1
|
Valipour M, Sheibani M, Dibaei M, Khatir ZZ, Ayati A, Motafeghi F, Irannejad H. Anticancer and Anti-Inflammatory Potential of Coptisine as a Planar Quaternary Benzo[C]Phenanthridine Alkaloid With G-Quadruplex DNA Telomeric Induction Activity. Drug Dev Res 2025; 86:e70071. [PMID: 40317769 DOI: 10.1002/ddr.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 05/07/2025]
Abstract
Coptisine, an isoquinoline-based phytochemical, exhibits a broad spectrum of biological activities, including anticancer and anti-inflammatory properties. Its planar chemical structure allows for the induction of anticancer effects by forming telomeric G-quadruplex structures. Despite its promising medicinal benefits, the clinical utilization of this compound is limited by critical shortcomings such as low efficacy and poor pharmacokinetics. While in vitro studies demonstrate high cytotoxicity, in vivo research highlights its favorable toxicity profile, attributed to the conversion of its iminium form to a less toxic alkanolamine form within the physiological setting. Past endeavors have focused on rectifying these limitations through structural modifications to yield more efficacious molecules. In the current review, we provide an overview of the anti-inflammatory and anticancer properties of coptisine and its semisynthetic derivatives, in conjunction with its pharmacokinetic profile, synthesis, and safety/toxicity considerations. This review draws upon information sourced from publications indexed in esteemed scientific databases like Web of Science, PubMed, and Scopus, among others. To prepare each section, we utilized Coptisine and section-specific keywords, emphasizing recent literature findings (2014-2024) while maintaining a broad scope due to the study's nature. In conclusion, this review underscores coptisine's remarkable anticancer and anti-inflammatory properties, suggesting that further exploration of structural modifications may yield semisynthetic derivatives with enhanced safety/toxicity profiles, pharmacokinetics, and therapeutic potential.
Collapse
Affiliation(s)
- Mehdi Valipour
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Dibaei
- Department of Pharmaceutics, Faculty of Pharmacy, Biopharmaceutics and Pharmacokinetic Division, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zakeri Khatir
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Adileh Ayati
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Motafeghi
- Reproductive Endocrine Research Center, Endocrine Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Nascimento Júnior JAC, Oliveira AMS, Porras KDL, Menezes PDP, Araujo AADS, Nunes PS, Aragón DM, Serafini MR. Exploring trends in natural product-based treatments to skin burn: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156481. [PMID: 39951972 DOI: 10.1016/j.phymed.2025.156481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Burns are traumatic injuries caused by thermal, chemical, or other external factor, significantly impacting organic tissue. They are among the most common and severe types of trauma worldwide, often resulting in considerable morbidity and mortality. Natural products, owing to their pharmacological properties, present promising avenues for burn management and treatment. PURPOSE This study aims to provide a comprehensive review of patented pharmaceutical formulations containing natural products for burn treatment and to define trends in the market. METHODS Patent documents were identified through searches in the World Intellectual Property Organization (WIPO) and European Patent Office (EPO) databases using "burn*" as a keyword in the title and/or abstract and International Patent Classification (IPC) code A61K36/00. The review also examines clinical trials and SWOT analyses to evaluate strengths, weaknesses, opportunities, and threats in this field. RESULTS A total of 82 patents were selected, highlighting the use of natural products, such as Aloe vera, Coptis chinensis, borneol, menthol, and propolis, predominantly derived from Traditional Chinese Medicine. These findings are supplemented with clinical trial data and market insights. The results underscore both the therapeutic efficacy and challenges, such as standardization and regulatory hurdles, of using natural products. CONCLUSION This patent review highlights the potential of natural-origin formulations in addressing the limitations of conventional burn treatments. Continued research is essential to overcome existing barriers, ensuring broader accessibility and enhanced therapeutic outcomes.
Collapse
Affiliation(s)
| | - Ana Maria Santos Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Paula Dos Passos Menezes
- Postgraduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil; SejaPhD, Brazil
| | - Adriano Antunes de Souza Araujo
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil; Postgraduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | - Paula Santos Nunes
- Postgraduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | - Diana Marcela Aragón
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional da Colombia, Bogotá D.C., Colombia
| | - Mairim Russo Serafini
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil; Postgraduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil.
| |
Collapse
|
3
|
Guo C, Zhang T, He L, Zhang M, Chu Y, Sun X, Han X, Liu Y, Song J, Xia J. Cardiorenal protective effects of Tanhuo decoction in acute myocardial infarction via regulating multi-target inflammation and metabolic signaling pathways. Front Pharmacol 2025; 16:1555605. [PMID: 40242450 PMCID: PMC12000776 DOI: 10.3389/fphar.2025.1555605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction Inflammation is a key driver of adverse outcomes in acute myocardial infarction (AMI), yet current western anti-inflammatory therapies are limited by their single-target nature and side effects. Traditional Chinese medicine (TCM), such as Tanhuo Decoction (THD), offers a multi-target, low-toxicity alternative. Methods In a randomized controlled trial, AMI patients with high inflammatory responses received either standard Western medicine (WM) alone or combined with THD for 3 days. Clinical outcomes and inflammatory markers were assessed, and proteomic and network pharmacology analyses were performed. Results The THD + WM group showed significant reductions in neutrophil counts and hs-CRP levels, along with improved creatinine clearance rate (CCR), compared to WM alone. Proteomic analysis revealed downregulation of pro-inflammatory proteins (PTX3, IL-18, TNFRSF11A) and upregulation of the anti-inflammatory IL1RL2. THD also modulated lipid metabolism and insulin sensitivity pathways. Discussions THD enhances the anti-inflammatory and metabolic benefits of standard AMI therapy through multi-target pathway regulation. These findings support its integration into modern cardiovascular care, particularly for patients with high inflammatory and metabolic risk.
Collapse
Affiliation(s)
- Chenglong Guo
- Pulmonary Vascular Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Tianxing Zhang
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lingqian He
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Minyu Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yanyan Chu
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xipeng Sun
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xuexue Han
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yijiang Liu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Juexian Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jinggang Xia
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Nie W, Fu H, Zhang Y, Yang H, Liu B. Chinese Herbal Medicine and Their Active Ingredients Involved in the Treatment of Atopic Dermatitis Related Signaling Pathways. Phytother Res 2025; 39:1190-1237. [PMID: 39764710 DOI: 10.1002/ptr.8409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 02/19/2025]
Abstract
Atopic dermatitis (AD) is a common inflammatory dermatitis of the skin and poses therapeutic challenges due to the adverse reactions and high costs associated with available treatments. In Eastern Asian countries, a plethora of herbal remedies is extensively employed for the alleviation of AD. Many of these botanicals are renowned for their formidable anti-inflammatory properties, contributing to AD management. Chinese herbal medicine (CHM) and its active ingredients exhibit both prophylactic and therapeutic promise against AD by modulating inflammatory response, orchestrating immune system functions, and enhancing antioxidant activities. A comprehensive exploration of the underlying mechanisms involved in CHM treatment can enhance the comprehension of AD pathogenesis and facilitate the development of innovative drugs for AD. This study aims to elucidate the signaling pathways and potential targets implicated in CHM-based treatment of AD, providing a systematic theoretical framework for its application in therapy while serving as a valuable reference for developing more effective and safer AD therapeutic agents.
Collapse
Affiliation(s)
- Wenkai Nie
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hao Fu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huiwen Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
5
|
Qi Y, Zhao X, Wu W, Wang N, Ge P, Guo S, Lei S, Zhou P, Zhao L, Tang Z, Duan J, Yang N, Guo R, Dong Y, Chai X, Zhang Q, Snijders AM, Zhu H. Coptisine improves LPS-induced anxiety-like behaviors by regulating the Warburg effect in microglia via PKM2. Biomed Pharmacother 2025; 183:117837. [PMID: 39823725 DOI: 10.1016/j.biopha.2025.117837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
Neuroinflammation mediated by microglia is considered the primary cause and pathological process of anxiety. Abnormal glycolysis of microglia is observed during microglia activation. However, whether regulating the Warburg effect in microglia can effectively intervene anxiety and its potential mechanisms have not been elucidated. This study focused on coptisine (Cop), a natural alkaloid that regulates the glycolysis and function of microglia affecting anxiety. The effects of Cop on anxiety-like behaviors, hippocampal synaptic function, and excessive activation of microglia were assessed in lipopolysaccharide (LPS) induced mouse models of anxiety. Microglia expressing mutant pyruvate kinase isoform M2 (PKM2) were used to further investigate the molecular mechanism by which Cop regulates the phenotype of microglia. neuroinflammatory is emerging Further research revealed that Cop attaches to the amino acid residue phenylalanine 26 of PKM2, shifting the dynamic equilibrium of PKM2 towards tetramers, and enhancing its pyruvate kinase activity. This interaction prevented LPS-induced Warburg effect and inactivated PKM2/hypoxia-inducible factor-1α (HIF-1α) pathway in microglia. In conclusion, Cop attenuates anxiety by regulating the Warburg effect in microglia. Our work revealed the role of PKM2/(HIF-1α) pathway in anxiety for the first time. Importantly, the molecular mechanism by which Cop ameliorates anxiety-like behaviors is through modulation of the dimeric/tetrameric form of PKM2, indicating the usefulness of PKM2 as a key potential target for the treatment of anxiety.
Collapse
Affiliation(s)
- Yiyu Qi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China; College of Chemical and Materials Engineering, Zhejiang A&F University, Lin'an 311300, China
| | - Xin Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Weizhen Wu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Ningjing Wang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Pingyuan Ge
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Siqi Guo
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Shaohua Lei
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Peng Zhou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Li Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Zhishu Tang
- Shanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xixian Rd., Xianyang 712046, China
| | - Jin'ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Nianyun Yang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Rui Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Yinfeng Dong
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Xin Chai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qichun Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China.
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| | - Huaxu Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China.
| |
Collapse
|
6
|
Kasti A, Katsas K, Nikolaki MD, Triantafyllou K. The Role and the Regulation of NLRP3 Inflammasome in Irritable Bowel Syndrome: A Narrative Review. Microorganisms 2025; 13:171. [PMID: 39858939 PMCID: PMC11767632 DOI: 10.3390/microorganisms13010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic disorder of the gastrointestinal tract. Its pathogenesis involves multiple factors, including visceral hypersensitivity and immune activation. NLRP3 inflammasome is part of the nucleotide-binding oligomerization domain-like receptor (NLR) family, a crucial component of the innate immune system. Preclinical studies have demonstrated that inhibiting NLRP3 reduces visceral sensitivity and IBS symptoms, like abdominal pain, and diarrhea, suggesting that targeting the NLRP3 might represent a novel therapeutic approach for IBS. This review aims to assess the NLRP3 inhibitors (tranilast, β-hydroxybutyrate, Chang-Kang-fang, paeoniflorin, coptisine, BAY 11-7082, and Bifidobacterium longum), highlighting the signaling pathways, and their potential role in IBS symptoms management was assessed. Although premature, knowledge of the action of synthetic small molecules, phytochemicals, organic compounds, and probiotics might make NLRP3 a new therapeutic target in the quiver of physicians' therapeutic choices for IBS symptoms management.
Collapse
Affiliation(s)
- Arezina Kasti
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.K.); (K.K.); (M.D.N.)
| | - Konstantinos Katsas
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.K.); (K.K.); (M.D.N.)
| | - Maroulla D. Nikolaki
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.K.); (K.K.); (M.D.N.)
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, 2nd Department of Internal Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Attikon University General Hospital, 12462 Athens, Greece
| |
Collapse
|
7
|
Li H, An S, Li J, Cui X, Wang M, Yuan F, Zhang J, Guo W, Hu Y. Coptisine acts as a nucleolus fluorescent probe in vitro. Biochem Biophys Res Commun 2025; 744:151194. [PMID: 39706054 DOI: 10.1016/j.bbrc.2024.151194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/27/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Coptisine (COP) is a natural protoberberine isoquinoline alkaloid that is isolated from Coptis chinensis and exhibits a variety of pharmacological activities, such as the inhibition of tumor growth, bacterial infection, inflammation and oxidative stress. In this study, COP penetrated and produced fluorescent signals in living tumor cell lines, primary MEF cells and polyformaldehyde-fixed cells. The fluorescent signal was detected at a wavelength of 488 nm. The fluorescent signal of COP was observed predominantly in the nucleoli and colocalized with nucleolus fibrillarin and B23. The fluorescence intensity of COP was associated with tumor malignancy. Compared with cells with high fluorescent signals, cells with low fluorescent signals were highly malignant. Taken together, these data suggest that COP can function as a nucleolus probe and a probe candidate for distinguishing tumor cell malignancy.
Collapse
Affiliation(s)
- Hui Li
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Shuangshuang An
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Jing Li
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Xiukun Cui
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Mingli Wang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Fengling Yuan
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Jing Zhang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Weikai Guo
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China; Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China.
| |
Collapse
|
8
|
Li C, Deng L, Pu M, Ye X, Lu Q. Coptisine alleviates colitis through modulating gut microbiota and inhibiting TXNIP/NLRP3 inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118680. [PMID: 39117021 DOI: 10.1016/j.jep.2024.118680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a disease involving the enteric canal which is characterised by chronisch inflammatory reaction. Coptisine (COP), the distinctive component of Coptis chinensis Franch., is famous for its anti-inflammation, antioxidation, anti-bacteria, and anti-cancer. Earlier researches certified that COP is a prospective remedy for colitis, but the mechanism of colitis and the therapeutical target of COP are deficiently elucidated. AIM OF THIS STUDY In this follow-up study, we adopted dextran sulfate sodium (DSS)-elicited UC model to further elucidate the possible mechanism of COP on UC in mice. MATERIALS AND METHODS COP and the positive drug sulfasalazine (SASP) were administered by oral gavage in DSS-induced colitis mouse model. Oxidative stress, inflammatory cytokines, intestinal barrier permeability, protein expression of the TXNIP/NLRP3 inflammasome pathway and intestinal microbiome structure were assessed. RESULTS Among this investigation, our team discovered that COP could mitigate DSS-elicited UC in murines, with prominent amelioration in weight loss, disease activity index, intestinal permeability (serum diamine oxidase and D-lactate), contracted colonal length and histologic alterations. Furthermore, COP greatly lowered the generation of pro-inflammatory factors, malondialdehyde (MDA) activity and reactive oxygen species (ROS) level, while increased superoxide dismutase (SOD) activity in colonal tissues. Additionally, COP downmodulated the proteic expressions of thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), caspase-1, IL-1β and IL-18. Enteric microbiome sequencing displayed that DSS and COP tremendously influenced the constitution and diversity of enteric microbes in DSS-elicited UC murines. Besides, COP elevated the abundance of probiotic bacteria Bacteroidota, Akkermansia_muciniphila and Bacteroides_acidifaciens, lowered the proportions of potential pathogenic bacteria, such as Lachnospiraceae, Acetatifactor_muris, Clostridium_XlVa, Alistipes and Oscillibacter, and reduced the ratio of Bacillota/Bacteroidota, which vastly helped to reverse the enteric microbiome to a balanceable condition. Alterations in these bacteria were strongly correlated with the colitis relative index. CONCLUSION The mechanism of COP against UC is connected with the suppression of TXNIP/NLRP3 inflammasome signalling pathway and the adjustment of the enteric microbiome profiles. The proofs offer new understandings upon the anti-UC function of COP, which might be a prospective candidate against UC.
Collapse
Affiliation(s)
- Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, PR China; Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, PR China
| | - Li Deng
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Min Pu
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Xuanlin Ye
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China.
| |
Collapse
|
9
|
Chen S, Zeng J, Li R, Zhang Y, Tao Y, Hou Y, Yang L, Zhang Y, Wu J, Meng X. Traditional Chinese medicine in regulating macrophage polarization in immune response of inflammatory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117838. [PMID: 38310986 DOI: 10.1016/j.jep.2024.117838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Numerous studies have demonstrated that various traditional Chinese medicines (TCMs) exhibit potent anti-inflammatory effects against inflammatory diseases mediated through macrophage polarization and metabolic reprogramming. AIM OF THE STUDY The objective of this review was to assess and consolidate the current understanding regarding the pathogenic mechanisms governing macrophage polarization in the context of regulating inflammatory diseases. We also summarize the mechanism action of various TCMs on the regulation of macrophage polarization, which may contribute to facilitate the development of natural anti-inflammatory drugs based on reshaping macrophage polarization. MATERIALS AND METHODS We conducted a comprehensive review of recently published articles, utilizing keywords such as "macrophage polarization" and "traditional Chinese medicines" in combination with "inflammation," as well as "macrophage polarization" and "inflammation" in conjunction with "natural products," and similar combinations, to search within PubMed and Google Scholar databases. RESULTS A total of 113 kinds of TCMs (including 62 components of TCMs, 27 TCMs as well as various types of extracts of TCMs and 24 Chinese prescriptions) was reported to exert anti-inflammatory effects through the regulation of key pathways of macrophage polarization and metabolic reprogramming. CONCLUSIONS In this review, we have analyzed studies concerning the involvement of macrophage polarization and metabolic reprogramming in inflammation therapy. TCMs has great advantages in regulating macrophage polarization in treating inflammatory diseases due to its multi-pathway and multi-target pharmacological action. This review may contribute to facilitate the development of natural anti-inflammatory drugs based on reshaping macrophage polarization.
Collapse
Affiliation(s)
- Shiyu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Rui Li
- The Affiliated Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, PR China
| | - Yingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yiwen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Ya Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Lu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yating Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
10
|
Yang Q, Li J, Zhang L, Zhao N, Sun X, Wang Z. Type I Cystatin Derived from Cysticercus pisiformis-Stefins, Suppresses LPS-Mediated Inflammatory Response in RAW264.7 Cells. Microorganisms 2024; 12:850. [PMID: 38792680 PMCID: PMC11123757 DOI: 10.3390/microorganisms12050850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Cysticercus pisiformis is a kind of tapeworm larvae of Taenia pisiformis, which parasitizes the liver envelope, omentum, mesentery, and rectum of rodents such as rabbits. Cysteine protease inhibitors derived from helminth were immunoregulatory molecules of intermediate hosts and had an immunomodulatory function that regulates the production of inflammatory factors. Thus, in the present research, the recombinant Stefin of C. pisiformis was confirmed to have the potential to fight inflammation in LPS-Mediated RAW264.7 murine macrophages. CCK8 test showed that rCpStefin below 50 μg/mL concentration did not affect cellular viability. Moreover, the NO production level determined by the Griess test was decreased. In addition, the secretion levels of IL-1β, IL-6, and TNF-α as measured by ELISA were decreased. Furthermore, it exerted anti-inflammatory activity by decreasing the production of proinflammatory cytokines and proinflammatory mediators, including IL-1β, IL-6, TNF-α, iNOS, and COX-2 at the gene transcription level, as measured by qRT-PCR. Therefore, Type I cystatin derived from C. pisiformis suppresses the LPS-Mediated inflammatory response of the intermediate host and is a potential candidate for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | | | - Xiaolin Sun
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Q.Y.); (J.L.); (L.Z.); (N.Z.)
| | - Zexiang Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Q.Y.); (J.L.); (L.Z.); (N.Z.)
| |
Collapse
|
11
|
Chen Y, Jiang X, Yuan Y, Chen Y, Wei S, Yu Y, Zhou Q, Yu Y, Wang J, Liu H, Hua X, Yang Z, Chen Z, Li Y, Wang Q, Chen J, Wang Y. Coptisine inhibits neointimal hyperplasia through attenuating Pak1/Pak2 signaling in vascular smooth muscle cells without retardation of re-endothelialization. Atherosclerosis 2024; 391:117480. [PMID: 38447436 DOI: 10.1016/j.atherosclerosis.2024.117480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND AND AIMS Vascular injury-induced endothelium-denudation and profound vascular smooth muscle cells (VSMCs) proliferation and dis-regulated apoptosis lead to post-angioplasty restenosis. Coptisine (CTS), an isoquinoline alkaloid, has multiple beneficial effects on the cardiovascular system. Recent studies identified it selectively inhibits VSMCs proliferation. However, its effects on neointimal hyperplasia, re-endothelialization, and the underlying mechanisms are still unclear. METHODS Cell viability was assayed by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and cell counting kit-8 (CCK-8). Cell proliferation and apoptosis were measured by flow cytometry and immunofluorescence of Ki67 and TUNEL. Quantitative phosphoproteomics (QPP) was employed to screen CTS-responsive phosphor-sites in the key regulators of cell proliferation and apoptosis. Neointimal hyperplasia was induced by balloon injury of rat left carotid artery (LCA). Adenoviral gene transfer was conducted in both cultured cells and LCA. Re-endothelialization was evaluated by Evan's blue staining of LCA. RESULTS 1) CTS had strong anti-proliferative and pro-apoptotic effects in cultured rat VSMCs, with the EC50 4∼10-folds lower than that in endothelial cells (ECs). 2) Rats administered with CTS, either locally to LCA's periadventitial space or orally, demonstrated a potently inhibited balloon injury-induced neointimal hyperplasia, but had no delaying effect on re-endothelialization. 3) The QPP results revealed that the phosphorylation levels of Pak1S144/S203, Pak2S20/S197, Erk1T202/Y204, Erk2T185/Y187, and BadS136 were significantly decreased in VSMCs by CTS. 4) Adenoviral expression of phosphomimetic mutants Pak1D144/D203/Pak2D20/D197 enhanced Pak1/2 activities, stimulated the downstream pErk1T202/Y204/pErk2T185/Y187/pErk3S189/pBadS136, attenuated CTS-mediated inhibition of VSMCs proliferation and promotion of apoptosis in vitro, and potentiated neointimal hyperplasia in vivo. 5) Adenoviral expression of phosphoresistant mutants Pak1A144/A203/Pak2A20/A197 inactivated Pak1/2 and totally simulated the inhibitory effects of CTS on platelet-derived growth factor (PDGF)-stimulated VSMCs proliferation and PDGF-inhibited apoptosis in vitro and neointimal hyperplasia in vivo. 6) LCA injury significantly enhanced the endogenous phosphorylation levels of all but pBadS136. CTS markedly attenuated all the enhanced levels. CONCLUSIONS These results indicate that CTS is a promising medicine for prevention of post-angioplasty restenosis without adverse impact on re-endothelialization. CTS-directed suppression of pPak1S144/S203/pPak2S20/S197 and the subsequent effects on downstream pErk1T202/Y204/pErk2T185/Y187/pErk3S189 and pBadS136 underline its mechanisms of inhibition of VSMCs proliferation and stimulation of apoptosis. Therefore, the phosphor-sites of Pak1S144/S203/Pak2S20/S197 constitute a potential drug-screening target for fighting neointimal hyperplasia restenosis.
Collapse
Affiliation(s)
- Yuhan Chen
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Xueze Jiang
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China; Department of Cardiology, Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200444, China
| | - Yuchan Yuan
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yuanyuan Chen
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Sisi Wei
- Children Inherited Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Panyu District, Guangzhou, Guangdong, 511400, China
| | - Ying Yu
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Qing Zhou
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yi Yu
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Julie Wang
- Department of Computer Science, Brown University, Providence, RI, 02912, USA
| | - Hua Liu
- Department of Intensive Care Med, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Xuesheng Hua
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Zhenwei Yang
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Zhiyong Chen
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yigang Li
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Qunshan Wang
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Jie Chen
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Yuepeng Wang
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
12
|
Chi Y, Liu C, Liu W, Tian X, Hu J, Wang B, Liu D, Liu Y. Population genetic variation and geographic distribution of suitable areas of Coptis species in China. FRONTIERS IN PLANT SCIENCE 2024; 15:1341996. [PMID: 38567137 PMCID: PMC10985201 DOI: 10.3389/fpls.2024.1341996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Introduction The rhizomes of Coptis plants have been used in traditional Chinese medicine over 2000 years. Due to increasing market demand, the overexploitation of wild populations, habitat degradation and indiscriminate artificial cultivation of Coptis species have severely damaged the native germplasms of species in China. Methods Genome-wide simple-sequence repeat (SSR) markers were developed using the genomic data of C. chinensis. Population genetic diversity and structure of 345 Coptis accessions collected from 32 different populations were performed based on these SSRs. The distribution of suitable areas for three taxa in China was predicted and the effects of environmental variables on genetic diversity in relation to different population distributions were further analyzed. Results 22 primer pairs were selected as clear, stable, and polymorphic SSR markers. These had an average of 16.41 alleles and an average polymorphism information content (PIC) value of 0.664. In the neighbor-joining (N-J) clustering analysis, the 345 individuals clustered into three groups, with C. chinensis, C. chinensis var. brevisepala and C. teeta being clearly separated. All C. chinensis accessions were further divided into four subgroups in the population structure analysis. The predicted distributions of suitable areas and the environmental variables shaping these distributions varied considerably among the three species. Discussion Overall, the amount of solar radiation, precipitation and altitude were the most important environmental variables influencing the distribution and genetic variation of three species. The findings will provide key information to guide the conservation of genetic resources and construction of a core reserve for species.
Collapse
Affiliation(s)
- Yujie Chi
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Changli Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Wei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xufang Tian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Juan Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Bo Wang
- Hubei Institute for Drug Control, Wuhan, China
| | - Di Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yifei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Chinese Medicine Resource and Chemistry, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
13
|
Qin Z, Xie L, Li W, Wang C, Li Y. New Insights into Mechanisms Traditional Chinese Medicine for Allergic Rhinitis by Regulating Inflammatory and Oxidative Stress Pathways. J Asthma Allergy 2024; 17:97-112. [PMID: 38405022 PMCID: PMC10888064 DOI: 10.2147/jaa.s444923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Allergy rhinitis (AR) is becoming more common and has serious medical and societal consequences. Sneezing, paroxysmal nasal blockage, nasal itching, mucosal edema, coughing, and rhinorrhea are symptoms of this type I allergic immunological illness. Immunoglobulin E-mediated inflammation is the cause of it. Because AR is prone to recurrent attacks, extended medication therapy may impair its effectiveness. In addition to negatively affecting the patients' physical health, this can also negatively impact their mental health. During AR development, there are inflammatory and oxidative stress responses that are linked to problems in a number of signal transduction pathways. By using the terms "allergic rhinitis", "traditional Chinese medicine", "inflammation", and "oxidative stress", we screened for pertinent research published over the previous five years in databases like PubMed. We saw that NF-KB, TLR, IL-33/ST2, PI3K/AKT, MAPK, and Nrf2 are some of the most important inflammatory and oxidative stress pathways in AR. Studies have revealed that antioxidant and anti-inflammatory therapy reduced the risk of AR and was therapeutic; however, the impact of the therapy varies widely. The Chinese medical system places a high value on traditional Chinese medicine (TCM), which has been there for virtually all of China's 5000-year history. By influencing signaling pathways related to inflammation and oxidative stress, Chinese herbal medicine and its constituent compounds have been shown to prevent allergic rhinitis. This review will focus on this evidence and provide references for clinical treatment and scientific research applications.
Collapse
Affiliation(s)
- Zhu Qin
- Department of Otolaryngology, Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Liangzhen Xie
- Department of Otolaryngology, Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
- Department of Otolaryngology, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Wentao Li
- Department of Otolaryngology, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Chao Wang
- Department of Otolaryngology, Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Yan Li
- Department of Otolaryngology, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
14
|
Gwon YG, Rod-In W, Lee HJ, Lee SM, Shin IS, Park WJ. Inhibitory effects of Oncorhynchus mykiss lipids in LPS-induced RAW264.7 cells via suppression of NF-κB and MAPK pathways. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109266. [PMID: 38043872 DOI: 10.1016/j.fsi.2023.109266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Oncorhynchus mykiss, a significant aquaculture species, possesses compounds with numerous biological and pharmacological functions, including antioxidant, anticancer, anti-microbial, and anti-obesity effects. However, possible anti-inflammatory effects of lipids extracted from O. mykiss eggs on RAW264.7 cells induced by LPS have not been elucidated yet. The current study identified 13 fatty acids in lipids extracted from O. mykiss eggs that contained high amounts (51.92% of total fatty acids) of polyunsaturated fatty acids (PUFAs), especially DHA (33.66%) and EPA (7.77%). These O. mykiss lipids (100-400 μg/mL) showed significant anti-inflammatory effects by inhibiting NO and iNOS expression in LPS-stimulated RAW264.7 cells. They also inhibited expression of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, while upregulating anti-inflammatory cytokines IL-10, IL-11, and TGF-β. These lipids from O. mykiss effectively inhibited LPS-induced expression CD86 as a surface biomarker on RAW264.7 cells. Additionally, O. mykiss lipids suppressed phosphorylation of p38, JNK, and ERK1/2 and the expression of phosphorylated NF-κB subunit p65. These findings indicate that O. mykiss lipids possess anti-inflammatory properties by inhibiting NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Yun Gu Gwon
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea
| | - Weerawan Rod-In
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Nar-esuan University, Phitsanulok, 65000, Thailand; Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea
| | - Ha Jun Lee
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea
| | - Sang-Min Lee
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea; Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea
| | - Il-Shik Shin
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea; Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea
| | - Woo Jung Park
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea; Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea.
| |
Collapse
|
15
|
Zhao M, Li P, Qiao D, Hua S, Yue Q, Dai Y, Huang Y, Jiang J, Yin H, Li M, Ding Y, Yang X, Ma Y, Ding K, Zeng L. N6-methyladenosine modification of TSC1 mRNA contributes to macrophage polarization regulated by Coptisine in DSS-induced ulcerative colitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155153. [PMID: 38014839 DOI: 10.1016/j.phymed.2023.155153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/29/2023] [Accepted: 10/14/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND PURPOSE Ulcerative colitis (UC) is a global refractory disease characterized by recurrent episodes. Coptisine (COP) is an isoquinoline alkaloid derived from Coptis chinensis, which has strong anti-inflammatory activity. Macrophages are key cells mediating inflammation. It is reported that N6-methyladenosine (m6A) RNA methylation regulates the polarization of macrophages and affects the development of inflammation. COP exerts an exact inhibitory effect on macrophages inflammation, while the specific mechanism remains unclear. The current study is designed to conduct a further investigation into the protective mechanism of COP against dextran sulfate sodium (DSS) -induced UC in mice. METHODS Using a DSS-induced UC model, we evaluated the pharmacodynamic effect of COP on UC mice, and verified the regulatory mechanism of COP on macrophage polarization in vivo and in vitro. The methylation level of m6A was detected by methylated RNA immunoprecipitation sequence (MeRIP) -qPCR, and the expression level of Methyltransferase Like (METTL)14 was determined by western blotting. Then METTL14 was knocked down in macrophages, and its effects on Tuberous sclerosis complex (TSC1) mRNA and m6A methylation regulation were observed. RESULTS COP improved the symptoms, alleviated tissue damage and reduced inflammation levels in DSS-induced UC mice. COP increased TSC1 expression, inhibited the Mitogen-activated protein kinase (MEK) / Extracellular regulated protein kinases (ERK) signaling pathway, and thus inhibited macrophage M1 polarization, whereas COP increased CCAAT Enhancer Binding Protein beta (c/EBPβ) expression, and thus promoted macrophage M2 polarization. COP also significantly increased the expression of METTL14, which enhanced m6A methylation and ultimately improved the stability of TSC1 mRNA. CONCLUSIONS COP was effective in treating UC and could regulate the polarization of macrophages. The possible mechanisms might be related to m6A modification-mediated TSC1.
Collapse
Affiliation(s)
- Min Zhao
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China
| | - Peiyi Li
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dan Qiao
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Siyi Hua
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiyu Yue
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuxin Dai
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuqiu Huang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiaxin Jiang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huiting Yin
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meng Li
- Nanjing hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China
| | - Yang Ding
- Nanjing hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China
| | - Xu Yang
- Nanjing hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China
| | - Yong Ma
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Kang Ding
- Nanjing hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China.
| | - Li Zeng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
16
|
Lu Q, Tang Y, Luo S, Gong Q, Li C. Coptisine, the Characteristic Constituent from Coptis chinensis, Exhibits Significant Therapeutic Potential in Treating Cancers, Metabolic and Inflammatory Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:2121-2156. [PMID: 37930333 DOI: 10.1142/s0192415x2350091x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Naturally derived alkaloids belong to a class of quite significant organic compounds. Coptisine, a benzyl tetrahydroisoquinoline alkaloid, is one of the major bioactive constituents in Coptis chinensis Franch., which is a famous traditional Chinese medicine. C. chinensis possesses many kinds of functions, including the ability to eliminate heat, expel dampness, purge fire, and remove noxious substances. In Asian countries, C. chinensis is traditionally employed to treat carbuncle and furuncle, diabetes, jaundice, stomach and intestinal disorders, red eyes, toothache, and skin disorders. Up to now, there has been plenty of research of coptisine with respect to its pharmacology. Nevertheless, a comprehensive review of coptisine-associated research is urgently needed. This paper was designed to summarize in detail the progress in the research of the pharmacology, pharmacokinetics, safety, and formulation of coptisine. The related studies included in this paper were retrieved from the following academic databases: The Web of Science, PubMed, Google scholar, Elsevier, and CNKI. The cutoff date was January 2023. Coptisine manifests various pharmacological actions, including anticancer, antimetabolic disease, anti-inflammatory disease, and antigastrointestinal disease effects, among others. Based on its pharmacokinetics, the primary metabolic site of coptisine is the liver. Coptisine is poorly absorbed in the gastrointestinal system, and most of it is expelled in the form of its prototype through feces. Regarding safety, coptisine displayed potential hepatotoxicity. Some novel formulations, including the [Formula: see text]-cyclodextrin-based inclusion complex and nanocarriers, could effectively enhance the bioavailability of coptisine. The traditional use of C. chinensis is closely connected with the pharmacological actions of coptisine. Although there are some disadvantages, including poor solubility, low bioavailability, and possible hepatotoxicity, coptisine is still a prospective naturally derived drug candidate, especially in the treatment of tumors as well as metabolic and inflammatory diseases. Further investigation of coptisine is necessary to facilitate the application of coptisine-based drugs in clinical practice.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pharmaceutical Sciences, Zhuhai Campus, Zhuhai 519041, P. R. China
| | - Ying Tang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, P. R. China
| | - Shuang Luo
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518005, P. R. China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, P. R. China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
| | - Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, P. R. China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
| |
Collapse
|
17
|
Yang PY, Tsaur ML. NS5806 reduces carrageenan-evoked inflammation by suppressing extracellular signal-regulated kinase activation in primary sensory neurons and immune cells. Eur J Pain 2023; 27:927-939. [PMID: 37172202 DOI: 10.1002/ejp.2123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/23/2023] [Accepted: 04/27/2023] [Indexed: 05/14/2023]
Abstract
BACKGROUND The compound NS5806 attenuates neuropathic pain via inhibiting extracellular signal-regulated kinase (ERK) activation in neuronal somata located at the dorsal root ganglion (DRG) and superficial spinal dorsal horn. NS5806 also reduces the expansion of DRG macrophages and spinal microglia several days after peripheral nerve injury, implying an anti-inflammatory effect. METHODS To test whether NS5806 inhibits inflammation, as a model we intraplantarly injected carrageenan into a hind paw of the rat. To examine whether NS5806 reduces carrageenan-evoked mechanical allodynia, thermal hyperalgesia, and edema, as well as ERK activation in the nerve fibres, mast cells, and macrophages in the hind paw skin, we used behavioural, immunohistochemical, and cytological methods. RESULTS NS5806 did not impair motor function, affect basal nociception, or cause edema in naive rats. Six hours after carrageenan injection, mechanical allodynia, thermal hyperalgesia, and edema appeared in the rat's ipsilateral hind paw, and all were reduced by intraplantar co-injection of NS5806. NS5806 suppressed carrageenan-evoked ERK activation in the peripheral axons and somata of L4 DRG neurons, as well as mast cells and macrophages in the paw skin. NS5806 also reduced carrageenan-evoked mast cell degranulation and macrophage proliferation. NS5806 and the ERK pathway inhibitor PD98059 had a similar effect in inhibiting the proliferation of cultured RAW264.7 macrophages. Furthermore, all the in vivo anti-inflammatory effects of NS5806 were similar to those of PD98059. CONCLUSIONS Acting like an ERK pathway inhibitor, NS5806 reduces inflammation-evoked mechanical allodynia, thermal hyperalgesia, and edema by suppressing ERK activation in primary sensory neurons, mast cells, and macrophages. SIGNIFICANCE Previous studies show that NS5806 only acts on neurons. This report unveils that NS5806 also acts on immune cells in the skin to exert its anti-inflammatory effects. Since NS5806 is lipid soluble for skin penetration, it suggests that NS5806 could also be developed into an anti-inflammatory drug for external use.
Collapse
Affiliation(s)
- Po-Yu Yang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Meei-Ling Tsaur
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
18
|
Wei P, He Q, Liu T, Zhang J, Shi K, Zhang J, Liu S. Baitouweng decoction alleviates dextran sulfate sodium-induced ulcerative colitis by suppressing leucine-related mTORC1 signaling and reducing oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116095. [PMID: 36581160 DOI: 10.1016/j.jep.2022.116095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baitouweng decoction (BTW) has been used for hundreds of years to treat ulcerative colitis (UC) in China and has produced remarkable clinical results. However, the knowledge in protective mechanism of BTW against UC is still unclear. AIM OF THE STUDY The present study was designed to investigate the anti-UC effects of BTW and the underlying mechanisms involved. METHODS 3.5% dextran sulfate sodium (DSS)-induced experimental colitis was used to simulate human UC and the mice were treated with BTW (6.83 g/kg), leucine (200 mg/kg, Leu) or rapamycin (2 mg/kg, RAPA) as a positive control for 7 days. The clinical symptoms, serum myeloperoxidase (MPO) and malondialdehyde (MDA) levels were evaluated. Biological samples were collected to detect the effects of BTW on mechanistic target of rapamycin complex 1 (mTORC1) pathway and Leu metabolism. RESULTS In our study, BTW notably improved the clinical symptoms and histopathological tissue damage and reduced the release of proinflammatory cytokines, including IL-6, IL-1β and TNF-α in UC mice. BTW also alleviated oxidative stress by decreasing serum MPO and MDA levels. Additionally, BTW significantly suppressed mTORC1 activity in the colon tissues of UC mice. Serum metabolomics analysis revealed that the mice receiving BTW had lower Leu levels, which was in line with the decreased expression of branched-chain α-keto acid dehydrogenase kinase (BCKDK) in the colon tissues. Furthermore, oral administration of Leu aggravated DSS-induced acute colitis and enhanced mTORC1 activity in the colon. CONCLUSION These data strongly demonstrated that BTW could ameliorate DSS-induced UC by regulating the Leu-related mTORC1 pathway and reducing oxidative stress.
Collapse
Affiliation(s)
- Peng Wei
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Qiongzi He
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Tongtong Liu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Junzhi Zhang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Kunqun Shi
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Jingwei Zhang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Shijia Liu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
19
|
Tayama Y, Mizukami S, Toume K, Komatsu K, Yanagi T, Nara T, Tieu P, Huy NT, Hamano S, Hirayama K. Anti-Trypanosoma cruzi activity of Coptis rhizome extract and its constituents. Trop Med Health 2023; 51:12. [PMID: 36859380 PMCID: PMC9976467 DOI: 10.1186/s41182-023-00502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Current therapeutic agents, including nifurtimox and benznidazole, are not sufficiently effective in the chronic phase of Trypanosoma cruzi infection and are accompanied by various side effects. In this study, 120 kinds of extracts from medicinal herbs used for Kampo formulations and 94 kinds of compounds isolated from medicinal herbs for Kampo formulations were screened for anti-T. cruzi activity in vitro and in vivo. METHODS As an experimental method, a recombinant protozoan cloned strain expressing luciferase, namely Luc2-Tulahuen, was used in the experiments. The in vitro anti-T. cruzi activity on epimastigote, trypomastigote, and amastigote forms was assessed by measuring luminescence intensity after treatment with the Kampo extracts or compounds. In addition, the cytotoxicity of compounds was tested using mouse and human feeder cell lines. The in vivo anti-T. cruzi activity was measured by a murine acute infection model using intraperitoneal injection of trypomastigotes followed by live bioluminescence imaging. RESULTS As a result, three protoberberine-type alkaloids, namely coptisine chloride, dehydrocorydaline nitrate, and palmatine chloride, showed strong anti-T. cruzi activities with low cytotoxicity. The IC50 values of these compounds differed depending on the side chain, and the most effective compound, coptisine chloride, showed a significant effect in the acute infection model. CONCLUSIONS For these reasons, coptisine chloride is a hit compound that can be a potential candidate for anti-Chagas disease drugs. In addition, it was expected that there would be room for further improvement by modifying the side chains of the basic skeleton.
Collapse
Affiliation(s)
- Yuki Tayama
- grid.174567.60000 0000 8902 2273Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ,grid.174567.60000 0000 8902 2273Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Shusaku Mizukami
- grid.174567.60000 0000 8902 2273Department of Immune Regulation, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan ,grid.174567.60000 0000 8902 2273School of Tropical Medicines and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ,grid.174567.60000 0000 8902 2273The Joint Usage/Research Center On Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523 Japan
| | - Kazufumi Toume
- grid.267346.20000 0001 2171 836XSection of Pharmacognosy, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Katsuko Komatsu
- grid.267346.20000 0001 2171 836XSection of Pharmacognosy, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Tetsuo Yanagi
- grid.174567.60000 0000 8902 2273NEKKEN Bio-Resource Center (NBRC), Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan ,grid.174567.60000 0000 8902 2273The Joint Usage/Research Center On Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523 Japan
| | - Takeshi Nara
- grid.411789.20000 0004 0371 1051Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima Japan
| | - Paul Tieu
- grid.25073.330000 0004 1936 8227Faculty of Health Sciences, McMaster University, Hamilton, ON Canada ,Online Research Club, Nagasaki, Japan
| | - Nguyen Tien Huy
- grid.174567.60000 0000 8902 2273Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ,grid.174567.60000 0000 8902 2273School of Tropical Medicines and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ,Online Research Club, Nagasaki, Japan
| | - Shinjiro Hamano
- grid.174567.60000 0000 8902 2273Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ,grid.174567.60000 0000 8902 2273Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan ,grid.174567.60000 0000 8902 2273The Joint Usage/Research Center On Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523 Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,School of Tropical Medicines and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,The Joint Usage/Research Center On Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan.
| |
Collapse
|
20
|
Wu J, Lan Y, Shi X, Huang W, Li S, Zhang J, Wang H, Wang F, Meng X. Sennoside A is a novel inhibitor targeting caspase-1. Food Funct 2022; 13:9782-9795. [PMID: 36097956 DOI: 10.1039/d2fo01730j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The assembly of inflammasomes drives caspase-1 activation, which further promotes proinflammatory cytokine secretion and downstream pyroptosis. The discovery of novel caspase-1 inhibitors is pivotal to developing new therapeutic means for inflammasome-involved diseases. In our present study, sennoside A (Sen A), a popular ingredient in multiple weight-loss medicines and dietary supplements, is found to potently inhibit the enzymatic activity of caspase-1 in vitro. Sen A considerably decreased IL-1β production in macrophages stimulated by LPS plus ATP, nigericin or MSU as well as poly(dA:dT) transfection, and remedied ROS-involved pyroptosis via caspase-1 inhibition. Mechanistically, Sen A not only suppressed the assembly of both NLRP3 and AIM2 inflammasome but also affected the priming process of NLRP3 inflammasome by blocking NF-κB signaling. Sen A significantly ameliorated the pathophysiological effect in LPS-, MSU- and carrageenan-challenged rodent models by suppressing inflammasome activation. Furthermore, P2X7 was indispensable for Sen A inhibiting NLRP3 inflammasome since it failed to further decrease IL-1β and IL-18 production in LPS plus ATP-stimulated BMDMs that were transfected with P2X7 siRNA. Sen A also restrained the large pore-forming functionalities of the P2X7R as verified by the YO-PRO-1 uptake assay. Taken together, Sen A inactivates caspase-1 to inhibit NLRP3 and AIM2 inflammasome-involved inflammation in a P2X7-dependent manner, making it an attractive candidate as a caspase-1 small-molecular inhibitor.
Collapse
Affiliation(s)
- Jiasi Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China. .,Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuejia Lan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Xiaoke Shi
- Key Laboratory of Natural Medicine and Clinical Translation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Wenge Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Sheng Li
- Key Laboratory of Natural Medicine and Clinical Translation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Jizhou Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Fei Wang
- Key Laboratory of Natural Medicine and Clinical Translation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
21
|
Wang Y, Mo YR, Tan J, Wu LX, Pan Y, Chen XD. Effects of growing Coptis chinensis Franch in the natural understory vs. under a manmade scaffold on its growth, alkaloid contents, and rhizosphere soil microenvironment. PeerJ 2022; 10:e13676. [PMID: 35880218 PMCID: PMC9308463 DOI: 10.7717/peerj.13676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/13/2022] [Indexed: 01/17/2023] Open
Abstract
Background The main planting modes currently used for the production of Coptis chinensis Franch are under the shade of a manmade scaffold or a natural understory. In this study, we analysed changes in the growth, development, and alkaloids of C. chinensis when grown in a natural understory compared with under a manmade scaffold. We also clarified the differences in the rhizosphere soil microenvironment, represented by soil physicochemical factors, enzyme activity, and microbial community structure of 1- to 5-year-old C. chinensis between the different planting modes. These results will provide theoretical guidance and scientific evidence for the development, application, and extension of ecological planting technologies for C. chinensis. Results The results of this study showed that rhizome length, rhizome diameter, and rhizome weight all increased over time in both planting modes. The greatest rhizome length was reached in 4-year-old C. chinensis, while the greatest rhizome diameter and rhizome weight were obtained in 5-year-old C. chinensis. There was no significant difference in rhizome biomass between the two planting modes. The alkaloid content of the four common alkaloids in the rhizome of 5-year-old C. chinensis at the harvest stage met the standards found in the Pharmacopoeia of the People's Republic of China; the berberine content and total alkaloids in the rhizomes were significantly higher with natural understory planting compared to planting under a manmade scaffold. A redundancy analysis revealed that the physicochemical factors and enzyme activity of rhizosphere soil were significantly correlated with variation in microbial community structure. Soil pH, available potassium, bulk density, available nitrogen, catalase, and peroxidase were all significantly correlated with bacterial and fungal community structures. Among these, soil pH was the most important factor influencing the structures of the fungal and bacterial community. In the two planting modes, the differences in soil enzyme activity and microbial community structure mainly manifested in the rhizosphere soil of C. chinensis between different growth years, as there was little difference between the rhizosphere soil of C. chinensis in a given growth year under different planting modes. The levels of nitrogen, phosphorus, potassium, and organic matter in the rhizosphere soil under either planting mode were closely associated with the type and amount of fertiliser applied to C. chinensis. Investigating the influence of different fertilisation practices on nutrient cycling in farmland and the relationship between fertilisation and the soil environment will be key to improving the yield and quality of C. chinensis medicinal materials while maintaining the health of the soil microenvironment.
Collapse
Affiliation(s)
- Yu Wang
- Chongqing academy of Chinese Materia Medica, Chong Qing, China,Chongqing Subcenter of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Yu R. Mo
- Chongqing academy of Chinese Materia Medica, Chong Qing, China,Chongqing Subcenter of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Jun Tan
- Chongqing academy of Chinese Materia Medica, Chong Qing, China,Chongqing Subcenter of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Li X. Wu
- Chongqing academy of Chinese Materia Medica, Chong Qing, China,Chongqing Subcenter of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Yuan Pan
- Chongqing academy of Chinese Materia Medica, Chong Qing, China,Chongqing Subcenter of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Xia D. Chen
- Chongqing academy of Chinese Materia Medica, Chong Qing, China,Chongqing Subcenter of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| |
Collapse
|
22
|
Ye XW, Wang HL, Cheng SQ, Xia LJ, Xu XF, Li XR. Network Pharmacology-Based Strategy to Investigate the Pharmacologic Mechanisms of Coptidis Rhizoma for the Treatment of Alzheimer's Disease. Front Aging Neurosci 2022; 14:890046. [PMID: 35795239 PMCID: PMC9252849 DOI: 10.3389/fnagi.2022.890046] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
BackgroundAlzheimer's disease (AD) is becoming a more prevalent public health issue in today's culture. The experimental study of Coptidis Rhizoma (CR) and its chemical components in AD treatment has been widely reported, but the principle of multi-level and multi-mechanism treatment of AD urgently needs to be clarified.ObjectiveThis study focuses on network pharmacology to clarify the mechanism of CR's multi-target impact on Alzheimer's disease.MethodsThe Phytochemical-compounds of CR have been accessed from the Traditional Chinese Medicine Database and Analysis Platform (TCMSP) and Symmap database or HPLC determination. The values of Oral Bioavailability (OB) ≥ 30% and Drug Like (DL) ≥ 0.18 or blood ingredient were used to screen the active components of CR; the interactive network of targets and compounds were constructed by STRING and Cytoscape platform, and the network was analyzed by Molecular Complex Detection (MCODE); Gene Ontology (GO) function, Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG) and metabolic pathway enrichment of targets were carried out with Metascape, the Database for Annotation, Visualization and Integrated Discovery (DAVID) and MetaboAnalyst platform; Based on CytoHubba, the potential efficient targets were screened by Maximal Clique Centrality (MCC) and Degree, the correlation between potential efficient targets and amyloid β-protein (Aβ), Tau pathology was analyzed by Alzdata database, and the genes related to aging were analyzed by Aging Altas database, and finally, the core targets were obtained; the binding ability between ingredients and core targets evaluated by molecular docking, and the clinical significance of core targets was assessed with Gene Expression Omnibus (GEO) database.Results19 active components correspond to 267 therapeutic targets for AD, of which 69 is potentially effective; in module analysis, RELA, TRAF2, STAT3, and so on are the critical targets of each module; among the six core targets, RELA, MAPK8, STAT3, and TGFB1 have clinical therapeutic significance; GO function, including 3050 biological processes (BP), 257 molecular functions (MF), 184 cellular components (CC), whose functions are mainly related to antioxidation, regulation of apoptosis and cell composition; the HIF-1 signaling pathway, glutathione metabolism is the most significant result of 134 KEGG signal pathways and four metabolic pathways, respectively; most of the active components have an excellent affinity in docking with critical targets.ConclusionThe pharmacological target prediction of CR based on molecular network pharmacology paves the way for a multi-level networking strategy. The study of CR in AD treatment shows a bright prospect for curing neurodegenerative diseases.
Collapse
Affiliation(s)
- Xian-wen Ye
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hai-li Wang
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Shui-qing Cheng
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Liang-jing Xia
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-fang Xu
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Xin-fang Xu
| | - Xiang-ri Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xiang-ri Li
| |
Collapse
|
23
|
Zhai L, Peng J, Zhuang M, Chang YY, Cheng KW, Ning ZW, Huang T, Lin C, Wong HLX, Lam YY, Tan HY, Xiao HT, Bian ZX. Therapeutic effects and mechanisms of Zhen-Wu-Bu-Qi Decoction on dextran sulfate sodium-induced chronic colitis in mice assessed by multi-omics approaches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154001. [PMID: 35240530 DOI: 10.1016/j.phymed.2022.154001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Zhen-Wu-Bu-Qi Decoction (ZWBQD), a traditional Chinese medicine formula comprising Poria, Radix Paeoniae Alba, Rhizoma Atractylodis Macrocephalae, Rhizoma Zingiberis Recens, Radix Codonopsis and Rhizoma Coptidis, is used for treating ulcerative colitis (UC). In a previous study, we have reported ZWBQD mitigates the severity of dextran sulfate sodium (DSS)-induced colitis in mice. HYPOTHESIS In this study, we aimed to understand the systemic actions and underlying mechanisms of ZWBQD on experimental colitis in mice. METHODS We used multi-omics techniques and immunoblotting approach to study the pharmacological actions and mechanisms of ZWBQD in DSS-induced chronic colitic mice. RESULTS We showed that ZWBQD exhibited potent anti-inflammatory properties and significantly protected DSS-induced colitic mice against colon injury by regulating the PI3K-AKT, MAPK signaling pathway and NF-κB signaling pathways. We also revealed that ZWBQD significantly ameliorated gut microbiota dysbiosis and abnormalities of tryptophan catabolites induced by DSS. CONCLUSIONS We demonstrated that the therapeutic effects of ZWBQD on experimental colitis are mediated by regulating multiple signaling pathways and modulation of gut microbiota. Our study employed an integrative strategy to elucidate novel mechanisms of ZWBQD, which provides new insights into the development of Chinese herbal medicine-based therapeutics for UC.
Collapse
Affiliation(s)
- Lixiang Zhai
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jiao Peng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China; Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China; School of Pharmacy, Guiyang Medical University, Guiyang 550004, China
| | - Min Zhuang
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yao-Yao Chang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ka Wing Cheng
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zi-Wan Ning
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Tao Huang
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chengyuan Lin
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hoi Leong Xavier Wong
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yan Y Lam
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hor Yue Tan
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hai-Tao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Zhao-Xiang Bian
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
24
|
Nguyen LTH, Choi MJ, Shin HM, Yang IJ. Coptisine Alleviates Imiquimod-Induced Psoriasis-like Skin Lesions and Anxiety-like Behavior in Mice. Molecules 2022; 27:1412. [PMID: 35209199 PMCID: PMC8878104 DOI: 10.3390/molecules27041412] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Psoriasis is a common inflammatory skin disorder, which can be associated with psychological disorders, such as anxiety and depression. This study investigated the efficacy and the mechanism of action of a natural compound coptisine using imiquimod (IMQ)-induced psoriasis mice. Coptisine reduced the severity of psoriasis-like skin lesions, decreased epidermal hyperplasia and the levels of inflammatory cytokines TNF-α, IL-17, and IL-22. Furthermore, coptisine improved IMQ-induced anxiety in mice by increasing the number of entries and time in open arms in the elevated plus maze (EPM) test. Coptisine also lowered the levels of inflammatory cytokines TNF-α and IL-1β in the prefrontal cortex of psoriasis mice. HaCaT keratinocytes and BV2 microglial cells were used to investigate the effects of coptisine in vitro. In M5-treated HaCaT cells, coptisine decreased the production of IL-6, MIP-3α/CCL20, IP-10/CXCL10, and ICAM-1 and suppressed the NF-κB signaling pathway. In LPS-stimulated BV2 cells, coptisine reduced the secretion of TNF-α and IL-1β. These findings suggest that coptisine might be a potential candidate for psoriasis treatment by improving both disease severity and psychological comorbidities.
Collapse
Affiliation(s)
| | | | - Heung-Mook Shin
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Korea; (L.T.H.N.); (M.-J.C.)
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Korea; (L.T.H.N.); (M.-J.C.)
| |
Collapse
|
25
|
Meng J, Qiu S, Zhang L, You M, Xing H, Zhu J. Berberine Alleviate Cisplatin-Induced Peripheral Neuropathy by Modulating Inflammation Signal via TRPV1. Front Pharmacol 2022; 12:774795. [PMID: 35153744 PMCID: PMC8826251 DOI: 10.3389/fphar.2021.774795] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy induced peripheral neuropathy (CIPN) is a severe neurodegenerative disorder caused by chemotherapy drugs. Berberine is a natural monomer compound of Coptis chinensis, which has anti-tumor effect and can improve neuropathy through anti-inflammatory mechanisms. Transient receptor potential vanilloid (TRPV1) can sense noxious thermal and chemical stimuli, which is an important target for the study of pathological pain. In both vivo and in vitro CIPN models, we found that berberine alleviated peripheral neuropathy associated with dorsal root ganglia inflammation induced by cisplatin. We confirmed that berberine mediated the neuroinflammatory reaction induced by cisplatin by inhibiting the overexpression of TRPV1 and NF-κB and activating the JNK/p38 MAPK pathways in early injury, which inhibited the expression of p-JNK and mediated the expression of p38 MAPK/ERK in late injury in vivo. Moreover, genetic deletion of TRPV1 significantly reduced the protective effects of berberine on mechanical and heat hyperalgesia in mice. In TRPV1 knockout mice, the expression of NF-κB increased in late stage, and berberine inhibited the overexpression of NF-κB and p-ERK in late injury. Our results support berberine can reverse neuropathic inflammatory pain response induced by cisplatin, TRPV1 may be involved in this process.
Collapse
Affiliation(s)
- Jing Meng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Siyan Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min You
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haizhu Xing
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
26
|
Qi Y, Ni S, Heng X, Qu S, Ge P, Zhao X, Yao Z, Guo R, Yang N, Zhang Q, Zhu H. Uncovering the Potential Mechanisms of Coptis chinensis Franch. for Serious Mental Illness by Network Pharmacology and Pharmacology-Based Analysis. Drug Des Devel Ther 2022; 16:325-342. [PMID: 35173416 PMCID: PMC8841750 DOI: 10.2147/dddt.s342028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background Serious mental illness is a disease with complex etiological factors that requires multiple interventions within a holistic disease system. With heat-clearing and detoxifying effects, Coptis chinensis Franch. is mainly used to treat serious mental illness. Aim of the Study To explore the underlying mechanisms and therapeutic effect by which Coptis chinensis Franch. treats serious mental illnesses at a holistic level. Methods A viable network pharmacology approach was adopted to obtain the potential active ingredients of Coptis chinensis Franch., and serious mental illnesses-related targets and signaling pathways. The interactions between crucial target HTR2A and constituents were verified by molecular docking, and the dynamic behaviors of binding were studied by molecular dynamics simulation. In addition, the anti-anxiety effect of Rhizoma Coptidis (the roots of Coptis chinensis Franch.) extract on lipopolysaccharide-stimulated mice was verified. The anxiety-like behavior was measured through the elevated plus-maze test, light–dark box test, and open field test. Radioimmunoassays detected the levels of interleukin-1β, tumor necrosis factor-α, interleukin-10, interleukin-4, 5-hydroxytryptamine, and dopamine in the serum, hippocampus, medial prefrontal cortex, and amygdala. Meanwhile, immunohistochemistry protocols for the assessment of neuronal loss (neuron-specific nuclear protein) and synaptic alterations (Synapsin I) were performed in the hippocampus. Results Based on scientific analysis of the established networks, serious mental illnesses-related targets mostly participated in the calcium signaling pathway, cyclic adenosine monophosphate signaling pathway, mitogen-activated protein kinase signaling pathway, serotonergic and dopaminergic synapse. Molecular docking and molecular dynamics simulation studies illustrated that berberine, epiberberine, palmatine, and coptisine presented favorable binding patterns with HTR2A. The in vivo experiments confirmed that Rhizoma Coptidis extract ameliorated anxiety-like behaviors by improving the survival of neurons, regulating synaptic plasticity, and inhibiting neuroinflammation. Conclusion These findings in the present study led to potential preventative and therapeutic strategies for serious mental illnesses with traditional Chinese medicine.
Collapse
Affiliation(s)
- Yiyu Qi
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Saijia Ni
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Xia Heng
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Shuyue Qu
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Pingyuan Ge
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Xin Zhao
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Zengying Yao
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Rui Guo
- Department of Physiological, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Nianyun Yang
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Qichun Zhang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Correspondence: Qichun Zhang; Huaxu Zhu, Email ;
| | - Huaxu Zhu
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
27
|
Xie L, Feng S, Zhang X, Zhao W, Feng J, Ma C, Wang R, Song W, Cheng J. Biological Response Profiling Reveals the Functional Differences of Main Alkaloids in Rhizoma Coptidis. Molecules 2021; 26:molecules26237389. [PMID: 34885971 PMCID: PMC8658997 DOI: 10.3390/molecules26237389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Rhizoma Coptidis (RC) is a widely used traditional Chinese medicine. Although modern research has found that some alkaloids from RC are the pharmacologically active constituents, the differences in their biological effects are not completely clear. This study analyzed the differences in the typical alkaloids in RC at a systematic level and provided comprehensive information on the pharmaceutical mechanisms of the different alkaloids. The ethanol RC extract (RCE) was characterized using HPLC assay. HepG2, 3T3-L1, and RAW264.7 cells were used to detect the cytotoxicity of alkaloids. Transcriptome analyses were performed to elucidate the cellular pathways affected by RCE and alkaloids. HPLC analysis revealed that the typical alkaloids of RCE were berberine, coptisine, and palmatine. Coptisine and berberine displayed a stronger inhibitory effect on cell proliferation than palmatine. The overlapping ratios of differentially expressed genes between RCE and berberine, coptisine, and palmatine were 70.8%, 52.6%, and 42.1%, respectively. Pathway clustering analysis indicated that berberine and coptisine possessed a certain similarity to RCE, and both compounds affected the cell cycle pathway; moreover, some pathways were uniquely enriched by berberine or coptisine. Berberine and coptisine had different regulatory effects on genes involved in lipid metabolism. These results provide comprehensive information on the pharmaceutical mechanisms of the different RC alkaloids and insights into their better combinatory use for the treatment of diseases.
Collapse
Affiliation(s)
- Lan Xie
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China; (L.X.); (J.F.)
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (S.F.); (X.Z.); (W.Z.); (C.M.)
| | - Shanshan Feng
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (S.F.); (X.Z.); (W.Z.); (C.M.)
| | - Xiaoling Zhang
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (S.F.); (X.Z.); (W.Z.); (C.M.)
| | - Wenlong Zhao
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (S.F.); (X.Z.); (W.Z.); (C.M.)
| | - Juan Feng
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China; (L.X.); (J.F.)
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (S.F.); (X.Z.); (W.Z.); (C.M.)
| | - Chengmei Ma
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (S.F.); (X.Z.); (W.Z.); (C.M.)
| | - Ruijun Wang
- Department of Pathophysiology, Fenyang College, Shanxi Medical University, Fenyang 032200, China; (R.W.); (W.S.)
| | - Weifang Song
- Department of Pathophysiology, Fenyang College, Shanxi Medical University, Fenyang 032200, China; (R.W.); (W.S.)
| | - Jing Cheng
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China; (L.X.); (J.F.)
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (S.F.); (X.Z.); (W.Z.); (C.M.)
- Correspondence:
| |
Collapse
|
28
|
Zhang H, Ta N, Shen H, Wang H. Effects of Jian Pi Qing Chang Hua Shi decoction on mucosal injuries in a 2,4,6-trinitrobenzene sulphonic acid-induced inflammatory bowel disease rat model. PHARMACEUTICAL BIOLOGY 2021; 59:683-695. [PMID: 34110957 PMCID: PMC8204966 DOI: 10.1080/13880209.2021.1928240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 05/27/2023]
Abstract
CONTEXT Jian Pi Qing Chang Hua Shi decoction (JPQCHSD) has been considered as an effective remedy for the treatment of inflammatory bowel disease (IBD) in Chinese traditional medicine. OBJECTIVE We evaluated the efficacy of JPQCHSD on 2-4-6-trinitrobenzene sulphonic acid (TNBS)-induced IBD rats and the responsible mechanisms. MATERIALS AND METHODS Except the rats of the control group (50% ethanol), Sprague-Dawley rats (180 ± 20 g) induced by TNBS (150 mg/kg in 50% ethanol), received water extract of JPQCHSD daily at 0, 9.5, 19, or 38 g/kg for 12 days. The rats were sacrificed, and their colons were removed to evaluate the disease activity index. Malondialdehyde (MDA), superoxide dismutase (SOD), myeloperoxidase (MPO), immunoglobulin A (IgA), tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and nuclear factor-κB were evaluated. RESULTS JPQCHSD extract significantly reduced the disease activity index of TNBS-induced colitis with a median effective dose (ED50) of 26.93 g/kg. MPO and MDA were significantly reduced in the 19 and 38 g/kg groups (ED50 values 37.38 and 53.2 g/kg, respectively). The ED50 values for the increased SOD and IgA were 48.98 and 56.3 g/kg. ED50 values for inhibition of TNF-α, IL-1β, and IL-6 were 32.66, 75.72, and 162.06 g/kg, respectively. DISCUSSION JPQCHSD promoted mucosal healing in IBD rats via its anti-inflammation, immune regulation, and antioxidation properties. CONCLUSIONS JPQCHSD has healing function on IBD. Further clinical trials are needed to demonstrate its efficacy and tolerance to IBD.
Collapse
Affiliation(s)
- Huicun Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Na Ta
- Center Hospital of Beijing Daxing District Caiyu Town, Beijing, China
| | - Hong Shen
- Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Hongbing Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Hospital of Traditional Chinese Medicine Yanqing Hospital, Beijing, China
| |
Collapse
|
29
|
Huang Z, Hou Z, Liu F, Zhang M, Hu W, Xu S. Scientometric Analysis of Medicinal and Edible Plant Coptis. Front Pharmacol 2021; 12:725162. [PMID: 34456737 PMCID: PMC8387930 DOI: 10.3389/fphar.2021.725162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
Objective: A scientometric analysis to obtain knowledge mapping of Coptis revealed the current research situation, knowledge base and research hotspots in Coptis research. Methods: Coptis-related documents published from 1987 to 2020 were selected through the Web of Science Core Collection. CiteSpace, VOSviewer and Microsoft Excel were used to construct knowledge maps of the Coptis research field. Results: A total of 367 documents and their references were analyzed. These papers were primarily published in mainland China (214), followed by Japan (57) and South Korea (52), and they each formed respective cooperation networks. The document co-citation analysis suggested that the identification of Coptis Salisb. species, the production of alkaloids, and the mechanisms of action of these alkaloids formed the knowledge bases in this field. A keyword analysis further revealed that the research hotspots were primarily concentrated in three fields of research involving berberine, Coptis chinensis Franch, and Coptis japonica (Thunb) Makino. Oxidative stress, rat plasma (for the determination of plasma alkaloid contents), and Alzheimer's disease are recent research hotspots associated with Coptis. Conclusion: Coptis research was mainly distributed in three countries: China, Japan, and South Korea. Researchers were concerned with the identification of Coptis species, the production of Coptis alkaloids, and the efficacy and pharmacological mechanism of the constituent alkaloids. In addition, the anti-oxidative stress, pharmacokinetics, and Alzheimer's disease treatment of Coptis are new hotspots in this field. This study provides a reference for Coptis researchers.
Collapse
Affiliation(s)
- Zhibang Huang
- Postgraduate College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhengkun Hou
- Department of Gastroenterology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengbin Liu
- Department of Gastroenterology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Baiyun Hospital of the First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mei Zhang
- Department of Integrative Medicine, Changsha Central Hospital, University of South China, Changsha, China
| | - Wen Hu
- Intensive Care Unit, Huanggang Hospital of Traditional Chinese Medicine, Huanggang, China
| | - Shaofen Xu
- Postgraduate College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
30
|
Huang P, Wang Z, Cai K, Wei L, Chu Y, Guo M, Fan E. Targeting Bacterial Membrane Proteins to Explore the Beneficial Effects of Natural Products: New Antibiotics against Drug Resistance. Curr Med Chem 2021; 29:2109-2126. [PMID: 34126882 DOI: 10.2174/0929867328666210614121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/22/2022]
Abstract
Antibiotic resistance is currently a world health crisis that urges the development of new antibacterial substances. To this end, natural products, including flavonoids, alkaloids, terpenoids, steroids, peptides and organic acids that play a vital role in the development of medicines and thus constitute a rich source in clinical practices, provide an important source of drugs directly or for the screen of lead compounds for new antibiotic development. Because membrane proteins, which comprise more than 60% of the current clinical drug targets, play crucial roles in signal transduction, transport, bacterial pathogenicity and drug resistance, as well as immunogenicity, it is our aim to summarize those natural products with different structures that target bacterial membrane proteins, such as efflux pumps and enzymes, to provide an overview for the development of new antibiotics to deal with antibiotic resistance.
Collapse
Affiliation(s)
- Piying Huang
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhe Wang
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Kun Cai
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Liangwan Wei
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yindi Chu
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Enguo Fan
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
Liu Y, Wang B, Shu S, Li Z, Song C, Liu D, Niu Y, Liu J, Zhang J, Liu H, Hu Z, Huang B, Liu X, Liu W, Jiang L, Alami MM, Zhou Y, Ma Y, He X, Yang Y, Zhang T, Hu H, Barker MS, Chen S, Wang X, Nie J. Analysis of the Coptis chinensis genome reveals the diversification of protoberberine-type alkaloids. Nat Commun 2021; 12:3276. [PMID: 34078898 PMCID: PMC8172641 DOI: 10.1038/s41467-021-23611-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/07/2021] [Indexed: 02/04/2023] Open
Abstract
Chinese goldthread (Coptis chinensis Franch.), a member of the Ranunculales, represents an important early-diverging eudicot lineage with diverse medicinal applications. Here, we present a high-quality chromosome-scale genome assembly and annotation of C. chinensis. Phylogenetic and comparative genomic analyses reveal the phylogenetic placement of this species and identify a single round of ancient whole-genome duplication (WGD) shared by the Ranunculaceae. We characterize genes involved in the biosynthesis of protoberberine-type alkaloids in C. chinensis. In particular, local genomic tandem duplications contribute to member amplification of a Ranunculales clade-specific gene family of the cytochrome P450 (CYP) 719. The functional versatility of a key CYP719 gene that encodes the (S)-canadine synthase enzyme involved in the berberine biosynthesis pathway may play critical roles in the diversification of other berberine-related alkaloids in C. chinensis. Our study provides insights into the genomic landscape of early-diverging eudicots and provides a valuable model genome for genetic and applied studies of Ranunculales.
Collapse
Affiliation(s)
- Yifei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Bo Wang
- Hubei Institute for Drug Control, Wuhan, China
| | - Shaohua Shu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Chi Song
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Di Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Niu
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Jinxin Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingjing Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Heping Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Bisheng Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiuyu Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Liping Jiang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | | | - Yuxin Zhou
- Hubei Institute for Drug Control, Wuhan, China
| | - Yutao Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiangxiang He
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Yicheng Yang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Tianyuan Zhang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Hui Hu
- Jing Brand Chizhengtang Pharmaceutical Company Limited, Huangshi, China
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xuekui Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Jing Nie
- Hubei Institute for Drug Control, Wuhan, China.
| |
Collapse
|
32
|
Chen DX, Pan Y, Wang Y, Cui YZ, Zhang YJ, Mo RY, Wu XL, Tan J, Zhang J, Guo LA, Zhao X, Jiang W, Sun TL, Hu XD, Li LY. The chromosome-level reference genome of Coptis chinensis provides insights into genomic evolution and berberine biosynthesis. HORTICULTURE RESEARCH 2021; 8:121. [PMID: 34059652 PMCID: PMC8166882 DOI: 10.1038/s41438-021-00559-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/03/2021] [Accepted: 03/14/2021] [Indexed: 05/21/2023]
Abstract
Coptis chinensis Franch, a perennial herb, is mainly distributed in southeastern China. The rhizome of C. chinensis has been used as a traditional medicine for more than 2000 years in China and many other Asian countries. The pharmacological activities of C. chinensis have been validated by research. Here, we present a de novo high-quality genome of C. chinensis with a chromosome-level genome of ~958.20 Mb, a contig N50 of 1.58 Mb, and a scaffold N50 of 4.53 Mb. We found that the relatively large genome size of C. chinensis was caused by the amplification of long terminal repeat (LTR) retrotransposons. In addition, a whole-genome duplication event in ancestral Ranunculales was discovered. Comparative genomic analysis revealed that the tyrosine decarboxylase (TYDC) and (S)-norcoclaurine synthase (NCS) genes were expanded and that the aspartate aminotransferase gene (ASP5) was positively selected in the berberine metabolic pathway. Expression level and HPLC analyses showed that the berberine content was highest in the roots of C. chinensis in the third and fourth years. The chromosome-level reference genome of C. chinensis provides important genomic data for molecular-assisted breeding and active ingredient biosynthesis.
Collapse
Affiliation(s)
- Da-Xia Chen
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Yuan Pan
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Yu Wang
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Yan-Ze Cui
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, 100083, Beijing, China
| | - Ying-Jun Zhang
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, 100083, Beijing, China
| | - Rang-Yu Mo
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Xiao-Li Wu
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Jun Tan
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Jian Zhang
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Lian-An Guo
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Xiao Zhao
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, 100083, Beijing, China
| | - Tian-Lin Sun
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, 100083, Beijing, China
| | - Xiao-Di Hu
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, 100083, Beijing, China.
| | - Long-Yun Li
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China.
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China.
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China.
| |
Collapse
|
33
|
Abstract
Fever is a natural body defense and a common symptom of disease. Herbs have been used for thousands of years to treat fever. Many herbs have anti-inflammatory properties. Some are useful in reducing the release of cytokines and mediators of inflammation, whereas others work as natural aspirins to inhibit cyclooxygenase. In addition, herbs have known antipathogenic properties and can be effective in the treatment of infection from numerous microorganisms. Last, in traditional Chinese medicine, herbs are used to restore imbalances between the nonpathogenic and the pathogenic clearing interior heat and treating heat patterns in a variety of ways.
Collapse
Affiliation(s)
- Cheryl B Hines
- Capstone College of Nursing, The University of Alabama Tuscaloosa, 650 University Boulevard, Box 870358, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
34
|
Wu S, Yu D, Liu W, Zhang J, Liu X, Wang J, Yu M, Li Z, Chen Q, Li X, Ye X. Magnoflorine from Coptis chinese has the potential to treat DNCB-induced Atopic dermatits by inhibiting apoptosis of keratinocyte. Bioorg Med Chem 2020; 28:115093. [DOI: 10.1016/j.bmc.2019.115093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/09/2019] [Accepted: 09/06/2019] [Indexed: 10/26/2022]
|
35
|
Wu J, Luo Y, Deng D, Su S, Li S, Xiang L, Hu Y, Wang P, Meng X. Coptisine from Coptis chinensis exerts diverse beneficial properties: A concise review. J Cell Mol Med 2019; 23:7946-7960. [PMID: 31622015 PMCID: PMC6850926 DOI: 10.1111/jcmm.14725] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/15/2019] [Accepted: 09/15/2019] [Indexed: 12/31/2022] Open
Abstract
Coptisine is a natural small-molecular compound extracted from Coptis chinensis (CC) with a history of using for thousands of years. This work aimed at summarizing coptisine's activity and providing advice for its clinical use. We analysed the online papers in the database of SciFinder, Web of Science, PubMed, Google scholar and CNKI by setting keywords as 'coptisine' in combination of 'each pivotal pathway target'. Based on the existing literatures, we find (a) coptisine exerted potential to be an anti-cancer, anti-inflammatory, CAD ameliorating or anti-bacterial drug through regulating the signalling transduction of pathways such as NF-κB, MAPK, PI3K/Akt, NLRP3 inflammasome, RANKL/RANK and Beclin 1/Sirt1. However, we also (b) observe that the plasma concentration of coptisine demonstrates obvious non-liner relationship with dosage, and even the highest dosage used in animal study actually cannot reach the minimum concentration level used in cell experiments owing to the poor absorption and low availability of coptisine. We conclude (a) further investigations can focus on coptisine's effect on caspase-1-involved inflammasome assembling and pyroptosis activation, as well as autophagy. (b) Under circumstance of promoting coptisine availability by pursuing nano- or microrods strategies or applying salt-forming process to coptisine, can it be introduced to clinical trial.
Collapse
Affiliation(s)
- Jiasi Wu
- College of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Yu Luo
- College of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Donghang Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Siyu Su
- College of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Sheng Li
- Key Laboratory of Natural Medicine and Clinical TranslationChengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Li Xiang
- College of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Yingfan Hu
- College of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Ping Wang
- College of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Xianli Meng
- College of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
36
|
Coptisine from Coptis chinensis blocks NLRP3 inflammasome activation by inhibiting caspase-1. Pharmacol Res 2019; 147:104348. [DOI: 10.1016/j.phrs.2019.104348] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/26/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022]
|
37
|
Jia X, Zhang C, Bao J, Wang K, Tu Y, Wan JB, He C. Flavonoids from Rhynchosia minima root exerts anti-inflammatory activity in lipopolysaccharide-stimulated RAW 264.7 cells via MAPK/NF-κB signaling pathway. Inflammopharmacology 2019; 28:289-297. [DOI: 10.1007/s10787-019-00632-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022]
|
38
|
Hu Y, Wang L, Xiang L, Wu J, Huang W, Xu C, Meng X, Wang P. Pharmacokinetic-Pharmacodynamic Modeling for Coptisine Challenge of Inflammation in LPS-Stimulated Rats. Sci Rep 2019; 9:1450. [PMID: 30723253 PMCID: PMC6363730 DOI: 10.1038/s41598-018-38164-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Pro-inflammatory factors are important indicators for assessing inflammation severity and drug efficacy. Coptisine has been reported to inhibit LPS-induced TNF-α and NO production. In this study, we aim to build a pharmacokinetic-pharmacodynamic model to quantify the coptisine time course and potency of its anti-inflammatory effect in LPS-stimulated rats. The plasma and lung coptisine concentrations, plasma and lung TNF-α concentrations, plasma NO concentration, and lung iNOS expression were measured in LPS-stimulated rats after intravenous injection of three coptisine doses. The coptisine disposition kinetics were described by a two-compartment model. The coptisine distribution process from the plasma to the lung was described by first-order dynamics. The dynamics of plasma TNF-α generation and elimination followed zero-order kinetics and the Michaelis-Menten equation. A first-order kinetic model described the TNF-α diffusion process from the plasma to the lung. A precursor-pool indirect response model was used to describe the iNOS and NO generation induced by TNF-α. The inhibition rates of TNF-α production by coptisine (54.73%, 26.49%, and 13.25%) calculated from the simulation model were close to the decline rates of the plasma TNF-α AUC (57.27%, 40.33%, and 24.98%, respectively). Coptisine suppressed plasma TNF-α generation in a linear manner, resulting in a cascading reduction of iNOS and NO. The early term TNF-α response to stimulation is a key factor in the subsequent inflammatory cascade. In conclusion, this comprehensive PK-PD model provided a rational explanation for the interlocking relationship among TNF-α, iNOS and NO production triggered by LPS and a quantitative evaluation method for inhibition of TNF-α production by coptisine.
Collapse
Affiliation(s)
- Yingfan Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Li Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Li Xiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Jiasi Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Wen'ge Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Chensi Xu
- Chengdu Pharmoko Tech Corp., Ltd., Chengdu, 610041, China
| | - Xianli Meng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ping Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
39
|
Fu S, Ni S, Wang D, Hong T. Coptisine Suppresses Mast Cell Degranulation and Ovalbumin-Induced Allergic Rhinitis. Molecules 2018; 23:E3039. [PMID: 30469322 PMCID: PMC6278392 DOI: 10.3390/molecules23113039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 01/15/2023] Open
Abstract
Coptisine is one of the main components of isoquinoline alkaloids in the coptidis rhizome. The effect of coptisine on allergic rhinitis has not been investigated. In this study, we report the effects and mechanisms of coptisine using monoclonal anti-2,4,6-dinitrophenyl-immunoglobulin (Ig) E/human serum albumin (DNP-IgE/HSA)-stimulated rat basophilic leukemia cells (RBL-2H3 cells) in vitro and an ovalbumin (OVA)-induced allergic rhinitis (AR) in mice. The results showed that coptisine markedly decreased the levels of β-hexosaminidase, histamine, interleukin (IL)-4, and tumor necrosis factor (TNF)-α. Coptisine also prevented morphological changes, such as restoring an elongated shape, inhibiting granule release on toluidine blue staining, and reorganizing inhibited filamentous actins (F-actin). Additionally, coptisine blocked the phosphorylation of phosphoinositide3-kinase (PI3K)/Akt (as known as protein kinase B(PKB)) in RBL-2H3 cell. Furthermore, the results showed that coptisine suppressed OVA-induced allergic rhinitis symptoms, such as nasal rubbing and OVA-specific IgE, and histamine, IL-4 and TNF-α levels in the serum of AR mice. These data suggested that coptisine should have inhibitory effects on the inflammatory responses of mast cells, and may be beneficial for the development of coptisine as a potential anti-allergic drug.
Collapse
Affiliation(s)
- Shuilian Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Saihong Ni
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Danni Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Tie Hong
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
40
|
Park JW, Oh J, Ko SJ, Chang MS, Kim J. Effects of Onchung-eum, an Herbal Prescription, on 5-Fluorouracil-Induced Oral Mucositis. Integr Cancer Ther 2018; 17:1285-1296. [PMID: 30296855 PMCID: PMC6247538 DOI: 10.1177/1534735418805560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In most cancer patients, chemotherapy-induced oral mucositis (OM) is a frequent
side effect, leading to low quality of life and delay in therapy. The aim of
this study was to evaluate the effects of Onchung-eum, a
well-known herbal prescription in traditional medicine comprising 8 herbs that
has long been used for skin diseases, on 5-fluorouracil (5-FU)–induced OM in
human pharyngeal cells and golden Syrian hamsters. DPPH
(2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity, MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and
reactive oxygen species production were measured in vitro. The effects of
Onchung-eum on OM of hamster cheek pouches induced by 5-FU
were evaluated histologically and using TUNEL assay. In addition, the expression
of nuclear factor-κB, caspase-3, and pro-inflammatory cytokines were measured by
immunoblotting and immunohistochemistry. Significantly increased cell viability
was observed in the Onchung-eum–treated groups compared with
the 5-FU–treated control group. In 500 and 1000 mg/kg
Onchung-eum–treated groups, the damaged epithelial layers
in the cheek pouches of hamsters were significantly recovered. Moreover, at all
concentrations, cell death in the cheek pouches of hamsters in the
Onchung-eum–treated groups significantly decreased. The
expression of pro-inflammatory cytokines, nuclear factor-κB, and caspase-3 also
significantly decreased in Onchung-eum–treated groups at 500
and 1000 mg/kg. In conclusion, this study revealed that
Onchung-eum can be used to treat chemotherapy-induced OM.
However, further studies are required to understand the underlying
mechanisms.
Collapse
Affiliation(s)
- Jae-Woo Park
- 1 Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jayoung Oh
- 2 Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Seok-Jae Ko
- 1 Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Mun Seog Chang
- 3 Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jinsung Kim
- 1 Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
41
|
Dong H, Yan G, Wang Z, Wu C, Cui B, Ren Y, Yang C. Liquid Chromatography-Tandem Mass Spectrometry Simultaneous Determination and Pharmacokinetic Study of Fourteen Alkaloid Components in Dog Plasma after Oral Administration of Corydalis bungeana Turcz Extract. Molecules 2018; 23:molecules23081927. [PMID: 30072612 PMCID: PMC6222357 DOI: 10.3390/molecules23081927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 12/25/2022] Open
Abstract
A rapid and sensitive Ultra high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed for the simultaneous determination of fourteen alkaloids in beagle dog plasma after a single oral dose of the Corydalis bungeana Turcz (C. bungeana) extract selected bifendate as the internal standard (IS). The plasma samples were preprocessed by liquid-liquid extraction (LLE) with aether before separation on an Agilent SB-C18 column (1.8 µm, 150 × 2.1 mm) using a gradient elution program. The mobile phase consists of 0.2% acetic acid and acetonitrile at the flow rate of 0.3 mL/min. In the positive ion mode, the analytes were detected by multiple reaction monitoring (MRM). The results indicated that calibration curves for fourteen analytes have good linearity (R2 = 0.9904). The lower limits of quantification (LLOQ) of fourteen alkaloids and IS were all over 4.87 ng/mL and the matrix effects ranged from 94.08% to 102.76%. The mean extraction recoveries of Quality control samples at low (LQC), medium (MQC) and high (HQC) and IS were all more than 78.03%. The intra- and inter-day precision (R.S.D.%) also met the criterion, at the same time the deviation of assay accuracies (R.E) ranged from −13.70% to 14.40%. The Tmax values of fourteen alkaloids were no more than 1 h. The range of Cmax was from 74.16 ± 8.71 to 2256 ± 255.9 ng/mL. The assay was validated in the light of the regulatory bioanalytical guidelines and proved acceptable, which was successfully applied to a pharmacokinetic study of these compounds in beagle dogs after oral administration of Corydalis bungeana Turcz extract.
Collapse
Affiliation(s)
- Hongrui Dong
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, China.
| | - Guanyun Yan
- Department of Pharmacy Management Harbin Medical University, Harbin 150086, Heilongjiang, China.
| | - Zhibin Wang
- Key Laboratory of Chinese Materia Medical (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China.
| | - Chengcui Wu
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, China.
| | - Binbin Cui
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, China.
| | - Yixuan Ren
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, China.
| | - Chunjuan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, China.
| |
Collapse
|
42
|
Li ST, Dai Q, Zhang SX, Liu YJ, Yu QQ, Tan F, Lu SH, Wang Q, Chen JW, Huang HQ, Liu PQ, Li M. Ulinastatin attenuates LPS-induced inflammation in mouse macrophage RAW264.7 cells by inhibiting the JNK/NF-κB signaling pathway and activating the PI3K/Akt/Nrf2 pathway. Acta Pharmacol Sin 2018; 39:1294-1304. [PMID: 29323338 DOI: 10.1038/aps.2017.143] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/18/2017] [Indexed: 01/09/2023]
Abstract
Ulinastatin (UTI) is a broad-spectrum serine protease inhibitor isolated and purified from human urine with strong anti-inflammatory and cytoprotective actions, which is widely used for the treatment of various diseases, such as pancreatitis and sepsis. Although the therapeutic effects of UTI are reported to be associated with a variety of mechanisms, the signaling pathways mediating the anti-inflammatory action of UTI remain to be elucidated. In the present study we carried out a systematic study on the anti-inflammatory and anti-oxidative mechanisms of UTI and their relationships in LPS-treated RAW264.7 cells. Pretreatment with UTI (1000 and 5000 U/mL) dose-dependently decreased the mRNA levels of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, iNOS) and upregulated anti-inflammatory cytokines (IL-10 and TGF-β1) in LPS-treated RAW264.7 cells. UTI pretreatment significantly inhibited the nuclear translocation of NF-κB by preventing the degradation of IκB-α. UTI pretreatment only markedly inhibited the phosphorylation of JNK at Thr183, but it did not affect the phosphorylation of JNK at Tyr185, ERK-1/2 and p38 MAPK; JNK was found to function upstream of the IκB-α/NF-κB signaling pathway. Furthermore, UTI pretreatment significantly suppressed LPS-induced ROS production by activating PI3K/Akt pathways and the nuclear translocation of Nrf2 via promotion of p62-associated Keap1 degradation. However, JNK was not involved in mediating the anti-oxidative stress effects of UTI. In summary, this study shows that UTI exerts both anti-inflammatory and anti-oxidative effects by targeting the JNK/NF-κB and PI3K/Akt/Nrf2 pathways.
Collapse
|
43
|
Peng Y, Dong M, Zou J, Liu Z. Analysis of the HPLC Fingerprint and QAMS for Sanhuang Gypsum Soup. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:5890973. [PMID: 30079260 PMCID: PMC6051103 DOI: 10.1155/2018/5890973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/05/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
A valid and encyclopaedic evaluation method for assessing the quality of Sanhuang Gypsum Soup (SGS) has been set up based on analysis of high-performance liquid chromatography (HPLC) fingerprint combined with the quantitative analysis of multicomponents by single marker (QAMS) method, hierarchical cluster analysis (HCA), and similarity analysis. 20 peaks of the common model were obtained and used for the similarity analysis and HCA analysis. Berberine was selected as an internal reference, and the relative correction factors of mangiferin, geniposide, liquiritin, epiberberine, coptisine, baicalin, palmatine, harpagosid, wogonoside, cinnamic acid, cinnamic aldehyde, baicalein, glycyrrhizic acid, and wogonin were established. The accuracy of quantitative analysis of multicomponents by the single-marker method was verified by comparing the contents of the fourteen components calculated by the external standard method with those of the quantitative analysis of multicomponents by the single-marker method. No significant difference was found in the quantitative results of the established quantitative analysis of multicomponents by a single-marker method and an external standard method. In summary, these methods were applied to evaluate the quality of SGS successfully. As a result, these evaluation methods have great potential to be widely used in the quality control of traditional Chinese medicines (TCM).
Collapse
Affiliation(s)
- Yi Peng
- Department of Pharmacy, Nanjing University of Traditional Chinese Medicine Affiliated Hospital, Nanjing 210029, China
| | - Minghui Dong
- Department of Pharmacy, Nanjing University of Traditional Chinese Medicine Affiliated Hospital, Nanjing 210029, China
| | - Jing Zou
- Department of Pharmacy, Nanjing University of Traditional Chinese Medicine Affiliated Hospital, Nanjing 210029, China
| | - Zhihui Liu
- Department of Pharmacy, Nanjing University of Traditional Chinese Medicine Affiliated Hospital, Nanjing 210029, China
| |
Collapse
|
44
|
The Signaling Pathways Involved in the Antiatherosclerotic Effects Produced by Chinese Herbal Medicines. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5392375. [PMID: 30009170 PMCID: PMC6020658 DOI: 10.1155/2018/5392375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVDs) are considered to be the predominant cause of death in the world. Chinese herb medicines (CHMs) have been widely used for the treatment of CVDs in Asian countries for thousands of years. One reason of high efficacy of CHMs in treating CVDs is attributed to their inhibition in atherosclerosis (AS) development, a critical contributor to CVDs occurrence. Cumulative studies have demonstrated that CHMs alleviate atherogenesis via mediating pathophysiologic events involved in AS. However, there is deficiency in the summaries regarding antiatherogenic signal pathways regulated by CHMs. In this review, we focus on the signal cascades by which herb medicines and relevant extractives, derivatives, and patents improve proatherogenic processes including endothelium dysfunction, lipid accumulation, and inflammation. We mainly elaborate the CHMs-mediated signaling pathways in endothelial cells, macrophages, and vascular smooth muscle cells of each pathogenic event. Moreover, we briefly describe the other AS-related factors such as thrombosis, autophagy, immune response, and noncoding RNAs and effects of CHMs on them in the way of cascade regulation, which is helpful to further illustrate the molecular mechanisms of AS initiation and progression and discover newly effective agents for AS management.
Collapse
|
45
|
Zhou L, Yang F, Li G, Huang J, Liu Y, Zhang Q, Tang Q, Hu C, Zhang R. Coptisine Induces Apoptosis in Human Hepatoma Cells Through Activating 67-kDa Laminin Receptor/cGMP Signaling. Front Pharmacol 2018; 9:517. [PMID: 29867512 PMCID: PMC5968218 DOI: 10.3389/fphar.2018.00517] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver. Hence, new anti-liver cancer treatment strategies need to be urgently developed. Coptisine is a natural alkaloid extracted from rhizoma coptidis which exhibits anticancer activity in various preclinical models, including liver cancer. However, the molecular mechanisms underlying the anti-liver cancer effects of coptisine remains unclear. We used flow cytometry to assess the binding of coptisine to 67LR expressed on the surface of SMMC7721, HepG2, LO2 and H9 cells. Then SMMC7721, HepG2 and BEL7402 cells, belonging to the HCC cell lines, were treated with coptisine. The cell viability was detected using a cell counting kit-8 assay. Apoptosis was evaluated using flow cytometry and transferase-mediated dUTP nick-end labeling (TUNEL) assay. Apoptotic-related proteins and tumor death receptor 67-kDa laminin receptor (67LR) were detected using Western blot analysis. The cyclic guanosine 3′,5′-monophosphate (cGMP) concentration was determined using enzyme-linked immunosorbent assay. sh67LR lentivirus, anti67LR antibody, and cGMP inhibitor NS2028 were used to determine how a 67LR/cGMP signaling pathway regulated coptisine-induced apoptosis. Tumor growth inhibited by coptisine was confirmed in a SMMC7721 cell xenograft mouse model. Coptisine selectively exhibited cell viability in human hepatoma cells but not in normal human hepatocyte cell line LO2 cells. Coptisine promoted SMMC7721 and HepG2 cell apoptosis by increasing 67LR activity. Both 67LR antibody and sh67LR treatment blocked coptisine-induced apoptosis and inhibition of cell viability. Coptisine upregulated the expression of cGMP. Moreover, cGMP inhibitor NS2028 significantly decreased coptisine-induced apoptosis and inhibition of cell viability. In vivo experiments confirmed that coptisine could significantly suppress the tumor growth and induce apoptosis in SMMC7721 xenografts through a 67LR/cGMP pathway. Coptisine-mediated 67LR activation may be a new therapeutic strategy for treating hepatic malignancy.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Fan Yang
- Department of Orthopaedic, General Hospital of Tibetan Military Command Lhasa, Lhasa, China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yali Liu
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qian Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qin Tang
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
46
|
Wang G, Wang X, Sun L, Gao Y, Niu X, Wang H. Novel Inhibitor Discovery of Staphylococcus aureus Sortase B and the Mechanism Confirmation via Molecular Modeling. Molecules 2018; 23:molecules23040977. [PMID: 29690584 PMCID: PMC6017250 DOI: 10.3390/molecules23040977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/24/2022] Open
Abstract
SortaseB (SrtB) plays a critical role in Staphylococcus aureus (S. aureus) infections. According to the reports in the literature, SrtB can anchor the IsdC to the cell wall to capture iron from the host to achieve a successful invasion. On the other hand, SrtB could also affect the adhesion of S. aureus to host cells based on previous studies. Here, we report about a novel SrtB inhibitor, coptisine, a natural compound that does not exhibit antibacterial activity but can inhibit the SrtB activity in vitro. A cytotoxicity test indicated that coptisine protects human lung epithelial cells from S. aureus. In addition, coptisine can reduce the adhesion of S. aureus to human lung epithelial cells based on the result of plate colony counting assay. Molecular dynamics simulation revealed that coptisine can bind to the active pocket of SrtB, leading to its activity loss. Through the calculation of binding free energy between ligand and protein, site-directed mutagenesis and fluorescence spectroscopy quenching methods, it was confirmed that residues of Arg115, Asn116, and Ile182 played a vital role in the interaction of SrtB with coptisine. These data provide the theoretical basis for the therapy option to the infections caused by S. aureus.
Collapse
Affiliation(s)
- Guizhen Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Lin Sun
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yawen Gao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
47
|
Oshima N, Shimizu T, Narukawa Y, Hada N, Kiuchi F. Quantitative analysis of the anti-inflammatory activity of orengedokuto II: berberine is responsible for the inhibition of NO production. J Nat Med 2018; 72:706-714. [PMID: 29671127 DOI: 10.1007/s11418-018-1209-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/22/2018] [Indexed: 12/28/2022]
Abstract
Orengedokuto is a Kampo formula that has been used for removing "heat" and "poison" to treat inflammation, hypertension, gastrointestinal disorders, and liver and cerebrovascular diseases. We report here our analysis of the anti-inflammatory effect of the component crude drugs of orengedokuto and their constituents using the inhibition of nitric oxide (NO) production in the murine macrophage-like cell line J774.1. An initial comparison of NO production inhibitory activities of the extracts of the component crude drugs and their combinations revealed that the activity could be attributed to Phellodendron Bark and Coptis Rhizome. Berberine (1), the major constituent of these crude drugs, showed potent activity (IC50 4.73 ± 1.46 μM). Quantitative analysis of 1 in the extracts of all combinations of component crude drugs revealed that the amount of 1 in each extract of the combination of Scutellaria Root with either Phellodendron Bark and/or Coptis Rhizome was lower than that in the corresponding mixtures of the extracts of the individual crude drugs and that 1 was present in the precipitates formed during the decoction process. To the contrary, the differences in the amounts of 1 were smaller in the extracts containing Gardenia Fruit. These results indicated that the constituents of Scutellaria Root precipitated with 1 and that the constituents of Gardenia Fruit dissolved the precipitates. To identify the constituents affecting the solubility of 1, we fractionated the hot-water extracts of Scutellaria Root based on solubility tests of 1 to give baicalin (2), wogonin (3) and oroxyloside (4), which formed precipitates with 1.
Collapse
Affiliation(s)
- Naohiro Oshima
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Tomofumi Shimizu
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yuji Narukawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Noriyasu Hada
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Fumiyuki Kiuchi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
48
|
Song X, Pan Y, Li L, Wu X, Wang Y. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields. PLoS One 2018. [PMID: 29538438 PMCID: PMC5851603 DOI: 10.1371/journal.pone.0193811] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this study, effects of continuous cropping on soil properties, enzyme activities, and relative abundance, community composition and diversity of fungal taxa were investigated. Rhizosphere soil from field continuously cropped for one-year, three-year and five-year by Coptis chinensis Franch. was collected and analyzed. Illumina high-throughput sequencing analysis showed that continuous cropping of C. chinensis resulted in a significant and continuous decline in the richness and diversity of soil fungal population. Ascomycota, Zygomycota, Basidiomycota, and Glomeromycota were the dominant phyla of fungi detected in rhizosphere soil. Fungal genera such as Phoma, Volutella, Pachycudonia, Heterodermia, Gibberella, Cladosporium, Trichocladium, and Sporothrix, were more dominant in continuously cropped samples for three-year and five-year compared to that for one-year. By contrast, genera, such as Zygosaccharomyces, Pseudotaeniolina, Hydnum, Umbelopsis, Humicola, Crustoderma, Psilocybe, Coralloidiomyces, Mortierella, Polyporus, Pyrenula, and Monographella showed higher relative abundance in one-year samples than that in three-year and five-year samples. Cluster analysis of the fungal communities from three samples of rhizosphere soil from C. chinensis field revealed that the fungal community composition, diversity, and structure were significantly affected by the continuous cropping. Continuous cropping of C. chinensis also led to significant declines in soil pH, urease, and catalase activities. Redundancy analysis showed that the soil pH had the most significant effect on soil fungal population under continuous cropping of C. chinensis.
Collapse
Affiliation(s)
- Xuhong Song
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource, Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Yuan Pan
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource, Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Longyun Li
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource, Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
- * E-mail:
| | - Xiaoli Wu
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource, Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Yu Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-center of National Resource, Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| |
Collapse
|
49
|
Meng FC, Wu ZF, Yin ZQ, Lin LG, Wang R, Zhang QW. Coptidis rhizoma and its main bioactive components: recent advances in chemical investigation, quality evaluation and pharmacological activity. Chin Med 2018. [PMID: 29541156 PMCID: PMC5842587 DOI: 10.1186/s13020-018-0171-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Coptidis rhizoma (CR) is the dried rhizome of Coptis chinensis Franch., C. deltoidea C. Y. Cheng et Hsiao or C. teeta Wall. (Ranunculaceae) and is commonly used in Traditional Chinese Medicine for the treatment of various diseases including bacillary dysentery, typhoid, tuberculosis, epidemic cerebrospinal meningitis, empyrosis, pertussis, and other illnesses. Methods A literature survey was conducted via SciFinder, ScieneDirect, PubMed, Springer, and Wiley databases. A total of 139 selected references were classified on the basis of their research scopes, including chemical investigation, quality evaluation and pharmacological studies. Results Many types of secondary metabolites including alkaloids, lignans, phenylpropanoids, flavonoids, phenolic compounds, saccharides, and steroids have been isolated from CR. Among them, protoberberine-type alkaloids, such as berberine, palmatine, coptisine, epiberberine, jatrorrhizine, columamine, are the main components of CR. Quantitative determination of these alkaloids is a very important aspect in the quality evaluation of CR. In recent years, with the advances in isolation and detection technologies, many new instruments and methods have been developed for the quantitative and qualitative analysis of the main alkaloids from CR. The quality control of CR has provided safety for pharmacological applications. These quality evaluation methods are also frequently employed to screen the active components from CR. Various investigations have shown that CR and its main alkaloids exhibited many powerful pharmacological effects including anti-inflammatory, anti-cancer, anti-diabetic, neuroprotective, cardioprotective, hypoglycemic, anti-Alzheimer and hepatoprotective activities. Conclusion This review summarizes the recent phytochemical investigations, quality evaluation methods, the biological studies focusing on CR as well as its main alkaloids.
Collapse
Affiliation(s)
- Fan-Cheng Meng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Zheng-Feng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Zhi-Qi Yin
- 2Department of Traditional Chinese Medicines Pharmaceuticals, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| |
Collapse
|
50
|
Cao H, Li S, Xie R, Xu N, Qian Y, Chen H, Hu Q, Quan Y, Yu Z, Liu J, Xiang M. Exploring the Mechanism of Dangguiliuhuang Decoction Against Hepatic Fibrosis by Network Pharmacology and Experimental Validation. Front Pharmacol 2018; 9:187. [PMID: 29556199 PMCID: PMC5844928 DOI: 10.3389/fphar.2018.00187] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/19/2018] [Indexed: 12/11/2022] Open
Abstract
Dangguiliuhuang decoction (DGLHD) has been demonstrated to be effective in treating inflammatory, hepatic steatosis, and insulin resistance. In the study, we tried to elucidate the pharmacological efficacy and mechanism of DGLHD against liver fibrosis and predicate potential active ingredients and targets via network analysis and experimental validation. In the formula, we totally discovered 76 potential active ingredients like baicalein, berberine, and wogonin, and 286 corresponding targets including PTGS (prostaglandin-endoperoxide synthase) 2, PPAR (peroxisome proliferator-activated receptors) -γ, and NF-κB (nuclear factor-κB). Pathway and functional enrichment analysis of these putative targets indicated that DGLHD obviously influenced NF-κB and PPAR signaling pathway. Consistently, DGLHD downregulated levels of ALT (alanine transaminase) and AST (aspartate transaminase), reduced production of proinflammatory cytokines-TNF (tumor necrosis factor) -α and IL (Interleukin) -1β in serum and liver from mice with hepatic fibrosis, and inhibited hepatic stellate cell (HSC)-T6 cells proliferation. DGLHD decreased TGF (transforming growth factor) -β1 and α-SMA (smooth muscle actin) expression as well, maintained MMP (matrix metalloprotein) 13-TIMP (tissue inhibitor of metalloproteinases) 1 balance, leading to mitigated ECM (extracellular matrix) deposition in vivo and in vitro. Moreover, our experimental data confirmed that the alleviated inflammation and ECM accumulation were pertinent to NF-κB inhibition and PPAR-γ activation. Overall, our results suggest that DGLHD aims at multiply targets and impedes the progression of hepatic fibrosis by ameliorating abnormal inflammation and ECM deposition, thereby serving as a novel regimen for treating hepatic fibrosis in clinic.
Collapse
Affiliation(s)
- Hui Cao
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Senlin Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xie
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Qian
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongdan Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinyu Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihong Quan
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihong Yu
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjun Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|