1
|
Wang X, Zhao J, Gao M, Wang T, Zhang H. Mechanism of nano-plastics induced inflammation injury in vascular endothelial cells. J Environ Sci (China) 2025; 154:624-634. [PMID: 40049902 DOI: 10.1016/j.jes.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 05/13/2025]
Abstract
Nano-plastics, emerging pollutants in the environment, have raised global concern due to their widespread presence in daily life and the potential toxicity to human health. Upon entering human body, nano-plastics can readily interact with vascular endothelial cells within the bloodstream, potentially leading to endothelial dysfunction. However, our understanding of the toxic impact of nano-plastics on vascular endothelial cells remains insufficient, and the underlying mechanism are yet to be elucidated. This study investigated the toxicological effects of nano-plastics on EA.hy 926 endothelial cells. Exposure to different types of nano-plastics such as polystyrene (PS), amino-modified PS or carboxyl-modified PS, resulted in suppress cell activity, damage to the cell membrane, oxidative stress and significantly inhibit cell migration. RNA sequencing (RNA-seq) and small RNA-seq analyses revealed that numbers of genes and miRNAs were differentially expressed after nano-plastics treatment. CEBPB, a gene within the inflammation-related tumor necrosis factor signaling pathway, was confirmed to be a target of miR-1908-5p, indicating that nano-plastics induced activation of CEBPB might promote inflammatory injury to vascular endothelial cells. These results enhance our understanding of the biological effects of nano-plastics and their potential impact on inflammation injury.
Collapse
Affiliation(s)
- Xiuxiu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, China; College of Sport and Health, Shandong Sport University, Jinan 250102, China
| | - Juan Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Mingyang Gao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Tian Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
2
|
Wang K, Flury M, Kuzyakov Y, Zhang H, Zhu W, Jiang R. Aluminum and microplastic release from reflective agricultural films disrupt microbial communities and functions in soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137891. [PMID: 40081051 DOI: 10.1016/j.jhazmat.2025.137891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/14/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Reflective agricultural films are widely used in vegetable production and orchards to repel pests, accelerate fruit ripening, and boost yields. These films, composed of a plastic base metallized with aluminum (Al), degrade over time in soil, releasing Al and microplastics. This study investigated the aging and weathering of Al-coated reflective films (polyethylene terephthalate, PET-based) under UV radiation, simulated rainfall, and soil burial for up to 120 days, assessing the effects of released Al and microplastics on soil chemistry and microbial communities. Weathering was confirmed by the formation of C-O/CO functional groups, an increasing carbonyl index, and the oxidation of Al to Al₂O₃, as shown by Fourier-transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). Faster Al-coated shedding and PET oxidation were observed in the soil environment. Microplastics (0.5 % w/w) from the films reduced soil micronutrient availability (Fe, Mn, Cu), suppressed functional genes involved in carbon, nitrogen, and phosphorus cycling, and shifted microbial communities towards oligotrophic bacteria enrichment (e.g., RB41, Candidatus_Udaeobacter, Gemmatimonadetes, and Chloroflexi) while reducing copiotrophic bacteria (e.g., Sphingomonas, Ellin6067, Dongia, Puia, and Flavisolibacter). Therefore, these findings highlight that reflective film weathering strongly alters soil nutrient content and microbial community composition, with potential implications for soil health and agricultural sustainability.
Collapse
Affiliation(s)
- Kai Wang
- Research Center for Cultural Landscape Protection and Ecological Restoration, China-Portugal Joint Laboratory of Cultural Heritage Conservation Science Supported by the Belt and Road Initiative, Gold Mantis School of Architecture, Soochow University, Suzhou 215006, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Markus Flury
- Department of Crop and Soil Sciences, Washington State University, Pullman 99164 and Puyallup, WA 98371, United States
| | - Yakov Kuzyakov
- Department of Agricultural Soil Science, Georg-August, University of Göttingen, Göttingen 37077, Germany; Bioeconomy Research Institute, Vytautas Magnus University, Agriculture Academy, Studentu 11, LT-53361 Akademija, Kaunas Reg., Lithuania
| | - Hao Zhang
- Research Center for Cultural Landscape Protection and Ecological Restoration, China-Portugal Joint Laboratory of Cultural Heritage Conservation Science Supported by the Belt and Road Initiative, Gold Mantis School of Architecture, Soochow University, Suzhou 215006, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wei Zhu
- College of Civil and Architecture Engineering, Chuzhou University, Chuzhou 239000, China
| | - Rui Jiang
- Research Center for Cultural Landscape Protection and Ecological Restoration, China-Portugal Joint Laboratory of Cultural Heritage Conservation Science Supported by the Belt and Road Initiative, Gold Mantis School of Architecture, Soochow University, Suzhou 215006, China.
| |
Collapse
|
3
|
Ma G, Gao X, Chen Y, Li H, Cui Y, Guo P, Zhao T, Di F. Chemical migration, digestive behaviors and effect on gut microbiota of PLA and PBAT oligomers. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137988. [PMID: 40121999 DOI: 10.1016/j.jhazmat.2025.137988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
As biodegradable food contact materials (FCMs), polylactic acid (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) may release oligomers into food and raise potential health concerns. This study investigated the migration characteristics and digestive behaviors of oligomers by combining migration experiments, an in vitro digestion model, and high-resolution mass spectrometry. Moreover, the effects of the migrants from both materials on gut microbiota were evaluated following in vitro colonic fermentation for 48 h. The results indicated that 51 PLA oligomers and 45 PBAT oligomers were released into food simulants, with the migration increasing with ethanol concentration. Cyclic oligomers exhibited higher migration than linear oligomers. During digestion, PLA oligomers were almost completely degraded, whereas PBAT oligomers increased, additionally, cyclic oligomers were more susceptible to degradation. Migrants from both materials exhibited cytotoxicity effect on Caco-2 cells, disrupted the gut microbiota homeostasis, affecting multiple metabolic pathways. Especially, the migrants from PBAT inhibited the production of acetic, butyric, and isobutyric acids, while reducing the degradation of propionic acid. Overall, PBAT may pose a greater hazard than PLA. In conclusion, based on a new perspective of "lifecycle", this systematic study will contribute to a deeper understanding of the safety of PLA and PBAT when utilized as FCMs.
Collapse
Affiliation(s)
- Guowei Ma
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Xiaomeng Gao
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Yuting Chen
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Hanfei Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Yiling Cui
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Peixue Guo
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Tingting Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Feng Di
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
4
|
Chen K, Jin Z, Zhu Q, Hu X, Tian S, Wang Y, Sun Y, Yuan M, Yao H. Impacts of biodegradable microplastics on rhizosphere bacterial communities of Arabidopsis thaliana: Insights into root hair-dependent colonization. ENVIRONMENTAL RESEARCH 2025; 276:121496. [PMID: 40157415 DOI: 10.1016/j.envres.2025.121496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Biodegradable microplastics (MPs) affect plant health by altering rhizosphere microbial communities. Root hairs create a unique niche for diverse microbes, but the effects of biodegradable MPs on root hair-dependent bacterial colonization are unclear, particularly the direct relationship between microbes in the rhizosphere and bulk soil. Here, the effects of polybutylene adipate terephthalate (PBAT) MPs on root hair-dependent bacterial colonization and diversity in the rhizosphere were revealed using an absolute quantitative method and in-situ zymography with two genotypes of Arabidopsis thaliana (long root hair, wild-type, WT and short root hair, rop2-1 mutant, ROP). The results showed that rhizosphere enzyme activity hotspots, bacterial diversity, and colonization increased from ROP to WT plants. PBAT MPs reduced root hair-dependent bacterial colonization and β-glucosidase hotspots by 17.1 % and 9.8 %, respectively. Despite increasing bacterial absolute abundance in both rhizosphere and bulk soil, PBAT MPs diminished bacterial community modularity and shifted bacterial life strategies from K- to r-strategy via elevated rRNA (rrn) copy numbers and copiotroph/oligotroph ratio. This study indicated that PBAT MPs decreased root hair-dependent bacterial colonization and diversity in the rhizosphere by altering the microbial life history strategies and increasing copiotrophic abundance. This study explained the effects of PBAT MPs on rhizosphere bacterial colonization and diversity from the perspective of root hairs.
Collapse
Affiliation(s)
- Keyi Chen
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Zhihui Jin
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Qing Zhu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xiaodie Hu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Sijia Tian
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yulin Wang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yaru Sun
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ming Yuan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Huaiying Yao
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China.
| |
Collapse
|
5
|
Wang Y, Liu Q, Xie CH, Zhao RT, Tang QX, Han DF, Xia YN, Cui JX, Yan CR, He WQ. Bridging the knowledge gap: From poly(butylene adipate-co-terephthalatebutylene) degradation to CO 2-generating mineralization under the synergistic effect of bacteria and fungi. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138643. [PMID: 40381352 DOI: 10.1016/j.jhazmat.2025.138643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT) is a promising polymer with excellent mechanical properties and biodegradability. However, knowledge gaps between its degradation and mineralization processes in soil hampers its environmental impact and application potential. In this study, we elucidated the degradation process of PBAT, starting with the degradation of high-molecular-weight polymers into 30 intermediates, before ultimately mineralized into CO2. Bacteria and fungi drove the degradation and mineralization of these intermediates. We discovered that PBAT was synergistically degraded by combinations of 27 bacterial and fungal biomarkers rather than by single biomarkers dominated by Bacteroidota, Acidobacteriota, and Ascomycota. These combinations of related functional genes perform various functions at every stage of PBAT degradation, including breaking down molecular structures, degrading intermediates, and mineralization. Bacterial biomarkers showed greater diversity than fungal biomarkers in degrading PBAT. Our findings provide useful insights into the degradation of PBAT in soil and a foundation for systematically evaluating and controlling the environmental behavior and safety of PBAT in soil.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Qi Liu
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China.
| | - Chang-Hong Xie
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Ruo-Tong Zhao
- College of Resources and Environmental Sciences, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 910013, China
| | - Qiu-Xiang Tang
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, No. 311 Nongda East Road, Urumqi 830052, China
| | - Dong-Fei Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99 Xuefu Road, Suzhou 215009, China
| | - Yi-Ning Xia
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Beijing 100193, China
| | - Ji-Xiao Cui
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; Institute of Western Agricultural, Chinese Academy of Agricultural Sciences, No. 195 Ningbian East Road, Changji 831100, China
| | - Chang-Rong Yan
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Wen-Qing He
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; Institute of Western Agricultural, Chinese Academy of Agricultural Sciences, No. 195 Ningbian East Road, Changji 831100, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100081, China.
| |
Collapse
|
6
|
Chen L, Huang H, Han L, Chao L, Zhang X, Liu B, Luo C, Mo W, Cai Y, Yang Z. Effects of polylactic acid microplastics on dissolved organic matter across soil types: Insights into molecular composition. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137356. [PMID: 39879769 DOI: 10.1016/j.jhazmat.2025.137356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Increasing evidence has highlighted the effects of biodegradable microplastics (MPs) on soil organic matter (SOM), but the role of soil type and incubation time remains unclear. This study investigated the effects of polylactic acid microplastics (PLA-MPs) on the amount and molecular composition of dissolved organic matter (DOM) across three paddy soil types (Ferralsol, Alfisol, and Mollisol) and incubation times, revealing soil-specific patterns in DOM transformation: PLA-MPs reduced DOM content in Ferralsol and Alfisol by 29.3-68.2 mg/kg and 27.3-30.9 mg/kg, respectively, but initially increased it in Mollisol (30 d: 220.9 mg/kg; 60 d: 622.0 mg/kg). Molecular analyses revealed a decrease in DOM component diversity at both 30 and 180 d, potentially due to PLA-MPs stimulating microbial activity and accelerating native SOM decomposition. PLA-MPs promoted the formation of CHO (containing carbon (C), hydrogen (H), and oxygen (O)) compounds, whereas microbes selectively decomposed CHONS (containing C, H, O, nitrogen (N), and sulfur (S)) compounds to meet C and N demands, particularly in Ferralsol and Alfisol. This study enhances the understanding of biodegradable MPs' impact on SOM, emphasizing the role of soil properties.
Collapse
Affiliation(s)
- Liying Chen
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongkai Huang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Lanfang Han
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Liang Chao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuanwei Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Beibei Liu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Chenyan Luo
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Weiling Mo
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhifeng Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
7
|
Liu X, Li H, Yang J, Yan S, Zhou Y, Jiang R, Li R, Wang M, Ren P. Different effects of bio/non-degradable microplastics on sewage sludge compost performance: Focusing on antibiotic resistance genes, virulence factors and key metabolic functions. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137329. [PMID: 39879766 DOI: 10.1016/j.jhazmat.2025.137329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Microplastics (MP) have aroused increasing concern due to the negative environmental impact. However, the impact of bio/non-biodegradable MPs on the sludge composting process has not been thoroughly investigated. This study examined antibiotic resistance genes (ARGs), virulence factors (VFs), and microbial community functions in sludge compost with the application of polylactic acid (PLA) and polypropylene (PP), using metagenomic sequencing. The findings indicated that both types of MPs could extend the thermophilic phase, enhance microbial activity, and inhibit the formation of humic acids. Compared to CK, the subtypes of ARGs decreased 4.22 % and 13.11 % in PLA and PP groups, respectively. But new ARGs emerged, particularly in the PLA group. The proportions of ARGs related to efflux and VFs associated with the adhesion system increased 1.62 %-2.27 % and 55.56 %-60.00 %, respectively, in MPs-added composts. The relative abundance of potential bacterial hosts (e.g., Psychrobacter) carrying multiple ARGs and VFs was much higher in PLA-added compost than in the other two. Moreover, PP facilitated denitrification process and PLA enhanced dissimilatory nitrate reduction to ammonium. Both types of MPs inhibited assimilatory nitrate reduction to ammonia but promoted inorganic nitrogen assimilation. This study broadens our understanding of the potential environmental risks posed by biodegradable and non-biodegradable microplastics on sludge compost and offers valuable insights for the management and application of compost products.
Collapse
Affiliation(s)
- Xiangyu Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huiyue Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jie Yang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shen Yan
- Staff Development Institute of China National Tobacco Corporation, Zhengzhou 450000, China
| | - Yufei Zhou
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui Jiang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Renhe Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mengmeng Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Peng Ren
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China
| |
Collapse
|
8
|
Fan H, Hong X, Wang H, Gao F, Su Z, Yao H. Biodegradable microplastics affect tomato (Solanum lycopersicum L.) growth by interfering rhizosphere key phylotypes. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137208. [PMID: 39842126 DOI: 10.1016/j.jhazmat.2025.137208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/03/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Biodegradable microplastics (BMPs), which form as biodegradable plastics degrade in agricultural settings, may influence plant growth and soil health. This study investigates the effects of BMPs on tomato growth and the microbial mechanisms involved. A greenhouse experiment applied BMPs-polyhydroxyalkanoate (PHA), polylactic acid (PLA), poly(butylene succinate-co-butylene adipate) (PBSA), and poly(butylene-adipate-co-terephthalate) (PBAT)-to tomato plants. The study analyzed their effects on plant growth, soil properties, and rhizosphere microbial communities. BMP treatments significantly reduced tomato biomass, height, and chlorophyll content compared to the control. PLA0.1 decreased the chlorophyll a/b ratio, while PLA1 increased it. Elemental analysis showed PLA1 increased phosphorus, calcium, and potassium in leaves, whereas all BMPs reduced nitrogen levels. BMPs also altered soil nitrogen and DOC levels, significantly shifting rhizosphere microbial communities, with a notable increase in Betaproteobacteria abundance. Ecological network analysis revealed that BMPs disrupted key microbial modules linked to plant growth. Beneficial modules positively associated with biomass and nutrient uptake were reduced under BMP treatments, whereas harmful microbial taxa in module 3, associated to poor plant health, were promoted. These shifts suggest that BMPs disrupt microbial ecological relationships critical for optimal plant growth. The findings highlight the potential negative impacts of BMPs on tomato growth through changes in microbial dynamics and soil properties.
Collapse
Affiliation(s)
- Haoxin Fan
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xincheng Hong
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Hehua Wang
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Feng Gao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ziqi Su
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
9
|
Wang Y, Zhang Q, Huang Y, Xu J, Xie J. Degradation Characteristics of Reed-Based PBAT Mulch and Their Effects on Plant Growth and Soil Properties. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1477. [PMID: 40271660 PMCID: PMC11989479 DOI: 10.3390/ma18071477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025]
Abstract
Poly (butylene adipate-co-terephthalate) (PBAT) and PBAT/reed fiber (RF) mulch films were prepared. The molecular structural changes and surface morphological evolution during the degradation process were systematically characterized using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The prepared PBAT/RF mulch film biodegradation rate reached 90.43% within 91 days under controlled composting conditions, which was 9.52% higher than a pure PBAT mulch film. The effects of adding PBAT and PBAT/RF microplastics on soil properties and soybean physiological indicators were dynamic. The study demonstrated that the incorporation of 5% PBAT/RF mulch film fragments into soil led to a 5.1% reduction in soil pH and a 17.2% increase in soluble organic carbon content. While the effects of 5% PBAT/RF on soil urease and neutral phosphatase activities were non-significant, sucrase activity decreased by 7.4% and catalase activity was reduced to 0.38 U/g. Additionally, the addition of 5% PBAT/RF resulted in a soybean germination rate of 93.74%, which was 4.0% higher than that observed in the group treated with 5% PBAT alone. The experimental data revealed a 7.2% reduction in leaf chlorophyll content, with concomitant growth inhibition in the soybean seedlings. The study demonstrated that the PBAT/RF composite film achieved 89% biodegradation within 180 days under field conditions, effectively mitigating post-application effects on agroecosystems compared to conventional polyethylene mulch.
Collapse
Affiliation(s)
- Yipeng Wang
- School of Eco-Environment, Hebei University, Baoding 071000, China; (Y.W.); (Q.Z.); (Y.H.)
| | - Qiuxia Zhang
- School of Eco-Environment, Hebei University, Baoding 071000, China; (Y.W.); (Q.Z.); (Y.H.)
| | - Yinghao Huang
- School of Eco-Environment, Hebei University, Baoding 071000, China; (Y.W.); (Q.Z.); (Y.H.)
| | - Jia Xu
- Xiong’an Institute of Innovation, Baoding 071700, China
| | - Jixing Xie
- School of Eco-Environment, Hebei University, Baoding 071000, China; (Y.W.); (Q.Z.); (Y.H.)
| |
Collapse
|
10
|
Contreras-Moll A, Obrador-Viel T, Molina RDI, Aguiló-Ferretjans MDM, Nogales B, Bosch R, Christie-Oleza JA. Lack of functional polyester-biodegrading potential in marine versus terrestrial environments evidenced by an innovative airbrushing technique. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137064. [PMID: 39754880 DOI: 10.1016/j.jhazmat.2024.137064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Biodegradable plastics, primarily aliphatic polyesters, degrade to varying extents in different environments. However, the absence of easily implementable techniques for screening microbial biodegradation potential -coupled with the limitations of non-functional omics analyses- has restricted comparative studies across diverse polymer types and ecosystems. In this study, we optimized a novel airbrushing method that facilitates functional analyses by simplifying the preparation of polyester-coated plates for biodegradation screening. By repurposing an airbrush kit, polyester microparticles (MPs) could be evenly sprayed onto solid media, enabling rapid detection of extracellular depolymerizing activity via clearing zone halos. This technique was effective in screening both isolated microbial cultures and natural environmental samples, demonstrating its versatility. The method was successfully applied across multiple environments, ranking the biodegradability of six polyesters, from most to least biodegradable: poly[(R)-3-hydroxybutyrate] (PHB), polycaprolactone (PCL), poly(ethylene succinate) (PES), poly(butylene succinate) (PBS), poly(lactic acid) (PLA), and poly(butylene adipate-co-terephthalate) (PBAT). Most notably, it revealed a consistent 1,000-fold higher biodegradation potential in terrestrial compared to marine environments. This approach offers a valuable tool for isolating novel polyester-degrading microbes with significant biotechnological potential, paving the way for improved plastic waste management solutions.
Collapse
Affiliation(s)
| | - Theo Obrador-Viel
- Department of Biology, University of the Balearic Islands, Palma 07122, Spain
| | | | | | - Balbina Nogales
- Department of Biology, University of the Balearic Islands, Palma 07122, Spain
| | - Rafael Bosch
- Department of Biology, University of the Balearic Islands, Palma 07122, Spain
| | | |
Collapse
|
11
|
Xie R, Li M, Feng Z, Xie J, Joseph A, Uchimiya M, Wang Y. Changes in the spectroscopic response of soil organic matters by PBAT microplastics regulated the Cd adsorption behaviors in different soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:103. [PMID: 40042677 DOI: 10.1007/s10653-025-02417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/23/2025] [Indexed: 04/02/2025]
Abstract
Contamination of microplastics (MPs) and heavy metals occurs frequently in terrestrial ecosystems, but their interactions remain unclear. A 60-day incubation experiment was conducted to study the behaviors of cadmium (Cd) in polybutylene adipate terephthalate (PBAT) MPs-contaminated soils, with different doses (1, 10%) and sizes (150-300 and 75-150 μm). Soil chemical properties, including the three-dimensional fluorescence of dissolved organic matter (DOM) and microbial diversity in both farmland and woodland soils were analyzed. Results showed that soil properties, especially the components and fluorescence characteristics of DOM varied with soil types and PBAT properties. Higher soil chemical properties and microbial diversity were found in woodland soils. The soluble microbial by-product substances and humic acid-like substance were dominated in soil DOM, while the proportions of fulvic/humic-acid like substances and soil humification decreased with the addition of 10% PBAT. Soil microbial diversity increased with doses of PBAT, but not sensitive to the sizes of PBAT. The adsorption capacity of Cd decreased with the addition of PBAT, especially in the 10% and 75-150 μm PBAT treatments. Both Langmuir and Freundlich models fitted well with the adsorption isotherms of Cd. Multiple correlation analyses showed that low molecular weight fractions, humus index of DOM and soil microbial diversity such as Shannon, Simpson, and Pielou all positively correlated with the adsorption behaviors of Cd in PBAT-contaminated soils. Biodegradable MPs can change soil quality and promote the release of soil Cd, which deserves further research attention.
Collapse
Affiliation(s)
- Rongxin Xie
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Ming Li
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, 210042, People's Republic of China
| | - Zhiwang Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jiayi Xie
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Akaninyene Joseph
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
- Department of Biosciences and Biotechnology, Faculty of Science, University of Medical Sciences, Ondo City, 351101, Nigeria
| | - Minori Uchimiya
- USDA-ARS Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA, 70124, USA
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| |
Collapse
|
12
|
Wang Y, Jiao L, Zhao C, Dong W, Gong W, Dong D. The impact of biodegradable plastics on methane and carbon dioxide emissions in soil ecosystems: a Fourier transform infrared spectroscopy approach. Sci Rep 2025; 15:7678. [PMID: 40044805 PMCID: PMC11883015 DOI: 10.1038/s41598-025-90322-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/12/2025] [Indexed: 03/09/2025] Open
Abstract
Biodegradable plastics (BPs), promising eco-friendliness, raise environmental concerns as they degrade into numerous microplastics (Bio-MPs). The impact of Bio-MPs on methane (CH4) and carbon dioxide (CO2) emissions in soil ecosystems remains largely unexplored. Utilizing Fourier transform infrared (FTIR) spectroscopy, we innovatively designed a circulating system, integrating a long optical-path gas cell with a static chamber for continuous and convenient CH4/CO2 monitoring in paddy soils with the addition of Bio-MPs (PBAT). On the 7th day of incubation, we observed a significant increase in CH4/CO2 absorption peaks due to the addition of PBAT, with enhancements of 92-fold and 213-fold, respectively. Built upon this system, we explored a quantitative method based on the main absorption peak (3010 cm-1) for CH4, and calculated cumulative emissions. Additionally, we analyzed attenuated total reflection (ATR) spectra of soil with and without Bio-MPs based on FTIR spectrometer, revealing the characteristic response in soil ATR spectra triggered by PBAT, and demonstrating ATR spectroscopy's potential for identifying soil contamination by Bio-MPs. This study aims to broaden and improve the utilization of FTIR spectroscopy for the purpose of monitoring soil GHG emissions and identifying soil contaminated by Bio-MPs, thereby offering significant insights into the influence of Bio-MPs on climate change.
Collapse
Affiliation(s)
- Yihao Wang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Leizi Jiao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Chunjiang Zhao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wentao Dong
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wenwen Gong
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Daming Dong
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
13
|
Tang KHD, Zhou J. Ecotoxicity of Biodegradable Microplastics and Bio-based Microplastics: A Review of in vitro and in vivo Studies. ENVIRONMENTAL MANAGEMENT 2025; 75:663-679. [PMID: 39730878 DOI: 10.1007/s00267-024-02106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
As biodegradable and bio-based plastics increasingly replace conventional plastics, the need for a comprehensive understanding of their ecotoxicity becomes more pressing. This review systematically presents the ecotoxicity of the microplastics (MPs) from different biodegradable plastics and bioplastics on various animals and plants. High doses of polylactic acid (PLA) MPs (10%) have been found to reduce plant nitrogen content and biomass, and affect the accumulation of heavy metals in plants. Their phytotoxicity becomes more pronounced when blended with polybutylene adipate terephthalate (PBAT) MPs. Polyhydroxybutyrate (PHB) and polybutylene succinate (PBS) MPs show lower phytotoxicity than PLA MPs. At high doses, PLA and PHB MPs may cause dose-dependent developmental toxicity to aquatic organisms. Nano-PLA could induce oxidative stress and genetic damage in insects, indicating its toxicity could be size-dependent and affected by weathering. PBAT MPs have been observed to affect plant growth at lower concentrations (0.1%) than PLA MPs, while polycaprolactone (PCL) affected seed germination only at high temperatures. PCL MPs and extracts could also cause developmental and reproductive toxicity, alter metabolisms, and induce oxidative stress in aquatic organisms at high concentrations. Polypropylene carbonate (PPC) ( > 40 g/kg) MPs have caused earthworm behavioral changes. Non-biodegradable bioplastics are potentially toxic to embryos, larvae, immune systems, reproductive systems, and endocrine systems of animals. However, it is important to note that toxicity studies are still lacking for biodegradable and bio-based plastics, particularly PHB, PBS, PCL, PPC, starch-based, and non-biodegradable bioplastics. More research into the MPs of these plastics is essential to better understand their ecotoxicity and applicability.
Collapse
Affiliation(s)
- Kuok Ho Daniel Tang
- Department of Environmental Science, The University of Arizona, Tucson, Arizona, 85721, USA.
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| |
Collapse
|
14
|
Pan T, Guo Z, Hu S, Dong D, Li J, Yang X, Dai Y, Li L, Wu F, Wu Z, Xi S. Additive release and prediction of biofilm-colonized microplastics in three typical freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178671. [PMID: 39892235 DOI: 10.1016/j.scitotenv.2025.178671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/18/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Widely used plastics are discarded and broken into microplastics (MPs), threatening the health of plants and animals, and affecting the natural world. The global spread of plastic additives, as unavoidable components in plastic preparation, raises concerns about their leaching in different environments. This paper aims to infer the leaching of hazardous plastic additives (e.g.FP-127 fluorescent additives) by investigating the effect of biofilm communities on the release of additives from plastics after 35 days of incubation in three typical freshwater ecosystems (Hubing Pool, Baogong Park, and Feihe River) in Hefei, China. In this research, we prepared different plastics, crushed them and then put them into natural freshwater we sampled in the laboratory. The results showed that the biofilms attached to the various MPs contained different biomass that were related to water environmental conditions and the properties of MPs. Compared to the natural release in deionized water, the concentration of leaching MPs additives can be 5, 10, and 20 times higher in Hubing Pool, Baogong Park, and Feihe River, respectively. The analysis results also clearly showed that the relative abundance of core communities was proportional to FP-127 additive leaching from the MPs into the surrounding environment. Moreover, we also modeled two equations to predict the release of additives. These findings would be valuable for predicting the potential of MPs to release toxic additives under different freshwater ecosystems.
Collapse
Affiliation(s)
- Tao Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China; School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China; School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China.
| | - Shuheng Hu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China; School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China.
| | - Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Jie Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Xue Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Lele Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Feiyan Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Zhangzhen Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Shanshan Xi
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
15
|
Qiu G, Han Z, Wang T, Sun Z, Deng B, Wu M, Duan Z, Zhang S, Yang X, Zhu G, Wang Q, Yu H. In-Depth Analysis of Soil Microbial Community Succession Model Construction under Microplastics Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3363-3372. [PMID: 39878456 DOI: 10.1021/acs.jafc.4c09059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Although microplastics (MPs) toxicity to soil microorganisms has been preliminarily explored, the underlying reasons affecting the direction of microbial community succession are unclear. This study aimed to investigate the impacts of MPs infer community assembly mechanisms through phylogenetic bin-based null model analysis, network models, and protein function prediction in five typical Northeast China five typical soils. The results show that microbial communities in soils with high organic matter exhibit a stronger response to MPs, with enhanced protein functionality, network regulation, and assembly processes. The presence of MPs increased the drift process in the soil microbial community assembly by 2%, a deterministic process influenced by MPs, and enhanced the complexity and stability of the community assembly. Overall, MPs altered microbial protein function and regulatory networks by affecting diversity and community assembly processes, leading to shifts in microbial community succession. This study provided a theoretical basis for further study of the ecotoxicological effects of MPs in soil.
Collapse
Affiliation(s)
- Guankai Qiu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongmin Han
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Tianye Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Zhenghao Sun
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boling Deng
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meixuan Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongxu Duan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoqing Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiutao Yang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guopeng Zhu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Quanying Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hongwen Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
16
|
Zhao Q, Fang Z, Wang P, Qian Z, Yang Y, Ran L, Zheng J, Tang Y, Cui X, Li YY, Zhang Z, Jiang H. Polylactic Acid Micro/Nanoplastic Exposure Induces Male Reproductive Toxicity by Disrupting Spermatogenesis and Mitochondrial Dysfunction in Mice. ACS NANO 2025; 19:5589-5603. [PMID: 39869919 DOI: 10.1021/acsnano.4c15112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Although considered an "eco-friendly" biodegradable plastic, polylactic acid (PLA) microplastic (PLA-MP) poses a growing concern for human health, yet its effects on male reproductive function remain underexplored. This study investigated the reproductive toxicity of PLA in male mice and its potential mechanisms. To this end, our in vivo and in vitro experiments demonstrated that after degradation in the digestive system, a significant number of PLA-MP-derived nanoparticles could penetrate the blood-testis barrier (BTB) and localize within the spermatogenic microenvironment. Mice exposed to PLA-MPs for a long time exhibited significant reproductive toxicity, evidenced by decreased sperm concentration and motility, increased sperm deformity rates, and disrupted sex hormone levels. Further analysis revealed that PLA impaired BTB, induced mitochondrial dysfunction in the testes, and triggered oxidative stress through excessive ROS production from mitochondria, leading to further testicular damage. Notably, PLA nanoplastics internalized in the mitochondrial sheath and disrupted the mitochondrial structure of sperm, causing dose-dependent impairments in mitochondrial function. Transcriptome analyses further indicated that PLA-MPs disrupted spermatogenesis by inhibiting the expression of key mRNA involved in this process. Collectively, our findings highlight the reproductive toxic effect of biodegradable PLA by damaging BTB and impairing mitochondrial function, which provides insights into the toxicological implications of biodegradable microplastics for mammalian fertility.
Collapse
Affiliation(s)
- Qiancheng Zhao
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Zishui Fang
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Pengcheng Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Zhenwei Qian
- Peking University 302 Clinical Medical School, Beijing 100039, China
| | - Yuzhuo Yang
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Lingxiang Ran
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Jiachen Zheng
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Yanlin Tang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Xuejing Cui
- CAS, Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhe Zhang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Hui Jiang
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
17
|
Chen L, Sun Y, Wang X, Xia S, Zhao J. Adsorption behavior of commercial biodegradable plastics towards pollutants during the biodegradation process: Taking starch-based biodegradable microplastics, oxytetracycline and Cu (II) as examples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125538. [PMID: 39689834 DOI: 10.1016/j.envpol.2024.125538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/05/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
With the widespread use of biodegradable plastic bags, their potential environmental risks need further assessment. This study focused on commercial starch-based blended biodegradable microplastics (70% Poly(butylene adipate-co-terephthalate) (PBAT)+5% Poly(lactic acid) (PLA)+20% Thermoplastic starch (TPS), PPT MPs) to investigate their adsorption behaviors towards Cu(II) and oxytetracycline (OTC) under microbial colonization and biodegradation. Post-biodegradation, the hydroxyl (-OH) peak intensity of starch in PPT significantly decreased, while carbonyl (C=O) peaks of PBAT and PLA broadened, with O/C ratio rising from 14.65% to 35.82%. The starch's degradation in PPT altered its thermal properties. Microbial colonization on PPT (B-PPT) enhanced Cu(II) and OTC adsorption, while biodegradation (D-PPT) reduced their adsorption. Reduced surface carbonyl and hydroxyl groups, alongside increased crystallinity, diminished D-PPT's Cu(II) adsorption. While OTC adsorption, driven by hydrophobic partitioning, was less affected by biodegradation. In the binary pollutant system, the Cu(II) and OTC adsorption of D-PPT increased by 20.27% and 8.63 times, respectively; B-PPT showed decreased adsorption of both. Coexisting organic matter and pH significantly affected PPT's adsorption behavior by altering Cu(II) and OTC speciation, and influencing adsorption competition, hydrogen bonding and bridging effects. This study is the first to explore biodegradation impacts of commercial starch-based microplastics on typical heavy metals and antibiotics adsorption, providing important theoretical insights for understanding their environmental risks.
Collapse
Affiliation(s)
- Liuyu Chen
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Ying Sun
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xuejiang Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Siqing Xia
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jianfu Zhao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
18
|
Song D, Jin G, Su Z, Ge C, Fan H, Yao H. Influence of biodegradable microplastics on soil carbon cycling: Insights from soil respiration, enzyme activity, carbon use efficiency and microbial community. ENVIRONMENTAL RESEARCH 2025; 266:120558. [PMID: 39644987 DOI: 10.1016/j.envres.2024.120558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The rising prevalence of biodegradable microplastics (BMPs) in soils has raised concerns about their impacts on soil ecosystems and carbon cycling. This study investigates the effects of different BMPs on soil carbon cycling, focusing on soil respiration, enzyme activities, and carbon use efficiency (CUE) from 13C-labeled dissolved organic carbon (DOC) in an upland soil. The BMPs tested were polybutylene adipate terephthalate (PBAT), polyhydroxyalkanoates (PHA), and polylactic acid (PLA), at high (H, 1% w/w) and low (L, 0.1% w/w) concentrations. Over a 64-day incubation, cumulative CO2 emissions increased in the PHA_L, PHA_H, and PLA_H treatments, with the highest rise of 665% PHA_H treatment. Microbial biomass carbon (MBC) ranged from 97.73 ± 3.03 mg C kg⁻1 in the control to 223.09 ± 7.91 mg C kg⁻1 in PHA_H, with microbial CUE peaking at 0.26 in PHA_H. Enzymatic activities were notably affected: β-glucosidase (BG) increased by 50% in PLA_H, while cellobiohydrolase (CBH) activity decreased by up to 62% in PBAT_H and PLA_L. N-acetylglucosaminidase (NAG) and phosphatase (AP) activities were highest in PHA_H, indicating enhanced nutrient cycling. Microbial community structure based on PLFAs was significantly altered, with total PLFA content increasing by 191% in PHA_H. Correlation analysis and partial least squares path modeling (PLS-PM) revealed that BMP concentration, DOC content, and microbial diversity were positively correlated with microbial CUE. This study highlights the significant role of BMPs in influencing soil carbon cycling, primarily through their effects on microbial diversity and soil enzyme activities.
Collapse
Affiliation(s)
- Dan Song
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Guoqin Jin
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ziqi Su
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Chaorong Ge
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Haoxin Fan
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
19
|
Kumar P, Kumar A, Kumar D, Prajapati KB, Mahajan AK, Pant D, Yadav A, Giri A, Manda S, Bhandari S, Panjla R. Microplastics influencing aquatic environment and human health: A review of source, determination, distribution, removal, degradation, management strategy and future perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124249. [PMID: 39869960 DOI: 10.1016/j.jenvman.2025.124249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 12/15/2024] [Accepted: 01/19/2025] [Indexed: 01/29/2025]
Abstract
Microplastics (MPs) are produced from various primary and secondary sources and pose multifaceted environmental problems. They are of non-biodegradable nature and may stay in aquatic environments for a long time period. The present review has covered novel aspects pertaining to MPs that were not covered in earlier studies. It has been observed that several methods are being employed for samples collection, extraction and identification of MPs and polymer types using various equipment, chemicals and instrumental techniques. Aquatic species mistakenly ingest MPs, considering them prey and through food-chain, and then suffer from various metabolic disorders. The consumption of seafood and fish may consequently cause health implications in humans. Certain plasticizers are added during manufacturing to provide colour, durability, flexibility, and strength to plastics, but they leach out during usage, storage, and transport, as well as after entering the bodies of aquatic species and human beings. The leached chemicals (bisphenol-A, triclosan, phthalates, etc.) act as endocrine disrupting chemicals (EDCs), which effect on homeostasis; thereby causing neurotoxicity, cytotoxicity, reproductive problems, adverse behaviour and autism. Negative influence of MPs on carbon sequestration potential of water bodies is also observed, however more studies are required to understand it with a detail mechanism under natural conditions. The wastewater treatment plants are found to remove a large amount of MPs, but in turn, also act as significant sources of their release in sludge and effluents. Further, it is covered that how advanced oxidation processes, thermal- and photo-oxidation, fungi, algae and microbes degrade the plastics and increase their numbers in the surrounding environment. The management strategy comprising recovery of energy and other valuable by-products from plastic wastes, recycling and regulatory framework; are also described in detail. The future perspectives can be of paramount importance to control MPs generation and their abundance in the aquatic and other types of environments. The studies in future need to focus on advanced filtration techniques, advanced oxidation processes, energy recovery from plastic wastes and influences of MPs on carbon sequestration in aquatic environment and human health.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Natural Resources Management, Maharana Pratap Horticultural University, Karnal, Haryana, 132001, India.
| | - Anil Kumar
- Forest Ecology and Climate Change Division, ICFRE-Himalayan Forest Research Institute, Panthaghati, Shimla, Himachal Pradesh, 171013, India
| | - Deepak Kumar
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Kalp Bhusan Prajapati
- Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, India
| | - Ambrish Kumar Mahajan
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Deepak Pant
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Anoop Yadav
- Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, India
| | - Anand Giri
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, 171013, India
| | - Satish Manda
- Department of Natural Resources Management, Maharana Pratap Horticultural University, Karnal, Haryana, 132001, India
| | - Soniya Bhandari
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Richa Panjla
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| |
Collapse
|
20
|
Liu X, Wen Z, Zhou W, Dong W, Ren H, Liang G, Gong W. Effect of Multiyear Biodegradable Plastic Mulch on Soil Microbial Community, Assembly, and Functioning. Microorganisms 2025; 13:259. [PMID: 40005626 PMCID: PMC11857403 DOI: 10.3390/microorganisms13020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
The increasing use of biodegradable plastic mulch like polybutylene adipate terephthalate (PBAT) has raised concerns about its long-term environmental impact. In this study, we investigated the effects of multiyear PBAT mulch application on bacterial and fungal communities, assembly mechanisms, and key ecological functions. The microbial community diversity and composition were significantly altered after multiyear biodegradable plastic mulching. We observed that PBAT treatment enriched specific bacterial genera, such as Pantoea, potentially involved in plastic degradation, and fungal genera like Cephaliophora and Stephanosporaceae, which may play a role in organic matter decomposition. A null model analysis revealed that bacterial community assembly was largely shaped by deterministic processes, with stronger environmental selection pressures in PBAT-treated soils, while fungal communities were more influenced by stochastic processes. In addition, multiyear PBAT mulch application also impacted the functionality of the soil microbial communities. PBAT exposure enhanced biofilm formation in aerobic bacteria, promoting aerobic degradation processes while also reducing the abundance of stress-tolerant bacteria. Additionally, PBAT altered key microbial functions related to carbon, nitrogen, and sulfur cycling. Notably, the fungal communities exhibited functional shifts, with an increase in saprotrophic fungi being beneficial for nutrient cycling, alongside a potential rise in plant pathogenic fungi. These findings underscore the multiyear ecological impacts of biodegradable plastics, suggesting microbial adaptation to plastic degradation and changes in key ecological functions, with implications for agricultural sustainability and bioremediation strategies.
Collapse
Affiliation(s)
- Xiaowei Liu
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (X.L.); (Z.W.)
| | - Zongyu Wen
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (X.L.); (Z.W.)
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China; (W.D.); (H.R.)
| | - Wei Zhou
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China;
| | - Wentao Dong
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China; (W.D.); (H.R.)
| | - Huiqing Ren
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China; (W.D.); (H.R.)
| | - Gang Liang
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China; (W.D.); (H.R.)
| | - Wenwen Gong
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China; (W.D.); (H.R.)
| |
Collapse
|
21
|
Zhang Y, Lu J, Zhang XZ, Zhang ZZ, Jin RC. PHA Microplastic Aging Decreases N 2O Sink Capacity: Released γ-Butyrolactone Decouples Denitrifying Electron Transfer and Oxidative Phosphorylation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1298-1307. [PMID: 39780534 DOI: 10.1021/acs.est.4c07717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Bacterial denitrification is a main pathway for soil N2O sinks, which is crucial for assessing and controlling N2O emissions. Biobased polyhydroxyalkanoate (PHA) microplastic particles (MPs) degrade slowly in conventional environments, remaining inert for extended periods. However, the impacts of PHA microplastic aging on the bacterial N2O sink capacity before degradation remain poorly understood. Here, the soil model strain Paracoccus denitrificans was exposed to 0.05-0.5% (w/w) virgin and aged PHA MPs. Although no significant changes in the molecular weights were observed, aged PHA MPs hindered cell growth and N2O reduction rates, leading to a surge in N2O emissions. 1H NMR spectroscopy and UPLC-QTOF-MS analysis identified γ-butyrolactone as the key component released from aged PHA MPs. Metabolic verifications at the cellular level confirmed its inhibition on the N2O sink and ATP synthesis. The γ-butyrolactone that protonated and hydrolyzed spontaneously in the periplasm would compete for protons with ATPase and destroy the coupling between denitrifying electron transfer and oxidative phosphorylation. Consequently, energy-deficient cells reduced the electron supply for N2O reduction, which did not contribute to energy conservation. This work unveils a novel mechanism by which PHA microplastic aging impairs the bacterial N2O sink and highlights the need to consider environmental risks posed by biobased microplastic aging.
Collapse
Affiliation(s)
- Yu Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Jing Lu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiao-Zheng Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Zheng-Zhe Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| |
Collapse
|
22
|
Zhi Z, Li Y, Liu G, Ou Q. Identification and detection of label-free polystyrene microplastics in maize seedlings by Raman spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178093. [PMID: 39693673 DOI: 10.1016/j.scitotenv.2024.178093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Microplastics are a new type of pollutants that have attracted attention recently. However, there is limited research on the uptake of environmental microplastics by plants. In this study, scanning electron microscopy (SEM), micro-Raman spectroscopy, and Raman mapping were employed to identify and detect label-free micron-sized polystyrene (PS) microplastics accumulated in the roots and stems of maize (Zea mays L.) seedlings. The results demonstrated that the Raman spectra of PS microplastics were predominantly concentrated in the xylem and ducts of seedlings, confirming the transfer behavior of microplastics in the plants. The Raman spectra of PS microplastics in seedlings exhibited distinctive peaks at 621, 1002, 1030, and 1604 cm-1, and the matching scores of these spectra with the standard PS Raman spectrum ranged from 40.61 % to 86.93 %. Additionally, the Raman mapping facilitated the precise identification and visualization of microplastics within the roots and stems of seedlings. The smallest size of the detected PS microplastics was ∼2 μm. This study provides new insights into the use of Raman spectroscopy for the detection of microplastics in plants.
Collapse
Affiliation(s)
- Zhaoxing Zhi
- School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China
| | - Yang Li
- School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China
| | - Gang Liu
- School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China.
| | - Quanhong Ou
- School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
23
|
Mhaddolkar N, Lodato C, Tischberger-Aldrian A, Vollprecht D, Fruergaard Astrup T. Biodegradable plastics - Where to throw? A life cycle assessment of waste collection and management pathways in Austria. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:578-592. [PMID: 39476645 DOI: 10.1016/j.wasman.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/14/2024] [Accepted: 10/17/2024] [Indexed: 11/25/2024]
Abstract
The current waste management systems are struggling to optimally handle biodegradable plastics (BDPs) and are facing numerous challenges; one of which is the consumer confusion about how to best source-segregate BDPs. Based on an environmental life-cycle assessment, this study investigated the consequences of collecting BDPs in one of three waste streams (packaging waste, biowaste, and residual waste) in Austria. Collecting BDPs as (i) packaging waste resulted in incineration (SP1) or mechanical recycling (SP2), (ii) biowaste resulted in composting (SB1) or anaerobic digestion (AD) (SB2), and (iii) residual waste in incineration (SR1). SP2 performed best in most of the 16 investigated impact categories (ICs). Three scenario analyses demonstrated that (i) utilisation of BDPs as an alternative fuel for process heat substitution yielded more environmental benefits than incineration in SP1 and SP2, (ii) adding a material recovery facility (MRF) with AD increased the environmental load for SB2, while (iii) the energy scenario with zero electricity imports plus heat from biomass performed best for most alternative pathways across the 16 ICs. Eight technology parameters (out of 97) were identified as most relevant for the results based on data quality, sensitivity ratio, and analytical uncertainty; they were related to waste incineration, MRF, recycling facility, compost- and AD processes. Overall, mechanical recycling emerged as the most favourable option which is aligned with the waste-hierarchy mentioned in the European Union Waste Framework Directive. However, effective mechanical recycling of BDPs requires (i) a 'sufficient' waste amount, (ii) a market for recyclates, and (iii) relevant mechanical recycling infrastructure.
Collapse
Affiliation(s)
- Namrata Mhaddolkar
- Chair of Waste Processing Technology and Waste Management (AVAW), Montanuniversität Leoben, Franz-Josef-Strasse 18, 8700 Leoben, Austria; DTU SUSTAIN, Department of Environmental Engineering, Danish Technical University, Bygningstorvet, 115, 2800 Kgs. Lyngby, Denmark
| | - Concetta Lodato
- DTU SUSTAIN, Department of Environmental Engineering, Danish Technical University, Bygningstorvet, 115, 2800 Kgs. Lyngby, Denmark
| | - Alexia Tischberger-Aldrian
- Chair of Waste Processing Technology and Waste Management (AVAW), Montanuniversität Leoben, Franz-Josef-Strasse 18, 8700 Leoben, Austria.
| | - Daniel Vollprecht
- Chair of Resource and Chemical Engineering, University of Augsburg, Am Technologiezentrum 8, 86159 Augsburg, Germany
| | - Thomas Fruergaard Astrup
- DTU SUSTAIN, Department of Environmental Engineering, Danish Technical University, Bygningstorvet, 115, 2800 Kgs. Lyngby, Denmark; Ramboll, Hannemanns Allé 53, 2300 Copenhagen S, Denmark
| |
Collapse
|
24
|
Adamczyk S, Zantis LJ, van Loon S, van Gestel CAM, Bosker T, Hurley R, Nizzetto L, Adamczyk B, Velmala S. Biodegradable microplastics induce profound changes in lettuce (Lactuca sativa) defense mechanisms and to some extent deteriorate growth traits. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125307. [PMID: 39537089 DOI: 10.1016/j.envpol.2024.125307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/24/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
The development of agricultural technologies has intensified the use of plastic in this sector. Products of plastic degradation, such as microplastics (MPs), potentially threaten living organisms, biodiversity and agricultural ecosystem functioning. Thus, biodegradable plastic materials have been introduced to agriculture. However, the effects of biodegradable plastic substitutes on soil ecosystems are even less known than those of traditional ones. Here, we studied the effects of environmentally relevant concentrations of MPs prepared from a biodegradable plastic (a starch-polybutylene adipate terephthalate blend, PBAT-BD-MPs) on the growth and defense mechanisms of lettuce (Lactuca sativa) in CLIMECS system (CLImatic Manipulation of ECosystem Samples). PBAT-BD-MPs in the highest concentrations negatively affected some traits of growth, i.e., dry weight percentage, specific leaf area, and both C and N contents. We observed more profound changes in plant physiology and biochemistry, as PBAT-BD-MPs decreased chlorophyll content and triggered a concerted response of plant defense mechanisms against oxidative stress. In conclusion, exposure to PBAT-BD-MPs induced plant oxidative stress and activated plant defense mechanisms, leading to oxidative homeostasis that sustained plant growth and functioning. Our study highlights the need for in-depth understanding of the effect of bioplastics on plants.
Collapse
Affiliation(s)
- Sylwia Adamczyk
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland.
| | - Laura J Zantis
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA Leiden, the Netherlands
| | - Sam van Loon
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands
| | - Thijs Bosker
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA Leiden, the Netherlands
| | - Rachel Hurley
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway
| | - Luca Nizzetto
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway; Research Centre for Toxic Compounds in the Environment, Masaryk University, 62500, Brno, Czech Republic
| | - Bartosz Adamczyk
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Sannakajsa Velmala
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| |
Collapse
|
25
|
Song Q, Zhang Y, Ju C, Zhao T, Meng Q, Cong J. Microbial strategies for effective microplastics biodegradation: Insights and innovations in environmental remediation. ENVIRONMENTAL RESEARCH 2024; 263:120046. [PMID: 39313172 DOI: 10.1016/j.envres.2024.120046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Microplastics (MPs), diminutive yet ubiquitous fragments arising from the degradation of plastic waste, pervade environmental matrices, posing substantial risks to ecological systems and trophic dynamics. This review meticulously examines the origins, distribution, and biological impacts of MPs, with an incisive focus on elucidating the molecular and cellular mechanisms underpinning their toxicity. We highlight the indispensable role of microbial consortia and enzymatic pathways in the oxidative degradation of MPs, offering insights into enhanced biodegradation processes facilitated by innovative pretreatment methodologies. Central to our discourse is the interplay between MPs and biota, emphasizing the detoxification capabilities of microbial metabolisms and enzymatic functions in ameliorating MPs' deleterious effects. Additionally, we address the practical implementations of MP biodegradation in environmental remediation, advocating for intensified research to unravel the complex biodegradation pathways and to forge effective strategies for the expeditious elimination of MPs from diverse ecosystems. This review not only articulates the pervasive challenges posed by MPs but also positions microbial strategies at the forefront of remedial interventions, thereby paving the way for groundbreaking advancements in environmental conservation.
Collapse
Affiliation(s)
- Qianqian Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Cuiping Ju
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266000, China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Qingxuan Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
26
|
Irshad MK, Aqeel M, Saleem S, Javed W, Noman A, Kang MW, Khalid N, Lee SS. Mechanistic insight into interactive effect of microplastics and arsenic on growth of rice (Oryza sativa L.) and soil health indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176875. [PMID: 39395497 DOI: 10.1016/j.scitotenv.2024.176875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Microplastics (MPs) pollution has recently become a major concern for agroecosystems. The interplay between MPs, and heavy metal(loid)s in the soil can intensify the risks to plant growth and human health. The current study investigated the interactive effects of arsenic (As) and biodegradable and petroleum-based conventional MPs on rice growth, As bioavailability, soil bacterial communities, and soil enzyme activities. As-contaminated soil (5 mg kg-1) was treated with conventional MPs i.e., polystyrene (PS) and polyethylene (PE) and biodegradable MPs i.e., polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT) at 0.1 % and 1 % rates. In a pot experiment, rice plants were cultivated in soil co-contaminated with As and MPs. PLA-MPs exhibited significant interactions with As, increasing its bioavailability and impairing rice plant growth by enhancing plant oxidative stress. The results illustrated that T2 treatment (PLA-MPs @ 1 % + As 5 mg kg-1) significantly decreased the root and shoot lengths, root and shoot dry weights as well as the rates of photosynthesis, transpiration, intercellular CO2, and stomatal conductance in rice plants. Biodegradable PLA-MPs @ 1 % resulted in increased uptake of As in rice roots, stems, and leaves by 13.4 %, 38.9 %, and 20.6 %, respectively. In contrast, conventional PE-MPs @ 1 % showed contradictory results with As uptake declined by 2.2 %, 5.1 %, and 9.9 % in rice roots, stem and leaves. Soil enzyme kinetics showed that biodegradable MPs increased the activities of soil catalase, dehydrogenase, and phytase enzymes, whereas both conventional PS and PE-MPs decreased their activities. Moreover, As and PLA-MPs combined stress altered soil bacterial communities by increasing the relative abundance of Protobacteria, Acidobacteria, Chloroflexi, and Firmicutes phyla by 49 %, 29 %, 82 %, and 57 %, respectively. This study provides new insights into MPs-As interactions in soil-plant system and ecological risks associated with their coexistence.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea; Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Saba Saleem
- Department of Statistics, Government Graduate College, 122 JB, Sargodha Road, Faisalabad, Pakistan
| | - Wasim Javed
- Water Management Research Centre (WMRC), University of Agriculture Faisalabad, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Min Woo Kang
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Noreen Khalid
- Department of Botany, Government College Women University Sialkot, Pakistan
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| |
Collapse
|
27
|
Zhao Z, Wang Y, Wei Y, Peng G, Wei T, He J, Li R, Wang Y. Distinctive patterns of bacterial community succession in the riverine micro-plastisphere in view of biofilm development and ecological niches. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135974. [PMID: 39341189 DOI: 10.1016/j.jhazmat.2024.135974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
Exploring plastic bacterial community succession is a crucial step in analyzing and predicting the ecological assembly processes of the plastisphere and its associated environmental impacts. However, microbial biofilm development and niche differentiation during plastic bacterial community succession have rarely scarcely considered. Here, we assessed the differences between three microplastics (MPs) and two natural polymers in terms of biofilm development and niche properties during bacterial community succession, and identified a genus of MPs-degrading bacteria with strong competitive potential in the plastisphere. MPs biofilm development exhibits secondary succession characteristics, whereas natural polymer biofilms persist during the primary succession stage. During succession in plastic bacterial communities, the relationship between nutrient resources and microbial competition was reflected in a positive correlation between species competition and niche breadth, which contradicted the common belief that increased nutrient availability leads to reduced competition. Furthermore, the co-occurrence network revealed that specialists were species with greater competitive potential within the plastisphere. Additionally, the MPs-degrading Exiguobacterium genus represented a key taxon in the plastisphere. Our study provides a reliable pathway for revealing the specificity of plastic bacterial community succession from multiple perspectives and enhances the understanding of ecological assembly processes in the plastisphere.
Collapse
Affiliation(s)
- Zhen Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yijin Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yihua Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Gen Peng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Tingyu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jianqiao He
- Institute of Green and Low Carbon Technology, Guangxi Institute of Industrial Technology, Nanning 530004, China
| | - Ruilong Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Yinghui Wang
- Institute of Green and Low Carbon Technology, Guangxi Institute of Industrial Technology, Nanning 530004, China.
| |
Collapse
|
28
|
Chang S, Chen C, Fu QL, Zhou A, Hua Z, Zhu F, Li S, He H. PBAT biodegradable microplastics enhanced organic matter decomposition capacity and CO 2 emission in soils with and without straw residue. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135872. [PMID: 39305590 DOI: 10.1016/j.jhazmat.2024.135872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 12/01/2024]
Abstract
Recent studies show that biodegradable microplastics (BMPs) could increase soil CO2 emission, but whether altered carbon emission results from modified soil organic matter (SOM) decomposition remains underexplored. In this study, the effect and mechanisms of BMPs on CO2 emission from soil were investigated, using poly(butylene adipate-co-terephthalate) (PBAT, the main component of agricultural film) as an example. Considering that straw returning is a common agronomic measure which may interact with microplastics through affecting microbial activity, both soils with and without wheat straw were included. After 120 d, 1 % (w/w) PBAT BMPs ificantly increased cumulative CO2 emission by 1605.6 and 1827.7 mg C kg-1 in soils without and with straw, respectively. Cracks occurred on the surface of microplastics, indicating that CO2 was partly originated from plastic degradation. Soil dissolved organic matter (DOM) content, carbon degradation gene abundance (such as abfA, xylA and manB for hemicellulose, mnp, glx and lig for lignin, and chiA for chitin) and enzyme activities increased, which significantly positively correlated with CO2 emission rate (p < 0.05), suggesting that PBAT enhanced carbon emission by stimulating the decomposition of SOM (and possibly the newly added straw) via co-metabolism and nitrogen mining. This is supported by DOM molecular composition analysis which also demonstrated stimulated turnover of carbohydrates, amino sugars and lignin following PBAT addition. The findings highlight the potential of BMPs to affect SOM stability and carbon emission.
Collapse
Affiliation(s)
- Sha Chang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Chao Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Qing-Long Fu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Aoyu Zhou
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Zhuyao Hua
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
29
|
Macan GPF, Munhoz DR, Willems LAJ, Monkley C, Lloyd CEM, Hageman J, Geissen V, Landa BB, Harkes P. Macro- and microplastics leachates: Characterization and impact on seed germination. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136013. [PMID: 39423638 DOI: 10.1016/j.jhazmat.2024.136013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/28/2024] [Indexed: 10/21/2024]
Abstract
Although plastic mulch enhances crop yield, its removal and disposal present significant challenges, contributing to macro- and microplastic pollution in agricultural soils. The adverse effects of this pollution on soil and plant health are not fully understood but may stem from the plastic particles or the toxicity of leached chemical additives. This study assessed the impact of macro- and microplastics from nondegradable LDPE-based (LDPEb) and biodegradable PBAT-based (PBATb) mulch films, along with their leachates, on the germination of three plant species. After seven days of incubation, PBAT mulch leached compounds that significantly inhibited Arabidopsis germination, while cotton and tomato exhibited notable tolerance. Notably, PBATb mulch released a higher concentration of compounds, whereas LDPEb mulch exhibited a greater diversity of leached chemicals. Microplastic particles alone did not hinder seed germination, indicating that plastic toxicity primarily arises from the leachates. Many of these leached compounds lack global regulation and hazard information, underscoring the urgent need for further investigation into their environmental impacts and the development of appropriate regulatory frameworks to mitigate the potential toxicity of chemicals from conventional and biodegradable mulches.
Collapse
Affiliation(s)
- Giovana P F Macan
- Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain; Programa de Doctorado de Ingeniería Agraria, Alimentaria, Forestal y de Desarrollo Rural Sostenible, Universidad de Córdoba, Córdoba, Spain.
| | - Davi R Munhoz
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands.
| | - Leo A J Willems
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, the Netherlands
| | - Charlie Monkley
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
| | - Charlotte E M Lloyd
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK; School of Geographical Sciences, University of Bristol, Bristol, UK
| | - Jos Hageman
- Biometris, Applied Statistics, Wageningen University & Research, Wageningen, the Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| | - Blanca B Landa
- Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| |
Collapse
|
30
|
Gong K, Peng C, Hu S, Xie W, Chen A, Liu T, Zhang W. Aging of biodegradable microplastics and their effect on soil properties: Control from soil water. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136053. [PMID: 39395391 DOI: 10.1016/j.jhazmat.2024.136053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
The ecological risks of biodegradable microplastics (BMPs) to soil ecosystems have received increasing attention. This study investigates the impacts of polylactic acid microplastics (PLA-MPs) and polybutylene adipate terephthalate microplastics (PBAT-MPs) on soil properties of black soil (BS) and fluvo-aquic soil (FS) under three water conditions including dry (Dry), flooded (FL), and alternate wetting and drying (AWD). The results show that BMPs exhibited more evident aging under Dry and AWD conditions compared to FL condition. However, BMPs aging under FL condition induced more substantial changes in soil properties, especially dissolved organic carbon (DOC) concentrations, than under Dry and AWD conditions. BMPs also increased the humification degree of soil dissolved organic matter (DOM), particularly in BS. Metagenomic analysis of PBAT-MPs treatments showed different changes in microbial community structure depending on soil moisture. Under Dry conditions, PBAT-MPs enhance the ammonium-producing process of soil microbial communities. Genes related to N nitrification and benzene degradation were enriched under AWD conditions. In contrast, PBAT-MPs do not change the abundance of genes related to the N cycle under FL conditions but significantly reduce genes related to benzene degradation. This reduction in benzene degradation genes under FL condition might potentially slow down the degradation of PBAT-MPs, and could lead to temporary accumulation of benzene-related intermediates. These findings highlight the complex interactions between BMPs, soil properties, and microbial communities, emphasizing the need for comprehensive evaluations of BMPs' environmental impacts under varying soil water conditions.
Collapse
Affiliation(s)
- Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Wenwen Xie
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Anqi Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianzi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
31
|
Chang N, Chen L, Wang N, Cui Q, Qiu T, Zhao S, He H, Zeng Y, Dai W, Duan C, Fang L. Unveiling the impacts of microplastic pollution on soil health: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175643. [PMID: 39173746 DOI: 10.1016/j.scitotenv.2024.175643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/11/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Soil contamination by microplastics (MPs) has emerged as a significant global concern. Although traditionally associated with crop production, contemporary understanding of soil health has expanded to include a broader range of factors, including animal safety, microbial diversity, ecological functions, and human health protection. This paradigm shifts underscores the imperative need for a comprehensive assessment of the effects of MPs on soil health. Through an investigation of various soil health indicators, this review endeavors to fill existing knowledge gaps, drawing insights from recent studies conducted between 2021 and 2024, to elucidate how MPs may disrupt soil ecosystems and compromise their crucial functions. This review provides a thorough analysis of the processes leading to MP contamination in soil environments and highlights film residues as major contributors to agricultural soils. MPs entering the soil detrimentally affect crop productivity by hindering growth and other physiological processes. Moreover, MPs hinder the survival, growth, and reproductive rates of the soil fauna, posing potential health risks. Additionally, a systematic evaluation of the impact of MPs on soil microbes and nutrient cycling highlights the diverse repercussions of MP contamination. Moreover, within soil-plant systems, MPs interact with other pollutants, resulting in combined pollution. For example, MPs contain oxygen-containing functional groups on their surfaces that form high-affinity hydrogen bonds with other pollutants, leading to prolonged persistence in the soil environment thereby increasing the risk to soil health. In conclusion, we succinctly summarize the current research challenges related to the mediating effects of MPs on soil health and suggest promising directions for future studies. Addressing these challenges and adopting interdisciplinary approaches will advance our understanding of the intricate interplay between MPs and soil ecosystems, thereby providing evidence-based strategies for mitigating their adverse effects.
Collapse
Affiliation(s)
- Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Na Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yi Zeng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Wei Dai
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Chengjiao Duan
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
32
|
Jemec Kokalj A, Dolar A, Nagode A, Drobne D, Kuljanin A, Kalčíková G. Response of terrestrial crustacean Porcellio scaber and mealworm Tenebrio molitor to non-degradable and biodegradable fossil-based mulching film microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175379. [PMID: 39137843 DOI: 10.1016/j.scitotenv.2024.175379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Agricultural mulching films are potential sources of microplastics (MPs) in soil. As an alternative to conventional non-degradable mulching films, a variety of different biodegradable mulching films are used. However, it is not yet known whether MPs from biodegradable mulching films pose a lower risk to terrestrial invertebrates compared to MPs from conventional mulching films. In this study, the effects of MPs produced from two conventional polyethylene (PE-1 and PE-2) and two biodegradable (starch-based poly(butylene adipate co-terephthalate); PBAT-BD-1, and PBAT-BD-2) fossil-based mulching films on terrestrial crustacean woodlice Porcellio scaber and mealworm Tenebrio molitor were compared. A key finding was that no clear differences in induced responses between biodegradable and conventional MPs were detected. No adverse effects on P. scaber after two weeks and on T. molitor after four weeks of exposure were observed up to 5 % (w/w dry soil) of either MP type. However, some sublethal physiological changes in metabolic rate and immune parameters were found in P. scaber after two weeks of exposure indicating a response of organisms to the presence of MP exposure in soil. In addition, it was demonstrated that both types of MPs might affect the soil water holding capacity and pH. In conclusion, we confirmed that biodegradable MPs can induce responses in organisms hence further studies testing the environmental hazard of biodegradable MPs are justified.
Collapse
Affiliation(s)
- Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia.
| | - Andraž Dolar
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| | - Ana Nagode
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| | - Aleksandra Kuljanin
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia
| | - Gabriela Kalčíková
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia
| |
Collapse
|
33
|
De Bernardi A, Bandini F, Marini E, Tagliabue F, Casucci C, Brunetti G, Vaccari F, Bellotti G, Tabaglio V, Fiorini A, Ilari A, Gnoffo C, Frache A, Taskin E, Rossa UB, Ricardo ESL, Martins AO, Duca D, Puglisi E, Pedretti EF, Vischetti C. Integrated assessment of the chemical, microbiological and ecotoxicological effects of a bio-packaging end-of-life in compost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175403. [PMID: 39128510 DOI: 10.1016/j.scitotenv.2024.175403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
The present study aimed to i) assess the disintegration of a novel bio-packaging during aerobic composting (2 and 6 % tested concentrations) and evaluate the resulting compost ii) analyse the ecotoxicity of bioplastics residues on earthworms; iii) study the microbial communities during composting and in 'earthworms' gut after their exposure to bioplastic residues; iv) correlate gut microbiota with ecotoxicity analyses; v) evaluate the chemico-physical characterisation of bio-packaging after composting and earthworms' exposure. Both tested concentrations showed disintegration of bio-packaging close to 90 % from the first sampling time, and compost chemical analyses identified its maturity and stability at the end of the process. Ecotoxicological assessments were then conducted on Eisenia fetida regarding fertility, growth, genotoxic damage, and impacts on the gut microbiome. The bioplastic residues did not influence the earthworms' fertility, but DNA damages were measured at the highest bioplastic dose tested. Furthermore bioplastic residues did not significantly affect the bacterial community during composting, but compost treated with 2 % bio-packaging exhibited greater variability in the fungal communities, including Mortierella, Mucor, and Alternaria genera, which can use bioplastics as a carbon source. Moreover, bioplastic residues influenced gut bacterial communities, with Paenibacillus, Bacillus, Rhizobium, Legionella, and Saccharimonadales genera being particularly abundant at 2 % bioplastic concentration. Higher concentrations affected microbial composition by favouring different genera such as Pseudomonas, Ureibacillus, and Streptococcus. For fungal communities, Pestalotiopsis sp. was found predominantly in earthworms exposed to 2 % bioplastic residues and is potentially linked to its role as a microplastics degrader. After composting, Attenuated Total Reflection analysis on bioplastic residues displayed evidence of ageing with the formation of hydroxyl groups and amidic groups after earthworm exposure.
Collapse
Affiliation(s)
- Arianna De Bernardi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Francesca Bandini
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Enrica Marini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Francesca Tagliabue
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Cristiano Casucci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Gianluca Brunetti
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; Future Industries Institute, University of South Australia, Mawson Lakes Boulevard, South Australia, SA 5095, Australia.
| | - Filippo Vaccari
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Gabriele Bellotti
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Alessio Ilari
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Chiara Gnoffo
- Department of Applied Science and Technology, Politecnico di Torino, V.le Teresa Michel, 5, 15121 Alessandria, Italy.
| | - Alberto Frache
- Department of Applied Science and Technology, Politecnico di Torino, V.le Teresa Michel, 5, 15121 Alessandria, Italy.
| | - Eren Taskin
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy; Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, Piazza Università, 5, 39100 Bolzano-Bozen, Italy.
| | - Uberson Boaretto Rossa
- Department of Agricultural Sciences, Instituto Federal de Educação, Ciência e Tecnologia Catarinense, BR 270, Km 21, Araquari, Santa Catarina 89245-000, Brazil.
| | - Elisângela Silva Lopes Ricardo
- Department of Agricultural Sciences, Instituto Federal de Educação, Ciência e Tecnologia Catarinense, BR 270, Km 21, Araquari, Santa Catarina 89245-000, Brazil.
| | | | - Daniele Duca
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Ester Foppa Pedretti
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Costantino Vischetti
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
34
|
Garcia Simão RDC, Rocha PMC, Martins JTK, Turkiewicz M, Plewka J, da-Conceição Silva JL, Maller A, Kadowaki MK, Costa-Júnior ÁPS. Exploring biodegradable alternatives: microorganism-mediated plastic degradation and environmental policies for sustainable plastic management. Arch Microbiol 2024; 206:457. [PMID: 39499332 DOI: 10.1007/s00203-024-04170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/05/2024] [Accepted: 10/12/2024] [Indexed: 11/07/2024]
Abstract
Plastics offer versatility, durability and low production costs, but they also pose environmental and health risks due to improper disposal, accumulation in water bodies, low recycling rates and temporal action that causes physicochemical changes in plastics and the release of toxic products to animal health and nature. Some microorganisms may play crucial roles in improving plastic waste management in the future. Cunningamella echinulata has been identified as a promising candidate that remains viable for long periods and produces a cutinase that is capable of degrading plastic. Other recent approaches involving the use of microorganisms are discussed in this review. However, there does not seem to be a single science that is efficient or most appropriate for solving the problem of plastic pollution on the planet at present. Regulations, especially the implementation of different laws that address the entire plastic cycle in different countries, such as Brazil, the USA, China and the European Union, play important roles in the management of this waste and can contribute to reducing this problem. In the context of the transversality of the information compiled here, the current limitations are discussed, and an effective plan is proposed to reduce plastic pollution. Although it is challenging, it involves implementing legislation, promoting sustainable alternatives, improving collection and recycling systems, encouraging reuse, supporting research and technological innovation, promoting corporate responsibility, collaborating globally, raising public awareness, optimizing waste management and, above all, continuously monitoring the progress of actions based on measurable metrics.
Collapse
Affiliation(s)
- Rita de Cássia Garcia Simão
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Unioeste, Cascavel, PR, Brazil.
| | - Paula Maria Carneiro Rocha
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Unioeste, Cascavel, PR, Brazil
| | - Júlia Thays Kava Martins
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Unioeste, Cascavel, PR, Brazil
| | - Maurício Turkiewicz
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Unioeste, Cascavel, PR, Brazil
| | - Jacqueline Plewka
- Hospital Universitário do Oeste do Paraná, HUOP, Universidade Estadual do Oeste do Paraná, Unioeste, Cascavel, PR, Brazil
| | - José Luis da-Conceição Silva
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Unioeste, Cascavel, PR, Brazil
| | - Alexandre Maller
- Laboratório de Bioquímica de Microrganismos, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste Do Paraná, UNIOESTE, Cascavel, PR, Brazil
| | - Marina Kimiko Kadowaki
- Laboratório de Bioquímica de Microrganismos, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste Do Paraná, UNIOESTE, Cascavel, PR, Brazil
| | | |
Collapse
|
35
|
Grossule V, Oliveri Conti G, Rapisarda P, Pulvirenti E, Ferrante M, Lavagnolo MC. Treatment of biowaste commingled with biodegradable bioplastic films using Black Soldier Fly larvae: Generation and fate of micro-plastics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122768. [PMID: 39368376 DOI: 10.1016/j.jenvman.2024.122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
The use of Black Soldier Fly (BSF) larvae is emerging as a promising alternative for biowaste (i.e. food waste) treatment, generating larval biomass and process residues, suitable for use as animal feed and fertilizer, respectively. In line with an increasing use of starch-based bioplastics in food packaging, the presence of these biopolymers and associated biodegradable microplastics (BMPs) in food waste is expected to rise. Knowledge of the generation of BMPs and their fate in the BSF treatment process is scarce, or indeed, completely lacking in the case of small-sized BMPs (<50 μm). The present study aims to investigate the generation and potential accumulation of BMPs in BSF larvae process. Food waste mixed with starch-based bioplastic films was fed to larvae and BMPs of two particle sizes (inferior to and exceeding 10 μm in diameter) were monitored over time in rearing substrate and larval biomass. BMPs concentrations in substrate were compared with larvae-free control tests. The presence of larvae favoured the generation of BMPs. Concentrations of smaller-sized BMPs (<10 μm) increased by approximately 172% in the final substrate, and accumulated in the larval biomass with a peak exceeding the initial larval concentration by over 1000% just before prepupation, which is the typical stage they are collected when used as animal feed. These results indicate a potential risk of soil contamination by BMPs when final substrate is used as fertilizer and a risk of biomagnification phenomena when larvae are used as animal feed.
Collapse
Affiliation(s)
- Valentina Grossule
- DICEA, Department of Civil, Architectural and Environmental Engineering, University of Padova. Via Marzolo 9, 35131, Padova, Italy.
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; International Society of Doctors for Environment - ISDE. Italy Section, Italy
| | - Paola Rapisarda
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; Department of Biological, Geological and Environmental Sciences, University of Catania, Italy
| | - Eloise Pulvirenti
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; Department of Biological, Geological and Environmental Sciences, University of Catania, Italy
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; CRIAB- Interdepartmental Research Center for the Implementation of Physical, Chemical, and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Italy
| | - Maria Cristina Lavagnolo
- DICEA, Department of Civil, Architectural and Environmental Engineering, University of Padova. Via Marzolo 9, 35131, Padova, Italy
| |
Collapse
|
36
|
Guo W, Ye Z, Zhao Y, Lu Q, Shen B, Zhang X, Zhang W, Chen SC, Li Y. Effects of different microplastic types on soil physicochemical properties, enzyme activities, and bacterial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117219. [PMID: 39427539 DOI: 10.1016/j.ecoenv.2024.117219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Global concern continues to mount regarding the accumulation of microplastics (MPs) in soil. However, little is known about how various types of MPs influence the properties of soil ecosystems. Here, we evaluated the effects of six different types of MPs, including low-density polyethylene (LDPE), polyamide (PA), polystyrene (PS), polyhydroxy-alkanoates (PHA), polybutadiene styrene (PBS), and polylactide (PLA), on soil physicochemical properties, enzyme activities, and microbial communities. At the end of a 230-day soil incubation, we observed significant changes in soil moisture content, soil organic carbon, pH, NH4+-N, NO3--N, and available phosphorus. The addition of MPs had a significant influence on the activities of soil β-glucosidase, acid phosphatase, urease, and fluorescein diacetate hydrolase, with effects varying with MP type. Results of 16S rRNA gene high throughput sequencing showed that MP exposure had little effect on soil microbial alpha diversity, but that PHA contamination significantly reduced ACE, Chao1, and Shannon index values. MP contamination also altered soil microbial community composition. In particular, the relative abundance of Firmicutes increased significantly while the relative abundance of Actinobacteriota, Proteobacteria (especially the nitrogen-fixing rhizobia), and Acidobacteriota decreased following exposure to PHA. Redundancy analysis showed that acid phosphatase and pH were the two main environmental factors affecting bacterial community structure at the phylum and order levels. Furthermore, Tax4Fun2 analysis found that MP treatment disrupted fundamental bacterial metabolic pathways. Our findings indicate that different types of MPs can affect soil fertility, bacterial community structure, and function in various ways, and highlight that biodegradable MPs may alter soil bacterial communities more than conventional MPs.
Collapse
Affiliation(s)
- Wenjie Guo
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian 365004, China; College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China; Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming, Fujian 365004, China
| | - Zhiwei Ye
- School of Resources and Chemical Engineering, Sanming University, Sanming City, Fujian, China
| | - Yanna Zhao
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian 365004, China; School of Resources and Chemical Engineering, Sanming University, Sanming City, Fujian, China
| | - Qianle Lu
- School of Resources and Chemical Engineering, Sanming University, Sanming City, Fujian, China
| | - Bin Shen
- School of Resources and Chemical Engineering, Sanming University, Sanming City, Fujian, China
| | - Xin Zhang
- School of Resources and Chemical Engineering, Sanming University, Sanming City, Fujian, China
| | - Weifang Zhang
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Sheng-Chung Chen
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian 365004, China; College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Resources and Chemical Engineering, Sanming University, Sanming City, Fujian, China
| | - Yin Li
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian 365004, China; College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China; Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming, Fujian 365004, China.
| |
Collapse
|
37
|
de Carvalho JGR, Augusto HC, Ferraz R, Delerue-Matos C, Fernandes VC. Micro(nano)plastic and Related Chemicals: Emerging Contaminants in Environment, Food and Health Impacts. TOXICS 2024; 12:762. [PMID: 39453182 PMCID: PMC11510996 DOI: 10.3390/toxics12100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Microplastic pollution is a problem of increasing concern in food, and while food safety issues around the world are serious, an increasing number of food safety issues related to microplastics have become the focus of people's attention. The presence of microplastics in food is a worldwide problem, and they are present in all kinds of foods, foods of both animal and plant origin, food additives, drinks, plastic food packaging, and agricultural practices. This can cause problems for both humans and the environment. Microplastics have already been detected in human blood, heart, placenta, and breastmilk, but their effects in humans are not well understood. Studies with mammals and human cells or organoids have given perspective about the potential impact of micro(nano)plastics on human health, which affect the lungs, kidneys, heart, neurological system, and DNA. Additionally, as plastics often contain additives or other substances, the potentially harmful effects of exposure to these substances must also be carefully studied before any conclusions can be drawn. The study of microplastics is very complex as there are many factors to account for, such as differences in particle sizes, constituents, shapes, additives, contaminants, concentrations, etc. This review summarizes the more recent research on the presence of microplastic and other plastic-related chemical pollutants in food and their potential impacts on human health.
Collapse
Affiliation(s)
- Juliana G. R. de Carvalho
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
| | - Helga Coelho Augusto
- Cofisa—Conservas de Peixa da Figueira, S.A., Terrapleno do Porto de Pesca—Gala, 3090-735 Figueira da Foz, Portugal;
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
- Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| | - Virgínia Cruz Fernandes
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
- Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| |
Collapse
|
38
|
Kaur R, Chauhan I. Biodegradable plastics: mechanisms of degradation and generated bio microplastic impact on soil health. Biodegradation 2024; 35:863-892. [PMID: 38985381 DOI: 10.1007/s10532-024-10092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Conventional petroleum-derived polymers are valued for their versatility and are widely used, owing to their characteristics such as cost-effectiveness, diverse physical and chemical qualities, lower molecular weight, and easy processability for large-scale production. However, the extensive accumulation of such plastics leads to serious environmental issues. To combat this existing situation, an alternative lies in the production of bioplastics from natural and renewable sources such as plants, animals, microbes, etc. Bioplastics obtained from renewable sources are compostable and susceptible to degradation caused by microbes hydrolyzing to CO2, CH4, and biomass. Also, certain additives are reinforced into the bioplastic films to improve their physicochemical properties and degradation rate. However, on degradation, the bio-microplastic (BM) produced could have positive as well as negative impact on the soil health. This article thus focuses on the degradation of various fossil based as well as bio based biodegradable plastics such as polyhydroxyalkanoates (PHA), polyhydroxy butyrate (PHB), polylactic acid (PLA), polybutylene succinate (PBS), polycaprolactone (PCL), and polysaccharide derived bioplastics by mechanical, thermal, photodegradation and microbial approaches. The degradation mechanism of each approach has been discussed in detailed for different bioplastics. How the incorporation or reinforcement of various additives in the biodegradable plastics effects their degradation rates has also been discussed. In addition to that, the impact of generated bio-microplastic on physicochemical properties of soil such as pH, bulk density, carbon, nitrogen content etc. and biological properties such as on genome of native soil microbes and on plant nutritional health have been discussed in detailed.
Collapse
Affiliation(s)
- Rishpreet Kaur
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab, 144008, India
| | - Indu Chauhan
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab, 144008, India.
| |
Collapse
|
39
|
Gong K, Hu S, Zhang W, Peng C, Tan J. Topic modeling discovers trending topics in global research on the ecosystem impacts of microplastics. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:425. [PMID: 39316202 DOI: 10.1007/s10653-024-02218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
The ecological threats of microplastics (MPs) have sparked research worldwide. However, changes in the topics of MP research over time and space have not been evaluated quantitatively, making it difficult to identify the next frontiers. Here, we apply topic modeling to assess global spatiotemporal dynamics of MP research. We identified nine leading topics in current MP research. Over time, MP research topics have switched from aquatic to terrestrial ecosystems, from distribution to fate, from ingestion to toxicology, and from physiological toxicity to cytotoxicity and genotoxicity. In most of the nine leading topics, a disproportionate amount of independent and collaborative research activity was conducted in and between a few developed countries which is detrimental to understanding the environmental fates of MPs in a global context. This review recognizes the urgent need for more attention to emerging topics in MP research, particularly in regions that are heavily impacted but currently overlooked.
Collapse
Affiliation(s)
- Kailin Gong
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Peng
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
40
|
Lara-Topete GO, Castanier-Rivas JD, Bahena-Osorio MF, Krause S, Larsen JR, Loge FJ, Mahlknecht J, Gradilla-Hernández MS, González-López ME. Compounding one problem with another? A look at biodegradable microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173735. [PMID: 38857803 DOI: 10.1016/j.scitotenv.2024.173735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Environmental concerns about microplastics (MPs) have motivated research of their sources, occurrence, and fate in aquatic and soil ecosystems. To mitigate the environmental impact of MPs, biodegradable plastics are designed to naturally decompose, thus reducing the amount of environmental plastic contamination. However, the environmental fate of biodegradable plastics and the products of their incomplete biodegradation, especially micro-biodegradable plastics (MBPs), remains largely unexplored. This comprehensive review aims to assess the risks of unintended consequences associated with the introduction of biodegradable plastics into the environment, namely, whether the incomplete mineralization of biodegradable plastics could enhance the risk of MBPs formation and thus, exacerbate the problem of their environmental dispersion, representing a potentially additional environmental hazard due to their presumed ecotoxicity. Initial evidence points towards the potential for incomplete mineralization of biodegradable plastics under both controlled and uncontrolled conditions. Rapid degradation of PLA in thermophilic industrial composting contrasts with the degradation below 50 % of other biodegradables, suggesting MBPs released into the environment through compost. Moreover, degradation rates of <60 % in anaerobic digestion for polymers other than PLA and PHAs suggest a heightened risk of MBPs in digestate, risking their spread into soil and water. This could increase MBPs and adsorbed pollutants' mobilization. The exact behavior and impacts of additive leachates from faster-degrading plastics remain largely unknown. Thus, assessing the environmental fate and impacts of MBPs-laden by-products like compost or digestate is crucial. Moreover, the ecotoxicological consequences of shifting from conventional plastics to biodegradable ones are highly uncertain, as there is insufficient evidence to claim that MBPs have a milder effect on ecosystem health. Indeed, literature shows that the impact may be worse depending on the exposed species, polymer type, and the ecosystem complexity.
Collapse
Affiliation(s)
- Gary Ossmar Lara-Topete
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - Juan Daniel Castanier-Rivas
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - María Fernanda Bahena-Osorio
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom
| | - Joshua R Larsen
- School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom
| | - Frank J Loge
- Department of Civil & Environmental Engineering, University of California - Davis, Davis, CA, United States of America; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Misael Sebastián Gradilla-Hernández
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - Martín Esteban González-López
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico.
| |
Collapse
|
41
|
Wang X, Li J, Pan X. How micro-/nano-plastics influence the horizontal transfer of antibiotic resistance genes - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173881. [PMID: 38871331 DOI: 10.1016/j.scitotenv.2024.173881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Plastic debris such as microplastics (MPs) and nanoplastics (NPTs), along with antibiotic resistance genes (ARGs), are pervasive in the environment and are recognized as significant global health and ecological concerns. Micro-/nano-plastics (MNPs) have been demonstrated to favor the spread of ARGs by enhancing the frequency of horizontal gene transfer (HGT) through various pathways. This paper comprehensively and systematically reviews the current study with focus on the influence of plastics on the HGT of ARGs. The critical role of MNPs in the HGT of ARGs has been well illustrated in sewage sludge, livestock farms, constructed wetlands and landfill leachate. A summary of the performed HGT assay and the underlying mechanism of plastic-mediated transfer of ARGs is presented in the paper. MNPs could facilitate or inhibit HGT of ARGs, and their effects depend on the type, size, and concentration. This review provides a comprehensive insight into the effects of MNPs on the HGT of ARGs, and offers suggestions for further study. Further research should attempt to develop a standard HGT assay and focus on investigating the impact of different plastics, including the oligomers they released, under real environmental conditions on the HGT of ARGs.
Collapse
Affiliation(s)
- Xiaonan Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou 310015, China; School of Environment Science and Spatial Information, China University of Mining and Technology, Xuzhou 221116, China; Shaoxing Research Institute of Zhejiang University of Technology, Shaoxing 312000, China
| | - Jiahao Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
42
|
Cheng X, Li X, Cai Z, Wang Z, Zhou J. The Structural and Functional Responses of Rhizosphere Bacteria to Biodegradable Microplastics in the Presence of Biofertilizers. PLANTS (BASEL, SWITZERLAND) 2024; 13:2627. [PMID: 39339601 PMCID: PMC11434756 DOI: 10.3390/plants13182627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Biodegradable microplastics (Bio-MPs) are a hot topic in soil research due to their potential to replace conventional microplastics. Biofertilizers are viewed as an alternative to inorganic fertilizers in agriculture due to their potential to enhance crop yields and food safety. The use of both can have direct and indirect effects on rhizosphere microorganisms. However, the influence of the coexistence of "Bio-MPs and biofertilizers" on rhizosphere microbial characteristics remains unclear. We investigated the effects of coexisting biofertilizers and Bio-MPs on the structure, function, and especially the carbon metabolic properties of crop rhizosphere bacteria, using a pot experiment in which polyethylene microplastics (PE-MPs) were used as a reference. The results showed that the existence of both microplastics (MPs) changed the physicochemical properties of the rhizosphere soil. Exposure to MPs also remarkably changed the composition and diversity of rhizosphere bacteria. The network was more complex in the Bio-MPs group. Additionally, metagenomic analyses showed that PE-MPs mainly affected microbial vitamin metabolism. Bio-MPs primarily changed the pathways related to carbon metabolism, such as causing declined carbon fixation/degradation and inhibition of methanogenesis. After partial least squares path model (PLS-PM) analysis, we observed that both materials influenced the rhizosphere environment through the bacterial communities and functions. Despite the degradability of Bio-MPs, our findings confirmed that the coexistence of biofertilizers and Bio-MPs affected the fertility of the rhizosphere. Regardless of the type of plastic, its use in soil requires an objective and scientifically grounded approach.
Collapse
Affiliation(s)
- Xueyu Cheng
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China; (X.C.); (X.L.); (Z.C.)
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xinyang Li
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China; (X.C.); (X.L.); (Z.C.)
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhonghua Cai
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China; (X.C.); (X.L.); (Z.C.)
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zongkang Wang
- Ecological Fertilizer Research Institute, Shenzhen Batian Ecological Engineering Co., Ltd., Shenzhen 518057, China
| | - Jin Zhou
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China; (X.C.); (X.L.); (Z.C.)
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
43
|
Mirzaei Aminiyan M, Shorafa M, Pourbabaee AA. Mitigating the detrimental impacts of low- and high-density polyethylene microplastics using a novel microbial consortium on a soil-plant system: Insights and interactions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116805. [PMID: 39096689 DOI: 10.1016/j.ecoenv.2024.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
The accumulation of polyethylene microplastics (PE-MPs) in soil has raised considerable concerns; however, the effects of their persistence and mitigation on agroecosystems have not been explored. This study aimed to assess the detrimental effects of PE-MPs on a soil-plant system and evaluate their mitigation using a novel microbial consortium (MC). We incorporated low-density polyethylene (LDPE) and high-density polyethylene (HDPE) at two different concentrations, along with a control (0 %, 1 %, and 2 % w/w) into the sandy loam soil for a duration of 135 days. The samples were also treated with a novel MC and incubated for 135 days. The MC comprised three bacterial strains (Ralstonia pickettii (MW290933) strain SHAn2, Pseudomonas putida strain ShA, and Lysinibacillus xylanilyticus XDB9 (T) strain S7-10F), and a fungal strain (Aspergillus niger strain F1-16S). Sunflowers were subsequently cultivated, and physiological growth parameters were measured. The results showed that adding 2 % LDPE significantly decreased soil pH by 1.06 units compared to the control. Moreover, adding 2 % HDPE resulted in a more significant decrease in soil electrical conductivity (EC) relative to LDPE and the control. A dose-dependent increase in dissolved organic carbon (DOC) was observed, with the highest DOC found in 2 % LDPE. The addition of higher dosages of LDPE reduced soil bulk density (BD) more than HDPE. The addition of 2 % HDPE increased the water drop penetration time (WDPT) but decreased the mean weight diameter of soil aggregates (MWD) and water-stable aggregates (WSA) compared to LDPE. The results also revealed that higher levels of LDPE enhanced soil basal respiration (BR) and microbial carbon biomass (MBC). The interaction of MC and higher MP percentages considerably reduced soil pH, EC, BD, and WDPT but significantly increased soil DOC, MWD, WSA, BR, and MBC. Regarding plant growth, incorporating 2 % PE-MPs significantly reduced physiological responses of sunflower: chlorophyll content (Chl; -15.2 %), Fv/Fm ratio (-25.3 %), shoot dry weight (ShD; -31.3 %), root dry weight (RD; -40 %), leaf area (LA; -38.4 %), and stem diameter (StemD; -25 %) compared to the control; however, the addition of novel MC considerably reduced and ameliorated the harmful effects of 2 % PE-MPs on the investigated plant growth responses.
Collapse
Affiliation(s)
- Milad Mirzaei Aminiyan
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Mahdi Shorafa
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Ahmad Ali Pourbabaee
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| |
Collapse
|
44
|
Yuan F, Zou X, Liao Q, Wang T, Zhang H, Xue Y, Chen H, Ding Y, Lu M, Song Y, Fu G. Insight into the bacterial community composition of the plastisphere in diverse environments of a coastal salt marsh. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124465. [PMID: 38942280 DOI: 10.1016/j.envpol.2024.124465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
The microbial community colonized on microplastics (MPs), known as the 'plastisphere', has attracted extensive concern owing to its environmental implications. Coastal salt marshes, which are crucial ecological assets, are considered sinks for MPs. Despite their strong spatial heterogeneity, there is limited information on plastisphere across diverse environments in coastal salt marshes. Herein, a 1-year field experiment was conducted at three sites in the Yancheng salt marsh in China. This included two sites in the intertidal zone, bare flat (BF) and Spartina alterniflora vegetation area (SA), and one site in the supratidal zone, Phragmites australis vegetation area (PA). Petroleum-based MPs (polyethylene and expanded polystyrene) and bio-based MPs (polylactic acid and polybutylene succinate) were employed. The results revealed significant differences in bacterial community composition between the plastisphere and sediment at all three sites examined, and the species enriched in the plastisphere exhibited location-specific characteristics. Overall, the largest difference was observed at the SA site, whereas the smallest difference was observed at the BF site. Furthermore, the MP polymer types influenced the composition of the bacterial communities in the plastisphere, also exhibiting location-specific characteristics, with the most pronounced impact observed at the PA site and the least at the BF site. The polybutylene succinate plastisphere bacterial communities at the SA and PA sites were quite different from the plastispheres from the other three MP polymer types. Co-occurrence network analyses suggested that the bacterial community network in the BF plastisphere exhibited the highest complexity, whereas the network in the SA plastisphere showed relatively sparse interactions. Null model analyses underscored the predominant role of deterministic processes in shaping the assembly of plastisphere bacterial communities across all three sites, with a more pronounced influence observed in the intertidal zone than in the supratidal zone. This study enriches our understanding of the plastisphere in coastal salt marshes.
Collapse
Affiliation(s)
- Feng Yuan
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China
| | - Xinqing Zou
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210023, China
| | - Qihang Liao
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210023, China
| | - Teng Wang
- College of Oceanography, Hohai University, Nanjing, 210098, China.
| | - Hexi Zhang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China
| | - Yue Xue
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China
| | - Hongyu Chen
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210023, China
| | - Yongcheng Ding
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China
| | - Ming Lu
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China
| | - Yuyang Song
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China
| | - Guanghe Fu
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
45
|
Zou X, Cao K, Wang Q, Kang S, Wang Y. Enhanced degradation of polylactic acid microplastics in acidic soils: Does the application of biochar matter? JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135262. [PMID: 39047572 DOI: 10.1016/j.jhazmat.2024.135262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Biodegradable plastics, as an alternative to petroleum plastics, are fiercely increasing, but their incomplete degradation under natural conditions may lead to the breakdown into microplastics (MPs). Here, we explored the impacts of chicken manure-derived (MBC) and wood waste-derived biochar (WBC) on the degradation of polylactic acid microplastics (PLA-MPs) during soil incubation for one year. Both biochars induced more pronounced degradation characteristics in PLA-MPs, including enhanced surface roughness, the proportion of MPs < 100 µm by 12.89 %-25.67 %, oxygen loading and O/C ratio to 71.74 %-75.87 % and 1.70-1.76, as well as accelerated carbon loss and the cleavage of ester group and C-C bond. Also, biochar increased soil pH, depleted inorganic nitrogen and available phosphorus, and changed enzymic activity in PLA-MP-polluted soils. We proposed that both biochars accelerated the PLA-MP degradation by inducing alkaline, aminolysis/ammonolysis, oxidative, and microbial degradation. Among these, MBC induced aminolysis/ammonolysis by NH4+ via Fe2+-driven NO3-/NO2- reduction and microbial nitrogen fixation, and oxidative degradation by radicals generated through Fenton/Fenton-like reaction. WBC caused aminolysis/ammonolysis and oxidative degradation mainly through dissimilatory nitrate reduction to ammonium and surface free radicals on biochar. These findings indicate that biochar has the potential to accelerate PLA-MP degradation, and its regulatory mechanism depends on the type of biochar.
Collapse
Affiliation(s)
- Xiaoyan Zou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Kaibo Cao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qiang Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Shilei Kang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yin Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
46
|
Gong K, Liu T, Peng C, Zhao Z, Xu X, Shao X, Zhao X, Qiu L, Xie W, Sui Q, Zhang W. Water-dependent effects of biodegradable microplastics on arsenic fractionation in soil: Insights from enzyme degradation and synchrotron-based X-ray analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135275. [PMID: 39053062 DOI: 10.1016/j.jhazmat.2024.135275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The abundance of biodegradable microplastics (BMPs) is increasing in soil due to the widespread use of biodegradable plastics. However, the influence of BMPs on soil metal biogeochemistry, especially arsenic (As), under different water regimes is still unclear. In this study, we investigated the effects of two types of BMPs (PLA-MPs and PBAT-MPs) on As fractionation in two types of soils (black soil and fluvo-aquic soil) under three water regimes including drying (Dry), flooding (FL), and alternate wetting and drying (AWD). The results show that BMPs had limited indirect effects on As fractionation by altering soil properties, but had direct effects by adsorbing and releasing As during their degradation. Enzyme degradation experiments show that the degradation of PLA-MPs led to an increased desorption of 4.76 % for As(III) and 15.74 % for As(V). Synchrotron-based X-ray fluorescence (μ-XRF) combined with micro-X-ray absorption near edge structure (μ-XANES) analysis show that under Dry and AWD conditions, As on the BMPs primarily bind with Fe hydrated oxides in the form of As(V). Conversely, 71.57 % of As on PBAT-MP under FL conditions is in the form of As(III) and is primarily directly adsorbed onto its surface. This study highlights the role of BMPs in soil metal biogeochemistry.
Collapse
Affiliation(s)
- Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianzi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Ziyi Zhao
- International Elite Engineering School, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuechun Shao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linlin Qiu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Xie
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
47
|
Zhou W, Huang D, Chen S, Wang G, Li R, Xu W, Lei Y, Xiao R, Yin L, Chen H, Li F. Microplastic dilemma: Assessing the unexpected trade-offs between biodegradable and non-biodegradable forms on plant health, cadmium uptake, and sediment microbial ecology. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135240. [PMID: 39079302 DOI: 10.1016/j.jhazmat.2024.135240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
Despite extensive substitution of biodegradable plastics (BPs) for conventional plastics (CPs), research on their environmental ecological consequences as microplastics (MPs) is scarce. This study aimed to fill this gap by investigating the impacts of six prototypical MPs (categorized into BMPs and CMPs) on plant growth, cadmium (Cd) translocation, and bacterial communities in contaminated sediments. Results showed both BMPs and CMPs hindered plant development; yet interestingly, BMPs provoked more pronounced physiological and biochemical changes alongside increased oxidative stress due to reactive oxygen species accumulation. Notably, most MP types promoted the absorption of Cd by plant roots potentially via a "dilution effect". BMPs also induced larger shifts in soil microbial metabolic functions compared to CMPs. Ramlibacter was identified as a key biomarker distinguishing BMPs from CMPs, with link to multiple N metabolic pathways and N assimilation. This study offers novel insights into intricate biochemical mechanisms and environmental chemistry behaviors underpinning MP-Cd interactions within the plant-microbe-sediment system, emphasizing BMPs' higher potential ecological risks based on their significant effects on plant health and microbial ecology. This work contributes to enhancing the comprehensive understanding of their ecological implications and potential threats to environmental security.
Collapse
Affiliation(s)
- Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Sha Chen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, PR China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenbo Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yang Lei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Fei Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
48
|
Huang F, Chen L, Yang X, Jeyakumar P, Wang Z, Sun S, Qiu T, Zeng Y, Chen J, Huang M, Wang H, Fang L. Unveiling the impacts of microplastics on cadmium transfer in the soil-plant-human system: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135221. [PMID: 39096630 DOI: 10.1016/j.jhazmat.2024.135221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 08/05/2024]
Abstract
The co-contamination of soils by microplastics (MPs) and cadmium (Cd), one of the most perilous heavy metals, is emerging as a significant global concern, posing risks to plant productivity and human health. However, there remains a gap in the literature concerning comprehensive evaluations of the combined effects of MPs and Cd on soil-plant-human systems. This review examines the interactions and co-impacts of MPs and Cd in soil-plant-human systems, elucidating their mechanisms and synergistic effects on plant development and health risks. We also review the origins and contamination levels of MPs and Cd, revealing that sewage, atmospheric deposition, and biosolid applications are contributors to the contamination of soil with MPs and Cd. Our meta-analysis demonstrates that MPs significantly (p<0.05) increase the bioavailability of soil Cd and the accumulation of Cd in plant shoots by 6.9 and 9.3 %, respectively. The MPs facilitate Cd desorption from soils through direct adsorption via surface complexation and physical adsorption, as well as indirectly by modifying soil physicochemical properties, such as pH and dissolved organic carbon, and altering soil microbial diversity. These interactions augment the bioavailability of Cd, along with MPs, adversely affect plant growth and its physiological functions. Moreover, the ingestion of MPs and Cd through the food chain significantly enhances the bioaccessibility of Cd and exacerbates histopathological alterations in human tissues, thereby amplifying the associated health risks. This review provides insights into the coexistence of MPs and Cd and their synergistic effects on soil-plant-human systems, emphasizing the need for further research in this critical subject area.
Collapse
Affiliation(s)
- Fengyu Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Shiyong Sun
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Tianyi Qiu
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Yi Zeng
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
49
|
Wróbel M, Deja-Sikora E, Hrynkiewicz K, Kowalkowski T, Szymańska S. Microbial Allies in Plastic Degradation: Specific bacterial genera as universal plastic-degraders in various environments. CHEMOSPHERE 2024; 363:142933. [PMID: 39067822 DOI: 10.1016/j.chemosphere.2024.142933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Microbiological degradation of polymers offers a promising approach for mitigating environmental plastic pollution. This study (i) elucidated the diversity and structure of bacterial microbiomes from distinct environments (landfill soil, sewage sludge, and river water) characterized by specific physicochemical parameters, and (ii) utilized environment-derived microbial cultures enriched with microplastics (MPs) to investigate the degradation of polymers and identify culturable bacterial strains contributing to the plastisphere. We found that alpha diversity was notably higher in river water (∼20%) compared to landfill soil and sewage sludge. Dominant phyla included Pseudomonadota in sewage sludge (39.1%) and water (23.7%), while Actinomycetota prevailed in soil (38.5%). A multistage experiment, involving successive subcultures of environmental microbiomes exposed to polypropylene (PP), polyvinyl chloride (PVC), polycarbonate (PC), and polylactic acid (PLA), facilitated the assessment of MPs degradation processes. Analysis of carbonyl indices CIs and FTIR spectra revealed substantial structural changes in the treatment PVC-landfill soil, as well as in PLA- and PC-sludge enriched cultures. Further, using enriched cultures as a source of microorganisms, the study obtained 17 strains of plastic degraders from landfill soil, 14 from sewage sludge, and 6 from river water. Remarkably, similar bacterial genera were isolated across environmental microbiomes regardless of the MPs substrate used in enriched cultures. Among the 37 identified strains, Pseudomonadota predominated (64.86%) and were accompanied by Bacteroidota (16.22%), Actinomycetota (13.51%), and Bacillota (5.41%). This study highlights the complex relationship between microbiome diversity and the biodegradation efficiency of plastics, showing the potential for using microbial communities in the plastic pollution management.
Collapse
Affiliation(s)
- Mariusz Wróbel
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland; Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland
| | - Edyta Deja-Sikora
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Tomasz Kowalkowski
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland
| | - Sonia Szymańska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
| |
Collapse
|
50
|
Shang Q, Chi J, Ma Y. Effects of biodegradable microplastics coexistence with biochars produced at low and high temperatures on bacterial community structure and phenanthrene degradation in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122212. [PMID: 39146651 DOI: 10.1016/j.jenvman.2024.122212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
The increasing use of biodegradable plastics may result in more serious pollution of microplastics which often coexist with biochar in soil, this will affect how organic pollutants move and transform in the soil. This work investigated the effect of biodegradable polybutylene adipate-co-terephthalate (PBAT) coexistence with biochars produced at temperatures of 400 and 700 °C (W4 and W7) on soil bacterial communities and phenanthrene degradation. The results showed that coexistence of PBAT and biochar paticles greatly boosted the relative abundance of Nocardioides while decreased the relative abundance of Sphingomonas as compared to soils with a single addition of PBAT or biochar. Changes in soil Eh values were the most influential factor in bacterial communities (more than 40% contribution). The degradation ratio of phenanthrene when PBAT coexisted with W7 (39.6 ± 3.6%) was not significantly different from the treatment with a single W7 addition (35.0 ± 2.3%, P>0.05), and was related to phenanthrene degradation in the adsorbed state of W7 in soil. In contrast, the degradation ratio of phenanthrene in PBAT coexisting with W4 (35.1 ± 3.5%) was intermediate between that of single PBAT (49.8 ± 0.9%) and W4 (13.7 ± 5.8%) treatments. This was primarily due to changes in the experiment's initial bioavailable phenanthrene content. Furthermore, after the introduction of earthworms, phenanthrene degradation ratio in coexistence treatments were very similar to that described above in the absence of earthworms. Except for two treatments that contain W7, phenanthrene degradation ratio in the other treatments was increased by the presence of earthworms (up to 23%), which is related to the enhanced relative abundance of polycyclic aromatic hydrocarbon-degraders. Our findings indicated that PBAT coexistence with high-temperature or low-temperature biochar had a completely different impact on bacterial communities and phenanthrene degradation in soil.
Collapse
Affiliation(s)
- Qiongqiong Shang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Jie Chi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Ying Ma
- Department of Data Science and Big Data Technology, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|