1
|
Ganguly A, Ghosh S, Jin P, Wadehra M, Devaskar SU. Omega-3 reverses the metabolic and epigenetically regulated placental phenotype acquired from preconceptional and peri-conceptional exposure to air pollutants. J Nutr Biochem 2024; 134:109735. [PMID: 39122219 DOI: 10.1016/j.jnutbio.2024.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Air pollution is detrimental to pregnancy adversely affecting maternal and child health. Our objective was to unravel epigenetic mechanisms mediating the effect of preconception, periconception, and gestational exposure to inhaled air pollutants (AP) upon the maternal and placental-fetal phenotype and explore the benefit of an omega-3 rich dietary intervention. To this end, we investigated intranasal instilled AP during 8 weeks of preconception, periconception, and gestation (G; D0 to 18) upon GD16-19 maternal mouse metabolic status, placental nutrient transporters, placental-fetal size, and placental morphology. Prepregnant mice were glucose intolerant and insulin resistant, while pregnant mice were glucose intolerant but displayed no major placental macro-nutrient transporter changes, except for an increase in CD36. Placentas revealed inflammatory cellular infiltration with cellular edema, necrosis, hemorrhage, and an increase in fetal body weight. Upon examination of placental genome-wide epigenetic processes of DNA sequence specific 5'-hydroxymethylation (5'-hmC) and 5'-methylation (5'-mC) upon RNA sequenced gene expression profiles, revealed changes in key metabolic, inflammatory, transcriptional, and cellular processing genes and pathways. An omega-3 rich anti-inflammatory diet from preconception (8 weeks) through periconception and gestation (GD0-18), ameliorated all these maternal and placental-fetal adverse effects. We conclude that preconceptional, periconceptional and gestational exposures to AP incite a maternal inflammatory response resulting in features of pre-existing maternal diabetes mellitus with injury to the placental-fetal unit. DNA 5'-mC more than 5'-hmC mediated AP induced maternal inflammatory and metabolic dysregulation which together alter placental gene expression and phenotype. A dietary intervention partially reversing these adversities provides possibilities for a novel nutrigenomic therapeutic strategy.
Collapse
Affiliation(s)
- Amit Ganguly
- Department of Pediatrics and the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Shubhamoy Ghosh
- Department of Pediatrics and the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Madhuri Wadehra
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sherin U Devaskar
- Department of Pediatrics and the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| |
Collapse
|
2
|
Kumar SH, Acharyya S, Chouksey A, Soni N, Nazeer N, Mishra PK. Air pollution-linked epigenetic modifications in placental DNA: Prognostic potential for identifying future foetal anomalies. Reprod Toxicol 2024; 129:108675. [PMID: 39074641 DOI: 10.1016/j.reprotox.2024.108675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Prenatal exposure to air pollution is a significant risk factor for the mother and the developing foetus. The accumulation of pollutants in the placenta can cause a self-cascade loop of pro-inflammatory cytokine responses and DNA double-strand breaks. Previous research has shown that airborne particulate matter can damage the epigenome and disturb mitochondrial machinery, ultimately impairing placental function. Mitochondria are essential for preserving cellular homeostasis, energy metabolism, redox equilibrium, and epigenetic reprogramming. As these organelles are subtle targets of environmental exposures, any disruption in the signaling pathways can result in epigenomic instability, which can impact gene expression and mitochondrial function. This, in turn, can lead to changes in DNA methylation, post-translational histone modifications, and aberrant expression of microRNAs in proliferating trophoblast cells. The placenta has two distinct layers, cytotrophoblasts, and syncytiotrophoblasts, each with its mitochondria, which play important roles in preeclampsia, gestational diabetes, and overall health. Foetal nucleic acids enter maternal circulation during placental development because of necrotic, apoptotic, and inflammatory mechanisms. These nucleic acids reflect normal or abnormal ongoing cellular changes during prenatal foetal development. Detecting cell-free DNA in the bloodstream can be a biomarker for predicting negative pregnancy-related outcomes and recognizing abnormalities in foetal growth. Hence, a thorough understanding of how air pollution induces epigenetic variations within the placenta could offer crucial insights into underlying mechanisms and prolonged repercussions on foetal development and susceptibility in later stages of life.
Collapse
Affiliation(s)
- Sruthy Hari Kumar
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Sayanti Acharyya
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Apoorva Chouksey
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nazim Nazeer
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India.
| |
Collapse
|
3
|
Singh S, Goel I, Tripathi S, Ahirwar A, Kumar M, Rana A, Dhar R, Karmakar S. Effect of environmental air pollutants on placental function and pregnancy outcomes: a molecular insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59819-59851. [PMID: 39388084 DOI: 10.1007/s11356-024-35016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Air pollution has become a major health concern, particularly for vulnerable populations such as the elderly, children, and pregnant women. Studies have reported a strong association between prenatal exposure to air pollutants and adverse pregnancy outcomes, including lower birth weight, reduced fetal growth, and an increased frequency of preterm births. This review summarizes the harmful effects of air pollutants, such as particulate matter, on pregnancy and outlines the mechanistic details associated with these adverse outcomes. Particulate pollutant matter may be able to cross the placenta barrier, and alterations in placental functions are central to the detrimental effects of these pollutants. In addition to associations with preeclampsia and gestational hypertension, air pollutants also induce oxidative stress, inflammation, and epigenetic alteration in the placenta. These pollutants can also affect placental homeostasis and endocrine function, contributing to pregnancy complications and possible transgenerational effects. Prenatal air pollution exposure has been linked to reduced cognitive and motor function in infants and newborns, increasing the predisposition to autism spectrum disorders and other neuropsychiatric disorders. This review also summarizes the use of various animal models to study the harmful effects of air pollution on pregnancy and postnatal outcomes. These findings provide valuable insight into the molecular events associated with the process and can aid in risk mitigation and adopting safety measures. Implementing effective environmental protocols and taking appropriate steps may reduce the global disease burden, particularly for developing nations with poor regulatory compliance and large populations of pregnant women.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Isha Goel
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Smita Tripathi
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Ashok Ahirwar
- Department of Lab Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Habsiguda, Hyderabad, India
| | - Anubhuti Rana
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India.
| |
Collapse
|
4
|
Zhang WX, Strodl E, Yang WK, Yin XN, Wen GM, Sun DL, Xian DX, Zhao YF, Chen WQ. Combination effects of environmental tobacco smoke exposure and nutrients supplement during pregnancy on obesity in Chinese preschool children. Front Pediatr 2024; 12:1423556. [PMID: 39346637 PMCID: PMC11427257 DOI: 10.3389/fped.2024.1423556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Objective This study aimed to explore the combination effects of prenatal exposure to environment tobacco smoke (ETS) and nutrients supplement during pregnancy on childhood obesity in preschoolers. Methods A cross-sectional study was conducted with 58,814 child-mother dyads from 235 kindergartens in Longhua District of Shenzhen, China in 2021. A self-administered structured questionnaire was completed by mothers to collect socio-demographic characteristics, prenatal ETS exposure, and nutrients supplement in pregnancy, and preschoolers' heights and weights were measured at the same time. After controlling for potential confounding variables, logistic regression models and cross-analyses were used to examine the independent and combination effects of maternal prenatal ETS exposure and nutrients supplementation during pregnancy on obesity in preschool children. Results The results of our study showed that prenatal ETS exposure increased the risk of childhood obesity (AOR = 1.22, 95% CI = 1.11-1.34) in preschoolers. In addition, risk of childhood obesity was significantly higher when mothers didn't take supplements of multivitamins (AOR = 1.12, 95% CI = 1.05-1.20), folic acid (AOR = 1.23, 95% CI = 1.10-1.37) and iron (AOR = 1.11, 95% CI = 1.04-1.19) during pregnancy. The cross-over analysis showed that the combination of prenatal ETS exposure with mothers taking no multivitamins (AOR = 1.40, 95% CI = 1.21-1.62), no folic acid (AOR = 1.55, 95% CI = 1.12-2.14) and no iron (AOR = 1.38, 95% CI = 1.19-1.59) during pregnancy also increased the risk of obesity among Chinese preschoolers. We also discovered additive interactive effects between prenatal ETS exposure and no maternal multivitamin, folic acid and iron supplementation in pregnancy on the risk of obesity in preschoolers. Conclusion The combination of prenatal exposure to ETS with no supplementation of these nutrients might jointly increase the risk of childhood obesity. Public health interventions are needed to reduce prenatal exposure to ETS and to encourage mothers to take appropriate multivitamin, folic acid and iron supplements during pregnancy.
Collapse
Affiliation(s)
- Wen-Xuan Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Esben Strodl
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wei-Kang Yang
- Women's and Children's Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Xiao-Na Yin
- Women's and Children's Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Guo-Min Wen
- Women's and Children's Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Deng-Li Sun
- Women's and Children's Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Dan-Xia Xian
- Women's and Children's Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Ya-Fen Zhao
- Women's and Children's Hospital of Longhua District of Shenzhen, Shenzhen, China
| | - Wei-Qing Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
5
|
Ganguly A, Ghosh S, Shin BC, Touma M, Wadehra M, Devaskar SU. Gestational exposure to air pollutants perturbs metabolic and placenta-fetal phenotype. Reprod Toxicol 2024; 128:108657. [PMID: 39002939 DOI: 10.1016/j.reprotox.2024.108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Air pollution (AP) is detrimental to pregnancies including increasing risk factors of gestational diabetes mellitus. We hypothesized that exposure to AP causes cardiovascular and metabolic disruption thereby altering placental gene expression, which in turn affects the placental phenotype and thereby embryonic/fetal development. To test this hypothesis, we investigated the impact of intra-nasal instilled AP upon gestational day 16-19 maternal mouse cardiovascular and metabolic status, placental nutrient transporters, and placental-fetal size and morphology. To further unravel mechanisms, we also examined placental total DNA 5'-hydroxymethylation and bulk RNA sequenced gene expression profiles. AP exposed pregnant mice and fetuses were tachycardic with a reduction in maternal left ventricular fractional shortening and increased uterine artery with decreased umbilical artery systolic peak velocities. In addition, they were hyperglycemic, glucose intolerant and insulin resistant, with changes in placental glucose (Glut3) and fatty acid (Fatp1 & Cd36) transporters, and a spatial disruption of cells expressing Glut10 that imports L-dehydroascorbic acid in protecting against oxidative stress. Placentas revealed inflammatory cellular infiltration with associated cellular edema and necrosis, with dilated vascular spaces and hemorrhage. Placental and fetal body weights decreased in mid-gestation with a reduction in brain cortical thickness emerging in late gestation. Placental total DNA 5'-hydroxymethylation was 2.5-fold higher, with perturbed gene expression profiles involving key metabolic, inflammatory, transcriptional, cellular polarizing and processing genes and pathways. We conclude that gestational exposure to AP incites a maternal inflammatory response resulting in features mimicking maternal gestational diabetes mellitus with altered placental DNA 5'-hydroxymethylation, gene expression, and associated injury.
Collapse
Affiliation(s)
- Amit Ganguly
- Department of Pediatrics & the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752, USA
| | - Shubhamoy Ghosh
- Department of Pediatrics & the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752, USA
| | - Bo-Chul Shin
- Department of Pediatrics & the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752, USA
| | - Marlin Touma
- Department of Pediatrics & the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752, USA
| | - Madhuri Wadehra
- Department of Pathology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752, USA
| | - Sherin U Devaskar
- Department of Pediatrics & the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752, USA.
| |
Collapse
|
6
|
Fussell JC, Jauniaux E, Smith RB, Burton GJ. Ambient air pollution and adverse birth outcomes: A review of underlying mechanisms. BJOG 2024; 131:538-550. [PMID: 38037459 PMCID: PMC7615717 DOI: 10.1111/1471-0528.17727] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Epidemiological data provide varying degrees of evidence for associations between prenatal exposure to ambient air pollutants and adverse birth outcomes (suboptimal measures of fetal growth, preterm birth and stillbirth). To assess further certainty of effects, this review examines the experimental literature base to identify mechanisms by which air pollution (particulate matter, nitrogen dioxide and ozone) could cause adverse effects on the developing fetus. It likely that this environmental insult impacts multiple biological pathways important for sustaining a healthy pregnancy, depending upon the composition of the pollutant mixture and the exposure window owing to changes in physiologic maturity of the placenta, its circulations and the fetus as pregnancy ensues. The current body of evidence indicates that the placenta is a target tissue, impacted by a variety of critical processes including nitrosative/oxidative stress, inflammation, endocrine disruption, epigenetic changes, as well as vascular dysregulation of the maternal-fetal unit. All of the above can disturb placental function and, as a consequence, could contribute to compromised fetal growth as well increasing the risk of stillbirth. Furthermore, given that there is often an increased inflammatory response associated with preterm labour, inflammation is a plausible mechanism mediating the effects of air pollution on premature delivery. In the light of increased urbanisation and an ever-changing climate, both of which increase ambient air pollution and negatively affect vulnerable populations such as pregnant individuals, it is hoped that the collective evidence may contribute to decisions taken to strengthen air quality policies, reductions in exposure to air pollution and subsequent improvements in the health of those not yet born.
Collapse
Affiliation(s)
- Julia C. Fussell
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - Eric Jauniaux
- EGA Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, UK
| | - Rachel B. Smith
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
- Mohn Centre for Children’s Health and Wellbeing, School of Public Health, Imperial College London, London, UK
| | - Graham J. Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge
| |
Collapse
|
7
|
Wesselink AK, Kirwa K, Hystad P, Kaufman JD, Szpiro AA, Willis MD, Savitz DA, Levy JI, Rothman KJ, Mikkelsen EM, Laursen ASD, Hatch EE, Wise LA. Ambient air pollution and rate of spontaneous abortion. ENVIRONMENTAL RESEARCH 2024; 246:118067. [PMID: 38157969 PMCID: PMC10947860 DOI: 10.1016/j.envres.2023.118067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Spontaneous abortion (SAB), defined as a pregnancy loss before 20 weeks of gestation, affects up to 30% of conceptions, yet few modifiable risk factors have been identified. We estimated the effect of ambient air pollution exposure on SAB incidence in Pregnancy Study Online (PRESTO), a preconception cohort study of North American couples who were trying to conceive. Participants completed questionnaires at baseline, every 8 weeks during preconception follow-up, and in early and late pregnancy. We analyzed data on 4643 United States (U.S.) participants and 851 Canadian participants who enrolled during 2013-2019 and conceived during 12 months of follow-up. We used country-specific national spatiotemporal models to estimate concentrations of particulate matter <2.5 μm (PM2.5), nitrogen dioxide (NO2), and ozone (O3) during the preconception and prenatal periods at each participant's residential address. On follow-up and pregnancy questionnaires, participants reported information on pregnancy status, including SAB incidence and timing. We fit Cox proportional hazards regression models with gestational weeks as the time scale to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association of time-varying prenatal concentrations of PM2.5, NO2, and O3 with rate of SAB, adjusting for individual- and neighborhood-level factors. Nineteen percent of pregnancies ended in SAB. Greater PM2.5 concentrations were associated with a higher incidence of SAB in Canada, but not in the U.S. (HRs for a 5 μg/m3 increase = 1.29, 95% CI: 0.99, 1.68 and 0.94, 95% CI: 0.83, 1.08, respectively). NO2 and O3 concentrations were not appreciably associated with SAB incidence. Results did not vary substantially by gestational weeks or season at risk. In summary, we found little evidence for an effect of residential ambient PM2.5, NO2, and O3 concentrations on SAB incidence in the U.S., but a moderate positive association of PM2.5 with SAB incidence in Canada.
Collapse
Affiliation(s)
- Amelia K Wesselink
- Department of Epidemiology, Boston University School of Public Health, USA.
| | - Kipruto Kirwa
- Department of Environmental Health, Boston University School of Public Health, USA
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, USA
| | - Joel D Kaufman
- Departments of Environmental and Occupational Health Sciences, Epidemiology, and Medicine, University of Washington School of Public Health, USA
| | - Adam A Szpiro
- Department of Biostatistics, University of Washington School of Public Health, USA
| | - Mary D Willis
- Department of Epidemiology, Boston University School of Public Health, USA
| | - David A Savitz
- Department of Epidemiology, Brown University School of Public Health, USA
| | - Jonathan I Levy
- Department of Environmental Health, Boston University School of Public Health, USA
| | - Kenneth J Rothman
- Department of Epidemiology, Boston University School of Public Health, USA
| | - Ellen M Mikkelsen
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Denmark
| | - Anne Sofie Dam Laursen
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Denmark
| | - Elizabeth E Hatch
- Department of Epidemiology, Boston University School of Public Health, USA
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, USA
| |
Collapse
|
8
|
Panagiotidou A, Chatzakis C, Ververi A, Eleftheriades M, Sotiriadis A. The Effect of Maternal Diet and Physical Activity on the Epigenome of the Offspring. Genes (Basel) 2024; 15:76. [PMID: 38254965 PMCID: PMC10815371 DOI: 10.3390/genes15010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The aim of this review was to examine the current literature regarding the effect of maternal lifestyle interventions (i.e., diet and physical activity) on the epigenome of the offspring. PubMed, Scopus and Cochrane-CENTRAL were screened until 8 July 2023. Only randomized controlled trials (RCTs) where a lifestyle intervention was compared to no intervention (standard care) were included. Outcome variables included DNA methylation, miRNA expression, and histone modifications. A qualitative approach was used for the consideration of the studies' results. Seven studies and 1765 mother-child pairs were assessed. The most common types of intervention were dietary advice, physical activity, and following a specific diet (olive oil). The included studies correlated the lifestyle and physical activity intervention in pregnancy to genome-wide or gene-specific differential methylation and miRNA expression in the cord blood or the placenta. An intervention of diet and physical activity in pregnancy was found to be associated with slight changes in the epigenome (DNA methylation and miRNA expression) in fetal tissues. The regions involved were related to adiposity, metabolic processes, type 2 diabetes, birth weight, or growth. However, not all studies showed significant differences in DNA methylation. Further studies with similar parameters are needed to have robust and comparable results and determine the biological role of such modifications.
Collapse
Affiliation(s)
- Anastasia Panagiotidou
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
| | - Christos Chatzakis
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
- Second Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece
| | - Athina Ververi
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
- Genetic Unit, First Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, “Papageorgiou” General Hospital, 564 03 Thessaloniki, Greece
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece;
| | - Alexandros Sotiriadis
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
- Second Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece
| |
Collapse
|
9
|
Friedman C, Dabelea D, Glueck DH, Allshouse WB, Adgate JL, Keller KP, Martenies SE, Magzamen S, Starling AP. Early-life exposure to residential black carbon and childhood cardiometabolic health. ENVIRONMENTAL RESEARCH 2023; 239:117285. [PMID: 37832765 PMCID: PMC10842121 DOI: 10.1016/j.envres.2023.117285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/08/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Early life exposure to air pollution, such as particulate matter ≤2.5 μm (PM2.5), may be associated with obesity and adverse cardiometabolic health outcomes in childhood. However, the toxicity of PM2.5 varies according to its chemical composition. Black carbon (BC) is a constituent of PM2.5, but few studies have examined its impact on childhood cardiometabolic health. Therefore, we examined relationships between prenatal and early childhood exposure to BC and markers of adiposity and cardiometabolic health in early childhood. METHODS This study included 578 mother-child pairs enrolled in the Healthy Start study (2009-2014) living in the Denver-metro area. Using a spatiotemporal prediction model, we assessed average residential black carbon levels during pregnancy and in the year prior to the early childhood follow-up visit at approximately 5 years old. We estimated associations between prenatal and early childhood BC and indicators of adiposity and cardiometabolic biomarkers in early childhood (mean 4.8 years; range, 4.0, 8.3), using linear regression. RESULTS We found higher early childhood BC was associated with higher percent fat mass, fat mass index, insulin, and homeostatic model assessment for insulin resistance (HOMA-IR), and lower leptin and waist circumference at approximately 5 years old, after adjusting for covariates. For example, per interquartile range (IQR) increase in early childhood BC (IQR, 0.49 μg/m3) there was 3.32% higher fat mass (95% CI; 2.05, 4.49). Generally, we did not find consistent evidence of associations between prenatal BC and cardiometabolic health outcomes in early childhood, except for an inverse association between prenatal BC and adiponectin, an adipocyte-secreted hormone typically inversely associated with adiposity. CONCLUSIONS Higher early childhood, but not in utero, ambient concentrations of black carbon, a component of air pollution, were associated with greater adiposity and altered insulin homeostasis at approximately 5 years old. Future studies should examine whether these changes persist later in life.
Collapse
Affiliation(s)
- Chloe Friedman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah H Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William B Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kayleigh P Keller
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Sheena E Martenies
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Epidemiology, Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Watkins SH, Testa C, Simpkin AJ, Smith GD, Coull B, De Vivo I, Tilling K, Waterman PD, Chen JT, Diez-Roux AV, Krieger N, Suderman M, Relton C. An epigenome-wide analysis of DNA methylation, racialized and economic inequities, and air pollution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570610. [PMID: 38105971 PMCID: PMC10723401 DOI: 10.1101/2023.12.07.570610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Importance DNA methylation (DNAm) provides a plausible mechanism by which adverse exposures become embodied and contribute to health inequities, due to its role in genome regulation and responsiveness to social and biophysical exposures tied to societal context. However, scant epigenome-wide association studies (EWAS) have included structural and lifecourse measures of exposure, especially in relation to structural discrimination. Objective Our study tests the hypothesis that DNAm is a mechanism by which racial discrimination, economic adversity, and air pollution become biologically embodied. Design A series of cross-sectional EWAS, conducted in My Body My Story (MBMS, biological specimens collected 2008-2010, DNAm assayed in 2021); and the Multi Ethnic Study of Atherosclerosis (MESA; biological specimens collected 2010-2012, DNAm assayed in 2012-2013); using new georeferenced social exposure data for both studies (generated in 2022). Setting MBMS was recruited from four community health centers in Boston; MESA was recruited from four field sites in: Baltimore, MD; Forsyth County, NC; New York City, NY; and St. Paul, MN. Participants Two population-based samples of US-born Black non-Hispanic (Black NH), white non-Hispanic (white NH), and Hispanic individuals (MBMS; n=224 Black NH and 69 white NH) and (MESA; n=229 Black NH, n=555 white NH and n=191 Hispanic). Exposures Eight social exposures encompassing racial discrimination, economic adversity, and air pollution. Main outcome Genome-wide changes in DNAm, as measured using the Illumina EPIC BeadChip (MBMS; using frozen blood spots) and Illumina 450k BeadChip (MESA; using purified monocytes). Our hypothesis was formulated after data collection. Results We observed the strongest associations with traffic-related air pollution (measured via black carbon and nitrogen oxides exposure), with evidence from both studies suggesting that air pollution exposure may induce epigenetic changes related to inflammatory processes. We also found suggestive associations of DNAm variation with measures of structural racial discrimination (e.g., for Black NH participants, born in a Jim Crow state; adult exposure to racialized economic residential segregation) situated in genes with plausible links to effects on health. Conclusions and Relevance Overall, this work suggests that DNAm is a biological mechanism through which structural racism and air pollution become embodied and may lead to health inequities.
Collapse
Affiliation(s)
- Sarah Holmes Watkins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Christian Testa
- Department of Social and Behavioral Sciences, Harvard T H Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Andrew J. Simpkin
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| | - George Davey Smith
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Brent Coull
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Immaculata De Vivo
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Kate Tilling
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Pamela D. Waterman
- Department of Social and Behavioral Sciences, Harvard T H Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Jarvis T. Chen
- Department of Social and Behavioral Sciences, Harvard T H Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Ana V. Diez-Roux
- Department of Epidemiology and Biostatistics and Urban Health Collaborative, Dornsife School of Public Health, Drexel University, Philadelphia, USA
| | - Nancy Krieger
- Department of Social and Behavioral Sciences, Harvard T H Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Matthew Suderman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Caroline Relton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
11
|
Marques I, Santos S, Monasso GS, Fossati S, Vrijheid M, Nieuwenhuijsen M, Jaddoe VWV, Felix JF. Associations of green and blue space exposure in pregnancy with epigenetic gestational age acceleration. Epigenetics 2023; 18:2165321. [PMID: 36628941 PMCID: PMC9980449 DOI: 10.1080/15592294.2023.2165321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Early life is seen as a particularly sensitive period for environmental exposures. Natural space exposure during pregnancy has been associated with offspring health. Epigenetic gestational age acceleration, a discrepancy between clinical and DNA methylation-based gestational age, may underlie these associations. In 1359 mother-newborn pairs from the population-based Generation R Study, we examined the associations of natural space exposure, defined as surrounding greenness, distance to major green and blue (water) space, and size of the blue space during pregnancy with offspring epigenetic gestational age acceleration. Natural space exposure was based on participants' geocoded addresses, and epigenetic gestational age acceleration was calculated from cord blood DNA methylation using Bohlin's and Knight's epigenetic clocks. Sensitivity analyses were conducted in a subgroup of newborns with optimal pregnancy dating, based on last menstrual period. Surrounding greenness, measured in normalized difference vegetation index values, was intermediate (median 0.4, IQR 0.2), and 84% and 56% of the participants had a major green or blue space near their home address, respectively. We did not observe associations of natural space availability during pregnancy with offspring epigenetic gestational age acceleration. This could imply that epigenetic gestational age acceleration in cord blood does not underlie the effects of residential natural space availability in pregnancy on offspring health. Future studies could investigate whether residential natural space availability during pregnancy is associated with offspring differential DNA methylation at other CpGs than those included in the epigenetic gestational clocks.
Collapse
Affiliation(s)
- Irene Marques
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Susana Santos
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.,Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
| | - Giulietta S Monasso
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Serena Fossati
- ISGlobal, Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Spanish Consortium for Research on Epidemiology and Public Health (CIBER), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Spanish Consortium for Research on Epidemiology and Public Health (CIBER), Madrid, Spain
| | - Mark Nieuwenhuijsen
- ISGlobal, Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Spanish Consortium for Research on Epidemiology and Public Health (CIBER), Madrid, Spain
| | - Vincent W V Jaddoe
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Janine F Felix
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Scieszka D, Bolt AM, McCormick MA, Brigman JL, Campen MJ. Aging, longevity, and the role of environmental stressors: a focus on wildfire smoke and air quality. FRONTIERS IN TOXICOLOGY 2023; 5:1267667. [PMID: 37900096 PMCID: PMC10600394 DOI: 10.3389/ftox.2023.1267667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Aging is a complex biological process involving multiple interacting mechanisms and is being increasingly linked to environmental exposures such as wildfire smoke. In this review, we detail the hallmarks of aging, emphasizing the role of telomere attrition, cellular senescence, epigenetic alterations, proteostasis, genomic instability, and mitochondrial dysfunction, while also exploring integrative hallmarks - altered intercellular communication and stem cell exhaustion. Within each hallmark of aging, our review explores how environmental disasters like wildfires, and their resultant inhaled toxicants, interact with these aging mechanisms. The intersection between aging and environmental exposures, especially high-concentration insults from wildfires, remains under-studied. Preliminary evidence, from our group and others, suggests that inhaled wildfire smoke can accelerate markers of neurological aging and reduce learning capabilities. This is likely mediated by the augmentation of circulatory factors that compromise vascular and blood-brain barrier integrity, induce chronic neuroinflammation, and promote age-associated proteinopathy-related outcomes. Moreover, wildfire smoke may induce a reduced metabolic, senescent cellular phenotype. Future interventions could potentially leverage combined anti-inflammatory and NAD + boosting compounds to counter these effects. This review underscores the critical need to study the intricate interplay between environmental factors and the biological mechanisms of aging to pave the way for effective interventions.
Collapse
Affiliation(s)
- David Scieszka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Alicia M. Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Jonathan L. Brigman
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
13
|
Sharma S, Bhonde R. Dilemma of Epigenetic Changes Causing or Reducing Metabolic Disorders in Offsprings of Obese Mothers. Horm Metab Res 2023; 55:665-676. [PMID: 37813098 DOI: 10.1055/a-2159-9128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Maternal obesity is associated with fetal complications predisposing later to the development of metabolic syndrome during childhood and adult stages. High-fat diet seems to influence individuals and their subsequent generations in mediating weight gain, insulin resistance, obesity, high cholesterol, diabetes, and cardiovascular disorder. Research evidence strongly suggests that epigenetic alteration is the major contributor to the development of metabolic syndrome through DNA methylation, histone modifications, and microRNA expression. In this review, we have discussed the outcome of recent studies on the adverse and beneficial effects of nutrients and vitamins through epigenetics during pregnancy. We have further discussed about the miRNAs altered during maternal obesity. Identification of new epigenetic modifiers such as mesenchymal stem cells condition media (MSCs-CM)/exosomes for accelerating the reversal of epigenetic abnormalities for the development of new treatments is yet another aspect of the present review.
Collapse
Affiliation(s)
- Shikha Sharma
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Ramesh Bhonde
- Stem Cells and Regenerative Medicine, Dr. D. Y. Patil Vidyapeeth Pune (Deemed University), Pune, India
| |
Collapse
|
14
|
Hussey MR, Enquobahrie DA, Loftus CT, MacDonald JW, Bammler TK, Paquette AG, Marsit CJ, Szpiro AA, Kaufman JD, LeWinn KZ, Bush NR, Tylavsky F, Zhao Q, Karr CJ, Sathyanarayana S. Associations of prenatal exposure to NO 2 and near roadway residence with placental gene expression. Placenta 2023; 138:75-82. [PMID: 37216796 PMCID: PMC10349584 DOI: 10.1016/j.placenta.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION Traffic-related air pollution (TRAP), a common exposure, potentially impacts pregnancy through altered placental function. We investigated associations between prenatal TRAP exposure and placental gene expression. METHODS Whole transcriptome sequencing was performed on placental samples from CANDLE (Memphis, TN) (n = 776) and GAPPS (Seattle and Yakima, WA) (n = 205), cohorts of the ECHO-PATHWAYS Consortium. Residential NO2 exposures were computed via spatiotemporal models for full-pregnancy, each trimester, and the first/last months of pregnancy. Individual cohort-specific, covariate-adjusted linear models were fit for 10,855 genes and respective exposures (NO2 or roadway proximity [≤150 m]). Infant-sex/exposure interactions on placental gene expression were tested with interaction terms in separate models. Significance was based on false discovery rate (FDR<0.10). RESULTS In GAPPS, final-month NO2 exposure was positively associated with MAP1LC3C expression (FDR p-value = 0.094). Infant-sex interacted with second-trimester NO2 on STRIP2 expression (FDR interaction p-value = 0.011, inverse and positive associations among male and female infants, respectively) and roadway proximity on CEBPA expression (FDR interaction p-value = 0.045, inverse among females). In CANDLE, infant-sex interacted with first-trimester and full-pregnancy NO2 on RASSF7 expression (FDR interaction p-values = 0.067 and 0.013, respectively, positive among male infants and inverse among female infants). DISCUSSION Overall, pregnancy NO2 exposure and placental gene expression associations were primarily null, with exception of final month NO2 exposure and placental MAP1LC3C association. We found several interactions of infant sex and TRAP exposures on placental expression of STRIP2, CEBPA, and RASSF7. These highlighted genes suggest influence of TRAP on placental cell proliferation, autophagy, and growth, though additional replication and functional studies are required for validation.
Collapse
Affiliation(s)
- Michael R Hussey
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA.
| | - Daniel A Enquobahrie
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA; Department of Health Systems and Population Health, School of Public Health, University of Washington, Seattle, WA, USA
| | - Christine T Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Alison G Paquette
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Adam A Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Joel D Kaufman
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, School of Medicine, University of California, San Francisco, San, Francisco, CA, USA
| | - Frances Tylavsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Qi Zhao
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Catherine J Karr
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Sheela Sathyanarayana
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
15
|
Rasking L, Roelens C, Sprangers B, Thienpont B, Nawrot TS, De Vusser K. Lupus, DNA Methylation, and Air Pollution: A Malicious Triad. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15050. [PMID: 36429769 PMCID: PMC9690025 DOI: 10.3390/ijerph192215050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) remains elusive to this day; however, genetic, epigenetic, and environmental factors have been implicated to be involved in disease pathogenesis. Recently, it was demonstrated that in systemic lupus erythematosus (SLE) patients, interferon-regulated genes are hypomethylated in naïve CD4+ T cells, CD19+ B lymphocytes, and CD14+ monocytes. This suggests that interferon-regulated genes may have been epigenetically poised in SLE patients for rapid expression upon stimulation by different environmental factors. Additionally, environmental studies have identified DNA (hypo)methylation changes as a potential mechanism of environmentally induced health effects in utero, during childhood and in adults. Finally, epidemiologic studies have firmly established air pollution as a crucial SLE risk factor, as studies showed an association between fine particulate matter (PM2.5) and traditional SLE biomarkers related to disease flare, hospital admissions, and an increased SLEDAI score. In this review, the relationship between aberrant epigenetic regulation, the environment, and the development of SLE will be discussed.
Collapse
Affiliation(s)
- Leen Rasking
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Céline Roelens
- Depatment of Nephrology and Kidney Transplantation, University Hospital Leuven, 3000 Leuven, Belgium
| | - Ben Sprangers
- Depatment of Nephrology and Kidney Transplantation, University Hospital Leuven, 3000 Leuven, Belgium
- Department of Microbiology and Immunology, Leuven University, 3000 Leuven, Belgium
| | - Bernard Thienpont
- Department of Human Genetics, Leuven University, 3000 Leuven, Belgium
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Department of Public Health and Primary Care, Environment and Health Unit, Leuven University, 3000 Leuven, Belgium
| | - Katrien De Vusser
- Depatment of Nephrology and Kidney Transplantation, University Hospital Leuven, 3000 Leuven, Belgium
- Department of Microbiology and Immunology, Leuven University, 3000 Leuven, Belgium
| |
Collapse
|
16
|
Starling AP, Wood C, Liu C, Kechris K, Yang IV, Friedman C, Thomas DSK, Peel JL, Adgate JL, Magzamen S, Martenies SE, Allshouse WB, Dabelea D. Ambient air pollution during pregnancy and DNA methylation in umbilical cord blood, with potential mediation of associations with infant adiposity: The Healthy Start study. ENVIRONMENTAL RESEARCH 2022; 214:113881. [PMID: 35835166 PMCID: PMC10402394 DOI: 10.1016/j.envres.2022.113881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/11/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Prenatal exposure to ambient air pollution has been associated with adverse offspring health outcomes. Childhood health effects of prenatal exposures may be mediated through changes to DNA methylation detectable at birth. METHODS Among 429 non-smoking women in a cohort study of mother-infant pairs in Colorado, USA, we estimated associations between prenatal exposure to ambient fine particulate matter (PM2.5) and ozone (O3), and epigenome-wide DNA methylation of umbilical cord blood cells at delivery (2010-2014). We calculated average PM2.5 and O3 in each trimester of pregnancy and the full pregnancy using inverse-distance-weighted interpolation. We fit linear regression models adjusted for potential confounders and cell proportions to estimate associations between air pollutants and methylation at each of 432,943 CpGs. Differentially methylated regions (DMRs) were identified using comb-p. Previously in this cohort, we reported positive associations between 3rd trimester O3 exposure and infant adiposity at 5 months of age. Here, we quantified the potential for mediation of that association by changes in DNA methylation in cord blood. RESULTS We identified several DMRs for each pollutant and period of pregnancy. The greatest number of significant DMRs were associated with third trimester PM2.5 (21 DMRs). No single CpGs were associated with air pollutants at a false discovery rate <0.05. We found that up to 8% of the effect of 3rd trimester O3 on 5-month adiposity may be mediated by locus-specific methylation changes, but mediation estimates were not statistically significant. CONCLUSIONS Differentially methylated regions in cord blood were identified in association with maternal exposure to PM2.5 and O3. Genes annotated to the significant sites played roles in cardiometabolic disease, immune function and inflammation, and neurologic disorders. We found limited evidence of mediation by DNA methylation of associations between third trimester O3 exposure and 5-month infant adiposity.
Collapse
Affiliation(s)
- Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cuining Liu
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ivana V Yang
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Chloe Friedman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah S K Thomas
- Department of Geography and Earth Sciences, University of North Carolina Charlotte, NC, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Epidemiology, Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
| | - Sheena E Martenies
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - William B Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
17
|
Zhu W, Gu Y, Li M, Zhang Z, Liu J, Mao Y, Zhu Q, Zhao L, Shen Y, Chen F, Xia L, He L, Du J. Integrated single-cell RNA-seq and DNA methylation reveal the effects of air pollution in patients with recurrent spontaneous abortion. Clin Epigenetics 2022; 14:105. [PMID: 35999615 PMCID: PMC9400245 DOI: 10.1186/s13148-022-01327-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Maternal air pollutants exposure is associated with a number of adverse pregnancy outcomes, including recurrent spontaneous abortion (RSA). However, the underlying mechanisms are still unknown. The present study aimed to understand the mechanism of RSA and its relationship with air pollution exposure. We compared data of decidual tissue from individuals with induced abortions and those with RSA by bulk RNA sequencing (RNA-seq), reduced representation bisulfite sequencing (RRBS), and single-cell RNA sequencing (scRNA-seq). Differentially expressed genes (DEGs) were verified using RT-qPCR and pyrosequencing. A logistic regression model was used to investigate the association between air pollutants exposure and RSA. Results We identified 98 DEGs with aberrant methylation by overlapping the RRBS and RNA-seq data. Nineteen immune cell subsets were identified. Compared with normal controls, NK cells and macrophages accounted for different proportions in the decidua of patients with RSA. We observed that the methylation and expression of IGF2BP1 were different between patients with RSA and controls. Furthermore, we observed significant positive associations between maternal air pollutants exposure during the year prior to pregnancy and in early pregnancy and the risk of RSA. Mediation analyses suggested that 24.5% of the effects of air pollution on the risk of RSA were mediated through IGF2BP1 methylation. Conclusion These findings reveal a comprehensive cellular and molecular mechanism of RSA and suggest that air pollution might cause pregnancy loss by affecting the methylation level of the IGF2BP1 promoter. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01327-2.
Collapse
Affiliation(s)
- Weiqiang Zhu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Yan Gu
- Department of Gynecology and Obstetrics Outpatient, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Min Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Zhaofeng Zhang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Junwei Liu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Yanyan Mao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Qianxi Zhu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Lin Zhao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China.,Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Yupei Shen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Fujia Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Lingjin Xia
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jing Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China.
| |
Collapse
|
18
|
Kaur K, Lesseur C, Deyssenroth MA, Kloog I, Schwartz JD, Marsit CJ, Chen J. PM 2.5 exposure during pregnancy is associated with altered placental expression of lipid metabolic genes in a US birth cohort. ENVIRONMENTAL RESEARCH 2022; 211:113066. [PMID: 35248564 PMCID: PMC9177798 DOI: 10.1016/j.envres.2022.113066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 05/31/2023]
Abstract
Inhalation of ambient PM2.5, shown to be able to cross the placenta, has been linked to adverse obstetric and postnatal metabolic health outcomes. The placenta regulates fetal growth and influences postnatal development via fetal programming. Placental gene expression may be influenced by intrauterine exposures to PM2.5. Herein, we explore whether maternal PM2.5 exposure during pregnancy alters placental gene expression related to lipid and glucose metabolism in a U.S. birth cohort, the Rhode Island Child Health Study (RICHS). Average PM2.5 exposure level was estimated linking residential addresses and satellite data across the three trimesters using spatio-temporal models. Based on Gene Ontology annotations, we curated a list of 657 lipid and glucose metabolism genes. We conducted a two-staged analysis by leveraging placental RNA-Seq data from 148 subjects to identify top dysregulated metabolic genes associated with PM2.5 (Phase I) and then validated the results in placental samples from 415 participants of the cohort using RT-qPCR (Phase II). Associations between PM2.5 and placental gene expression were explored using multivariable linear regression models in the overall population and in sex-stratified analyses. The average level of PM2.5 exposure across pregnancy was 8.0μg/m3, which is below the national standard of 12μg/m3. Phase I revealed that expression levels of 32 out of the curated list of 657 genes were significantly associated with PM2.5 exposure (FDR P<0.01), 28 genes showed differential expression modified by sex of the infant. Five of these genes (ABHD3, ATP11A, CLTCL1, ST6GALNAC4 and PSCA) were validated using RT-qPCR. Associations were stronger in placentas from male births compared to females, indicating a sex-dependent effect. These genes are involved in inflammation, lipid transport, cell-cell communication or cell invasion. Our results suggest that gestational PM2.5 exposure may alter placental metabolic function. However, whether it confers long-term programming effects postnatally, especially in a sex-specific matter, warrants further studies.
Collapse
Affiliation(s)
- Kirtan Kaur
- Department of Environmental Medicine, School of Medicine, NYU Langone Health, New York, NY, USA
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maya A Deyssenroth
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Faculty of Humanities and Social Sciences, Ben Gurion University, Beersheba, 8410501, Israel
| | - Joel D Schwartz
- Department of Environmental Health, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
19
|
Enquobahrie DA, MacDonald J, Hussey M, Bammler TK, Loftus CT, Paquette AG, Byington N, Marsit CJ, Szpiro A, Kaufman JD, LeWinn KZ, Bush NR, Tylavsky F, Karr CJ, Sathyanarayana S. Prenatal exposure to particulate matter and placental gene expression. ENVIRONMENT INTERNATIONAL 2022; 165:107310. [PMID: 35653832 PMCID: PMC9235522 DOI: 10.1016/j.envint.2022.107310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/13/2022] [Accepted: 05/16/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND While strong evidence supports adverse maternal and offspring consequences of air pollution, mechanisms that involve the placenta, a key part of the intrauterine environment, are largely unknown. Previous studies of air pollution and placental gene expression were small candidate gene studies that rarely considered prenatal windows of exposure or the potential role of offspring sex. We examined overall and sex-specific associations of prenatal exposure to fine particulate matter (PM2.5) with genome-wide placental gene expression. METHODS Participants with placenta samples, collected at birth, and childhood health outcomes from CANDLE (Memphis, TN) (n = 776) and GAPPS (Seattle, WA) (n = 205) cohorts of the ECHO-PATHWAYS Consortium were included in this study. PM2.5 exposures during trimesters 1, 2, 3, and the first and last months of pregnancy, were estimated using a spatiotemporal model. Cohort-specific linear adjusted models were fit for each exposure window and expression of >11,000 protein coding genes from paired end RNA sequencing data. Models with interaction terms were used to examine PM2.5-offspring sex interactions. False discovery rate (FDR < 0.10) was used to correct for multiple testing. RESULTS Mean PM2.5 estimate was 10.5-10.7 μg/m3 for CANDLE and 6.0-6.3 μg/m3 for GAPPS participants. In CANDLE, expression of 13 (11 upregulated and 2 downregulated), 20 (11 upregulated and 9 downregulated) and 3 (2 upregulated and 1 downregulated) genes was associated with PM2.5 in the first trimester, second trimester, and first month, respectively. While we did not find any statistically significant association, overall, between PM2.5 and gene expression in GAPPS, we found offspring sex and first month PM2.5 interaction for DDHD1 expression (positive association among males and inverse association among females). We did not observe PM2.5 and offspring sex interactions in CANDLE. CONCLUSION In CANDLE, but not GAPPS, we found that prenatal PM2.5 exposure during the first half of pregnancy is associated with placental gene expression.
Collapse
Affiliation(s)
- Daniel A Enquobahrie
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States; Department of Health Systems and Population Health, School of Public Health, University of Washington, Seattle, WA, United States.
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Michael Hussey
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Christine T Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Alison G Paquette
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, United States; Seattle Children's Research Institute, Seattle, WA, United States
| | - Nora Byington
- Seattle Children's Research Institute, Seattle, WA, United States
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Adam Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, United States
| | - Joel D Kaufman
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, United States; Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Frances Tylavsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Catherine J Karr
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, United States
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, United States; Seattle Children's Research Institute, Seattle, WA, United States
| |
Collapse
|
20
|
Yue D, Shen T, Mao J, Su Q, Mao Y, Ye X, Ye D. Prenatal exposure to air pollution and the risk of eczema in childhood: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48233-48249. [PMID: 35588032 DOI: 10.1007/s11356-022-20844-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
An increasing number of studies investigated the association between air pollution during pregnancy and the risk of eczema in offspring. However, no meta-analysis has confirmed the existence and size of their association to date. We systematically searched PubMed, Web of Science, Cochrane Library, and Embase databases to select the observational controlled studies published from the inception date to October 16, 2021. Quality evaluation was guided by the Newcastle-Ottawa Scale (NOS). Sensitivity analysis was applied to assess the impact of each included study on the combined effects, and publication bias was examined by Begg's tests and Egger's tests. A total of 12 articles involving 69,374 participants met our eligibility criteria. A significant association between the maternal exposure to NO2 (per 10 μg/m3 increased) and childhood eczema was observed, with a pooled risk estimate of 1.13 (95% CI: 1.06-1.19), but no association was observed between exposure to PM10, PM2.5, and SO2 and the risk of eczema in offspring. Besides, the effect of maternal NO2 exposure on childhood eczema was significant in the first and second trimesters, but not in the third trimester. There was notable variability in geographic location (p = 0.037) and air pollutant concentration (p = 0.031) based on meta-regression. Our findings indicated that prenatal exposure to NO2 was a risk factor for elevated risk of eczema in childhood, especially in the first and second trimesters. Further studies with larger sample sizes considering different constituents of air pollution and various exposure windows are needed to validate these associations.
Collapse
Affiliation(s)
- Dengyuan Yue
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Ting Shen
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Jiaqing Mao
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Qing Su
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Mao
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ding Ye
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China.
| |
Collapse
|
21
|
Dockx Y, Bijnens E, Saenen N, Aerts R, Aerts JM, Casas L, Delcloo A, Dendoncker N, Linard C, Plusquin M, Stas M, Van Nieuwenhuyse A, Van Orshoven J, Somers B, Nawrot T. Residential green space in association with the methylation status in a CpG site within the promoter region of the placental serotonin receptor HTR2A. Epigenetics 2022; 17:1863-1874. [PMID: 35723001 DOI: 10.1080/15592294.2022.2088464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Green space could influence adult cognition and childhood neurodevelopment , and is hypothesized to be partly driven by epigenetic modifications. However, it remains unknown whether some of these associations are already evident during foetal development. Similar biological signals shape the developmental processes in the foetal brain and placenta.Therefore, we hypothesize that green space can modify epigenetic processes of cognition-related pathways in placental tissue, such as DNA-methylation of the serotonin receptor HTR2A. HTR2A-methylation was determined within 327 placentas from the ENVIRONAGE (ENVIRonmental influence ON early AGEing) birth cohort using bisulphite-PCR-pyrosequencing. Total green space exposure was calculated using high-resolution land cover data derived from the Green Map of Flanders in seven buffers (50 m-3 km) and stratified into low (<3 m) and high (≥3 m) vegetation. Residential nature was calculated using the Land use Map of Flanders. We performed multivariate regression models adjusted for several a priori chosen covariables. For an IQR increment in total green space within a 1,000 m, 2,000 m and 3,000 m buffer the methylation of HTR2A increased with 1.47% (95%CI:0.17;2.78), 1.52% (95%CI:0.21;2.83) and 1.42% (95%CI:0.15;2.69), respectively. Additionally,, we found 3.00% (95%CI:1.09;4.91) and 1.98% (95%CI:0.28;3.68) higher HTR2A-methylation when comparing residences with and without the presence of nature in a 50 m and 100 m buffer, respectively. The methylation status of HTR2A in placental tissue is positively associated with maternal green space exposure. Future research is needed to understand better how these epigenetic changes are related to functional modifications in the placenta and the consequent implications for foetal development.
Collapse
Affiliation(s)
- Yinthe Dockx
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Esmée Bijnens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nelly Saenen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Raf Aerts
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,Division Forest, Nature and Landscape, Department Earth and Environmental Sciences, KU Leuven, Leuven, Belgium.,Risk and Health Impact Assessment, Sciensano (Belgian Institute of Health), Brussels, Belgium.,Division Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium.,Mycology and Aerobiology, Sciensano (Belgian Institute of Health), Brussels, Belgium
| | - Jean-Marie Aerts
- Division Animal and Human Health Engineering, Department of Biosystems (BIOSYST), KU LeuvenMeasure, Model & Manage Bioresponses (M3-BIORES), Leuven, Belgium
| | - Lidia Casas
- Center for Environment and Health, Department of Public Health, Leuven University (KU Leuven), Leuven, Belgium.,Social Epidemiology and Health Policy, Department of Family Medicine and Population Health, University of Antwerp, Antwerp, Belgium.,Institute for Environment and Sustainable Development (IMDO), University of Antwerp, Antwerp, Belgium
| | - Andy Delcloo
- Royal Meteorological Institute of Belgium, Brussels, Belgium.,Department of Physics and Astronomy, Ghent University, Gent, Belgium
| | - Nicolas Dendoncker
- Department of Geography, University of Namur, Namur, Belgium.,Institute for Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium
| | - Catherine Linard
- Department of Geography, University of Namur, Namur, Belgium.,Institute for Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Michiel Stas
- Division Forest, Nature and Landscape, Department Earth and Environmental Sciences, KU Leuven, Leuven, Belgium.,Division Animal and Human Health Engineering, Department of Biosystems (BIOSYST), KU LeuvenMeasure, Model & Manage Bioresponses (M3-BIORES), Leuven, Belgium
| | - An Van Nieuwenhuyse
- Center for Environment and Health, Department of Public Health, Leuven University (KU Leuven), Leuven, Belgium.,Department of Health Protection, Laboratoire national de santé (LNS), Dudelange, Luxembourg
| | - Jos Van Orshoven
- Division Forest, Nature and Landscape, Department Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Ben Somers
- Division Forest, Nature and Landscape, Department Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,Center for Environment and Health, Department of Public Health, Leuven University (KU Leuven), Leuven, Belgium
| |
Collapse
|
22
|
Honkova K, Rossnerova A, Chvojkova I, Milcova A, Margaryan H, Pastorkova A, Ambroz A, Rossner P, Jirik V, Rubes J, Sram RJ, Topinka J. Genome-Wide DNA Methylation in Policemen Working in Cities Differing by Major Sources of Air Pollution. Int J Mol Sci 2022; 23:ijms23031666. [PMID: 35163587 PMCID: PMC8915177 DOI: 10.3390/ijms23031666] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
DNA methylation is the most studied epigenetic mechanism that regulates gene expression, and it can serve as a useful biomarker of prior environmental exposure and future health outcomes. This study focused on DNA methylation profiles in a human cohort, comprising 125 nonsmoking city policemen (sampled twice), living and working in three localities (Prague, Ostrava and Ceske Budejovice) of the Czech Republic, who spent the majority of their working time outdoors. The main characterization of the localities, differing by major sources of air pollution, was defined by the stationary air pollution monitoring of PM2.5, B[a]P and NO2. DNA methylation was analyzed by a genome-wide microarray method. No season-specific DNA methylation pattern was discovered; however, we identified 13,643 differentially methylated CpG loci (DML) for a comparison between the Prague and Ostrava groups. The most significant DML was cg10123377 (log2FC = −1.92, p = 8.30 × 10−4) and loci annotated to RPTOR (total 20 CpG loci). We also found two hypomethylated loci annotated to the DNA repair gene XRCC5. Groups of DML annotated to the same gene were linked to diabetes mellitus (KCNQ1), respiratory diseases (PTPRN2), the dopaminergic system of the brain and neurodegenerative diseases (NR4A2). The most significant possibly affected pathway was Axon guidance, with 86 potentially deregulated genes near DML. The cluster of gene sets that could be affected by DNA methylation in the Ostrava groups mainly includes the neuronal functions and biological processes of cell junctions and adhesion assembly. The study demonstrates that the differences in the type of air pollution between localities can affect a unique change in DNA methylation profiles across the human genome.
Collapse
Affiliation(s)
- Katerina Honkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.R.); (I.C.); (A.M.); (H.M.); (R.J.S.); (J.T.)
- Correspondence: ; Tel.: +420-775-406-170
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.R.); (I.C.); (A.M.); (H.M.); (R.J.S.); (J.T.)
| | - Irena Chvojkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.R.); (I.C.); (A.M.); (H.M.); (R.J.S.); (J.T.)
| | - Alena Milcova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.R.); (I.C.); (A.M.); (H.M.); (R.J.S.); (J.T.)
| | - Hasmik Margaryan
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.R.); (I.C.); (A.M.); (H.M.); (R.J.S.); (J.T.)
| | - Anna Pastorkova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.P.); (A.A.); (P.R.J.)
| | - Antonin Ambroz
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.P.); (A.A.); (P.R.J.)
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.P.); (A.A.); (P.R.J.)
| | - Vitezslav Jirik
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic;
| | - Jiri Rubes
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic;
| | - Radim J. Sram
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.R.); (I.C.); (A.M.); (H.M.); (R.J.S.); (J.T.)
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (A.R.); (I.C.); (A.M.); (H.M.); (R.J.S.); (J.T.)
| |
Collapse
|
23
|
Air Pollution and Perinatal Health in the Eastern Mediterranean Region: Challenges, Limitations, and the Potential of Epigenetics. Curr Environ Health Rep 2022; 9:1-10. [PMID: 35080743 DOI: 10.1007/s40572-022-00337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Even though the burden of disease attributable to air pollution is high in the Eastern Mediterranean Region (EMR), the number of studies linking environmental exposures to negative health outcomes remains scarce and limited in scope. This review aims to assess the literature on exposure to air pollutants and perinatal health in the EMR and to explain the potential of epigenetics in exploring the processes behind adverse birth outcomes. RECENT FINDINGS In the last three decades, hundreds of studies and publications tackled the health effects of air pollution on birth outcomes and early life development, but only a small number of these studies was conducted in the EMR. The existing literature is concentrated in specific geographic locations and is focused on a limited number of exposures and outcomes. Main limitations include inconsistent and poorly funded air quality monitoring, inappropriate study designs, imprecise and/or unreliable assessments of exposures, and outcomes. Even though the studies establish associations between air pollutants and adverse birth outcomes, the mechanisms through which these processes take place are yet to be fully understood. A likely candidate to explain these processes is epigenetics; however, epigenetics research on the impact of air pollution in EMR is still in its infancy. This review highlights the need for future research examining perinatal health and air pollutants, especially the epigenetic processes that underlie the adverse birth outcomes, to better understand them and to develop effective recommendations and intervention strategies.
Collapse
|
24
|
Ghazi T, Naidoo P, Naidoo RN, Chuturgoon AA. Prenatal Air Pollution Exposure and Placental DNA Methylation Changes: Implications on Fetal Development and Future Disease Susceptibility. Cells 2021; 10:cells10113025. [PMID: 34831248 PMCID: PMC8616150 DOI: 10.3390/cells10113025] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
The Developmental Origins of Health and Disease (DOHaD) concept postulates that in utero exposures influence fetal programming and health in later life. Throughout pregnancy, the placenta plays a central role in fetal programming; it regulates the in utero environment and acts as a gatekeeper for nutrient and waste exchange between the mother and the fetus. Maternal exposure to air pollution, including heavy metals, can reach the placenta, where they alter DNA methylation patterns, leading to changes in placental function and fetal reprogramming. This review explores the current knowledge on placental DNA methylation changes associated with prenatal air pollution (including heavy metals) exposure and highlights its effects on fetal development and disease susceptibility. Prenatal exposure to air pollution and heavy metals was associated with altered placental DNA methylation at the global and promoter regions of genes involved in biological processes such as energy metabolism, circadian rhythm, DNA repair, inflammation, cell differentiation, and organ development. The altered placental methylation of these genes was, in some studies, associated with adverse birth outcomes such as low birth weight, small for gestational age, and decreased head circumference. Moreover, few studies indicate that DNA methylation changes in the placenta were sex-specific, and infants born with altered placental DNA methylation patterns were predisposed to developing neurobehavioral abnormalities, cancer, and atopic dermatitis. These findings highlight the importance of more effective and stricter environmental and public health policies to reduce air pollution and protect human health.
Collapse
Affiliation(s)
- Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.G.); (P.N.)
| | - Pragalathan Naidoo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.G.); (P.N.)
| | - Rajen N. Naidoo
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.G.); (P.N.)
- Correspondence: ; Tel.: +27-31-260-4404
| |
Collapse
|
25
|
Huang Y, Sun X, Jiang H, Yu S, Robins C, Armstrong MJ, Li R, Mei Z, Shi X, Gerasimov ES, De Jager PL, Bennett DA, Wingo AP, Jin P, Wingo TS, Qin ZS. A machine learning approach to brain epigenetic analysis reveals kinases associated with Alzheimer's disease. Nat Commun 2021; 12:4472. [PMID: 34294691 PMCID: PMC8298578 DOI: 10.1038/s41467-021-24710-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is influenced by both genetic and environmental factors; thus, brain epigenomic alterations may provide insights into AD pathogenesis. Multiple array-based Epigenome-Wide Association Studies (EWASs) have identified robust brain methylation changes in AD; however, array-based assays only test about 2% of all CpG sites in the genome. Here, we develop EWASplus, a computational method that uses a supervised machine learning strategy to extend EWAS coverage to the entire genome. Application to six AD-related traits predicts hundreds of new significant brain CpGs associated with AD, some of which are further validated experimentally. EWASplus also performs well on data collected from independent cohorts and different brain regions. Genes found near top EWASplus loci are enriched for kinases and for genes with evidence for physical interactions with known AD genes. In this work, we show that EWASplus implicates additional epigenetic loci for AD that are not found using array-based AD EWASs.
Collapse
Affiliation(s)
- Yanting Huang
- Department of Computer Science, Emory University, Atlanta, GA, USA
| | - Xiaobo Sun
- Department of Mathematical and Statistical Finance, School of Statistics and Mathematics, Zhongnan University of Economics and Laws, Wuhan, Hubei, China.
| | - Huige Jiang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Shaojun Yu
- Department of Computer Science, Emory University, Atlanta, GA, USA
| | - Chloe Robins
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew J Armstrong
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ronghua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Zhen Mei
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaochuan Shi
- Department of Statistics, University of Washington, Seattle, WA, USA
| | | | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Aliza P Wingo
- Division of Mental Health, Atlanta VA Medical Center, Decatur, GA, USA
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas S Wingo
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
26
|
Johnson NM, Hoffmann AR, Behlen JC, Lau C, Pendleton D, Harvey N, Shore R, Li Y, Chen J, Tian Y, Zhang R. Air pollution and children's health-a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter. Environ Health Prev Med 2021; 26:72. [PMID: 34253165 PMCID: PMC8274666 DOI: 10.1186/s12199-021-00995-5] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Particulate matter (PM), a major component of ambient air pollution, accounts for a substantial burden of diseases and fatality worldwide. Maternal exposure to PM during pregnancy is particularly harmful to children's health since this is a phase of rapid human growth and development. METHOD In this review, we synthesize the scientific evidence on adverse health outcomes in children following prenatal exposure to the smallest toxic components, fine (PM2.5) and ultrafine (PM0.1) PM. We highlight the established and emerging findings from epidemiologic studies and experimental models. RESULTS Maternal exposure to fine and ultrafine PM directly and indirectly yields numerous adverse birth outcomes and impacts on children's respiratory systems, immune status, brain development, and cardiometabolic health. The biological mechanisms underlying adverse effects include direct placental translocation of ultrafine particles, placental and systemic maternal oxidative stress and inflammation elicited by both fine and ultrafine PM, epigenetic changes, and potential endocrine effects that influence long-term health. CONCLUSION Policies to reduce maternal exposure and health consequences in children should be a high priority. PM2.5 levels are regulated, yet it is recognized that minority and low socioeconomic status groups experience disproportionate exposures. Moreover, PM0.1 levels are not routinely measured or currently regulated. Consequently, preventive strategies that inform neighborhood/regional planning and clinical/nutritional recommendations are needed to mitigate maternal exposure and ultimately protect children's health.
Collapse
Affiliation(s)
- Natalie M Johnson
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA.
| | | | - Jonathan C Behlen
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Carmen Lau
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Drew Pendleton
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Navada Harvey
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Ross Shore
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Yixin Li
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jingshu Chen
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Renyi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
27
|
Lee KS, Choi YJ, Cho JW, Moon SJ, Lim YH, Kim JI, Lee YA, Shin CH, Kim BN, Hong YC. Children's Greenness Exposure and IQ-Associated DNA Methylation: A Prospective Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7429. [PMID: 34299878 PMCID: PMC8304819 DOI: 10.3390/ijerph18147429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022]
Abstract
Epigenetics is known to be involved in regulatory pathways through which greenness exposure influences child development and health. We aimed to investigate the associations between residential surrounding greenness and DNA methylation changes in children, and further assessed the association between DNA methylation and children's intelligence quotient (IQ) in a prospective cohort study. We identified cytosine-guanine dinucleotide sites (CpGs) associated with cognitive abilities from epigenome- and genome-wide association studies through a systematic literature review for candidate gene analysis. We estimated the residential surrounding greenness at age 2 using a geographic information system. DNA methylation was analyzed from whole blood using the HumanMethylationEPIC array in 59 children at age 2. We analyzed the association between greenness exposure and DNA methylation at age 2 at the selected CpGs using multivariable linear regression. We further investigated the relationship between DNA methylation and children's IQ. We identified 8743 CpGs associated with cognitive ability based on the literature review. Among these CpGs, we found that 25 CpGs were significantly associated with greenness exposure at age 2, including cg26269038 (Bonferroni-corrected p ≤ 0.05) located in the body of SLC6A3, which encodes a dopamine transporter. DNA methylation at cg26269038 at age 2 was significantly associated with children's performance IQ at age 6. Exposure to surrounding greenness was associated with cognitive ability-related DNA methylation changes, which was also associated with children's IQ. Further studies are warranted to clarify the epigenetic pathways linking greenness exposure and neurocognitive function.
Collapse
Affiliation(s)
- Kyung-Shin Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (K.-S.L.); (Y.-J.C.); (S.-J.M.); (Y.-H.L.)
- Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yoon-Jung Choi
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (K.-S.L.); (Y.-J.C.); (S.-J.M.); (Y.-H.L.)
- Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jin-Woo Cho
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Sung-Ji Moon
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (K.-S.L.); (Y.-J.C.); (S.-J.M.); (Y.-H.L.)
| | - Youn-Hee Lim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (K.-S.L.); (Y.-J.C.); (S.-J.M.); (Y.-H.L.)
- Section of Environmental Health, Department of Public Health, University of Copenhagen, 1014 Copenhagen, Denmark
| | - Johanna-Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul 04763, Korea;
| | - Young-Ah Lee
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.-A.L.); (C.-H.S.)
| | - Choong-Ho Shin
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.-A.L.); (C.-H.S.)
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul 03080, Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (K.-S.L.); (Y.-J.C.); (S.-J.M.); (Y.-H.L.)
- Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
28
|
Zhang J, Lu H, Zhang S, Wang T, Zhao H, Guan F, Zeng P. Leveraging Methylation Alterations to Discover Potential Causal Genes Associated With the Survival Risk of Cervical Cancer in TCGA Through a Two-Stage Inference Approach. Front Genet 2021; 12:667877. [PMID: 34149809 PMCID: PMC8206792 DOI: 10.3389/fgene.2021.667877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Multiple genes were previously identified to be associated with cervical cancer; however, the genetic architecture of cervical cancer remains unknown and many potential causal genes are yet to be discovered. METHODS To explore potential causal genes related to cervical cancer, a two-stage causal inference approach was proposed within the framework of Mendelian randomization, where the gene expression was treated as exposure, with methylations located within the promoter regions of genes serving as instrumental variables. Five prediction models were first utilized to characterize the relationship between the expression and methylations for each gene; then, the methylation-regulated gene expression (MReX) was obtained and the association was evaluated via Cox mixed-effect model based on MReX. We further implemented the aggregated Cauchy association test (ACAT) combination to take advantage of respective strengths of these prediction models while accounting for dependency among the p-values. RESULTS A total of 14 potential causal genes were discovered to be associated with the survival risk of cervical cancer in TCGA when the five prediction models were separately employed. The total number of potential causal genes was brought to 23 when conducting ACAT. Some of the newly discovered genes may be novel (e.g., YJEFN3, SPATA5L1, IMMP1L, C5orf55, PPIP5K2, ZNF330, CRYZL1, PPM1A, ESCO2, ZNF605, ZNF225, ZNF266, FICD, and OSTC). Functional analyses showed that these genes were enriched in tumor-associated pathways. Additionally, four genes (i.e., COL6A1, SYDE1, ESCO2, and GIPC1) were differentially expressed between tumor and normal tissues. CONCLUSION Our study discovered promising candidate genes that were causally associated with the survival risk of cervical cancer and thus provided new insights into the genetic etiology of cervical cancer.
Collapse
Affiliation(s)
- Jinhui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haojie Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Shuo Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ting Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Huashuo Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Fengjun Guan
- Department of Pediatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
29
|
Verheyen VJ, Remy S, Lambrechts N, Govarts E, Colles A, Poelmans L, Verachtert E, Lefebvre W, Monsieurs P, Vanpoucke C, Nielsen F, Van den Eeden L, Jacquemyn Y, Schoeters G. Residential exposure to air pollution and access to neighborhood greenspace in relation to hair cortisol concentrations during the second and third trimester of pregnancy. Environ Health 2021; 20:11. [PMID: 33573648 PMCID: PMC7879652 DOI: 10.1186/s12940-021-00697-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/01/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Exposure to air pollution during pregnancy has been associated with adverse pregnancy outcomes in studies worldwide, other studies have described beneficial effects of residential greenspace on pregnancy outcomes. The biological mechanisms that underlie these associations are incompletely understood. A biological stress response, which implies release of cortisol, may underlie associations of air pollution exposure and access to neighborhood greenspaces with health. METHODS We explored residential exposure to air pollution and residential access to neighborhood greenspaces in relation to hair cortisol concentrations of participants in a prospective pregnancy cohort study in Flanders, Belgium. Hair samples were collected at the end of the second pregnancy trimester (n = 133) and shortly after delivery (n = 81). Cortisol concentrations were measured in 3-cm scalp-near hair sections, to reflect second and third pregnancy trimester cortisol secretion. We estimated long-term (3 months before sampling) residential exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2) and black carbon (BC), assessed residential distance to major roads and residential access to neighborhood greenspaces (NHGS). Associations between residential exposures and hair cortisol concentrations were studied using linear regression models while adjusting for season of sampling. RESULTS Three-month mean residential NO2 and BC concentrations were positively associated with third pregnancy trimester hair cortisol concentrations (p = 0.008 and p = 0.017). Access to a large NHGS (10 ha or more within 800 m from residence) was negatively associated with third trimester hair cortisol concentrations (p = 0.019). Access to a large NHGS significantly moderated the association between residential proximity to major roads and second trimester hair cortisol concentrations (p = 0.021). Residential distance to major roads was negatively associated with second trimester hair cortisol concentrations of participants without access to a large NHGS (p = 0.003). The association was not significant for participants with access to a large NHGS. The moderation tended towards significance in the third pregnancy trimester (p < 0.10). CONCLUSIONS Our findings suggest a positive association between long-term residential exposure to air pollution and biological stress during pregnancy, residential access to neighborhood greenspaces may moderate the association. Further research is needed to confirm our results. TRIAL REGISTRATION The IPANEMA study is registered under number NCT02592005 at clinicaltrials.gov .
Collapse
Affiliation(s)
- Veerle Josefa Verheyen
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sylvie Remy
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Eva Govarts
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Ann Colles
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Lien Poelmans
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Els Verachtert
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Wouter Lefebvre
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Pieter Monsieurs
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Flemming Nielsen
- The Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Lena Van den Eeden
- Department of Obstetrics and Gynecology, Antwerp University Hospital, Antwerp, Belgium
- People and Health, Thomas More University College, Lier, Belgium
| | - Yves Jacquemyn
- Department of Obstetrics and Gynecology, Antwerp University Hospital, Antwerp, Belgium
- Global Health Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
- Antwerp Surgical Training, Anatomy and Research Centre, University of Antwerp, Antwerp, Belgium
| | - Greet Schoeters
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- The Department of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
30
|
Kim H, Kim WH, Kim YY, Park HY. Air Pollution and Central Nervous System Disease: A Review of the Impact of Fine Particulate Matter on Neurological Disorders. Front Public Health 2020; 8:575330. [PMID: 33392129 PMCID: PMC7772244 DOI: 10.3389/fpubh.2020.575330] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022] Open
Abstract
Background: It is widely known that the harmful effects of fine dust can cause various diseases. Research on the correlation between fine dust and health has been mainly focused on lung and cardiovascular diseases. By contrast, the effects of air pollution on the central nervous system (CNS) are not broadly recognized. Findings: Air pollution can cause diverse neurological disorders as the result of inflammation of the nervous system, oxidative stress, activation of microglial cells, protein condensation, and cerebral vascular-barrier disorders, but uncertainty remains concerning the biological mechanisms by which air pollution produces neurological disease. Neuronal cell damage caused by fine dust, especially in fetuses and infants, can cause permanent brain damage or lead to neurological disease in adulthood. Conclusion: It is necessary to study the air pollution–CNS disease connection with particular care and commitment. Moreover, the epidemiological and experimental study of the association between exposure to air pollution and CNS damage is critical to public health and quality of life. Here, we summarize the correlations between fine dust exposure and neurological disorders reported so far and make suggestions on the direction future research should take.
Collapse
Affiliation(s)
- Hyunyoung Kim
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si, South Korea
| | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si, South Korea
| | - Young-Youl Kim
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si, South Korea
| | - Hyun-Young Park
- Department of Precision Medicine, Korea National Institute of Health, Cheongju-si, South Korea
| |
Collapse
|
31
|
Gaskins AJ, Mínguez-Alarcón L, Williams PL, Chavarro JE, Schwartz JD, Kloog I, Souter I, Hauser R, Laden F. Ambient air pollution and risk of pregnancy loss among women undergoing assisted reproduction. ENVIRONMENTAL RESEARCH 2020; 191:110201. [PMID: 32937174 PMCID: PMC7658021 DOI: 10.1016/j.envres.2020.110201] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 05/05/2023]
Abstract
Accumulating evidence suggests that air pollution increases pregnancy loss; however, most previous studies have focused on case identification from medical records, which may underrepresent early pregnancy losses. Our objective was to investigate the association between acute and chronic exposure to ambient air pollution and time to pregnancy loss among women undergoing assisted reproductive technologies (ART) who are closely followed throughout early pregnancy. We included 275 women (345 human chorionic gonadotropin (hCG)-confirmed pregnancies) undergoing ART at a New England academic fertility center. We estimated daily nitrogen dioxide (NO2), ozone (O3), fine particulate matter <2.5 μm (PM2.5), and black carbon (BC) exposures using validated spatiotemporal models estimated from first positive hCG test until day of failure or live birth. Air pollution exposures were averaged over the past week and the whole pregnancy. Multivariable Cox proportional hazards models were used to estimate the hazards ratio (HR) for pregnancy loss for an interquartile range (IQR) increase in pollutant exposure. We tested for violation of proportional hazards by considering an interaction between time (in days) since positive hCG (<30 days vs. ≥30 days) and air pollution. The incidence of pregnancy loss was 29 per 100 confirmed pregnancies (n = 99). Among pregnancies not resulting in live birth, the median (IQR) time to loss was 21 (11, 30) days following positive hCG. Average past week exposures to NO2, O3, PM2.5, and BC were not associated with time to pregnancy loss. Exposure throughout pregnancy to NO2 was not associated with pregnancy loss; however, there was a statistically significant interaction with time (p-for-interaction<0.001). Specifically, an IQR increase in exposure to NO2 was positively associated with pregnancy loss after 30 days (HR = 1.34, 95% CI: 1.13, 1.58), but not in the first 30 days after positive hCG (HR = 0.83, 95% CI: 0.57, 1.20). Overall pregnancy exposure to O3, PM2.5, and BC were not associated with pregnancy loss regardless of timing. Models evaluating joint effects of all pollutants yielded similar findings. In conclusion, acute and chronic exposure to NO2, O3, PM2.5, and BC were not associated with risk of pregnancy loss; however, higher exposure to NO2 throughout pregnancy was associated with increased risk of loss 30 days after positive hCG. In this cohort, later pregnancy losses appeared more susceptible to the detrimental effects of air pollution exposure.
Collapse
Affiliation(s)
- Audrey J Gaskins
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Paige L Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jorge E Chavarro
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Itai Kloog
- Environmental Medicine & Public Health, Mount Sinai, New York City, NY, USA
| | - Irene Souter
- Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Francine Laden
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Yang SI, Lee SH, Lee SY, Kim HC, Kim HB, Kim JH, Lim H, Park MJ, Cho HJ, Yoon J, Jung S, Yang HJ, Ahn K, Kim KW, Shin YH, Suh DI, Won HS, Lee MY, Kim SH, Choi SJ, Kwon JY, Jun JK, Hong SJ. Prenatal PM 2.5 exposure and vitamin D-associated early persistent atopic dermatitis via placental methylation. Ann Allergy Asthma Immunol 2020; 125:665-673.e1. [PMID: 32971247 DOI: 10.1016/j.anai.2020.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND The effects of prenatal particulate matter with an aerodynamic diameter ranging from 0.1 μm to 2.5 μm (PM2.5) and vitamin D on atopic dermatitis (AD) phenotypes have not been evaluated. DNA methylation and cord blood (CB) vitamin D could represent a plausible link between prenatal PM2.5 exposure and AD in an offspring. OBJECTIVE To determine the critical windows of prenatal PM2.5 exposure on the AD phenotypes, if vitamin D modulated these effects, and if placental DNA methylation mediated these effects on AD in offspring. METHODS Mother-child pairs were enrolled from the birth cohort of the Cohort for Childhood Origin of Asthma and allergic diseases (COCOA) study. PM2.5 was estimated by land-use regression models, and CB vitamin D was measured by chemiluminescence immunoassay. AD was identified by the parental report of a physician's diagnosis. We defined the following 4 AD phenotypes according to onset age (by the age of 2 years) and persistence (by the age of 3 years): early-onset transient and persistent, late onset, and never. Logistic regression analysis and Bayesian distributed lag interaction model were used. DNA methylation microarray was analyzed using an Infinium Human Methylation EPIC BeadChip (Illumina, San Diego, California) in placenta. RESULTS PM2.5 exposure during the first trimester of pregnancy, especially during 6 to 7 weeks of gestation, was associated with early-onset persistent AD. This effect increased in children with low CB vitamin D, especially in those with PM2.5 exposure during 3 to 7 weeks of gestation. AHRR (cg16371648), DPP10 (cg19211931), and HLADRB1 (cg10632894) were hypomethylated in children with AD with high PM2.5 and low CB vitamin D. CONCLUSION Higher PM2.5 during the first trimester of pregnancy and low CB vitamin D affected early-onset persistent AD, and the most sensitive window was 6 to 7 weeks of gestation. Placental DNA methylation mediated this effect.
Collapse
Affiliation(s)
- Song-I Yang
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Seung-Hwa Lee
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - So-Yeon Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hwan-Cheol Kim
- Department of Occupational and Environmental Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Hyo-Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Hyun Kim
- Department of Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyeyeun Lim
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min Jee Park
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun-Ju Cho
- Department of Pediatrics, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Jisun Yoon
- Department of Pediatrics, Mediplex Sejong Hospital, Incheon, Republic of Korea
| | - Sungsu Jung
- Department of Pediatrics, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Hyeon-Jong Yang
- Department of Pediatrics, Soonchunhyang University School of Medicine, Seoul, Republic of Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyung Won Kim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youn Ho Shin
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Republic of Korea
| | - Dong In Suh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye-Sung Won
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi-Young Lee
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soo Hyun Kim
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Republic of Korea
| | - Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ja-Young Kwon
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Kwan Jun
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Lodge EK, Engel LS, Ferrando-Martínez S, Wildman D, Uddin M, Galea S, Aiello AE. The association between residential proximity to brownfield sites and high-traffic areas and measures of immunity. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:824-834. [PMID: 32398779 PMCID: PMC7483819 DOI: 10.1038/s41370-020-0226-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
The mechanisms by which neighborhood environmental exposures influence health are poorly understood, although immune system dysregulation represents a potential biological pathway. While many neighborhood exposures have been investigated, there is little research on residential proximity to brownfield waste. Using biomarker data from 262 participants in the Detroit Neighborhood Health Study, we estimated the association between proximity to brownfields and heavy traffic and signal joint T-cell receptor excision circles (sjTRECs, a measure of naive T-cell production), C-reactive protein (CRP, a measure of systemic inflammation), and interleukin-6 (IL-6, a pro-inflammatory cytokine). We assessed residential proximity ≤200 m from brownfields and highways on all three biomarkers using multivariate regression. We demonstrated that living ≤200 m from a brownfield site was associated with a 0.30 (95% CI = 0.59, 0.02, p = 0.04) loge-unit decrease in sjTRECs per million whole blood cells, as well as non-significantly elevated levels of CRP and IL-6. Heavy traffic was not associated with any biomarker. Persons living in close proximity to brownfield sites had significantly lower naive T-cell production, suggesting accelerated immune aging. Decreased T-cell production associated with brownfield proximity may be caused by toxicant exposure in brownfield sites, or may serve as a marker of other neighborhood stressors.
Collapse
Affiliation(s)
- Evans K Lodge
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Derek Wildman
- College of Public Health, University of South Florida, Tampa, FL, USA
| | - Monica Uddin
- College of Public Health, University of South Florida, Tampa, FL, USA
| | - Sandro Galea
- School of Public Health, Boston University, Boston, MA, USA
| | - Allison E Aiello
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
34
|
Navel V, Chiambaretta F, Dutheil F. Reply. J Allergy Clin Immunol 2020; 146:332-334. [PMID: 32507496 PMCID: PMC7253949 DOI: 10.1016/j.jaci.2020.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Valentin Navel
- Université Clermont Auvergne, CNRS, INSERM, GReD, Translational Approach to Epithelial Injury and Repair, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Ophthalmology, Clermont-Ferrand, France.
| | - Frédéric Chiambaretta
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Preventive and Occupational Medicine, Witty Fit, Clermont-Ferrand, France
| | - Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Preventive and Occupational Medicine, Witty Fit, Clermont-Ferrand, France
| |
Collapse
|
35
|
Starling AP, Moore BF, Thomas DSK, Peel JL, Zhang W, Adgate JL, Magzamen S, Martenies SE, Allshouse WB, Dabelea D. Prenatal exposure to traffic and ambient air pollution and infant weight and adiposity: The Healthy Start study. ENVIRONMENTAL RESEARCH 2020; 182:109130. [PMID: 32069764 PMCID: PMC7394733 DOI: 10.1016/j.envres.2020.109130] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Prenatal exposures to ambient air pollution and traffic have been associated with adverse birth outcomes, and may also lead to an increased risk of obesity. Obesity risk may be reflected in changes in body composition in infancy. OBJECTIVE To estimate associations between prenatal ambient air pollution and traffic exposure, and infant weight and adiposity in a Colorado-based prospective cohort study. METHODS Participants were 1125 mother-infant pairs with term births. Birth weight was recorded from medical records and body composition measures (fat mass, fat-free mass, and adiposity [percent fat mass]) were evaluated via air displacement plethysmography at birth (n = 951) and at ~5 months (n = 574). Maternal residential address was used to calculate distance to nearest roadway, traffic density, and ambient concentrations of fine particulate matter (PM2.5) and ozone (O3) via inverse-distance weighted interpolation of stationary monitoring data, averaged by trimester and throughout pregnancy. Adjusted linear regression models estimated associations between exposures and infant weight and body composition. RESULTS Participants were urban residents and diverse in race/ethnicity and socioeconomic status. Average ambient air pollutant concentrations were generally low; the median, interquartile range (IQR), and range of third trimester concentrations were 7.3 μg/m3 (IQR: 1.3, range: 3.3-12.7) for PM2.5 and 46.3 ppb (IQR: 18.4, range: 21.7-63.2) for 8-h maximum O3. Overall there were few associations between traffic and air pollution exposures and infant outcomes. Third trimester O3 was associated with greater adiposity at follow-up (2.2% per IQR, 95% CI 0.1, 4.3), and with greater rates of change in fat mass (1.8 g/day, 95% CI 0.5, 3.2) and adiposity (2.1%/100 days, 95% CI 0.4, 3.7) from birth to follow-up. CONCLUSIONS We found limited evidence of an association between prenatal traffic and ambient air pollution exposure and infant body composition. Suggestive associations between prenatal ozone exposure and early postnatal changes in body composition merit further investigation.
Collapse
Affiliation(s)
- Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Brianna F Moore
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah S K Thomas
- Department of Geography and Earth Sciences, University of North Carolina Charlotte, NC, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Weiming Zhang
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Epidemiology, Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
| | - Sheena E Martenies
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - William B Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
36
|
Jin P, Gao Y, Liu L, Peng Z, Wu H. Maternal Health and Green Spaces in China: A Longitudinal Analysis of MMR Based on Spatial Panel Model. Healthcare (Basel) 2019; 7:E154. [PMID: 31810235 PMCID: PMC6956252 DOI: 10.3390/healthcare7040154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/14/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
The positive impact of green spaces on public health has attracted increasing attention, and maternal health has also been shown to be related to green spaces. However, there are different kinds of green space indicators that represent different mechanisms for mitigating maternal health, and few studies have investigated the different relevance amongst them with longitudinal data. This study explores the correlation between various green space indicators and maternal health using spatial panel models with provincial data from China from 2007 to 2016. The results indicate that all kinds of green spaces could decrease maternal mortality, wherein public green spaces may play a key role. In terms of spatial correlation, an increase in green space coverage in adjacent provinces may also result in a slight decline in maternal mortality. This paper provides valuable insight into the correlation between maternal health and green spaces.
Collapse
Affiliation(s)
- Ping Jin
- Department of Graphics and Digital Technology, School of Urban Design, Wuhan University, Wuhan 430072, China; (P.J.); (Y.G.); (Z.P.); (H.W.)
| | - Yushu Gao
- Department of Graphics and Digital Technology, School of Urban Design, Wuhan University, Wuhan 430072, China; (P.J.); (Y.G.); (Z.P.); (H.W.)
| | - Lingbo Liu
- Department of Urban Planning, School of Urban Design, Wuhan University, Wuhan 430072, China
| | - Zhenghong Peng
- Department of Graphics and Digital Technology, School of Urban Design, Wuhan University, Wuhan 430072, China; (P.J.); (Y.G.); (Z.P.); (H.W.)
| | - Hao Wu
- Department of Graphics and Digital Technology, School of Urban Design, Wuhan University, Wuhan 430072, China; (P.J.); (Y.G.); (Z.P.); (H.W.)
| |
Collapse
|
37
|
Air pollution, neighborhood deprivation, and autism spectrum disorder in the Study to Explore Early Development. Environ Epidemiol 2019; 3. [PMID: 32478281 PMCID: PMC7260884 DOI: 10.1097/ee9.0000000000000067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background To examine whether neighborhood deprivation modifies the association between early life air pollution exposure and autism spectrum disorder (ASD), we used resources from a multisite case-control study, the Study to Explore Early Development. Methods Cases were 674 children with confirmed ASD born in 2003-2006; controls were 855 randomly sampled children born during the same time period and residents of the same geographic areas as cases. Air pollution was assessed by roadway proximity and particulate matter <2.5 μm (PM2.5) exposure during pregnancy and first year of life. To characterize neighborhood deprivation, an index was created based on eight census tract-level socioeconomic status-related parameters. The continuous index was categorized into tertiles, representing low, moderate, and high deprivation. Logistic regression was used to estimate odds ratios (ORs) and corresponding 95% confidence intervals (CIs). Results Neighborhood deprivation modified (P for interaction = 0.08) the association between PM2.5 exposure during the first year of life and ASD, with a stronger association for those living in high (OR = 2.42, 95% CI = 1.20, 4.86) rather than moderate (OR=1.21, 95% CI = 0.67, 2.17) or low (OR=1.46, 95% CI = 0.80, 2.65) deprivation neighborhoods. Departure from additivity or multiplicativity was not observed for roadway proximity or exposures during pregnancy. Conclusion These results provide suggestive evidence of interaction between neighborhood deprivation and PM2.5 exposure during the first year of life in association with ASD.
Collapse
|
38
|
Saenen ND, Martens DS, Neven KY, Alfano R, Bové H, Janssen BG, Roels HA, Plusquin M, Vrijens K, Nawrot TS. Air pollution-induced placental alterations: an interplay of oxidative stress, epigenetics, and the aging phenotype? Clin Epigenetics 2019; 11:124. [PMID: 31530287 PMCID: PMC6749657 DOI: 10.1186/s13148-019-0688-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/27/2019] [Indexed: 01/04/2023] Open
Abstract
According to the "Developmental Origins of Health and Disease" (DOHaD) concept, the early-life environment is a critical period for fetal programming. Given the epidemiological evidence that air pollution exposure during pregnancy adversely affects newborn outcomes such as birth weight and preterm birth, there is a need to pay attention to underlying modes of action to better understand not only these air pollution-induced early health effects but also its later-life consequences. In this review, we give an overview of air pollution-induced placental molecular alterations observed in the ENVIRONAGE birth cohort and evaluate the existing evidence. In general, we showed that prenatal exposure to air pollution is associated with nitrosative stress and epigenetic alterations in the placenta. Adversely affected CpG targets were involved in cellular processes including DNA repair, circadian rhythm, and energy metabolism. For miRNA expression, specific air pollution exposure windows were associated with altered miR-20a, miR-21, miR-146a, and miR-222 expression. Early-life aging markers including telomere length and mitochondrial DNA content are associated with air pollution exposure during pregnancy. Previously, we proposed the air pollution-induced telomere-mitochondrial aging hypothesis with a direct link between telomeres and mitochondria. Here, we extend this view with a potential co-interaction of different biological mechanisms on the level of placental oxidative stress, epigenetics, aging, and energy metabolism. Investigating the placenta is an opportunity for future research as it may help to understand the fundamental biology underpinning the DOHaD concept through the interactions between the underlying modes of action, prenatal environment, and disease risk in later life. To prevent lasting consequences from early-life exposures of air pollution, policy makers should get a basic understanding of biomolecular consequences and transgenerational risks.
Collapse
Affiliation(s)
- N. D. Saenen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - D. S. Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - K. Y. Neven
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - R. Alfano
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - H. Bové
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - B. G. Janssen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - H. A. Roels
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - M. Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - K. Vrijens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - T. S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Public Health and Primary Care, Leuven University, Leuven, Belgium
| |
Collapse
|
39
|
Rider CF, Carlsten C. Air pollution and DNA methylation: effects of exposure in humans. Clin Epigenetics 2019; 11:131. [PMID: 31481107 PMCID: PMC6724236 DOI: 10.1186/s13148-019-0713-2] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
Air pollution exposure is estimated to contribute to approximately seven million early deaths every year worldwide and more than 3% of disability-adjusted life years lost. Air pollution has numerous harmful effects on health and contributes to the development and morbidity of cardiovascular disease, metabolic disorders, and a number of lung pathologies, including asthma and chronic obstructive pulmonary disease (COPD). Emerging data indicate that air pollution exposure modulates the epigenetic mark, DNA methylation (DNAm), and that these changes might in turn influence inflammation, disease development, and exacerbation risk. Several traffic-related air pollution (TRAP) components, including particulate matter (PM), black carbon (BC), ozone (O3), nitrogen oxides (NOx), and polyaromatic hydrocarbons (PAHs), have been associated with changes in DNAm; typically lowering DNAm after exposure. Effects of air pollution on DNAm have been observed across the human lifespan, but it is not yet clear whether early life developmental sensitivity or the accumulation of exposures have the most significant effects on health. Air pollution exposure-associated DNAm patterns are often correlated with long-term negative respiratory health outcomes, including the development of lung diseases, a focus in this review. Recently, interventions such as exercise and B vitamins have been proposed to reduce the impact of air pollution on DNAm and health. Ultimately, improved knowledge of how exposure-induced change in DNAm impacts health, both acutely and chronically, may enable preventative and remedial strategies to reduce morbidity in polluted environments.
Collapse
Affiliation(s)
- Christopher F Rider
- Respiratory Medicine, Faculty of Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease (COERD), University of British Columbia, Vancouver, British Columbia, Canada. .,Diamond Health Care Centre 7252, 2775 Laurel Street, Vancouver, BC, V5Z 1 M9, Canada.
| | - Chris Carlsten
- Respiratory Medicine, Faculty of Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease (COERD), University of British Columbia, Vancouver, British Columbia, Canada.,Diamond Health Care Centre 7252, 2775 Laurel Street, Vancouver, BC, V5Z 1 M9, Canada.,Institute for Heart and Lung Health, University of British Columbia, Vancouver, British Columbia, Canada.,School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
40
|
Ferrari L, Carugno M, Bollati V. Particulate matter exposure shapes DNA methylation through the lifespan. Clin Epigenetics 2019; 11:129. [PMID: 31470889 PMCID: PMC6717322 DOI: 10.1186/s13148-019-0726-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
Exposure to airborne particulate matter (PM) has been associated with detrimental health effects. DNA methylation represents the most well-studied epigenetic factor among the possible mechanisms underlying this association. Interestingly, changes of DNA methylation in response to environmental stimuli are being considered for their role in the pathogenic mechanism, but also as mediators of the body adaptation to air pollutants.Several studies have evaluated both global and gene-specific methylation in relation to PM exposure in different clinical conditions and life stages. The purpose of the present literature review is to evaluate the most relevant and recent studies in the field in order to analyze the available evidences on long- and short-term PM exposure and DNA methylation changes, with a particular focus on the different life stages when the alteration occurs. PM exposure modulates DNA methylation affecting several biological mechanisms with marked effects on health, especially during susceptible life stages such as pregnancy, childhood, and the older age.Although many cross-sectional investigations have been conducted so far, only a limited number of prospective studies have explored the potential role of DNA methylation. Future studies are needed in order to evaluate whether these changes might be reverted.
Collapse
Affiliation(s)
- L Ferrari
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, via San Barnaba 8, 20122, Milan, Italy
| | - M Carugno
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, via San Barnaba 8, 20122, Milan, Italy
| | - V Bollati
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, via San Barnaba 8, 20122, Milan, Italy.
| |
Collapse
|
41
|
Human placental methylome in the interplay of adverse placental health, environmental exposure, and pregnancy outcome. PLoS Genet 2019; 15:e1008236. [PMID: 31369552 PMCID: PMC6675049 DOI: 10.1371/journal.pgen.1008236] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The placenta is the interface between maternal and fetal circulations, integrating maternal and fetal signals to selectively regulate nutrient, gas, and waste exchange, as well as secrete hormones. In turn, the placenta helps create the in utero environment and control fetal growth and development. The unique epigenetic profile of the human placenta likely reflects its early developmental separation from the fetus proper and its role in mediating maternal–fetal exchange that leaves it open to a range of exogenous exposures in the maternal circulation. In this review, we cover recent advances in DNA methylation in the context of placental function and development, as well as the interaction between the pregnancy and the environment.
Collapse
|
42
|
Litzky JF, Marsit CJ. Epigenetically regulated imprinted gene expression associated with IVF and infertility: possible influence of prenatal stress and depression. J Assist Reprod Genet 2019; 36:1299-1313. [PMID: 31127477 PMCID: PMC6642239 DOI: 10.1007/s10815-019-01483-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 05/09/2019] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Despite the growing body of research implying an impact of in vitro fertilization (IVF) on imprinted genes and epigenetics, few studies have examined the effects of underlying subfertility or prenatal stress on epigenetics, particularly in terms of their role in determining infant birthweights. Both subfertility and prenatal stressors have been found to impact epigenetics and may be confounding the effect of IVF on epigenetics and imprinted genes. Like IVF, both of these exposures-infertility and prenatal stressors-have been associated with lower infant birthweights. The placenta, and specifically epigenetically regulated placental imprinted genes, provides an ideal but understudied mechanism for evaluating the relationship between underlying genetics, environmental exposures, and birthweight. METHODS AND RESULTS In this review, we discuss the impacts of IVF and infertility on birthweight, epigenetic mechanisms and genomic imprinting, and the role of these mechanisms in the IVF population and discuss the role and importance of the placenta in infant development. We then highlight recent work on the relationships between infertility, IVF, and prenatal stressors in terms of placental imprinting. CONCLUSIONS In combination, the studies discussed, as well as two recent projects of our own on placental imprinted gene expression, suggest that lower birthweights in IVF infants are secondary to a combination of exposures including the infertility and prenatal stress that couples undergoing IVF are experiencing. The work highlighted herein emphasizes the need for appropriate control populations that take infertility into account and also for consideration of prenatal psychosocial stressors as confounders and causes of variation in IVF infant outcomes.
Collapse
Affiliation(s)
- Julia F Litzky
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, 03755, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, CNR 202, Atlanta, GA, 30322, USA.
| |
Collapse
|
43
|
Everson TM, Marsit CJ. Integrating -Omics Approaches into Human Population-Based Studies of Prenatal and Early-Life Exposures. Curr Environ Health Rep 2019; 5:328-337. [PMID: 30054820 DOI: 10.1007/s40572-018-0204-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW We present the study design and methodological suggestions for population-based studies that integrate molecular -omics data and highlight recent studies that have used such data to examine the potential impacts of prenatal environmental exposures on fetal health. RECENT FINDINGS Epidemiologic studies have observed numerous relationships between prenatal exposures (smoking, toxic metals, endocrine disruptors) and fetal and early-life molecular profiles, though such investigations have so far been dominated by epigenomic association studies. However, recent transcriptomic, proteomic, and metabolomic studies have demonstrated their promise for the identification of exposure and response biomarkers. Molecular -omics have opened new avenues of research in environmental health that can improve our understanding of disease etiology and contribute to the development of exposure and response biomarkers. Studies that incorporate multiple -omics data from different molecular domains in longitudinally collected samples hold particular promise.
Collapse
Affiliation(s)
- Todd M Everson
- Departments of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Claudia Nance Rollins Room 2021, Atlanta, GA, 30322, USA
| | - Carmen J Marsit
- Departments of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Claudia Nance Rollins Room 2021, Atlanta, GA, 30322, USA. .,Departments of Environmental Health and Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Claudia Nance Rollins Room 2021, Atlanta, GA, 30322, USA.
| |
Collapse
|
44
|
Sun S, Spangler KR, Weinberger KR, Yanosky JD, Braun JM, Wellenius GA. Ambient Temperature and Markers of Fetal Growth: A Retrospective Observational Study of 29 Million U.S. Singleton Births. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:67005. [PMID: 31162981 PMCID: PMC6792370 DOI: 10.1289/ehp4648] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/30/2019] [Accepted: 05/14/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Emerging studies suggest that ambient temperature during pregnancy may be associated with fetal growth, but the existing evidence is limited and inconsistent. OBJECTIVES We aimed to evaluate the association of trimester-specific temperature with risk of being born small for gestational age (SGA) and birth weight-markers of fetal growth-among term births in the contiguous United States. METHODS We included data on 29,597,735 live singleton births between 1989 and 2002 across 403 U.S. counties. We estimated daily county-level population-weighted mean temperature using a spatially refined gridded climate data set. We used logistic regression to estimate the association between trimester-specific temperature and risk of SGA and linear regression to evaluate the association between trimester-specific temperature and term birth weight z-score, adjusting for parity, maternal demographics, smoking or drinking during pregnancy, chronic hypertension, and year and month of conception. We then pooled results overall and by geographic regions and climate zones. RESULTS High ambient temperatures ([Formula: see text] percentile) during the entire pregnancy were associated with higher risk of term SGA {odds ratio [OR] [Formula: see text] 1.041 [95% confidence interval (CI): 1.029, 1.054]} and lower term birth weight [standardized to [Formula: see text] (95% CI: [Formula: see text], [Formula: see text]) reduction in birth weight for infants born at 40 weeks of gestation]. Low temperatures ([Formula: see text] percentile) during the entire pregnancy were not associated with SGA [OR [Formula: see text] 1.003 (95% CI: 0.991, 1.015)] but were associated with a small decrement in term birth weight [standardized to [Formula: see text] (95% CI: [Formula: see text], [Formula: see text])]. Risks of term SGA and birth weight were more strongly associated with temperature averaged across the second and third trimesters, in areas the Northeast, and in areas with cold or very cold climates. CONCLUSIONS Above-average temperatures during pregnancy were associated with lower fetal growth. Our findings provide evidence that temperature may be a novel risk factor for reduced fetal growth. https://doi.org/10.1289/EHP4648.
Collapse
Affiliation(s)
- Shengzhi Sun
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
| | - Keith R. Spangler
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island
| | - Kate R. Weinberger
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
| | - Jeff D. Yanosky
- Division of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
| | - Gregory A. Wellenius
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
| |
Collapse
|
45
|
Li S, Chen M, Li Y, Tollefsbol TO. Prenatal epigenetics diets play protective roles against environmental pollution. Clin Epigenetics 2019; 11:82. [PMID: 31097039 PMCID: PMC6524340 DOI: 10.1186/s13148-019-0659-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
It is thought that germ cells and preimplantation embryos during development are most susceptible to endogenous and exogenous environmental factors because the epigenome in those cells is undergoing dramatic elimination and reconstruction. Exposure to environmental factors such as nutrition, climate, stress, pathogens, toxins, and even social behavior during gametogenesis and early embryogenesis has been shown to influence disease susceptibility in the offspring. Early-life epigenetic modifications, which determine the expression of genetic information stored in the genome, are viewed as one of the general mechanisms linking prenatal exposure and phenotypic changes later in life. From atmospheric pollution, endocrine-disrupting chemicals to heavy metals, research increasingly suggests that environmental pollutions have already produced significant consequences on human health. Moreover, mounting evidence now links such pollution to relevant modification in the epigenome. The epigenetics diet, referring to a class of bioactive dietary compounds such as isothiocyanates in broccoli, genistein in soybean, resveratrol in grape, epigallocatechin-3-gallate in green tea, and ascorbic acid in fruits, has been shown to modify the epigenome leading to beneficial health outcomes. This review will primarily focus on the causes and consequences of prenatal environment pollution exposure on the epigenome, and the potential protective role of the epigenetics diet, which could play a central role in neutralizing epigenomic aberrations against environmental pollutions.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Chen
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuanyuan Li
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
46
|
Ladd-Acosta C, Feinberg JI, Brown SC, Lurmann FW, Croen LA, Hertz-Picciotto I, Newschaffer CJ, Feinberg AP, Fallin MD, Volk HE. Epigenetic marks of prenatal air pollution exposure found in multiple tissues relevant for child health. ENVIRONMENT INTERNATIONAL 2019; 126:363-376. [PMID: 30826615 PMCID: PMC6446941 DOI: 10.1016/j.envint.2019.02.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/05/2019] [Accepted: 02/10/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Prenatal air pollution exposure has been linked to many adverse health conditions in the offspring. However, little is known about the mechanisms underlying these associations. Epigenetics may be one plausible biologic link. Here, we sought to identify site-specific and global DNA methylation (DNAm) changes, in developmentally relevant tissues, associated with prenatal exposure to nitrogen dioxide (NO2) and ozone (O3). Additionally, we assessed whether sex-specific changes in methylation exist and whether DNAm changes are consistently observed across tissues. METHODS Genome-scale DNAm measurements were obtained using the Infinium HumanMethylation450k platform for 133 placenta and 175 cord blood specimens from Early Autism Risk Longitudinal Investigation (EARLI) neonates. Ambient NO2 and O3 exposure levels were based on prenatal address locations of EARLI mothers and the Environmental Protection Agency's AirNOW monitoring network using inverse distance weighting. We computed sample-level aggregate methylation measures for each of 5 types of genomic regions including genome-wide, open sea, shelf, shore, and island regions. Linear regression was performed for each genomic region; per-sample aggregate methylation measures were modeled as a function of quantitative exposure level with covariate adjustment. In addition, bumphunting was performed to identify differentially methylated regions (DMRs) associated with prenatal O3 and NO2 exposures in each tissue and by sex, with adjustment for technical and biological sources of variation. RESULTS We identified global and locus-specific changes in DNA methylation related to prenatal exposure to NO2 and O3 in 2 developmentally relevant tissues. Neonates with increased prenatal O3 exposure had lower aggregate levels of DNAm at CpGs located in open sea and shelf regions of the genome. We identified 6 DMRs associated with prenatal NO2 exposure, including 3 sex-specific. An additional 3 sex-specific DMRs were associated with prenatal O3 exposure levels. DMRs initially detected in cord blood samples (n = 4) showed consistent exposure-related changes in DNAm in placenta. However, the DMRs initially detected in placenta (n = 5) did not show DNAm differences in cord blood and, thus, they appear to be tissue-specific. CONCLUSIONS We observed global, locus, and sex-specific methylation changes associated with prenatal NO2 and O3 exposures. Our findings support DNAm is a biologic target of prenatal air pollutant exposures and highlight epigenetic involvement in sex-specific differential susceptibility to environmental exposure effects in 2 developmentally relevant tissues.
Collapse
Affiliation(s)
- Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shannon C Brown
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Lisa A Croen
- Autism Research Program, Division of Research, Kaiser Permanente, Oakland, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, University of California, Davis, CA, USA
| | - Craig J Newschaffer
- A.J. Drexel Autism Institute and Department of Epidemiology and Biostatistics, Drexel University School of Public Health, Philadelphia, PA, USA
| | - Andrew P Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Heather E Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
47
|
Mizen A, Song J, Fry R, Akbari A, Berridge D, Parker SC, Johnson R, Lovell R, Lyons RA, Nieuwenhuijsen M, Stratton G, Wheeler BW, White J, White M, Rodgers SE. Longitudinal access and exposure to green-blue spaces and individual-level mental health and well-being: protocol for a longitudinal, population-wide record-linked natural experiment. BMJ Open 2019; 9:e027289. [PMID: 31005938 PMCID: PMC6528002 DOI: 10.1136/bmjopen-2018-027289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Studies suggest that access and exposure to green-blue spaces (GBS) have beneficial impacts on mental health. However, the evidence base is limited with respect to longitudinal studies. The main aim of this longitudinal, population-wide, record-linked natural experiment, is to model the daily lived experience by linking GBS accessibility indices, residential GBS exposure and health data; to enable quantification of the impact of GBS on well-being and common mental health disorders, for a national population. METHODS AND ANALYSIS This research will estimate the impact of neighbourhood GBS access, GBS exposure and visits to GBS on the risk of common mental health conditions and the opportunity for promoting subjective well-being (SWB); both key priorities for public health. We will use a Geographic Information System (GIS) to create quarterly household GBS accessibility indices and GBS exposure using digital map and satellite data for 1.4 million homes in Wales, UK (2008-2018). We will link the GBS accessibility indices and GBS exposures to individual-level mental health outcomes for 1.7 million people with general practitioner (GP) data and data from the National Survey for Wales (n=~12 000) on well-being in the Secure Anonymised Information Linkage (SAIL) Databank. We will examine if these associations are modified by multiple sociophysical variables, migration and socioeconomic disadvantage. Subgroup analyses will examine associations by different types of GBS. This longitudinal study will be augmented by cross-sectional research using survey data on self-reported visits to GBS and SWB. ETHICS AND DISSEMINATION All data will be anonymised and linked within the privacy protecting SAIL Databank. We will be using anonymised data and therefore we are exempt from National Research Ethics Committee (NREC). An Information Governance Review Panel (IGRP) application (Project ID: 0562) to link these data has been approved.The research programme will be undertaken in close collaboration with public/patient involvement groups. A multistrategy programme of dissemination is planned with the academic community, policy-makers, practitioners and the public.
Collapse
Affiliation(s)
- Amy Mizen
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Jiao Song
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Richard Fry
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Ashley Akbari
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Damon Berridge
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Sarah C Parker
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Rhodri Johnson
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Rebecca Lovell
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Cornwall, UK
| | - Ronan A Lyons
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Mark Nieuwenhuijsen
- Instituto de Salud Global de Barcelona.c/ Rosselló, 132, 5º 2ª, Barcelona, Spain
| | - Gareth Stratton
- Research Centre in Applied Sports, Technology Exercise and Medicine, College of Engineering, Swansea University, Swansea, UK
| | - Benedict W Wheeler
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Cornwall, UK
| | - James White
- DECIPHer, Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Mathew White
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Cornwall, UK
| | - Sarah E Rodgers
- Swansea University Medical School, Swansea University, Swansea, UK
- Department of Public Health and Policy, University of Liverpool, Liverpool, UK
| |
Collapse
|
48
|
Transplacental exposure to carcinogens and risks to children: evidence from biomarker studies and the utility of omic profiling. Arch Toxicol 2019; 93:833-857. [PMID: 30859261 DOI: 10.1007/s00204-019-02428-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
The factors underlying the increasing rates and the geographic variation of childhood cancers are largely unknown. Epidemiological studies provide limited evidence for a possible role in the etiology of certain types of childhood cancer of the exposure of pregnant women to environmental carcinogens (e.g., tobacco smoke and pesticides); however, such evidence is inadequate to allow definitive conclusions. Complementary evidence can be obtained from biomarker-based population studies. Such studies have demonstrated that, following exposure of pregnant mothers, most environmental carcinogens reach the fetus and, in many cases, induce therein genotoxic damage which in adults is known to be associated with increased cancer risk, implying that environmental carcinogens may contribute to the etiology of childhood cancer. During recent years, intermediate disease biomarkers, obtained via omic profiling, have provided additional insights into the impact of transplacental exposures on fetal tissues which, in some cases, are also compatible with a precarcinogenic role of certain in utero exposures. Here we review the epidemiological and biomarker evidence and discuss how further research, especially utilizing high-density profiling, may allow a better evaluation of the links between in utero environmental exposures and cancer in children.
Collapse
|
49
|
Exposures to Air Pollution and Risk of Acute-onset Placental Abruption: A Case-crossover Study. Epidemiology 2019; 29:631-638. [PMID: 29863531 DOI: 10.1097/ede.0000000000000859] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Despite abruption's elusive etiology, knowledge of triggers that precede it by just a few days prior to delivery may help to understand the underpinnings of this acute obstetrical complication. We examine whether air pollution exposures immediately preceding delivery are associated with acute-onset abruptions. METHODS We applied a bidirectional, time-stratified, case-crossover design to births with an abruption diagnosis in New York City, 2008-2014. We measured ambient fine particulate matter (PM2.5) and nitrogen dioxide (NO2). We fit distributed lag nonlinear models based on conditional logistic regression to evaluate individual exposure and cumulative exposures over lags 0-7 days before abruption, adjusted for temperature and relative humidity (similar lags to the main exposures). RESULTS We identified 1,190 abruption cases. We observed increased odds of abruption for exposure to PM2.5 (per 10 μg/m) on lag day 3 (odds ratio [OR] 1.19, 95% confidence interval [CI] = 0.98, 1.43), lag day 4 (OR 1.21, 95% CI = 1.01, 1.46), and lag day 5 (OR 1.17, 95% CI = 1.03, 1.33). Similarly, the odds of abruption increased with exposure to NO2 (per 5 ppb) on lag day 3 (OR 1.16, 95% CI = 0.98, 1.37), lag day 4 (OR 1.19, 95% CI = 1.02, 1.39), and lag day 5 (OR 1.16, 95% CI = 1.05, 1.27). Exposures to PM2.5 and NO2 at other lags, or cumulative exposures, were not associated with abruption of acute onset. CONCLUSIONS This case-crossover study showed evidence of an association between short-term ambient air pollution exposures and increased abruption risk of acute onset.
Collapse
|
50
|
Nobles CJ, Grantz KL, Liu D, Williams A, Ouidir M, Seeni I, Sherman S, Mendola P. Ambient air pollution and fetal growth restriction: Physician diagnosis of fetal growth restriction versus population-based small-for-gestational age. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2641-2647. [PMID: 30296771 PMCID: PMC6203640 DOI: 10.1016/j.scitotenv.2018.09.362] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/24/2018] [Accepted: 09/28/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Ambient air pollution may affect fetal growth restriction (FGR) through several mechanisms. However, prior studies of air pollution and small-for-gestational age (SGA), a common proxy for FGR, have reported inconsistent findings. OBJECTIVE We assessed air pollution in relation to physician-diagnosed FGR and population-based SGA in the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Consecutive Pregnancy Study (2002-2010). METHODS Among 50,005 women (112,203 singleton births), FGR was captured from medical records and ICD-9 codes, and SGA determined by population standards for birthweight <10th, <5th and <3rd percentile. Community Multiscale Air Quality models estimated ambient levels of seven criteria pollutants for whole pregnancy, 3-months preconception, and 1st, 2nd and 3rd trimesters. Generalized estimating equations with robust standard errors accounted for interdependency of pregnancies within participant. Models adjusted for maternal age, race/ethnicity, pre-pregnancy body mass index, smoking, alcohol, parity, insurance, marital status, asthma and temperature. RESULTS FGR was diagnosed in 1.5% of infants, and 6.7% were <10th, 2.7% <5th and 1.5% <3rd percentile for SGA. Positive associations of SO2, NO2 and PM10 and negative associations of O3 with FGR were observed throughout preconception and pregnancy. For example, an interquartile increase in whole pregnancy SO2 was associated with 16% (95% CI 8%, 25%) increased FGR risk, 17% for NO2 (95% CI 9%, 26%) and 12% for PM10 (95% CI 6%, 19%). Associations with SGA were less clear. CONCLUSIONS Chronic exposure to air pollution may be associated with FGR but not SGA in this low-risk population.
Collapse
Affiliation(s)
- Carrie J Nobles
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Katherine L Grantz
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Danping Liu
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Andrew Williams
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Marion Ouidir
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Indulaxmi Seeni
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | | | - Pauline Mendola
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA.
| |
Collapse
|