1
|
Yang AY, Kim JY, Gwon MG, Kim K, Kwon HH, Leem J, Kim SW. Protective effects and mechanisms of cynaroside on renal fibrosis in mice with unilateral ureteral obstruction. Redox Rep 2025; 30:2500271. [PMID: 40322965 PMCID: PMC12054570 DOI: 10.1080/13510002.2025.2500271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Renal fibrosis is a key factor in the progression of chronic kidney disease (CKD), and current treatments remain inadequate. In this study, we investigated the therapeutic effects of cynaroside (Cyn), a natural flavonoid, in a mouse model of renal fibrosis induced by unilateral ureteral obstruction. Cyn treatment significantly ameliorated tubular injury and interstitial fibrosis while improving renal function. Mechanistically, Cyn inhibited the expression of fibrosis-related proteins and suppressed Smad2/3 phosphorylation. Additionally, Cyn reduced myofibroblast accumulation by inhibiting epithelial-mesenchymal transition, as indicated by increased E-cadherin expression and decreased levels of mesenchymal markers. Cyn also reduced oxidative stress by downregulating the prooxidant enzyme NADPH oxidase 4 and restoring antioxidant enzymes. Furthermore, Cyn attenuated ferroptosis by regulating key proteins, including acyl-CoA synthetase long-chain family member 4, transferrin receptor 1, and glutathione peroxidase 4, while also restoring glutathione levels. Cyn alleviated endoplasmic reticulum stress, as evidenced by the downregulation of key markers such as glucose-regulated protein 78 and activating transcription factor 6, and reduced inflammation, as confirmed by decreased macrophage infiltration and lower cytokine production. Overall, Cyn demonstrated broad protective effects against renal fibrosis by modulating oxidative stress, ferroptosis, ER stress, and inflammation, positioning it as a potential therapeutic agent for CKD management.
Collapse
Affiliation(s)
- Ah Young Yang
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Jung-Yeon Kim
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Mi-Gyeong Gwon
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Kiryeong Kim
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Hyun Hee Kwon
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Sung-Woo Kim
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Bhadange R, Dagar N, Gaikwad AB. Levosimendan mitigates renal fibrosis via TGF-β1/Smad axis modulation in UUO rats. Biomed Pharmacother 2025; 187:118124. [PMID: 40319657 DOI: 10.1016/j.biopha.2025.118124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/25/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025] Open
Abstract
Chronic kidney disease (CKD) is characterized by kidney fibrosis involving epithelial-mesenchymal transition (EMT), and extracellular matrix (ECM) accumulation, and often leads to end-stage kidney disease (ESKD). Currently, available therapies are not uniformly effective and lead to serious adverse effects. Levosimendan (LVS), a calcium sensitizer and an inodilator, manages cardiac failure. We aimed to evaluate the renoprotective effect of LVS on unilateral ureteral obstruction (UUO)-induced CKD in male Sprague-Dawley (SD) rats and exogenous transforming growth factor-β1 (TGF-β1)-induced fibrosis in NRK-52E cells. Rats were randomly grouped as normal control (NC), sham, UUO and UUO + LVS (3 mg/kg, p.o., o.d.) for 21 days. All animals were sacrificed post-treatment, and plasma, urine and kidney specimens were utilized for biochemistry, histology, immunohistochemistry and immunoblotting. Moreover, exogenous TGF-β1 was used to stimulate kidney fibrosis in NRK-52E cells and treated with LVS (10 µM) for 48 h. The in-vitro samples were collected for cell morphology, viability, immunofluorescence and immunoblotting. LVS treatment significantly improved the kidney mass, plasma and urine creatinine, BUN, urine urea nitrogen and plasma proteins levels of TGF-β1 and fibronectin. Histology revealed a significant decrease in tubular necrosis, glomerulosclerosis and tubulointerstitial fibrosis in LVS-treated rats. Moreover, LVS treatment remarkably downregulated the levels of α-SMA, vimentin, p-Smad 2/3 and upregulated E-cadherin in UUO rats, decreased Smad 4, collagen I, β-catenin, and MMP-7-mediated ECM and increased Smurf 2 and Smad 7 in NRK-52E cells. LVS inhibits EMT and ECM turnover via TGF-β1/Smad axis modulation, highlighting the potential clinical use of LVS for CKD.
Collapse
Affiliation(s)
- Rohan Bhadange
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan 333031, India
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan 333031, India.
| |
Collapse
|
3
|
Kattna A, Singh L. Genistein as a renoprotective agent: mechanistic insights into antioxidant, anti-inflammatory, and fibrosis-regulating pathways. Mol Biol Rep 2025; 52:500. [PMID: 40411620 DOI: 10.1007/s11033-025-10603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 05/12/2025] [Indexed: 05/26/2025]
Abstract
Kidney diseases refer to a group of disorders that affect the structure and function of the kidneys, impairing their ability to filter waste products, excess fluids, and toxins from the blood. These diseases can be acute and chronic, and if left untreated, can lead to kidney failure. Their progression is closely associated with inflammation and oxidative stress. Key signaling cascades, such as TLR-4/MAPK and TLR-4/NF-κB, are instrumental in fostering renal inflammation. Excessive ROS production worsens kidney damage, whereas activation of the Nrf-2/ARE pathway mitigates this by enhancing antioxidant defense. Moreover, the TGF-β/Smad pathway is heavily implicated in driving renal fibrosis, a major factor in disease progression. Additionally, elevated uric acid levels exacerbate inflammatory signaling, thereby worsening renal injury and dysfunction. Current treatments for kidney diseases have several concerns, including the need for routine monitoring, side effects, and long-term regimens. Several natural compounds have shown promise in supporting kidney health by modulating these key molecular targets. Genistein is a naturally occurring isoflavone predominantly found in soybeans and soy-based products, such as tofu, soy milk, and tempeh. It has demonstrated beneficial effects in various renal disorders, including both acute and chronic conditions, by regulating key molecular mediators involved in tissue injury, fibrosis, and cellular defense mechanisms. These mediators include TLR-4, MAPK, NF-κB, TGF-β, Smads, ACE, angiotensin, SIRT1, Nrf-2, ROS, SERBP, JAK/STAT and cytokines, among others. Considering the potential of genistein in modulating these mediators, the current review investigates the mechanistic interactions among these mediators in mediating its renoprotective effects.
Collapse
Affiliation(s)
- Ayush Kattna
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| |
Collapse
|
4
|
Kim JM, Kim Y, Na HJ, Hur HJ, Lee SH, Sung MJ. Magnolia kobus DC. Alleviates adenine-induced chronic kidney disease by regulating ferroptosis in C57BL/6 mice. Front Pharmacol 2025; 16:1548660. [PMID: 40365315 PMCID: PMC12069063 DOI: 10.3389/fphar.2025.1548660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Magnolia kobus DC. (MO) is a medicinal plant that reportedly possesses various bioactive properties, including anti-hyperplastic, anti-inflammatory, and anti-cancer effects. Chronic kidney disease (CKD) is a progressive disorder characterized by inflammation, fibrosis, and oxidative stress, which leads to renal dysfunction. This study aimed to evaluate the renoprotective effects of MO against adenine-induced CKD in C57BL/6 mice. MO significantly attenuated renal injury by reducing blood urea nitrogen level and morphological change. Additionally, MO effectively reduced inflammation by inhibiting the expression of tumor necrosis factor-α, interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1, F4/80, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1. MO also considerably ameliorated adenine-induced renal fibrosis by regulating the suppressor of mothers against decapentaplegic/matrix metalloproteinase signaling. Furthermore, MO significantly protected against renal senescence by reducing the protein expression of p53, p16, and p21 induced by CKD. Additionally, MO supplementation suppressed CKD-induced ferroptosis and ferritinophagy by regulating the protein expression of SLC7A11 glutathione peroxidase 4, prostaglandin-endoperoxide synthase 2, human palmitoyl-CoA ligase, NADPH oxidase 4, 4-hydroxynonenal, transferrin receptor, heme oxygenase-1, nuclear receptor coactivator 4, beclin-1, microtubule-associated proteins 1A/1B light chain 3B, and kallikrein-related peptidase 4. In conclusion, this study suggests that MO may be a potential functional food, pharmaceutical, or medicinal plant that can help regulate mechanisms associated with renal health.
Collapse
Affiliation(s)
| | | | | | | | | | - Mi Jeong Sung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| |
Collapse
|
5
|
Zou S, Sun Y, Zhou Y, Yu B, Li J, Yu Y, Chen J, Li Y, Wang N, Wang L. Frailty, genetic predisposition, and incident chronic kidney disease. Sci Rep 2025; 15:14625. [PMID: 40287467 PMCID: PMC12033349 DOI: 10.1038/s41598-025-97280-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Frailty is common among individuals with chronic kidney disease (CKD), whereas its impact on incident CKD risk remains unknown. This study aimed to prospectively evaluate the association between frailty and incident CKD risk, exploring the potential modification role of genetic risk factors (GRS). A cohort of 275,442 UK Biobank participants (mean age 55.3 ± 8.1 years, 43.4% male) without CKD were included. Physical frailty was defined by Fried Frailty phenotypes (FP) and Rockwood Frailty Index (FI). New-onset CKD was identified through hospital inpatient records and death register. GRS for CKD were calculated based on 27 single-nucleotide variants. Cox proportional hazards models and Fine-Gray competing risk models were applied to evaluate the hazard ratios (HRs) and 95% confidence intervals (CIs). During a median follow-up of 14.1 years, 5771 incident CKD cases were documented. Cox models indicated that prefrailty and frailty were associated with an increased CKD risk, with HRs (95% CI) of 1.17 (1.10-1.24) and 1.74 (1.58-1.91) for FP, and 1.33 (1.24-1.41) and 1.87 (1.72-2.04) for FI. These associations remained significant after adjusting for competing risks. Estimated population attributable fractions of frailty for CKD were 5.6% (FP) and 9.9% (FI). A positive non-linear relationship between FI and CKD incidence was observed in women (P non-linearity < 0.001). Associations were strengthened in women and those under 60 years of age (P for interaction < 0.05). Frailty significantly interacted with genetic susceptibility (P for interaction < 0.001), with the highest CKD risk observed in participants with high genetic risk and frailty (HR, 95% CI; FI: 2.28, 1.90-2.74; FP: 1.88, 1.52-2.33). Pre-frailty and frailty associated with incident CKD, with further modulation by GRS. These findings have important implications of frailty assessment and management in CKD prevention.
Collapse
Affiliation(s)
- Shanshan Zou
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Ying Sun
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yinuo Zhou
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Bowei Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Jiang Li
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yuefeng Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Jianing Chen
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Yujie Li
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| | - Li Wang
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
6
|
Huang H, Han Y, Zhang Y, Zeng J, He X, Cheng J, Wang S, Xiong Y, Yin H, Yuan Q, Huang L, Xie Y, Meng J, Tao L, Peng Z. Deletion of Pyruvate Carboxylase in Tubular Epithelial Cell Promotes Renal Fibrosis by Regulating SQOR/cGAS/STING-Mediated Glycolysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408753. [PMID: 39836535 PMCID: PMC11967762 DOI: 10.1002/advs.202408753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/31/2024] [Indexed: 01/23/2025]
Abstract
Renal fibrosis is a common pathway involved in the progression of various chronic kidney diseases to end-stage renal disease. Recent studies show that mitochondrial injury of renal tubular epithelial cells (RTECs) is a crucial pathological foundation for renal fibrosis. However, the underlying regulatory mechanisms remain unclear. Pyruvate carboxylase (PC) is a catalytic enzyme located within the mitochondria that is intricately linked with mitochondrial damage and metabolism. In the present study, the downregulation of PC in various fibrotic animal and human kidney samples is demonstrated. Renal proximal tubule-specific Pcx gene knockout mice (PcxcKO) has significant interstitial fibrosis compared to control mice, with heightened expression of extracellular matrix molecules. This is further demonstrated in a stable PC knock-out RTEC line. Mechanistically, PC deficiency reduces its interaction with sulfide:quinone oxidoreductase (SQOR), increasing the ubiquitination and degradation of SQOR. This leads to mitochondrial morphological and functional disruption, increased mtDNA release, activation of the cGAS-STING pathway, and elevated glycolysis levels, and ultimately, promotes renal fibrosis. This study investigates the molecular mechanisms through which PC deficiency induces mitochondrial injury and metabolic reprogramming in RTECs. This study provides a novel theoretical foundation and potential therapeutic targets for the pathogenesis and treatment of renal fibrosis.
Collapse
Affiliation(s)
- Hao Huang
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Department of Cell biologySchool of Life SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
| | - Yuanyuan Han
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Yan Zhang
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Jianhua Zeng
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Xin He
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Jiawei Cheng
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Songkai Wang
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Yiwei Xiong
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Hongling Yin
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- Department of Pathology, Xiangya HospitalCentral South UniversityChangsha410008China
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Ling Huang
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Yanyun Xie
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Jie Meng
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- Department of Pulmonary and Critical Care Medicine, Third Xiangya HospitalCentral South UniversityChangsha410013China
| | - Lijian Tao
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya HospitalCentral South UniversityChangsha410008China
- Hunan Key Laboratory of Organ FibrosisCentral South UniversityChangsha410013China
- FuRong LaboratoryChangsha410008China
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangsha410008China
- National Medical Metabolomics International Collaborative Research CenterCentral South UniversityChangsha410008China
| |
Collapse
|
7
|
Kim S, Kim J, Kim JL, Park MR, Park KW, Chung KW. Ganoderma lucidum and Robinia pseudoacacia Flower Extract Complex Alleviates Kidney Inflammation and Fibrosis by Modulating Oxidative Stress. Antioxidants (Basel) 2025; 14:409. [PMID: 40298637 PMCID: PMC12024243 DOI: 10.3390/antiox14040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Chronic kidney disease (CKD) is characterized by functional and structural abnormalities, with its progression strongly influenced by oxidative stress and inflammatory responses, ultimately leading to renal fibrosis. This study aimed to investigate the effects of a Ganoderma lucidum and Robinia pseudoacacia flower extract complex (NEPROBIN) through in vitro and in vivo experiments. In vitro experiments with NRK52E renal tubular epithelial cells demonstrated that NEPROBIN significantly alleviates H2O2-induced oxidative stress and suppresses lipopolysaccharide (LPS)-induced activation of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways. Additionally, NEPROBIN reduced LPS-induced NF-κB transcriptional activity and downregulated the expression of cytokines and chemokines in these cells. We further investigated the effects of NEPROBIN in vivo. Kidney damage was induced in mice using a 0.25% adenine diet (AD), and the mice were orally treated with NEPROBIN at doses of 100, 200, and 400 mg/kg/day for two weeks. NEPROBIN treatment significantly reduced AD-induced elevations in blood urea, serum creatinine, and urinary β2-microglobulin levels. Markers of oxidative stress and kidney damage were notably lower in the kidneys of NEPROBIN-treated mice. Furthermore, NEPROBIN effectively mitigated the AD-induced inflammatory response in the kidneys, with a marked reduction in cytokine and chemokine expression. This decrease in inflammation was associated with a significant reduction in tubulointerstitial fibrosis. Overall, NEPROBIN alleviated renal damage and fibrosis by directly targeting renal oxidative stress and inflammation, highlighting its potential as a therapeutic agent for CKD.
Collapse
Affiliation(s)
- Soyoung Kim
- HLscience Co., Ltd., Uiwang-si 16004, Republic of Korea; (S.K.); (J.-L.K.); (M.-R.P.)
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jeongwon Kim
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea;
| | - Jong-Lae Kim
- HLscience Co., Ltd., Uiwang-si 16004, Republic of Korea; (S.K.); (J.-L.K.); (M.-R.P.)
| | - Mi-Ryeong Park
- HLscience Co., Ltd., Uiwang-si 16004, Republic of Korea; (S.K.); (J.-L.K.); (M.-R.P.)
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Ki Wung Chung
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
8
|
Wei H, Ren J, Feng X, Zhao C, Zhang Y, Yuan H, Yang F, Li Q. Targeting Hsp90α to inhibit HMGB1-mediated renal inflammation and fibrosis. Cell Prolif 2025; 58:e13774. [PMID: 39566909 PMCID: PMC11882747 DOI: 10.1111/cpr.13774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/13/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
Renal fibrosis, a terminal manifestation of chronic kidney disease, is characterized by uncontrolled inflammatory responses, increased oxidative stress, tubular cell death, and imbalanced deposition of extracellular matrix. 5,2'-Dibromo-2,4',5'-trihydroxydiphenylmethanone (LM49), a polyphenol derivative synthesized by our group with excellent anti-inflammatory pharmacological properties, has been identified as a small-molecule inducer of extracellular matrix degradation. Nonetheless, the protective effects and mechanisms of LM49 on renal fibrosis remain unknown. Here, we report LM49 could effectively alleviate renal fibrosis and improve filtration function. Furthermore, LM49 significantly inhibited macrophage infiltration, pro-inflammatory cytokine production and oxidative stress. Interestingly, in HK-2 cells induced by tumour necrosis factor alpha under oxygen-glucose-serum deprivation conditions, LM49 treatment similarly yielded a reduced inflammatory response, elevated cellular viability and suppressed cell necrosis and epithelial-to-mesenchymal transition. Notably, LM49 prominently suppressed the high-mobility group box 1 (HMGB1) expression, nucleocytoplasmic translocation and activation. Mechanistically, drug affinity responsive target stability and cellular thermal shift assay confirmed that LM49 could interact with the target heat shock protein 90 alpha family class A member 1 (Hsp90α), disrupting the direct binding of Hsp90α to HMGB1 and inhibiting the nuclear export of HMGB1, thereby suppressing the inflammatory response, cell necrosis and fibrogenesis. Furthermore, molecular docking and molecular dynamic simulation revealed that LM49 occupied the N-terminal ATP pocket of Hsp90α. Collectively, our findings show that LM49 treatment can ameliorate renal fibrosis through inhibition of HMGB1-mediated inflammation and necrosis via binding to Hsp90α, providing strong evidence for its anti-inflammatory and anti-fibrotic actions.
Collapse
Affiliation(s)
- Huizhi Wei
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Jinhong Ren
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic InflammationShanxi University of Chinese MedicineTaiyuanChina
| | - Xiue Feng
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Chengxiao Zhao
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Yuanlin Zhang
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic InflammationShanxi University of Chinese MedicineTaiyuanChina
| | - Hongxia Yuan
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic InflammationShanxi University of Chinese MedicineTaiyuanChina
| | - Fan Yang
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Qingshan Li
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic InflammationShanxi University of Chinese MedicineTaiyuanChina
| |
Collapse
|
9
|
Deng Y, Zhang T, Cai Y, Ke L, He X, Zhang C, Liu L, Li Q, Zhao Y, Xu G, Han M. Confrontation with kidney inflammation through a HMGB1-targeted peptide augments anti-fibrosis therapy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167586. [PMID: 39586505 DOI: 10.1016/j.bbadis.2024.167586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
Damage to the renal tubular epithelial cells (TEC) is a key cellular event in kidney inflammation and subsequent fibrosis. However, drugs targeting renal TEC (RTEC) are limited to the alleviation of kidney fibrosis. Lethal giant larvae 1 (Lgl1) plays a key role in epithelial cell polarity and proliferation. Here, we report that the renal tubule epithelial-specific deletion of Lgl1 significantly ameliorated intrarenal inflammation and kidney fibrosis. Mechanistically, Lgl1 suppressed the activity of the deacetylase sirtuin 1 (SIRT1) and augmented the acetylation of high-mobility group box 1 (HMGB1) at the lysine 90 (K90) site. Consequently, HMGB1 migrated from the nucleus to the cytoplasm, activating an inflammatory cascade. Our renoprotective strategy was to construct a mimic peptide, TAT-K90WT, that targets HMGB1 K90 acetylation. Administration of this peptide significantly ameliorated inflammation and fibrosis in the kidneys. In summary, the Lgl1-HMGB1 axis plays an important role in renal fibrosis, and targeting HMGB1 acetylation by mimicking peptides is a potential strategy to prevent fibrosis.
Collapse
Affiliation(s)
- Yuanjun Deng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, PR China
| | - Tianjing Zhang
- Department of Nephrology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, 15 Jiefang Road, Xiangyang 441000, Hubei, PR China
| | - Yang Cai
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, PR China
| | - Lin Ke
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, PR China
| | - Xi He
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, PR China
| | - Chunjiang Zhang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, PR China
| | - Lele Liu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, PR China
| | - Qian Li
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, PR China
| | - Yixuan Zhao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, PR China
| | - Gang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, PR China
| | - Min Han
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, PR China.
| |
Collapse
|
10
|
Mireya Jara C, Ramírez RR, Barreto RS, García-Salinas H, Adorno CG, Fretes V, Amarilla SP, Díaz-Reissner C. Apical periodontitis and its effects on renal tissue in rats. Rev Peru Med Exp Salud Publica 2025; 41:385-391. [PMID: 39936761 PMCID: PMC11797580 DOI: 10.17843/rpmesp.2024.414.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/16/2024] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Motivation for the study. Apical periodontitis (AP) can trigger immune responses that affect other organs. Main findings. This animal study examined the effects of AP on renal tissue, finding significant changes in parameters such as renal corpuscle area and Bowman's space, which may have implications for chronic kidney disease. Implications. Future research will provide insight into how dental conditions may affect renal health. If confirmed, regular dental checkups would not only be critical to improve the overall health of patients with kidney disease, but could also serve as a preventive measure. OBJECTIVES. To evaluate the effect of apical periodontitis (AP) induced in Wistar rats on histologically examined renal tissue. MATERIALS AND METHODS. Fourteen 12-week-old male Wistar rats weighing an average of 250 grams were used. AP was induced with pulp exposure of the upper and lower first molars using a #1011 HL spherical bur in high rotation. The lesions were left exposed to the oral environment for a period of 7 weeks. Blood pressure was measured by the tail-cuff plethysmography method from the fourth week. The kidney was dissected for histological analysis (H&E). Mann-Whitney and Student's t-test were used for non-parametric and parametric data, respectively, with a significance level of 5%. RESULTS. A statistically significant increase in both Bowman's space area and renal corpuscle area was found in the AP group (p<0.05). The AP group had a higher percentage of renal tissue with inflammatory infiltrate, but without significant difference. Blood pressure did change during the experimental period and no difference was identified between the groups. CONCLUSIONS. Induction of AP in Wistar rats resulted in significant changes of certain renal histological parameters, suggesting a possible interaction between AP and renal tissue that requires further research.
Collapse
Affiliation(s)
- Cynthia Mireya Jara
- National University of Asuncion, Faculty of Dentistry, Asuncion, Paraguay.National University of AsuncionNational University of AsuncionFaculty of DentistryAsunciónParaguay
| | - Roccio Raquel Ramírez
- National University of Asuncion, Faculty of Medical Sciences, Asuncion, Paraguay.National University of AsuncionNational University of AsuncionFaculty of Medical SciencesAsunciónParaguay
| | - Regina Susana Barreto
- National University of Asuncion, Faculty of Medical Sciences, Asuncion, Paraguay.National University of AsuncionNational University of AsuncionFaculty of Medical SciencesAsunciónParaguay
| | - Héctor García-Salinas
- National University of Asuncion, Faculty of Medical Sciences, Asuncion, Paraguay.National University of AsuncionNational University of AsuncionFaculty of Medical SciencesAsunciónParaguay
| | - Carlos Gabriel Adorno
- National University of Asuncion, Faculty of Dentistry, Asuncion, Paraguay.National University of AsuncionNational University of AsuncionFaculty of DentistryAsunciónParaguay
| | - Vicente Fretes
- National University of Asuncion, Faculty of Dentistry, Asuncion, Paraguay.National University of AsuncionNational University of AsuncionFaculty of DentistryAsunciónParaguay
| | - Shyrley Paola Amarilla
- National University of Asuncion, Faculty of Veterinary Sciences, San Lorenzo, Paraguay.National University of AsuncionNational University of AsuncionFaculty of Veterinary SciencesSan LorenzoParaguay
| | - Clarisse Díaz-Reissner
- National University of Asuncion, Faculty of Dentistry, Asuncion, Paraguay.National University of AsuncionNational University of AsuncionFaculty of DentistryAsunciónParaguay
| |
Collapse
|
11
|
Li X, Xu R, Zhang D, Cai J, Zhou H, Song T, Wang X, Kong Q, Li L, Liu Z, He Z, Tang Z, Tan J, Zhang J. Baicalin: a potential therapeutic agent for acute kidney injury and renal fibrosis. Front Pharmacol 2025; 16:1511083. [PMID: 39911847 PMCID: PMC11795133 DOI: 10.3389/fphar.2025.1511083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Acute kidney injury (AKI) is a common critical clinical disease that is linked to significant morbidity, recurrence, and mortality. It is characterized by a fast and prolonged loss in renal function arising from numerous etiologies and pathogenic pathways. Renal fibrosis, defined as the excessive accumulation of collagen and proliferation of fibroblasts within renal tissues, contributes to the structural damage and functional decline of the kidneys, playing a pivotal role in the advancement of Chronic Kidney Disease (CKD). Until now, while continuous renal replacement therapy (CRRT) has been utilized in the management of severe AKI, there remains a dearth of effective targeted therapies for AKI stemming from diverse etiologies. Similarly, the identification of specific biomarkers and pharmacological targets for the treatment of renal fibrosis remains a challenge. Baicalin, a naturally occurring compound classified within the flavonoid group and commonly found in the Chinese herb Scutellaria baicalensis, has shown a range of pharmacological characteristics, such as antioxidant, anti-inflammatory, antifibrotic, antitumor and antiviral effects, as evidenced by research studies. Research shows that Baicalin has potential in treating kidney diseases like AKI and renal fibrosis. This review aims to summarize Baicalin's progress in these areas, including its molecular mechanism, application in treatment, and absorption, distribution, metabolism, and excretion. Baicalin's therapeutic effects are achieved through various pathways, including antioxidant, anti-inflammatory, antifibrosis, and regulation of apoptosis and cell proliferation. Besides, we also hope this review may give some enlightenment for treating AKI and renal fibrosis in clinical practice.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Rui Xu
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Dan Zhang
- Zunyi Medical University Library Administrative Office, Zunyi, China
| | - Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Qinghong Kong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, China
| | - Liujin Li
- Department of Otolaryngology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhaohui Liu
- Department of Otolaryngology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| | - Zhengzhen Tang
- Department of Pediatrics, The First People’s Hospital of Zunyi, Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
12
|
Alqurashy NN, Yousef MI, Hussein AA, Kamel MA, El Wakil A. Monascus red pigment influence on hydroxyapatite nanoparticles-mediated renal toxicity in rats. Sci Rep 2025; 15:2715. [PMID: 39837868 PMCID: PMC11750980 DOI: 10.1038/s41598-024-84959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
Hydroxyapatite nanoparticles (HANPs) have been applied in several biomedical fields. However, its interaction with biological systems is less exploited. This study aimed to characterize HANPs, examine their influence on kidneys, and explore the potential protective effects of naturally extracted red pigment (RP) from Monascus purpureus against HANPs-induced renal toxicity. To this aim, forty eight adult male rats were randomly divided into 8 equal groups: a control group receiving 4% dimethyl sulfoxide (the solvent for HANPs), three groups receiving extracted RP at different doses of 10, 20, and 40 mg/kg, a group receiving HANPs at a dose of 88.3 mg/kg, and three more groups receiving a double treatment of HANPs associated with RP. The respective treatment was given daily by oral gavage to animals for 50 days which is the duration of the whole experiment. The renal toxicity caused by HANPs was manifested by aberrations in kidney function parameters, intensification of oxidative stress markers, and a decrease in the activity of antioxidant enzymes. Moreover, an increase in inflammatory (TNF-α and TGF-β) and apoptotic (caspace-3) markers, an elevation in gene-based kidney injuries markers (Kim-1 and lipocalin-2), and pathological tissue changes were determined. Meanwhile, co-treatment with different doses of biopigment and HANPs have reduced oxidative stress via their potent antioxidant effect. This was confirmed by pronounced improvement in the measured parameters along with the histological structural enhancement in a dose dependent manner compared to controls. To sum up, RP from M. purpureus has potential protective benefits in mitigating the adverse effects of HANPs.
Collapse
Affiliation(s)
- Nasser N Alqurashy
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mokhtar I Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Ahmed A Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, 21526, Egypt.
| |
Collapse
|
13
|
Ma X, Liu B, Jiang Z, Rao Z, Zheng L. Physical Exercise: A Promising Treatment Against Organ Fibrosis. Int J Mol Sci 2025; 26:343. [PMID: 39796197 PMCID: PMC11720236 DOI: 10.3390/ijms26010343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Fibrosis represents a terminal pathological manifestation encountered in numerous chronic diseases. The process involves the persistent infiltration of inflammatory cells, the transdifferentiation of fibroblasts into myofibroblasts, and the excessive deposition of extracellular matrix (ECM) within damaged tissues, all of which are characteristic features of organ fibrosis. Extensive documentation exists on fibrosis occurrence in vital organs such as the liver, heart, lungs, kidneys, and skeletal muscles, elucidating its underlying pathological mechanisms. Regular exercise is known to confer health benefits through its anti-inflammatory, antioxidant, and anti-aging effects. Notably, exercise exerts anti-fibrotic effects by modulating multiple pathways, including transforming growth factor-β1/small mother decapentaplegic protein (TGF-β1/Samd), Wnt/β-catenin, nuclear factor kappa-B (NF-kB), reactive oxygen species (ROS), microRNAs (miR-126, miR-29a, miR-101a), and exerkine (FGF21, irisin, FSTL1, and CHI3L1). Therefore, this paper aims to review the specific role and molecular mechanisms of exercise as a potential intervention to ameliorate organ fibrosis.
Collapse
Affiliation(s)
- Xiaojie Ma
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Bing Liu
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Ziming Jiang
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Zhijian Rao
- College of Physical Education, Shanghai Normal University, Shanghai 200234, China
- Exercise Biological Center, China Institute of Sport Science, Beijing 100061, China
| | - Lifang Zheng
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| |
Collapse
|
14
|
Maqueda‐Zelaya F, Valiño‐Rivas L, Milián A, Gutiérrez S, Aceña JL, Garcia‐Marin J, Sánchez‐Niño MD, Vaquero JJ, Ortiz A. Identification and study of new NF-κB-inducing kinase ligands derived from the imidazolone scaffold. Arch Pharm (Weinheim) 2025; 358:e2400614. [PMID: 39604268 PMCID: PMC11704032 DOI: 10.1002/ardp.202400614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Chronic kidney disease (CKD) is a growing health concern, projected to be a major cause of death by 2040, due to an increasing risk of acute kidney injury (AKI). Systems biology-derived data suggest that the unmet need for an orally available drug to treat AKI and improve CKD outcomes may be addressed by targeting kidney inflammation and, specifically, nuclear factor κB-inducing kinase (NIK), a key signaling molecule that activates the noncanonical nuclear factor κB (NF-κB) pathway. We have prepared and identified a small family of imidazolone derivatives that bind NIK and inhibit the noncanonical NF-κB activation pathway. The introduction of heterocyclic substituents in position 2 of the imidazolone core provides compounds with affinity against human NIK. Three candidates, with best affinity profile, were tested in phenotypic experiments of noncanonical NF-κB activation, confirming that the derivative bearing the 4-pyridyl ring can inhibit the processing of NFκB p100 to NFkB2 p52, which is NIK-dependent in cultured kidney tubular cells. Finally, exhaustive docking calculations combined with molecular dynamics studies led us to propose a theoretical binding mode and rationalize affinity measures, in which the aminopyridine motif is a key anchoring point to the hinge region thanks to several hydrogen bonds and the interaction of heterocyclic rings in position 2 with Ser476 and Lys482. Our result will pave the way for the development of potential drug candidates targeting NIK in the context of CKD.
Collapse
Affiliation(s)
- Francisco Maqueda‐Zelaya
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. Del Río” (IQAR)Universidad de Alcalá (IRYCIS)Alcalá de Henares, MadridSpain
| | - Lara Valiño‐Rivas
- Departamento de Nefrología e HipertensiónIIS‐Fundación Jiménez Díaz UAMMadridSpain
| | - Ana Milián
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. Del Río” (IQAR)Universidad de Alcalá (IRYCIS)Alcalá de Henares, MadridSpain
| | - Sara Gutiérrez
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. Del Río” (IQAR)Universidad de Alcalá (IRYCIS)Alcalá de Henares, MadridSpain
| | - José Luis Aceña
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. Del Río” (IQAR)Universidad de Alcalá (IRYCIS)Alcalá de Henares, MadridSpain
- RICORS2040MadridSpain
| | - Javier Garcia‐Marin
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. Del Río” (IQAR)Universidad de Alcalá (IRYCIS)Alcalá de Henares, MadridSpain
- RICORS2040MadridSpain
| | - Mª Dolores Sánchez‐Niño
- Departamento de Nefrología e HipertensiónIIS‐Fundación Jiménez Díaz UAMMadridSpain
- RICORS2040MadridSpain
- Departamento de Farmacología, Facultad de MedicinaUniversidad Autónoma de MadridMadridSpain
| | - Juan J. Vaquero
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. Del Río” (IQAR)Universidad de Alcalá (IRYCIS)Alcalá de Henares, MadridSpain
- RICORS2040MadridSpain
| | - Alberto Ortiz
- Departamento de Nefrología e HipertensiónIIS‐Fundación Jiménez Díaz UAMMadridSpain
- RICORS2040MadridSpain
| |
Collapse
|
15
|
Zhang H, Zhang L, Tian D, Bai Y, Feng Y, Liu W, Diao Z. CD146⁺ Endothelial Cells Facilitate Renal Interstitial Fibrosis Through Endothelial-to-Mesenchymal Transition. Ann Transplant 2024; 29:e945917. [PMID: 39654278 PMCID: PMC11645843 DOI: 10.12659/aot.945917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/15/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND Endothelial cells play a crucial role in the pathogenesis of renal interstitial fibrosis (RIF), with CD146 being upregulated on injured endothelial cells. However, the precise contribution of CD146⁺ endothelial cells to RIF remains unclear. This study aimed to observe and detect the relationship between CD146 expression and endothelial cells and to explore the role and possible mechanism of CD146 promoting endothelial-mesenchymal transition in RIF. MATERIAL AND METHODS In this study, we investigated the association between CD146⁺ endothelial cells and RIF. Double-label immunofluorescence was used in patients with chronic kidney disease, whereas multiplex immunofluorescence staining was used for the analysis in unilateral ureteral obstruction (UUO) mice. Hematoxylin and eosin and Masson trichrome staining were performed to evaluate RIF. RESULTS Our results revealed an elevation of CD146⁺ endothelial cells, which positively correlated with the degree of RIF in chronic kidney disease patients and UUO mice. Notably, CD146⁺ endothelial cells undergoing endothelial-mesenchymal transition (CD146⁺ EndMT) were significantly higher in subjects with severe renal interstitial fibrosis, as observed in chronic kidney disease patients and UUO mice. Additionally, with the progression of renal interstitial fibrosis, the expression of PDGFRb, the receptor of PDGF-B signaling pathway, increased and co-localized with CD146⁺ CD31⁺ a-SMA⁺ cells. The proportion of CD146⁺ CD31⁺ alpha-SMA⁺ PDGFRß⁺ cells in CD31⁺ cells increased. CONCLUSIONS In the process of renal interstitial fibrosis, CD146 is mainly expressed in renal interstitial vascular endothelial cells and participates in endothelial-to-mesenchymal transition, which may be related to the PDGF-B/PDGFR-ß signaling pathway.
Collapse
Affiliation(s)
- Huixian Zhang
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Liling Zhang
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
- Department of Emergency, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, PR China
| | - Dongli Tian
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Yu Bai
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Yiduo Feng
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
- Department of Nephrology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Wenhu Liu
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Zongli Diao
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
16
|
Delrue C, Eisenga MF, Delanghe JR, Speeckaert MM. Personalized Antifibrotic Therapy in CKD Progression. J Pers Med 2024; 14:1141. [PMID: 39728054 DOI: 10.3390/jpm14121141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Chronic kidney disease (CKD) is a chronic disorder characterized by kidney fibrosis and extracellular matrix accumulation that can lead to end-stage kidney disease. Epithelial-to-mesenchymal transition, inflammatory cytokines, the TGF-β pathway, Wnt/β-catenin signaling, the Notch pathway, and the NF-κB pathway all play crucial roles in the progression of fibrosis. Current medications, such as renin-angiotensin-aldosterone system inhibitors, try to delay disease development but do not stop or reverse fibrosis. This review emphasizes the growing need for tailored antifibrotic medications for CKD treatment. Precision medicine, which combines proteomic, metabolomic, and genetic data, provides a practical way to personalize treatment regimens. Proteomic signatures, such as CKD273, and genetic markers, such as APOL1 and COL4A5, help in patient stratification and focused therapy development. Two recently developed antifibrotic medications, nintedanib and pirfenidone, have been proven to diminish fibrosis in preclinical animals. Additionally, research is being conducted on the efficacy of investigational drugs targeting CTGF and galectin-3 in the treatment of kidney fibrosis.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Michele F Eisenga
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
17
|
Kim D, Son M, Ha S, Kim J, Kim MJ, Yoo J, Kim BM, Chung HY, Lee H, Kim D, Kim S, Chung KW. Effects of high-fat diet on folic acid-induced kidney injury in mice. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119856. [PMID: 39357548 DOI: 10.1016/j.bbamcr.2024.119856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Obesity is recognized as a significant contributor to the onset of kidney disease. However, the key processes involved in the development of kidney disease in obese individuals are not well understood. Here, we investigated the effects of high-fat diet (HFD)-induced obesity on folic acid (FA)-induced kidney injury in mice. Mice were fed an HFD for 12 weeks to induce obesity, followed by an additional intraperitoneal injection of FA. The results showed that mice fed HFD developed higher levels of kidney damage than those in the chow group. In contrast, mice exposed to both HFD and FA showed less fibrosis and inflammatory responses compared to the FA only treated group. Furthermore, the HFD with FA group exhibited elevated lipid accumulation in the kidney and reduced expression of mitochondrial proteins compared to the FA-treated group. Under in vitro experimental conditions, we found that lipid accumulation induced by oleic acid treatment reduced inflammatory and fibrotic responses in both renal tubules and fibroblasts. Finally, RNA sequencing analysis revealed that the inflammasome and pyroptosis signaling pathways were significantly increased in the HFD group with FA injection. In summary, these findings suggest that obesity increases renal injury due to a lack of appropriate inflammatory, fibrotic, and metabolic responses and the activation of the inflammasome and pyroptosis signaling pathways.
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Minjung Son
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sugyeong Ha
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jeongwon Kim
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Mi-Jeong Kim
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jian Yoo
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Byeong Moo Kim
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Haeseung Lee
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Donghwan Kim
- Functional Food Materials Research Group, Korea Food Research Institute, Wanju-Gun 55365, Republic of Korea
| | - Sangok Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Ki Wung Chung
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
18
|
Fu Z, Geng X, Liu C, Shen W, Dong Z, Sun G, Cai G, Chen X, Hong Q. Identification of common and specific fibrosis-related genes in three common chronic kidney diseases. Ren Fail 2024; 46:2295431. [PMID: 38174742 PMCID: PMC10769532 DOI: 10.1080/0886022x.2023.2295431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Kidney fibrosis is the common final pathway of virtually all advanced forms of chronic kidney disease (CKD) including diabetic nephropathy (DN), IgA nephropathy (IgAN) and membranous nephropathy (MN), with complex mechanism. Comparative gene expression analysis among these types of CKD may shed light on its pathogenesis. Therefore, we conducted this study aiming at exploring the common and specific fibrosis-related genes involved in different types of CKD. METHODS Kidney biopsy specimens from patients with different types of CKD and normal control subjects were analyzed using the NanoString nCounter® Human Fibrosis V2 Panel. Genes differentially expressed in all fibrotic DN, IgAN and MN tissues compared to the normal controls were regarded as the common fibrosis-related genes in CKD, whereas genes exclusively differentially expressed in fibrotic DN, IgAN or MN samples were considered to be the specific genes related to fibrosis in DN, IgAN and MN respectively. Quantitative real-time PCR (qRT-PCR) was performed to validate the expression of the selected genes. RESULTS Protein tyrosine phosphatase receptor type C (PTPRC), intercellular cell adhesion molecule-1 (ICAM1), vascular cell adhesion molecule-1 (VCAM1), interleukin 10 receptor alpha (IL10RA) and CC chemokine receptor 2 (CCR2) were identified as the potential common genes for kidney fibrosis in different types of CKD, while peroxisome proliferator-activated receptor alpha (PPARA), lactate oxidase (LOX), secreted phosphoprotein 1 (SPP1) were identified as the specific fibrosis-associated genes for DN, IgAN and MN respectively. qRT-PCR demonstrated that the expression levels of these selected genes were consistent with the NanoString analysis. CONCLUSIONS There were both commonalities and differences in the mechanisms of fibrosis in different types of CKD, the commonalities might be used as the common therapeutic targets for kidney fibrosis in CKD, while the differences might be used as the diagnostic markers for DN, IgAN and MN respectively. Inflammation was highly relevant to the pathogenesis of fibrosis. This study provides further insight into the pathophysiology and treatment of fibrotic kidney disease.
Collapse
Affiliation(s)
- Zhangning Fu
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaodong Geng
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chao Liu
- Department of Critical Care Medicine, First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Wanjun Shen
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Zheyi Dong
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guannan Sun
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
19
|
Gu X, Dong Y, Wang X, Ren Z, Li G, Hao Y, Wu J, Guo S, Fan Y, Ren H, Liu C, Ding S, Li W, Wu G, Liu Z. Identification of serum biomarkers for chronic kidney disease using serum metabolomics. Ren Fail 2024; 46:2409346. [PMID: 39378112 PMCID: PMC11463012 DOI: 10.1080/0886022x.2024.2409346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/28/2024] [Accepted: 09/21/2024] [Indexed: 10/10/2024] Open
Abstract
This study aimed to identify biomarkers for chronic kidney disease (CKD) by studying serum metabolomics. Serum samples were collected from 194 non-dialysis CKD patients and 317 healthy controls (HC). Using ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS), untargeted metabolomics analysis was conducted. A random forest model was developed and validated in separate sets of HC and CKD patients. The serum metabolomic profiles of patients with chronic kidney disease (CKD) exhibited significant differences compared to healthy controls (HC). A total of 314 metabolites were identified as significantly different, with 179 being upregulated and 135 being downregulated in CKD patients. KEGG enrichment analysis revealed several key pathways, including arginine biosynthesis, phenylalanine metabolism, linoleic acid metabolism, and purine metabolism. The diagnostic efficacy of the classifier was high, with an area under the curve of 1 in the training and validation sets and 0.9435 in the cross-validation set. This study provides comprehensive insights into serum metabolism in non-dialysis CKD patients, highlighting the potential involvement of abnormal biological metabolism in CKD pathogenesis. Exploring metabolites may offer new possibilities for the management of CKD.
Collapse
Affiliation(s)
- Xi Gu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yindi Dong
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuemei Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guanhua Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaxin Hao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian Wu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shiyuan Guo
- Department of Nephrology, Xinxiang Central Hospital, Xinxiang, China
| | - Yajuan Fan
- Department of Nephrology, Zhumadian Central Hospital, Zhumadian, China
| | - Hongyan Ren
- Shanghai Mobio Biomedical Technology Co., Ltd, Shanghai, China
| | - Chao Liu
- Shanghai Mobio Biomedical Technology Co., Ltd, Shanghai, China
| | - Suying Ding
- Health Management Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weikang Li
- Health Management Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ge Wu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Gali S, Kundu A, Sharma S, Ahn MY, Puia Z, Kumar V, Kim IS, Kwak JH, Palit P, Kim HS. Therapeutic potential of bark extracts from Macaranga denticulata on renal fibrosis in streptozotocin-induced diabetic rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:911-933. [PMID: 39306745 DOI: 10.1080/15287394.2024.2394586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Macaranga denticulata (MD) bark is commonly utilized in traditional medicine for diabetes prevention and treatment. The bark extract of MD is rich in prenyl or farnesyl flavonoids and stilbenes, which possess antioxidant properties. Although data suggest the potential therapeutic benefits of the use of MD in treating diabetic nephropathy (DN), the precise mechanisms underlying MD-initiated protective effects against DN are not well understood. This study aimed to assess the renoprotective properties of MD extract by examining renofibrosis inhibition, oxidative stress, and inflammation utilizing streptozotocin-induced DN male Sprague - Dawley rats. Diabetic rats were intraperitoneally injected with streptozotocin (STZ) to induce diabetes. After 6 days, these rats were orally administered MD extract (200 mg/kg/day) or metformin (200 mg/kg/day) for 14 days. The administration of MD extract significantly lowered blood glucose levels, restored body weight, and reduced urine levels of various biomarkers associated with kidney functions. Histopathological analysis revealed protective effects in both kidneys and pancreas. Further, MD extract significantly restored abnormalities in advanced glycation end products, oxidative stress biomarkers, and proinflammatory cytokine levels in STZ-treated rats. MD extract markedly reduced renal fibrosis biomarker levels, indicating recovery from renal injury, and reversed dysregulation of sirtuins and claudin-1 in the kidneys of rats with STZ-induced diabetes. In conclusion, data demonstrated the renoprotective role of MD extract, indicating plant extract's ability to suppress oxidative stress and regulate proinflammatory pathways during pathological changes in diabetic nephropathy.
Collapse
Affiliation(s)
- Sreevarsha Gali
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
| | - Amit Kundu
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
- Department of Pharmacology, GITAM School of Pharmacy, GITAM Deemed to be University, Visakhapatnam, India
| | - Swati Sharma
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
| | - Mee-Young Ahn
- Department of Biochemistry and Health Science, Changwon National University, Changwon-si, Republic of Korea
| | - Zothan Puia
- Department of Pharmacy, Regional Institute of Paramedical & Nursing Sciences, Aizawl, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Allahabad, India
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
| | - Jeong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar, India
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
| |
Collapse
|
21
|
Zhou Q, Shao X, Xu L, Zou H, Chen W. Association between Monocyte-to-Lymphocyte Ratio and Inflammation in Chronic Kidney Disease: A Cross-Sectional Study. Kidney Blood Press Res 2024; 49:1066-1074. [PMID: 39561718 PMCID: PMC11844676 DOI: 10.1159/000542625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
INTRODUCTION Inflammation plays a key role in chronic kidney disease (CKD). Monocyte-to-lymphocyte ratio (MLR) is a novel inflammatory marker. The purpose of this study was to evaluate the relationship between MLR and inflammation in CKD patients. METHODS In total, 1,809 subjects were recruited from Wanzhai Town, Zhuhai City, between December 2017 and March 2018 for a cross-sectional survey. Patients were categorized based on the absence (hypersensitive C-reactive protein [hsCRP] level ≦3 mg/L) or presence (hsCRP level >3 mg/L) of inflammation. Logistic regression models and MLR quartiles were used to explore the relationship between MLR and inflammation in CKD patients. RESULTS Among 1,809 subjects, 403 (22.2%) had CKD. Significant differences in systolic blood pressure, estimated glomerular filtration rate, white blood cell (WBC), neutrophil, monocyte, MLR, and interleukin-6 (IL-6) levels were observed between noninflammatory group and inflammatory group. The highest MLR quartile had higher Scr, WBC, neutrophil, monocyte, IL-6, and hsCRP values and lower eGFR and lymphocyte values. Comparing the lowest quartile of MLR, the OR (95% CI) of inflammation risk in the highest quartile was 2.30 (1.24-4.27) after adjustment for confounding factors. The area under the curve of MLR for predicting inflammation was 0.631. The cutoff point for the MLR was 0.153. CONCLUSION A high MLR was significantly and independently associated with inflammation in patients with CKD, making MLR a potential marker for inflammation in this demographic. MLR may also predict the severity of CKD.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Shao
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Li Xu
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hequn Zou
- Department of Nephrology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Wenli Chen
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Rroji M, Spasovski G. Omics Studies in CKD: Diagnostic Opportunities and Therapeutic Potential. Proteomics 2024:e202400151. [PMID: 39523931 DOI: 10.1002/pmic.202400151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Omics technologies have significantly advanced the prediction and therapeutic approaches for chronic kidney disease (CKD) by providing comprehensive molecular insights. This is a review of the current state and future prospects of integrating biomarkers into the clinical practice for CKD, aiming to improve patient outcomes by targeted therapeutic interventions. In fact, the integration of genomic, transcriptomic, proteomic, and metabolomic data has enhanced our understanding of CKD pathogenesis and identified novel biomarkers for an early diagnosis and targeted treatment. Advanced computational methods and artificial intelligence (AI) have further refined multi-omics data analysis, leading to more accurate prediction models for disease progression and therapeutic responses. These developments highlight the potential to improve CKD patient care with a precise and individualized treatment plan .
Collapse
Affiliation(s)
- Merita Rroji
- Faculty of Medicine, Department of Nephrology, University of Medicine Tirana, Tirana, Albania
| | - Goce Spasovski
- Medical Faculty, Department of Nephrology, University of Skopje, Skopje, North Macedonia
| |
Collapse
|
23
|
Hanai S, Nakagomi D, Suzuki K, Nakajima H, Furuya F. Renal protective roles of macrophage matrix metalloproteinase-12 in mice with obstructed kidneys. Int J Exp Pathol 2024; 105:193-201. [PMID: 39164934 PMCID: PMC11574677 DOI: 10.1111/iep.12516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
Matrix metalloproteinase (MMP)-12 has been reported to have diverse functions, including regulation of immune reactions and anti-inflammatory effects, but the potential roles of MMP-12 in kidney injury have not been fully elucidated. This study aimed to determine whether MMP-12 contributes to tubulointerstitial injury in a unilateral ureteric obstruction (UUO) model. MMP-12-deficient (MMP-12-/-) mice and C57BL/6J mice as controls (MMP-12+/+) were subjected to UUO and analysed 7 days after UUO. To analyse the functions of MMP-12 on monocytes/macrophages, we generated MMP-12-deficient, irradiated, chimeric mice (BM-MMP-12-/-) and performed UUO. Bone marrow-derived macrophages (BMDMs) were isolated from both groups of mice and used for investigations. MMP-12-/- mice showed exacerbation of macrophage accumulation and interstitial fibrosis in the UUO-kidney compared with control mice. BM-MMP-12-/- mice also showed exacerbation of kidney injury. UUO induced accumulation of Ly6C+ macrophages in MMP-12-/- mice compared with control mice. Increases in inflammatory cytokine (tumour necrosis factor α, interleukin [IL]-1β, IL-6) levels from BMDMs after lipopolysaccharide stimulation were higher in MMP-12-/- mice than in MMP-12+/+ mice. MMP-12 may play protective roles against kidney injury by UUO in mice, decreasing inflammatory cytokines from BMDMs and macrophage accumulation.
Collapse
Affiliation(s)
- Shunichiro Hanai
- Department of Rheumatology, University of Yamanashi, Yamanashi, Japan
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Daiki Nakagomi
- Department of Rheumatology, University of Yamanashi, Yamanashi, Japan
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumihiko Furuya
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
- Department of Thyroid and Endocrinology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
24
|
Liu X, Zhang D, Zhao F, Li S, Zhu H, Zhang X. Deciphering the role of oxidative stress genes in idiopathic pulmonary fibrosis: a multi-omics mendelian randomization approach. Genes Immun 2024; 25:389-396. [PMID: 39174688 DOI: 10.1038/s41435-024-00292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Oxidative stress (OS) is crucial in idiopathic pulmonary fibrosis (IPF) pathogenesis, with its genes potentially acting as both causes and consequences of the disease. We identified OS-related genes from GeneCards and performed a meta-analysis on pulmonary transcriptome datasets to discover differentially expressed genes (DEGs) related to OS in IPF. We integrated this data with the largest available IPF GWAS summaries, expression quantitative trait loci (eQTLs), and DNA methylation QTLs (mQTLs) from blood. This approach aimed to identify blood OS genes and regulatory elements linked to IPF risk, incorporating the latest pulmonary eQTLs and bronchoalveolar lavage fluid microbial QTLs (bmQTLs) for a comprehensive view of gene-lung microbiota interactions through SMR and colocalization analyses. Sensitivity analyses were conducted using two additional mendelian randomization (MR) methods. Meta-analysis revealed 1090 differentially expressed OS genes between IPF patients and controls. Integration with IPF GWAS, eQTL, and mQTL data identified key genes and regulatory elements involved in IPF pathogenesis, highlighting the role of specific genes such as KCNMA1 and SLC22A5 in modulating IPF risk through epigenetic mechanisms. Colocalization analysis further identified potential interactions between gene expression and lung microbiota. Our findings elucidate the complex interplay between OS genes and IPF, suggesting potential therapeutic targets and highlighting the importance of considering epigenetic and microbial interactions in the disease's etiology and progression.
Collapse
Affiliation(s)
- Xin Liu
- Second Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dengfeng Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Fangchao Zhao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shujun Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Haiyong Zhu
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Xu Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
25
|
Kulkarni P, Yeram PB, Vora A. Terpenes in the management of chronic kidney disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6351-6368. [PMID: 38683370 DOI: 10.1007/s00210-024-03098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
Chronic kidney disease (CKD) is a chronic and progressive systemic condition that characterizes irreversible alterations in the kidneys' function and structure over an extended period, spanning months to years. CKD is the one of the major causes of mortality worldwide. However, very limited treatment options are available in the market for management of the CKD. Diabetes and hypertension are the key risk factors for the progression of CKD. It is majorly characterised by glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Plants are considered safe and effective in treating various chronic conditions. A diverse group of phytoconstituents, including polyphenols, flavonoids, alkaloids, tannins, saponins, and terpenes, have found significant benefits in managing chronic ailments. Terpenes constitute a diverse group of plant compounds with various therapeutic benefits. Evidence-based pharmacological studies underscore the crucial role played by terpenes in preventing and managing CKD. These substances demonstrate the capacity to hinder detrimental pathways, such as oxidative stress, inflammation and fibrosis, thereby demonstrating benefit in renal dysfunction. This review offers a comprehensive overview of the roles and positive attributes of commonly occurring terpenes in managing the causes and risk factors of CKD and the associated conditions.
Collapse
Affiliation(s)
- Piyusha Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India
| | - Pranali B Yeram
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India.
| |
Collapse
|
26
|
Wei Q, Gan C, Sun M, Xie Y, Liu H, Xue T, Deng C, Mo C, Ye T. BRD4: an effective target for organ fibrosis. Biomark Res 2024; 12:92. [PMID: 39215370 PMCID: PMC11365212 DOI: 10.1186/s40364-024-00641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Fibrosis is an excessive wound-healing response induced by repeated or chronic external stimuli to tissues, significantly impacting quality of life and primarily contributing to organ failure. Organ fibrosis is reported to cause 45% of all-cause mortality worldwide. Despite extensive efforts to develop new antifibrotic drugs, drug discovery has not kept pace with the clinical demand. Currently, only pirfenidone and nintedanib are approved by the FDA to treat pulmonary fibrotic illness, whereas there are currently no available antifibrotic drugs for hepatic, cardiac or renal fibrosis. The development of fibrosis is closely related to epigenetic alterations. The field of epigenetics primarily studies biological processes, including chromatin modifications, epigenetic readers, DNA transcription and RNA translation. The bromodomain and extra-terminal structural domain (BET) family, a class of epigenetic readers, specifically recognizes acetylated histone lysine residues and promotes the formation of transcriptional complexes. Bromodomain-containing protein 4 (BRD4) is one of the most well-researched proteins in the BET family. BRD4 is implicated in the expression of genes related to inflammation and pro-fibrosis during fibrosis. Inhibition of BRD4 has shown promising anti-fibrotic effects in preclinical studies; however, no BRD4 inhibitor has been approved for clinical use. This review introduces the structure and function of BET proteins, the research progress on BRD4 in organ fibrosis, and the inhibitors of BRD4 utilized in fibrosis. We emphasize the feasibility of targeting BRD4 as an anti-fibrotic strategy and discuss the therapeutic potential and challenges associated with BRD4 inhibitors in treating fibrotic diseases.
Collapse
Affiliation(s)
- Qun Wei
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Sun
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Xie
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyao Liu
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Taixiong Xue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Conghui Deng
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Ningxia Medical University, Yin Chuan, 640100, China.
| |
Collapse
|
27
|
Chan CW, Chen YT, Lin BF. Renal protective and immunoregulatory effects of Lactobacillus casei strain Shirota in nephropathy-prone mice. Front Nutr 2024; 11:1438327. [PMID: 39262432 PMCID: PMC11389617 DOI: 10.3389/fnut.2024.1438327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Introduction The incidence of severe acute kidney injury (AKI) is considerably high worldwide. A previous study showed that gut microbial dysbiosis was a hallmark of AKI in mice. Whether the probiotic Lactobacillus casei strain Shirota (LcS) plays a role in kidney disease, particularly AKI, remains unclear. Methods To investigate the effects of LcS on kidney injury, tubule-specific conditional von Hippel-Lindau gene-knockout C57BL/6 mice (Vhlhdel/del mice) were supplemented without (Ctrl) or with probiotics (LcS) in Experiment 1, and their lifespan was monitored. Additionally, the Vhlhdel/+ mice were supplemented without (Ctrl and AA) or with probiotics (LcS and LcS + AA) in Experiment 2. Probiotic LcS (1 × 109 colony-forming units) was supplemented once daily. After 4 weeks of LcS supplementation, AA and LcS + AA mice were administered aristolochic acid (AA; 4 mg/kg body weight/day)-containing purified diet for 2 weeks to induce AA nephropathy before sacrifice. Results Supplementation of LcS significantly prolonged the lifespan of Vhlhdel/del mice, suggesting a potential renal protective effect. AA induced-nephropathy increased not only the indicators of renal dysfunction and injury, including urinary protein and kidney injury molecule (KIM)-1, serum blood urea nitrogen (BUN) and creatinine, but also serum interleukin (IL)-6 levels, renal macrophage infiltrations, and pathological lesions in Vhlhdel/+ mice. LcS supplementation significantly reduced urinary protein and KIM-1 levels, serum BUN and IL-6 levels, and renal M1 macrophages, tissue lesions, and injury scores. We also found that LcS maintained gut integrity under AA induction and increased intestinal lamina propria dendritic cells. Furthermore, LcS significantly reduced pro-inflammatory IL-17A and upregulated anti-inflammatory IL-10 production by immune cells from intestinal Peyer's patches (PP) or mesenteric lymph nodes (MLN), and significantly increased IL-10 and reduced IL-6 production by splenocytes. Conclusion Prior supplementation with probiotic LcS significantly alleviated the severity of renal injury. This renal protective effect was partially associated with the enhancements of intestinal and systemic anti-inflammatory immune responses, suggesting that LcS-induced immunoregulation might contribute to its renal protective effects.
Collapse
Affiliation(s)
- Chun-Wai Chan
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Bi-Fong Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
28
|
Chen G, Wang Y, Zhang L, Yang K, Wang X, Chen X. Research progress on miR-124-3p in the field of kidney disease. BMC Nephrol 2024; 25:252. [PMID: 39112935 PMCID: PMC11308398 DOI: 10.1186/s12882-024-03688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs (miRNAs) are 18-25 nucleotides long, single-stranded, non-coding RNA molecules that regulate gene expression. They play a crucial role in maintaining normal cellular functions and homeostasis in organisms. Studies have shown that miR-124-3p is highly expressed in brain tissue and plays a significant role in nervous system development. It is also described as a tumor suppressor, regulating biological processes like cancer cell proliferation, apoptosis, migration, and invasion by controlling multiple downstream target genes. miR-124-3p has been found to be involved in the progression of various kidney diseases, including diabetic kidney disease, calcium oxalate kidney stones, acute kidney injury, lupus nephritis, and renal interstitial fibrosis. It mediates these processes through mechanisms like oxidative stress, inflammation, autophagy, and ferroptosis. To lay the foundation for future therapeutic strategies, this research group reviewed recent studies on the functional roles of miR-124-3p in renal diseases and the regulation of its downstream target genes. Additionally, the feasibility, limitations, and potential application of miR-124-3p as a diagnostic biomarker and therapeutic target were thoroughly investigated.
Collapse
Affiliation(s)
- Guanting Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Linqi Zhang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Kang Yang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xixi Wang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xu Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| |
Collapse
|
29
|
Li J, Xiang T, Chen X, Fu P. Neutrophil-percentage-to-albumin ratio is associated with chronic kidney disease: Evidence from NHANES 2009-2018. PLoS One 2024; 19:e0307466. [PMID: 39102412 PMCID: PMC11299806 DOI: 10.1371/journal.pone.0307466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION The neutrophil-percentage-to-albumin ratio (NPAR), a novel inflammatory biomarker, has been used to predict the prognosis of patients with cancer and cardiovascular disease. However, the relationship between NPAR and chronic kidney disease (CKD) remains unknown. The purpose of this study was to investigate the possible association between NPAR and CKD. METHODS The cross-sectional study included participants with complete information on NPAR, serum creatinine (Scr), or urinary albumin-to-creatinine ratio (UACR) from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). CKD was defined as the presence of either low estimated glomerular filtration rate (eGFR) or albuminuria. Univariate and multivariate logistic regression and restricted cubic spline regression were used to assess the linear and nonlinear associations between NPAR and renal function. Subgroup and interactive analyses were performed to explore potential interactive effects of covariates. Missing values were imputed using random forest. RESULTS A total of 25,236 participants were enrolled in the study, of whom 4518 (17.9%) were diagnosed with CKD. After adjustment for covariates, the odds ratios (ORs) for prevalent CKD were 1.19 (95% CI = 1.07-1.31, p <0.05) for the Q2 group, 1.53 (95% CI = 1.39-1.69, p < 0.001) for the Q3 group, and 2.78 (95% CI = 2.53-3.05, p < 0.001) for the Q4 group. There was a significant interaction between age and diabetes mellitus on the association between NPAR and CKD (both p for interaction < 0.05). And there was a non-linear association between NPAR levels and CKD in the whole population (p for non-linear < 0.001). All sensitivity analyses supported the positive association between NPAR and CKD. CONCLUSIONS NPAR was positively correlated with increased risk of CKD. The NPAR may serve as an available and cost-effective tool for identifying and intervening the individuals at risk of CKD.
Collapse
Affiliation(s)
- Jinxi Li
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ting Xiang
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xinyun Chen
- Department of Health Management, Health Management Center, General Practice Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ping Fu
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
30
|
Li J, Zou Y, Kantapan J, Su H, Wang L, Dechsupa N. TGF‑β/Smad signaling in chronic kidney disease: Exploring post‑translational regulatory perspectives (Review). Mol Med Rep 2024; 30:143. [PMID: 38904198 PMCID: PMC11208996 DOI: 10.3892/mmr.2024.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
The TGF‑β/Smad signaling pathway plays a pivotal role in the onset of glomerular and tubulointerstitial fibrosis in chronic kidney disease (CKD). The present review delves into the intricate post‑translational modulation of this pathway and its implications in CKD. Specifically, the impact of the TGF‑β/Smad pathway on various biological processes was investigated, encompassing not only renal tubular epithelial cell apoptosis, inflammation, myofibroblast activation and cellular aging, but also its role in autophagy. Various post‑translational modifications (PTMs), including phosphorylation and ubiquitination, play a crucial role in modulating the intensity and persistence of the TGF‑β/Smad signaling pathway. They also dictate the functionality, stability and interactions of the TGF‑β/Smad components. The present review sheds light on recent findings regarding the impact of PTMs on TGF‑β receptors and Smads within the CKD landscape. In summary, a deeper insight into the post‑translational intricacies of TGF‑β/Smad signaling offers avenues for innovative therapeutic interventions to mitigate CKD progression. Ongoing research in this domain holds the potential to unveil powerful antifibrotic treatments, aiming to preserve renal integrity and function in patients with CKD.
Collapse
Affiliation(s)
- Jianchun Li
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuanxia Zou
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jiraporn Kantapan
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hongwei Su
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Nathupakorn Dechsupa
- Department of Radiologic Technology, Molecular Imaging and Therapy Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
31
|
Honório da Silva JV, Erthal RP, Vercellone IC, Santos DPD, Ferraz CR, de Matos RLN, Gonçalves LED, Bracarense APFRL, Verri WA, Câmara NOS, de Andrade FG, Fernandes GSA. Lisdexamfetamine dimesylate-exposition in male rats during the peripubertal period impairs inflammatory mechanisms, antioxidant activity, and apoptosis process in kidneys of male pubertal rats. J Biochem Mol Toxicol 2024; 38:e23781. [PMID: 39051179 DOI: 10.1002/jbt.23781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/13/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Lisdexamfetamine dimesylate (LDX) is a prodrug of dextroamphetamine, which has been widely recommended for the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD). There are still no data in the literature relating the possible toxic effects of LDX in the kidney. Therefore, the present study aims to evaluate the effects of LDX exposure on morphological, oxidative stress, cell death and inflammation parameters in the kidneys of male pubertal Wistar rats, since the kidneys are organs related to the excretion of most drugs. For this, twenty male Wistar rats were distributed randomly into two experimental groups: LDX group-received 11,3 mg/kg/day of LDX; and Control group-received tap water. Animals were treated by gavage from postnatal day (PND) 25 to 65. At PND 66, plasma was collected to the biochemical dosage, and the kidneys were collected for determinations of the inflammatory profile, oxidative status, cell death, and for histochemical, and morphometric analyses. Our results show that there was an increase in the number of cells marked for cell death, and a reduction of proximal and distal convoluted tubules mean diameter in the group that received LDX. In addition, our results also showed an increase in MPO and NAG activity, indicating an inflammatory response. The oxidative status showed that the antioxidant system is working undisrupted and avoiding oxidative stress. Therefore, LDX-exposition in male rats during the peripubertal period causes renal changes in pubertal age involving inflammatory mechanisms, antioxidant activity and apoptosis process.
Collapse
Affiliation(s)
- João Vinícius Honório da Silva
- Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
- Department of Pathology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
| | - Rafaela Pires Erthal
- Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
- Department of Pathology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
| | - Isadora Chagas Vercellone
- Department of Histology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
| | - Dayane Priscila Dos Santos
- Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
- Department of Pathology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
| | - Camila Rodrigues Ferraz
- Department of Pathology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
| | | | | | | | - Waldiceu Aparecido Verri
- Department of Pathology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Biomedical Sciences Institute, University of São Paulo - USP, São Paulo, Brazil
| | - Fábio Goulart de Andrade
- Department of Histology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Brazil
| | | |
Collapse
|
32
|
Ma D, Zhang J, Du L, Shi J, Liu Z, Qin J, Chen X, Guo M. Colquhounia root tablet improves diabetic kidney disease by regulating epithelial-mesenchymal transition via the PTEN/PI3K/AKT pathway. Front Pharmacol 2024; 15:1418588. [PMID: 39130629 PMCID: PMC11310013 DOI: 10.3389/fphar.2024.1418588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024] Open
Abstract
Background Diabetic kidney disease (DKD) is a severe microvascular complication of diabetes mellitus that can lead to end-stage renal disease. Colquhounia root tablet (CRT) has shown therapeutic potential in treating DKD, but its efficacy and underlying mechanisms remain to be elucidated. Methods A randomized controlled clinical trial was conducted on 61 DKD patients. The treatment group received CRT in addition to standard therapy, while the control group received standard therapy alone. Treatment efficacy and adverse events were evaluated after 3 months. Additionally, in vitro experiments using human renal tubular epithelial cells (HK-2) were performed to investigate the effect of CRT on high glucose (HG)-induced epithelial-mesenchymal transition (EMT) and the involvement of the PTEN/PI3K/AKT signaling pathway. Results CRT treatment significantly improved proteinuria and increased the effective treatment rate in DKD patients compared to the control group, with no significant difference in adverse events. Moreover, CRT reversed HG-induced EMT in HK-2 cells, as evidenced by the downregulation of α-SMA and upregulation of E-cadherin at both mRNA and protein levels. Mechanistically, CRT increased PTEN expression and inhibited the PI3K/AKT pathway, similar to the effects of the PI3K inhibitor LY29400. The combination of CRT and LY29400 further enhanced PTEN mRNA expression under HG conditions. Conclusion CRT effectively improves proteinuria in DKD patients and ameliorates HG-induced EMT in HK-2 cells. The underlying mechanism may involve the upregulation of PTEN and subsequent inhibition of the PI3K/AKT signaling pathway. These findings provide new insights into the therapeutic potential of CRT for DKD treatment.
Collapse
Affiliation(s)
- Donghong Ma
- Department of Nephrology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
- Xinxiang Key Laboratory of Precise Therapy for Diabetic Kidney Disease, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| | - Jiao Zhang
- Department of Nephrology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| | - Lu Du
- Department of Nephrology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| | - Jingjing Shi
- Department of Nephrology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| | - Zhaoyan Liu
- Department of Nephrology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
- Xinxiang Key Laboratory of Precise Therapy for Diabetic Kidney Disease, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| | - Jilin Qin
- Department of Nephrology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
- Xinxiang Key Laboratory of Precise Therapy for Diabetic Kidney Disease, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| | - Xiaoxiao Chen
- Department of Nephrology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
- Xinxiang Key Laboratory of Precise Therapy for Diabetic Kidney Disease, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| | - Minghao Guo
- Department of Nephrology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| |
Collapse
|
33
|
Dong W, Luo M, Li Y, Chen X, Li L, Chang Q. MICT ameliorates hypertensive nephropathy by inhibiting TLR4/NF-κB pathway and down-regulating NLRC4 inflammasome. PLoS One 2024; 19:e0306137. [PMID: 39052650 PMCID: PMC11271930 DOI: 10.1371/journal.pone.0306137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Hypertensive nephropathy (HN) is one of the main causes of end-stage renal disease (ESRD), leading to serious morbidity and mortality in hypertensive patients. However, existing treatment for hypertensive nephropathy are still very limited. It has been demonstrated that aerobic exercise has beneficial effects on the treatment of hypertension. However, the underlying mechanisms of exercise in HN remain unclear. METHODS The spontaneously hypertensive rats (SHR) were trained for 8 weeks on a treadmill with different exercise prescriptions. We detected the effects of moderate intensity continuous training (MICT) and high intensity interval training (HIIT) on inflammatory response, renal function, and renal fibrosis in SHR. We further investigated the relationship between TLR4 and the NLRC4 inflammasome in vitro HN model. RESULTS MICT improved renal fibrosis and renal injury, attenuating the inflammatory response by inhibiting TLR4/NF-κB pathway and the activation of NLRC4 inflammasome. However, these changes were not observed in the HIIT group. Additionally, repression of TLR4/NF-κB pathway by TAK-242 inhibited activation of NLRC4 inflammasome and alleviated the fibrosis in Ang II-induced HK-2 cells. CONCLUSION MICT ameliorated renal damage, inflammatory response, and renal fibrosis via repressing TLR4/NF-κB pathway and the activation of NLRC4 inflammasome. This study might provide new references for exercise prescriptions of hypertension.
Collapse
Affiliation(s)
- Wenyu Dong
- The Affiliated Rehabilitation Hospital, Chongqing Medical University, Chongqing, P. R. China
| | - Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Yun Li
- The Affiliated Rehabilitation Hospital, Chongqing Medical University, Chongqing, P. R. China
| | - Xinhua Chen
- The Affiliated Rehabilitation Hospital, Chongqing Medical University, Chongqing, P. R. China
| | - Lingang Li
- The Affiliated Rehabilitation Hospital, Chongqing Medical University, Chongqing, P. R. China
| | - Qing Chang
- The College of Exercise Medicine, Chongqing Medical University, Chongqing, P. R. China
| |
Collapse
|
34
|
Zhong X, Zhang J. RUNX3-activated apelin signaling inhibits cell proliferation and fibrosis in diabetic nephropathy by regulation of the SIRT1/FOXO pathway. Diabetol Metab Syndr 2024; 16:167. [PMID: 39014438 PMCID: PMC11253400 DOI: 10.1186/s13098-024-01393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Diabetic nephropathy is a major secondary cause of end-stage renal disease. Apelin plays an important role in the development of DN. Understanding the exact mechanism of Apelin can help expand the means of treating DN. METHODS Male C57BL/6 mice was used and STZ treatment was implemented for DN model establishment. Lentivirus systems including Lv-sh-RUNX3 and Lv-Apelin were obtained to knockdown RUNX3 and overexpress Apelin, respectively. A total of 36 mice were divided into 6 groups (n = 6 in each group): control, DN, DN + LV-Vector, DN + Lv-Apelin, DN + LV-Apelin + LV-sh-NC and DN + Lv-Apelin + Lv-sh-RUNX3 group. In vitro studies were performed using mesangial cells. Cell viability and proliferation was assessed through CCK8 and EDU analysis. Hematoxylin and eosin staining as well as Masson staining was implemented for histological evaluation. RT-qPCR was conducted for measuring relative mRNA levels, and protein expression was detected by western blotting. The interaction between SIRT1 and FOXO were verified by co-immunoprecipitations, and relations between RUNX3 and Apelin were demonstrated by dual luciferase report and chromatin immunoprecipitation. RESULTS The DN group exhibited significantly lower Apelin expression compared to control (p < 0.05). Apelin overexpression markedly improved blood glucose, renal function indicators, ameliorated renal fibrosis and reduced fibrotic factor expression (p < 0.05) in the DN group, accompanied by elevated sirt1 levels and diminished acetylated FOXO1/FOXO3a (p < 0.05). However, RUNX3 knockdown combined with Apelin overexpression abrogated these beneficial effects, leading to impaired renal function, exacerbated fibrosis, increased fibrotic factor expression and acetylated FOXO1/FOXO3a versus Apelin overexpression alone (p < 0.05). In mesangial cells under high glucose, Apelin overexpression significantly inhibited cell proliferation and fibrotic factor production (p < 0.05). Conversely, RUNX3 interference enhanced cell proliferation and the secretion of fibrotic factors. (p < 0.05). Remarkably, combining Apelin overexpression with RUNX3 interference reversed the proliferation and fibrosis induced by RUNX3 interference (p < 0.05). Mechanistic studies revealed RUNX3 binds to the Apelin promoter, with the 467-489 bp site1 as the primary binding region, and SIRT1 physically interacts with FOXO1 and FOXO3a in mesangial cells. CONCLUSION RUNX3 activated Apelin and regulated the SIRT1/FOXO signaling pathway, resulting in the suppressed cell proliferation and fibrosis in diabetic nephropathy. Apelin is a promising endogenous therapeutic target for anti-renal injury and anti-fibrosis in diabetic nephropathy. RUNX3 may serve as an endogenous intervention target for diseases related to Apelin deficiency.
Collapse
Affiliation(s)
- Xin Zhong
- Department of Nephrology, The Second Clinical Medical College), Zhujiang Hospital of Southern Medical University, No. 253, Middle Industrial Avenue, Haizhu District, Guangzhou, 510280, Guangdong Province, People's Republic of China
- Department of Nephrology, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong Province, People's Republic of China
| | - Jun Zhang
- Department of Nephrology, The Second Clinical Medical College), Zhujiang Hospital of Southern Medical University, No. 253, Middle Industrial Avenue, Haizhu District, Guangzhou, 510280, Guangdong Province, People's Republic of China.
| |
Collapse
|
35
|
McDowell JA, Kosmacek EA, Baine MJ, Adebisi O, Zheng C, Bierman MM, Myers MS, Chatterjee A, Liermann-Wooldrik KT, Lim A, Dickinson KA, Oberley-Deegan RE. Exogenous APN protects normal tissues from radiation-induced oxidative damage and fibrosis in mice and prostate cancer patients with higher levels of APN have less radiation-induced toxicities. Redox Biol 2024; 73:103219. [PMID: 38851001 PMCID: PMC11201354 DOI: 10.1016/j.redox.2024.103219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024] Open
Abstract
Radiation causes damage to normal tissues that leads to increased oxidative stress, inflammation, and fibrosis, highlighting the need for the selective radioprotection of healthy tissues without hindering radiotherapy effectiveness in cancer. This study shows that adiponectin, an adipokine secreted by adipocytes, protects normal tissues from radiation damage invitro and invivo. Specifically, adiponectin (APN) reduces chronic oxidative stress and fibrosis in irradiated mice. Importantly, APN also conferred no protection from radiation to prostate cancer cells. Adipose tissue is the primary source of circulating endogenous adiponectin. However, this study shows that adipose tissue is sensitive to radiation exposure exhibiting morphological changes and persistent oxidative damage. In addition, radiation results in a significant and chronic reduction in blood APN levels from adipose tissue in mice and human prostate cancer patients exposed to pelvic irradiation. APN levels negatively correlated with bowel toxicity and overall toxicities associated with radiotherapy in prostate cancer patients. Thus, protecting, or modulating APN signaling may improve outcomes for prostate cancer patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Joshua A McDowell
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Elizabeth A Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Michael J Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Oluwaseun Adebisi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Cheng Zheng
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Madison M Bierman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Molly S Myers
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Arpita Chatterjee
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kia T Liermann-Wooldrik
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Andrew Lim
- College of Nursing, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kristin A Dickinson
- College of Nursing, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
36
|
Vesey DA, Iyer A, Owen E, Kamato D, Johnson DW, Gobe GC, Fairlie DP, Nikolic-Paterson DJ. PAR2 activation on human tubular epithelial cells engages converging signaling pathways to induce an inflammatory and fibrotic milieu. Front Pharmacol 2024; 15:1382094. [PMID: 39005931 PMCID: PMC11239397 DOI: 10.3389/fphar.2024.1382094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024] Open
Abstract
Key features of chronic kidney disease (CKD) include tubulointerstitial inflammation and fibrosis. Protease activated receptor-2 (PAR2), a G-protein coupled receptor (GPCR) expressed by the kidney proximal tubular cells, induces potent proinflammatory responses in these cells. The hypothesis tested here was that PAR2 signalling can contribute to both inflammation and fibrosis in the kidney by transactivating known disease associated pathways. Using a primary cell culture model of human kidney tubular epithelial cells (HTEC), PAR2 activation induced a concentration dependent, PAR2 antagonist sensitive, secretion of TNF, CSF2, MMP-9, PAI-1 and CTGF. Transcription factors activated by the PAR2 agonist 2F, including NFκB, AP1 and Smad2, were critical for production of these cytokines. A TGF-β receptor-1 (TGF-βRI) kinase inhibitor, SB431542, and an EGFR kinase inhibitor, AG1478, ameliorated 2F induced secretion of TNF, CSF2, MMP-9, and PAI-1. Whilst an EGFR blocking antibody, cetuximab, blocked PAR2 induced EGFR and ERK phosphorylation, a TGF-βRII blocking antibody failed to influence PAR2 induced secretion of PAI-1. Notably simultaneous activation of TGF-βRII (TGF-β1) and PAR2 (2F) synergistically enhanced secretion of TNF (2.2-fold), CSF2 (4.4-fold), MMP-9 (15-fold), and PAI-1 (2.5-fold). In summary PAR2 activates critical inflammatory and fibrotic signalling pathways in human kidney tubular epithelial cells. Biased antagonists of PAR2 should be explored as a potential therapy for CKD.
Collapse
Affiliation(s)
- David A Vesey
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Abishek Iyer
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Evan Owen
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Danielle Kamato
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - David W Johnson
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - David P Fairlie
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Health and Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, VIC, Australia
| |
Collapse
|
37
|
Du H, Guo L, Lian J, Qiu H, Mao Y, Yi F, Hu H. Establishment of epithelial inflammatory injury model using adult kidney organoids. LIFE MEDICINE 2024; 3:lnae022. [PMID: 39871891 PMCID: PMC11749467 DOI: 10.1093/lifemedi/lnae022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/08/2024] [Indexed: 01/29/2025]
Affiliation(s)
- Haoran Du
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Liqiang Guo
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jiabei Lian
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Huanlu Qiu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yunuo Mao
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
38
|
Wang Y, Han Y, Shang K, Xiao J, Tao L, Peng Z, Liu S, Jiang Y. Kokusaginine attenuates renal fibrosis by inhibiting the PI3K/AKT signaling pathway. Biomed Pharmacother 2024; 175:116695. [PMID: 38713950 DOI: 10.1016/j.biopha.2024.116695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024] Open
Abstract
Kokusaginine is an active ingredient alkaloid that has been isolated and extracted from Ruta graveolens L. Some researches have indicated that alkaloids possess anti-inflammatory and antioxidant effects. Nevertheless, the potential nephroprotective effects of kokusaginine on renal fibrosis remain undetermined. This study was conducted to examine the protective effect of kokusaginine on renal fibrosis and to explore the underlying mechanisms using both in vivo and in vitro models. Renal fibrosis was induced in male C57BL/6 J mice by feeding with 0.2% adenine-containing food and UUO surgery. Kokusaginine was administered orally simultaneously after the establishment of renal fibrosis. Renal function was measured by serum levels of creatinine and urea nitrogen. Renal pathological changes were assessed by HE staining and Masson staining. Western blotting was employed to detect the expression levels of fibrosis-related proteins in mice and cells. Additionally, network pharmacology analysis and RNA-seq were utilized to predict the pathways through which kokusaginine could exert its anti-fibrotic effects. The treatment with kokusaginine enhanced renal function, alleviated renal histoarchitectural lesions, and mitigated renal fibrosis in the renal fibrosis models. The network pharmacology and RNA-seq enrichment analysis of the KEGG pathway demonstrated that kokusaginine could exert anti-renal fibrosis activity via the PI3K/AKT signaling pathway. And the results were verified in both in vitro and in vivo experiments. In conclusion, our data implied that kokusaginine inhibited the activation of the PI3K/AKT signaling pathway both in vitro and in vivo, and suppressed the formation of renal fibrosis. Thus, the kokusaginine-mediated PI3K/AKT signaling pathway may represent a novel approach for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuanyuan Han
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China; Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kaiqi Shang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jing Xiao
- Hunan Institute for Drug Control, Changsha 410001, China
| | - Lijian Tao
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China; Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhangzhe Peng
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China; Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
39
|
Zhang L, Liu W, Li S, Wang J, Sun D, Li H, Zhang Z, Hu Y, Fang J. Astragaloside IV alleviates renal fibrosis by inhibiting renal tubular epithelial cell pyroptosis induced by urotensin II through regulating the cAMP/PKA signaling pathway. PLoS One 2024; 19:e0304365. [PMID: 38820434 PMCID: PMC11142519 DOI: 10.1371/journal.pone.0304365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/11/2024] [Indexed: 06/02/2024] Open
Abstract
OBJECTIVE To explore the molecular mechanism of Astragaloside IV (AS-IV) in alleviating renal fibrosis by inhibiting Urotensin II-induced pyroptosis and epithelial-mesenchymal transition of renal tubular epithelial cells. METHODS Forty SD rats were randomly divided into control group without operation: gavage with 5ml/kg/d water for injection and UUO model group: gavage with 5ml/kg/d water for injection; UUO+ AS-IV group (gavage with AS-IV 20mg/kg/d; and UUO+ losartan potassium group (gavage with losartan potassium 10.3mg/kg/d, with 10 rats in each group. After 2 weeks, Kidney pathology, serum Urotensin II, and cAMP concentration were detected, and the expressions of NLRP3, GSDMD-N, Caspase-1, and IL-1β were detected by immunohistochemistry. Rat renal tubular epithelial cells were cultured in vitro, and different concentrations of Urotensin II were used to intervene for 24h and 48h. Cell proliferation activity was detected using the CCK8 assay. Suitable concentrations of Urotensin II and intervention time were selected, and Urotensin II receptor antagonist (SB-611812), inhibitor of PKA(H-89), and AS-IV (15ug/ml) were simultaneously administered. After 24 hours, cells and cell supernatants from each group were collected. The cAMP concentration was detected using the ELISA kit, and the expression of PKA, α-SMA, FN, IL-1β, NLRP3, GSDMD-N, and Caspase-1 was detected using cell immunofluorescence, Western blotting, and RT-PCR. RESULTS Renal tissue of UUO rats showed renal interstitial infiltration, tubule dilation and atrophy, renal interstitial collagen fiber hyperplasia, and serum Urotensin II and cAMP concentrations were significantly higher than those in the sham operation group (p <0.05). AS-IV and losartan potassium intervention could alleviate renal pathological changes, and decrease serum Urotensin II, cAMP concentration levels, and the expressions of NLRP3, GSDMD-N, Caspase-1, and IL-1β in renal tissues (p <0.05). Urotensin II at a concentration of 10-8 mol/L could lead to the decrease of cell proliferation, (p<0.05). Compared with the normal group, the cAMP level and the PKA expression were significantly increased (p<0.05). After intervention with AS-IV and Urotensin II receptor antagonist, the cAMP level and the expression of PKA were remarkably decreased (p<0.05). Compared with the normal group, the expression of IL-1β, NLRP3, GSDMD-N, and Caspase-1 in the Urotensin II group was increased (p<0.05), which decreased in the AS-IV and H-89 groups. CONCLUSION AS-IV can alleviate renal fibrosis by inhibiting Urotensin II-induced pyroptosis of renal tubular epithelial cells by regulating the cAMP/PKA signaling pathway.
Collapse
Affiliation(s)
- Lin Zhang
- Shanxi Medical University, Taiyuan, Shanxi Province, China
- Department of Prevention Care, Cardiovascular Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Wenyuan Liu
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Sufen Li
- Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jinjing Wang
- Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Dalin Sun
- Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hui Li
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Ziyuan Zhang
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yaling Hu
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jingai Fang
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
40
|
He P, Guo Y, Wang S, Bu S. Innovative insights: ITLN1 modulates renal injury in response to radiation. Int Immunopharmacol 2024; 133:111987. [PMID: 38652961 DOI: 10.1016/j.intimp.2024.111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Radiation-induced kidney injury is a common side effect of radiotherapy, as the pelvic region is in close proximity to the kidneys, posing a risk of inducing radiation-induced kidney injury when treating any pelvic malignancies with radiotherapy. This type of injury typically manifests as chronic kidney disease a few months after radiotherapy, with the potential to progress to end-stage renal disease. Radiation-induced damage involves various components of the kidney, including glomeruli, tubules, interstitium, and extracellular matrix. Therefore, investigating its molecular mechanisms is crucial. In this study, we extensively searched literature databases, selecting recent transcriptomic studies related to acute kidney injury (AKI) published in the past decade. We downloaded the raw RNA sequencing datasets GSE30718 and GSE66494 related to AKI from the GEO database and identified that intestinal-type lectin ITLN1 plays a significant role in regulating radiation-induced kidney injury in rats. Differential gene analysis was performed using chip data from the GEO database, and further bioinformatics analysis identified 13 genes that may be involved in regulating kidney injury, with ITLN1 being the most relevant to kidney damage, thus selected as the target gene for this study. Subsequently, a rat model of radiation-induced kidney injury was established for experimental validation, assessing kidney tissue morphology and injury extent through staining observation and immunohistochemical staining. The protective effect of ITLN1 on kidney function was evaluated by measuring changes in rat body weight and blood pressure, serum kidney injury markers, and kidney structure. The experimental results indicate that overexpression of ITLN1 can improve kidney function in rats with radiation-induced kidney injury by activating the Akt/GSK-3β/Nrf2 signaling pathway, suppressing oxidative stress, cell apoptosis, inflammation, cellular senescence, and fibrosis. This study highlights the significant role of ITLN1 in regulating kidney injury, providing a novel target for future treatments of radiation-induced kidney injury.
Collapse
Affiliation(s)
- Peng He
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Ying Guo
- Chengdu Aeronautic Polytechnic, Chengdu 610100, China
| | - Shize Wang
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Siyuan Bu
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
41
|
Saha P, Ajgaonkar S, Maniar D, Sahare S, Mehta D, Nair S. Current insights into transcriptional role(s) for the nutraceutical Withania somnifera in inflammation and aging. Front Nutr 2024; 11:1370951. [PMID: 38765810 PMCID: PMC11099240 DOI: 10.3389/fnut.2024.1370951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
The health-beneficial effects of nutraceuticals in various diseases have received enhanced attention in recent years. Aging is a continuous process wherein physiological activity of an individual declines over time and is characterized by various indefinite hallmarks which contribute toward aging-related comorbidities in an individual which include many neurodegenerative diseases, cardiac problems, diabetes, bone-degeneration, and cancer. Cellular senescence is a homeostatic biological process that has an important function in driving aging. Currently, a growing body of evidence substantiates the connection between epigenetic modifications and the aging process, along with aging-related diseases. These modifications are now being recognized as promising targets for emerging therapeutic interventions. Considering that almost all the biological processes are modulated by RNAs, numerous RNA-binding proteins have been found to be linked to aging and age-related complexities. Currently, studies have shed light on the ability of the nutraceutical Withania somnifera (Ashwagandha) to influence RNA expression, stability, and processing, offering insights into its mechanisms of action. By targeting RNA-related pathways, Withania somnifera may exhibit promising effects in ameliorating age-associated molecular changes, which include modifications in gene expression and signaling networks. This review summarizes the potential role of Withania somnifera as a nutraceutical in modulating RNA-level changes associated with aging, encompassing both in vitro and in vivo studies. Taken together, the putative role(s) of Withania in modulation of key RNAs will provide insights into understanding the aging process and facilitate the development of various preventive and therapeutic strategies employing nutraceuticals for healthy aging.
Collapse
Affiliation(s)
- Praful Saha
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Saiprasad Ajgaonkar
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Dishant Maniar
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Simran Sahare
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Dilip Mehta
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Sujit Nair
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| |
Collapse
|
42
|
Trujillo J, Alotaibi M, Seif N, Cai X, Larive B, Gassman J, Raphael KL, Cheung AK, Raj DS, Fried LF, Sprague SM, Block G, Chonchol M, Middleton JP, Wolf M, Ix JH, Prasad P, Isakova T, Srivastava A. Associations of Kidney Functional Magnetic Resonance Imaging Biomarkers with Markers of Inflammation in Individuals with CKD. KIDNEY360 2024; 5:681-689. [PMID: 38570905 PMCID: PMC11146641 DOI: 10.34067/kid.0000000000000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Key Points Lower baseline apparent diffusion coefficient, indicative of greater cortical fibrosis, correlated with higher baseline concentrations of serum markers of inflammation. No association between baseline cortical R2* and baseline serum markers of inflammation were found. Baseline kidney functional magnetic resonance imaging biomarkers of fibrosis and oxygenation were not associated with changes in inflammatory markers over time, which may be due to small changes in kidney function in the study. Background Greater fibrosis and decreased oxygenation may amplify systemic inflammation, but data on the associations of kidney functional magnetic resonance imaging (fMRI) measurements of fibrosis (apparent diffusion coefficient [ADC]) and oxygenation (relaxation rate [R2*]) with systemic markers of inflammation are limited. Methods We evaluated associations of baseline kidney fMRI-derived ADC and R2* with baseline and follow-up serum IL-6 and C-reactive protein (CRP) in 127 participants from the CKD Optimal Management with Binders and NicotinamidE trial, a randomized, 12-month trial of nicotinamide and lanthanum carbonate versus placebo in individuals with CKD stages 3–4. Cross-sectional analyses of baseline kidney fMRI biomarkers and markers of inflammation used multivariable linear regression. Longitudinal analyses of baseline kidney fMRI biomarkers and change in markers of inflammation over time used linear mixed-effects models. Results Mean±SD eGFR, ADC, and R2* were 32.2±8.7 ml/min per 1.73 m2, 1.46±0.17×10−3 mm2/s, and 20.3±3.1 s−1, respectively. Median (interquartile range) IL-6 and CRP were 3.7 (2.4–4.9) pg/ml and 2.8 (1.2–6.3) mg/L, respectively. After multivariable adjustment, IL-6 and CRP were 13.1% and 27.3% higher per 1 SD decrease in baseline cortical ADC, respectively. Baseline cortical R2* did not have a significant association with IL-6 or CRP. Mean annual IL-6 and CRP slopes were 0.98 pg/ml per year and 0.91 mg/L per year, respectively. Baseline cortical ADC and R2* did not have significant associations with change in IL-6 or CRP over time. Conclusions Lower cortical ADC, suggestive of greater fibrosis, was associated with higher systemic inflammation. Baseline kidney fMRI biomarkers did not associate with changes in systemic markers of inflammation over time.
Collapse
Affiliation(s)
- Jacquelyn Trujillo
- The Graduate School, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Manal Alotaibi
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Medicine, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nay Seif
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xuan Cai
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Brett Larive
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Jennifer Gassman
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Kalani L. Raphael
- Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, Utah
| | - Alfred K. Cheung
- Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, Utah
| | - Dominic S. Raj
- Division of Renal Diseases and Hypertension, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Linda F. Fried
- Division of Renal-Electrolyte, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Stuart M. Sprague
- Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois
| | | | - Michel Chonchol
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - John Paul Middleton
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Joachim H. Ix
- Renal Section, Department of Medicine, University of California San Diego School of Medicine, San Diego, California
| | - Pottumarthi Prasad
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois
| | - Tamara Isakova
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Anand Srivastava
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Nephrology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| |
Collapse
|
43
|
Bondar C, de Bolla MDLA, Neumann P, Pisani A, Feriozzi S, Rozenfeld PA. Pathogenic pathways of renal damage in Fabry nephropathy: interplay between immune cell infiltration, apoptosis and fibrosis. J Nephrol 2024; 37:625-634. [PMID: 38512375 DOI: 10.1007/s40620-024-01908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/15/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Fabry nephropathy is a consequence of the deposition of globotriaosylceramide, caused by deficient GLA enzyme activity in all types of kidney cells. These deposits are perceived as damage signals leading to activation of inflammation resulting in renal fibrosis. There are few studies related to immunophenotype characterization of the renal infiltrate in kidneys in patients with Fabry disease and its relationship to mechanisms of fibrosis. This work aims to quantify TGF-β1 and active caspase 3 expression and to analyze the profile of cells in inflammatory infiltration in kidney biopsies from Fabry naïve-patients, and to investigate correlations with clinical parameters. METHODS Renal biopsies from 15 treatment-naïve Fabry patients were included in this study. Immunostaining was performed to analyze active caspase 3, TGF-β1, TNF-α, CD3, CD20, CD68 and CD163. Clinical data were retrospectively gathered at time of kidney biopsy. RESULTS Our results suggest the production of TNFα and TGFβ1 by tubular cells, in Fabry patients. Active caspase 3 staining revealed that tubular cells are in apoptosis, and apoptotic levels correlated with clinical signs of chronic kidney disease, proteinuria, and inversely with glomerular filtration rate. The cell infiltrates consisted of macrophages, T and B cells. CD163 macrophages were found in biopsy specimens and their number correlates with TGFβ1 and active caspase 3 tubular expression. CONCLUSIONS These results suggest that CD163+ cells could be relevant mediators of fibrosis in Fabry nephropathy, playing a role in the induction of TGFβ1 and apoptotic cell death by tubular cells. These cells may represent a new player in the pathogenic mechanisms of Fabry nephropathy.
Collapse
Affiliation(s)
- Constanza Bondar
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, CONICET, Asociado CIC PBA, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, Bv 120 Nro 1489, 47 y 115, 1900, La Plata, Argentina
| | | | - Pablo Neumann
- Servicio de Diálisis y Nefrologia, IPENSA, Calle 59 N°434, 1900, La Plata, Argentina
| | - Antonio Pisani
- Chair of Nephrology, Federico II University of Naples, Naples, Italy
| | - Sandro Feriozzi
- Nephrology and Dialysis Unit, Belcolle Hospital, Viterbo, Italy
| | - Paula Adriana Rozenfeld
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, CONICET, Asociado CIC PBA, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, Bv 120 Nro 1489, 47 y 115, 1900, La Plata, Argentina.
| |
Collapse
|
44
|
Wang DX, Bao SY, Song NN, Chen WZ, Ding XQ, Walker RJ, Fang Y. FTO-mediated m6A mRNA demethylation aggravates renal fibrosis by targeting RUNX1 and further enhancing PI3K/AKT pathway. FASEB J 2024; 38:e23436. [PMID: 38430461 DOI: 10.1096/fj.202302041r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 03/03/2024]
Abstract
Chronic kidney disease (CKD) is a global health burden, with ineffective therapies leading to increasing morbidity and mortality. Renal interstitial fibrosis is a common pathway in advanced CKD, resulting in kidney function and structure deterioration. In this study, we investigate the role of FTO-mediated N6-methyladenosine (m6A) and its downstream targets in the pathogenesis of renal fibrosis. M6A modification, a prevalent mRNA internal modification, has been implicated in various organ fibrosis processes. We use a mouse model of unilateral ureteral obstruction (UUO) as an in vivo model and treated tubular epithelial cells (TECs) with transforming growth factor (TGF)-β1 as in vitro models. Our findings revealed increased FTO expression in UUO mouse model and TGF-β1-treated TECs. By modulating FTO expression through FTO heterozygous mutation mice (FTO+/- ) in vivo and small interfering RNA (siRNA) in vitro, we observed attenuation of UUO and TGF-β1-induced epithelial-mesenchymal transition (EMT), as evidenced by decreased fibronectin and N-cadherin accumulation and increased E-cadherin levels. Silencing FTO significantly improved UUO and TGF-β1-induced inflammation, apoptosis, and inhibition of autophagy. Further transcriptomic assays identified RUNX1 as a downstream candidate target of FTO. Inhibiting FTO was shown to counteract UUO/TGF-β1-induced RUNX1 elevation in vivo and in vitro. We demonstrated that FTO signaling contributes to the elevation of RUNX1 by demethylating RUNX1 mRNA and improving its stability. Finally, we revealed that the PI3K/AKT pathway may be activated downstream of the FTO/RUNX1 axis in the pathogenesis of renal fibrosis. In conclusion, identifying small-molecule compounds that target this axis could offer promising therapeutic strategies for treating renal fibrosis.
Collapse
Affiliation(s)
- Da-Xi Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Kidney Disease and Blood Purification, Shanghai, China
| | - Si-Yu Bao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Kidney Disease and Blood Purification, Shanghai, China
| | - Na-Na Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Kidney Disease and Blood Purification, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Nephrology and Dialysis, Shanghai, China
| | - Wei-Ze Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Kidney Disease and Blood Purification, Shanghai, China
| | - Xiao-Qiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Kidney Disease and Blood Purification, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Nephrology and Dialysis, Shanghai, China
| | - Robert J Walker
- Department of Nephrology, University of Otago Medical School, Dunedin, New Zealand
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Kidney Disease and Blood Purification, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Nephrology and Dialysis, Shanghai, China
| |
Collapse
|
45
|
Hao XM, Liu Y, Hailaiti D, Gong Y, Zhang XD, Yue BN, Liu JP, Wu XL, Yang KZ, Wang J, Liu QG. Mechanisms of inflammation modulation by different immune cells in hypertensive nephropathy. Front Immunol 2024; 15:1333170. [PMID: 38545112 PMCID: PMC10965702 DOI: 10.3389/fimmu.2024.1333170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/15/2024] [Indexed: 04/10/2024] Open
Abstract
Hypertensive nephropathy (HTN) is the second leading cause of end-stage renal disease (ESRD) and a chronic inflammatory disease. Persistent hypertension leads to lesions of intrarenal arterioles and arterioles, luminal stenosis, secondary ischemic renal parenchymal damage, and glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Studying the pathogenesis of hypertensive nephropathy is a prerequisite for diagnosis and treatment. The main cause of HTN is poor long-term blood pressure control, but kidney damage is often accompanied by the occurrence of immune inflammation. Some studies have found that the activation of innate immunity, inflammation and acquired immunity is closely related to the pathogenesis of HTN, which can cause damage and dysfunction of target organs. There are more articles on the mechanism of diabetic nephropathy, while there are fewer studies related to immunity in hypertensive nephropathy. This article reviews the mechanisms by which several different immune cells and inflammatory cytokines regulate blood pressure and renal damage in HTN. It mainly focuses on immune cells, cytokines, and chemokines and inhibitors. However, further comprehensive and large-scale studies are needed to determine the role of these markers and provide effective protocols for clinical intervention and treatment.
Collapse
Affiliation(s)
- Xiao-Min Hao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | | | - Yu Gong
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Dong Zhang
- Department of Chinese Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Bing-Nan Yue
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ji-Peng Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Li Wu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ke-Zhen Yang
- Department of Rehabilitation Medicine, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Guo Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
46
|
Song J, Yu W, Chen S, Huang J, Zhou C, Liang H. Remimazolam attenuates inflammation and kidney fibrosis following folic acid injury. Eur J Pharmacol 2024; 966:176342. [PMID: 38290569 DOI: 10.1016/j.ejphar.2024.176342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
The transition of acute kidney injury (AKI) to chronic kidney disease (CKD) is characterized by intense inflammation and progressive fibrosis. Remimazolam is widely used for procedural sedation in intensive care units, such as AKI patients. Remimazolam has been shown to possess anti-inflammatory and organ-protective properties. However, the role of remimazolam in inflammation and renal fibrosis following AKI remains unclear. Here, we explored the effects of remimazolam on the inflammatory response and kidney fibrogenesis of mice subjected to folic acid (FA) injury. Our results showed that remimazolam treatment alleviated kidney damage and dysfunction. Mice treated with remimazolam presented less collagen deposition in FA-injured kidneys compared with FA controls, which was accompanied by a reduction of extracellular matrix proteins accumulation and fibroblasts activation. Furthermore, remimazolam treatment reduced inflammatory cells infiltration into the kidneys of mice with FA injury and inhibited proinflammatory or profibrotic molecules expression. Finally, remimazolam treatment impaired the activation of bone marrow-derived fibroblasts and blunted the transformation of macrophages to myofibroblasts in FA nephropathy. Additionally, the benzodiazepine receptor antagonist PK-11195 partially reversed the protective effect of remimazolam on the FA-injured kidneys. Overall, remimazolam attenuates the inflammatory response and renal fibrosis development following FA-induced AKI, which may be related to the peripheral benzodiazepine receptor pathway.
Collapse
Affiliation(s)
- Jinfang Song
- Department of Anesthesiology, Foshan Women and Children Hospital, Foshan, 528000, China; Zhuhai Campus, Zunyi Medical University, Zhuhai, 519041, China.
| | - Wenqiang Yu
- Department of Anesthesiology, Foshan Women and Children Hospital, Foshan, 528000, China.
| | - Shuangquan Chen
- Department of Anesthesiology, Foshan Women and Children Hospital, Foshan, 528000, China.
| | - Jiamin Huang
- Department of Anesthesiology, Foshan Women and Children Hospital, Foshan, 528000, China.
| | - Chujun Zhou
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Hua Liang
- Department of Anesthesiology, Foshan Women and Children Hospital, Foshan, 528000, China.
| |
Collapse
|
47
|
de Paula MA, Pinheiro da Costa BE, Figueiredo AE, Poli-de-Figueiredo CE. Assessment of the performance of vascular access for hemodialysis. J Vasc Access 2024; 25:607-614. [PMID: 36250441 DOI: 10.1177/11297298221129951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Life and quality of life on hemodialysis depends on adequate vascular access. An autogenous arteriovenous fistula (AVF) has the best performance, while the use of a central venous catheter (CVC) may have a negative impact on fistula performance and may be associated with increased systemic inflammation. Our objective is to evaluate the performance of vascular accesses in patients undergoing a chronic hemodialysis program. METHODS This is an observational, cross-sectional, and descriptive study that included patients on chronic hemodialysis for more than 90 days. Patients with an acute systemic inflammatory disease and those with acute cardiovascular illness were excluded. Clinical data, dialysis session parameters, and serum levels of inflammatory markers were evaluated. RESULTS A total of 91 patients were evaluated, 59 (65%) had an AVF and 32 patients (35%) had a CVC. The adequacy rate was 67%; being 67.8% with AVF and 65.6% with CVC. Among the causes of AVF inadequacy, the ones that presented the highest prevalence ratio (PR) were non-mature AVF (PR: 4.055; 95% CI: 2.017-8.151), pseudoaneurysm (PR: 6.580; 95% CI: 3.723-11.629) and presence of hematoma (PR: 4.360; 95% CI: 2.125-8.946), p < 0.001. Among the catheter group, the causes of inadequacy with the highest PR were the presence of access thrombosis, indicating the use of thrombolytics (PR: 11.103; 95% CI: 4.746-25.977; p < 0.001) and infection (PR: 2.984; 95% CI: 1.293-6.889; p = 0.010). Median primary AVF patency was 72 months compared to 7 months of catheters (p < 0.001). There was no significant difference in serum inflammatory markers between the two groups. CONCLUSIONS Adequacy rates of vascular accesses did not differ between the groups, but the primary and functional patency of AVF is 10 times higher than that of catheters. Infection in dialysis catheters is associated with worse access performance. There was no association between systemic inflammation and vascular access.
Collapse
Affiliation(s)
- Mariane Amado de Paula
- Nephrology Department, Escola de Medicina PUCRS, Universidade Católica do Rio Grande do Sul, Brasil
| | | | - Ana Elizabeth Figueiredo
- Nephrology Department, Escola de Medicina PUCRS, Universidade Católica do Rio Grande do Sul, Brasil
| | | |
Collapse
|
48
|
Yoon J, Han T, Heo SJ, Kwon YJ. Comprehensive assessment of the combined impact of dyslipidemia and inflammation on chronic kidney disease development: A prospective cohort study. J Clin Lipidol 2024; 18:e251-e260. [PMID: 38233308 DOI: 10.1016/j.jacl.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND There remains a limited comprehensive understanding of how dyslipidemia and chronic inflammation collectively contribute to the development of chronic kidney disease (CKD). OBJECTIVE We aimed to identify clusters of individuals with five variables, including lipid profiles and C-reactive protein (CRP) levels, and to assess whether the clusters were associated with incident CKD risk. METHODS We used the Korean Genome and Epidemiology Study-Ansan and Ansung data. K-means clustering analysis was performed to identify distinct clusters based on total cholesterol, triglyceride, non-high-density lipoprotein (HDL)-C, HDL-C, and CRP levels. Cox proportional hazards models were used to examine the association between incident CKD risk and the different clusters. RESULTS During the mean 10-year follow-up period, CKD developed in 1,645 participants (690 men and 955 women) among a total of 8,053 participants with a mean age of 51.8 years. Four distinct clusters were identified: C1, low cholesterol group (LC); C2, high-density lipoprotein cholesterol group (HC); C3, insulin resistance and inflammation group (IIC); and C4, dyslipidemia and inflammation group (DIC). Cluster 4 had a significantly higher risk of incident CKD compared to clusters 2 (hazard ratio (HR) 1.455 [95% confidence interval (CI) 1.234-1.715]; p < 0.001) and cluster 1 (HR 1.264 [95% CI 1.067-1.498]; p = 0.007) after adjusting for confounders. Cluster 3 had a significantly higher risk of incident CKD compared to clusters 2 and 1. CONCLUSION Clusters 4 and 3 had higher risk of incident CKD compared to clusters 2 and 1. The combination of dyslipidemia with inflammation or insulin resistance with inflammation appears to be pivotal in the development of incident CKD.
Collapse
Affiliation(s)
- Jihyun Yoon
- Department of Family Medicine, Korean University Anam Hospital, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02481, Republic of Korea (Dr Yoon)
| | - Taehwa Han
- Health-IT Center, Yonsei University Severance Hospital, Seoul, 03722, Republic of Korea (Dr Han)
| | - Seok-Jae Heo
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul 03722, Republic of Korea (Dr Heo).
| | - Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University of College of Medicine, Seoul, 03722, Republic of Korea (Dr Kwon).
| |
Collapse
|
49
|
Zhao Z, Yan Q, Xie J, Liu Z, Liu F, Liu Y, Zhou S, Pan S, Liu D, Duan J, Liu Z. The intervention of cannabinoid receptor in chronic and acute kidney disease animal models: a systematic review and meta-analysis. Diabetol Metab Syndr 2024; 16:45. [PMID: 38360685 PMCID: PMC10870675 DOI: 10.1186/s13098-024-01283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
AIM Cannabinoid receptors are components of the endocannabinoid system that affect various physiological functions. We aim to investigate the effect of cannabinoid receptor modulation on kidney disease. METHODS PubMed, Web of Science databases, and EMBASE were searched. Articles selection, data extraction and quality assessment were independently performed by two investigators. The SYRCLE's RoB tool was used to assess the risk of study bias, and pooled SMD using a random-effect model and 95% CIs were calculated. Subgroup analyses were conducted in preselected subgroups, and publication bias was evaluated. We compared the effects of CB1 and CB2 antagonists and/or knockout and agonists and/or genetic regulation on renal function, blood glucose levels, body weight, and pathological damage-related indicators in different models of chronic and acute kidney injury. RESULTS The blockade or knockout of CB1 could significantly reduce blood urea nitrogen [SMD,- 1.67 (95% CI - 2.27 to - 1.07)], serum creatinine [SMD, - 1.88 (95% CI - 2.91 to - 0.85)], and albuminuria [SMD, - 1.60 (95% CI - 2.16 to - 1.04)] in renal dysfunction animals compared with the control group. The activation of CB2 group could significantly reduce serum creatinine [SMD, - 0.97 (95% CI - 1.83 to - 0.11)] and albuminuria [SMD, - 2.43 (95% CI - 4.63 to - 0.23)] in renal dysfunction animals compared with the control group. CONCLUSIONS The results suggest that targeting cannabinoid receptors, particularly CB1 antagonists and CB2 agonists, can improve kidney function and reduce inflammatory responses, exerting a renal protective effect and maintaining therapeutic potential in various types of kidney disease.
Collapse
Affiliation(s)
- Zihao Zhao
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Qianqian Yan
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Junwei Xie
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Zhenjie Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Fengxun Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Yong Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Sijie Zhou
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Shaokang Pan
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Jiayu Duan
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China.
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
50
|
Jin J, Yang YR, Gong Q, Wang JN, Ni WJ, Wen JG, Meng XM. Role of epigenetically regulated inflammation in renal diseases. Semin Cell Dev Biol 2024; 154:295-304. [PMID: 36328897 DOI: 10.1016/j.semcdb.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/01/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
In recent decades, renal disease research has witnessed remarkable advances. Experimental evidence in this field has highlighted the role of inflammation in kidney disease. Epigenetic dynamics and immunometabolic reprogramming underlie the alterations in cellular responses to intrinsic and extrinsic stimuli; these factors determine cell identity and cell fate decisions and represent current research hotspots. This review focuses on recent findings and emerging concepts in epigenetics and inflammatory regulation and their effect on renal diseases. This review aims to summarize the role and mechanisms of different epigenetic modifications in renal inflammation and injury and provide new avenues for future research on inflammation-related renal disease and drug development.
Collapse
Affiliation(s)
- Juan Jin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China; School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Ya-Ru Yang
- Department of Clinical Pharmacology, Second Hospital of Anhui Medical University, Hefei, China
| | - Qian Gong
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| |
Collapse
|