production in murine macrophages. Nine compounds significantly decreased LPS-induced NO production by more than 30%. IC50 values were calculated showing that the order of potency is: (S)-(+)-carvone > (R)-(-)-carvone > (+)-dihydrocarveol > (S)-8-hydroxycarvotanacetone > (R)-8-hydroxycarvotanacetone > (+)-dihydrocarvone > (-)-carveol > (-)-dihydrocarveol > (S)-(-)-pulegone. Considering the carbon numbering relative to the common precursor, limonene, the presence of an oxygenated group at C6 conjugated to a double bond at C1 and an isopropenyl group and S configuration at C4 are the major chemical features relevant for activity and potency. The most potent compound, (S)-(+)-carvone, significantly decreased the expression of NOS2 and IL-1β in macrophages and in a cell model of osteoarthritis using primary human chondrocytes. (S)-(+)-carvone may be efficient in halting inflammation-related diseases, like osteoarthritis.
Collapse
Affiliation(s)
- Cátia Sousa
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Alcino Jorge Leitão
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Fernando Judas
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Orthopaedics Department and Bone Bank, University and Hospital Centre of Coimbra, Coimbra, Portugal
| | - Carlos Cavaleiro
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Chemical Engineering Department, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Alexandrina Ferreira Mendes
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
26
|
Arafa WM, Abolhadid SM, Moawad A, Abdelaty AS, Moawad UK, Shokier KAM, Shehata O, Gadelhaq SM. Thymol efficacy against coccidiosis in pigeon (Columba livia domestica). Prev Vet Med 2020; 176:104914. [PMID: 32066028 DOI: 10.1016/j.prevetmed.2020.104914] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 12/27/2022]
Abstract
Investigation of thymol efficacy to control pigeon coccidiosis was performed using in-vitro and in-vivo studies. The in-vitro experiment was conducted by treatment of unsporulated oocysts of Eimeria species of pigeon by five concentrations (0.625-10%) from either thymol, eucalyptus essential oil or amprolium anticoccidial drug and incubation for 72 h. The in-vitro study revealed that thymol concentrations ≥1.25 % caused significant deformity on sporulated and unsporulated oocysts compared to the other two products. Eucalyptus oil was active at both 5 and 10 % concentrations on unsporulated oocysts but showed non-significant changes on sporulated ones at all tested concentration. Meanwhile, in-vivo testing of thymol was conducted using 45 squabs which were equally divided into three groups; untreated uninfected (UU) negative control, untreated infected (UI) positive control and thymol treated (TT). TT group received 40 mg/kg BWt thymol in feed for 15 days. At day five post thymol supplementation, the UI and TT groups were orally infected by 25 × 103sporulated oocysts of pigeon Eimeria labbeana. The in-vivo study showed that thymol minimized the adverse effect of Eimeria infection in pigeon as observed by less severity of clinical signs, low oocysts count and improvement of body weight when compared with untreated infected birds. In addition, the biochemical parameters including liver and kidney functions tests proved thymol safety in pigeon. Moreover, thymol showed excellent antioxidant activity that was estimated by significantly lower value of malondialdehyde in TT than UI groups. The histopathological findings of TT group showed intact intestinal villi with mild sloughed epithelium, degenerated coccidian developmental stages and massive infiltrations of mononuclear cells in lamina propria. In conclusion, thymol can be safely used to control pigeon coccidiosis as a natural effective compound.
Collapse
Affiliation(s)
- Waleed M Arafa
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Shawky M Abolhadid
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt.
| | - Abeer Moawad
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | | | - Usama K Moawad
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | | | - Olfat Shehata
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Sahar M Gadelhaq
- Department of Parasitology, Faculty of Veterinary Medicine, Minia University, El-Minia, Egypt
| |
Collapse
|
27
|
Awolade P, Cele N, Kerru N, Gummidi L, Oluwakemi E, Singh P. Therapeutic significance of β-glucuronidase activity and its inhibitors: A review. Eur J Med Chem 2020; 187:111921. [PMID: 31835168 PMCID: PMC7111419 DOI: 10.1016/j.ejmech.2019.111921] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 01/02/2023]
Abstract
The emergence of disease and dearth of effective pharmacological agents on most therapeutic fronts, constitutes a major threat to global public health and man's existence. Consequently, this has created an exigency in the search for new drugs with improved clinical utility or means of potentiating available ones. To this end, accumulating empirical evidence supports molecular target therapy as a plausible egress and, β-glucuronidase (βGLU) - a lysosomal acid hydrolase responsible for the catalytic deconjugation of β-d-glucuronides has emerged as a viable molecular target for several therapeutic applications. The enzyme's activity level in body fluids is also deemed a potential biomarker for the diagnosis of some pathological conditions. Moreover, due to its role in colon carcinogenesis and certain drug-induced dose-limiting toxicities, the development of potent inhibitors of βGLU in human intestinal microbiota has aroused increased attention over the years. Nevertheless, although our literature survey revealed both natural products and synthetic scaffolds as potential inhibitors of the enzyme, only few of these have found clinical utility, albeit with moderate to poor pharmacokinetic profile. Hence, in this review we present a compendium of exploits in the present millennium directed towards the inhibition of βGLU. The aim is to proffer a platform on which new scaffolds can be modelled for improved βGLU inhibitory potency and the development of new therapeutic agents in consequential.
Collapse
Affiliation(s)
- Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Nosipho Cele
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Lalitha Gummidi
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Ebenezer Oluwakemi
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| |
Collapse
|
28
|
Nagoor Meeran MF, Azimullah S, Laham F, Tariq S, Goyal SN, Adeghate E, Ojha S. α-Bisabolol protects against β-adrenergic agonist-induced myocardial infarction in rats by attenuating inflammation, lysosomal dysfunction, NLRP3 inflammasome activation and modulating autophagic flux. Food Funct 2020; 11:965-976. [DOI: 10.1039/c9fo00530g] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Emerging evidence demonstrates that NLRP3 inflammasome activation, lysosomal dysfunction, and impaired autophagic flux play a crucial role in the pathophysiology of myocardial infarction (MI).
Collapse
Affiliation(s)
- M. F. Nagoor Meeran
- Department of Pharmacology and Therapeutics
- College of Medicine and Health Sciences
- UAE University
- Al Ain
- United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics
- College of Medicine and Health Sciences
- UAE University
- Al Ain
- United Arab Emirates
| | - Farah Laham
- Department of Pharmacology and Therapeutics
- College of Medicine and Health Sciences
- UAE University
- Al Ain
- United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy
- College of Medicine and Health Sciences
- UAE University
- Al Ain
- United Arab Emirates
| | | | - Ernest Adeghate
- Department of Anatomy
- College of Medicine and Health Sciences
- UAE University
- Al Ain
- United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics
- College of Medicine and Health Sciences
- UAE University
- Al Ain
- United Arab Emirates
| |
Collapse
|
29
|
Al-Taee H, Azimullah S, Meeran MN, Alaraj Almheiri MK, Al Jasmi RA, Tariq S, AB Khan M, Adeghate E, Ojha S. β-caryophyllene, a dietary phytocannabinoid attenuates oxidative stress, inflammation, apoptosis and prevents structural alterations of the myocardium against doxorubicin-induced acute cardiotoxicity in rats: An in vitro and in vivo study. Eur J Pharmacol 2019; 858:172467. [DOI: 10.1016/j.ejphar.2019.172467] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
|
30
|
Javed H, Azimullah S, Meeran MFN, Ansari SA, Ojha S. Neuroprotective Effects of Thymol, a Dietary Monoterpene Against Dopaminergic Neurodegeneration in Rotenone-Induced Rat Model of Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20071538. [PMID: 30934738 PMCID: PMC6480243 DOI: 10.3390/ijms20071538] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD), a multifactorial movement disorder that involves progressive degeneration of the nigrostriatal system affecting the movement ability of the patient. Oxidative stress and neuroinflammation both are shown to be involved in the etiopathogenesis of PD. The aim of this study was to evaluate the therapeutic potential of thymol, a dietary monoterpene phenol in rotenone (ROT)-induced neurodegeneration in rats that precisely mimics PD in humans. Male Wistar rats were injected ROT at a dose of 2.5 mg/kg body weight for 4 weeks, to induce PD. Thymol was co-administered for 4 weeks at a dose of 50 mg/kg body weight, 30 min prior to ROT injection. The markers of dopaminergic neurodegeneration, oxidative stress and inflammation were estimated using biochemical assays, enzyme-linked immunosorbent assay, western blotting and immunocytochemistry. ROT challenge increased the oxidative stress markers, inflammatory enzymes and cytokines as well as caused significant damage to nigrostriatal dopaminergic system of the brain. Thymol treatment in ROT challenged rats appears to significantly attenuate dopaminergic neuronal loss, oxidative stress and inflammation. The present study showed protective effects of thymol in ROT-induced neurotoxicity and neurodegeneration mediated by preservation of endogenous antioxidant defense networks and attenuation of inflammatory mediators including cytokines and enzymes.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, UAE.
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, UAE.
| | - M F Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, UAE.
| | - Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, UAE.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, UAE.
| |
Collapse
|
31
|
Shahzad S, Mateen S, Naeem SS, Akhtar K, Rizvi W, Moin S. Syringic acid protects from isoproterenol induced cardiotoxicity in rats. Eur J Pharmacol 2019; 849:135-145. [PMID: 30731086 DOI: 10.1016/j.ejphar.2019.01.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 01/26/2023]
Abstract
Identification of pharmacologically potent antioxidant compounds for their use in preventive medicine is thrust area of current research. This study was undertaken with the aim of determining the protective role of syringic acid (SA) on isoproterenol (ISO) induced myocardial infarction (MI) in rats. SA was orally given to rats for 21 days at three different concentrations (12.5, 25 and 50 mg/kg). At 20th and 21st day, rats were subcutaneously injected with ISO and at the end of experimental period, rats were killed. ISO induced myocardial damage was averted by pre-co-treatment of SA, as decrease was found in serum level of marker enzymes (CKMB, LDH, AST, ALT), lipid peroxidation, protein carbonyl (PC) and proinflammatory cytokines (TNFα, IL 6). Furthermore, content of glutathione (GSH) and activities of antioxidant enzymes in heart tissue were significantly raised. Improvement in infarct size and erythrocyte (RBCs) morphology was also observed. The biochemical findings were supported by histopathological outcome and protective effect of SA was found to be dose dependent. The results of our study demonstrated that the cardioprotective potential of SA in rat model of ISO induced MI might be due to anti-lipid peroxidative and endogenous antioxidant system enhancement effects.
Collapse
Affiliation(s)
- Sumayya Shahzad
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Somaiya Mateen
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Syed Shariq Naeem
- Department of Pharmacology, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Kafil Akhtar
- Department of Pathology, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Waseem Rizvi
- Department of Pharmacology, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Shagufta Moin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
32
|
Abstract
The present study was undertaken to evaluate the effect of kaempferol in isoprenaline (ISP)-induced myocardial injury in rats. ISP was administered subcutaneously for two subsequent days to induce myocardial injury. Assessment of myocardial injury was done by estimation of hemodynamic functions, myocardial infarcted area, cardiac injury markers, lipid profile, oxidative stress, pro-inflammatory cytokines and histopathology of heart and liver. Rats pretreated with kaempferol showed reduction in the myocardial infarcted area and heart rate. However, no improvement was observed in change in body weight, mean arterial, systolic and diastolic blood pressure. Kaempferol showed significant decrease in serum LDH, CK-MB, troponin-I and lipid profile. However, highest dose of kaempferol did not reduce the serum triglyceride level. Further, antioxidant enzymes, SOD and catalase, were also higher. However, reduced glutathione, serum SGOT and creatinine did not show any improvement. Kaempferol showed reduction in MDA level. Kaempferol at highest dose showed reduction in pro-MMP-2 expression and MMP-9 level. mRNA expression level of TNF-α was not different in kaempferol-pretreated myocardial injured rats with ISP-alone group. Pretreatment with kaempferol at highest dose showed mild mononuclear infiltration and degenerative changes in heart tissue section of myocardial injured rats. Rats pretreated with kaempferol at higher concentration showed normal cordlike arrangement of hepatocytes with moderate swelling of hepatocytes (vacuolar degeneration) around the central vein. Study suggests that kaempferol attenuated lipid profile, infarcted area and oxidative stress in ISP-induced myocardial injury in rats.
Collapse
|
33
|
Protective effect of omeprazole and lansoprazole on β-receptor stimulated myocardial infarction in Wistar rats. Mol Cell Biochem 2019; 456:105-113. [PMID: 30652241 DOI: 10.1007/s11010-019-03494-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
We investigated the effect of omeprazole (OPZ) and lansoprazole (LPZ) on the pathophysiology of myocardial necrosis in rats by inspecting a series of indicators like hemodynamic parameters, biochemical estimations and histopathological changes in the myocardial tissue. Rats received either OPZ, LPZ (50 mg/kg/day, p.o.) individually for 7 days with concurrent administration of isoproterenol (ISO) (150 mg/kg, s.c.) on 6th and 7th day of study period to induce myocardial infarction. On the 8th day after measuring hemodynamic parameters, rats were killed and parameters were evaluated. ECG waves were found to be normal in the treatment group. ISO control rats revealed escalation in the oxidative stress as evidenced by depletion in the content of SOD, GSH, catalase and increase in the level of MDA and NO as compared with the normal rats. Treatment with OPZ and LPZ significantly reduced the ROS, indicated by an increase in the endogenous antioxidants and a decrease in NO and MDA levels. ISO control rats showed a significant elevation in the levels of pro-inflammatory cytokine TNF-α as compared to the normal and treatment group of rats. Administration of OPZ and LPZ does not exhibit any significant toxicity. Our findings reveal that multiple doses of OPZ and LPZ may have distinctly minimized the ISO-induced myocardial necrosis by declining the hmodynamic parameters, oxidative stress and pro-inflammatory cytokine TNF-α in myocardial infarcted rats.
Collapse
|
34
|
Costa MF, Durço AO, Rabelo TK, Barreto RDSS, Guimarães AG. Effects of Carvacrol, Thymol and essential oils containing such monoterpenes on wound healing: a systematic review. J Pharm Pharmacol 2018; 71:141-155. [PMID: 30537169 DOI: 10.1111/jphp.13054] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/18/2018] [Indexed: 12/21/2022]
Abstract
Abstract
Objectives
The treatment of wounds accounts for a considerable fraction of health expenses as well as serious socioeconomic problems. The use of natural substances stands out as a source of new therapeutic discoveries for the wound healing. Thus, this review compiled scientific findings on the applicability of carvacrol and thymol, or essential oils containing at least one of these compounds, for the treatment of wounds.
Methods
This review was performed at PubMed, SCOPUS, Web of Science databases using keywords as wound healing, thymol/carvacrol and essential oils. Thirteen studies were selected for discussion.
Key findings
Thymol/carvacrol was able to act in the three phases of wound healing. In the first phase, they showed modulatory effect of the inflammatory cytokines, oxidative stress and antimicrobial power. In the second phase, they promoted re-epithelialization, angiogenesis and development of granulation tissue. Finally, in the third phase, they improve the collagen deposition and modulated the growth of fibroblasts and keratinocytes.
Conclusions
These compounds present a high potential for the development of new therapeutic for wound repair. However, dose, efficacy and safety of these compounds for the treatment of wounds, as well as the mechanisms by which those effects can be observed, are challenges for future studies.
Collapse
Affiliation(s)
- Michelle Fonseca Costa
- Programa de Pós-graduação em Ciências Aplicadas à Saúde, Universidade Federal de Sergipe, Lagarto, Sergipe, Brazil
| | - Aimée Obolari Durço
- Programa de Pós-graduação em Ciências Aplicadas à Saúde, Universidade Federal de Sergipe, Lagarto, Sergipe, Brazil
| | - Thallita Kelly Rabelo
- Programa de Pós-graduação em Ciências Aplicadas à Saúde, Universidade Federal de Sergipe, Lagarto, Sergipe, Brazil
| | - Rosana de Souza Siqueira Barreto
- Programa de Pós-graduação em Ciências Aplicadas à Saúde, Universidade Federal de Sergipe, Lagarto, Sergipe, Brazil
- Departamento de Educação em Saúde, Universidade Federal de Sergipe, Lagarto, Sergipe, Brazil
| | - Adriana Gibara Guimarães
- Programa de Pós-graduação em Ciências Aplicadas à Saúde, Universidade Federal de Sergipe, Lagarto, Sergipe, Brazil
- Departamento de Educação em Saúde, Universidade Federal de Sergipe, Lagarto, Sergipe, Brazil
| |
Collapse
|
35
|
Kilic K, Sakat MS, Yildirim S, Kandemir FM, Gozeler MS, Dortbudak MB, Kucukler S. The amendatory effect of hesperidin and thymol in allergic rhinitis: an ovalbumin-induced rat model. Eur Arch Otorhinolaryngol 2018; 276:407-415. [DOI: 10.1007/s00405-018-5222-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/26/2018] [Indexed: 01/06/2023]
|
36
|
Mahmoodi M, Ayoobi F, Aghaei A, Rahmani M, Taghipour Z, Hosseini A, Jafarzadeh A, Sankian M. Beneficial effects of Thymus vulgaris extract in experimental autoimmune encephalomyelitis: Clinical, histological and cytokine alterations. Biomed Pharmacother 2018; 109:2100-2108. [PMID: 30551467 DOI: 10.1016/j.biopha.2018.08.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 11/26/2022] Open
Abstract
The imbalance between pro and anti-inflammatory cytokines plays an important role in the pathogenesis of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Thymus vulgaris (thyme) as a traditional medicinal plant has been reported to exert antimicrobial, antioxidant, and anti-inflammatory effects. Therefore, this study evaluated the modulatory effects of Thymus vulgaris on the clinical symptoms, histopathological scores, and the production of some anti-inflammatory (TGF-β, IL-4, and IL-10) and pro-inflammatory (IFN-γ, IL-6 and IL-17) cytokines in EAE model. EAE was induced by MOG35-55 peptide and mice were treated intra-peritoneally (i.p) with phosphate buffered saline (PBS) in the control group or thyme extract (50 or 100 mg/kg of body weight, every other day) in thyme-treated EAE groups, from day 0 to +21 of post MOG immunization. Mice were sacrificed at day 22, and splenocytes were isolated and re-stimulated in vitro with MOG in order to measure the cytokine production and proliferation of re-stimulated cells by enzyme linked immunosorbent assay (ELISA) method and WST-1 reagent, respectively. The clinical symptoms and histopathological scores of the CNS were lower in thyme-treated than EAE control group. Furthermore, the production of IFN-γ and IL-6 by splenocytes was lower in thyme-treated EAE than in the control group. The production of IL-10 and TGF-β increased in mice treated with thyme extract compared to the control group. In this study, we showed for the first time that the immunomodulatory effects of Thymus vulgaris in EAE model. Thus, the possible therapeutic potential of thyme for treatment of MS could be considered in future research.
Collapse
Affiliation(s)
- Merat Mahmoodi
- Immunology Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Ayoobi
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Azita Aghaei
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rahmani
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Taghipour
- Department of Anatomy, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdollah Jafarzadeh
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mojtaba Sankian
- Immunology Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
37
|
Quintans JSS, Shanmugam S, Heimfarth L, Araújo AAS, Almeida JRGDS, Picot L, Quintans-Júnior LJ. Monoterpenes modulating cytokines - A review. Food Chem Toxicol 2018; 123:233-257. [PMID: 30389585 DOI: 10.1016/j.fct.2018.10.058] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 12/15/2022]
Abstract
Inflammatory response can be driven by cytokine production and is a pivotal target in the management of inflammatory diseases. Monoterpenes have shown that promising profile as agents which reduce the inflammatory process and also modulate the key chemical mediators of inflammation, such as pro and anti-inflammatory cytokines. The main interest focused on monoterpenes were to develop the analgesic and anti-inflammatory drugs. In this review, we summarized current knowledge on monoterpenes that produce anti-inflammatory effects by modulating the release of cytokines, as well as suggesting that which monoterpenoid molecules may be most effective in the treatment of inflammatory disease. Several different inflammatory markers were evaluated as a target of monoterpenes. The proinflammatory and anti-inflammatory cytokines were found TNF-α, IL-1β, IL-2, IL-5, IL-4, IL-6, IL-8, IL-10, IL-12 IL-13, IL-17A, IFNγ, TGF-β1 and IFN-γ. Our review found evidence that NF-κB and MAPK signaling are important pathways for the anti-inflammatory action of monoterpenes. We found 24 monoterpenes that modulate the production of cytokines, which appears to be the major pharmacological mechanism these compounds possess in relation to the attenuation of inflammatory response. Despite the compelling evidence supporting the anti-inflammatory effect of monoterpenes, further studies are necessary to fully explore their potential as anti-inflammatory compounds.
Collapse
Affiliation(s)
- Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Saravanan Shanmugam
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Jackson R G da S Almeida
- Center for Studies and Research of Medicinal Plants (NEPLAME), Federal University of San Francisco Valley (UNIVASF), Petrolina, Pernambuco, Brazil
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, University of La Rochelle, 17042, La Rochelle, France
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
38
|
Geyikoglu F, Yilmaz EG, Erol HS, Koc K, Cerig S, Ozek NS, Aysin F. Hepatoprotective Role of Thymol in Drug-Induced Gastric Ulcer Model. Ann Hepatol 2018; 17:980-991. [PMID: 30600301 DOI: 10.5604/01.3001.0012.7198] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND AIM Indo is widely one of the non-steroidal anti-inflammatory drugs and one of the common toxic effects of this drug is hepatic failure. Thymol is a monoterpene phenol with many different pharmacological activities. However, up to now its hepatoprotective effects on Indo-induced gastric ulcer model in rats have not been explored yet. MATERIAL AND METHODS Thirty five Sprague-Dawley rats were divided into seven groups: control, ulcer control (30 mg/kg Indo), Indo + reference standard (50 mg/kg Rantidine), Indo + Thymol (75, 100, 250 and 500 mg/kg) groups. 10 minutes after the induction of ulcer with Indo; Thymol was orally administered to the rats. Liver function enzymes (AST, ALT and LDH) were measured from serum samples. TOS/TAC, TNF-α and PGE2 levels, eNOS and Caspase-3 activity were assessed from tissue homogenate samples. In addition, histopathologic analysis on liver sections was performed. RESULTS Indo significantly increased the levels of hepatic enzymes, TNF-α and eNOS, and caspase-3 activation, while decreased PGE2 levels. Furthermore, it induced oxidative stress as evidenced by elevated TOS and decreased TAC levels. However, Thymol treatment induced a significant improvement in these parameters, especially in 250 mg/kg dose. On the other hand, treatment with Thymol 500 mg/kg dramatically affected the parameters much worse than the Indo treated group. CONCLUSION The findings of the current study demonstrated that Thymol administration significantly ameliorated liver injury due to Indo toxicity. This effect of Thymol (250 mg/kg) may be mediated by its anti-oxidative or anti-inflammatory effect, and up-regulation the synthesis of PGE2.
Collapse
Affiliation(s)
- Fatime Geyikoglu
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, TURKEY
| | - Elif Gülcan Yilmaz
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, TURKEY
| | - Huseyin Serkan Erol
- Department of Biochemistry, Faculty of Veterinary, Ataturk University, Erzurum, TURKEY
| | - Kubra Koc
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, TURKEY
| | - Salim Cerig
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, TURKEY
| | - Nihal Simsek Ozek
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, TURKEY
| | - Ferhunde Aysin
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, TURKEY
| |
Collapse
|
39
|
Jain PG, Mahajan UB, Shinde SD, Surana SJ. Cardioprotective role of FA against isoproterenol induced cardiac toxicity. Mol Biol Rep 2018; 45:1357-1365. [PMID: 30105550 DOI: 10.1007/s11033-018-4297-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
The present study was designed to investigate the protective effect of ferulic acid (FA) against isoproterenol (ISO)-induced cardiac toxicity in rats. Isoproterenol challenged in a dose of 85 mg/kg body weight (b.w.) subcutaneously for two consecutive days in the experimental group resulted in acute cardiac toxicity as evidenced by changes in electrocardiogram (ECG) pattern and marked elevation of serum cardiac enzymes viz aspartate aminotransferase (AST), alanine transaminase (ALT), creatinine kinase (CK-MB) and lactate dehydrogenase (LDH) also increases inflammatory cytokines. Moreover, acute toxicity effect was exhibited by disturbance in the antioxidant system as decrease in activities of superoxide dismutase (SOD) and glutathione (GSH) with the rise in activities of malondialdehyde (MDA) and nitric oxide (NO). Pre-treatment with FA at the increasing dose of (10, 20 and 40 mg/kg b.w.) orally for 28 consecutive days followed by isoproterenol injection for 2 days significantly attenuated changes in serum cardiac enzymes. Furthermore, histopathological evaluation confirmed the restoration of cellular architecture in FA pretreated rats. The cardioprotective effect of FA was comparable with standard drug treatment metoprolol. Taken together, FA demonstrated cardioprotective effect against ISO-induced cardiac toxicity by normalization of serum cardiac biomarkers, alleviating oxidative stress and augmenting endogenous antioxidant system.
Collapse
Affiliation(s)
- Pankaj G Jain
- R. C. Patel Institute of Pharmaceutical Education and Research, Dist-Dhule, Shirpur, Maharashtra, 425405, India.
| | - Umesh B Mahajan
- R. C. Patel Institute of Pharmaceutical Education and Research, Dist-Dhule, Shirpur, Maharashtra, 425405, India
| | - Sachin D Shinde
- R. C. Patel Institute of Pharmaceutical Education and Research, Dist-Dhule, Shirpur, Maharashtra, 425405, India
| | - Sanjay J Surana
- R. C. Patel Institute of Pharmaceutical Education and Research, Dist-Dhule, Shirpur, Maharashtra, 425405, India
| |
Collapse
|
40
|
Wan L, Meng D, Wang H, Wan S, Jiang S, Huang S, Wei L, Yu P. Preventive and Therapeutic Effects of Thymol in a Lipopolysaccharide-Induced Acute Lung Injury Mice Model. Inflammation 2018; 41:183-192. [PMID: 29019091 DOI: 10.1007/s10753-017-0676-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome which causes a high mortality rate worldwide. In traditional medicine, lots of aromatic plants-such as some Thymus species-are used for treatment of various lung diseases including pertussis, bronchitis, and asthma. Thymol, one of the primary active constituent derived from Thymus vulgaris (thyme), has been reported to exhibit potent anti-microbial, anti-oxidant, and anti-inflammatory activities in vivo and in vitro. The present study aims to investigate the protective effects of thymol in lipopolysaccharide (LPS)-induced lung injury mice model. In LPS-challenged mice, treatment with thymol (100 mg/kg) before or after LPS challenge significantly improved pathological changes in lung tissues. Thymol also inhibited the LPS-induced inflammatory cells influx, TNF-α and IL-6 releases, and protein concentration in bronchoalveolar lavage fluid (BALF). Additionally, thymol markedly inhibited LPS-induced elevation of MDA and MPO levels, as well as reduction of SOD activity. Further study demonstrated that thymol effectively inhibited the NF-κB activation in the lung. Taken together, these results suggested that thymol might be useful in the therapy of acute lung injury.
Collapse
Affiliation(s)
- Limei Wan
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Dongmei Meng
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, China
| | - Shunjun Jiang
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shanshan Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Li Wei
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Pengjiu Yu
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
41
|
Wu H, Jiang K, Yin N, Ma X, Zhao G, Qiu C, Deng G. Thymol mitigates lipopolysaccharide-induced endometritis by regulating the TLR4- and ROS-mediated NF-κB signaling pathways. Oncotarget 2017; 8:20042-20055. [PMID: 28223539 PMCID: PMC5386742 DOI: 10.18632/oncotarget.15373] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/24/2017] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study was to investigate the effects of thymol on lipopolysaccharide (LPS)-induced inflammatory responses and to clarify the potential mechanism of these effects. LPS-induced mouse endometritis was used to confirm the anti-inflammatory action of thymol in vivo. RAW264.7 cells were used to examine the molecular mechanism and targets of thymol in vitro. In vivo, thymol markedly alleviated LPS-induced pathological injury, myeloperoxidase (MPO) activity, and the production of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in mice. Further studies were performed to examine the expression of the Toll-like receptor 4 (TLR4) -mediated nuclear factor-κB (NF-κB) pathway. These results showed that the expression of the TLR4-mediated NF-κB pathway was inhibited by thymol treatment. In vitro, we observed that thymol dose-dependently inhibited the expression of TNF-α, IL-1β, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW264.7 cells. Moreover, the results obtained from immunofluorescence assays also indicated that thymol dose-dependently suppressed LPS-induced reactive oxygen species (ROS) production. Silencing of TLR4 inhibited NF-κB pathway activation. Furthermore, H2O2 treatment increased the phosphorylation of p65 and IκBα, which were decreased when treated with N-acetyl cysteine or thymol. In conclusion, the anti-inflammatory effects of thymol are associated with activation of the TLR4 or ROS signaling pathways, contributing to NF-κB activation, thereby alleviating LPS-induced oxidative and inflammatory responses.
Collapse
Affiliation(s)
- Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Nannan Yin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiaofei Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
42
|
Qiao Y, Zhu B, Tian A, Li Z. PEG-coated gold nanoparticles attenuate β-adrenergic receptor-mediated cardiac hypertrophy. Int J Nanomedicine 2017; 12:4709-4719. [PMID: 28740379 PMCID: PMC5503492 DOI: 10.2147/ijn.s130951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gold nanoparticles (AuNPs) are widely used as a drug delivery vehicle, which can accumulate in the heart through blood circulation. Therefore, it is very important to understand the effect of AuNPs on the heart, especially under pathological conditions. In this study, we found that PEG-coated AuNPs attenuate β-adrenergic receptor (β-AR)-mediated acute cardiac hypertrophy and inflammation. However, both isoproterenol, a non-selective β-AR agonist, and AuNPs did not induce cardiac function change or cardiac fibrosis. AuNPs exerted an anti-cardiac hypertrophy effect by decreasing β1-AR expression and its downstream ERK1/2 hypertrophic pathway. Our results indicated that AuNPs might be safe and have the potential to be used as multi-functional materials (drug carrier systems and anti-cardiac hypertrophy agents).
Collapse
Affiliation(s)
- Yuhui Qiao
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, People's Republic of China
| | - Baoling Zhu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, People's Republic of China
| | - Aiju Tian
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, People's Republic of China
| | - Zijian Li
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, People's Republic of China
| |
Collapse
|
43
|
Nagoor Meeran MF, Javed H, Al Taee H, Azimullah S, Ojha SK. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development. Front Pharmacol 2017; 8:380. [PMID: 28694777 PMCID: PMC5483461 DOI: 10.3389/fphar.2017.00380] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022] Open
Abstract
Thymol, chemically known as 2-isopropyl-5-methylphenol is a colorless crystalline monoterpene phenol. It is one of the most important dietary constituents in thyme species. For centuries, it has been used in traditional medicine and has been shown to possess various pharmacological properties including antioxidant, free radical scavenging, anti-inflammatory, analgesic, antispasmodic, antibacterial, antifungal, antiseptic and antitumor activities. The present article presents a detailed review of the scientific literature which reveals the pharmacological properties of thymol and its multiple therapeutic actions against various cardiovascular, neurological, rheumatological, gastrointestinal, metabolic and malignant diseases at both biochemical and molecular levels. The noteworthy effects of thymol are largely attributed to its anti-inflammatory (via inhibiting recruitment of cytokines and chemokines), antioxidant (via scavenging of free radicals, enhancing the endogenous enzymatic and non-enzymatic antioxidants and chelation of metal ions), antihyperlipidemic (via increasing the levels of high density lipoprotein cholesterol and decreasing the levels of low density lipoprotein cholesterol and low density lipoprotein cholesterol in the circulation and membrane stabilization) (via maintaining ionic homeostasis) effects. This review presents an overview of the current in vitro and in vivo data supporting thymol's therapeutic activity and the challenges concerning its use for prevention and its therapeutic value as a dietary supplement or as a pharmacological agent or as an adjuvant along with current therapeutic agents for the treatment of various diseases. It is one of the potential candidates of natural origin that has shown promising therapeutic potential, pharmacological properties and molecular mechanisms as well as pharmacokinetic properties for the pharmaceutical development of thymol.
Collapse
Affiliation(s)
- Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Hayate Javed
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Hasan Al Taee
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| |
Collapse
|
44
|
Meeran MN, Jagadeesh G, Selvaraj P. Synthetic catecholamine triggers β1-adrenergic receptor activation and stimulates cardiotoxicity via oxidative stress mediated apoptotic cell death in rats: Abrogating action of thymol. Chem Biol Interact 2016; 251:17-25. [DOI: 10.1016/j.cbi.2016.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/01/2016] [Accepted: 03/15/2016] [Indexed: 01/30/2023]
|
45
|
Jagadeesh GS, Nagoor Meeran MF, Selvaraj P. Activation of β1-adrenoceptor triggers oxidative stress mediated myocardial membrane destabilization in isoproterenol induced myocardial infarcted rats: 7-hydroxycoumarin and its counter action. Eur J Pharmacol 2016; 777:70-7. [PMID: 26930228 DOI: 10.1016/j.ejphar.2016.02.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 12/25/2022]
Abstract
Activation of β1-adrenoceptor stimulates myocardial membrane destabilization in isoproterenol induced rats. Male albino Wistar rats were pre and co-treated with 7-hydroxycoumarin (16mg/kg body weight) daily for 8 days. Myocardial infarction was induced into rats by the subcutaneous administration of isoproterenol (100mg/kg body weight) at an interval of 24h daily for a period of two days (7th and 8th day). The levels/activities of serum cardiac troponin-T, lactate dehydrogenase and the concentrations of heart lipid peroxidation products were significantly increased and the antioxidant status was significantly decreased in isoproterenol induced rats. Furthermore, the activity of sodium/potassium-dependent adenosine triphosphatase was significantly decreased and the activities of calcium and magnesium-dependent adenosine triphosphatases were significantly increased in the heart of isoproterenol induced myocardial infarcted rats. Isoproterenol induced rats also revealed increased concentrations of sodium and calcium and decreased concentrations of potassium in the heart. 7-hydroxycoumarin pre- and co-treatment showed considerable impact on all biochemical parameters assessed. Also, 7-HC greatly reduced the infarct size of the myocardium. The in vitro study confirmed its potent free radical scavenging activity. Thus, the present study revealed that 7-HC attenuates myocardial membrane destabilization by reinstating the activities/levels of adenosine triphosphatases and minerals in isoproterenol induced rats by inhibiting oxidative stress. These effects are attributed to the membrane stabilizing and free radical scavenging properties of 7-hydroxycoumarin.
Collapse
Affiliation(s)
- Govindan Sangaran Jagadeesh
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
| | - Mohamed Fizur Nagoor Meeran
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
| | - Palanisamy Selvaraj
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India.
| |
Collapse
|
46
|
Thymol, a dietary monoterpene phenol abrogates mitochondrial dysfunction in β-adrenergic agonist induced myocardial infarcted rats by inhibiting oxidative stress. Chem Biol Interact 2016; 244:159-68. [DOI: 10.1016/j.cbi.2015.12.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/04/2015] [Accepted: 12/14/2015] [Indexed: 12/22/2022]
|
47
|
Kanchan DM, Kale SS, Somani GS, Kaikini AA, Sathaye S. Thymol, a monoterpene, inhibits aldose reductase and high-glucose-induced cataract on isolated goat lens. J Pharm Bioallied Sci 2016; 8:277-283. [PMID: 28216950 PMCID: PMC5314825 DOI: 10.4103/0975-7406.199348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background: Overactivation of aldose reductase (AR) enzyme has been implicated in the development of various diabetic complications. In the present study, the inhibitory effect of thymol was investigated on AR enzyme and its anti-cataract activity was also examined on isolated goat lens. Materials and Methods: Various concentrations of thymol were incubated with AR enzyme prepared from isolated goat lens. Molecular docking studies were carried out using Schrodinger software to verify the binding of thymol with AR as well as to understand their binding pattern. Further, thymol was evaluated for its anti-cataract activity in high-glucose-induced cataract in isolated goat lens in vitro. Quercetin was maintained as standard (positive control) throughout the study. Results: Thymol showed potent inhibitory activity against goat lens AR enzyme with an IC50 value of 0.65 μg/ml. Docking studies revealed that thymol binds with AR in similar binding pattern as that of quercetin. The high–glucose-induced cataract in isolated goat lens was also improved by thymol treatment. Thymol was also able to significantly (P < 0.001) reduce the oxidative stress associated with cataract. Conclusion: The results suggest that thymol may be a potential therapeutic approach in the prevention of diabetic complications through its AR inhibitory and antioxidant activities.
Collapse
Affiliation(s)
- Divya M Kanchan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Smita S Kale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Gauresh S Somani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Aakruti A Kaikini
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| |
Collapse
|
48
|
Udeh NE, Onoja SO. Analgesic and free radical scavenging activities of hydromethanolic extract of Crateva adansonii stem bark. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2015; 4:221-3. [PMID: 26401411 PMCID: PMC4579488 DOI: 10.5455/jice.20150403055054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 04/03/2015] [Indexed: 11/03/2022]
Abstract
BACKGROUND Crateva adansonii is a moderately sized deciduous tree found throughout the tropics especially along the river banks. This study was aimed at the evaluation of the analgesic and antioxidant activities of the methanolic extract of C. adansonii stem-bark. METHODS The analgesic activity of Crateva extract was investigated using both chemical and thermal models of nociception in rodents while the antioxidant activity was evaluated using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) photometric model. RESULTS The extract produced a minute concentration-dependent increase in free radical scavenging activities. The extract (100, 200, and 400 mg/kg) caused a significant (P < 0.05) dose-dependent reduction in the number of writhing in treated rats when compared to the negative control. The extract at 100, 200, 400 mg/kg, and pentazocine (3 mg/kg) increased the pain reaction time in the treated rats by 58.05%, 66.67%, 94.76%, and 79.40%, respectively, when compared to the negative control. CONCLUSION The C. adansonii stem bark possesses analgesic activity against peripheral and central mediated pain sensation and also antioxidant properties. This study justifies the ethnomedical use of C. adansonii in pain treatment.
Collapse
Affiliation(s)
- Nkeiruka E Udeh
- Department of Veterinary Physiology, Pharmacology, Biochemistry and Animal Health and Production, College of Veterinary Medicine, Micheal Okpara University of Agriculture, PMB 7267, Umudike, Abia, Nigeria
| | - Samuel O Onoja
- Department of Veterinary Physiology, Pharmacology, Biochemistry and Animal Health and Production, College of Veterinary Medicine, Micheal Okpara University of Agriculture, PMB 7267, Umudike, Abia, Nigeria
| |
Collapse
|
49
|
Thymol produces an antidepressant-like effect in a chronic unpredictable mild stress model of depression in mice. Behav Brain Res 2015; 291:12-19. [DOI: 10.1016/j.bbr.2015.04.052] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 12/26/2022]
|
50
|
Apigenin Attenuates β-Receptor-Stimulated Myocardial Injury Via Safeguarding Cardiac Functions and Escalation of Antioxidant Defence System. Cardiovasc Toxicol 2015; 16:286-97. [DOI: 10.1007/s12012-015-9336-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|