1
|
McCarthy JS, Brown KE, King CK, Nielsen UN, Plaisted K, Wallace SMN, Reichman SM. Population growth of two limno-terrestrial Antarctic microinvertebrates in different aqueous soil media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33086-33097. [PMID: 38676867 PMCID: PMC11133119 DOI: 10.1007/s11356-024-32905-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/10/2024] [Indexed: 04/29/2024]
Abstract
Terrestrial microinvertebrates provide important carbon and nutrient cycling roles in soil environments, particularly in Antarctica where larger macroinvertebrates are absent. The environmental preferences and ecology of rotifers and tardigrades in terrestrial environments, including in Antarctica, are not as well understood as their temperate aquatic counterparts. Developing laboratory cultures is critical to provide adequate numbers of individuals for controlled laboratory experimentation. In this study, we explore aspects of optimising laboratory culturing for two terrestrially sourced Antarctic microinvertebrates, a rotifer (Habrotrocha sp.) and a tardigrade (Acutuncus antarcticus). We tested a soil elutriate and a balanced salt solution (BSS) to determine their suitability as culturing media. Substantial population growth of rotifers and tardigrades was observed in both media, with mean rotifer population size increasing from 5 to 448 ± 95 (soil elutriate) and 274 ± 78 (BSS) individuals over 60 days and mean tardigrade population size increasing from 5 to 187 ± 65 (soil elutriate) and 138 ± 37 (BSS) over 160 days. We also tested for optimal dilution of soil elutriate in rotifer cultures, with 20-80% dilutions producing the largest population growth with the least variation in the 40% dilution after 36 days. Culturing methods developed in this study are recommended for use with Antarctica microinvertebrates and may be suitable for similar limno-terrestrial microinvertebrates from other regions.
Collapse
Affiliation(s)
- Jordan S McCarthy
- Centre for Anthropogenic Pollution Impact and Management (CAPIM), University of Melbourne, Parkville, VIC, 3010, Australia
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kathryn E Brown
- Environmental Stewardship Program, Australian Antarctic Division, 203 Channel Highway, Kingston, TAS, 7050, Australia
| | - Catherine K King
- Environmental Stewardship Program, Australian Antarctic Division, 203 Channel Highway, Kingston, TAS, 7050, Australia
| | - Uffe N Nielsen
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2750, Australia
| | - Katie Plaisted
- Centre for Anthropogenic Pollution Impact and Management (CAPIM), University of Melbourne, Parkville, VIC, 3010, Australia
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Stephanie M N Wallace
- Centre for Anthropogenic Pollution Impact and Management (CAPIM), University of Melbourne, Parkville, VIC, 3010, Australia
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Suzie M Reichman
- Centre for Anthropogenic Pollution Impact and Management (CAPIM), University of Melbourne, Parkville, VIC, 3010, Australia.
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
2
|
Rivenbark KJ, Nikkhah H, Wang M, Beykal B, Phillips TD. Toxicity of representative organophosphate, organochlorine, phenylurea, dinitroaniline, carbamate, and viologen pesticides to the growth and survival of H. vulgaris, L. minor, and C. elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21781-21796. [PMID: 38396181 PMCID: PMC11257079 DOI: 10.1007/s11356-024-32444-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Pesticides are commonly found in the environment and pose a risk to target and non-target species; therefore, employing a set of bioassays to rapidly assess the toxicity of these chemicals to diverse species is crucial. The toxicity of nine individual pesticides from organophosphate, organochlorine, phenylurea, dinitroaniline, carbamate, and viologen chemical classes and a mixture of all the compounds were tested in three bioassays (Hydra vulgaris, Lemna minor, and Caenorhabditis elegans) that represent plant, aquatic, and soil-dwelling species, respectively. Multiple endpoints related to growth and survival were measured for each model, and EC10 and EC50 values were derived for each endpoint to identify sensitivity patterns according to chemical classes and target organisms. L. minor had the lowest EC10 and EC50 values for seven and five of the individual pesticides, respectively. L. minor was also one to two orders of magnitude more sensitive to the mixture compared to H. vulgaris and C. elegans, where EC50 values were calculated to be 0.00042, 0.0014, and 0.038 mM, respectively. H. vulgaris was the most sensitive species to the remaining individual pesticides, and C. elegans consistently ranked the least sensitive to all tested compounds. When comparing the EC50 values across all pesticides, the endpoints of L. minor were correlated with each other while the endpoints measured in H. vulgaris and C. elegans were clustered together. While there was no apparent relationship between the chemical class of pesticide and toxicity, the compounds were more closely clustered based on target organisms (herbicide vs insecticide). The results of this study demonstrate that the combination of these plant, soil, and aquatic specie can serve as representative indicators of pesticide pollution in environmental samples.
Collapse
Affiliation(s)
- Kelly J Rivenbark
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Hasan Nikkhah
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT, USA
| | - Meichen Wang
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Burcu Beykal
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT, USA
| | - Timothy D Phillips
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA.
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
3
|
Fernandes Sales Junior S, Oliveira Souza Soares L, Pinheiro Cunha D, Ernesto Taveira Parente C, Ferreira Mannarino C, Veríssimo Correia F, Mendes Saggioro E. Biomarker response index in earthworms following chronic exposure to leachate from a closed dumpsite: Behavioral, cytotoxicity and antioxidant system alterations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119990. [PMID: 38183952 DOI: 10.1016/j.jenvman.2023.119990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Leachate, an effluent produced during solid waste decomposition, interacts directly with soil, mainly in dumpsite areas. Studies on terrestrial animal exposure to leachate are, however, lacking. Plants are the most frequently studied organisms, while animal studies, especially earthworms, are limited. Nevertheless, ecotoxicological assessments involving earthworms are crucial due to their role in soil health and ecosystem maintenance, which are paramount in understanding potential terrestrial ecosystem leachate effects. In this context, this study aimed to evaluate behavioral effects, sublethal cytotoxicity and antioxidant system alterations in Eisenia andrei earthworms chronically exposed to leachate from a closed dumpsite. Cytotoxicity was determined by coelomocyte density, viability and cell typing, while antioxidant system alterations were assessed through superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), reduced glutathione (GSH) and metallothionein (MT) determinations. Malondialdehyde (MDA) and protein carbonylation (PTC) levels were also determined as oxidative effect markers. Finally, the Biomarker Response Index (BRI) was assessed, aiming to quantitatively integrate the results of the investigated endpoints and establish a biological health state (BHS) for each leachate concentration. Leachate exposure led to leak responses at concentrations of up to 50%, but attraction at higher concentrations. Decreased cell density (28%) was observed after 48 days and reduced viability (50%), after 14 days of leachate exposure. The observed cell typing changes indicate anti-inflammatory immune system effects. Leachate exposure led to several antioxidant system alterations, increasing SOD (2-6 %), CAT (5-35 %) and GST (5-70 %) activities and GSH (7-37%) and MT (3-67%) levels. Earthworm antioxidant defenses were, however, able to prevent lipid peroxidation, which decreased (11-37%) following leachate exposure to concentrations above 12.5%, and PTC, which increased at 42 days (26%) and reduced at 56 days (12 %). This is the first PTC assessment in leachate-exposed earthworms. The increased carbonylation levels observed after 42 days alongside MDA decreases highlight the need for further research employing oxidative effect biomarkers other than MDA. Finally, an integrated approach employing the BRI was carried out, revealing mild initial changes evolving to moderate to major effects at the highest leachate exposure concentration, with an effect attenuation detected at the end of the experiment. In this sense, this study brings forth a significant novelty, employing a biomarker previously not assessed in earthworms, demonstrating an oxidative effect, alongside the use of the BRI as an integrative tool for the endpoints applied in this assessment.
Collapse
Affiliation(s)
- Sidney Fernandes Sales Junior
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, 21045-900, Rio de Janeiro, RJ, Brazil
| | - Lorena Oliveira Souza Soares
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, 21045-900, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil
| | - Davi Pinheiro Cunha
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, 21045-900, Rio de Janeiro, RJ, Brazil
| | - Cláudio Ernesto Taveira Parente
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-900, Rio de Janeiro, RJ, Brazil
| | - Camille Ferreira Mannarino
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, 21045-900, Rio de Janeiro, RJ, Brazil
| | - Fábio Veríssimo Correia
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, 21045-900, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biodiversidade Neotropical), Departamento de Ciências Naturais, Universidade Federal do Estado do Rio de Janeiro, Av. Pasteur 458, 22290-20, Urca, Rio de Janeiro, Brazil; Departamento de Ciências Naturais, Universidade Federal do Estado do Rio de Janeiro, Av. Pasteur, 458, 22290-20, Urca, Rio de Janeiro, Brazil
| | - Enrico Mendes Saggioro
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, 21045-900, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Jiang R, Wang M, Chen W. Heavy metal pollution triggers a shift from bacteria-based to fungi-based soil micro-food web: Evidence from an abandoned mining-smelting area. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132164. [PMID: 37598513 DOI: 10.1016/j.jhazmat.2023.132164] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023]
Abstract
Heavy metals pose significant threats to soil biota, ultimately disrupting soil micro-food web. However, no studies have yet elucidated the impact of heavy metals on soil micro-food web. In this study, we explored the response of bacteria, fungi, nematodes, and soil micro-food web along a gradient of heavy metals in an abandoned smelting-mining area. We found that bacteria responded strongly to heavy metals, whereas fungi showed greater resistance and tolerance. Nematodes responses were less apparent. With the increasing levels of heavy metal pollution, the importance of heavy metal-tolerant organisms in micro-food webs increased significantly. For instance, the keystone bacteria in soil micro-food web shifted from copiotrophic to oligotrophic types, while the keystone nematodes shifted from to bacterial-feeding (e.g., Eucephalobus) to fungal-feeding species (e.g., Ditylenchus). Additionally, elevated heavy metal concentrations increased the proportion of fungi (e.g., Mortierellomycota), intensifying their interactions with bacteria and nematodes and causing a shift from bacteria-based to fungi-based soil micro-food web. Furthermore, heavy metal contamination induced a more complex and stable soil micro-food web. Overall, we highlight the changes in soil micro-food web as a mechanism for coping with heavy metal stress. Our study provides valuable insights into how heavy metal pollution can cause shifts in soil micro-food webs and has critical implications for enhancing our understanding of the ecological consequences of environmental pollution at the ecosystem level.
Collapse
Affiliation(s)
- Rong Jiang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049,China.
| | - Weiping Chen
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049,China
| |
Collapse
|
5
|
Busquet F, Laperrouze J, Jankovic K, Krsmanovic T, Ignasiak T, Leoni B, Apic G, Asole G, Guigó R, Marangio P, Palumbo E, Perez-Lluch S, Wucher V, Vlot AH, Anholt R, Mackay T, Escher BI, Grasse N, Huchthausen J, Massei R, Reemtsma T, Scholz S, Schüürmann G, Bondesson M, Cherbas P, Freedman JH, Glaholt S, Holsopple J, Jacobson SC, Kaufman T, Popodi E, Shaw JJ, Smoot S, Tennessen JM, Churchill G, von Clausbruch CC, Dickmeis T, Hayot G, Pace G, Peravali R, Weiss C, Cistjakova N, Liu X, Slaitas A, Brown JB, Ayerbe R, Cabellos J, Cerro-Gálvez E, Diez-Ortiz M, González V, Martínez R, Vives PS, Barnett R, Lawson T, Lee RG, Sostare E, Viant M, Grafström R, Hongisto V, Kohonen P, Patyra K, Bhaskar PK, Garmendia-Cedillos M, Farooq I, Oliver B, Pohida T, Salem G, Jacobson D, Andrews E, Barnard M, Čavoški A, Chaturvedi A, Colbourne JK, Epps DJT, Holden L, Jones MR, Li X, Müller F, Ormanin-Lewandowska A, Orsini L, Roberts R, Weber RJM, Zhou J, Chung ME, Sanchez JCG, Diwan GD, Singh G, Strähle U, Russell RB, Batista D, Sansone SA, Rocca-Serra P, Du Pasquier D, Lemkine G, Robin-Duchesne B, Tindall A. The Precision Toxicology Initiative. Toxicol Lett 2023:S0378-4274(23)00180-7. [PMID: 37211341 DOI: 10.1016/j.toxlet.2023.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
The goal of PrecisionTox is to overcome conceptual barriers to replacing traditional mammalian chemical safety testing by accelerating the discovery of evolutionarily conserved toxicity pathways that are shared by descent among humans and more distantly related animals. An international consortium is systematically testing the toxicological effects of a diverse set of chemicals on a suite of five model species comprising fruit flies, nematodes, water fleas, and embryos of clawed frogs and zebrafish along with human cell lines. Multiple forms of omics and comparative toxicology data are integrated to map the evolutionary origins of biomolecular interactions, which are predictive of adverse health effects, to major branches of the animal phylogeny. These conserved elements of adverse outcome pathways (AOPs) and their biomarkers are expect to provide mechanistic insight useful for regulating groups of chemicals based on their shared modes of action. PrecisionTox also aims to quantify risk variation within populations by recognizing susceptibility as a heritable trait that varies with genetic diversity. This initiative incorporates legal experts and collaborates with risk managers to address specific needs within European chemicals legislation, including the uptake of new approach methodologies (NAMs) for setting precise regulatory limits on toxic chemicals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nico Grasse
- Helmholtz Centre for Environmental Research, DE
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Raorane CJ, Periyasamy T, Haldhar R, Asrafali SP, Raj V, Kim SC. Synthesis of Bio-Based Polybenzoxazine and Its Antibiofilm and Anticorrosive Activities. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2249. [PMID: 36984131 PMCID: PMC10054769 DOI: 10.3390/ma16062249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Candida albicans are highly widespread pathogenic fungi in humans. Moreover, its developed biofilm causes serious clinical problems, leading to drug failure caused by its inherent drug tolerance. Hence, the inhibition of biofilm formation and virulence characteristics provide other means of addressing infections. Polymer composites (PCs) derived from natural products have attracted increasing interest in the scientific community, including antimicrobial applications. PCs are a good alternative approach to solving this challenge because of their excellent penetration power inside biofilms. The main objectives of this study were to synthesize a novel curcumin-based polybenzoxazine polymer composite (poly(Cu-A) PC) using Mannich condensation reaction and evaluate their potency as an antibiofilm and anticorrosive candidate against C. albicans. In addition, their anticorrosive efficacy was also explored. PC exhibited significant antibiofilm efficacy versus C. albicans DAY185 by the morphologic changing of yeast to hyphae, and>90% anticorrosive efficacy was observed at a higher dose of PC. These prepared PC were safe in vivo against Caenorhabditis elegans and Raphanus raphanistrum. The study shows that a polybenzoxazine polymer composite has the potential for controlling biofilm-associated fungal infections and virulence by C. albicans, and opens a new avenue for designing PCs as antifungal, anticorrosive agents for biofilm-associated fungal infections and industrial remediation.
Collapse
|
7
|
Zhao Y, Chen J, Wang R, Pu X, Wang D. A review of transgenerational and multigenerational toxicology in the in vivo model animal Caenorhabditis elegans. J Appl Toxicol 2023; 43:122-145. [PMID: 35754092 DOI: 10.1002/jat.4360] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
A large number of pollutants existing in the environment can last for a long time, and their potential toxic effects can transfer from parents to their offspring. Thus, it is necessary to investigate the toxicity of environmental pollutants across multigenerations and the underlying mechanisms in organisms. Due to its short life cycle and sensitivity to environmental exposures, Caenorhabditis elegans is an important animal model for toxicity assessment of environmental pollutants across multigenerations. In this review, we introduced the transgenerational and multigenerational toxicity caused by various environmental pollutants in C. elegans. Moreover, we discussed the underlying mechanisms for the observed transgenerational and multigenerational toxicity of environmental contaminants in C. elegans.
Collapse
Affiliation(s)
- Yunli Zhao
- Medical School, Southeast University, Nanjing, China.,School of Public Health, Bengbu Medical College, Bengbu, China
| | - Jingya Chen
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Rui Wang
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Xiaoxiao Pu
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China
| |
Collapse
|
8
|
Manoharan RK, Raorane CJ, Ishaque F, Ahn YH. Antimicrobial photodynamic inactivation of wastewater microorganisms by halogenated indole derivative capped zinc oxide. ENVIRONMENTAL RESEARCH 2022; 214:113905. [PMID: 35948149 DOI: 10.1016/j.envres.2022.113905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Novel 5-bromoindole (5B)-capped zinc oxide (ZnO) nanoparticles (5BZN) were synthesized to improve the antibacterial, antibiofilm, and disinfection processes for the control of microorganisms in wastewater treatment. When exposed to 5BZN, the biofilm density and cell attachment were reduced dramatically, as measured by scanning electron microscopy (SEM). The 5BZN were also investigated for photodynamic treatment of multidrug-resistant (MDR) bacteria and toxicity. The combination of 5B and ZnO exhibited strong antibacterial and antibiofilm activities against MDR bacteria even at low doses (20 μg/mL). After 12.5 mW/cm2 blue LED irradiation, the composite 5BZN showed superior photodynamic inactivation of two wastewater MDR, Enterobacter tabaci E2 and Klebsiella quasipneumoniae SC3, with cell densities reduced by 3.9 log CFU/mL and 4.7 log CFU/mL, respectively, after 120 min. The mechanism of bacterial inactivation was studied using a scavenging investigation, and H2O2 was identified mainly as the reactive species for bacterial inactivation. The 5BZN exhibited higher photodynamic inactivation towards the total coliform bacteria in wastewater effluents under a blue LED light intensity of 12.5 mW/cm2 with almost complete inactivation of the coliform bacteria cells within 40 min. Furthermore, when 5BZN (100 mg/L) was added to the reactor, the level of tetracycline antibiotic degradation was increased by 63.6% after 120 min. The toxicity test, animal model nematode studies and seed germination assays, showed that 5BZN is harmless, highlighting its tremendous potential as a self-healing agent in large-scale photodynamic disinfection processes.
Collapse
Affiliation(s)
| | | | - Fahmida Ishaque
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
9
|
Soil Nematodes as the Silent Sufferers of Climate-Induced Toxicity: Analysing the Outcomes of Their Interactions with Climatic Stress Factors on Land Cover and Agricultural Production. Appl Biochem Biotechnol 2022; 195:2519-2586. [PMID: 35593954 DOI: 10.1007/s12010-022-03965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
Abstract
Unsustainable anthropogenic activities over the last few decades have resulted in alterations of the global climate. It can be perceived through changes in the rainfall patterns and rise in mean annual temperatures. Climatic stress factors exert their effects on soil health mainly by modifying the soil microenvironments where the soil fauna reside. Among the members of soil fauna, the soil nematodes have been found to be sensitive to these stress factors primarily because of their low tolerance limits. Additionally, because of their higher and diverse trophic positions in the soil food web they can integrate the effects of many stress factors acting together. This is important because under natural conditions the climatic stress factors do not exert their effect individually. Rather, they interact amongst themselves and other abiotic stress factors in the soil to generate their impacts. Some of these interactions may be synergistic while others may be antagonistic. As such, it becomes very difficult to assess their impacts on soil health by simply analysing the physicochemical properties of soil. This makes soil nematodes outstanding candidates for studying the effects of climatic stress factors on soil biology. The knowledge obtained therefrom can be used to design sustainable agricultural practices because most of the conventional techniques aim at short-term benefits with complete disregard of soil biology. This can partly ensure food security in the coming decades for the expanding population. Moreover, understanding soil biology can help to preserve landscapes that have developed over long periods of climatic stability and belowground soil biota interactions.
Collapse
|
10
|
Biswal D. Nematodes as Ghosts of Land Use Past: Elucidating the Roles of Soil Nematode Community Studies as Indicators of Soil Health and Land Management Practices. Appl Biochem Biotechnol 2022; 194:2357-2417. [PMID: 35037168 DOI: 10.1007/s12010-022-03808-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 11/30/2022]
Abstract
Soil health is a matter of growing concern because of its degradation due to unsustainable anthropogenic activities over the last few decades. It is maintained by interactions among the components of the soil food web commonly concentrated in the vicinity of the plant roots, called the rhizosphere. The soil food web is dominated by nematodes. They occupy various trophic positions because of their diverse feeding habits. The free-living forms are mainly dependent on soil bacteria and fungi for their nutrition, while the parasitic forms feed on plant roots. The population of these two groups is regulated by the activities of predatory nematodes which can be carnivorous or omnivorous. The soil nematodes thereby partake responsibilities in nutrient cycling, mineralization and decomposition pathways which, in turn, affects the aboveground productivity. This intricately connected food web structure is vulnerable to disturbances like increased soil salinity, acidity, nitrogen enrichment, tillage, crop rotations, fertilizers, pesticides, soil amendment techniques and heavy metal pollution. The effects are reflected by alterations in the abundance and diversity of soil nematodes belonging to various trophic groups. These alterations have been formulated into measurable indices like maturity index (MI), structure index (SI), enrichment index (EI) and channel index (CI). The faunal profile and metabolic footprints of soil nematodes are latest developments in the field of nematode community analyses. Though these indices cannot replace the conventional soil ecotoxicological assays, they can give added information about soil biology which can be utilized to design sustainable land use practices.
Collapse
Affiliation(s)
- Debraj Biswal
- Department of Zoology, Government General Degree College at Mangalkote, Burdwan, West Bengal, 713132, India.
| |
Collapse
|
11
|
Díaz-Morales DM, Erasmus JH, Bosch S, Nachev M, Smit NJ, Zimmermann S, Wepener V, Sures B. Metal contamination and toxicity of soils and river sediments from the world's largest platinum mining area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117284. [PMID: 33984780 DOI: 10.1016/j.envpol.2021.117284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Mining activities in the world's largest platinum mining area in South Africa have resulted in environmental contamination with Pt (e.g., the Hex River's vicinity). The present study compared a Pt mining area with a non-mining area along this river in terms of (1) metal concentrations in different grain size fractions from soils and aquatic sediments; (2) the toxicological potential of aquatic sediments based on the Consensus-Based Sediment Quality Guideline (CBSQG); and (3) the chronic toxicity of aqueous eluates from soils and sediments to Caenorhabditis elegans. Platinum concentrations were higher in the mining area than in the non-mining area. For most metals, the sediment silt and clay fraction contained the highest metal concentrations. Based on the CBSQG, most sampling sites exhibited a high toxicological potential, driven by Cr and Ni. Eluate toxicity testing revealed that C. elegans growth, fertility, and reproduction inhibition were not dependent on mining activities or the CBSQG predictions. Toxicity was instead likely due to Cd, Fe, Mn, Ni, Pt, and Pb. In conclusion, the investigated region is loaded with a high geogenic background resulting in high reproduction inhibition. The mining activities lead to additional environmental metal contamination (particularly Pt), contributing to environmental soil and sediment toxicity.
Collapse
Affiliation(s)
- Dakeishla M Díaz-Morales
- Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.
| | - Johannes H Erasmus
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom, 2520, South Africa.
| | - Suanne Bosch
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom, 2520, South Africa.
| | - Milen Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom, 2520, South Africa.
| | - Sonja Zimmermann
- Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany; Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom, 2520, South Africa.
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom, 2520, South Africa.
| | - Bernd Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.
| |
Collapse
|
12
|
Kouser Y, Shah AA, Rasmann S. The functional role and diversity of soil nematodes are stronger at high elevation in the lesser Himalayan Mountain ranges. Ecol Evol 2021; 11:13793-13804. [PMID: 34707818 PMCID: PMC8525141 DOI: 10.1002/ece3.8061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022] Open
Abstract
Soil nematodes are a foremost component of terrestrial biodiversity; they display a whole gamut of trophic guilds and life strategies, and by their activity, affect major ecosystem process, such as organic matter degradation and carbon cycling. Based on nematodes' functional types, nematode community indices have been developed, and can be used to link variation in nematodes community composition and ecosystem processes. Yet, the use of these indices has been mainly restricted to anthropogenic stresses. In this study, we propose to expand the use of nematodes' derived ecological indices to link soil and climate properties with soil food webs, and ecosystem processes that all vary along steep elevation gradients. For this purpose, we explored how elevation affects the trophic and functional diversity of nematode communities sampled every 300 m, from about 1,000 m to 3,700 m above sea level, across four transects in the lesser Himalayan range of Jammu and Kashmir. We found that (a) the trophic and functional diversity of nematodes increases with elevation; (b) differences in nematodes communities generate habitat-specific functional diversity; (c) the maturity index (ΣMI) increases with elevation, while the enrichment index decreases, indicating less mature and less productive ecosystems, enhanced fungal-based energy flow, and a predominant role of nematodes in generating carbon influxes at high-elevation sites. We thus confirm that the functional contribution of soil nematodes to belowground ecosystem processes, including carbon and energy flow, is stronger at high elevation. Overall, this study highlights the central importance of nematodes in sustaining soil ecosystems and brings insights into their functional role, particularly in alpine and arctic soils.
Collapse
Affiliation(s)
- Yasmeen Kouser
- Department of ZoologyNematode Biodiversity and Genomics Research LabBaba Ghulam Shah Badshah UniversityRajouriIndia
| | - Ali Asghar Shah
- Department of ZoologyNematode Biodiversity and Genomics Research LabBaba Ghulam Shah Badshah UniversityRajouriIndia
| | - Sergio Rasmann
- Laboratory of Functional EcologyInstitute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| |
Collapse
|
13
|
Kiss LV, Sávoly Z, Ács A, Seres A, Nagy PI. Toxicity mitigation by N-acetylcysteine and synergistic toxic effect of nano and bulk ZnO to Panagrellus redivivus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34436-34449. [PMID: 33651295 PMCID: PMC8275494 DOI: 10.1007/s11356-021-12674-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
To better understand the nanosize-relevant toxic effects and underlying mechanisms, N-acetylcysteine (NAC), as a mitigation agent, an ionic form of Zn (ZnCl2), and the binary mixture of ZnO with different particle sizes (15 nm and 140 nm), was used in toxicity assays with the nematode Panagrellus redivivus. The ZnCl2 concentrations were applied to show the amount of dissolved Zn ions present in the test system. Reactive oxygen species (ROS) measuring method was developed to fit the used test system. Our studies have shown that NAC can mitigate the toxic effects of both studied particle sizes. In the applied concentrations, ZnCl2 was less toxic than both of the ZnO particles. This finding indicates that not only ions and ROS produced by the dissolution are behind the toxic effects of the ZnO NPs, but also other particle size-dependent toxic effects, like the spontaneous ROS generation, are also relevant. When the two materials were applied in binary mixtures, the toxic effects increased significantly, and the dissolved zinc content and the ROS generation also increased. It is assumed that the chemical and physical properties of the materials have been mutually reinforcing to form a more reactive mixture that is more toxic to the P. redivivus test organism. Our findings demonstrate the importance of using mitigation agent and mixtures to evaluate the size-dependent toxicity of the ZnO.
Collapse
Affiliation(s)
- Lola Virág Kiss
- Department of Zoology and Animal Ecology, Szent István University, Gödöllő, Hungary.
| | | | - András Ács
- Department of Aquaculture, Institute for Conservation of Natural Resources, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Anikó Seres
- Department of Zoology and Animal Ecology, Szent István University, Gödöllő, Hungary
| | - Péter István Nagy
- Department of Zoology and Animal Ecology, Szent István University, Gödöllő, Hungary
| |
Collapse
|
14
|
Queirós L, Monteiro L, Marques C, Pereira JL, Gonçalves FJM, Aschner M, Pereira P. Measurement of the Effects of Metals on Taxis-to-Food Behavior in Caenorhabditis elegans. Curr Protoc 2021; 1:e131. [PMID: 33974358 DOI: 10.1002/cpz1.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chemosensation in nematodes is linked to processes that affect their ability to survive, such as the search for food and the avoidance of toxic substances. Since the 1970s, numerous studies have assessed chemotaxis in the nematode species Caenorhabditis elegans, focusing on a multitude of agents, including bacteria (food), ions, salts, hormones, volatile organic compounds, and, to a lesser extent, metal-contaminated medium/food. The few studies evaluating metal exposure have reported a variety of responses (neutral, attraction, avoidance), which generally appear to be contaminant and/or concentration specific. Differences in experimental designs, however, hinder appropriate comparison of the findings and attainment of firm conclusions. Therefore, we herein propose and describe a detailed protocol for the assessment of the effects of metals on taxis-to-food behavior in C. elegans. Distinct approaches are proposed in two innovative stages of testing to (1) screen metals' effects on taxis-to-food behavior and (2) classify the behavioral response as attraction/avoidance/indifference or preference. Use of such a standard protocol will allow for easy comparison across studies and direct interpretation of results. Findings using this model system can contribute to a deeper understanding of the real risks of metal contamination to nematodes and how such contaminants could impact ecosystems in general, given the key environmental roles that these organisms play. © 2021 Wiley Periodicals LLC. Basic Protocol: Assessing the effects of metal contamination on taxis-to-food behavior in Caenorhabditis elegans Support Protocol 1: Synchronization of C. elegans by hand-picking gravid worms Support Protocol 2: Synchronization of C. elegans by using a bleaching solution.
Collapse
Affiliation(s)
- Libânia Queirós
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| | - Luana Monteiro
- Marine Biology Research Group, Biology Department, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Carlos Marques
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| | - Joana L Pereira
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Patrícia Pereira
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
15
|
Heaton A, Faulconer E, Milligan E, Kroetz MB, Weir SM, Glaberman S. Interspecific Variation in Nematode Responses to Metals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1006-1016. [PMID: 32072668 DOI: 10.1002/etc.4689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/25/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Performing toxicity testing on multiple species with differing degrees of evolutionary relatedness can provide important information on how chemical sensitivity varies among species and can help pinpoint the biological drivers of species sensitivity. Such knowledge could ultimately be used to design better multispecies predictive ecological risk assessment models and identify particularly sensitive species. However, laboratory toxicity tests involving multiple species can also be resource intensive, especially when each species has unique husbandry conditions. We performed lethality tests with 2 metals, copper chloride and zinc chloride, on 5 different nematode species, which are nested in their degree of evolutionary relatedness: Caenorhabditis briggsae, Caenorhabditis elegans, Oscheius myriophila, Oscheius tipulae, and Pristionchus pacificus. All species were successfully cultured and tested concurrently with limited resources, demonstrating that inexpensive, multispecies nematode toxicity testing systems are achievable. The results indicate that P. pacificus is the most sensitive to both metals. Conversely, C. elegans is the least sensitive species to copper, but the second most sensitive to zinc, indicating that species relationships do not necessarily predict species sensitivity. Toxicity testing with additional nematode species and types of chemicals is feasible and will help form more generalizable conclusions about relative species sensitivity. Environ Toxicol Chem 2020;39:1006-1016. © 2020 SETAC.
Collapse
Affiliation(s)
- Andrew Heaton
- Department of Biology, University of South Alabama, Mobile, Alabama, USA
| | | | - Emma Milligan
- Department of Biology, University of South Alabama, Mobile, Alabama, USA
| | - Mary B Kroetz
- Department of Biology, University of South Alabama, Mobile, Alabama, USA
| | - Scott M Weir
- Department of Biology, Queens University of Charlotte, Charlotte, North Carolina, USA
| | - Scott Glaberman
- Department of Biology, University of South Alabama, Mobile, Alabama, USA
- Department of Environmental Science & Policy, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
16
|
Volta A, Sforzini S, Camurati C, Teoldi F, Maiorana S, Croce A, Benfenati E, Perricone G, Lodi M, Viarengo A. Ecotoxicological effects of atmospheric particulate produced by braking systems on aquatic and edaphic organisms. ENVIRONMENT INTERNATIONAL 2020; 137:105564. [PMID: 32086078 DOI: 10.1016/j.envint.2020.105564] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Vehicles generate particulate matter (PM) in significant amounts as their brake systems wear. These particles can influence air quality and their transport/deposition may affect the edaphic and aquatic ecosystems. As part of the LOWBRASYS H2020 project, new more eco-friendly brake disc and pad formulations were developed. PMs generated from traditional (FM1-BD1) and innovative (FM4-BD2, FMB-BD7) brake systems in bench tests were studied. The PMs' physical/chemical characteristics were preliminarily investigated. To study the possible environmental impact of the nano-micro particulate, we used a battery of ecotoxicological tests. We employed the microalga Pseudokirchneriella subcapitata, the crustacean Daphnia magna and the bacteria Vibrio fischeri as aquatic bioindicators, while for the edaphic ecosystem we used the seeds of Lepidium sativum and Sorghum saccharatum, the nematode Caenorhabditis elegans, the earthworm Eisenia andrei and the ameba Dictyostelium discoideum. The results showed a higher sensitivity of the freshwater organisms exposed to the soluble PM fraction, with respect to the edaphic ones. FM4-BD2 brake formulation was slightly more toxic for algae (200 mg/L) than FM1-BD1 (500 mg/L). The new system FMB-BD7 particulate was not harmful for crustacean survival, and resulted weakly toxic for algal reproduction only at 500 mg/L. The particulate material per se was found to affect the algal reproduction. No toxic effects were found on nematodes, earthworms and seeds up to 1000 mg/L. However, in D. discoideum the reproduction rate was significantly reduced starting from 100 mg/L; and the lysosomal membrane stability showed a relevant alteration also at minimal concentration (0.1 mg/L). The results demonstrated a minimal risk for biodiversity of the particulates from the different brake systems and highlighted a more eco-friendly performance the new brake-pad FMB-BD7. However, the occurrence of sublethal effects should be considered as a possible contribution of the particle toxicity to the biological effects of the environmental pollution.
Collapse
Affiliation(s)
- Anna Volta
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; Laboratory of Environmental Chemistry and Toxicology, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, Via Mario Negri 2, 20156 Milan, Italy
| | - Susanna Sforzini
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; Laboratory of Environmental Chemistry and Toxicology, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, Via Mario Negri 2, 20156 Milan, Italy
| | - Corrado Camurati
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; Laboratory of Environmental Chemistry and Toxicology, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, Via Mario Negri 2, 20156 Milan, Italy
| | - Federico Teoldi
- Laboratory of Environmental Chemistry and Toxicology, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, Via Mario Negri 2, 20156 Milan, Italy
| | - Simone Maiorana
- Laboratory of Environmental Chemistry and Toxicology, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, Via Mario Negri 2, 20156 Milan, Italy
| | - Alessandro Croce
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, Via Mario Negri 2, 20156 Milan, Italy
| | | | - Marco Lodi
- Laboratory of Environmental Chemistry and Toxicology, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, Via Mario Negri 2, 20156 Milan, Italy
| | - Aldo Viarengo
- Laboratory of Environmental Chemistry and Toxicology, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, Via Mario Negri 2, 20156 Milan, Italy; IAS CNR, Via De Marini 6, 16149 Genova, Italy.
| |
Collapse
|
17
|
Castaño-Sánchez A, Hose GC, Reboleira ASPS. Ecotoxicological effects of anthropogenic stressors in subterranean organisms: A review. CHEMOSPHERE 2020; 244:125422. [PMID: 31805461 DOI: 10.1016/j.chemosphere.2019.125422] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
How anthropogenic stressors affect biodiversity is a central question in a changing world. Subterranean ecosystems and their biodiversity are particularly vulnerable to change, yet, these species are frequently neglected in analyses of global biodiversity and assessments of ecological status and risk. Are these hidden species affected by anthropogenic stressors? Do they survive outside of the current thermal limits of their ecosystems? These and other important questions can be addressed with ecotoxicological testing, relating contaminants and temperature resistance of species with measured environmental concentrations and climatic data. Ecotoxicological knowledge specific to subterranean ecosystems is crucial for establishing thresholds for their protection, but such data are both scarce and scattered. Here, we review the existing ecotoxicological studies of these impacts to subterranean-adapted species. An effort that includes 167 measured endpoints and presents a database containing experimentally derived species' tolerance data for 28 contaminants and temperature, for 46 terrestrial and groundwater species, including fungi and animals. The lack of standard data among the studies is currently the major impediment to evaluate how stressors affect subterranean-adapted species and how differently they respond from their relatives at surface. Improving understanding of ecotoxicological effects on subterranean-adapted species will require extensive analysis of physiological responses to a wide range of untested stressors, standardization of testing protocols and evaluation of exposures under realistic scenarios.
Collapse
Affiliation(s)
- Andrea Castaño-Sánchez
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Grant C Hose
- Department of Biological Sciences, Macquarie University, NSW, 2109, Sydney, Australia
| | - Ana Sofia P S Reboleira
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|
18
|
Haegerbaeumer A, Raschke R, Reiff N, Traunspurger W, Höss S. Comparing the effects of fludioxonil on non-target soil invertebrates using ecotoxicological methods from single-species bioassays to model ecosystems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109596. [PMID: 31454750 DOI: 10.1016/j.ecoenv.2019.109596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/01/2019] [Accepted: 08/20/2019] [Indexed: 05/19/2023]
Abstract
The lower tier toxicity tests used for risk assessment of plant protection products are conducted with single species, only regarding direct effects of the tested substances. However, it is not clear, if lower tier tests are able to protect in situ soil communities, as these tests are not able to account for direct and indirect effects of chemicals on multi-species systems in natural soil communities. This knowledge gap between single-species tests and field studies can be bridged using model ecosystems (microcosms), which allow for the assessment of direct and indirect effects of the compounds under evaluation. In the present study, single-species toxicity tests and soil-spiked microcosms were used to comparatively investigate the toxicity of the non-systemic fungicide fludioxonil (FDO) on non-target soil organisms, with nematodes being the test organisms of choice. The potential effects of FDO on nematodes were investigated in two different test systems: (i) standardized toxicity tests using Caenorhabditis elegans exposed to FDO-spiked soil (FDO concentrations 50-1207 mg/kg soil dry weight) and (ii) in situ nematode communities sampled from microcosms containing FDO-spiked soil (FDO concentrations 75-600 mg/kg soil dry weight). FDO dose-dependently inhibited the reproduction of C. elegans, with an effect concentration (EC50) of 209.9 mg FDO/kg soil dry weight and a no observed effect concentration (NOEC) of 63.0 mg FDO/kg soil dry weight. In the microcosms, FDO significantly affected trait-based indices, such as the Maturity Index (MI25) and the Enrichment Index (EI), which responded already at FDO concentrations of 14.3 and 62.4 mg/kg dry soil. Overall, this study provides new insights into the impact of the non-systemic fungicide FDO on non-target soil organisms and demonstrates the suitability of nematode-based tools, that allow for a quick and cost-effective lower and higher tier risk assessment of plant protection products.
Collapse
Affiliation(s)
- Arne Haegerbaeumer
- Bielefeld University, Department of Animal Ecology, Konsequenz 45, 33615, Bielefeld, Germany.
| | - Ricarda Raschke
- Bielefeld University, Department of Animal Ecology, Konsequenz 45, 33615, Bielefeld, Germany
| | | | - Walter Traunspurger
- Bielefeld University, Department of Animal Ecology, Konsequenz 45, 33615, Bielefeld, Germany
| | - Sebastian Höss
- Bielefeld University, Department of Animal Ecology, Konsequenz 45, 33615, Bielefeld, Germany; Ecossa, Giselastr. 6, 82319, Starnberg, Germany
| |
Collapse
|
19
|
Abstract
Microbial metazoa inhabit a certain “Goldilocks zone,” where conditions are just right for the continued ignorance of these taxa. These microscopic animal species have body sizes of <1 mm and include diverse groups such as nematodes, tardigrades, kinorhynchs, loriciferans, and platyhelminths. Microbial metazoa inhabit a certain “Goldilocks zone,” where conditions are just right for the continued ignorance of these taxa. These microscopic animal species have body sizes of <1 mm and include diverse groups such as nematodes, tardigrades, kinorhynchs, loriciferans, and platyhelminths. The majority of species are too large to be considered in single-cell genomics approaches, yet too small to be wrapped into international genome sequencing initiatives. Other microbial eukaryote groups (namely the fungal and protist communities) have gained significant momentum in recent years, driven by a strong community of researchers united behind a common goal of culturing and sequencing new representatives. However, due to historical factors and difficult taxonomy, persistent research silos still exist for most microbial metazoan groups, and public molecular databases remain sparsely populated. Here, I argue that small metazoa should be embraced as a key component of microbial ecology studies, promoting a holistic and cutting-edge view of natural ecosystems.
Collapse
|
20
|
Thirukumaran P, Manoharan RK, Parveen AS, Atchudan R, Kim SC. Sustainability and antimicrobial assessments of apigenin based polybenzoxazine film. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Queirós L, Pereira JL, Gonçalves FJ, Pacheco M, Aschner M, Pereira P. Caenorhabditis elegans as a tool for environmental risk assessment: emerging and promising applications for a "nobelized worm". Crit Rev Toxicol 2019; 49:411-429. [PMID: 31268799 PMCID: PMC6823147 DOI: 10.1080/10408444.2019.1626801] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/25/2019] [Accepted: 05/30/2019] [Indexed: 02/08/2023]
Abstract
Caenorhabditis elegans has been an invaluable model organism in research fields such as developmental biology and neurobiology. Neurotoxicity is one of the subfields greatly profiting from the C. elegans model within biomedical context, while the corresponding potential of the organism applied to environmental studies is relevant but has been largely underexplored. Within the biomedical scope, the implication of metals and organic chemicals with pesticide activity (hereinafter designated as pesticides) in the etiology of several neurodegenerative diseases has been extensively investigated using this nematode as a primary model organism. Additionally, as a well-known experimental model bearing high sensitivity to different contaminants and representing important functional levels in soil and aquatic ecosystems, C. elegans has high potential to be extensively integrated within Environmental Risk Assessment (ERA) routines. In spite of the recognition of some regulatory agencies, this actual step has yet to be made. The purpose of this review is to discuss the major advantages supporting the inclusion of C. elegans in lower tiers of ERA. Special emphasis was given to its sensitivity to metals and pesticides, which is similar to that of other model organisms commonly used in ERA (e.g. Daphnia magna and Eisenia sp.), and to the large array of endpoints that can be tested with the species, both concerning the aquatic and the soil compartments. The inclusion of C. elegans testing may hence represent a relevant advance in ERA, providing ecologically relevant insights toward improvement of the regulatory capacity for establishing appropriate environmental protection benchmarks.
Collapse
Affiliation(s)
- L. Queirós
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - J. L. Pereira
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - F. J.M. Gonçalves
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - M. Pacheco
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - M. Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - P. Pereira
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
22
|
Manoharan RK, Lee J, Lee J. Efficacy of 7-benzyloxyindole and other halogenated indoles to inhibit Candida albicans biofilm and hyphal formation. Microb Biotechnol 2018; 11:1060-1069. [PMID: 29656577 PMCID: PMC6196399 DOI: 10.1111/1751-7915.13268] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 11/29/2022] Open
Abstract
Certain pathogenic bacteria and yeast form biofilms on biotic and abiotic surfaces including medical devices and implants. Hence, the development of antibiofilm coating materials becomes relevant. The virulence of those colonizing pathogens can be reduced by inhibiting biofilm formation rather than killing pathogens using excessive amounts of antimicrobials, which is touted as one of the main reasons for the development of drug resistance. Candida albicans is an opportunistic fungal pathogen, and the transition of yeast cells to hyphal cells is believed to be a crucial virulence factor. Previous studies have shown that indole and its derivatives possess antivirulence properties against various bacterial pathogens. In this study, we used various indole derivatives to investigate biofilm-inhibiting activity against C. albicans. Our study revealed that 7-benzyloxyindole, 4-fluoroindole and 5-iodoindole effectively inhibited biofilm formation compared to the antifungal agent fluconazole. Particularly, 7-benzyloxyindole at 0.02 mM (4.5 μg ml-1 ) significantly reduced C. albicans biofilm formation, but had no effect on planktonic cells, and this finding was confirmed by a 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay and three-dimensional confocal laser scanning microscopy. Scanning electron microscopy analyses revealed that 7-benzyloxyindole effectively inhibited hyphal formation, which explains biofilm inhibition. Transcriptomic analysis showed that 7-benzyloxyindole downregulated the expressions of several hypha/biofilm-related genes (ALS3, ECE1, HWP1 and RBT1). A C. albicans-infected Caenorhabditis elegans model system was used to confirm the antivirulence efficacy of 7-benzyloxyindole.
Collapse
Affiliation(s)
| | - Jin‐Hyung Lee
- School of Chemical EngineeringYeungnam UniversityGyeongsan38541Korea
| | - Jintae Lee
- School of Chemical EngineeringYeungnam UniversityGyeongsan38541Korea
| |
Collapse
|
23
|
Manoharan RK, Lee JH, Kim YG, Lee J. Alizarin and Chrysazin Inhibit Biofilm and Hyphal Formation by Candida albicans. Front Cell Infect Microbiol 2017; 7:447. [PMID: 29085811 PMCID: PMC5650607 DOI: 10.3389/fcimb.2017.00447] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/29/2017] [Indexed: 01/06/2023] Open
Abstract
Candida albicans is one of the most common pathogen causes fungal infections. This opportunistic pathogen can form biofilms comprised of yeast, hyphae and pseudo hyphal elements, and the hyphal form C. albicans considered as probable virulence factor. We investigated the antibiofilm activities of 13 quinones and anthraquinones related compounds against C. albicans biofilms by using crystal violet and 2,3-bis (2-Methoxy-4-Nitro-5-Sulfo-phenyl)-2H-Tetrazolium-5-Carboxanilide (XTT) reduction assays to assess inhibitions of biofilm growth. Morphological changes in biofilms and biofilm thicknesses were determined by scanning electron microscopy and confocal laser scanning microscopy, respectively. It was found alizarin (1,2-dihydroxyanthraquinone) and chrysazin (1,8-dihydroxyanthraquinone) suppressed C. albicans biofilm formation. Interestingly, alizarin and chrysazin at only 2 μg/ml effectively inhibited hyphal formation and prolonged the survival of C. albicans infected Caenorhabditis elegans, thus showing a distinct antivirulent potential. A structural activity relationship study of alizarin and 6 other anthraquinones showed the presence of a hydroxyl group at C-1 position which is important for antibiofilm and antifilamentation activities. Transcriptomic analyses revealed that alizarin downregulated the expression of several hypha-specific and biofilm related genes (ALS3, ECE1, ECE2, and RBT1). Furthermore, unlike the commercial antifungal drug fluconazole, no acute toxic effect was observed when uninfected nematodes were exposed to alizarin at concentrations up to 1 mg/ml. The results of this study indicate alizarin suppresses the virulence of C. albicans in vivo which suggests alizarin may be considered as a potential candidate for further investigations to develop antifungal agent against fungal pathogen in vivo.
Collapse
Affiliation(s)
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
24
|
Bielská L, Kah M, Sigmund G, Hofmann T, Höss S. Bioavailability and toxicity of pyrene in soils upon biochar and compost addition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:132-140. [PMID: 28384569 DOI: 10.1016/j.scitotenv.2017.03.230] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
The study investigates the role of biochar and/or compost in mitigating the toxic effects of pyrene in soils using reproduction of nematodes and porewater concentration as measures of pyrene toxicity and bioavailability, respectively. Two soils were spiked with increasing levels of pyrene to achieve a concentration-response relationship for the reproduction of Caenorhabditis elegans. The observed EC50 values (pyrene concentration causing 50% inhibition of reproduction) were 14mg/kg and 31mg/kg (dry mass) for these soils, corresponding to equilibrium porewater concentrations of 37μg/L and 47μg/L, respectively. Differences in organic carbon content were not sufficient to explain the variability in toxicity between the different soils. Soils causing a significant inhibition of reproduction were further amended with 10%-compost, 5%-biochar, or both, and the effects on reproduction and porewater concentration determined. Combined addition of compost and biochar was identified as the most effective strategy in reducing pyrene concentration in soil porewater, which was also partly reflected in soil toxicity. However, porewater concentrations predicted only 52% of pyrene toxicity to nematodes, pointing to particle-bound or dietary exposure pathways. Capsule: Amending pyrene-spiked soil with biochar and compost effectively reduced pyrene porewater concentrations and toxicity to nematodes, which were significantly related.
Collapse
Affiliation(s)
- Lucie Bielská
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Melanie Kah
- Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Gabriel Sigmund
- Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Thilo Hofmann
- Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Sebastian Höss
- Institute of Biodiversity - Network, Nußbergerstr. 6a, 93059 Regensburg, Germany; Ecossa, Giselastr. 6, 82319 Starnberg, Germany.
| |
Collapse
|
25
|
Lecomte-Pradines C, Hertel-Aas T, Coutris C, Gilbin R, Oughton D, Alonzo F. A dynamic energy-based model to analyze sublethal effects of chronic gamma irradiation in the nematode Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:830-844. [PMID: 28837407 DOI: 10.1080/15287394.2017.1352194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding how toxic contaminants affect wildlife species at various levels of biological organization (subcellular, histological, physiological, organism, and population levels) is a major research goal in both ecotoxicology and radioecology. A mechanistic understanding of the links between different observed perturbations is necessary to predict the consequences for survival, growth, and reproduction, which are critical for population dynamics. In this context, experimental and modeling studies were conducted using the nematode Caenorhabditis elegans. A chronic exposure to external gamma radiation was conducted under controlled conditions. Results showed that somatic growth and reproduction were reduced with increasing dose rate. Modeling was used to investigate whether radiation effects might be assessed using a mechanistic model based upon the dynamic energy budget (DEB) theory. A DEB theory in toxicology (DEB-tox), specially adapted to the case of gamma radiation, was developed. Modelling results demonstrated the suitability of DEB-tox for the analysis of radiotoxicity and suggested that external gamma radiation predominantly induced a direct reduction in reproductive capacity in C. elegans and produced an increase in costs for growth and maturation, resulting in a delay in growth and spawning observed at the highest tested dose rate.
Collapse
Affiliation(s)
- Catherine Lecomte-Pradines
- a Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO , Cadarache , Saint-Paul-lez-Durance , France
| | - Turid Hertel-Aas
- b Centre for Environmental Radioactivity (CERAD), Department of Environmental Science , Norwegian University of Life Sciences (NMBU) , Aas , Norway
| | - Claire Coutris
- b Centre for Environmental Radioactivity (CERAD), Department of Environmental Science , Norwegian University of Life Sciences (NMBU) , Aas , Norway
- c Division of Environment and Natural Resources , Norwegian Institute of Bioeconomy Research (NIBIO) , Aas , Norway
| | - Rodolphe Gilbin
- d Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LRTE , Cadarache , Saint-Paul-lez-Durance , France
| | - Deborah Oughton
- b Centre for Environmental Radioactivity (CERAD), Department of Environmental Science , Norwegian University of Life Sciences (NMBU) , Aas , Norway
| | - Frédéric Alonzo
- a Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO , Cadarache , Saint-Paul-lez-Durance , France
| |
Collapse
|
26
|
Christofoletti CA, Francisco A, Pedro-Escher J, Gastaldi VD, Fontanetti CS. Diplopods as Soil Bioindicators of Toxicity After Application of Residues From Sewage Treatment Plants and Ethanol Industry. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:1098-1110. [PMID: 27786153 DOI: 10.1017/s1431927616011739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Residues like sewage sludge and vinasse have been reused as agricultural fertilizers, but they also present a potential to contaminate soils. Diplopods have been considered excellent bioindicators of soil contamination. In the present study, Rhinocricus padbergi were used to assess toxicity in samples of sewage sludge, biosolids, and sugarcane vinasse. The behavioral analysis, mortality rate, and histological, histochemical, and ultrastructural analyses of the midgut of diplopods were the parameters evaluated. Behaviorally, some diplopods avoided burying themselves after 30 days in soil with biosolid or vinasse. Besides, certain residue combinations were able to cause death of all individuals between 60 and 90 days of exposure. The main tissue responses were significant brush border thickening, induction of epithelial renovation, clustering of hemocytes, accumulation of cytoplasmic granules in hepatic cells, hepatic cells with heteropycnotic nuclei, and cytoplasmic degradation. Alterations were observed at various levels among treatments with different samples and exposure times. Ultrastructural analysis revealed elongation of microvilli coated with a layer of an amorphous substance, resulting in a thicker brush border as observed in the histological analysis. After 30 days of exposure, animals showed an accumulation of spherocrystals in hepatic cells and high absorption of substances, based on the elongation of microvilli. Results obtained in the chemical analysis and the behaviors observed in diplopods suggest that animals processed the residues. Therefore, caution should be exercised in the disposal of these residues in agriculture.
Collapse
Affiliation(s)
- Cintya A Christofoletti
- 1UNESP (São Paulo State University),Institute of Biosciences,Department of Biology,Av. 24-A,n°1515,13506-900,Rio Claro,São Paulo,Brazil
| | - Annelise Francisco
- 1UNESP (São Paulo State University),Institute of Biosciences,Department of Biology,Av. 24-A,n°1515,13506-900,Rio Claro,São Paulo,Brazil
| | - Janaína Pedro-Escher
- 1UNESP (São Paulo State University),Institute of Biosciences,Department of Biology,Av. 24-A,n°1515,13506-900,Rio Claro,São Paulo,Brazil
| | - Vinícius D Gastaldi
- 1UNESP (São Paulo State University),Institute of Biosciences,Department of Biology,Av. 24-A,n°1515,13506-900,Rio Claro,São Paulo,Brazil
| | - Carmem S Fontanetti
- 1UNESP (São Paulo State University),Institute of Biosciences,Department of Biology,Av. 24-A,n°1515,13506-900,Rio Claro,São Paulo,Brazil
| |
Collapse
|
27
|
Kergunteuil A, Campos-Herrera R, Sánchez-Moreno S, Vittoz P, Rasmann S. The Abundance, Diversity, and Metabolic Footprint of Soil Nematodes Is Highest in High Elevation Alpine Grasslands. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00084] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Wang Y, Qiao J, He C, Wang Z, Luo W, Sheng L. Towards multi-level biomonitoring of nematodes to assess risk of nitrogen and phosphorus pollution in Jinchuan Wetland of Northeast China. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:2190-2199. [PMID: 26423393 DOI: 10.1007/s10646-015-1550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
Cultivation for agricultural production often poses threats to nearby wetlands ecosystems in fertile landscapes. In this study, nematode ecological indexes were assessed through the main soil properties of the wetlands, farmlands, and edges of wetlands and farmlands in Jinchuan Wetland by the random sampling. Behavior and reproduction in Caenorhabditis elegans (C. elegans) exposed to the sampled waters were also examined. Stress proteins Hsp70 and Hsp90 were measured both in the living field samples of C. elegans and the lab-tested C. elegans. Our results suggested that disturbance to wetland ecosystems by nitrogen and phosphorus reduced nematode richness and proportions of bacterivore nematodes. Bacterivore nematode diversity and plant-parasitic ecological index were proven to be sensitive indicators of the ecological health of wetlands. Nematode Hsp70 were useful biosensors to monitor and assess the levels of nitrogen and phosphorus pollutions in wetlands. Furthermore, multi-level soil faunal assessments by canonical correspondence analysis showed that Jinchuan Wetland is threatened with non-point source pollution from nearby farmlands.
Collapse
Affiliation(s)
- Yunbiao Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Jie Qiao
- College of Life Science, Langfang Teachers University, Langfang, 065000, China
| | - Chunguang He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Zhongqiang Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Wenbo Luo
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
29
|
Kim W, Conery AL, Rajamuthiah R, Fuchs BB, Ausubel FM, Mylonakis E. Identification of an Antimicrobial Agent Effective against Methicillin-Resistant Staphylococcus aureus Persisters Using a Fluorescence-Based Screening Strategy. PLoS One 2015; 10:e0127640. [PMID: 26039584 PMCID: PMC4454602 DOI: 10.1371/journal.pone.0127640] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/17/2015] [Indexed: 12/21/2022] Open
Abstract
Persisters are a subpopulation of normal bacterial cells that show tolerance to conventional antibiotics. Persister cells are responsible for recalcitrant chronic infections and new antibiotics effective against persisters would be a major development in the treatment of these infections. Using the reporter dye SYTOX Green that only stains cells with permeabilized membranes, we developed a fluorescence-based screening assay in a 384-well format for identifying compounds that can kill methicillin-resistant Staphylococcus aureus (MRSA) persisters. The assay proved robust and suitable for high throughput screening (Z`-factor: >0.7). In screening a library of hits from a previous screen, which identified compounds that had the ability to block killing of the nematode Caenorhabditis by MRSA, we discovered that the low molecular weight compound NH125, a bacterial histidine kinase inhibitor, kills MRSA persisters by causing cell membrane permeabilization, and that 5 μg/mL of the compound can kill all cells to the limit of detection in a 108 CFU/mL culture of MRSA persisters within 3h. Furthermore, NH125 disrupts 50% of established MRSA biofilms at 20 μg/mL and completely eradicates biofilms at 160 μg/mL. Our results suggest that the SYTOX Green screening assay is suitable for large-scale projects to identify small molecules effective against MRSA persisters and should be easily adaptable to a broad range of pathogens that form persisters. Since NH125 has strong bactericidal properties against MRSA persisters and high selectivity to bacteria, we believe NH125 is a good anti-MRSA candidate drug that should be further evaluated.
Collapse
Affiliation(s)
- Wooseong Kim
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Annie L. Conery
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rajmohan Rajamuthiah
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Frederick M. Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
30
|
Kim SW, Moon J, An YJ. A highly efficient nonchemical method for isolating live nematodes (Caenorhabditis elegans) from soil during toxicity assays. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:208-213. [PMID: 25387396 DOI: 10.1002/etc.2788] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/09/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
The success of soil toxicity tests using Caenorhabditis elegans may depend in large part on recovering the organisms from the soil. However, it can be difficult to learn the International Organization for Standardization/ASTM International recovery process that uses the colloidal silica flotation method. The present study determined that a soil-agar isolation method provides a highly efficient and less technically demanding alternative to the colloidal silica flotation method. Test soil containing C. elegans was arranged on an agar plate in a donut shape, a linear shape, or a C curve; and microbial food was placed outside the soil to encourage the nematodes to leave the soil. The effects of ventilation and the presence of food on nematode recovery were tested to determine the optimal conditions for recovery. A linear arrangement of soil on an agar plate that was sprinkled with microbial food produced nearly 83% and 90% recovery of live nematodes over a 3-h and a 24-h period, respectively, without subjecting the nematodes to chemical stress. The method was tested using copper (II) chloride dihydrate, and the resulting recovery rate was comparable to that obtained using colloidal silica flotation. The soil-agar isolation method portrayed in the present study enables live nematodes to be isolated with minimal additional physicochemical stress, making it a valuable option for use in subsequent sublethal tests where live nematodes are required.
Collapse
Affiliation(s)
- Shin Woong Kim
- Department of Environmental Health Science, Konkuk University, Seoul, Korea
| | | | | |
Collapse
|
31
|
da Silva Souza T, Christofoletti CA, Bozzatto V, Fontanetti CS. The use of diplopods in soil ecotoxicology - a review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 103:68-73. [PMID: 24215849 DOI: 10.1016/j.ecoenv.2013.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/09/2013] [Accepted: 10/16/2013] [Indexed: 06/02/2023]
Abstract
Diplopods play an important role in the dynamics of terrestrial ecosystems, actively participating in the decomposition of organic matter and soil aeration. They have gained increased attention from ecotoxicology research because they are continuously exposed to soil contaminants and biological effects of chemical stressors can be measurable at various levels of biological organization. This paper is the first review on the use of diplopods as soil bioindicators and compiles the effects of the different toxic chemical agents on these animals. Special emphasis is given on the interpretation of the effects of heavy metals and complex mixtures in target organs of diplopods.
Collapse
Affiliation(s)
- Tatiana da Silva Souza
- Departamento de Biologia, Centro de Ciências Agrárias, Universidade Federal do Espírito Santo, UFES, Alto Universitário, s/número Guararema, 29500-000 Alegre, ES, Brasil.
| | - Cintya Aparecida Christofoletti
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Avenida 24A, 1515, Bela Vista, 13506-900 Rio Claro, SP, Brasil.
| | - Vlamir Bozzatto
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Avenida 24A, 1515, Bela Vista, 13506-900 Rio Claro, SP, Brasil.
| | - Carmem Silvia Fontanetti
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Avenida 24A, 1515, Bela Vista, 13506-900 Rio Claro, SP, Brasil.
| |
Collapse
|
32
|
Shukurov N, Kodirov O, Peitzsch M, Kersten M, Pen-Mouratov S, Steinberger Y. Coupling geochemical, mineralogical and microbiological approaches to assess the health of contaminated soil around the Almalyk mining and smelter complex, Uzbekistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 476-477:447-59. [PMID: 24486500 DOI: 10.1016/j.scitotenv.2014.01.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/30/2013] [Accepted: 01/07/2014] [Indexed: 05/21/2023]
Abstract
This study describes the impact of airborne pollution resulting from mining and smelting activities on the soils of the Almalyk mining and industrial area (NE Uzbekistan). Samples were collected along a transect downwind of the industrial area. Enriched contents of some metals were found in the upper soil layers near the metallurgical complex (Zn≤3010 mg kg(-1), Pb≤630 mg kg(-1), Cd≤30 mg kg(-1)) which suggests that these metals were derived from local stack emissions. The morphology and internal microstructure of metal-bearing spherical particles found in the heavy mineral fraction suggest that these particles were probably a result of inefficient flue gas cleaning technique of the smelter. The highest metal concentrations were found also in soil solutions and exchangeable solid fractions from the first three locations, and decreased with increasing distance from the pollution source along transect. Thermodynamic equilibrium calculations suggest that the mobile metal pool in the contaminated soil is mainly controlled by dissolution of metal carbonates formed as weathering product of the metalliferous particles. The health of the microbiological soil ecosystem was assessed by measurements of basal respiration, nematode abundance, biomass-related C and N content, and microbial metabolic quotient qCO2. Significant correlations were found between the dissolved metal content and the microbiological health parameters, a negative one for Cmic/Corg ratio, and a positive one for qCO2. A negative correlation was found between the amount of nematodes and the metal contents suggesting that the contaminated soil has significant impact on the functioning of the microbiological community. A better understanding of the spatial variations in the whole ecosystem functioning due to airborne impact could be very useful for establishing suitable land use and best management practices for the polluted areas.
Collapse
Affiliation(s)
- Nosir Shukurov
- Geosciences Institute, Johannes Gutenberg University, Mainz 55099, Germany
| | - Obidjon Kodirov
- Geosciences Institute, Johannes Gutenberg University, Mainz 55099, Germany
| | - Mirko Peitzsch
- Geosciences Institute, Johannes Gutenberg University, Mainz 55099, Germany
| | - Michael Kersten
- Geosciences Institute, Johannes Gutenberg University, Mainz 55099, Germany.
| | - Stanislav Pen-Mouratov
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Yosef Steinberger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
33
|
Wu Q, Li Y, Li Y, Zhao Y, Ge L, Wang H, Wang D. Crucial role of the biological barrier at the primary targeted organs in controlling the translocation and toxicity of multi-walled carbon nanotubes in the nematode Caenorhabditis elegans. NANOSCALE 2013; 5:11166-11178. [PMID: 24084889 DOI: 10.1039/c3nr03917j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) can be translocated into the targeted organs of organisms. We employed a model organism of the nematode Caenorhabditis elegans to investigate the role of a biological barrier at the primary targeted organs in regulating the translocation and toxicity formation of MWCNTs. A prolonged exposure to MWCNTs at predicted environmental relevant concentrations caused adverse effects associated with both the primary and secondary targeted organs on nematodes. The function of PEGylated modification in reducing MWCNTs toxicity might be mainly due to the suppression of their translocation into secondary targeted organs through the primary targeted organs. A biological barrier at the primary targeted organs contributed greatly to the control of MWCNTs translocation into secondary targeted organs, as indicated by functions of Mn-SODs required for prevention of oxidative stress in the primary targeted organs. Over-expression of Mn-SODs in primary targeted organs effectively suppressed the translocation and toxicity of MWCNTs. Our work highlights the crucial role of the biological barrier at the primary targeted organs in regulating the translocation and toxicity formation of MWCNTs. Our data also shed light on the future development of engineered nanomaterials (ENMs) with improved biocompatibility and design of prevention strategies against ENMs toxicity.
Collapse
Affiliation(s)
- Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Medical School of the Southeast University, Nanjing 210009, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Velki M, Hackenberger BK. Different sensitivities of biomarker responses in two epigeic earthworm species after exposure to pyrethroid and organophosphate insecticides. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 65:498-509. [PMID: 23811990 DOI: 10.1007/s00244-013-9930-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
In many studies that investigate the toxic effects of pollutants on earthworms, experiments are performed using only one species of earthworms, most commonly the Eisenia species. However, the differences in sensitivities of different earthworm species could potentially lead to an underestimation of environmental aspects of pollutants. Therefore, the aim of this study was to compare the sensitivity of biomarker responses of Eisenia andrei, an epigeic compost species commonly used in laboratory experiments, with those of Lumbricus rubellus, an epigeic species widely distributed in temperate regions. The earthworms were exposed to the three commonly used insecticides: organophosphates dimethoate (0.03, 0.3, and 3 mg kg(-1)) and pirimiphos-methyl (0.02, 0.2, and 2 mg kg(-1)), as well as pyrethroid deltamethrin (0.01, 0.1, and 0.5 mg kg(-1)), for 1 and 15 days using an artificial soil test. The effects of the pesticides were assessed by measuring the activities of acetylcholinesterase (AChE), carboxylesterase (CES), catalase (CAT), glutathione S-transferase (GST) as well as the concentration of glutathione (GSH). The pesticides caused a significant inhibition of AChE and CES activities and significant changes in activities of CAT, GST, and GSH concentration in both earthworm species. A comparison of biomarker responses between E. andrei and L. rubellus showed significant differences; E. andrei proved to be less susceptible to pesticide exposure than L. rubellus. In addition, the results from the filter-paper contact test mortality experiments showed that lethal concentrations were lower for L. rubellus compared with the E. andrei, further showing a greater sensitivity of L. rubellus. The difference in sensitivities of these epigeic species should be taken into account when conducting toxicity studies.
Collapse
Affiliation(s)
- Mirna Velki
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | | |
Collapse
|
35
|
Molecular and morphological characterization of Pristionchus pacificus (Nematoda: Rhabditida: Neodiplogastridae), a new record of an entomophilic nematode from Iran. Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0232-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Huguier P, Manier N, Méline C, Bauda P, Pandard P. Improvement of the Caenorhabditis elegans growth and reproduction test to assess the ecotoxicity of soils and complex matrices. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:2100-2108. [PMID: 23703843 DOI: 10.1002/etc.2282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/17/2012] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
A growth and reproduction test using the nematode Caenorhabditis elegans was recently standardized by the International Organization for Standardization (ISO). Performing the ISO 10872 protocol (2010) revealed some drawbacks when applied to soil or soil mixed with complex matrices. The authors propose some modifications to the current protocol to normalize the test conditions. An appropriate range of moisture conditions was determined as a percentage of the water-holding capacity (WHC) of the soil. According to the authors' results, C. elegans tests can be performed in the range of 60% to 100% WHC. To ensure that the modifications of the protocol did not affect the organisms' recovery, extraction ratios for the juveniles were subsequently estimated. The modified protocol was found to be as reliable as the standard one concerning recovery of juveniles (over 80%). The protocol was also applied to several chemicals to investigate their potential as reference chemicals for soil toxicity tests. Boric acid, copper chloride, and nickel sulfate showed deleterious effects in a concentration-dependent manner for the growth and reproduction of C. elegans. Finally, the modified protocol was used to assess the growth and reproduction of C. elegans in soil amended with a limed sewage sludge. The authors conclude that the C. elegans modified protocol is a promising tool for the assessment of soil toxicity as well as the toxicity of mixtures with complex matrices.
Collapse
Affiliation(s)
- Pierre Huguier
- National Institute of Industrial Environment and Risks, Verneuil-en-Halatte, France.
| | | | | | | | | |
Collapse
|
37
|
|
38
|
Morise H, Miyazaki E, Yoshimitsu S, Eki T. Profiling nematode communities in unmanaged flowerbed and agricultural field soils in Japan by DNA barcode sequencing. PLoS One 2012; 7:e51785. [PMID: 23284767 PMCID: PMC3527504 DOI: 10.1371/journal.pone.0051785] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/06/2012] [Indexed: 11/18/2022] Open
Abstract
Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU) rDNA fragments were directly amplified from each of 68 (flowerbed samples) and 48 (field samples) isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs) were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs) were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds) in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI) gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs), indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis.
Collapse
Affiliation(s)
- Hisashi Morise
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, Japan
| | - Erika Miyazaki
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, Japan
| | - Shoko Yoshimitsu
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, Japan
| | - Toshihiko Eki
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, Japan
- * E-mail:
| |
Collapse
|
39
|
Šalamún P, Renčo M, Kucanová E, Brázová T, Papajová I, Miklisová D, Hanzelová V. Nematodes as bioindicators of soil degradation due to heavy metals. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:2319-2330. [PMID: 22923372 DOI: 10.1007/s10646-012-0988-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2012] [Indexed: 06/01/2023]
Abstract
The effect of distance from a heavy metal pollution source on the soil nematode community was investigated on four sampling sites along an 4 km transect originating at the Kovohuty a.s. Krompachy (pollution source). The soil nematode communities were exposed to heavy metal influence directly and through soil properties changes. We quantified the relative effects of total and mobile fraction of metals (As, Cd, Cr, Cu, Pb, and Zn) on soil ecosystem using the nematode community structure (trophic and c-p groups,) and ecological indices (Richness of genera, H', MI2-5, etc.). Pollution effects on the community structure of soil free living nematodes was found to be the highest near the pollution source, with relatively low population density and domination of insensitive taxa. A decrease in heavy metals contents along the transect was linked with an increase in complexity of nematode community. The majority of used indices (MI2-5, SI, H') negatively correlated (P < 0.05 or P < 0.01) with heavy metals content and were sensitive to soil ecosystem disturbance. Contamination by heavy metals has negatively affected the soil environment, which resulted in nematode community structure and ecological indices changes. Results showed that the free-living nematodes are useful tools for bioindication of contamination and could be used as an alternative to the common approaches based on chemical methods.
Collapse
Affiliation(s)
- Peter Šalamún
- Institute of Parasitology, SAS, Hlinkova 3, 04001, Košice, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
40
|
Wu Q, Li Y, Tang M, Wang D. Evaluation of environmental safety concentrations of DMSA Coated Fe2O3-NPs using different assay systems in nematode Caenorhabditis elegans. PLoS One 2012; 7:e43729. [PMID: 22912902 PMCID: PMC3422352 DOI: 10.1371/journal.pone.0043729] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/23/2012] [Indexed: 01/22/2023] Open
Abstract
Dimercaptosuccinic acid (DMSA) coating improves the uptake efficiency presumably by engendering the Fe(2)O(3)-NPs. In the present study, we investigated the possible environmental safety concentrations of Fe(2)O(3)-NPs using different assay systems in nematode Caenorhabditis elegans with lethality, development, reproduction, locomotion behavior, pharyngeal pumping, defecation, intestinal autofluorescence and reactive oxygen species (ROS) production as the endpoints. After exposure from L4-larvae for 24-hr, DMSA coated Fe(2)O(3)-NPs at concentrations more than 50 mg/L exhibited adverse effects on nematodes. After exposure from L1-larvae to adult, DMSA coated Fe(2)O(3)-NPs at concentrations more than 500 μg/L had adverse effects on nematodes. After exposure from L1-larvae to day-8 adult, DMSA coated Fe(2)O(3)-NPs at concentrations more than 100 μg/L resulted in the adverse effects on nematodes. Accompanied with the alterations of locomotion behaviors, ROS production was pronouncedly induced by exposure to DMSA coated Fe(2)O(3)-NPs in the examined three assay systems, and the close associations of ROS production with lethality, growth, reproduction, locomotion behavior, pharyngeal pumping, defecation, or intestinal autofluorescence in nematodes exposed to DMSA coated Fe(2)O(3)-NPs were confirmed by the linear regression analysis. Moreover, mutations of sod-2 and sod-3 genes, encoding Mn-SODs, showed more susceptible properties than wild-type when they were used for assessing the DMSA coated Fe(2)O(3)-NPs-induced toxicity, and the safety concentrations for DMSA coated Fe(2)O(3)-NPs should be defined as concentrations lower than 10 μg/L in sod-2 and sod-3 mutant nematodes.
Collapse
Affiliation(s)
- Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, China
| | - Yiping Li
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, China
| | - Meng Tang
- School of Public Health, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
41
|
Devos Y, De Schrijver A, De Clercq P, Kiss J, Romeis J. Bt-maize event MON 88017 expressing Cry3Bb1 does not cause harm to non-target organisms. Transgenic Res 2012; 21:1191-214. [DOI: 10.1007/s11248-012-9617-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 04/04/2012] [Indexed: 11/28/2022]
|
42
|
Salamún P, Renčo M, Miklisová D, Hanzelová V. Nematode community structure in the vicinity of a metallurgical factory. ENVIRONMENTAL MONITORING AND ASSESSMENT 2011; 183:451-464. [PMID: 21374052 DOI: 10.1007/s10661-011-1932-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/08/2011] [Indexed: 05/30/2023]
Abstract
Soil nematode communities (taxa composition, trophic structure, ecological indices) in the area of metallurgical factory (Oravské ferozliatinárske závody) in Široká, Northern Slovakia were investigated in 2009. The factory belongs to main sources of emissions originated by ferroalloy production in this region. Four sites (meadows) were selected in a downwind direction from the factory: site A was located 0.85 km far from the factory, and the other sites were maintained in approximately 2-km intervals from each other. Chemical analysis of soil samples showed low concentrations of heavy metals (As, Cd, Cr, Cu, Ni, Pb and Zn), with all values being under Slovak limit concentrations of heavy metals in soils. Only the Cd content in the soil sample from site A slightly exceeded the allowable threshold, but it was decreasing with the distance from the factory, similarly as remaining metals except Cr, with slightly increasing trend of concentration. Within 64 identified nematode genera, the Helicotylenchus, Paratylenchus, Pratylenchus, Acrobeloides, Cephalobus and Rhabditis were most common and eudominant. This was clearly reflected on the trophic structure of nematode communities, where plant feeding nematodes and bacteriovorous prevailed. Significant negative correlation (P < 0.05) was observed between the abundance of bacteriovores and the concentration of Cu in the soil. On the other hand, fungivores showed significant correlation with Ni and Cr (P < 0.05) as well as predators with Cd, Pb and Zn contents in the soil (P < 0.01). The highly significant correlation (P < 0.05; P < 0.01) was found between As, Cd, Ni, Pb and Zn and Maturity Index 2-5. A negative relationship was detected between Maturity Index and the concentration of Cr in the soil (P < 0.01). On the other hand, Cu was in positive correlation with MI values. The MI, reflecting the degree of disturbances and changes in the structure and function of the soil ecosystem, was found to be the most sensitive indicator among all used indices.
Collapse
Affiliation(s)
- Peter Salamún
- Parasitological Institute of the Slovak Academy, of Sciences, Hlinkova 3, 040 01, Košice, Slovakia.
| | | | | | | |
Collapse
|
43
|
Anastassopoulou CG, Fuchs BB, Mylonakis E. Caenorhabditis elegans-based model systems for antifungal drug discovery. Curr Pharm Des 2011; 17:1225-33. [PMID: 21470110 DOI: 10.2174/138161211795703753] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/21/2011] [Indexed: 12/21/2022]
Abstract
The substantial morbidity and mortality associated with invasive fungal infections constitute undisputed tokens of their severity. The continued expansion of susceptible population groups (such as immunocompromised individuals, patients undergoing extensive surgery, and those hospitalized with serious underlying diseases especially in the intensive care unit) and the limitations of current antifungal agents due to toxicity issues or to the development of resistance, mandate the development of novel antifungal drugs. Currently, drug discovery is transitioning from the traditional in vitro large-scale screens of chemical libraries to more complex bioassays, including in vivo studies on whole animals; invertebrates, such as Caenorhabditis elegans, are thus gaining momentum as screening tools. Key pathogenesis features of fungal infections, including filament formation, are expressed in certain invertebrate and mammalian hosts; among the various potential hosts, C. elegans provides an attractive platform both for the study of host-pathogen interactions and the identification of new antifungal agents. Advantages of compound screening in this facile, relatively inexpensive and not as ethically challenged whole-animal context, include the simultaneous assessment of antifungal efficacy and toxicity that could result in the identification of compounds with distinct mechanisms of action, for example by promoting host immune responses or by impeding fungal virulence factors. With the recent advent of using predictive models to screen for compounds with improved chances of bioavailability in the nematode a priori, high-throughput screening of chemical libraries using the C. elegans-C. albicans antifungal discovery assay holds even greater promise for the identification of novel antifungal agents in the near future.
Collapse
Affiliation(s)
- Cleo G Anastassopoulou
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
44
|
Scientific Opinion on application (EFSA-GMO-CZ-2008-54) for placing on the market of genetically modified insect resistant and herbicide tolerant maize MON 88017 for cultivation under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
45
|
Daam MA, Leitão S, Cerejeira MJ, Paulo Sousa J. Comparing the sensitivity of soil invertebrates to pesticides with that of Eisenia fetida. CHEMOSPHERE 2011; 85:1040-1047. [PMID: 21840031 DOI: 10.1016/j.chemosphere.2011.07.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 05/27/2011] [Accepted: 07/18/2011] [Indexed: 05/31/2023]
Abstract
The sole routine testing of the standard earthworm Eisenia fetida for the terrestrial risk assessment of pesticides has been under much debate since other soil invertebrates may be more sensitive than this standard test species. However, the very low availability of laboratory toxicity data for taxa other than E. fetida has greatly hampered sensitivity comparisons. In the present study, the relative tolerance (T(rel)) approach was used to enable comparing toxicity thresholds obtained from the US-EPA ECOTOX database, for main terrestrial taxonomic groups and pesticidal types of action (insecticides, fungicides, herbicides, and other) separately. Analyses confirmed previously reported lower and higher sensitivity of collembolans to fungicides and insecticides, respectively. However, various other discrepancies in susceptibility relative to E. fetida were encountered as indicated by species sensitivity distributions and/or calculated 95% confidence intervals of T(rel) values. Arachnids and isopods were found to be more sensitive to insecticides, and nematodes to fungicides, as compared to E. fetida. Implications of study findings for the terrestrial risk assessment of pesticides are discussed.
Collapse
Affiliation(s)
- Michiel A Daam
- Instituto Superior de Agronomia, Technical University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal.
| | | | | | | |
Collapse
|
46
|
Lira VF, Santos GAP, Derycke S, Larrazabal MEL, Fonsêca-Genevois VG, Moens T. Effects of barium and cadmium on the population development of the marine nematode Rhabditis (Pellioditis) marina. MARINE ENVIRONMENTAL RESEARCH 2011; 72:151-159. [PMID: 21855994 DOI: 10.1016/j.marenvres.2011.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Revised: 07/15/2011] [Accepted: 07/24/2011] [Indexed: 05/31/2023]
Abstract
Offshore oil and gas drilling often involves the use of fluids containing barium and traces of other heavy metals. These may affect the environment, but information on their toxicity to benthic biota remains scant. Here, we present results of a 10-day bioassay with the marine nematode Rhabditis (Pellioditis) marina at different loads of barium (0-10 ,000 ppm nominal concentrations) and cadmium (0-12 ppm) in the range of concentrations reported from drilling-impacted sediments. Barium did not affect the fitness and population development of R. (P.) marina at concentrations up to 300 ppm, but did cause a decrease in population abundance and an increase in development time from concentrations of 400-2000 ppm onwards. Increased mortality occurred at 4800 ppm Ba. For cadmium, LOEC and EC₅₀ values for total population abundance were 2.95 and 8.82 ppm, respectively. Cd concentrations as low as 2.40 to 2.68 caused a decrease in the abundance of adult nematodes, indicating that assays covering more generations would likely demonstrate yet more pronounced population-level effects. Our results indicate that oil and gas drilling activities may potentially have important implications for the meiobenthos through the toxicity of barium and associated metals like cadmium.
Collapse
Affiliation(s)
- V F Lira
- Marine Biology Section, Biology Department, Ghent University, Krijgslaan 281 (S8), B-9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
47
|
Chelinho S, Dieter Sautter K, Cachada A, Abrantes I, Brown G, Costa Duarte A, Sousa JP. Carbofuran effects in soil nematode communities: using trait and taxonomic based approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:2002-2012. [PMID: 21868095 DOI: 10.1016/j.ecoenv.2011.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/13/2011] [Accepted: 07/21/2011] [Indexed: 05/31/2023]
Abstract
This work intends to implement the use of native soil nematode communities in ecotoxicological tests using a model pesticide and two geographically nematode communities (Mediterranean and sub-tropical) in order to obtain new perspectives on the evaluation of the toxic potential of chemical substances. The environmental condition of the nematode communities was described using a trait-based approach (grouping the organisms according to their feeding traits) and a traditional taxonomic method (identification to family level). Effects on total nematode abundance, number of families and abundance of nematode feeding groups as well as potential shifts in both trophic and family structure were assessed. Agricultural soils from Curitiba (Brazil) and Coimbra (Portugal) were sampled and the corresponding nematode communities were extracted. Part of the collected soil was defaunated and spiked with four doses of a carbofuran commercial formulation. Afterwards each of the replicates was inoculated with a nematode suspension containing ≈200 or 300 nematodes. After 14 and 28 d of exposure the nematodes were extracted, counted and identified at family level and separately classified according to their feeding traits. The patterns of nematode responses revealed a decrease in the total abundance and a reduction in the number of families. Despite the similar effects observed for both communities, statistically significant toxic effects were only found within the Portuguese community. The total nematode abundance was significantly reduced at the highest carbofuran concentrations and significant shifts in the family structure were detected. However, the trophic structure, i.e., the contribution of each feeding group for the overall community structure, did not significantly change along the contamination gradient. Results showed that using such a trait-based approach may increase the ecological relevance of toxicity data, by establishing communalities in the response to a chemical from two different taxonomic communities, although with potential loss of information on biodiversity of the communities.
Collapse
Affiliation(s)
- Sónia Chelinho
- IMAR-CMA Department of Life Sciences, University of Coimbra, Apartado 3046, 3001-401 Coimbra, Portugal.
| | | | | | | | | | | | | |
Collapse
|
48
|
Höss S, Claus E, Von der Ohe PC, Brinke M, Güde H, Heininger P, Traunspurger W. Nematode species at risk--a metric to assess pollution in soft sediments of freshwaters. ENVIRONMENT INTERNATIONAL 2011; 37:940-949. [PMID: 21482435 DOI: 10.1016/j.envint.2011.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/23/2011] [Accepted: 03/16/2011] [Indexed: 05/30/2023]
Abstract
Soft sediments are often highly polluted as many of the toxic chemicals introduced into surface waters bind to settling particles. The resulting accumulation of pollutants in the sediments poses a risk for benthic communities. However, pollution induced changes in benthic communities have been difficult to determine when using macro-invertebrates as bioindicators, as these organisms are often absent in soft sediment. The present study therefore examined the ability of meiofaunal organisms, specifically, nematodes, to assess the ecological status of soft sediments. Over a 9-year period, nematode communities present in sediments collected from large rivers and lake Constance in Germany were studied. These sediments showed a large range of physico-chemical properties and anthropogenic contamination. After the degree of metal and organic contamination was translated into ecotoxicologically more relevant toxic units (TUs), multivariate methods were used to classify nematode taxa in species at risk (NemaSPEAR) or not at risk (NemaSPE(not)AR). This approach clearly distinguished the influence of sediment texture from that of the toxic potential of the samples and thus allowed classification of the nematode species according to their sensitivity to or tolerance of toxic stress. Two indices, expressing the proportion of species at risk within a sample (NemaSPEAR[%](metal), NemaSPEAR[%](organic)), were calculated from independent data sets obtained in field and experimental studies and showed good correlations with the toxic potential (field data) or chemical concentrations (microcosm data). NemaSPEAR[%] indices for metal and organic pollution were therefore judged to be suitable for assessing the impact of chemical contamination of freshwater soft sediments.
Collapse
Affiliation(s)
- S Höss
- Federal Institute of Hydrology (BfG), Mainzer Tor 1, Koblenz, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Desalermos A, Muhammed M, Glavis-Bloom J, Mylonakis E. Using C. elegans for antimicrobial drug discovery. Expert Opin Drug Discov 2011; 6:645-652. [PMID: 21686092 PMCID: PMC3115622 DOI: 10.1517/17460441.2011.573781] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION: The number of microorganism strains with resistance to known antimicrobials is increasing. Therefore, there is a high demand for new, non-toxic and efficient antimicrobial agents. Research with the microscopic nematode Caenorhabditis elegans can address this high demand for the discovery of new antimicrobial compounds. In particular, C. elegans can be used as a model host for in vivo drug discovery through high-throughput screens of chemical libraries. AREAS COVERED: This review introduces the use of substitute model hosts and especially C. elegans in the study of microbial pathogenesis. The authors also highlight recently published literature on the role of C. elegans in drug discovery and outline its use as a promising host with unique advantages in the discovery of new antimicrobial drugs. EXPERT OPINION: C. elegans can be used, as a model host, to research many diseases, including fungal infections and Alzheimer's disease. In addition, high-throughput techniques, for screening chemical libraries, can also be facilitated. Nevertheless, C. elegans and mammals have significant differences that both limit the use of the nematode in research and the degree by which results can be interpreted. That being said, the use of C. elegans in drug discovery still holds promise and the field continues to grow, with attempts to improve the methodology already underway.
Collapse
Affiliation(s)
- Athanasios Desalermos
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | | | | | | |
Collapse
|
50
|
Morgan KL, Estevez AO, Mueller CL, Cacho-Valadez B, Miranda-Vizuete A, Szewczyk NJ, Estevez M. The glutaredoxin GLRX-21 functions to prevent selenium-induced oxidative stress in Caenorhabditis elegans. Toxicol Sci 2010; 118:530-43. [PMID: 20833709 PMCID: PMC2984526 DOI: 10.1093/toxsci/kfq273] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 09/03/2010] [Indexed: 12/22/2022] Open
Abstract
Selenium is an essential micronutrient that functions as an antioxidant. Yet, at higher concentrations, selenium is pro-oxidant and toxic. In extreme cases, exposures to excess selenium can lead to death or selenosis, a syndrome characterized by teeth, hair and nail loss, and nervous system alterations. Recent interest in selenium as an anti- tumorigenic agent has reemphasized the need to understand the mechanisms underlying the cellular consequences of increased selenium exposure. We show here, that in the nematode, Caenorhabditis elegans, selenium has a concentration range in which it functions as an antioxidant, but beyond this range it exhibits a dose- and time-dependent lethality. Oxidation-induced fluorescence emitted by the dye, carboxy-H(2)DCFDA, indicative of reactive oxygen species formation was significantly higher in animals after a brief exposure to 5mM sodium selenite. Longer-term exposures lead to a progressive selenium-induced motility impairment that could be partially prevented by coincident exposure to the cellular antioxidant-reduced glutathione. The C elegans glrx-21 gene belongs to the family of glutaredoxins (glutathione-dependent oxidoreductases) and the glrx-21(tm2921) allele is a null mutation that renders animals hypersensitive for the selenium-induced motility impairment, but not lethality. In addition, the lethality of animals with the tm2921 mutation exposed to selenium was unaffected by the addition of reduced glutathione, suggesting that GLRX-21 is required for glutathione to moderate this selenium-induced lethality. Our findings provide the first description of selenium-induced toxicity in C elegans and support its use as a model for elucidating the mechanisms of selenium toxicity.
Collapse
Affiliation(s)
- Kathleen L. Morgan
- Department of Neurology, Veterans Affairs Pittsburgh Healthcare System, Research and Development (151U), University Drive C, Pittsburgh, Pennsylvania 15240
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Annette O. Estevez
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Catherine L. Mueller
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Briseida Cacho-Valadez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC)
- Departmento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Antonio Miranda-Vizuete
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC)
- Departmento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Nathaniel J. Szewczyk
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Miguel Estevez
- Department of Neurology, Veterans Affairs Pittsburgh Healthcare System, Research and Development (151U), University Drive C, Pittsburgh, Pennsylvania 15240
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|