1
|
Mousavi SH, Yaghoobi M, Asjadi F. Highly efficient adsorption of congo red and methyl orange dyes using mesoporous α-Mn 2O 3 nanoparticles synthesized with Pyracantha angustofolia fruit extract. Sci Rep 2024; 14:18505. [PMID: 39122903 PMCID: PMC11316113 DOI: 10.1038/s41598-024-69432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Due to the many applications of manganese oxides in water treatment, this research aimed to synthesize α-Mn2O3 nanoparticles through a green method and investigate the dye adsorption capacity of them. The α-Mn2O3 nanoparticles were successfully synthesized using KMnO4 and aqueous extract of Pyracantha angustofolia fruits under hydrothermal conditions and calcination. The products were identified using Fourier transform infrared (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and scanning electron microscopy (SEM) analyses. The adsorption capacity of methyl orange (MO) and Congo red (CR) dyes were evaluated at different concentrations (25, 50, and 75 ppm) using α-Mn2O3 nanoparticles. Results revealed the spherical and porous structure of α-Mn2O3 nanoparticles with a specific surface area of 21.7 m2.g-1. Dye removal significantly increased with pH decrement. The adsorption capacity for MO and CR was 73.07 and 70.70 mg.g-1, respectively. The adsorption data of both dyes followed a pseudo-second-order kinetic model. The best fitted models for MO and CR adsorption were the Langmuir isotherm and the Dubinin-Radushkevich, respectively. In addition, a possible adsorption mechanism was proposed for both dyes. The findings showed that α-Mn2O3 nanoparticles are very efficient adsorbents for removing anionic dyes.
Collapse
Affiliation(s)
- Seyyed Hassan Mousavi
- Department of Chemical Engineering, Faculty of Engineering, University of Zanjan, P.O. Box, Zanjan, 45371-38791, Iran
| | - Maliheh Yaghoobi
- Department of Chemical Engineering, Faculty of Engineering, University of Zanjan, P.O. Box, Zanjan, 45371-38791, Iran.
| | - Fatemeh Asjadi
- Department of Materials Science and Engineering, Faculty of Engineering, University of Zanjan, P.O. Box, Zanjan, 45371-38791, Iran
| |
Collapse
|
2
|
Zhou X, Shu S, Ye X, Li Z. Engineering Faradaic Electrode Materials for High-Efficiency Water Desalination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400047. [PMID: 38488708 DOI: 10.1002/smll.202400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Indexed: 08/09/2024]
Abstract
Water desalination technologies play a key role in addressing the global water scarcity crisis and ensuring a sustainable supply of freshwater. In contrast to conventional capacitive deionization, which suffers from limitations such as low desalination capacity, carbon anode oxidation, and co-ion expulsion effects of carbon materials, the emerging faradaic electrochemical deionization (FDI) presents a promising avenue for enhancing water desalination performance. These electrode materials employed faradaic charge-transfer processes for ion removal, achieving higher desalination capacity and energy-efficient desalination for high salinity streams. The past decade has witnessed a surge in the advancement of faradaic electrode materials and considerable efforts have been made to explore optimization strategies for improving their desalination performance. This review summarizes the recent progress on the optimization strategies and underlying mechanisms of faradaic electrode materials in pursuit of high-efficiency water desalination, including phase, doping and vacancy engineering, nanocarbon incorporation, heterostructures construction, interlayer spacing engineering, and morphology engineering. The key points of each strategy in design principle, modification method, structural analysis, and optimization mechanism of faradaic materials are discussed in detail. Finally, this work highlights the remaining challenges of faradaic electrode materials and present perspectives for future research.
Collapse
Affiliation(s)
- Xiaoli Zhou
- Department of Environmental Science and Engineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shirui Shu
- Department of Environmental Science and Engineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiaoyu Ye
- Department of Environmental Science and Engineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zejun Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 211189, China
- Purple Mountain Laboratories, Nanjing, 211111, China
| |
Collapse
|
3
|
Chen Z, Zhang X, Geng W, Gong C, Li Z, Chen C, Zhang Y, Wang G. Na 2MnSiO 4/C as hybrid capacitive deionization electrode material to enhance desalination performance. J Colloid Interface Sci 2024; 662:627-636. [PMID: 38367580 DOI: 10.1016/j.jcis.2024.02.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
The utilization of Na2MnSiO4 as a Faraday electrode in hybrid capacitive deionization (HCDI) is investigated to achieve efficient desalination. The Na2MnSiO4/C (NMSO) materials were fabricated via a simple sol-gel method, in which the synthesis process was modulated by adjusting the volume ratio of ethanol to water. When maintaining the volume ratio of water to ethanol at 3:1, the resultant NMSO-3/1 exhibited expected salt adsorption capacity of 31.06 mg g-1 and salt adsorption rate of 20.43 mg g-1 min-1. This distinguished desalination performance was mainly attributed to its inherent multiple redox pairs, as well as the integration of ethanol, which enhanced both specific capacitance and hydrophilicity of the material. This study opens a new perspective for the development of highly efficient materials in HCDI.
Collapse
Affiliation(s)
- Zhouyi Chen
- University of Science and Technology of China, Hefei 230026, PR China; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Xiao Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Wusong Geng
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Chengyun Gong
- University of Science and Technology of China, Hefei 230026, PR China; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, PR China
| | - Zeyang Li
- University of Science and Technology of China, Hefei 230026, PR China; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Chun Chen
- University of Science and Technology of China, Hefei 230026, PR China; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Yunxia Zhang
- University of Science and Technology of China, Hefei 230026, PR China; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Guozhong Wang
- University of Science and Technology of China, Hefei 230026, PR China; Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, PR China.
| |
Collapse
|
4
|
Lin G, Wang G, Xiong Y, Li S, Jiang R, Lu B, Huang B, Xie H. High-performance electrosorption of lanthanum ion by Mn 3O 4-loaded phosphorus-doped porous carbon electrodes via capacitive deionization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120856. [PMID: 38608574 DOI: 10.1016/j.jenvman.2024.120856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Transition-metal-oxide@heteroatom doped porous carbon composites have attracted considerable research interest because of their large theoretical adsorption capacity, excellent electrical conductivity and well-developed pore structure. Herein, Mn3O4-loaded phosphorus-doped porous carbon composites (Mn3O4@PC-900) were designed and fabricated for the electrosorption of La3+ in aqueous solutions. Due to the synergistic effect between Mn3O4 and PC-900, and the active sites provided by Mn-O-Mn, C/PO, C-P-O and Mn-OH, Mn3O4@PC-900 exhibits high electrosorption performance. The electrosorption value of Mn3O4@PC-900 was 45.34% higher than that of PC-900, reaching 93.02 mg g-1. Moreover, the adsorption selectivity reached 87.93% and 89.27% in La3+/Ca2+ and La3+/Na+ coexistence system, respectively. After 15 adsorption-desorption cycles, its adsorption capacity and retention rate were 50.34 mg g-1 and 54.12%, respectively. The electrosorption process is that La3+ first accesses the pores of Mn3O4@PC-900 to generate an electric double layer (EDL), and then undergoes further Faradaic reaction with Mn3O4 and phosphorus-containing functional groups through intercalation, surface adsorption and complexation. This work is hoped to offer a new idea for exploring transition-metal-oxide @ heteroatom doped porous carbon composites for separation and recovery of rare earth elements (REEs) by capacitive deionization.
Collapse
Affiliation(s)
- Guanfeng Lin
- Materials Engineering College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Jinshan College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Guilong Wang
- Materials Engineering College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongzhi Xiong
- Materials Engineering College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Simin Li
- Materials Engineering College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongyuan Jiang
- Materials Engineering College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Beili Lu
- Materials Engineering College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Biao Huang
- Materials Engineering College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Hangzhou, 310003, China
| |
Collapse
|
5
|
Kumar S, Aldaqqa NM, Alhseinat E, Shetty D. Electrode Materials for Desalination of Water via Capacitive Deionization. Angew Chem Int Ed Engl 2023; 62:e202302180. [PMID: 37052355 DOI: 10.1002/anie.202302180] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/14/2023]
Abstract
Recent years have seen the emergence of capacitive deionization (CDI) as a promising desalination technique for converting sea and wastewater into potable water, due to its energy efficiency and eco-friendly nature. However, its low salt removal capacity and parasitic reactions have limited its effectiveness. As a result, the development of porous carbon nanomaterials as electrode materials have been explored, while taking into account of material characteristics such as morphology, wettability, high conductivity, chemical robustness, cyclic stability, specific surface area, and ease of production. To tackle the parasitic reaction issue, membrane capacitive deionization (mCDI) was proposed which utilizes ion-exchange membranes coupled to the electrode. Fabrication techniques along with the experimental parameters used to evaluate the desalination performance of different materials are discussed in this review to provide an overview of improvements made for CDI and mCDI desalination purposes.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Najat Maher Aldaqqa
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Emad Alhseinat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Dinesh Shetty
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis & Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Mombeshora ET, Muchuweni E. Dynamics of reduced graphene oxide: synthesis and structural models. RSC Adv 2023; 13:17633-17655. [PMID: 37312999 PMCID: PMC10258683 DOI: 10.1039/d3ra02098c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
Technological advancements are leading to an upsurge in demand for functional materials that satisfy several of humankind's needs. In addition to this, the current global drive is to develop materials with high efficacy in intended applications whilst practising green chemistry principles to ensure sustainability. Carbon-based materials, such as reduced graphene oxide (RGO), in particular, can possibly meet this criterion because they can be derived from waste biomass (a renewable material), possibly synthesised at low temperatures without the use of hazardous chemicals, and are biodegradable (owing to their organic nature), among other characteristics. Additionally, RGO as a carbon-based material is gaining momentum in several applications due to its lightweight, nontoxicity, excellent flexibility, tuneable band gap (from reduction), higher electrical conductivity (relative to graphene oxide, GO), low cost (owing to the natural abundance of carbon), and potentially facile and scalable synthesis protocols. Despite these attributes, the possible structures of RGO are still numerous with notable critical variations and the synthesis procedures have been dynamic. Herein, we summarize the highlights from the historical breakthroughs in understanding the structure of RGO (from the perspective of GO) and the recent state-of-the-art synthesis protocols, covering the period from 2020 to 2023. These are key aspects in the realisation of the full potential of RGO materials through the tailoring of physicochemical properties and reproducibility. The reviewed work highlights the merits and prospects of the physicochemical properties of RGO toward achieving sustainable, environmentally friendly, low-cost, and high-performing materials at a large scale for use in functional devices/processes to pave the way for commercialisation. This can drive the sustainability and commercial viability aspects of RGO as a material.
Collapse
Affiliation(s)
- Edwin T Mombeshora
- Department of Chemistry and Earth Sciences, University of Zimbabwe Mount Pleasant Harare MP167 Zimbabwe
| | - Edigar Muchuweni
- Department of Engineering and Physics, Bindura University of Science Education Bindura Zimbabwe
| |
Collapse
|
7
|
Peng D, Que M, Deng X, He Q, Zhao Y, Liao S, Li X, Qiu H. Mn 3O 4 nanoparticles decorated porous reduced graphene oxide with excellent oxidase-like activity for fast colorimetric detection of ascorbic acid. Mikrochim Acta 2023; 190:243. [PMID: 37247129 DOI: 10.1007/s00604-023-05822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/04/2023] [Indexed: 05/30/2023]
Abstract
Mn3O4 nanoparticles composed of porous reduced graphene oxide nanosheets (Mn3O4@p-rGO) with enhanced oxidase-like activity were successfully fabricated through an in-situ approach for fast colorimetric detection of ascorbic acid (AA). The residual Mn2+ in the GO suspension of Hummers method was directly reused as the manganese source, improving the atom utilization efficiency. Benefiting from the uniform distribution of Mn3O4 nanoparticles on the surface of p-rGO nanosheets, the nanocomposite exhibited larger surface area, more active sites, and accelerated electron transfer efficiency, which enhanced the oxidase-like activity. Mn3O4@p-rGO nanocomposite efficiently activate dissolved O2 to generate singlet oxygen (1O2), leading to high oxidation capacity toward the substrate 3,3',5,5'-tetramethylbenzidine (TMB) without the extra addition of H2O2. Furthermore, the prominent absorption peak of the blue ox-TMB at 652 nm gradually decreased in the presence of AA, and a facile and fast colorimetric sensor was constructed with a good linear relationship (0.5-80 μM) and low LOD (0.278 μM) toward AA. Owing to the simplicity and excellent stability of the sensing platform, its practical application for AA detection in juices has shown good feasibility and reliability compared with HPLC and the 2, 4-dinitrophenylhydrazine colorimetric method. The oxidase-like Mn3O4@p-rGO provides a versatile platform for applications in food testing and disease diagnosis.
Collapse
Affiliation(s)
- Dong Peng
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Mingming Que
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Xiulong Deng
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Qifang He
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Yuhong Zhao
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Shuzhen Liao
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Xun Li
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Hongdeng Qiu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China.
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
8
|
Chen PA, Liu SH, Wang HP. Pseudocapacitive Deionization of Saltwater by Mn 3O 4@C/Activated Carbon. ACS OMEGA 2023; 8:13315-13322. [PMID: 37065037 PMCID: PMC10099447 DOI: 10.1021/acsomega.3c00673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Capacitive deionization (CDI), a m ethod with notable advantages of relatively low energy consumption and environmental friendliness, has been widely used in desalination of saltwater. However, due to the weak electrical double-layer electrosorption of ions from water, CDI has suffered from low throughput capacity that may limit its commercial applications. Thus, it is of importance to develop a high-efficiency and engineering-feasible CDI process. Manganese and cobalt and their oxides, being faradic materials, have a relatively high pseudocapacitance, which can cause an increase of positive and negative charges on opposing electrodes. However, their low conductivity properties limit their electrochemical applications. Pseudocapacitive Mn3O4 nanoparticles encapsulated within a conducting carbon shell (Mn3O4@C) were prepared to enhance charge transfer and capacitance for CDI. Desalination performances of the Mn3O4@C (5-15 wt %) core-shell nanoparticles on activated carbon (AC) (Mn3O4@C/AC) serving as CDI electrodes have thus been investigated. The pseudocapacitive Mn3O4@C/AC electrodes with relatively low diffusion resistances have much greater capacitance (240-1300 F/g) than the pristine AC electrode (120 F/g). In situ synchrotron X-ray absorption near-edge structure spectra of the Mn3O4@C/AC electrodes during CDI (under 1.2 and -1.2 V for electrosorption and regeneration, respectively) demonstrate that reversible faradic redox reactions cause more negative charges on the negative electrode and more positive charges on the positive electrode. Consequently, the pseudocapacitive electrodes for CDI of saltwater ([NaCl] = 1000 ppm) show much better desalination performances with a high optimized salt removal (600 mg/g·day), electrosorption efficiency (48%), and electrosorption capacity (EC) (25 mg/g) than the AC electrodes (288 mg/g·day, 23%, and 12 mg/g, respectively). The Mn3O4@C/AC electrode has a maximum EC of 29 mg/g for CDI under +1.2 V. Also, the Mn3O4@C/AC electrodes have much higher pseudocapacitive electrosorption rate constants (0.0049-0.0087 h-1) than the AC electrode (0.0016 h-1). This work demonstrates the feasibility of high-efficiency CDI of saltwater for water recycling and reuse using the low-cost and easily fabricated pseudocapacitive Mn3O4@C/AC electrodes.
Collapse
|
9
|
Younes H, Rahman MM, Hong H, AlNahyan M, Ravaux F. Capacitive deionization performance of asymmetric nanoengineered CoFe 2O 4 carbon nanomaterials composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32539-32549. [PMID: 36469268 DOI: 10.1007/s11356-022-24516-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Capacitive deionization (CDI) is a relatively new technique that uses electric double layer (EDL) effects, high-affinity chemical groups, redox-active materials, and membrane capacitive electrosorption principle for the desalination. In this paper, hydrothermal synthesis of cobalt ferric oxide (CFO) metal oxide nanoparticles (NPs) coupled with the vacuum filtration method, or the freeze-drying method is used to fabricate high-performance nanocomposites: CFO-graphene, CFO-CNTs, and CFO-3DrGO. Two times of hydrothermal reaction methods were conducted to fabricate the CFO-3DrGO nanoengineered as a pseudocapacitive/EDL electrode. The results have demonstrated that the SAC of CFO-3DrGO/CFO (64.5 mg g-1) is greater than that of the CFO-graphene/CFO (55.16 mg g-1) and CFO-CNTs/CFO (21.5 mg g-1) due to the better surface area of the CFO-3DrGO nanocomposite (330 m2 g-1). The higher surface area of the CFO-3DrGO is due to the porous and interconnected 3D structure of the 3DrGO, and it provides a larger surface area to form EDL capacitance. In addition, the added porous 3DrGO entangled with the spinel crystals (CoFe2O4) in the composite allowed for a quick ion diffusion across the interconnected open macroporous structures.
Collapse
Affiliation(s)
- Hammad Younes
- Department of Electrical Engineering, South Dakota Mines, Rapid City, SD, 57701, USA.
| | - Md Mahfuzur Rahman
- Department of Industrial and Production Engineering, Jashore University of Science and Technology (JUST), Jashore, 7408, Bangladesh
| | - Haiping Hong
- Department of Electrical Engineering, South Dakota Mines, Rapid City, SD, 57701, USA
| | - Maryam AlNahyan
- Department of Mechanical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Florent Ravaux
- Department of Mechanical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Liu Y, Tian Y, Xu J, Wang C, Wang Y, Yuan D, Chew JW. Electrosorption performance on graphene-based materials: a review. RSC Adv 2023; 13:6518-6529. [PMID: 36845580 PMCID: PMC9950858 DOI: 10.1039/d2ra08252g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/19/2023] [Indexed: 02/28/2023] Open
Abstract
Due to its unique advantages such as flexible planar structure, ultrahigh specific surface area, superior electrical conductivity and electrical double-layer capacitance in theory, graphene has unparalleled virtues compared with other carbon materials. This review summarizes the recent research progress of various graphene-based electrodes on ion electrosorption fields, especially for water desalination utilizing capacitive deionization (CDI) technology. We present the latest advances of graphene-based electrodes, such as 3D graphene, graphene/metal oxide (MO) composites, graphene/carbon composites, heteroatom-doped graphene and graphene/polymer composites. Furthermore, a brief outlook on the challenges and future possible developments in the electrosorption area are also addressed for researchers to design graphene-based electrodes towards practical application.
Collapse
Affiliation(s)
- Yan Liu
- Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education Nanchang 330013 China
| | - Yun Tian
- Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education Nanchang 330013 China
| | - Jianda Xu
- Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education Nanchang 330013 China
| | - Changfu Wang
- Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education Nanchang 330013 China
| | - Yun Wang
- Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education Nanchang 330013 China
| | - Dingzhong Yuan
- Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education Nanchang 330013 China
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University Singapore 639798 Singapore
| |
Collapse
|
11
|
Turning waste into valuables: In situ deposition of polypyrrole on the obsolete mask for Cr(VI) removal and desalination. Sep Purif Technol 2023; 306:122643. [PMID: 36406342 PMCID: PMC9661547 DOI: 10.1016/j.seppur.2022.122643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
The global mask consumption has been exacerbated because of the coronavirus disease 2019 (COVID-19) pandemic. Simultaneously, the traditional mask disposal methods (incineration and landfill) have caused serious environmental pollution and waste of resources. Herein, a simple and green mass-production method has been proposed to recycle carbon protective mask (CPM) into the carbon protective mask/polydopamine/polypyrrole (CPM/PDA/PPy) composite by in situ polymerization of PPy. The CPM/PDA/PPy composite was used for the removal of Cr(VI) and salt ions to produce clean water. The synergistic effect of PPy and the CPM improved the removal capability of Cr(VI). The CPM/PDA/PPy composite provided high adsorption capacity (358.68 mg g-1) and economic value (811.42 mg $-1). Consequently, the CPM/PDA/PPy (cathode) was combined with MnO2 (anode) for desalination in CDI cells, demonstrated excellent desalination capacity (26.65 mg g-1) and ultrafast salt adsorption rate (6.96 mg g-1 min-1), which was higher than conventional CDI cells. Our work proposes a new low-carbon strategy to recycle discarded masks and demonstrates their utilization in Cr(VI) removal and seawater desalination.
Collapse
|
12
|
Cuong DV, Hou CH. Nickel hexacyanoferrate incorporated with reduced graphene oxide for highly efficient intercalation desalination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Muhamad Azim M, Arifutzzaman A, Saidur R, Khandaker M, Bradley D. Recent progress in emerging hybrid nanomaterials towards the energy storage and heat transfer applications: A review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Zhu G, Chen L, Lu T, Zhang L, Hossain MSA, Amin MA, Yamauchi Y, Li Y, Xu X, Pan L. Cu-based MOF-derived architecture with Cu/Cu 2O nanospheres anchored on porous carbon nanosheets for efficient capacitive deionization. ENVIRONMENTAL RESEARCH 2022; 210:112909. [PMID: 35157915 DOI: 10.1016/j.envres.2022.112909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
The design of high-performance electrode materials with excellent desalination ability has always been a research goal for efficient capacitive deionization (CDI). Herein, a hybrid architecture with Cu/Cu2O nanospheres anchored on porous carbon nanosheets (Cu/Cu2O/C) was first synthesized by pyrolyzing a two-dimensional (2D) Cu-based metal-organic framework and then evaluated as a cathode for hybrid CDI. The as-prepared Cu/Cu2O/C exhibits a hierarchically porous structure with a high specific surface area of 305 m2 g-1 and large pore volume of 0.55 cm3 g-1, which is favorable to accelerating ion migration and diffusion. The porous carbon nanosheet matrix with enhanced conductivity will facilitate the Faradaic reactions of Cu/Cu2O nanospheres during the desalination process. The Cu/Cu2O/C hybrid architecture displays a high specific capacitance of 142.5 F g-1 at a scan rate of 2 mV s-1 in 1 M NaCl solution. The hybrid CDI constructed using the Cu/Cu2O/C cathode and a commercial activated carbon anode exhibits a high desalination capacity of 16.4 mg g-1 at an operation voltage of 1.2 V in 500 mg L-1 NaCl solution. Additionally, the hybrid CDI exhibits a good cycling stability with 18.3% decay in the desalination capacity after 20 electrosorption-desorption cycles. Thus, the Cu/Cu2O/C composite is expected to be a promising cathode material for hybrid CDI.
Collapse
Affiliation(s)
- Guang Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Lei Chen
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Ting Lu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Li Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Md Shahriar A Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD, 4072, Australia; International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yanjiang Li
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China.
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
15
|
Li X, Huang X, Wang Z, Zhao R, Cao X, Guo Y. In-situ polymerization induced Mn2O3 sites as intrinsic carbon defects for capacitive organic dye removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Siwal SS, Sheoran K, Mishra K, Kaur H, Saini AK, Saini V, Vo DVN, Nezhad HY, Thakur VK. Novel synthesis methods and applications of MXene-based nanomaterials (MBNs) for hazardous pollutants degradation: Future perspectives. CHEMOSPHERE 2022; 293:133542. [PMID: 34999104 DOI: 10.1016/j.chemosphere.2022.133542] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
MXenes are a quickly growing and extended group of two-dimensional (2D) substances that have earned unbelievable analysis credits for various application areas within different manufacturing areas. Due to novel essential architectural and physicochemical properties shows good properties, such as elevated exterior area, living adaptability, strong electrochemistry, and great hydrophilicity. Given the fast progress within the structure and synthesis of MBNs for water treatment, quick updates on this research field are required to remove toxic substances, such as production approaches and characterization methods for the advantages and constraints of MXenes for pollutant degradation. MXenes are determined as a proposed road toward atmosphere-clean-up machinery to identify and decrease a pattern of hazardous resistant pollutants from environmental forms. Here, in this review article, we have been focused on describing the overview, novel synthesis methods, and characteristics of the MXene-based nanomaterials (MBNs) in the field for removing hazardous contaminants from environmental conditions. In the last, the utilizations of MBNs in water sanitization, organic solvent filtration, antibiotics degradation, pesticide degradation, heavy metals degradation, ions removal, bacterial pathogens degradation, along with the conclusion, challenges, and prospects in this field, have been discussed.
Collapse
Affiliation(s)
- Samarjeet Singh Siwal
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| | - Karamveer Sheoran
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Kirti Mishra
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Harjot Kaur
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Adesh Kumar Saini
- Department of Biotechnology, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Vipin Saini
- Department of Pharmacy, Maharishi Markandeshwar University, Kumarhatti, Solan, Himachal Pradesh, 173229, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Hamed Yazdani Nezhad
- Department of Mechanical Engineering and Aeronautics, City University of London, London, EC1V0HB, UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh, EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, India.
| |
Collapse
|
17
|
Zhang W, Guo X, Zhao J, Zheng Y, Xie H, Zhang Z, Wang S, Xu Q, Fu Q, Zhang T. High performance Flower-Like Mn3O4/rGO composite for supercapacitor applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Datar SD, Mane R, Jha N. Recent progress in materials and architectures for capacitive deionization: A comprehensive review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10696. [PMID: 35289462 DOI: 10.1002/wer.10696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Capacitive deionization is an emerging and rapidly developing electrochemical technique for water desalination across the globe with exponential growth in publications. There are various architectures and materials being explored to obtain utmost electrosorption performance. The symmetric architectures consist of the same material on both electrodes, while asymmetric architectures have electrodes loaded with different materials. Asymmetric architectures possess higher electrosorption performance as compared with that of symmetric architectures owing to the inclusion of either faradaic materials, redox-active electrolytes, or ion specific pre-intercalation material. With the materials perspective, faradaic materials have higher electrosorption performance than carbon-based materials owing to the occurrence of faradaic reactions for electrosorption. Moreover, the architecture and material may be tailored in order to obtain desired selectivity of the target component and heavy metal present in feed water. In this review, we describe recent developments in architectures and materials for capacitive deionization and summarize the characteristics and salt removal performances. Further, we discuss recently reported architectures and materials for the removal of heavy metals and radioactive materials. The factors that affect the electrosorption performance including the synthesis procedure for electrode materials, incorporation of additives, operational modes, and organic foulants are further illustrated. This review concludes with several perspectives to provide directions for further development in the subject of capacitive deionization. PRACTITIONER POINTS: Capacitive deionization (CDI) is a rapidly developing electrochemical water desalination technique with exponential growth in publications. Faradaic materials have higher salt removal capacity (SAC) because of reversible redox reactions or ion-intercalation processes. Combination of CDI with other techniques exhibits improved selectivity and removal of heavy metals. Operational parameters and materials properties affect SAC. In future, comprehensive experimentation is needed to have better understanding of the performance of CDI architectures and materials.
Collapse
Affiliation(s)
- Shreerang D Datar
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| | - Rupali Mane
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| | - Neetu Jha
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
19
|
De P, Halder J, Gowda CC, Kansal S, Priya S, Anshu S, Chowdhury A, Mandal D, Biswas S, Dubey BK, Chandra A. Role of porosity and diffusion coefficient in porous electrode used in supercapacitors – Correlating theoretical and experimental studies. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Puja De
- Department of Physics Indian Institute of Technology Kharagpur Kharagpur India
| | - Joyanti Halder
- Department of Physics Indian Institute of Technology Kharagpur Kharagpur India
| | - Chinmayee Chowde Gowda
- School of Nano Science and Technology Indian Institute of Technology Kharagpur Kharagpur India
| | - Sakshi Kansal
- School of Energy Science and Engineering Indian Institute of Technology Kharagpur Kharagpur India
| | - Surbhi Priya
- School of Energy Science and Engineering Indian Institute of Technology Kharagpur Kharagpur India
| | - Satvik Anshu
- School of Energy Science and Engineering Indian Institute of Technology Kharagpur Kharagpur India
| | - Ananya Chowdhury
- Department of Physics Indian Institute of Technology Kharagpur Kharagpur India
| | - Debabrata Mandal
- School of Nano Science and Technology Indian Institute of Technology Kharagpur Kharagpur India
| | - Sudipta Biswas
- Department of Physics Indian Institute of Technology Kharagpur Kharagpur India
| | - Brajesh Kumar Dubey
- Department of Civil Engineering Indian Institute of Technology Kharagpur Kharagpur India
| | - Amreesh Chandra
- Department of Physics Indian Institute of Technology Kharagpur Kharagpur India
- School of Nano Science and Technology Indian Institute of Technology Kharagpur Kharagpur India
- School of Energy Science and Engineering Indian Institute of Technology Kharagpur Kharagpur India
| |
Collapse
|
20
|
Nguyen TKA, Kuncoro EP, Doong RA. Manganese ferrite decorated N-doped polyacrylonitrile-based carbon nanofiber for the enhanced capacitive deionization. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
21
|
Berkani M, Smaali A, Almomani F, Vasseghian Y. Recent advances in MXene-based nanomaterials for desalination at water interfaces. ENVIRONMENTAL RESEARCH 2022; 203:111845. [PMID: 34384753 DOI: 10.1016/j.envres.2021.111845] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The best exceptional Physico-chemical attributes of MXenes including high conductivity, high surface area, high functionalization, hydroxide site, and other interesting properties have attracted recently the attention of scientists in the applications of MXene (Mn+1XnTx)-based nanomaterials for water treatment. To provide a full and comprehensive vision of the current state of the art, and improve the treatment performance, and motivate new researches in this area, this review focused on the uses of these novel 2D transition metal carbides for desalination of water and the general methods of fabrication of MXenes; thus, MXene-based nanomaterials are very efficient candidates in water desalination processes, in this review, the main properties of previous and current works about MXenes applications in this area were properly investigated. Moreover, a particular overview about the different properties of MXenes in desalination such as etching method, hydrophobicity, structural modification, and chemical modification has been performed; meanwhile, the investigation of MXenes and MXenes-based composites would be an excellent candidate in the future of water purification and environmental remediation fields, since they have several good properties compared to the other 2D materials.
Collapse
Affiliation(s)
- Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Anfel Smaali
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box, 2713, Doha, Qatar.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
22
|
N-doped carbon nanosheets assembled microspheres for more effective capacitive deionization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Makgopa K, Ratsoma MS, Raju K, Mabena LF, Modibane KD. One-Step Hydrothermal Synthesis of Nitrogen-Doped Reduced Graphene Oxide/Hausmannite Manganese Oxide for Symmetric and Asymmetric Pseudocapacitors. ACS OMEGA 2021; 6:31421-31434. [PMID: 34869969 PMCID: PMC8637592 DOI: 10.1021/acsomega.1c02302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
In this paper, the pseudocapacitive performance of nitrogen-doped and undoped reduced graphene oxide/tetragonal hausmannite nanohybrids (N-rGO/Mn3O4 and rGO/Mn3O4) synthesized using a one-pot hydrothermal method is reported. The nanohybrid electrode materials displayed exceptional electrochemical performance relative to their respective individual precursors (i.e., reduced graphene oxide (rGO), nitrogen-doped reduced graphene oxide (N-rGO), and tetragonal hausmannite (Mn3O4)) for symmetric pseudocapacitors. Among the two nanohybrids, N-rGO/Mn3O4 displayed greater performance with a high specific capacitance of 345 F g-1 at a current density of 0.1 A g-1, excellent specific energy of 12.0 Wh kg-1 (0.1 A g-1), and a high power density of 22.5 kW kg-1 (10.0 A g-1), while rGO/Mn3O4 demonstrated a high specific capacitance of 264 F g-1 (0.1 A g-1) with specific energy and power densities of 9.2 Wh kg-1 (0.1 A g-1) and 23.6 kW kg-1 (10.0 A g-1), respectively. Furthermore, the N-rGO/Mn3O4 nanohybrid exhibited an impressive pseudocapacitive performance when fabricated in an asymmetric configuration, having a stable potential window of 2.0 V in 1.0 M Na2SO4 electrolyte. The nanohybrid showed excellent specific energy and power densities of 34.6 Wh kg-1 (0.1 A g-1) and 14.01 kW kg-1 (10.0 A g-1), respectively. These promising results provide a good substance for developing novel carbon-based metal oxide electrode materials in pseudocapacitor applications.
Collapse
Affiliation(s)
- Katlego Makgopa
- Department
of Chemistry, Faculty of Science, Tshwane
University of Technology (Arcadia Campus), Pretoria 0001, South Africa
| | - Mpho S. Ratsoma
- Department
of Chemistry, Faculty of Science, Tshwane
University of Technology (Arcadia Campus), Pretoria 0001, South Africa
| | - Kumar Raju
- Electrochemical
Energy Technologies (EET), Energy Centre,
Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa
| | - Letlhogonolo F. Mabena
- Department
of Chemistry, Faculty of Science, Tshwane
University of Technology (Arcadia Campus), Pretoria 0001, South Africa
| | - Kwena D. Modibane
- Department
of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop Campus), Sovenga, 0727 Polokwane, South Africa
| |
Collapse
|
24
|
One-step hydrothermal synthesis of bimetallic oxides (NiO@Mn3O4) supported on rGO: A highly efficient electrode material for supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Bharath G, Prakash J, Rambabu K, Venkatasubbu GD, Kumar A, Lee S, Theerthagiri J, Choi MY, Banat F. Synthesis of TiO 2/RGO with plasmonic Ag nanoparticles for highly efficient photoelectrocatalytic reduction of CO 2 to methanol toward the removal of an organic pollutant from the atmosphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:116990. [PMID: 33812129 DOI: 10.1016/j.envpol.2021.116990] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 05/27/2023]
Abstract
The synergistic photoelectrochemical (PEC) technology is a robust process for the conversion of CO2 into fuels. However, designing a highly efficient UV-visible driven photoelectrocatalyst is still challenging. Herein, a plasmonic Ag NPs modified TiO2/RGO photoelectrocatalyst (Ag-TiO2/RGO) has been designed for the PEC CO2 reduction into selective production of CH3OH. HR-TEM analysis revealed that Ag and TiO2 NPs with average sizes of 4 and 7 nm, respectively, were densely grown on the few-micron-sized 2D RGO nanosheets. The physicochemical analysis was used to determine the optical and textural properties of the Ag-TiO2/RGO nanohybrids. Under VU-Vis light illumination, Ag-TiO2/RGO photocathode possessed a current density of 23.5 mA cm-2 and a lower electrode resistance value of 125 Ω in CO2-saturated 1.0 M KOH-aqueous electrolyte solution. Catalytic studies showed that the Ag-TiO2/RGO photocathode possessed a remarkable PEC CO2 reduction activity and selective production of CH3OH with a yield of 85 μmol L-1 cm-2, the quantum efficiency of 20% and Faradic efficiency of 60.5% at onset potential of -0.7 V. A plausible PEC CO2 reduction mechanism over Ag-TiO2/RGO photocathode is schematically demonstrated. The present work gives a new avenue to develop high-performance and stable photoelectrocatalyst for PEC CO2 reduction towards sustainable liquid fuels production.
Collapse
Affiliation(s)
- G Bharath
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - J Prakash
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - K Rambabu
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - G Devanand Venkatasubbu
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - Ashok Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Seungjun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
26
|
Bharath G, Banat F. High-Grade Biofuel Synthesis from Paired Electrohydrogenation and Electrooxidation of Furfural Using Symmetric Ru/Reduced Graphene Oxide Electrodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24643-24653. [PMID: 34008951 PMCID: PMC8289174 DOI: 10.1021/acsami.1c02231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Electrochemical hydrogenation is a challenging technoeconomic process for sustainable liquid fuel production from biomass-derived compounds. In general, half-cell hydrogenation is paired with water oxidation to generate the low economic value of O2 at the anode. Herein, a new strategy for the rational design of Ru/reduced graphene oxide (Ru/RGO) nanocomposites through a cost-effective and straightforward microwave irradiation technique is reported for the first time. The Ru nanoparticles with an average size of 3.5 nm are well anchored into the RGO frameworks with attractive nanostructures to enhance the furfural's paired electrohydrogenation (ECH) and electrooxidation (ECO) process to achieve high-grade biofuel. Furfural is used as a reactant with the paired electrolyzer to produce furfuryl alcohol and 2-methylfuran at the cathode side. Simultaneously, 2-furic acid and 5-hydroxyfuroic acid along with plenty of H+ and e- are generated at the anode side. Most impressively, the paired electrolyzer induces an extraordinary ECH and ECO of furfural, with the desired production of 2-methylfuran (yield = 91% and faradic efficiency (FE) of 95%) at XFF = 97%, outperforming the ECH half-cell reaction. The mechanisms of the half-cell reaction and paired cell reaction are discussed. Exquisite control of the reaction parameters, optimized strategies, and the yield of individual products are demonstrated. These results show that the Ru/RuO nanocomposite is a potential candidate for biofuel production in industrial sectors.
Collapse
|
27
|
Bharath G, Hai A, Rambabu K, Pazhanivel T, Hasan SW, Banat F. Designed assembly of Ni/MAX (Ti 3AlC 2) and porous graphene-based asymmetric electrodes for capacitive deionization of multivalent ions. CHEMOSPHERE 2021; 266:129048. [PMID: 33248725 DOI: 10.1016/j.chemosphere.2020.129048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
The contamination of aquatic ecosystems by fluoride and heavy metal ions constitute an environmental hazard and has been proven to be harmful to human health. This study explores the feasibility of using asymmetric capacitive deionization (CDI) electrodes to remove such toxic ions from wastewater. An asymmetric CDI cell was fabricated using 2D Ni/MAX as an anode and 3D porous reduced graphene oxide (pRGO) as a cathode for the electrosorption of F-, Pb2+, and As(III) ions. A simple microwave process was used for the synthesis of Ni/MAX composite using fish sperm DNA (f-DNA) as a cross-linker between MAX nanosheets (NSs) and the metallic Ni nanoparticles (NPs). Further, pRGO anode was prepared through effective reduction of RGO using lemon juice as green reducing agent with the assist of f-DNA as a structure-directing agent for the formation of 3D network. With this tailored nanoarchitecture, pRGO and Ni/MAX electrodes exhibited a high specific capacitance of 760 and 385 F g-1, respectively. The fabricated Ni/MAX and pRGO based CDI system demonstrated a high electrosorption capacity of 68, 76, and 51 mg g-1 for the monovalent F-, divalent Pb2+, and trivalent As(III) ions at 1.4 V in neutral pH. Furthermore, Ni/MAX//pRGO system was successfully applied for the removal of total F(T), Pb(T), and As(T) ions from real industrial wastewater and contaminated groundwater. The present findings indicate that the fabricated Ni/MAX//pRGO electrode has excellent electrochemical properties that can be exploited for the removal of anionic and cationic metal ions from aqueous solutions in a CDI based system.
Collapse
Affiliation(s)
- G Bharath
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - K Rambabu
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - T Pazhanivel
- Department of Physics, Periyar University, Salem, 636011, Tamil Nadu, India
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
28
|
Zhou X, Meng T, Yi F, Shu D, Li Z, Zeng Q, Gao A, Zhu Z. Supramolecular assisted fabrication of Mn3O4 anchored nitrogen-doped reduced graphene oxide and its distinctive electrochemical activation process during supercapacitive study. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Li Z, Mao S, Yang Y, Sun Z, Zhao R. Controllable synthesis of a hollow core-shell Co-Fe layered double hydroxide derived from Co-MOF and its application in capacitive deionization. J Colloid Interface Sci 2020; 585:85-94. [PMID: 33279708 DOI: 10.1016/j.jcis.2020.11.091] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022]
Abstract
Capacitive deionization (CDI) is considered one of the most promising desalination technologies for obtaining fresh water from saline water. In this work, we synthesized a hollow core-shell Co-MOF@Fe/Co-LDH (Co-Fe-LDH) material by developing a strategy to simultaneously grow Co/Fe-LDH on the surface of a Co-MOF precursor in situ. Owing to the increase in the specific surface area of the hollow structure and the Faradaic process of a layered double hydroxide (LDH), the Co-Fe-LDH material exhibits high electrical double layer (EDL) capacitance and pseudocapacitance, which significantly improves the salt adsorption of the material during CDI (34.2 mg/g in a 600 mg/L NaCl solution at 1.2 V). The adsorption for NaCl in this work is approximately 2.5 times the maximum salt adsorption capacity (SAC) of LDH materials applied in nonmembrane CDI (NMCDI). This work may provide a promising model for the application of hollow LDH materials that exhibit pseudocapacitance in CDI.
Collapse
Affiliation(s)
- Zhe Li
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, 200241 Shanghai, China
| | - Shudi Mao
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, 200241 Shanghai, China
| | - Ying Yang
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, 200241 Shanghai, China
| | - Zhuo Sun
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, 200241 Shanghai, China; East China Normal University-University of Alberta Joint Institute of Advanced Science and Technology, 3663 North Zhongshan Road, 200062 Shanghai, China
| | - Ran Zhao
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, 200241 Shanghai, China; East China Normal University-University of Alberta Joint Institute of Advanced Science and Technology, 3663 North Zhongshan Road, 200062 Shanghai, China.
| |
Collapse
|
30
|
Hai A, Alqassem B, Bharath G, Rambabu K, Othman I, Abu Haija M, Banat F. Cobalt and nickel ferrites based capacitive deionization electrode materials for water desalination applications. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
31
|
Performance of ion intercalation materials in capacitive deionization/electrochemical deionization: A review. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Li Q, Li Y, Fulari AV, Ghodake GS, Kim DY, Lohar GM. Performance of chemically synthesized Mn 3O 4/rGO nanocomposite for electrochemical supercapacitor: a cost-effective high-performance electrode. NANOTECHNOLOGY 2020; 31:415403. [PMID: 32575091 DOI: 10.1088/1361-6528/ab9f77] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The manganese oxide graphene oxide (Mn3O4/rGO) composite heterojunction with copper oxide is useful for the production of an electrochemical supercapacitor. The graphene oxide and manganese oxide composite have been synthesized by adopting a method of co-precipitation. The composite of Mn3O4/rGO was synthesized with different concentrations of Mn3O4 and rGO. The structural, morphological, electrochemical and supercapacitive properties of Mn3O4/rGO composite have been examined. The electrochemical and supercapacitive properties have been studied with regard to different substrates. The Mn3O4/rGO composite was deposited on different substrates such as steel, copper and brass. The CuO/Mn3O4/rGO shows relatively better specific capacitance (856 F g-1) and better stability (82% retention after 2000 cycles) than other substrates used. The present work describes the development of cost-effective and high-performance CuO/Mn3O4/rGO-based nanomaterials for supercapacitors. The CuO/Mn3O4/rGO composite can be used as a flexible supercapacitor device.
Collapse
Affiliation(s)
- Qiongyu Li
- Department of Applied Physics and Institution of Energy and Microstructure, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Zhao X, Wei H, Zhao H, Wang Y, Tang N. Electrode materials for capacitive deionization: A review. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114416] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|