1
|
Yang L, Ge W, Lin X, Yu N, Xu X, Zhang J. Nebulized riclinoctaose mitigates ovalbumin-induced allergic asthma by attenuating mast cell activation. Int Immunopharmacol 2025; 154:114555. [PMID: 40186901 DOI: 10.1016/j.intimp.2025.114555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/23/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025]
Abstract
Allergic asthma is an inflammatory airway disease in which mast cells play a key role in its pathogenesis. Riclinoctaose (Rios), an octasaccharide composed of glucose and galactose, has been reported to modulate macrophage polarization in renal ischemia-reperfusion injury. This study investigates the effects of nebulized Rios in an ovalbumin (OVA)-induced allergic asthma model. Nebulized Rios significantly reduced airway hyperresponsiveness (AHR), inflammatory cell infiltration, pulmonary fibrosis, and mucus production in OVA-treated mice. Additionally, Rios suppressed lung inflammatory cytokine production and protected against OVA-induced oxidative injury. In bronchoalveolar lavage fluid (BALF), Rios decreased the number of neutrophils and macrophages, as well as serum immunoglobulin E (IgE) and interleukin-4 (IL-4) levels. Metabolomics analysis using 1H NMR showed significant changes in the lung metabolic profile of OVA-induced asthma mice, which were partially reversed by Rios treatment. Confocal laser microscopy (CLM) revealed that fluorescently labeled Rios specifically binds to mast cell membranes. In vitro, Rios reduced degranulation and inflammatory responses in mast cells RBL-2H3 following anti-Dinitrophenyl-Immunoglobulin E (anti-DNP-IgE) sensitization and anti-Dinitrophenyl-Bovine Serum Albumin (anti-DNP-BSA) stimulation. These results suggest that Rios has therapeutic potential for allergic asthma, likely through the modulation of mast cell degranulation and mediator release.
Collapse
Affiliation(s)
- Longwei Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Wenhao Ge
- The Second People's, Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, China
| | - Xi Lin
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Ning Yu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xiaodong Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| |
Collapse
|
2
|
Zhang Y, Yang Y, Liang H, Liang Y, Xiong G, Lu F, Yang K, Zou Q, Zhang X, Du G, Xu X, Hao J. Nobiletin, as a Novel PDE4B Inhibitor, Alleviates Asthma Symptoms by Activating the cAMP-PKA-CREB Signaling Pathway. Int J Mol Sci 2024; 25:10406. [PMID: 39408735 PMCID: PMC11477036 DOI: 10.3390/ijms251910406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Asthma is a chronic airway inflammation that is considered a serious public health concern worldwide. Nobiletin (5,6,7,8,3',4'-hexamethyl flavonoid), an important compound isolated from several traditional Chinese medicines, especially Citri Reticulatae Pericarpium, is widely used for a number of indications, including cancer, allergic diseases, and chronic inflammation. However, the mechanism by which nobiletin exerts its anti-asthmatic effect remains unclear. In this research, we comprehensively demonstrated the anti-asthmatic effects of nobiletin in an animal model of asthma. It was found that nobiletin significantly reduced the levels of inflammatory cells and cytokines in mice and alleviated airway hyperresponsiveness. To explore the target of nobiletin, we identified PDE4B as the target of nobiletin through pharmacophore modeling, molecular docking, molecular dynamics simulation, SPR, and enzyme activity assays. Subsequently, it was found that nobiletin could activate the cAMP-PKA-CREB signaling pathway downstream of PDE4B in mouse lung tissues. Additionally, we studied the anti-inflammatory and anti-airway remodeling effects of nobiletin in LPS-induced RAW264.7 cells and TGF-β1-induced ASM cells, confirming the activation of the cAMP-PKA-CREB signaling pathway by nobiletin. Further validation in PDE4B-deficient RAW264.7 cells confirmed that the increase in cAMP levels induced by nobiletin depended on the inhibition of PDE4B. In conclusion, nobiletin exerts anti-asthmatic activity by targeting PDE4B and activating the cAMP-PKA-CREB signaling pathway.
Collapse
Affiliation(s)
- Yan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Yaping Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Huicong Liang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Yuerun Liang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Guixin Xiong
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Fang Lu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Kan Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Qi Zou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Xiaomin Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Guanhua Du
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China;
| | - Ximing Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China;
- Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jiejie Hao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China;
| |
Collapse
|
3
|
Kombe Kombe AJ, Fotoohabadi L, Nanduri R, Gerasimova Y, Daskou M, Gain C, Sharma E, Wong M, Kelesidis T. The Role of the Nrf2 Pathway in Airway Tissue Damage Due to Viral Respiratory Infections. Int J Mol Sci 2024; 25:7042. [PMID: 39000157 PMCID: PMC11241721 DOI: 10.3390/ijms25137042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Respiratory viruses constitute a significant cause of illness and death worldwide. Respiratory virus-associated injuries include oxidative stress, ferroptosis, inflammation, pyroptosis, apoptosis, fibrosis, autoimmunity, and vascular injury. Several studies have demonstrated the involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) in the pathophysiology of viral infection and associated complications. It has thus emerged as a pivotal player in cellular defense mechanisms against such damage. Here, we discuss the impact of Nrf2 activation on airway injuries induced by respiratory viruses, including viruses, coronaviruses, rhinoviruses, and respiratory syncytial viruses. The inhibition or deregulation of Nrf2 pathway activation induces airway tissue damage in the presence of viral respiratory infections. In contrast, Nrf2 pathway activation demonstrates protection against tissue and organ injuries. Clinical trials involving Nrf2 agonists are needed to define the effect of Nrf2 therapeutics on airway tissues and organs damaged by viral respiratory infections.
Collapse
Affiliation(s)
- Arnaud John Kombe Kombe
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Leila Fotoohabadi
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Ravikanth Nanduri
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Yulia Gerasimova
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Maria Daskou
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chandrima Gain
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Theodoros Kelesidis
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Li JJ, Chen ZH, Liu CJ, Kang YS, Tu XP, Liang H, Shi W, Zhang FX. The phytochemistry, pharmacology, pharmacokinetics, quality control, and toxicity of Forsythiae Fructus: An updated systematic review. PHYTOCHEMISTRY 2024; 222:114096. [PMID: 38641141 DOI: 10.1016/j.phytochem.2024.114096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Forsythiae Fructus (FF), the dried fruit of F. suspensa, is commonly used to treat fever, inflammation, etc in China or other Asian countries. FF is usually used as the core herb in traditional Chinese medicine preparations for the treatment of influenza, such as Shuang-huang-lian oral liquid and Yin-qiao powder, etc. Since the wide application and core role of FF, its research progress was summarized in terms of traditional uses, phytochemistry, pharmacology, pharmacokinetics, quality control, and toxicity. Meanwhile, the anti-influenza substances and mechanism of FF were emphasized. Till now, a total of 290 chemical components are identified in F. suspensa, and among them, 248 components were isolated and identified from FF, including 42 phenylethanoid glycosides, 48 lignans, 59 terpenoids, 14 flavonoids, 3 steroids, 24 cyclohexyl ethanol derivatives, 14 alkaloids, 26 organic acids, and 18 other types. FF and their pure compounds have the pharmacological activities of anti-virus, anti-inflammation, anti-oxidant, anti-bacteria, anti-tumor, neuroprotection, hepatoprotection, etc. Inhibition of TLR7, RIG-I, MAVS, NF-κB, MyD88 signaling pathway were the reported anti-influenza mechanisms of FF and phenylethanoid glycosides and lignans are the main active groups. However, the bioavailability of phenylethanoid glycosides and lignans of FF in vivo was low, which needed to be improved. Simultaneously, the un-elucidated compounds and anti-influenza substances of FF strongly needed to be explored. The current quality control of FF was only about forsythoside A and phillyrin, more active components should be taken into consideration. Moreover, there are no reports of toxicity of FF yet, but the toxicity of FF should be not neglected in clinical applications.
Collapse
Affiliation(s)
- Jin-Jin Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Zi-Hao Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Cheng-Jun Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Yu-Shuo Kang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Xin-Pu Tu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
5
|
Yuan L, Sun C. The protective effects of Arctiin in asthma by attenuating airway inflammation and inhibiting p38/NF-κB signaling. Aging (Albany NY) 2024; 16:5038-5049. [PMID: 38546350 PMCID: PMC11006498 DOI: 10.18632/aging.205584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/27/2023] [Indexed: 04/06/2024]
Abstract
Asthma is a common chronic inflammatory disease of the airways, which affects millions of people worldwide. Arctiin, a bioactive molecule derived from the traditional Chinese Burdock, has not been previously reported for its effects on asthma in infants. In this study, an asthma model was established in mice by stimulation with ovalbumin (OVA). Bronchoalveolar lavage (BALF) was collected from OVA-challenged mice and the cells were counted. Lung tissue was harvested for hematoxylin-eosin (HE) staining and measurement of Wet/Dry weight ratios. The expressions of proteins were detected using enzyme-linked immunosorbent assay (ELISA) and Western blots. The superoxide dismutase (SOD) activity in lung tissue was measured using a commercial kit. We found that Arctiin had beneficial effects on asthma treatment. Firstly, it attenuated OVA-challenged lung pathological alterations. Secondly, it ameliorated pro-inflammatory response by reducing the number of inflammatory cells and mitigating the imbalance of Th1/Th2 factors in the bronchoalveolar lavage (BALF) of OVA-challenged mice. Importantly, Arctiin ameliorated OVA-induced lung tissue impairment and improved lung function. Additionally, we observed that oxidative stress (OS) in the pulmonary tissue of OVA-challenged mice was ameliorated by Arctiin. Mechanistically, Arctiin prevented OVA-induced activation of p38 and nuclear factor-κB (NF-κB). Based on these findings, we conclude that Arctiin might serve as a promising agent for the treatment of asthma.
Collapse
Affiliation(s)
- Lang Yuan
- Department of Respiratory Medicine, Children's Hospital of Shanghai, Shanghai Jiaotong University, Shanghai 200062, China
| | - Chao Sun
- Department of Respiratory Medicine, Children's Hospital of Shanghai, Shanghai Jiaotong University, Shanghai 200062, China
| |
Collapse
|
6
|
Tuoheti K, Bai X, Yang L, Wang X, Cao Y, Yisha Z, Guo L, Zhan S, Wu Z, Liu T. Forsythiaside A suppresses renal fibrosis and partial epithelial-mesenchymal transition by targeting THBS1 through the PI3K/AKT signaling pathway. Int Immunopharmacol 2024; 129:111650. [PMID: 38342062 DOI: 10.1016/j.intimp.2024.111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Renal fibrosis is a key feature of chronic kidney disease (CKD) progression, whereas no proven effective anti-fibrotic treatments. Forsythiaside A (FTA), derived from Forsythia suspense, has been found to possess nephroprotective properties. However, there is limited research on its anti-fibrotic effects, and its mechanism of action remains unknown. This study aimed to investigate the suppressive effects of FTA on renal fibrosis and explore the underlying mechanisms. In vitro, we established a HK2 cell model induced by transforming growth factor β1 (TGF-β1), and in vivo, we used a mice model induced by unilateral ureteral obstruction (UUO). CCK-8 assay, qRT-PCR, Western blotting, immunofluorescence, flow cytometry, histological staining, immunohistochemistry, TUNEL assay, RNA transcriptome sequencing, and molecular docking were performed. The results showed that FTA (40 μM or 80 μM) treatment improved cell viability and suppressed TGF-β1-induced fibrotic changes and partial epithelial-mesenchymal transition (EMT). Furthermore, FTA treatment reversed the activation of the PI3K/AKT signaling pathway, and THBS1 was identified as the target gene. We found that THBS1 knockdown suppressed the activation of the PI3K/AKT signaling pathway and reduced the fibrosis and partial EMT-related protein level. Conversely, THBS1 overexpression activated the PI3K/AKT signaling pathway and exacerbated renal fibrosis and partial EMT. In vivo, mice were administered FTA (30 or 60 mg/kg) for 2 weeks, and the results demonstrated that FTA administration significantly mitigated tubular injury, tubulointerstitial fibrosis, partial EMT, and apoptosis. In conclusion, FTA inhibited renal fibrosis and partial EMT by targeting THBS1 and inhibiting activation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Kuerban Tuoheti
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaojie Bai
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lijie Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaolong Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuanfei Cao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zuhaer Yisha
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linfa Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shanzhi Zhan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhonghua Wu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China; Hubei Province Key Laboratory of Urinary System Diseases, Wuhan, China.
| | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China; Hubei Province Key Laboratory of Urinary System Diseases, Wuhan, China.
| |
Collapse
|
7
|
Zhang L, Lang F, Feng J, Wang J. Review of the therapeutic potential of Forsythiae Fructus on the central nervous system: Active ingredients and mechanisms of action. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117275. [PMID: 37797873 DOI: 10.1016/j.jep.2023.117275] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine has gained significant attention in recent years owing to its multi-component, multi-target, and multi-pathway advantages in treating various diseases. Forsythiae Fructus, derived from the dried fruit of Forsythia suspensa (Thunb.) Vahl, is one such traditional Chinese medicine with numerous in vivo and ex vivo therapeutic effects, including anti-inflammatory, antibacterial, and antiviral properties. Forsythiae Fructus contains more than 200 chemical constituents, with forsythiaside, forsythiaside A, forsythiaside B, isoforsythiaside, forsythin, and phillyrin being the most active ingredients. Forsythiae Fructus exerts neuroprotective effects by modulating various pathways, including oxidative stress, anti-inflammation, NF-κB signaling, 2-AG, Nrf2 signaling, acetylcholinesterase, PI3K-Akt signaling, ferroptosis, gut-brain axis, TLR4 signaling, endoplasmic reticulum stress, PI3K/Akt/mTOR signaling, and PPARγ signaling pathway. AIM OF THE STUDY This review aims to highlight the potential therapeutic effects of Forsythiae Fructus on the central nervous system and summarize the current knowledge on the active ingredients of Forsythiae Fructus and their effects on different pathways involved in neuroprotection. MATERIALS AND METHODS In this review, we conducted a comprehensive search of databases (PubMed, Google Scholar, Web of Science, China Knowledge Resource Integrated, local dissertations and books) up until June 2023 using key terms such as Forsythia suspensa, Forsythiae Fructus, forsythiaside, isoforsythiaside, forsythin, phillyrin, Alzheimer's disease, Parkinson's disease, ischemic stroke, intracerebral hemorrhage, traumatic brain injury, aging, and herpes simplex virus encephalitis. RESULTS Our findings indicate that Forsythiae Fructus and its active ingredients own therapeutic effects on the central nervous system by modulating various pathways, including oxidative stress, anti-inflammation, NF-κB signaling, 2-AG, Nrf2 signaling, acetylcholinesterase, PI3K-Akt signaling, ferroptosis, the gut-brain axis, TLR4 signaling, endoplasmic reticulum stress, PI3K/Akt/mTOR signaling, and PPARγ signaling pathway. CONCLUSION Forsythiae Fructus and its active ingredients have demonstrated promising neuroprotective properties. Future in vivo and clinical studies of Forsythiae Fructus and its active ingredients should be conducted to establish precise dosage and standard guidelines for a more effective application in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Leying Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, China
| | - Fenglong Lang
- Department of Neurology, Fushun Central Hospital, Fushun, Liaoning Province, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, China.
| |
Collapse
|
8
|
Jasemi SV, Khazaei H, Morovati MR, Joshi T, Aneva IY, Farzaei MH, Echeverría J. Phytochemicals as treatment for allergic asthma: Therapeutic effects and mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155149. [PMID: 37890444 DOI: 10.1016/j.phymed.2023.155149] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/19/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Allergic asthma is an inflammatory disease caused by the immune system's reaction to allergens, inflammation and narrowing of the airways, and the production of more than normal mucus. One of the main reasons is an increased production of inflammatory cytokines in the lungs that leads to the appearance of symptoms of asthma, including inflammation and shortness of breath. On the other hand, it has been proven that phytochemicals with their antioxidant and anti-inflammatory properties can be useful in improving allergic asthma. PURPOSE Common chemical treatments for allergic asthma include corticosteroids, which have many side effects and temporarily relieve symptoms but are not a cure. Therefore, taking the help of natural compounds to improve the quality of life of asthmatic patients can be a valuable issue that has been evaluated in the present review. STUDY DESIGN AND METHODS In this study, three databases (Scopus, PubMed, and Cochrane) with the keywords: allergic asthma, phytochemical, plant, and herb were evaluated. The primary result was 5307 articles. Non-English, repetitive, and review articles were deleted from the study. RESULTS AND DISCUSSION Finally, after carefully reading the articles, 102 were included in the study (2006-2022). The results of this review state that phytochemicals suppress the inflammatory pathways via inhibition of inflammatory cytokines production/secretion, genes, and proteins involved in the inflammation process, reducing oxidative stress indicators and symptoms of allergic asthma, such as cough and mucus production in the lungs. CONCLUSION With their antioxidant effects, this study concluded that phytochemicals suppress cytokines and other inflammatory indicators and thus can be considered an adjunctive treatment for improving allergic asthma.
Collapse
Affiliation(s)
- Seyed Vahid Jasemi
- Department of Internal Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Morovati
- Persian Medicine Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University (Nainital), Uttarakhand, India
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
9
|
Park JM, Park JW, Lee J, Kim SH, Seo DY, Ahn KS, Han SB, Lee JW. Aromadendrin inhibits PMA-induced cytokine formation/NF-κB activation in A549 cells and ovalbumin-induced bronchial inflammation in mice. Heliyon 2023; 9:e22932. [PMID: 38125474 PMCID: PMC10730751 DOI: 10.1016/j.heliyon.2023.e22932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Hyperproduction of immune cell-derived inflammatory molecules and recruitment of immune cells promote the development of allergic asthma (AA). Aromadendrin (ARO) has various biological properties including anti-inflammatory effects. In this study, we evaluated the ameliorative effects of ARO on the development of AA in vitro and in vivo. Phorbol 12-myristate 13-acetate (PMA, 100 nM) was used to induce inflammation in A549 airway epithelial cells. The cohesion of A549 and eosinophil EOL-1 cells was studied. Ovalbumin (30 or 60 μg)/Alum (3 mg) mixture was adapted for AA induction in mice. ARO (5 or 10 mg/kg, p. o.) was administered to mice to investigate its ameliorative effect on AA development. Enzyme-linked immunosorbent assay, western blotting, and hematoxylin and eosin/periodic acid Schiff staining were performed to study the ameliorative effect of ARO on bronchial inflammation. In PMA-stimulated A549 cells, the upregulation of cytokines (interleukin [IL]-1β/IL-6/tumor necrosis factor alpha [TNF-α]/monocyte chemoattractant protein [MCP]-1]) and nuclear factor kappa B (NF-κB) activation was effectively reduced by ARO pretreatment. ARO suppressed the adhesion of A549 cells and eosinophils. In ovalbumin-induced AA mice, the levels of cells, such as eosinophils, Th2 cytokines, MCP-1 in bronchoalveolar lavage fluid, IgE in serum, and inducible nitric oxide synthase/cyclooxygenase-2 expression in the lung tissue were upregulated, which were all suppressed by ARO. In addition, the increase in cell inflow and mucus formation in the lungs of AA mice was reversed by ARO as per histological analysis. ARO also modulated NF-κB activation in the lungs of AA mice. Overall, the anti-inflammatory properties of ARO in vitro/in vivo studies of AA were notable. Thus, ARO has a modulatory effect on bronchial inflammation and may be a potential adjuvant for AA treatment.
Collapse
Affiliation(s)
- Jin-Mi Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Ji-Won Park
- Practical Research Division, Honam National Institute of Biological Resources (HNIBR), 99, Gohadoan-gil, Mokpo-si, Jeollanam-do, 58762, Republic of Korea
| | - Juhyun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seung-Ho Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Da-Yun Seo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| |
Collapse
|
10
|
Lin Q, Wang T, Zuo X, Ni H, Zhong J, Zhan L, Cheng H, Huang Y, Ding X, Yu H, Nie H. Anti-CD1d treatment suppresses immunogenic maturation of lung dendritic cells dependent on lung invariant natural killer T cells in asthmatic mice. Int Immunopharmacol 2023; 124:110921. [PMID: 37725846 DOI: 10.1016/j.intimp.2023.110921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
Our previous findings show that invariant natural killer T (iNKT)cells can promote immunogenic maturation of lung dendritic cells (LDCs) to enhance Th2 cell responses in asthma. It has been accepted that recognition of glycolipid antigens presented by CD1d molecules by the T cell receptors of iNKT cells leads to iNKT cell activation. Therefore, we examine the immunoregulatory influences of anti-CD1d treatment on Th2 cell response and immunogenic maturation of LDCs and subsequently explored whether these influences were dependent on lung iNKT cells in asthmatic mice. We discoveredthat in wild-type mice sensitized and challenged with house dust mite or ovalbumin (OVA), anti-CD1d treatment inhibited Th2 cell response and immunogenic maturation of LDCs. LDCs from asthmatic mice with anti-CD1d treatment had a markedly decreased influence on Th2 cell responses in vivo and in vitro. Furthermore, anti-CD1d treatment reduced the abundance and activation of lung iNKT cells in asthmatic mice. Moreover, in asthmatic iNKT cell-deficient Jα18-/- mice, anti-CD1d treatment did not influence Th2 cell responses and immunogenic maturation of LDCs. Meanwhile, the quantity of CD40L+ iNKT cells in asthmatic mice was significant decreased by anti-CD1d treatment. Finally, the inhibition of anti-CD1d treatment on LDC immunogenic maturation and Th2 cell responses in asthmatic mice was reversed by anti-CD40 treatment. Our data suggest that anti-CD1d treatment can suppress Th2 cell responses through inhibiting immunogenic maturation of LDCs dependent on lung iNKT cells, which couldbe partially related to the downregulation of CD40L expression on lung iNKT cells in asthmatic mice.
Collapse
Affiliation(s)
- Qibin Lin
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Tong Wang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Xiaoshu Zuo
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Haiyang Ni
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Jieying Zhong
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Hong Cheng
- Department of Parmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Yi Huang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Xuhong Ding
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Hongying Yu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| |
Collapse
|
11
|
Bai D, Sun Y, Li Q, Li H, Liang Y, Xu X, Hao J. Leonurine attenuates OVA-induced asthma via p38 MAPK/NF-κB signaling pathway. Int Immunopharmacol 2023; 114:109483. [PMID: 36463697 DOI: 10.1016/j.intimp.2022.109483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/29/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022]
Abstract
Leonurine (Leo) is a natural alkaloid extracted from Herba leonuri, which has many biological activities. However, whether leonurine has a protective effect on asthma remains unknown. The purpose of this study was to investigate the protective effect of leonurine on asthma. We evaluated its therapeutic effect and related signal transduction in LPS-induced RAW264.7 cells and OVA-induced asthmatic mice. In addition, we used network pharmacology, molecular docking and molecular dynamics simulation to verify the experimental results. In LPS-induced RAW 264.7 cells, leonurine significantly reduced the production of TNF-α and IL-6, andinhibited the activation of p38 MAPK/NF-κB signaling pathway. In OVA-induced asthmatic mice, leonurine decreased the number of inflammatory cells in the bronchoalveolar lavage fluid (BALF), particularly neutrophils and eosinophils. Leonurine also reduced the contents of IL-4, IL-5, IL-13 in the BALF and OVA-IgE in the serum. Leonurine remarkly improved OVA-induced inflammatory cell infiltration and significantly inhibited mucus overproduction. In addition, leonurine inhibited the activation of p38 MAPK/NF-κB signaling pathway in the lung tissues of asthmatic mice. Network pharmacology suggested that p38 MAPKα was a potential target of leonurine in the treatment of asthma. Molecular docking and molecular dynamics simulations indicated that leonurine could stably bind to p38 MAPKα protein. In summary, leonurine attenuated asthma by regulating p38 MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Donghui Bai
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yujie Sun
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Qiong Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Haihua Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yuerun Liang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ximing Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jiejie Hao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.
| |
Collapse
|
12
|
Shen P, Yu J, Long X, Huang X, Tong C, Wang X. Effect of forsythoside A on the transcriptional profile of bovine mammary epithelial cells challenged with lipoteichoic acid. Reprod Domest Anim 2023; 58:89-96. [PMID: 36128756 DOI: 10.1111/rda.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 01/07/2023]
Abstract
Mastitis is a common disease of the dairy cattle, which affects the development of the dairy industry and leads to huge economic losses. Forsythoside A (FTA) has anti-inflammatory, antioxidant, antiviral and anti-apoptotic effects. However, the therapeutic effect and molecular mechanism of FTA on dairy cow mastitis remain unclear. In this study, bovine mammary epithelial cells (BMECs) were stimulated with lipoteichoic acid (LTA), a key virulence factor of Staphylococcus aureus (S. aureus), to construct in vitro models, and then treated with FTA. Subsequently, the differentially expressed genes (DEGs) in different groups were determined by RNA sequencing (RNA-Seq) analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyse the possible function of the DEGs, real-time quantitative PCR (RT-qPCR) was used to verify whether the expression levels of these DEGs were consistent with RNA-Seq results. The results showed that cell division cycle 20B (CDC20B), endothelial cell surface expressed chemotaxis and apoptosis regulator (ECSCR), complement factor H-related 5 (CFHR5) and phospholipase A2 group IVA (PLA2G4A) were down-regulated after FTA treatment. In contrast, Kruppel-like factor 15 (KLF15) and Metallothionein 1E (MT1E) were up-regulated. These DEGs are involved in processes such as apoptosis, inflammation and development of cancer. This study provides valuable insights into the transcriptome changes in BMECs after FTA treatment. Further analysis may help identify the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Puxiu Shen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jingcheng Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiaochuan Long
- College of Animal Science, Phase II, West Campus of Guizhou University, Xibei Community Service Center, Guiyang, Guizhou, China
| | - Xiankai Huang
- College of Animal Science, Phase II, West Campus of Guizhou University, Xibei Community Service Center, Guiyang, Guizhou, China
| | - Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Wushu Overseas Students Pioneer Park, Wuhu, China
| | - Xinzhuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
13
|
Li M, Li M, Hou Y, HE H, Jiang R, Wang C, Sun S. Ferroptosis triggers airway inflammation in asthma. Ther Adv Respir Dis 2023; 17:17534666231208628. [PMID: 37947059 PMCID: PMC10638875 DOI: 10.1177/17534666231208628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023] Open
Abstract
Ferroptosis is a regulatory cell death characterized by intracellular iron accumulation and lipid peroxidation that leads to oxidative stress. Many signaling pathways such as iron metabolism, lipid metabolism, and amino acid metabolism precisely regulate the process of ferroptosis. Ferroptosis is involved in a variety of lung diseases, such as acute lung injury, chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis. Increasing studies suggest that ferroptosis is involved in the development of asthma. Ferroptosis plays an important role in asthma. Iron metabolism disorders, lipid peroxidation, amino acid metabolism disorders lead to the occurrence of ferroptosis in airway epithelial cells, and then aggravate clinical symptoms in asthmatic patients. Moreover, several regulators of ferroptosis are involved in the pathogenesis of asthma, such as Nrf2, heme oxygenase-1, mevalonate pathway, and ferroptosis inhibitor protein 1. Importantly, ferroptosis inhibitors improve asthma. Thus, the pathogenesis of ferroptosis and its contribution to the pathogenesis of asthma help us better understand the occurrence and development of asthma, and provide new directions in asthma treatment. This article aimed to review the role and mechanism of ferroptosis in asthma, describing the relationship between ferroptosis and asthma based on signaling pathways and related regulatory factors. At the same time, we summarized current observations of ferroptosis in eosinophils, airway epithelial cells, and airway smooth muscle cells in asthmatic patients.
Collapse
Affiliation(s)
- Minming Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
- Pediatric Medicine Class One, Kunming Medical University, Kunming, China
| | - Min Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yunjiao Hou
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Huilin HE
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Ruonan Jiang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
- Pediatric Medicine Class One, Kunming Medical University, Kunming, China
| | - Chu Wang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No.295, Xichang Road, Wuhua District, Kunming 650032, China
| |
Collapse
|
14
|
Park JW, Choi J, Lee J, Park JM, Kim SM, Min JH, Seo DY, Goo SH, Kim JH, Kwon OK, Lee K, Ahn KS, Oh SR, Lee JW. Methyl P-Coumarate Ameliorates the Inflammatory Response in Activated-Airway Epithelial Cells and Mice with Allergic Asthma. Int J Mol Sci 2022; 23:ijms232314909. [PMID: 36499236 PMCID: PMC9736825 DOI: 10.3390/ijms232314909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Methyl p-coumarate (methyl p-hydroxycinnamate) (MH) is a natural compound found in a variety of plants. In the present study, we evaluated the ameliorative effects of MH on airway inflammation in an experimental model of allergic asthma (AA). In this in vitro study, MH was found to exert anti-inflammatory activity on PMA-stimulated A549 airway epithelial cells by suppressing the secretion of IL-6, IL-8, MCP-1, and ICAM-1. In addition, MH exerted an inhibitory effect not only on NF-κB (p-NF-κB and p-IκB) and AP-1 (p-c-Fos and p-c-Jun) activation but also on A549 cell and EOL-1 cell (eosinophil cell lines) adhesion. In LPS-stimulated RAW264.7 macrophages, MH had an inhibitory effect on TNF-α, IL-1β, IL-6, and MCP-1. The results from in vivo study revealed that the increases in eosinophils/Th2 cytokines/MCP-1 in the bronchoalveolar lavage fluid (BALF) and IgE in the serum of OVA-induced mice with AA were effectively inhibited by MH administration. MH also exerted a reductive effect on the immune cell influx, mucus secretion, and iNOS/COX-2 expression in the lungs of mice with AA. The effects of MH were accompanied by the inactivation of NF-κB. Collectively, the findings of the present study indicated that MH attenuates airway inflammation in mice with AA, suggesting its potential as an adjuvant in asthma therapy.
Collapse
Affiliation(s)
- Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jinseon Choi
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Juhyun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin-Mi Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jae-Hong Min
- Laboratory Animal Resources Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju 28159, Republic of Korea
| | - Da-Yun Seo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Soo-Hyeon Goo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Ju-Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheonju 28116, Republic of Korea
| | - Kihoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheonju 28116, Republic of Korea
- Correspondence: (S.-R.O.); (J.-W.L.)
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Correspondence: (S.-R.O.); (J.-W.L.)
| |
Collapse
|
15
|
Yang Z, Ning X, Zhang Y. Forsythiaside Protected H9c2 Cardiomyocytes from H<sub>2</sub>O<sub>2</sub>-Induced Oxidative Stress and Apoptosis <i>via</i> Activating Nrf2/HO-1 Signaling Pathway. Int Heart J 2022; 63:904-914. [DOI: 10.1536/ihj.21-585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Zhicai Yang
- Department of Cardiology, The Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine
| | - Xiaokang Ning
- Department of Cardiology, The Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine
| | - Ying Zhang
- Department of Cardiology, The Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine
| |
Collapse
|
16
|
Liang S, Zhao Y, Chen G, Wang C. Isoorientin ameliorates OVA-induced asthma in a murine model of asthma. Exp Biol Med (Maywood) 2022; 247:1479-1488. [PMID: 35658632 PMCID: PMC9493767 DOI: 10.1177/15353702221094505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Allergic asthma which is induced by ovalbumin (OVA) is a chronic airway inflammation disease. Isoorientin (Iso) is a natural C-glucosyl flavone with many biological properties. We aimed to evaluate the effectiveness of Iso on OVA-induced allergic asthma. A total of 30 C57BL/6 mice were randomly divided into five groups: control group, OVA group, Dex (dexamethasone, 10 mg/kg) group, low-dose Iso group (Iso-L, 25 mg/kg), and high-dose Iso group (Iso-H, 50 mg/kg). The serum and bronchoalveolar lavage fluid (BALF) were collected for biochemical parameters, the lung tissue was collected for hematoxylin-eosin (H&E) staining, immunohistochemistry (IHC), and western blot. The levels of IL-4, IL-5, IL-13, malondialdehyde (MDA), NO, and reactive oxygen species (ROS) in Iso-L and Iso-H groups were significantly lower than that in model group (p < 0.05). Simultaneously, the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity were higher than that in model group (p < 0.05). Iso significantly ameliorated airway hyperresponsiveness. Meanwhile, H&E staining revealed that mice treated with Iso resulted in the ameliorated inflammatory cell infiltration and a reduction in interstitial thickening. The nuclear factor erythroid 2-like 2 (Nrf2) and HO-1 protein expression in Iso-L and Iso-H groups were enhanced over that in model group, while p-NF-κB-p65 and p-IκB-α protein expression was decreased (p < 0.05). Our research indicated that Iso alleviated the OVA-induced allergic asthma, and this effect can be explained by the modulation of Nrf2/HO-1 and NF-κB signaling pathway; thus, the results providing a therapeutic rationale for the treatment of Iso on allergic asthma.
Collapse
|
17
|
Yang HX, Liu QP, Zhou YX, Chen YY, An P, Xing YZ, Zhang L, Jia M, Zhang H. Forsythiasides: A review of the pharmacological effects. Front Cardiovasc Med 2022; 9:971491. [PMID: 35958429 PMCID: PMC9357976 DOI: 10.3389/fcvm.2022.971491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Forsythiasides are a kind of phenylethanol glycosides existing in Forsythia suspensa (Thunb.) Vahl, which possesses extensive pharmacological activities. According to the different groups connected to the nucleus, forsythiasides can be divided into A-K. In recent years, numerous investigations have been carried out on forsythiasides A, B, C, D, E, and I, which have the effects of cardiovascular protection, anti-inflammation, anti-oxidation, neuroprotection, et al. Mechanistically, forsythiasides regulate toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor kappaB (NF-κB), nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) and other signaling pathways, as well as the expression of related cytokines and kinases. Further exploration and development may unearth more treatment potential of forsythiasides and provide more evidence for their clinical applications. In summary, forsythiasides have high development and application value.
Collapse
Affiliation(s)
- Hong-Xuan Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Xi Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Library, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Ying Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei An
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Zhuo Xing
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Lei Zhang,
| | - Min Jia
- Department of Chinese Medicine Authentication, School of Pharmacy, Naval Medical University, Shanghai, China
- Min Jia,
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Hong Zhang,
| |
Collapse
|
18
|
Xu Z, Qiao S, Qian W, Zhu Y, Yan W, Shen S, Wang T. Card9 protects fungal peritonitis through regulating Malt1-mediated activation of autophagy in macrophage. Int Immunopharmacol 2022; 110:108941. [PMID: 35850054 DOI: 10.1016/j.intimp.2022.108941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/05/2022]
Abstract
Fungal peritonitis is an inflammatory condition of the peritoneum which occurs secondary to peritoneal dialysis. Most cases of peritonitis are caused by microbial invasion into the peritoneal cavity, resulting in high morbidity and mortality. Unlike bacterial peritonitis, little is known on fungal peritonitis. Card9, an adapter protein, plays a critical role in anti-fungal immunity. In this study, by using zymosan-induced peritonitis and C. albicans-induced peritonitis mouse model, we demonstrated that fungal peritonitis was exacerbated in Card9-/- mice, compared with WT mice. Next, we found the autophagy activation of peritonealmacrophages was impaired in Card9-/- peritonitis mice. The autophagy agonist, MG132, ameliorated peritonitis in Card9-/- mice. The result of microarray analysis indicates Malt1 was significantly decreased in Card9-/- peritonitis mice. Furthermore, we demonstrated that Malt1 interacts with P62 and mediates the function of P62 to clear ubiquitinated proteins. After overexpression of Malt1, impaired autophagy activation caused by Card9 deficient was significantly rescued. Together, our results indicate that Card9 protects fungal peritonitis by regulating Malt1-mediated autophagy in macrophages. Our research provides a new idea for the pathogenesis of fungal peritonitis, which is of great significance for the clinical treatment of fungal peritonitis.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Oncology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224001, China; The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Shuping Qiao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Wei Qian
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Yanan Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Wenyue Yan
- Department of Oncology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224001, China.
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China.
| | - Tingting Wang
- Department of Oncology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224001, China; The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
19
|
Wang J, Luo L, Zhao X, Xue X, Liao L, Deng Y, Zhou M, Peng C, Li Y. Forsythiae Fructuse extracts alleviates LPS-induced acute lung injury in mice by regulating PPAR-γ/RXR-α in lungs and colons. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115322. [PMID: 35483561 DOI: 10.1016/j.jep.2022.115322] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Forsythiae Fructuse (FF), the dried fruit of Forsythia suspensa (Thunb.) Vahl, is used as a traditional Chinese medicine that has been reported to exert good anti-inflammatory effects in the treatment of many lung diseases. AIM OF THE STUDY The purpose of this study was to investigate the anti-inflammatory mechanism of FF in the treatment of acute lung injury (ALI) based on gut-lung axis. MATERIALS AND METHODS ALI model was established by the intratracheal instillation of 5 mg/kg LPS in ICR mice. Mice were administered intragastrically with dexamethasone (DEX), and low-dose, medium-dose and high-dose of FF extracts (LFF, MFF and HFF) in addition to the mice of control (CON) and model (MOD) groups. Pathological observation and inflammation scoring of lung tissues were based on HE staining. Limulus lysate assay was used to detect endotoxin levels in serum. Western blot and Real-time quantitative PCR were respectively applied to detect the protein and mRNA expressions in both lung and colon tissues. RESULTS Lung pathological injury, inflammatory score and inflammatory genes (IL-6, IL-1β, TNF-α) could be effectively suppressed by FF in LPS-induced ALI mice. FF also increased the proteins of epithelial markers (E-cadherin, ZO-1 and Claudin-1) in lung and colon tissues, and decreased colonic inflammatory genes for protecting the epithelial barriers of lung and colon. The protein expression of TLR4/MAPK/NF-κB inflammatory signaling pathway in lung and colon was significantly inhibited by FF via the regulation of PPAR-γ, a nuclear hormone receptor that forms the heterodimer with RXR-α to inhibit inflammatory gene transcription. More specifically, FF promoted the upregulation of protein, phosphorylated proteins and genes of PPAR-γ/RXR-α in lungs, while inhibited the protein overexpression and phosphorylation of PPAR-γ/RXR-α in colons. CONCLUSIONS FF exhibited anti-inflammatory effects and protected the epithelial barriers in lungs and colons by regulating PPAR-γ/RXR-α in the treatment of LPS-induced ALI.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lin Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ying Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mengting Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
20
|
Forsythiaside A Regulates Activation of Hepatic Stellate Cells by Inhibiting NOX4-Dependent ROS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9938392. [PMID: 35035671 PMCID: PMC8754607 DOI: 10.1155/2022/9938392] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/27/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022]
Abstract
Hepatic stellate cells (HSCs) activation is an important step in the process of hepatic fibrosis. NOX4 and reactive oxygen species expressed in HSCs play an important role in liver fibrosis. Forsythiaside A (FA), a phenylethanoid glycoside extracted and isolated from Forsythiae Fructus, has significant antioxidant activities. However, it is not clear whether FA can play a role in inhibiting the HSCs activation through regulating NOX4/ROS pathway. Therefore, our purpose is to explore the effect and mechanism of FA on HSCs activation to alleviate liver fibrosis. LX2 cells were activated by TGF-β1 in vitro. MTT assay and Wound Healing assay were used to investigate the effect of FA on TGF-β1-induced LX2 cell proliferation and migration. Elisa kit was used to measure the expression of MMP-1 and TIMP-1. Western blot and RT-qPCR were used to investigate the expression of fibrosis-related COLI, α-SMA, MMP-1 and TIMP-1, and inflammation-related TNF-α, IL-6 and IL-1β. The hydroxyproline content was characterized using a biochemical kit. The mechanism of FA to inhibit HSCs activation and apoptosis was detected by DCF-DA probe, RT-qPCR, western blot and flow cytometry. NOX4 siRNA was used to futher verify the effect of FA on NOX4/ROS pathway. The results showed that FA inhibited the proliferation and migration of LX2 cells and adjusted the expression of MMP-1, TIMP-1, COLI, α-SMA, TNF-α, IL-6 and IL-1β as well as promoted collagen metabolism to show potential in anti-hepatic fibrosis. Mechanically, FA down-regulated NOX4/ROS signaling pathway to improve oxidation imbalances, and subsequently inhibited PI3K/Akt pathway to suppress proliferation. FA also promoted the apoptosis of LX2 cells by Bax/Bcl2 pathway. Furthermore, the effects of FA on TGF-β1-induced increased ROS levels and α-SMA and COLI expression were weaken by silencing NOX4. In conclusion, FA had potential in anti-hepatic fibrosis at least in part by remolding of extracellular matrix and improving oxidation imbalances to inhibit the activation of HSCs and promote HSCs apoptosis.
Collapse
|
21
|
Acupoint Catgut-Embedding Therapy Inhibits NF-κB/COX-2 Pathway in an Ovalbumin-Induced Mouse Model of Allergic Asthma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1764104. [PMID: 35281601 PMCID: PMC8906959 DOI: 10.1155/2022/1764104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 11/18/2022]
Abstract
Allergic asthma is associated with T helper (Th) 2 cell-biased immune responses and characterized by the airway hyperresponsiveness (AHR). Studies have shown that the acupoint catgut-embedding therapy (ACE) has a therapeutic effect on allergic asthma. However, the relevant mechanism is poorly understood. In present study, female BALB/c mice were sensitized and challenged with ovalbumin (OVA) to establish a model of allergic asthma. AHR was evaluated by using airway resistance (
) and lung dynamic compliance (Cdyn). Airway inflammation and mucus hypersecretion were observed by HE and PAS staining. Inflammatory cells were counted, and related cytokines in bronchoalveolar lavage fluid (BALF) were detected by enzyme-linked immunosorbent assay (ELISA). Pulmonary group 2 innate lymphoid cell (ILC2s) proportions were analyzed by flow cytometry. The expression of nuclear factor κB (NF-κB) and cyclooxygenase-2 (COX-2) was detected by immunostaining. Our results showed that OVA induction resulted in a significant increase in
, accompanied by a significant decrease in Cdyn. The levels of interleukin- (IL-) 4, IL-13, OVA-specific IgE in BALF, and the percentage of ILC2 in the lungs were markedly increased accompanied by a significant decreased in interferon-γ (IFN-γ). Furthermore, the expressions of p-NF-κB p65 and COX-2 in airways were significantly upregulated. After ACE treatment, the indicators above were significantly reversed. In conclusion, ACE treatment inhibited the secretion of Th2 cytokines and the proliferation of ILC2s in the lungs, thereby dampening the inflammatory activity in allergic asthma. The underlying mechanism might be related to the inhibition of NF-κB/COX-2 pathway.
Collapse
|
22
|
Miao J, He X, Hu J, Cai W. Emodin inhibits NF-κB signaling pathway to protect obese asthmatic rats from pathological damage via Visfatin. Tissue Cell 2021; 74:101713. [PMID: 34952398 DOI: 10.1016/j.tice.2021.101713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE Emodin has a protective effect on asthma. Obesity is closely related to asthma. We further explored the role of Emodin in obese asthmatic rats. METHODS Ovalbumin (OVA) was used to induce asthma model, and high fat diet (HFD) was used to induce obese rat model. Body weight was measured before and after the modeling. Serum lipid levels were evaluated using commercial kits. Then, lung tissue and airway tissue of rat were separated forin vivo. Hematoxylin-eosin staining (HE) analyzed the extent of lung lesions. Quantitative reverse transcription PCR assessed the mRNA expression of Visfatin and Enzyme linked immunosorbent assay measured NF-κB protein expression in airway tissues. MTT, Brdu and Western blot detected cell viability, proliferation and NF-κB level of human bronchial epithelial cells 16HBE, respectively. RESULTS Asthma and Emodin alone had no effect on the body weight of normal rats, while HFD promoted the body weight of rats and could be reversed by Emodin. Both asthma and obesity promoted the pathological damage of rat lungs, including emphysema, lipid accumulation, edema changes, lymphoid hypertrophy and airway smooth muscle hyperplasia as well as lipid accumulation in surum, and Emodin treatment could reduce the damage. In the airway tissues of asthma and obesity models, up-regulated Visfatin mRNA and NF-κB protein were observed. In 16HBE, Emodin reversed Visfatin's role in promoting cell viability, proliferation and activating NF-κB signaling pathway. CONCLUSION Emodin inhibited NF-κB expression to relieve the pathological symptoms of obese asthmatic rats by Visfatin.
Collapse
Affiliation(s)
- Jing Miao
- Department of Endocrinology, The Second Clinical Medical College of Zhejiang Chinese Medical University, The Second Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Xiaoming He
- Department of Endocrinology, The Second Clinical Medical College of Zhejiang Chinese Medical University, The Second Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Jiang Hu
- Department of Endocrinology, The Second Clinical Medical College of Zhejiang Chinese Medical University, The Second Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Wanru Cai
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical College of Zhejiang Chinese Medical University, The Second Affiliated Hospital of Zhejiang Chinese Medical University, China.
| |
Collapse
|
23
|
Schisandrin B Attenuates Airway Inflammation by Regulating the NF- κB/Nrf2 Signaling Pathway in Mouse Models of Asthma. J Immunol Res 2021; 2021:8029963. [PMID: 34258300 PMCID: PMC8261176 DOI: 10.1155/2021/8029963] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background Asthma is a complex inflammatory disorder that plagues a large number of people. Schisandrin B is an active ingredient of the traditional Chinese herbal medicine Schisandra with various proven physiological activities such as anti-inflammatory and antioxidant activities. In this study, we explored the anti-inflammatory and antioxidant effects and provided the mechanistic insights into the activity of schisandrin B in a mouse model of ovalbumin- (OVA-) induced allergic asthma. Methods Male BALB/c mice were sensitized and challenged with OVA to induce asthma and treated with various doses (15 mg/kg, 30 mg/kg, and 60 mg/kg) of SCH to alleviate the features of allergic asthma, airway hyperresponsiveness, inflammatory response, OVA-specific immunoglobulin (Ig)E level, and pathological injury. Results Schisandrin B significantly attenuated the airway hyperresponsiveness induced by OVA. Moreover, schisandrin B administration suppressed inflammatory responses, reduced the level of IgE, and attenuated pathological injury. Mechanistically, schisandrin B treatment promoted the activation of nuclear erythroid 2-related factor 2 (Nrf2), but suppressed the stimulation of the NF-κB pathway caused by OVA. Conclusion Taken together, our study suggests that schisandrin B attenuates the features of asthmatic lungs by inhibiting the NF-κB pathway and activating the Nrf2 signaling pathway.
Collapse
|
24
|
A review of pharmacological and pharmacokinetic properties of Forsythiaside A. Pharmacol Res 2021; 169:105690. [PMID: 34029711 DOI: 10.1016/j.phrs.2021.105690] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine plays a significant role in the treatment of various diseases and has attracted increasing attention for clinical applications. Forsythiae Fructus, the dried fruit of Forsythia suspensa (Thunb.) Vahl, is a widely used Chinese medicinal herb in clinic for its extensive pharmacological activities. Forsythiaside A is the main active index component isolated from Forsythiae Fructus and possesses prominent bioactivities. Modern pharmacological studies have confirmed that Forsythiaside A exhibits significant activities in treating various diseases, including inflammation, virus infection, neurodegeneration, oxidative stress, liver injury, and bacterial infection. In this review, the pharmacological activities of Forsythiaside A have been comprehensively reviewed and summarized. According to the data, Forsythiaside A shows remarkable anti-inflammation, antivirus, neuroprotection, antioxidant, hepatoprotection, and antibacterial activities through regulating multiple signaling transduction pathways such as NF-κB, MAPK, JAK/STAT, Nrf2, RLRs, TRAF, TLR7, and ER stress. In addition, the toxicity and pharmacokinetic properties of Forsythiaside A are also discussed in this review, thus providing a solid foundation and evidence for further studies to explore novel effective drugs from Chinese medicine monomers.
Collapse
|
25
|
Vinpocetine alleviates lung inflammation via macrophage inflammatory protein-1β inhibition in an ovalbumin-induced allergic asthma model. PLoS One 2021; 16:e0251012. [PMID: 33914833 PMCID: PMC8084130 DOI: 10.1371/journal.pone.0251012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/18/2021] [Indexed: 11/19/2022] Open
Abstract
Asthma is a well-known bronchial disease that causes bronchial inflammation, narrowing of the bronchial tubes, and bronchial mucus secretion, leading to bronchial blockade. In this study, we investigated the association between phosphodiesterase (PDE), specifically PDE1, and asthma using 3-isobutyl-1-methylxanthine (IBMX; a non-specific PDE inhibitor) and vinpocetine (Vinp; a PDE1 inhibitor). Balb/c mice were randomized to five treatment groups: control, ovalbumin (OVA), OVA + IBMX, OVA + Vinp, and OVA + dexamethasone (Dex). All mice were sensitized and challenged with OVA, except for the control group. IBMX, Vinp, or Dex was intraperitoneally administered 1 h before the challenge. Vinp treatment significantly inhibited the increase in airway hyper-responsiveness (P<0.001) and reduced the number of inflammatory cells, particularly eosinophils, in the lungs (P<0.01). It also ameliorated the damage to the bronchi and alveoli and decreased the OVA-specific IgE levels in serum, an indicator of allergic inflammation increased by OVA (P<0.05). Furthermore, the increase in interleukin-13, a known Th2 cytokine, was significantly decreased by Vinp (P<0.05), and Vinp regulated the release and mRNA expression of macrophage inflammatory protein-1β (MIP-1β) increased by OVA (P<0.05). Taken together, these results suggest that PDE1 is associated with allergic lung inflammation induced by OVA. Thus, PDE1 inhibitors can be a promising therapeutic target for the treatment of asthma.
Collapse
|
26
|
Liu JX, Zhang Y, Yuan HY, Liang J. The treatment of asthma using the Chinese Materia Medica. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113558. [PMID: 33186702 DOI: 10.1016/j.jep.2020.113558] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is a costly global health problem that negatively influences the quality of life of patients. The Chinese Materia Medica (CMM) contains remedies that have been used for the treatment of asthma for millennia. This article strives to systematically summarize the current research progress so that more comprehensive examinations of various databases related to CMM anti-asthma drugs, can be performed, so as to sequentially provide effective basic data for development and application of anti-asthma drugs based on the CMM. MATERIALS AND METHODS The research data published over the past 20 years for asthma treatment based on traditional CMM remedies were retrieved and collected from libraries and online databases (PubMed, ScienceDirect, Elsevier, Spring Link, Web of Science, PubChem Compound, Wan Fang, CNKI, Baidu, and Google Scholar). Information was also added from classic CMM, literature, conference papers on classic herbal formulae, and dissertations (PhD or Masters) based on traditional Chinese medicine. RESULTS This review systematically summarizes the experimental studies on the treatment of asthma with CMM, covering the effective chemical components, typical asthma models, important mechanisms and traditional anti-asthma CMM formulae. The therapy value of the CMM for anti-asthma is clarified, and the original data and theoretical research foundation are provided for the development of new anti-asthmatic data and research for the CMM. CONCLUSIONS Substantial progress against asthma has been made through relevant experimental research based on the CMM. These advances improved the theoretical basis of anti-asthma drugs for CMM and provided a theoretical basis for the application of a asthma treatment that is unique. By compiling these data, it is expected that the CMM will now contain a clearer mechanism of action and a greater amount of practical data that can be used for future anti-asthma drug research.
Collapse
Affiliation(s)
- Jun-Xi Liu
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China; Department of Pharmacy, Heilongjiang Nursing College, 209 Academy Road, Harbin, 150086, PR China
| | - Yang Zhang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Hong-Yu Yuan
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Jun Liang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China.
| |
Collapse
|
27
|
Tong C, Chen T, Chen Z, Wang H, Wang X, Liu F, Dai H, Wang X, Li X. Forsythiaside a plays an anti-inflammatory role in LPS-induced mastitis in a mouse model by modulating the MAPK and NF-κB signaling pathways. Res Vet Sci 2021; 136:390-395. [PMID: 33799169 DOI: 10.1016/j.rvsc.2021.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/22/2021] [Accepted: 03/23/2021] [Indexed: 11/29/2022]
Abstract
Forsythiaside A, a major bioactive component extracted from Forsythiae fructus, possesses multiple biological properties, especially anti-inflammatory properties. In the present study, the anti-inflammatory effect of forsythiaside A was investigated in lipopolysaccharide (LPS)-induced acute mastitis in mice. Our results showed that the expression levels of IL-1β, IL-6, TNF-α, p38 MAPK, IκBα, and NF-κB p65 in the LPS group were all up-regulated, and obvious pathological changes were observed by sectioning. Compared with those in the LPS group, the expression levels of the above factors were significantly reduced, and the inflammation symptoms were also significantly reduced by section observation after forsythiaside A intervention. These results indicated that forsythiaside A effectively inhibited LPS-induced mammary inflammation in mice by attenuating the activation of the NF-κB and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Wuhu Overseas Student Pioneer Park, Wuhu 241006, China
| | - Tong Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China
| | - Zewen Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China
| | - Hao Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China
| | - Xuefang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Biotechnology Developing Center of Henan Academy of Sciences, Henan Academy of sciences, Zhengzhou 450002, Henan Province, PR China
| | - Fang Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China
| | - Hongyu Dai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Key Laboratory for Animal-Derived Food Safety of Henan province, Zhengzhou 450000, Henan Province, PR China.
| | - Xiao Li
- Biotechnology Developing Center of Henan Academy of Sciences, Henan Academy of sciences, Zhengzhou 450002, Henan Province, PR China.
| |
Collapse
|
28
|
Wang YR, Zhang XN, Meng FG, Zeng T. Targeting macrophage polarization by Nrf2 agonists for treating various xenobiotics-induced toxic responses. Toxicol Mech Methods 2021; 31:334-342. [PMID: 33627030 DOI: 10.1080/15376516.2021.1894624] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Macrophages can polarize into different phenotypes in response to different microenvironmental stimuli. Macrophage polarization has been assigned to two extreme states, namely proinflammatory M1 and anti-inflammatory M2. Accumulating evidences have demonstrated that M1 polarized macrophages contribute to various toxicants-induced deleterious effects. Switching macrophages from proinflammatory M1 phenotype toward anti-inflammatory M2 phenotype could be a promising approach for treating various inflammatory diseases. Studies in the past few decades have revealed that nuclear factor erythroid 2-related factor 2 (Nrf2) can modulate the polarization of macrophages. Specifically, activation of Nrf2 could block M1 stimuli-induced production of proinflammatory cytokines and chemokines, and shift the polarization of macrophages toward M2 by cross-talking with nuclear factor kappa-B (NF-κB), mitogen-activated protein kinases (MAPKs), peroxisome proliferator-activated receptor γ (PPARγ), and autophagy. Importantly, a great number of studies have confirmed the beneficial effects of natural and synthesized Nrf2 agonists on various inflammatory diseases; however, most of these compounds are far away from clinical application due to lack of characterization and defects of study designs. Interestingly, some endogenous Nrf2 inducers and compounds with dual activities (such as the Nrf2 inducing and CO releasing effects) exhibit potent anti-inflammatory effects, which points out an important direction for future researches.
Collapse
Affiliation(s)
- Yi-Ran Wang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiu-Ning Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fan-Ge Meng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
29
|
Kim SM, Ryu HW, Kwon OK, Hwang D, Kim MG, Min JH, Zhang Z, Kim SY, Paik JH, Oh SR, Ahn KS, Lee JW. Callicarpa japonica Thunb. ameliorates allergic airway inflammation by suppressing NF-κB activation and upregulating HO-1 expression. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113523. [PMID: 33129947 DOI: 10.1016/j.jep.2020.113523] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Callicarpa japonica Thunb., as an herbal medicine has been used for the treatment of inflammatory diseases in China and Korea. MATERIALS AND METHODS Ultra performance liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometer (UPLC-PDA-QTof MS) was used to detect the major phenylethanoid glycosides in the C. japonica extract. BALB/c mice were intraperitoneally sensitized by ovalbumin (OVA) (on days 0 and 7) and challenged by OVA aerosol (on days 11-13) to induce airway inflammatory response. The mice were also administered with C. japonica Thunb. (CJT) (20 and 40 mg/kg Per oral) on days 9-13. CJT pretreatment was conducted in lipopolysaccharide (LPS)-stimulated RAW264.7 or phorbol 12-myristate 13-acetate (PMA)-stimulated A549 cells. RESULTS CJT administration significantly reduced the secretion of Th2 cytokines, TNF-α, IL-6, immunoglobulin E (IgE) and histamine, and the recruitment of eosinophils in an OVA-exposed mice. In histological analyses, the amelioration of inflammatory cell influx and mucus secretion were observed with CJT. The OVA-induced airway hyperresponsiveness (AHR), iNOS expression and NF-κB activation were effectively suppressed by CJT administration. In addition, CJT led to the upregulation of HO-1 expression. In an in vitro study, CJT pretreatment suppressed the LPS-induced TNF-α secretion in RAW264.7 cells and attenuated the PMA-induced IL-6, IL-8 and MCP-1 secretion in A549 cells. These effects were accompanied by downregulated NF-κB phosphorylation and by upregulated HO-1 expression. CONCLUSION These results suggested that CJT has protective activity against OVA-induced airway inflammation via downregulation of NF-κB activation and upregulation of HO-1, suggesting that CJT has preventive potential for the development of allergic asthma.
Collapse
Affiliation(s)
- Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea; College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Republic of Korea.
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea.
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea.
| | - Daseul Hwang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea.
| | - Min Gu Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea.
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea.
| | - Zhiyun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, PR China.
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea.
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea.
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea.
| |
Collapse
|
30
|
Lv H, Yan C, Deng L, Peng Z, Yang D, Hu W, Ding X, Tong C, Wang X. Role of MicroRNAs in Protective Effects of Forsythoside A Against Lipopolysaccharide-Induced Inflammation in Bovine Endometrial Stromal Cells. Front Vet Sci 2021; 8:642913. [PMID: 33718475 PMCID: PMC7943879 DOI: 10.3389/fvets.2021.642913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/02/2021] [Indexed: 12/29/2022] Open
Abstract
Bovine endometrial stromal cells (bESCs) are exposed to a complex environment of bacteria and viruses due to the rupture of epithelial cells after delivery. Inflammatory responses are elicited by the activation of host pattern recognition receptors through pathogen-related molecules such as lipopolysaccharides (LPS) on the cell membrane. Forsythoside A (FTA) is a major active constituent of Forsythia suspensa (Thunb.) Vahl. is a flowering plant widely employed as a traditional Chinese herbal medicine to treat various inflammatory diseases such as nephritis, eye swelling, scabies, ulcers, and mastitis; however, the molecular mechanisms underlying its therapeutic effects on bovine endometritis are still unclear. The aim of this study was to explore the role of miRNA and the mechanisms underlying the protective activity of FTA on the inflammation of bovine endometrial stromal cells induced by LPS. Based on previous research, we isolated and cultured bESCs in vitro and categorized them into LPS and LPS+FTA groups with three replicates. Upon reaching 80% confluence, the bESCs were treated with 0.5 μg/mL of LPS or 0.5 μg/mL of LPS + 100 μg/mL of FTA. We, then, performed high-throughput sequencing (RNA-Seq) to investigate the effects of FTA on LPS-stimulated primary bESCs and their underlying mechanisms. We identified 167 miRNAs differentially expressed in the LPS groups; 72 miRNAs were up-regulated, and 95 were down-regulated. Gene ontology enrichment analysis revealed that differentially expressed microRNA (DEGs) were most enriched during the cellular metabolic process; they were mostly located intracellularly and participated in protein, enzyme, and ion binding. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the DEGs were most enriched in the mitogen-activated protein kinase, tumor necrosis factor, and Interleukin-17 signaling pathways. These results reveal the complex molecular mechanism involved in the FTA and provide a basis for future studies of bovine endometritis treatment with traditional Chinese medicine monomer.
Collapse
Affiliation(s)
- Haimiao Lv
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chenbo Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Lixin Deng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhan Peng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dexin Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wenjv Hu
- College of Agricultural Medicine, Henan Radio and Television University, Zhengzhou, China
| | - Xuefen Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Wushu Overseas Students Pioneer Park, Wuhu, China
| | - Xinzhuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
31
|
Lee JW, Ryu HW, Kim DY, Kwon OK, Jang HJ, Kwon HJ, Kim SY, Lee SU, Kim SM, Oh ES, Ahn HI, Ahn KS, Oh SR. Biflavonoid-rich fraction from Daphne pseudomezereum var. koreana Hamaya exerts anti-inflammatory effect in an experimental animal model of allergic asthma. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113386. [PMID: 32920132 DOI: 10.1016/j.jep.2020.113386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Daphne pseudomezereum var. koreana Hamaya is distributed in the Gangwon-do of South Korea and is traditionally used to treat chronic inflammatory diseases, including rheumatoid arthritis. AIM OF THE STUDY We investigated the anti-inflammatory effect of biflavonoid-rich fraction (BF) obtained from an extract of D. pseudomezereum leaves on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and mouse model of ovalbumin (OVA)-induced allergic asthma. MATERIALS AND METHODS Neochamaejasmin B (NB) and chamaejasmin D (CD) were spectroscopically characterized as major components of BF obtained from the leaves of D. pseudomezereum. RAW264.7 cells pretreated with NB, CD and BF and activated by LPS (500 ng/ml) were used to assess the anti-inflammatory effects of these materials in vitro. To evaluate the protective effect of BF on allergic asthma, female BALB/c mice were sensitized to OVA by intraperitoneal (i.p.) injection and treated with BF by oral administration (15 or 30 mg/kg). RESULTS Pretreatment with BF inhibited LPS-stimulated nitric oxide (NO), TNF-α and IL-6, and led to upregulation of heme oxygenase-1 (HO-1) in RAW264.7 macrophages. Orally administered BF significantly inhibited the recruitment of eosinophils and the production of IL-5, IL-6, IL-13 and MCP-1 as judged by the analysis of BALF from OVA-induced asthma animal model. BF also decreased the levels of IgE in the serum of asthmatic mice. BF suppressed the influx of inflammatory cells into nearby airways and the hypersecretion of mucus by the airway epithelium of asthmatic mice. In addition, the increase in Penh in asthmatic mice was reduced by BF administration. Furthermore, BF led to Nrf2 activation and HO-1 induction in the lungs of mice. CONCLUSIONS These data have shown the anti-asthmatic effects of BF, and therefore we expect that BF may be a potential candidate as a natural drug/nutraceutical for the prevention and treatment of allergic asthma.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheonju-si, Chungcheongbuk-do, 28116, Republic of Korea.
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheonju-si, Chungcheongbuk-do, 28116, Republic of Korea.
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheonju-si, Chungcheongbuk-do, 28116, Republic of Korea.
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheonju-si, Chungcheongbuk-do, 28116, Republic of Korea.
| | - Hyun-Jae Jang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheonju-si, Chungcheongbuk-do, 28116, Republic of Korea.
| | - Hyuk Joon Kwon
- National Institute of Biological Resources, Environmental Research Complex, Gyoungseo-dong, Seo-gu, Incheon, 22689, Republic of Korea.
| | - Soo-Young Kim
- National Institute of Biological Resources, Environmental Research Complex, Gyoungseo-dong, Seo-gu, Incheon, 22689, Republic of Korea.
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheonju-si, Chungcheongbuk-do, 28116, Republic of Korea.
| | - Sung-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheonju-si, Chungcheongbuk-do, 28116, Republic of Korea.
| | - Eun Sol Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheonju-si, Chungcheongbuk-do, 28116, Republic of Korea.
| | - Hye In Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheonju-si, Chungcheongbuk-do, 28116, Republic of Korea.
| | - Kyoung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheonju-si, Chungcheongbuk-do, 28116, Republic of Korea.
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheonju-si, Chungcheongbuk-do, 28116, Republic of Korea.
| |
Collapse
|
32
|
Shahzad N, Alzahrani A, Ibrahim IA, Soni K, Shahid I, Alsanosi S, Falemban A, Alanazi IM, Bamagous G, Al-Ghamdi S, Mahfoz A. In vivo pharmacological testing of herbal drugs for anti-allergic and anti-asthmatic properties. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2021; 13:380-386. [PMID: 35399803 PMCID: PMC8985834 DOI: 10.4103/jpbs.jpbs_454_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/01/2021] [Accepted: 09/12/2021] [Indexed: 11/04/2022] Open
|
33
|
Long SF, He TF, Wu D, Yang M, Piao XS. Forsythia suspensa extract enhances performance via the improvement of nutrient digestibility, antioxidant status, anti-inflammatory function, and gut morphology in broilers. Poult Sci 2020; 99:4217-4226. [PMID: 32867965 PMCID: PMC7598019 DOI: 10.1016/j.psj.2020.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022] Open
Abstract
This experiment aims to determine the effects of Forsythia suspense extract (FSE) as an antibiotic substitute on performance, antioxidant status, anti-inflammatory function, intestinal morphology, and meat fatty acid deposition in broilers. 192 male Arbor Acre broilers (1-day-old, weighing 45.6 ± 1.3 g) were randomly allocated to 3 treatments, 8 replicate pens per treatment, 8 broilers per pen. The treatments contain a control diet (corn-soybean meal basal diet, CTL), an antibiotic diet (basal diet + 75 mg/kg chlortetracycline, CTC), and an FSE diet (basal diet + 100 mg/kg FSE; FSE). The experiment includes phase 1 (day 1 to 21) and 2 (day 22 to 42). Compared with CTL and CTC, broilers supplemented with FSE showed higher (P < 0.05) ADG and ADFI in phase 2 and overall (day 1 to 42). On day 21, serum catalase and total antioxidant capacity contents were enhanced (P < 0.05) in broilers fed FSE compared with CTL. On day 42, broilers fed FSE showed increased (P < 0.05) serum superoxide dismutase and glutathione peroxidase contents, and enhanced (P < 0.05) apparent total tract digestibility of dry matter, organic matter, gross energy, total carbohydrates, and phosphorus, as well as reduced (P < 0.05) nitrogen and phosphorus excretion in feces compared with CTL. These broilers also showed decreased (P < 0.05) n-6/n-3 polyunsaturated fatty acid ratio in thigh meat, and tumor necrotic factor-alpha, interleukin-1β and interleukin-6 contents in the liver on day 42 compared with CTL. The villus height was increased (P < 0.05) in the duodenum, jejunum, and ileum of broilers fed FSE compared with CTL. In conclusion, dietary F.suspense extract supplementation as a chlortetracycline substitute under non-challenge conditions enhanced performance via the improvement of nutrient digestibility, antioxidant status, anti-inflammatory function, and intestinal morphology in broilers. Moreover, F.suspense extract may also benefit environment by reducing nitrogen and phosphorus excretion and benefit human health via modulating meat fatty acid profiles in broilers.
Collapse
Affiliation(s)
- S F Long
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - T F He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - D Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - M Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - X S Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
34
|
Zhu C, Zhang L, Liu Z, Li C, Bai Y, Wang L. Atractylenolide III reduces NLRP3 inflammasome activation and Th1/Th2 imbalances in both in vitro and in vivo models of asthma. Clin Exp Pharmacol Physiol 2020; 47:1360-1367. [PMID: 32196713 DOI: 10.1111/1440-1681.13306] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/07/2020] [Accepted: 03/15/2020] [Indexed: 01/02/2023]
Abstract
Paediatric asthma is a common inflammatory disease in children. Atractylenolide III is an active component of the Atractylodes rhizome, an herbal medicine that has been used as an asthma treatment. This study aimed to explore the effects and underlying mechanisms of atractylenolide III in IL-4-induced 16HBE cells and ovalbumin-induced asthmatic mice. The results showed that IL-4 stimulation significantly decreased, and atractylenolide III treatment increased, growth and apoptosis of 16HBE cells. In 16HBE cells, administration of atractylenolide III also significantly suppressed the IL-4-induced increases in the expression of cleaved caspase-1; apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC); and nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3). Moreover, the numbers of total leukocytes, neutrophils, eosinophils, and macrophages significantly increased in ovalbumin-induced mice, and then decreased after atractylenolide III treatment. In ovalbumin-induced asthmatic mice, atractylenolide III treatment also significantly inhibited NLRP3 inflammasome activation and restored the Th1/Th2 balance. These results indicate that atractylenolide III reduced NLRP3 inflammasome activation and regulated the Th1/Th2 balance in IL-4 induced 16HBE cells and ovalbumin-induced asthmatic mice, suggesting it has a protective effect that may be useful in the treatment of paediatric asthma.
Collapse
Affiliation(s)
- Cuimin Zhu
- Department of Pediatrics, Cangzhou Central Hospital, Cangzhou, China
| | - Leguo Zhang
- Department of Internal Neurology, Cangzhou Central Hospital, Cangzhou, China
| | - Zhiming Liu
- Department of Pediatrics, Cangzhou Central Hospital, Cangzhou, China
| | - Chen Li
- Department of Pediatrics, Cangzhou Central Hospital, Cangzhou, China
| | - Yajie Bai
- Department of Pediatrics, Cangzhou Central Hospital, Cangzhou, China
| | - Linlin Wang
- Department of Pediatrics, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
35
|
Yang Q, Kong L, Huang W, Mohammadtursun N, Li X, Wang G, Wang L. Osthole attenuates ovalbumin‑induced lung inflammation via the inhibition of IL‑33/ST2 signaling in asthmatic mice. Int J Mol Med 2020; 46:1389-1398. [PMID: 32700747 PMCID: PMC7447319 DOI: 10.3892/ijmm.2020.4682] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 07/03/2020] [Indexed: 01/12/2023] Open
Abstract
Asthma is a common chronic inflammatory airway disease. Recent studies have reported that interleukin (IL)-33 is a potential link between the airway epithelium and Th2-type inflammatory responses, which are closely related to the progression of asthma. The IL-33 receptor, ST2, is highly expressed in group 2 innate lymphoid cells (ILC2s), Th2 cells, mast cells, eosinophils and natural killer (NK) cells. Cnidii Fructus is a Chinese herb with a long history of use in the treatment of asthma in China. Osthole is one of the major components of Cnidii Fructus. The present study examined the anti-asthmatic effects of osthole in mice and aimed to elucidate the underlying mechanisms involving the IL-33/ST2 pathway. BALB/c mice were sensitized and challenged with ovalbumin and then treated with an intraperitoneal injection of osthole (25 and 50 mg/kg). Subsequently, the airway hyper-responsiveness (AHR) and inflammation of the lungs were evaluated. The amounts of IL-4, IL-5, IL-13, interferon (IFN)-γ and IL-33 in the bronchoalveolar lavage fluid (BALF) were measured by Luminex assay and their mRNA levels in the lungs were measured by reverse transcription-quantitative PCR. The histopathology of the lungs was performed with H&E, PAS and Masson's staining. The expression of ST2 in the lungs was evaluated by immunohistochemistry. The data demonstrated that osthole markedly reduced AHR and decreased the number of eosinophils and lymphocytes in BALF. It was also observed that osthole significantly inhibited the release of Th2-type cytokines (IL-4, IL-5 and IL-13) and upregulated the IFN-γ level in BALF. Moreover, osthole significantly attenuated the IL-33 and ST2 expression in the lungs of asthmatic mice. On the whole, osthole attenuated ovalbumin-induced lung inflammation through the inhibition of IL-33/ST2 signaling in an asthmatic mouse model. These results suggest that osthole is a promising target for the development of an asthma medication.
Collapse
Affiliation(s)
- Qingqing Yang
- Department of Respiratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Lingwen Kong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Weiling Huang
- Department of Respiratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Nabijan Mohammadtursun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xiumin Li
- Department of Pediatrics, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Guifang Wang
- Department of Respiratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Lixin Wang
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, P.R. China
| |
Collapse
|
36
|
Wu J, Wang Y, Zhou Y, Wang Y, Sun X, Zhao Y, Guan Y, Zhang Y, Wang W. PPARγ as an E3 Ubiquitin-Ligase Impedes Phosphate-Stat6 Stability and Promotes Prostaglandins E 2-Mediated Inhibition of IgE Production in Asthma. Front Immunol 2020; 11:1224. [PMID: 32636842 PMCID: PMC7317005 DOI: 10.3389/fimmu.2020.01224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
Increased serum IgE level is one of the features of allergic asthma. It is reported that IgE production can be enhanced by E-prostanoid 2 (EP2) receptor of prostaglandin E2 (PGE2); however, whether E-prostanoid 4 (EP4) receptor (encoded by Ptger4) has a unique or redundant role is still unclear. Here, we demonstrated the mice with B cell-specific deletion of the EP4 receptor (Ptger4fl/flMb1cre+/−) showed their serum levels of IgE were markedly increased. A much more severe airway allergic inflammation was observed in the absence of EP4 signal using the OVA-induced asthma model. Mechanistic studies demonstrated that the transcription levels of AID, GLTε, and PSTε in EP4-deficient B cells were found to be significantly increased, implying an enhanced IgE class switch. In addition, we saw higher levels of phosphorylated STAT6, a vital factor for IgE class switch. Biochemical analyses indicated that inhibitory effect of EP4 signal on IgE depended on the activation of the PI3K-AKT pathway. Further downstream, PPARγ expression was up-regulated. Independent of its activity as a transcription factor, PPARγ here primarily functioned as an E3 ubiquitin-ligase, which bound the phosphorylated STAT6 to initiate its degradation. In support of PPARγ as a key mediator downstream of the EP4 signal, PPARγ agonist induced the down-regulation of phospho-STAT6, whereas its antagonist was able to rescue the EP4-mediated inhibition of STAT6 activation and IgE production. Thus, our findings highlight a role for the PGE2-EP4-AKT-PPARγ-STAT6 signaling in IgE response, highlighting the therapeutic potential of combined application of EP4 and PPARγ agonists in asthma.
Collapse
Affiliation(s)
- Jia Wu
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yu Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuqing Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Xiaowan Sun
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Ye Zhao
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China.,Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| |
Collapse
|
37
|
Wang S, Yang Y, Luo D, Wu D, Liu H, Li M, Sun Q, Jia L. Lung inflammation induced by exposure to Bisphenol-A is associated with mTOR-mediated autophagy in adolescent mice. CHEMOSPHERE 2020; 248:126035. [PMID: 32014637 DOI: 10.1016/j.chemosphere.2020.126035] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/19/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Epidemiologic studies show that there is a link between Bisphenol A (BPA) exposure and lung inflammation. Despite this, the molecular mechanisms are not entirely known. This study sought to determine whether exposure to BPA affected the development of ovalbumin (OVA) induced lung inflammation in adolescent female mice and whether the mechanism was related to mTOR-mediated autophagy pathway. Female 4-week-old C57BL/6 mice after one week of domestication were randomly divided into five groups (8/group): control group, OVA group, 0.1 μg mL-1 BPA + OVA group, 0.2 μg mL-1 BPA + OVA group and 0.4 μg mL-1 BPA + OVA group. BPA exacerbated airway hyperresponsiveness (AHR), induced the pathological changes in the lung, which also enhanced inflammatory cells and cytokine levels. In addition, BPA exposure affected expression of autophagy associated proteins and genes. This research results indicated that BPA aggravated OVA-induced lung inflammation and induced abnormal immune function in mice, and its mechanism was related to the activation of autophagy pathway by down-regulation expression of mTOR. These findings suggest that therapeutic strategies to target autophagy may offer a new approach for severe asthma therapy.
Collapse
Affiliation(s)
- Simeng Wang
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Yilong Yang
- Department of Social Medicine, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Dan Luo
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Dan Wu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Hezuo Liu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Mengqi Li
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
38
|
Li B, Nasser M, Masood M, Adlat S, Huang Y, Yang B, Luo C, Jiang N. Efficiency of Traditional Chinese medicine targeting the Nrf2/HO-1 signaling pathway. Biomed Pharmacother 2020; 126:110074. [DOI: 10.1016/j.biopha.2020.110074] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/09/2023] Open
|
39
|
Forsythoside A and Forsythoside B Contribute to Shuanghuanglian Injection-Induced Pseudoallergic Reactions through the RhoA/ROCK Signaling Pathway. Int J Mol Sci 2019; 20:ijms20246266. [PMID: 31842335 PMCID: PMC6940901 DOI: 10.3390/ijms20246266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
In recent years, hypersensitivity reactions to the Shuanghuanglian injection have attracted broad attention. However, the componential chief culprits inducing the reactions and the underlying mechanisms involved have not been completely defined. In this study, we used a combination of approaches based on the mouse model, human umbilical vein endothelial cell monolayer, real-time cellular monitoring, immunoblot analysis, pharmacological inhibition, and molecular docking. We demonstrated that forsythoside A and forsythoside B contributed to Shuanghuanglian injection-induced pseudoallergic reactions through activation of the RhoA/ROCK signaling pathway. Forsythoside A and forsythoside B could trigger dose-dependent vascular leakage in mice. Moreover, forsythoside A and forsythoside B slightly elicited mast cell degranulation. Correspondingly, treatment with forsythoside A and forsythoside B disrupted the endothelial barrier and augmented the expression of GTP-RhoA, p-MYPT1, and p-MLC2 in a concentration-dependent manner. Additionally, the ROCK inhibitor effectively alleviated forsythoside A/forsythoside B-induced hyperpermeability in both the endothelial cells and mice. Similar responses were not observed in the forsythoside E-treated animals and cells. These differences may be related to the potential of the tested compounds to react with RhoA-GTPγS and form stable interactions. This study innovatively revealed that some forsythosides may cause vascular leakage, and therefore, limiting their contents in injections should be considered.
Collapse
|
40
|
New Insights into the Nrf-2/HO-1 Signaling Axis and Its Application in Pediatric Respiratory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3214196. [PMID: 31827672 PMCID: PMC6885770 DOI: 10.1155/2019/3214196] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/19/2019] [Accepted: 11/02/2019] [Indexed: 12/13/2022]
Abstract
Respiratory diseases are one of the most common pediatric diseases in clinical practice. Their pathogenesis, diagnosis, and treatment are thus worthy of further investigation. The nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) signaling axis is a multiple organ protection chain that protects against oxidative stress injury. This signaling axis regulates anti-inflammation and antioxidation by regulating calcium ions, mitochondrial oxidative stress, autophagy, ferroptosis, pyroptosis, apoptosis, alkaliptosis, and clockophagy. This review presents an overview of the role of the Nrf2/HO-1 signaling axis in the pathogenesis of pediatric respiratory diseases and the latest research progress on this subject. Overall, the Nrf2/HO-1 signaling axis has an important clinical value in pediatric respiratory diseases, and its protective effect needs further exploration.
Collapse
|
41
|
Ma T, Shi YL, Wang YL. Forsythiaside A protects against focal cerebral ischemic injury by mediating the activation of the Nrf2 and endoplasmic reticulum stress pathways. Mol Med Rep 2019; 20:1313-1320. [PMID: 31173213 DOI: 10.3892/mmr.2019.10312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 10/24/2018] [Indexed: 11/05/2022] Open
Abstract
Ischemic stroke is a common type of stroke with a high mortality and morbidity rate. Preventing and controlling cerebral ischemic injury is particularly important. Forsythiaside A (FA) has been reported to have anti‑inflammatory and antioxidant activities. The aim of the present study was to explore the impact of FA on middle cerebral artery occlusion (MCAO)‑induced cerebral ischemic injury in rats. The results indicated that FA markedly increased the percent survival and decreased the neurological deficit score in rats with cerebral ischemic injury. Furthermore, cell apoptosis was significantly inhibited by FA administration, which was accompanied by decreased caspase‑3 and caspase‑9 expression. A marked increase in the expression levels of nuclear factor‑erythroid 2‑related factor 2 (Nrf2), NAD(P)H quinone dehydrogenase 1 and glutathione‑s‑transferase was detected in FA‑treated rats. In addition, treatment with FA reduced malonaldehyde expression, and enhanced the expression of superoxide dismutase and glutathione. Furthermore, endoplasmic reticulum (ER) stress was vastly alleviated by FA treatment, as evidenced by the increased expression of B‑cell lymphoma 2, apoptosis regulator and the downregulated expression of phosphorylated (phospho)‑protein kinase RNA‑like ER kinase (PERK)/PERK, phospho‑inositol‑requiring enzyme 1 (IRE1α)/IRE1α and CCAAT‑enhancer‑binding proteins homologous protein. Taken together, the present study demonstrated that FA attenuated cerebral ischemic damage via mediation of the activation of Nrf2 and ER stress pathways. These data may provide ideas for novel treatment strategies of cerebral ischemic damage.
Collapse
Affiliation(s)
- Tao Ma
- Department of Neurology, Xintai Municipal People's Hospital, Xintai, Shandong 271200, P.R. China
| | - Ya-Ling Shi
- Department of Neurology, The First Hospital of Xi'an, Xi'an, Shaanxi 710002, P.R. China
| | - Yan-Ling Wang
- Department of Neurology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
42
|
Park HA, Kwon OK, Ryu HW, Min JH, Park MW, Park MH, Paik JH, Choi S, Paryanto I, Yuniato P, Oh SR, Ahn KS, Lee JW. Physalis peruviana L. inhibits ovalbumin‑induced airway inflammation by attenuating the activation of NF‑κB and inflammatory molecules. Int J Mol Med 2019; 43:1830-1838. [PMID: 30816433 PMCID: PMC6414162 DOI: 10.3892/ijmm.2019.4110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Physalis peruviana L. (PP) is well known for its various properties, including its antioxidant property. In our previous study, the protective effects of PP against cigarette smoke‑induced airway inflammation were confirmed. The purpose of the present study was to evaluate the anti‑inflammatory effect of PP against ovalbumin (OVA)‑induced airway inflammation. Treatment with PP inhibited the numbers of eosinophils and the levels of inflammatory cytokines, including interleukin (IL)‑4, IL‑5 and IL‑13, in the bronchoalveolar lavage fluid (BALF) of animal models with OVA‑induced allergic asthma. PP also significantly decreased the production of total immunoglobulin E in the serum. Lung sections stained with hematoxylin and eosin revealed that the influx of inflammatory cells was decreased in the lungs of mice treated with PP compared with cells in the OVA group. The increased expression levels of monocyte chemoattractant protein‑1 (MCP‑1) and T cell marker KEN‑5 were also reduced following PP treatment in the lung tissues compared with those in the OVA group. The PAS staining results showed that PP attenuated the overproduction of mucus in the lung. Additionally, western blot analysis revealed that PP significantly downregulated the activation of nuclear factor‑κB/p38 mitogen‑activated protein kinase/c‑Jun N‑terminal kinase, and upregulated the expression of heme oxgenase‑1 in the lungs. In an in vitro experiment, PP effectively reduced the levels of LPS‑stimulated MCP‑1 in a concentration‑dependent manner. Taken together, these results indicate that PP has considerable potential in the treatment of allergic asthma.
Collapse
Affiliation(s)
- Hyun Ah Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28160, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28160, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28160, Republic of Korea
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28160, Republic of Korea
| | - Min-Woo Park
- SciTech Korea Inc., Seoul 01138, Republic of Korea
| | - Mi-Hyeong Park
- Laboratory Animal Resources Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju, Chungcheongbuk 28159, Republic of Korea
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Imam Paryanto
- Center for Pharmaceutical and Medical Technology, the Agency for the Assessment and Application of Technology, Tangerang, Banten 15314, Indonesia
| | - Prasetyawan Yuniato
- Center for Pharmaceutical and Medical Technology, the Agency for the Assessment and Application of Technology, Tangerang, Banten 15314, Indonesia
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28160, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28160, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28160, Republic of Korea
| |
Collapse
|
43
|
Shin NR, Kwon HJ, Ko JW, Kim JS, Lee IC, Kim JC, Kim SH, Shin IS. S-Allyl cysteine reduces eosinophilic airway inflammation and mucus overproduction on ovalbumin-induced allergic asthma model. Int Immunopharmacol 2019; 68:124-130. [PMID: 30622029 DOI: 10.1016/j.intimp.2019.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/12/2018] [Accepted: 01/01/2019] [Indexed: 01/31/2023]
Abstract
S-Allyl cysteine (SAC) is an active component in garlic and has various pharmacological effects, such as anti-inflammatory, anti-oxidant, and anti-cancer activities. In this study, we explored the suppressive effects of SAC on allergic airway inflammation induced in an ovalbumin (OVA)-induced asthma mouse model. To induce asthma, BALB/c mice were sensitized to OVA on days 0 and 14 by intraperitoneal injection and exposed to OVA from days 21 to 23 using a nebulizer. SAC was administered to mice by oral gavage at a dose of 10 or 20 mg/kg from days 18 to 23. SAC significantly reduced airway hyperresponsiveness, inflammatory cell counts, and Th2 type cytokines in bronchoalveolar lavage fluid induced by OVA exposure, which was accompanied by reduced serum OVA-specific immunoglobulin E. In histological analysis of the lung tissue, administration of SAC reduced inflammatory cell accumulation into lung tissue and mucus production in airway goblet cells induced by OVA exposure. Additionally, SAC significantly decreased MUC5AC expression and nuclear factor-κB phosphorylation induced by OVA exposure. In summary, SAC effectively suppressed allergic airway inflammation and mucus production in OVA-challenged asthmatic mice. Therefore, SAC shows potential for use in treating allergic asthma.
Collapse
Affiliation(s)
- Na-Rae Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hyung-Jun Kwon
- Natural Product Research Center, Jeonbuk Branch, Korea Research Institute of Biosciences and Biotechnology, Ipsingil 181, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Joong-Sun Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Geonjae-ro 177, Naju-si, Jeollanam-do 58245, Republic of Korea
| | - In-Chul Lee
- Natural Product Research Center, Jeonbuk Branch, Korea Research Institute of Biosciences and Biotechnology, Ipsingil 181, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30 Baekhak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea.
| | - In-Sik Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
44
|
Role of Nrf2 and Its Activators in Respiratory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7090534. [PMID: 30728889 PMCID: PMC6341270 DOI: 10.1155/2019/7090534] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/22/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
Abstract
Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a major regulator of antioxidant response element- (ARE-) driven cytoprotective protein expression. The activation of Nrf2 signaling plays an essential role in preventing cells and tissues from injury induced by oxidative stress. Under the unstressed conditions, natural inhibitor of Nrf2, Kelch-like ECH-associated protein 1 (Keap1), traps Nrf2 in the cytoplasm and promotes the degradation of Nrf2 by the 26S proteasome. Nevertheless, stresses including highly oxidative microenvironments, impair the ability of Keap1 to target Nrf2 for ubiquitination and degradation, and induce newly synthesized Nrf2 to translocate to the nucleus to bind with ARE. Due to constant exposure to external environments, including diverse pollutants and other oxidants, the redox balance maintained by Nrf2 is fairly important to the airways. To date, researchers have discovered that Nrf2 deletion results in high susceptibility and severity of insults in various models of respiratory diseases, including bronchopulmonary dysplasia (BPD), respiratory infections, acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), asthma, idiopathic pulmonary fibrosis (IPF), and lung cancer. Conversely, Nrf2 activation confers protective effects on these lung disorders. In the present review, we summarize Nrf2 involvement in the pathogenesis of the above respiratory diseases that have been identified by experimental models and human studies and describe the protective effects of Nrf2 inducers on these diseases.
Collapse
|
45
|
Shuang-Huang-Lian Attenuates Airway Hyperresponsiveness and Inflammation in a Shrimp Protein-Induced Murine Asthma Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4827342. [PMID: 30713573 PMCID: PMC6332955 DOI: 10.1155/2019/4827342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/23/2018] [Accepted: 12/03/2018] [Indexed: 12/27/2022]
Abstract
Shuang-Huang-Lian (SHL), an herbal formula of traditional Chinese medicine, is clinically used for bronchial asthma treatment. Our previous study found that SHL prevented basophil activation to suppress Th2 immunity and stabilized mast cells through activating its mitochondrial calcium uniporter. Sporadic clinical reports that SHL was used for the treatment of bronchial asthma can be found. Thus, in this study, we systematically investigated the effects of SHL on asthmatic responses using a shrimp protein (SP)- induced mouse model. SHL significantly inhibited airway inspiratory and expiratory resistance, and histological studies suggested it reduced thickness of airway smooth muscle and infiltration of inflammation cells. It also could alleviate eosinophilic airway inflammation (EAI), including reducing the number of eosinophils and decreasing eotaxin and eosinophil peroxidase levels in the bronchoalveolar lavage fluid (BALF). Further studies indicated that SHL suppressed SP-elevated mouse mast cell protease-1 and IgE levels, prevented Th2 differentiation in mediastinal lymph nodes, and lowered Th2 cytokine (e.g., IL-4, IL-5, and IL-13) production in BALF. In conclusion, SHL attenuates airway hyperresponsiveness and EAI mainly via the inhibition of mast cell activation and Th2 immunity, which may help to elucidate the underlying mechanism of SHL on asthma treatment and support its clinical use.
Collapse
|
46
|
Xu K, He R, Zhang Y, Qin S, Wang G, Wei Q, Zhang H, Ji F. Forsythiaside inhibited titanium particle-induced inflammation via the NF-κB signaling pathway and RANKL-induced osteoclastogenesis and titanium particle-induced periprosthetic osteolysis via JNK, p38, and ERK signaling pathways. RSC Adv 2019; 9:12384-12393. [PMID: 35515832 PMCID: PMC9063541 DOI: 10.1039/c8ra10007a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/26/2019] [Indexed: 11/21/2022] Open
Abstract
Wear particle-induced periprosthetic osteolysis is the primary complication of the total joint replacement; however, no conservative treatment except for reversal surgery is available for this disease. During the past decade, Chinese herbal medicines have been widely investigated to inhibit osteoclast differentiation, which may exhibit the potential to treat wear particle-induced periprosthetic osteolysis. The present study was aimed at the investigation of the effects of forsythiaside on osteocytes. The current data revealed that the forsythiaside treatment notably inhibited the titanium (Ti) particle-induced inflammation through impaired NF-κB signaling, thereby inhibiting TNF-α and IL-1β. In addition, the in vitro study demonstrated that forsythiaside effectively prevented the RANKL-induced differentiation of osteoclasts and inhibited the expression of osteoclast-specific genes in osteoclasts via inhibition of the JNK signaling pathway. The in vivo study of Ti particle-induced implant-associated osteolysis indicated that forsythiaside could also inhibit osteoclastogenesis. In summary, forsythiaside could inhibit osteoclastogenesis and particle-induced inflammation, resulting in decreased secretion of inflammatory cytokines such as TNF-α and IL-1β. On the other hand, forsythiaside could inhibit RANKL-induced osteoclastogenesis and Ti particle-induced periprosthetic osteolysis via JNK, ERK and p38 signaling pathways. Both the abovementioned biofunctions of forsythiaside contributed to the implant-associated particle-induced osteolysis. Thus, forsythiaside can act as a candidate drug for the precaution of implant-associated particle-induced osteolysis. Forsythiaside can act as a candidate drug for the precaution of implant-associated particle-induced osteolysis.![]()
Collapse
Affiliation(s)
- Kaihang Xu
- Department of Orthopedics
- Changhai Hospital Affiliated to the Navy Military Medical University
- Changhai Hospital
- The Navy Military Medical University
- Shanghai 200433
| | - Rongzhi He
- Department of Orthopedics
- Changhai Hospital Affiliated to the Navy Military Medical University
- Changhai Hospital
- The Navy Military Medical University
- Shanghai 200433
| | - Yuan Zhang
- Department of Ophthalmology
- Changhai Hospital Affiliated to the Navy Military Medical University
- Shanghai
- People's Republic of China
| | - Sheng Qin
- Department of Orthopedics
- Changhai Hospital Affiliated to the Navy Military Medical University
- Changhai Hospital
- The Navy Military Medical University
- Shanghai 200433
| | - Guangchao Wang
- Department of Orthopedics
- Changhai Hospital Affiliated to the Navy Military Medical University
- Changhai Hospital
- The Navy Military Medical University
- Shanghai 200433
| | - Qiang Wei
- Department of Orthopedics
- Changhai Hospital Affiliated to the Navy Military Medical University
- Changhai Hospital
- The Navy Military Medical University
- Shanghai 200433
| | - Hao Zhang
- Department of Orthopedics
- Changhai Hospital Affiliated to the Navy Military Medical University
- Changhai Hospital
- The Navy Military Medical University
- Shanghai 200433
| | - Fang Ji
- Department of Orthopedics
- Changhai Hospital Affiliated to the Navy Military Medical University
- Changhai Hospital
- The Navy Military Medical University
- Shanghai 200433
| |
Collapse
|
47
|
The Protective Effects of 2,3,5,4'-Tetrahydroxystilbene-2- O-β-d-Glucoside in the OVA-Induced Asthma Mice Model. Int J Mol Sci 2018; 19:ijms19124013. [PMID: 30545126 PMCID: PMC6321435 DOI: 10.3390/ijms19124013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 01/15/2023] Open
Abstract
Asthma is an inflammatory disease caused by an imbalance of Th1 and Th2 cells. In general, asthma is characterized by a stronger Th2 response. Most conventional asthma treatment focuses on improving airway flow or suppression of airway inflammation. To reduce the side effects of currently used asthma medicines, we have conducted studies on natural products that have no side effects. 2,3,5,4′-tetrahydroxystilbene-2-O-β-d-glucoside (TSG), the main compound of Polygonum multiflorum (PM), has various biological activities, including anti-inflammation and anti-oxidation activities. However, the effect of TSG on asthma has not been studied yet. We examined the effects of TSG on Th2 immune responses using an OVA-induced asthma animal model. OVA-sensitized mice were treated with TSG. 24 h after the last intranasal challenge, airway hyperresponsiveness (AHR) was measured or serum and bronchoalveolar lavage fluid (BALF) were harvested. We measured typical Th1 and Th2 cytokines in serum and BALF. As a result, TSG suppressed Th2 responses, as shown by the lower levels of IL-4, IL-5, total IgE, OVA-specific IgE, and OVA-specific IgG1. On the other hand, TSG increased Th1 responses, as shown by the levels of IFN-gamma. Collectively, these results confirm the potential of TSG for asthma treatment through modulation of inflammatory responses. Considering that the cytotoxic effect of PM extract is due to the cis isomer of TSG, if the effect of TSG on asthma treatment is found to be non-toxic in clinical trials, it would be more effective to use it as a purified component than PM extract as an asthma treatment agent.
Collapse
|
48
|
Zhang XT, Ding Y, Kang P, Zhang XY, Zhang T. Forsythoside A Modulates Zymosan-Induced Peritonitis in Mice. Molecules 2018; 23:molecules23030593. [PMID: 29509714 PMCID: PMC6017337 DOI: 10.3390/molecules23030593] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Acute inflammation is a protective response of the host to physical injury and invading infection. Timely treatment of acute inflammatory reactions is essential to prevent damage to organisms that can eventually lead to chronic inflammation. Forsythoside A (FTA), an active constituent of Forsythia suspensa, has been reported to have anti-inflammatory, antioxidant, and antibacterial properties. Despite increasing knowledge of its anti-inflammatory effects, the mechanism and the effects on acute inflammation are poorly understood. This study is aimed at exploring the pro-resolving effects of FTA on zymosan-induced acute peritonitis. FTA significantly alleviated peritonitis as evidenced by the decreased number of neutrophils and levels of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1) in the peritoneal cavity, without interfering with interleukin-10 (IL-10). FTA showed marked regulation of inflammatory cytokines and chemokine levels in zymosan-stimulated RAW 264.7 macrophages. Moreover, FTA could suppress the activation of NF-κB. In conclusion, FTA alleviated zymosan-induced acute peritonitis through inhibition of NF-κB activation.
Collapse
Affiliation(s)
- Xiao-Tian Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ping Kang
- Headmaster's office, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin-Yu Zhang
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|