1
|
Yang R, Zhang Y, Gao Q, Sang C, Niu Y, Du S, Shao B. Fluorinated liquid-crystal monomers distribution in paired urine from mothers and infants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126283. [PMID: 40268047 DOI: 10.1016/j.envpol.2025.126283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/25/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
Fluorinated liquid-crystal monomers (FLCMs) are widespread environmental contaminants with potential endocrine-disrupting effects. Infants are particularly vulnerable, yet their exposure remains unclear. This study analyzed FLCMs in urine samples from 190 paired mothers and infants in Beijing, detecting 34 and 35 FLCMs, respectively. Median creatinine-corrected concentrations were 1.83 μg/g (unadjusted concentrations: 1.28 ng/mL) for mothers and 3.28 μg/g (0.60 ng/mL) for infants. 1-butoxy-2,3-difluoro-4-(trans-4-propylcyclohexyl) benzene (BDPrB) and 1-ethyl-4-[(4-fluorophenyl) ethynyl] benzene (EFPEB) were identified as the primary detected contaminants. A significant positive correlation in urine concentrations between mothers and infants was observed only for 2'-Fluoro-4″-propyl-[1,1':4',1″-terphenyl]-4-carbonitrile (FPTC) (rs = 0.23, p = 0.023). Certain FLCMs were associated with infant feeding patterns, maternal parity, and environmental exposure, including dust and cleaning frequency (p < 0.05). The results of the study showed that the median estimated daily intakes (EDIs) of ∑FLCMs for mothers and infants were 526 and 425 ng/kg bw/day, respectively, with no significant difference between them (p > 0.05). Further stratification of the data by sex revealed that for male infants, the EDI values for BDPrB and EFPEB were greater (p < 0.05). These findings emphasize the need for greater research on the health effects of FLCMs on infants, particularly considering gender differences.
Collapse
Affiliation(s)
- Runhui Yang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Yanli Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Qun Gao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Chenhui Sang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China; School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
2
|
Han J, Liu J, Lu H, Guo K, Zhang F, Guo S, Su X, Dong S, Sun J, Feng J, An T. Optimization, validation, and implementation of a new method for detecting liquid crystal monomers in dust using GC-MS/MS with atmospheric pressure chemical ionization. Anal Chim Acta 2025; 1354:344002. [PMID: 40253070 DOI: 10.1016/j.aca.2025.344002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/12/2025] [Accepted: 03/30/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Liquid crystal monomers (LCMs) are a new class of emerging pollutants. To assess their occurrence, behaviour, and potential risks, a sensitive and selective analytical method is required for the determination of LCMs at trace levels in multiple environmental media. Toward this end, an improved GC-MS/MS method was developed and validated for the quantification of LCMs. RESULTS The method integrates atmospheric pressure chemical ionization (APCI) with GC-MS/MS. Under optimal instrumental conditions, the instrument quantification limits of LCMs reached as low as 0.02 pg·injection-1, which can be attributed to the generation of high-abundance molecular ions/quasi-molecular ions under APCI. Compared to previously published methods, the developed method in this study reduces the method detection limits of LCMs by approximately 1-38.7 times, enabling the analysis of LCMs at concentrations as low as 0.02 ng·g-1 in dust samples. This improved approach was applied to both indoor and outdoor dust samples. The concentrations of LCMs obtained in this study are consistent with those reported in previous research, demonstrating high detection frequencies of fluorinated LCMs and their predominance in dust. SIGNIFICANCE The developed method in this study is not only applicable to dust samples but also readily extends to other environmental matrices, thereby facilitating the investigation of the occurrence, origin, and migration of LCMs in various environments.
Collapse
Affiliation(s)
- Jing Han
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, China
| | - Jun Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, China
| | - Huiyuan Lu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, China
| | - Kehan Guo
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, China
| | - Fei Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, China
| | - Shujie Guo
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, China
| | - Xianfa Su
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, China
| | - Shuying Dong
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, China
| | - Jianhui Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, China
| | - Jinglan Feng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Gao K, Hua K, Chen X, Zheng C, Li X, Wu Q, Ji L, Wang L, Wei W, Lu L. Occurrence, Characteristics, and Mixed Reproductive Exposure Risk Assessment of Traditional Phthalates and Their Novel Alternatives in Campus Indoor Dust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6708-6718. [PMID: 40146589 DOI: 10.1021/acs.est.4c10394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Phthalates (PAEs) constitute the primary components of indoor dust pollutants and significantly impact human reproductive health. However, research on novel alternatives to PAEs and the risk assessment of mixed exposure has remained relatively sparse. In this study, 193 indoor dust samples were collected in 2022 from various campus locations, including classrooms, canteens, dormitories, offices, and laboratories. Forty-four traditional PAEs and their alternatives were identified, with concentrations ranging from 0.44 to 91.5 μg/g. Di(2-ethylhexyl) phthalate (DEHP) and dioctyl terephthalate (DEHTH) were the predominant compounds, with mean concentrations of 86.3 and 59.2 μg/g, respectively. The ingestion pathway was the principal route of exposure, with dormitories identified as the primary exposure sites. The mixed reproductive toxicity equivalent factor (TEFmix) of PAEs and their alternatives was developed using a quantitative structure-activity relationship (QSAR) model in conjunction with machine learning algorithms. The TEFmix was found to be lower than the sum of individual PAEs, potentially due to the antagonistic effects of PAE monomers on reproductive health. Under high-exposure scenarios, the TEFmix of PAEs in canteen dust was determined to be 0.245, surpassing values observed in other environments. Females exhibited a higher risk, with dormitories presenting a greater exposure risk than those in other indoor locations. This study provided essential data to inform regulatory measures aimed at mitigating the impact of PAEs and their alternatives in indoor dust on human reproductive health.
Collapse
Affiliation(s)
- Ke Gao
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, China
| | - Kai Hua
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, China
| | - Xi Chen
- Hebei Technology Innovation Center of Human Settlement in Green Building, Shenzhen Institute of Building Research Co., Ltd., Xiong'an 071700, China
| | - Congyi Zheng
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, China
| | - Xingtong Li
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, China
| | - Qingyan Wu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, China
| | - Lingrui Ji
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, China
| | - Linxiao Wang
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, China
| | - Wei Wei
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, China
| | - Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
4
|
Yang Q, Deng Y, Gao L, Ai Q, Xu C, Zheng M. Occurrence, Seasonal Variation, and Health Risks of PM 2.5-bound Liquid Crystal Monomers (LCMs) in Beijing, China. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136960. [PMID: 39721249 DOI: 10.1016/j.jhazmat.2024.136960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Liquid crystal monomers (LCMs) are potentially persistent, bioaccumulative, and toxic emerging pollutants. However, their occurrence in outdoor PM2.5 and related human exposure risks remain unknown. In this study, 32 composite samples were analyzed, which were prepared from daily PM2.5 samples collected throughout the year 2021 -2022 in Beijing, China. In total, fifty-six of 78 LCMs were presented at a median concentration of 66.0 pg/m3 (range: 13.3-375.6 pg/m3), with fluorinated LCMs (FBAs) predominating and accounting for 90.7 % of the total LCMs. This concentration surpasses that of halogenated persistent organic pollutants (e.g., polychlorinated dibenzo-p-dioxins/furans) in ambient PM2.5. Higher concentrations of LCMs were found in spring and summer compared to autumn and winter, which could be explained by correlations of concentrations with temperature (p < 0.05). Trans,trans-3,4-Difluoro-4'-(4'-pentylbicyclohexyl-4-yl)biphenyl, trans,trans-3,4-Difluoro-4'-(4'-propylbicyclohexyl-4-yl)biphenyl, and trans,trans-3,4,5-Trifluoro-4'-(4'-propylbicyclohexyl-4-yl)biphenyl were identified for the first time as dominant compounds in ambient samples. Based on predicted biological toxicities, 48 LCMs were categorized as high priority due to their high potential for human absorption, including several compounds previously overlooked. The non-carcinogenic risks of LCMs through inhalation and dermal were negligible for children and adults. This study firstly established a priority list of LCMs in PM2.5, highlighting the need for heightened awareness of their health risks.
Collapse
Affiliation(s)
- Qianling Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Deng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiaofeng Ai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chi Xu
- State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, China National Environmental Monitoring Center, Beijing 100012, China.
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhang S, Cheng Z, Zhang T, Ding Y, Zhu H, Wang L, Sun H. Liquid crystal monomers induce placental development and progesterone release dysregulation through transplacental transportation. Nat Commun 2025; 16:1204. [PMID: 39885209 PMCID: PMC11782568 DOI: 10.1038/s41467-025-56552-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Abstract
Embryonic and fetal development can be affected during gestation by exposure to xenobiotics that cross the placenta. Liquid crystal monomers (LCMs) are emerging contaminants commonly found in indoor environments; however, whether they can cross the placenta and affect placental development remains unexplored. Here, we develop an evaluation system that integrates human biomonitoring, uterine perfusion in pregnant rats, and placental cells. We find fourteen out of the fifty-six LCMs that are detected in maternal and cord serum samples from ninety-three healthy pregnant women, at median levels of 13.9 and 18.1 ng/mL, respectively. Subsequent explorations of in utero exposure in rats indicate that aromatic amino acid transporter 1 (SLC16A10) mediates transplacental transportation of the LCMs. Placental cells exposed to LCMs exhibit delayed placental development and reduced progesterone release. These findings show that SLC16A10-mediated transplacental transportation of LCMs inhibits placental development and progesterone release, highlighting the importance of gestational exposure to emerging contaminants.
Collapse
Affiliation(s)
- Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou, 510275, China
| | - Yubin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
6
|
Zhang Z, Yuan S, Yang Z, Liu Y, Liu S, Chen L, Wu B. Hepatotoxicity of Three Common Liquid Crystal Monomers in Mus musculus: Differentiation of Actions Across Different Receptors and Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1519-1529. [PMID: 39804792 DOI: 10.1021/acs.est.4c08945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Liquid crystal monomers (LCMs) of different chemical structures were widely detected in various environmental matrices. However, their health risk evaluation is lacking. Herein, three representative LCMs were selected from 74 LCM candidates upon literature review and acute cytotoxicity evaluation, then Mus musculus were exposed to the three LCMs for 42 days at doses of 0.5 and 50 μg/kg/d to investigate hepatotoxicity and mechanisms. Phenotypic and histopathological results showed that the three LCMs (DTMDPB, MeO3bcH, and 5OCB) induced hepatomegaly, and only 5OCB induced fatty liver. DTMDPB and MeO3bcH decreased the total cholesterol (TCHO) and triglyceride (TG) content, whereas 5OCB increased the TCHO, TG, and alanine aminotransferase levels. Transcriptome and molecular docking analysis revealed that DTMDPB induced hepatotoxicity by agonizing the farnesoid X receptor, resulting in the disruption of unsaturated fatty acid biosynthesis, ascorbic acid and antioxidant pathways, and circadian clock homeostasis. MeO3bcH promoted inflammation and altered unsaturated fatty acid, primary bile acid biosynthesis, and circadian rhythm by antagonizing the aryl hydrocarbon receptor. 5OCB antagonized peroxisome proliferator-activated receptors, leading to fatty liver caused by the disruption of steroid, cholesterol, and terpenoid backbone biosynthesis pathways. This study provides references for understanding the hepatotoxicity of LCMs with different structures and the selection of priority control LCMs.
Collapse
Affiliation(s)
- Zhichao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Shengjie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Zhongchao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Yafeng Liu
- Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Su Liu
- Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Cao Y, Cao Z, Wang P, Zhao L, Zhang S, Shi Y, Liu L, Zhu H, Wang L, Cheng Z, Sun H. Source and bioavailability of quaternary ammonium compounds (QACs) in dust: Implications for Nationwide Exposure in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136268. [PMID: 39471614 DOI: 10.1016/j.jhazmat.2024.136268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/28/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Quaternary ammonium compounds (QACs), widely used in various disinfectants products during the COVID-19 Pandemic, raised the concerns on their exposure and health effect. To date, the sources of QACs in indoor environments have been largely ignored. Additionally, there is no information on the nationwide human exposure assessment of QACs in China after the COVID-19. Herein, analysis of QACs in household products, including personal care (n = 27), cleaning (n = 6) and disinfection products (n = 11) from different manufacturing companies further confirmed there are extensive application of QACs in household products, raising their potential exposure to humans. QACs were frequently detected in indoor dust samples (n = 370) from 111 cities of 31 provinces/municipalities across China, with median concentration of 6778 ng/g. Benzalkyldimethylammonium compounds (BACs) and alkyltrimethylammonium compounds (ATMACs) were identified as the dominant QACs in dust samples, with the proportions of 44 % and 46 %, respectively. The in vivo bioavailability experiment (C57BL/6 male mice) showed that the relative bioavailability (RBA) of QACs through dust ingestion ranged from 5.08 % to 66.3 % and 60.3 % to 118 % in the low and high-dose group, respectively. Compared to the pre-adjustment scenario of RBA values, the exposure risk of QACs was overestimated by 2.23 - 5.14 times.
Collapse
Affiliation(s)
- Yuhao Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pingping Wang
- National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lu Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
8
|
Liu Y, Kannan K. Liquid crystal monomers in human, dog and cat feces from the United States. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136144. [PMID: 39405681 DOI: 10.1016/j.jhazmat.2024.136144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024]
Abstract
Little is known about exposure of humans and companion animals to liquid crystal monomers (LCMs), which are extensively used in digital displays. We determined the concentrations of 52 LCMs in feces of humans, pet dogs and cats from New York State, USA, using gas chromatography-high resolution mass spectrometry (GC-HRMS). Twenty-four, eight, and six LCMs, that were mainly fluorinated, were detected in human, dog, and cat feces, respectively. ∑LCMs concentrations in the feces of humans (mean: 8.01 ng/g dry weight [dw]) were significantly higher (p < 0.05) than those of dogs (mean: 1.82 ng/g dw) and cats (mean: 1.24 ng/g dw) and with concentrations measured as high as 39.8 ng/g dw. Rel-4'-((1r,1'r,4 R,4'R)-4'-ethyl-[1,1'-bi(cyclohexan)]-4-yl)-3,4-difluoro-1,1'-biphenyl (RELEEBCH or 2bcHdFB) was found at the highest detection frequency (DF) among LCMs analyzed in human (DF: 89 %), dog (DF: 28 %), and cat (DF: 50 %) feces, although this compound accounted only < 4 % of ∑LCM concentrations. The mean cumulative daily intakes of ∑LCMs, calculated through a reverse dosimetry approach, were 71.7, 87.5, and 10.7 ng/kg body weight (bw)/day for humans, dogs, and cats, respectively. This study provides evidence of exposure of both humans and pets to LCMs, highlighting the importance of assessing sources of exposure and associated health risks.
Collapse
Affiliation(s)
- Yuan Liu
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12237, United States.
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12237, United States; Department of Environmental Health Sciences, School of Public Health, State University of New York, Albany, New York 12237, United States.
| |
Collapse
|
9
|
Wang Y, Jin Q, Lin H, Xu X, Leung KMY, Kannan K, He Y. A review of liquid crystal monomers (LCMs) as emerging contaminants: Environmental occurrences, emissions, exposure routes and toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135894. [PMID: 39303619 DOI: 10.1016/j.jhazmat.2024.135894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The widespread occurrence of liquid crystal monomers (LCMs) in the environment has raised concerns about their persistence, bioaccumulation, and toxicity (PBT). Here we review the lifecycle of environmental LCMs, focusing on their occurrences, emission sources, human exposure routes, and toxicity. Industrial emissions from Liquid Crystal Display (LCD) manufacturing and e-waste recycling are the primary point sources of LCMs. In addition, emissions from LCD products, air conditioning units, wastewater treatment plants, and landfills contribute to environmental occurrence of LCMs as secondary sources. Dietary routes were identified as the primary exposure pathways to humans. E-waste dismantling workers and infants/children are vulnerable populations to LCMs exposure. Exposure to LCMs has been shown to potentially induce oxidative stress, metabolic disorders, and endocrine disruption. Accumulation of LCMs in the brain and liver tissues of exposed animals highlights the need for toxicokinetic studies.
Collapse
Affiliation(s)
- Yulin Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Qianqian Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Huiju Lin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Xiaotong Xu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Kenneth M Y Leung
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong; Department of Chemistry, City University of Hong Kong, Hong Kong
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY 12237, USA; Department of Environmental Health Sciences, State University of New York at Albany, Albany, NY 12237, USA
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| |
Collapse
|
10
|
He W, Yang H, Li Y, Cui Y, Wei L, Xu T, Li Y, Zhang M. Identifying the toxic mechanisms of emerging electronic contaminations liquid crystal monomers and the construction of a priority control list for graded control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175398. [PMID: 39128516 DOI: 10.1016/j.scitotenv.2024.175398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Liquid crystal monomers (LCMs) are identified as emerging organic contaminations with largely unexplored health impacts. To elucidate their toxic mechanisms, support the establishment of environmental discharge and management standards, and promote effective LCMs control, this study constructs a database covering 20,545 potential targets of 1431 LCMs, highlighting 9 key toxic target proteins that disrupt the nervous system and metabolic functions. GO and KEGG pathway analysis suggests LCMs severely affect nervous system, linked to neurodegenerative diseases and mental health disorders, with toxicity variations driven by electronegativity and structural complexity of LCM terminal groups. To achieve tiered control of LCMs, construct toxicity risk control lists for 9 key toxic target proteins, suitable for the graded control of LCMs, management recommendations are provided based on toxicity levels. These lists were validated for reliability and offer reliable toxicity predictions for LCMs. SHAP analysis points to electronic properties, molecular shape, and structural characteristics of LCMs as primary health impact factors. As the first study integrating machine learning with computational toxicology to outline LCMs health impacts, it aims to enhance public understanding of LCM toxicity risks and support the development of environmental standards, effective management of LCM production and emissions, and reduction of public exposure risks.
Collapse
Affiliation(s)
- Wei He
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Hao Yang
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Yunxiang Li
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Yuhan Cui
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Luanxiao Wei
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Tingzhi Xu
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing, China.
| | - Yu Li
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Meng Zhang
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
11
|
Liu R, Yang R, Jiang Q, Shao B. Fluorinated liquid-crystal monomers in infant formulas and implication for health risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124502. [PMID: 38964644 DOI: 10.1016/j.envpol.2024.124502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Fluorinated liquid-crystal monomers (FLCMs), a new class of potential persistent, bioaccumulative and toxic (PBT) emerging pollutants, are extensively utilized in the display panel of various electronic devices. These compounds have been found in various environmental matrixes and dietary. Our previous studies have documented their ubiquitous occurrence in high fat foodstuffs. Infants, a vulnerable group, are more susceptible to the impacts of these pollutants compared to adults. Herein, we provided an assessment of the health risks posed by FLCMs to infants, focusing on their exposure through infant formula. The presence of FLCMs was detected in all infant formulas, with median concentration of 16.5 ng/g dry weight (dw) and the 95th percentile concentration of 65.7 ng/g dw. The most prevalent pollutant in these formulas was 2-fluoro-4-[4'-propyl-1,1'-bi(cyclohexyl)-4-yl] phenyl trifluoromethyl ether (FPrBP), with median and a 95th percentile concentration of 12.2 ng/g dw and 23.8 ng/g dw, accounting for 55.2% to the total FLCMs. Infants aged 0-6 months had the highest estimated daily intakes (EDIs) of FLCMs, with the EDImedian of 267 ng/kg bw/day. FPrBP and 4-[trans-4-(trans-4-Propylcyclohexyl) cyclohexyl]-1-trifluoromethoxybenzene (PCTB) together made up 83.3% of the total EDIs in median exposure scenario of 0-6 months infant. The highest EDI value was 1.30 × 103 ng/kg bw/day, 77.1% of which was attributed to a combination of FPrBP, 4″-ethyl-2'-fluoro-4-propyl-1,1':4',1″-terphenyl (EFPT), 2-[4'-[difluoro(3,4,5-trifluoro-2-methyl-phenoxy)methyl]-3',5'-difluoro-[1,1'-biphenyl]-4-yl]-5-ethyl-tetrahydro-pyran (DTMPMDP), 4-[Difluoro-(3,4,5-trifluoro-2-methyl-phenoxy)-methyl]-3,5-difluoro-4'-propyl-1,1-biphenyl (DTMPMDB), 2,3-difluoro-1-methyl-4-[(trans, trans)-4'-pentyl[1,1'-bicyclohexyl]-4-yl]benzene (DMPBB) and PCTB. It's worth noting that FLCMs have higher exposure risk. Based on the threshold of toxicological concern (TTC) method, the EDImedian of FPrBP (183 ng/kg bw/day) and FPCB (3.27 ng/kg bw/day) were beyond their TTC values (2.5 ng/kg bw/day) in 0-6 months infant, implying their prospective health risk.
Collapse
Affiliation(s)
- Runqing Liu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Runhui Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Qian Jiang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Bing Shao
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| |
Collapse
|
12
|
Su H, Wang Y, Wu J, Gao P, Su G, Zhang H. A comparative study on contamination profiles of liquid crystal monomers (LCMs) between outdoor and indoor dusts, and the assessment of health risk of human exposure. CHEMOSPHERE 2024; 366:143545. [PMID: 39413934 DOI: 10.1016/j.chemosphere.2024.143545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/18/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Liquid crystal monomers (LCMs) are ubiquitous in various environmental samples, which has led to increasing concerns regarding their potential health risks to humans and wildlife. However, the comparison of the contamination patterns of LCMs between indoor and outdoor environments has rarely been studied. In this study, 35 LCMs were investigated in n = 55 dust samples collected from indoor (n = 20) and outdoor (n = 35) spaces in Yulin, Northwest China. The LCMs were widely detected in indoor and outdoor dusts; the total concentrations of LCMs ranged from 48.6 to 396 ng/g (median: 153 ng/g), and from not detectable to 388 ng/g (median: 56.4 ng/g) in indoor and outdoor dusts, respectively. The concentration levels of ΣLCMs in indoor dusts were significantly higher than those in outdoor dusts (p < 0.05). For each microenvironment, the ranking order of LCM concentrations was dormitory (mean: 202 ng/g) > teaching building (182 ng/g) > campus road (150 ng/g) > urban road (107 ng/g) > laboratory building (91.0 ng/g) > pedestrian street (20.1 ng/g). The mean estimated daily intake values of Σ35LCMs for adults were 2.48 × 10-2 and 1.37 × 10-3 ng/g BW/day in indoor and outdoor dusts, respectively. The hazard quotients of individual LCMs and hazard indices of all analytes were considerably less than one, indicating little health risk for humans via dust ingestion.
Collapse
Affiliation(s)
- Huijun Su
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin Engineering Research Center of Coal Chemical Wastewater, School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, China.
| | - Yiyu Wang
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin Engineering Research Center of Coal Chemical Wastewater, School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, China
| | - Jia Wu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Pingqiang Gao
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin Engineering Research Center of Coal Chemical Wastewater, School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Huiqiang Zhang
- Shaanxi Environmental Monitoring Center, Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an, 710054, China
| |
Collapse
|
13
|
Xie JF, Gu JY, Li LZ, Guo Y, Liu LY. First report on liquid crystal monomers in tree barks surrounding a display manufacturer: Insights for atmospheric transport and establishment of priority list. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135372. [PMID: 39106723 DOI: 10.1016/j.jhazmat.2024.135372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024]
Abstract
Tree bark has been proven as an effective passive air sampler, particularly where access to active sampling methods is limited. In this study, 60 target liquid crystal monomers (LCMs; comprising 10 cyanobiphenyl and analogs (CBAs), 13 biphenyl and analogs (BAs), and 37 fluorinated biphenyl and analogs (FBAs)) were analyzed in 34 tree barks collected from the vicinity of a liquid crystal display (LCD) manufacturer situated in the Pearl River Delta, South China. The concentrations of LCMs in tree barks ranged from 1400 to 16000 ng/g lipid weight, with an average of 5900 ng/g lipid weight. Generally, bark levels of BAs exponentially decreased within 5 km of the LCD manufacturer. The profiles of LCMs in tree barks are similar to previously reported patterns in gaseous phase, suggesting bark's efficacy as a sampler for gaseous LCMs. The inclusion of different congeners in existing studies on the environmental occurrence of LCMs has hindered the horizontal comparisons. Therefore, this study established a list of priority LCMs based on environmental monitoring data and the publicly accessible production data. This list comprised 146 LCMs, including 63 REACH registered LCMs that haven't been analyzed in any study and 56 belonging to 4 types of mainstream LCMs.
Collapse
Affiliation(s)
- Jiong-Feng Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, Scholl of Environment, Jinan University, Guangzhou 511443, China
| | - Jia-Yi Gu
- Guangdong Key Laboratory of Environmental Pollution and Health, Scholl of Environment, Jinan University, Guangzhou 511443, China
| | - Liang-Zhong Li
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Research, Chinese Academy of Sciences, Guangzhou 510630, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, Scholl of Environment, Jinan University, Guangzhou 511443, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, Scholl of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
14
|
Jiang YY, Zeng Y, Long L, Guo J, Lu RF, Chen PP, Pan ZJ, Zhang YT, Luo XJ, Mai BX. First Report on the Trophic Transfer and Priority List of Liquid Crystal Monomers in the Pearl River Estuary. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16131-16141. [PMID: 39190601 DOI: 10.1021/acs.est.4c04962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Liquid crystal monomers (LCMs) are emerging organic pollutants due to their potential persistence, toxicity, and bioaccumulation. This study first characterized the levels and compositions of 19 LCMs in organisms in the Pearl River Estuary (PRE), estimated their bioaccumulation and trophic transfer potential, and identified priority contaminants. LCMs were generally accumulated in organisms from sediment, and the LCM concentrations in all organisms ranged from 32.35 to 1367 ng/g lipid weight. The main LCMs in organisms were biphenyls and analogues (BAs) (76.6%), followed by cyanobiphenyls and analogues (CBAs) (15.1%), and the least were fluorinated biphenyls and analogues (FBAs) (11.2%). The most abundant LCM monomers of BAs, FBAs, and CBAs in LCMs in organisms were 1-(4-propylcyclohexyl)-4-vinylcyclohexane (15.1%), 1-ethoxy-2,3-difluoro-4-(4-(4-propylcyclohexyl) cyclohexyl) benzene (EDPBB, 10.1%), and 4'-propoxy-4-biphenylcarbonitrile (5.1%), respectively. The niche studies indicated that the PRE food web was composed of terrestrial-based diet and marine food chains. Most LCMs exhibited biodilution in the terrestrial-based diet and marine food chains, except for EDPBB and 4,4'-bis(4-propylcyclohexyl) biphenyl (BPCHB). The hydrophobicity, position of fluorine substitution of LCMs, and biological habits may be important factors affecting the bioaccumulation and trophic transfer of LCMs. BPCHB, 1-(prop-1-enyl)-4-(4-propylcyclohexyl) cyclohexane, and EDPBB were characterized as priority contaminants. This study first reports the trophic transfer processes and mechanisms of LCMs and the biomonitoring in PRE.
Collapse
Affiliation(s)
- Yi-Ye Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - YanHong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Ling Long
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Guo
- Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Rui-Feng Lu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Peng Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Jian Pan
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Ting Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
15
|
Yang R, Xu X, Wang X, Niu Y, Du J, Li H, Chen X, Li G, Shao B. Fluorinated Liquid-Crystal Monomers in Serum from the General Population and Their Impact on Human Health. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15949-15959. [PMID: 39143808 DOI: 10.1021/acs.est.4c02905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Fluorinated liquid-crystal monomers (FLCMs) are a potential emerging class of persistent, bioaccumulative, and toxic compounds. Humans inevitably ingest FLCMs via food and the environment. However, there are limited studies on internal exposure biomonitoring of FLCMs. Herein, we evaluated the estimated daily intakes (EDIs) of FLCMs in the general population based on serum residue levels. For the first time, 38 FLCMs were detected in 314 serum samples from the general population in Beijing, with a median value of 132.48 ng/g of lipid weight (lw). BDPrB is a predominant FLCM in serum. The median EDI of ∑38FLCMs in the general residents was 37.96 pg/kg bw/day. The residual levels of most FLCMs were higher in urban than in suburban areas (p < 0.05). The concentrations of EFPEB, EDPrB, EDFPBB, and PDTFMTFT in serum showed positive associations with blood glucose (GLU) (r = 0.126-0.275, p < 0.05). Logistic regression analysis showed that FLCMs were significantly positively correlated with dyslipidemia, with an odds ratio of 2.19; BDPrB was significantly positively correlated with hyperglycemia (OR: 2.48). Overall, the present study suggests the occurrence of FLCMs in the nonoccupational population, and the exposure of certain FLCMs may cause abnormal blood glucose and lipid levels.
Collapse
Affiliation(s)
- Runhui Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Xin Xu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xinyi Wang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jing Du
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Hong Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Xianggui Chen
- School of Food and Biological Engineering, Xihua University, Chengdu 610039, China
| | - Gang Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Bing Shao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
- School of Public Health, Capital Medical University, Beijing 100069, China
- School of Food and Biological Engineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
16
|
Yang Y, Jiang X, Yang Y, Wang J, Zhao Y, Lin S, Qu J, Martyniuk CJ, Zhao Y, Li C. Photochemical transformation of liquid crystal monomers in simulated environmental media: Kinetics, mechanism, toxicity variation and QSAR modeling. WATER RESEARCH 2024; 261:122062. [PMID: 39002419 DOI: 10.1016/j.watres.2024.122062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Liquid crystal monomers (LCMs) are a new class of emerging pollutants with high octanol-water partition coefficients; however, their transformation behavior and associated risk to environments with high organic matter content has rarely been reported. In this study, we investigated the photodegradation kinetics, mechanism, and toxicity variation of 23 LCMs on leaf wax models (e.g., organic solvents methanol and n-hexane). The order of the photolysis rates of these LCMs were biphenylethyne LCMs > phenylbenzoate LCMs > diphenyl/terphenyl LCMs under simulated sunlight, while the phenylcyclohexane LCMs were resistant to photodegradation. The phenylbenzoate and biphenylethyne LCMs mainly undergo direct photolysis, while the diphenyl/terphenyl LCMs mainly undergo self-sensitized photolysis. The main photolysis pathways are the cleavage of ester bonds for phenylbenzoate LCMs, the addition, oxidation and cleavage of alkynyl groups for biphenylethyne LCMs, and the cleavage/oxidation of chains attached to phenyls and the benzene ring opening for diphenyl/terphenyls LCMs. Most photolysis products remained toxic to aquatic organisms to some degree. Additionally, two quantitative structure-activity relationship models for predicting kobs of LCMs in methanol and n-hexane were developed, and employed to predict kobs of 93 LCMs to fill the kobs data gap in systems mimicking leaf surfaces. These results can be helpful for evaluating the fate and risk of LCMs in environments with high content of organic phase.
Collapse
Affiliation(s)
- Yandong Yang
- Engineering Laboratory for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Xiangkun Jiang
- Engineering Laboratory for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yi Yang
- Engineering Laboratory for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Jia Wang
- Engineering Laboratory for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yahui Zhao
- Engineering Laboratory for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Shanshan Lin
- Engineering Laboratory for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Jiao Qu
- Engineering Laboratory for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Yuanhui Zhao
- Engineering Laboratory for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Chao Li
- Engineering Laboratory for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
17
|
Liu Y, Kannan K. Concentrations, Profiles, and Potential Sources of Liquid Crystal Monomers in Residential Indoor Dust from the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12400-12408. [PMID: 38967412 DOI: 10.1021/acs.est.4c03131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Liquid crystal monomers (LCMs) are biphenyl- or cyclohexane-based organic chemicals used in electronic digital displays, and several of them possess bioaccumulative and toxic properties. Little is known about their occurrence in indoor dust from the United States. We analyzed 60 LCMs in 104 residential indoor dust samples collected from 16 states across the United States. Forty-seven of 60 LCMs were detected in dust samples at a median ∑LCM concentration of 402 ng/g (range: not detected to 4300 ng/g). Trans-4-propylcyclohexyl trans,trans-4'-propylbicyclohexyl-4-carboxylate (MPVBC) and (trans,trans)-4-fluorophenyl 4'-pentyl-[1,1'-bi(cyclohexane)]-4-carboxylate (FPeBC) were frequently detected in dust samples. We investigated potential sources of LCMs in dust by determining concentrations and profiles of these chemicals in smartphone screens, desktop and laptop computer monitors, and displays of other electronic devices and found that profiles in smartphones matched closely with those found in dust. The calculated median daily intake of ∑LCM through dust ingestion was 1.19 ng/kg bw/d for children, whereas that through dermal absorption was 0.18 ng/kg bw/d for adults in the United States.
Collapse
Affiliation(s)
- Yuan Liu
- New York State Department of Health, Wadsworth Center, Empire State Plaza, Albany, New York 12237, United States
| | - Kurunthachalam Kannan
- New York State Department of Health, Wadsworth Center, Empire State Plaza, Albany, New York 12237, United States
- Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York 12237, United States
| |
Collapse
|
18
|
Stadelmann B, Leonards PEG, Brandsma SH. A new class of contaminants of concern? A comprehensive review of liquid crystal monomers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174443. [PMID: 38964401 DOI: 10.1016/j.scitotenv.2024.174443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Liquid crystal monomers (LCMs) are a class of emerging contaminants of concern predicted to be persistent, bioaccumulative and toxic (PBT). Being one of the key components in liquid crystal displays (LCDs), the disposal of LCD containing devices is closely related to the emission of LCMs into the environment. LCMs have been detected in a wide range of environmental matrices including dust, sediment, soil, sewage leachate, and air, with concentration ranges between 17 and 2121 ng/g found in indoor residential dust. Furthermore, they have been detected on human skin at concentrations up to 2,071,000 ng/m2 and in the serum of e-waste dismantling workers, at concentrations ranging from 3.9 to 276 ng/mL. Despite the far-reaching contamination of these compounds, there is limited knowledge of their environmental behaviour, fate, and toxicity. Model predictions show that 297 of 330 LCMs are persistent and bioaccumulative compounds, with many more indicated as being toxic. However, current knowledge of their physicochemical and PBT properties is largely restricted to theoretical predictions and limited to a small number of experimental toxicity studies. As an emerging class of contaminants of concern, a lack of standardisation between studies was identified as a key challenge to advancing the state of knowledge of these compounds. Not only are harmonised analytical methods for their determination and quantification in environmental media yet to be established, but there is also a need for a universal abbreviation system. To further harmonise the reporting of data on LCMs we propose reporting the sum concentration of ten priority LCMs, selected on the basis detection frequency, toxicity and potential for human exposure. Of the ten priority LCMs five are fluorinated biphenyls and analogues, four are biphenyls/bicyclohexyls and analogues and one is a cyanobiphenyl.
Collapse
Affiliation(s)
- Bianca Stadelmann
- Institute Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam, PO Box 94240, 1090 GE Amsterdam, the Netherlands.
| | - Pim E G Leonards
- Amsterdam Institute for Life and Environment, Chemistry for Environment & Health, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Sicco H Brandsma
- Amsterdam Institute for Life and Environment, Chemistry for Environment & Health, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| |
Collapse
|
19
|
Ge Y, Cui J, Zhang L, Zhang S, Baqar M, Cheng Z. Informal E-waste dismantling activities accelerated the releasing of liquid crystal monomers (LCMs) in Pakistan: Occurrence, distribution, and exposure assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172987. [PMID: 38734084 DOI: 10.1016/j.scitotenv.2024.172987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Liquid crystal monomers (LCMs) are emerging contaminants characterized by their persistence, bioaccumulation potential, and toxicity. They have been observed in several environmental matrices associated with electronic waste (e-waste) dismantling activities, particularly in China. However, there is currently no information on the pollution caused by LCMs in other developing countries, such as Pakistan. In this study, we collected soil samples (n = 59) from e-waste dismantling areas with different functions in Pakistan for quantification analysis of 52 target LCMs. Thirty out of 52 LCMs were detected in the soil samples, with the concentrations ranging from 2.14 to 191 ng/g (median: 16.3 ng/g), suggesting widespread contamination by these emerging contaminants. Fluorinated LCMs (median: 10.4 ng/g, range: 1.27-116 ng/g) were frequently detected and their levels were significantly (P < 0.05) higher than those of non-fluorinated LCMs (median: 6.11 ng/g, range: not detected (ND)-76.7 ng/g). The concentrations and profiles of the observed LCMs in the soil samples from the four functional areas varied. The informal dismantling of e-waste poses a potential exposure risk to adults and infants, with median estimated daily intake (EDI, ng/kg bw/day) values of 0.0420 and 0.1013, respectively. Calculation of the hazard quotient (HQ) suggested that some LCMs (e.g., ETFMBC (1.374) and EDFPB (1.257)) may pose potential health risks to occupational workers and their families. Considering the widespread contamination and risks associated with LCMs, we strongly recommend enhancing e-waste management and regulation in Pakistan.
Collapse
Affiliation(s)
- Yanhui Ge
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jingren Cui
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lianying Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
20
|
Wang F, Xiang L, Sze-Yin Leung K, Elsner M, Zhang Y, Guo Y, Pan B, Sun H, An T, Ying G, Brooks BW, Hou D, Helbling DE, Sun J, Qiu H, Vogel TM, Zhang W, Gao Y, Simpson MJ, Luo Y, Chang SX, Su G, Wong BM, Fu TM, Zhu D, Jobst KJ, Ge C, Coulon F, Harindintwali JD, Zeng X, Wang H, Fu Y, Wei Z, Lohmann R, Chen C, Song Y, Sanchez-Cid C, Wang Y, El-Naggar A, Yao Y, Huang Y, Cheuk-Fung Law J, Gu C, Shen H, Gao Y, Qin C, Li H, Zhang T, Corcoll N, Liu M, Alessi DS, Li H, Brandt KK, Pico Y, Gu C, Guo J, Su J, Corvini P, Ye M, Rocha-Santos T, He H, Yang Y, Tong M, Zhang W, Suanon F, Brahushi F, Wang Z, Hashsham SA, Virta M, Yuan Q, Jiang G, Tremblay LA, Bu Q, Wu J, Peijnenburg W, Topp E, Cao X, Jiang X, Zheng M, Zhang T, Luo Y, Zhu L, Li X, Barceló D, Chen J, Xing B, Amelung W, Cai Z, Naidu R, Shen Q, Pawliszyn J, Zhu YG, Schaeffer A, Rillig MC, Wu F, Yu G, Tiedje JM. Emerging contaminants: A One Health perspective. Innovation (N Y) 2024; 5:100612. [PMID: 38756954 PMCID: PMC11096751 DOI: 10.1016/j.xinn.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 05/18/2024] Open
Abstract
Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention. This review identifies the sources and impacts of emerging contaminants on planetary health, emphasizing the importance of adopting a One Health approach. Strategies for monitoring and addressing these pollutants are discussed, underscoring the need for robust and socially equitable environmental policies at both regional and international levels. Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China
| | - Martin Elsner
- Technical University of Munich, TUM School of Natural Sciences, Institute of Hydrochemistry, 85748 Garching, Germany
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangguo Ying
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Bryan W. Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA
- Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX, USA
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Damian E. Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Timothy M. Vogel
- Laboratoire d’Ecologie Microbienne, Universite Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Myrna J. Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bryan M. Wong
- Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, CA, USA
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Karl J. Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John’s, NL A1C 5S7, Canada
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiankui Zeng
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Haijun Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Changer Chen
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Concepcion Sanchez-Cid
- Environmental Microbial Genomics, UMR 5005 Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ali El-Naggar
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanran Huang
- Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | | | - Chenggang Gu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanpeng Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Natàlia Corcoll
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Daniel S. Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Kristian K. Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Sino-Danish Center (SDC), Beijing, China
| | - Yolanda Pico
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre - CIDE (CSIC-UV-GV), Road CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jianqiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Philippe Corvini
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Mao Ye
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Huan He
- Jiangsu Engineering Laboratory of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weina Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fidèle Suanon
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Laboratory of Physical Chemistry, Materials and Molecular Modeling (LCP3M), University of Abomey-Calavi, Republic of Benin, Cotonou 01 BP 526, Benin
| | - Ferdi Brahushi
- Department of Environment and Natural Resources, Agricultural University of Tirana, 1029 Tirana, Albania
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Syed A. Hashsham
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Marko Virta
- Department of Microbiology, University of Helsinki, 00010 Helsinki, Finland
| | - Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Louis A. Tremblay
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa 1142, New Zealand
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing 100083, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Willie Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, 3720 BA Bilthoven, The Netherlands
- Leiden University, Center for Environmental Studies, Leiden, the Netherlands
| | - Edward Topp
- Agroecology Mixed Research Unit, INRAE, 17 rue Sully, 21065 Dijon Cedex, France
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Taolin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, 04120 Almeria, Spain
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Wulf Amelung
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, 53115 Bonn, Germany
- Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yong-guan Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Andreas Schaeffer
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias C. Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, China
| | - James M. Tiedje
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
21
|
Yang Q, Zhou T, Liu Y, Weng J, Gao L, Liu Y, Xu M, Zhao B, Zheng M. Analysis of 78 trace liquid crystal monomers in air by gas chromatography coupled with triple quadrupole mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172459. [PMID: 38615780 DOI: 10.1016/j.scitotenv.2024.172459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Liquid crystal monomers (LCMs) comprise a class of organic pollutants that have garnered considerable attention because of their dioxin-like toxicity (i.e., modulation of genes) and presence in various environments. However, limited information about the identities, occurrence, and distribution of LCMs has highlighted an urgent need for a high-throughput and sensitive analytical method. In this study, we developed and validated a rapid, simple, sensitive method that involves minimal solvent consumption. The method was applied for the simultaneous detection and identification of 78 LCMs in atmospheric total suspended particulate samples (dae < 100 μm) using gas chromatography coupled with triple quadrupole mass spectrometry. The results showed high degrees of linearity with correlation coefficients >0.995 in the concentration range of 5.0-500 ng/mL. The instrumental detection limits ranged from 0.7 to 5.3 pg, and the method detection limits ranged from 0.1 to 0.9 pg/m3. The accuracy of the method was between 70 % and 130 % for most analytes, and the relative standard deviations of six replicates were <15 % at three levels of spiking (10, 50, and 200 ng/mL). The developed analytical method was applied to analyze real air particulate samples from Beijing, China. Overall, 45 LCMs ranged from 65.5 to 145.7 pg/m3, with a mean concentration of 92.5 pg/m3. Among them, (trans,trans)-4-propyl-4'-ethenyl-1,1'-bicyclohexane (PVB) was the most abundant, with an average concentration of 33.6 pg/m3. The total estimated daily intakes of LCMs for adults and children were 15.6 and 46.6 pg/kg bw/day, respectively. Accordingly, the method described herein is suitable for quantifying LCMs in atmospheric particulate samples. This study will be valuable for investigating LCM environmental occurrence, behaviors, and risk assessments.
Collapse
Affiliation(s)
- Qianling Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Yang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiyuan Weng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Feng JJ, Liao JX, Jiang QW, Mo L. Characteristic structures of liquid crystal monomers in EI-MS analysis and the potential application in suspect screening. CHEMOSPHERE 2024; 358:142210. [PMID: 38704041 DOI: 10.1016/j.chemosphere.2024.142210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Liquid crystal monomers (LCMs) are of emerging concern due to their ubiquitous presence in indoor and outdoor environments and their potential negative impacts on human health and ecosystems. Suspect screening approaches have been developed to monitor thousands of LCMs that could enter the environment, but an updated suspect list of LCMs is difficult to maintain given the rapid development of material innovations. To facilitate suspect screening for LCMs, in-silico mass fragmentation model and quantitative structure-activity relationship (QSPR) models were applied to predict electron ionization (EI) mass spectra of LCMs. The in-silico model showed limited predictive power for EI mass spectra, while the QSPR models trained with 437 published mass spectra of LCMs achieved an acceptable absolute error of 12 percentage points in predicting the relative intensity of the molecular ion, but failed to predict the mass-to-charge ratio of the base peak. A total of 41 characteristic structures were identified from an updated suspect list of 1606 LCMs. Multi-phenyl groups form the rigid cores of 85% of LCMs and produce 154 characteristic peaks in EI mass spectra. Monitoring the characteristic structures and fragments of LCMs may help identify new LCMs with the same rigid cores as those in the suspect list.
Collapse
Affiliation(s)
- Jing-Jing Feng
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China.
| | - Jian-Xiong Liao
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Qian-Wen Jiang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Ling Mo
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| |
Collapse
|
23
|
Wu J, Li R, Su G. Investigation of the Role of Distances from Liquid Crystal Monomer (LCM) Factories on Distribution of LCMs in Surface Soil Samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024:124285. [PMID: 38823544 DOI: 10.1016/j.envpol.2024.124285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/11/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Liquid crystal monomers (LCMs), which are commonly used in electronic device screens, have attracted attention as a potential class of emerging organic pollutants with persistent, bioaccumulative, and toxic (PBT) properties. This study involved the collection of 54 surface soil samples around one LC industrial park at increasing spatial distances within 1 km, 1-3 km, and 3-5 km from the center of the LC industrial park. Our observations revealed the presence of LCMs in 46 of 54 surface soil samples examined. Of the 39 target LCMs, 36 were identified, comprising 14 non-fluorinated and 22 fluorinated LCMs. Nine LCMs were detected at frequencies exceeding 50%, with 3bcHdFB exhibiting the highest detection frequency of 59% in the soil samples. The total LCM concentrations across the 46 sampling locations varied from 0.0072 to 17.24 ng/g dw, with the highest total concentrations at sampling sites within 1 km of the liquid crystal plant, suggesting that manufacturing processes may be a potential source for LCM release into the environment. Differences were observed in the LCM contamination patterns among the three sampling areas. Additionally, we observed a decrease in the median LCM concentration with increasing distance from the center of the LC industrial park. However, no statistically significant differences (p > 0.05) in LCM concentrations were observed across the three distances assessed in this study. This may be owing to the limited variety of target compounds analyzed and the limited number of soil samples. Our results emphasize that further studies on the emissions and pollution characteristics of LCMs during production are warranted.
Collapse
Affiliation(s)
- Jia Wu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Rongrong Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
24
|
He S, He J, Ma S, Wei K, Wu F, Xu J, Jin X, Zhao Y, Martyniuk CJ. Liquid crystal monomers disrupt photoreceptor patterning of zebrafish larvae via thyroid hormone signaling. ENVIRONMENT INTERNATIONAL 2024; 188:108747. [PMID: 38761427 DOI: 10.1016/j.envint.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Liquid crystal monomers (LCMs) are the raw material for liquid crystal displays, and their use is steadily increasing in electronic products. Recently, LCMs have been reported to be novel endocrine disrupting chemicals, however, the mechanisms underlying their potential for thyroid hormone disruption and visual toxicity are not well understood. In this study, six widely used fluorinated LCMs (FLCMs) were selected to determine putative mechanisms underlying FLCM-induced toxicity to the zebrafish thyroid and visual systems. Exposure to FLCMs caused damage to retinal structures and reduced cell density of ganglion cell layer, inner nuclear layer, and photoreceptor layer approximately 12.6-46.1%. Exposure to FLCMs also disrupted thyroid hormone levels and perturbed the hypothalamic-pituitary-thyroid axis by affecting key enzymes and protein in zebrafish larvae. A thyroid hormone-dependent GH3 cell viability assay supported the hypothesis that FLCMs act as thyroid hormone disrupting chemicals. It was also determined that FLCMs containing aliphatic ring structures may have a higher potential for T3 antagonism compared to FLCMs without an aliphatic ring. Molecular docking in silico suggested that FLCMs may affect biological functions of thyroxine binding globulin, membrane receptor integrin, and thyroid receptor beta. Lastly, the visual motor response of zebrafish in red- and green-light was significantly inhibited following exposure to FLCMs. Taken together, we demonstrate that FLCMs can act as thyroid hormone disruptors to induce visual dysfunction in zebrafish via several molecular mechanisms.
Collapse
Affiliation(s)
- Shan He
- College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jia He
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Siying Ma
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Kunyu Wei
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
25
|
Li H, Lyu B, Li J, Shi Z. Liquid crystal monomers (LCMs) in indoor residential dust from Beijing, China: occurrence and human exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29859-29869. [PMID: 38592626 DOI: 10.1007/s11356-024-33236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Liquid crystal monomers (LCMs) are widely used in electronic devices and emerging as an environmental pollutant, while their occurrence in indoor environments is still less studied. In this study, 32 out of 37 target LCMs were detected in indoor residential dust samples (n = 112) from Beijing, China. Concentrations of Σ32LCMs ranged from 17.8 to 197 ng/g, with a median value of 54.7 ng/g. Fluorinated biphenyls and analogs (FBAs) and cyanobiphenyls and analogs (CBAs), with median concentrations of 22.8 and 15.9 ng/g, respectively, were the main kinds of LCMs. Although 32 LCMs can be detected, four monomers with the highest contamination levels contributed to almost 70% of the total LCMs. Spearman correlation analysis found significant correlations among some monomers, which indicated that they might share similar sources in the residential environment. Estimated daily intakes (EDIs) of LCMs via indoor dust for Beijing residents were calculated, and the results showed that dust ingestion and dermal contact were both main intake pathways to LCMs, and younger people may face higher exposure to LCMs. A comparison to the results of China's total diet study showed that EDIs of LCMs via food consumption might be higher than that via dust intake, while health risks caused by exposure of LCMs for the general population, both through food and dust, were insignificant at present.
Collapse
Affiliation(s)
- Hui Li
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
- NHC Key Lab of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit of Food Safety, (No. 2019RU014), China National Center for Food Safety Risk Assessment (CFSA), Beijing, 100022, China
| | - Bing Lyu
- NHC Key Lab of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit of Food Safety, (No. 2019RU014), China National Center for Food Safety Risk Assessment (CFSA), Beijing, 100022, China
| | - Jingguang Li
- NHC Key Lab of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit of Food Safety, (No. 2019RU014), China National Center for Food Safety Risk Assessment (CFSA), Beijing, 100022, China
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
26
|
Zheng S, Wang J, Luo K, Gu X, Yuan G, Wei M, Yao Y, Zhao Y, Dai J, Zhang K. Comprehensive Characterization of Organic Light-Emitting Materials in Breast Milk by Target and Suspect Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5103-5116. [PMID: 38445973 DOI: 10.1021/acs.est.3c08961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Organic light-emitting materials (OLEMs) are emerging contaminants in the environment and have been detected in various environment samples. However, limited information is available regarding their contamination within the human body. Here, we developed a novel QuEChERS (quick, easy, cheap, effective, rugged, and safe) method coupled with triple quadrupole/high-resolution mass spectrometry to determine OLEMs in breast milk samples, employing both target and suspect screening strategies. Our analysis uncovered the presence of seven out of the 39 targeted OLEMs in breast milk samples, comprising five liquid crystal monomers and two OLEMs commonly used in organic light-emitting diode displays. The cumulative concentrations of the seven OLEMs in each breast milk sample ranged from ND to 1.67 × 103 ng/g lipid weight, with a mean and median concentration of 78.76 and 0.71 ng/g lipid weight, respectively, which were higher compared to that of typical organic pollutants such as polychlorinated biphenyls and polybrominated diphenyl ethers. We calculated the estimated daily intake (EDI) rates of OLEMs for infants aged 0-12 months, and the mean EDI rates during lactation were estimated to range from 30.37 to 54.89 ng/kg bw/day. Employing a suspect screening approach, we additionally identified 66 potential OLEMs, and two of them, cholesteryl hydrogen phthalate and cholesteryl benzoate, were further confirmed using pure reference standards. These two substances belong to cholesteric liquid crystal materials and raise concerns about potential endocrine-disrupting effects, as indicated by in silico predictive models. Overall, our present study established a robust method for the identification of OLEMs in breast milk samples, shedding light on their presence in the human body. These findings indicate human exposure to OLEMs that should be further investigated, including their health risks.
Collapse
Affiliation(s)
- Shuping Zheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jingsheng Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kai Luo
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoxia Gu
- Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Guanxiang Yuan
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Meiting Wei
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yao Yao
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Longgang Maternity and Child Institute, Shantou University Medical College, Shenzhen 518172, Guangdong, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
27
|
Zhang R, Zhang X, Zhang Q, Li Y, Wang Y, Xu J, Cheng Z, Chen H, Yao Y, Sun H. Heterogeneous Photodegradation Behavior of Liquid Crystal Monomers in Dust: Quantitative Structure-Activity Relationship and Product Identification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3908-3918. [PMID: 38329000 DOI: 10.1021/acs.est.3c04753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The heterogeneous photodegradation behavior of liquid crystal monomers (LCMs) in standard dust (standard reference material, SRM 2583) and environmental dust was investigated. The measured photodegradation ratios for 23 LCMs in SRM and environmental dust in 12 h were 11.1 ± 1.8 to 23.2 ± 1.1% and 8.7 ± 0.5 to 24.0 ± 2.8%, respectively. The degradation behavior of different LCM compounds varied depending on their structural properties. A quantitative structure-activity relationship model for predicting the degradation ratio of LCMs in SRM dust was established, which revealed that the molecular descriptors related to molecular polarizability, electronegativity, and molecular mass were closely associated with LCMs' photodegradation. The photodegradation products of the LCM compound 4'-propoxy-4-biphenylcarbonitrile (PBIPHCN) in dust, including •OH oxidation, C-O bond cleavage, and ring-opening products, were identified by nontarget analysis, and the corresponding degradation pathways were suggested. Some of the identified products, such as 4'-hydroxyethoxy-4-biphenylcarbonitrile, showed predicted toxicity (with an oral rat lethal dose of 50%) comparable to that of PBIPHCN. The half-lives of the studied LCMs in SRM dust were estimated at 32.2-82.5 h by fitting an exponential decay curve to the observed photodegradation data. The photodegradation mechanisms of LCMs in dust were revealed for the first time, enhancing the understanding of LCMs' environmental behavior and risks.
Collapse
Affiliation(s)
- Ruiqi Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xiao Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yongcheng Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Jiaping Xu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
28
|
Xie JF, Wei GL, Zeng LX, Liu LY. Liquid crystal monomers in soils near the e-waste recycling site and liquid crystal display manufacturer: Exponential decrease with distance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168428. [PMID: 37972771 DOI: 10.1016/j.scitotenv.2023.168428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Liquid crystal monomers (LCMs) have been recognized as contaminants of emerging concerns. E-waste recycling sites and liquid crystal displays (LCDs) manufacturers are supposed to be critical sources. However, information regarding LCM contaminations in soils surrounding these sites are currently unavailable. In this study, soil samples were collected from two distinct areas in South China: e-waste recycling area (n = 36) and LCD manufacturer (n = 41), and 60 target LCMs (including 13 biphenyl and analogs (BAs), 10 cyanobiphenyl and analogs (CBAs), and 37 fluorinated biphenyl and analogs (FBAs)) were determined. The concentrations of LCMs in the soils from near the e-waste recycling area (0.32-18 ng/g, average: 4.2 ng/g) were higher than those surrounding the LCD manufacturer (ND - 7.2 ng/g, average: 1.5 ng/g). The compositional profiles of LCMs in soil samples from these two typical point sources were considerably different. The concentrations of FBAs exponentially decreased with distance from the e-waste recycling park, by >90 % within 2 km. The levels of BAs exhibited a similar exponential decrease with distance from the LCD manufacturer. The inventories of LCMs were estimated to be 21.0 kg in the e-waste recycling area and 10.8 kg in the LCD manufacturer area. Remarkably, the inventory of LCMs in soils from e-waste recycling area was one order of magnitude larger than that of hexabromocyclododecanes (HBCDs) in the same region, and 0.2 to 20 times the annual global emissions of LCMs from discarded LCD panels. More studies are required to elucidate the environmental occurrence, behavior, and fate of LCMs in multimedia environment surrounding typical point sources.
Collapse
Affiliation(s)
- Jiong-Feng Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Gao-Ling Wei
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Li-Xi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
29
|
Lin H, Li X, Qin X, Cao Y, Ruan Y, Leung MKH, Leung KMY, Lam PKS, He Y. Particle size-dependent and route-specific exposure to liquid crystal monomers in indoor air: Implications for human health risk estimations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168328. [PMID: 37926258 DOI: 10.1016/j.scitotenv.2023.168328] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
In indoor environments, liquid crystal monomers (LCMs) released from display devices is a significant concern, necessitating a comprehensive investigation into their distribution behaviors and potential health risks. Herein, we examined various LCMs in educational and workplace air and compared their associated health risks through inhalation and dermal absorption routes. 4-propyl-4'-vinylbicyclohexyl (3VbcH) and 4,4'-bis(4-propylcyclohexyl) biphenyl (b3CHB) with median concentrations of 101 and 1460 pg m-3, were the predominant LCMs in gaseous and particulate phases, respectively. Composition and concentration of LCMs differed substantially between sampling locations due to the discrepancy in the quantity, types, and brands of electronic devices in each location. Three models were further employed to estimate the gas-particle partitioning of LCMs and compared with the measured data. The results indicated that the HB model exhibited the best overall performance, while the LMY model provided a good fit for LCMs with higher log Koa (>12.48). Monte Carlo simulation was used to estimate and compared the probabilistic daily exposure dose and potential health risks. Inhalation exposure of LCMs was significantly greater than the dermal absorption by approximately 1-2 orders of magnitude, implying that it was the primary exposure route of human exposure to airborne LCMs. However, certain LCMs exhibited comparable or higher exposure levels via the dermal absorption route due to the significant overall permeability coefficient. Furthermore, the particle size was discovered to impact the daily exposure dose, contingent on the particle mass-transfer coefficients and accumulation of LCMs on diverse particle sizes. Although the probabilistic non-carcinogenic risks of LCMs were relatively low, their chronic effects on human beings merit further investigations. Overall, this study provides insights into the contamination and potential health risks of LCMs in indoor environments, underscoring the importance of considering particle sizes and all possible exposure pathways in estimating human health risks caused by airborne organic contaminants.
Collapse
Affiliation(s)
- Huiju Lin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xinxing Li
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Xian Qin
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yaru Cao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yuefei Ruan
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Michael K H Leung
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Kenneth M Y Leung
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Paul K S Lam
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China; Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
30
|
Zhu X, Yu Y, Meng W, Huang J, Su G, Zhong Y, Yu X, Sun J, Jin L, Peng P, Zhu L. Aerobic Microbial Transformation of Fluorinated Liquid Crystal Monomer: New Pathways and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:510-521. [PMID: 38100654 DOI: 10.1021/acs.est.3c04256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Fluorinated liquid crystal monomers (FLCMs) have been suggested as emerging contaminants, raising global concern due to their frequent occurrence, potential toxic effects, and endurance capacity in the environment. However, the environmental fate of the FLCMs remains unknown. To fill this knowledge gap, we investigated the aerobic microbial transformation mechanisms of an important FLCM, 4-[difluoro(3,4,5-trifluorophenoxy)methyl]-3, 5-difluoro-4'-propylbiphenyl (DTMDPB), using an enrichment culture termed as BG1. Our findings revealed that 67.5 ± 2.1% of the initially added DTMDPB was transformed in 10 days under optimal conditions. A total of 14 microbial transformation products obtained due to a series of reactions (e.g., reductive defluorination, ether bond cleavage, demethylation, oxidative hydroxylation and aromatic ring opening, sulfonation, glucuronidation, O-methylation, and thiolation) were identified. Consortium BG1 harbored essential genes that could transform DTMDPB, such as dehalogenation-related genes [e.g., glutathione S-transferase gene (GST), 2-haloacid dehalogenase gene (2-HAD), nrdB, nuoC, and nuoD]; hydroxylating-related genes hcaC, ubiH, and COQ7; aromatic ring opening-related genes ligB and catE; and methyltransferase genes ubiE and ubiG. Two DTMDPB-degrading strains were isolated, which are affiliated with the genus Sphingopyxis and Agromyces. This study provides a novel insight into the microbial transformation of FLCMs. The findings of this study have important implications for the development of bioremediation strategies aimed at addressing sites contaminated with FLCMs.
Collapse
Affiliation(s)
- Xifen Zhu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Weikun Meng
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yin Zhong
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Ling Jin
- Department of Civil and Environmental Engineering and Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
31
|
Yao LL, Wang JL, Xu RF, Zhu M, Ma Y, Tang B, Lu QY, Cai FS, Yan X, Zheng J, Yu YJ. Occurrence of liquid crystal monomers in indoor and outdoor air particle matters (PM 10): Implications for human exposure indoors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166964. [PMID: 37699486 DOI: 10.1016/j.scitotenv.2023.166964] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Liquid crystal monomers (LCMs) are potentially persistent, bioaccumulating, and toxic substances. However, limited data are available on the occurrence of LCMs in indoor and outdoor air particle matter (PM10) in residential areas. Herein, residential areas near an e-waste dismantling center (Guiyu Town, Shantou City), as well as areas away from the e-waste site (Jiedong District, Jieyang City) were selected as the sampling areas. PM10 was collected from the indoor environments of Guiyu (IGY) and Jieyang (IJY), as well as those from the outdoor environments (OGY and OJY) using the high-volume air samplers (TH-10000C). The levels of 57 LCMs in PM10 were analyzed, and the highest concentrations of LCMs were found in IGY (0.970-1080 pg/m3), followed by IJY (2.853-455 pg/m3), OGY (0.544-116 pg/m3) and OJY (0.258-35.8 pg/m3). No significant difference was observed for LCM levels in indoor PM10 between the two areas (p > 0.05), which were significantly higher than those in outdoors (p < 0.05), indicating that the release of electronic products in general indoor environments is a source of LCMs that cannot be ignored. The compositions of LCMs in outdoors were not consistent with those of indoors. The correlation analysis of individual LCMs suggested potential different sources to the LCMs in indoor and outdoor environments. The median daily intake values of Σ46LCMs via inhalation were estimated as 0.440, 1.46 × 10-2, 0.170 and 1.19 × 10-2 ng/kg BW/day for adults, and as 2.27, 2.60 × 10-2, 0.880 and 2.10 × 10-2 ng/kg BW/day for toddlers, respectively, indicating much higher exposure doses of LCMs indoors compared with the outdoors, and much higher doses for toddlers compared with adults (p < 0.05). These results reveal the potentially adverse effects of LCMs on vulnerable populations, such as toddlers, in indoor environments.
Collapse
Affiliation(s)
- Li-Li Yao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Jun-Li Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Rong-Fa Xu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Ming Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yan Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Qi-Yuan Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Feng-Shan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Xiao Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China.
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| |
Collapse
|
32
|
Zhan Y, Jin Q, Lin H, Tao D, Law LY, Sun J, He Y. Occurrence, behavior and fate of liquid crystal monomers in municipal wastewater. WATER RESEARCH 2023; 247:120784. [PMID: 37950950 DOI: 10.1016/j.watres.2023.120784] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/13/2023]
Abstract
Liquid crystal monomers (LCMs), the essential substances used in the display screen of electronic devices, have been proposed as a class of emerging chemicals of concern. Despite their detection in various environmental matrices, little is known about the presence of LCMs in municipal sewage systems. This study aimed to investigate the occurrence, distribution, and fate of 64 LCMs released into the aqueous environment from a municipal wastewater treatment plant (WWTP) in Hong Kong, China. In total 14 LCMs were detected in WWTP samples. Specifically, the Σ14LCMs concentrations in crude influent, final effluent, and final sludge were found to be 16.8 ± 0.3 ng/L, 2.71 ± 0.05 ng/L, and 19.2 ± 1.0 ng/g dry weight, respectively. Among them, 10 fluorinated LCMs (F-LCMs) were determined to be present at concentrations of 8.90 ± 0.10 ng/L, 1.69 ± 0.05 ng/L, and 9.94 ± 1.00 ng/g dry weight, respectively. The predominant non-fluorinated LCMs (NF-LCMs) detected in all samples were 3OCB and EPhEMOB, while 2OdF3B was the dominant F-LCM. The overall removal rate of total LCMs was 83.8 ± 0.3 %, with 25.4 ± 4.8 % being removed by biodegradation and UV treatment. Compared to NF-LCMs, F-LCMs were more resistant to biodegradation. Despite the significant removal of LCMs through WWTP, the remaining LCMs in final effluent could result in an annual emission of 3.04 kg of total LCMs from the population of Hong Kong. This study provides the first evidence of LCMs contamination in municipal wastewater, possibly arising from routine electronic devices usage. Further investigation is needed to elucidate the potential impact of LCMs emission via WWTP effluent on the aquatic receiving ecosystem.
Collapse
Affiliation(s)
- Yuting Zhan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Qianqian Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Huiju Lin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Danyang Tao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Lok Yung Law
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Jiaji Sun
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
33
|
Ge J, Du B, Shen M, Feng Z, Zeng L. A review of liquid crystal monomers: Environmental occurrence, degradation, toxicity, and human exposure of an emerging class of E-waste pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122267. [PMID: 37499966 DOI: 10.1016/j.envpol.2023.122267] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Liquid crystal monomers (LCMs) are a class of organic compounds with diphenyl or dicyclohexane as the skeleton structure, which are widely used in the manufacturing of liquid crystal displays. They are recognized as novel organic compounds with persistence, bioaccumulation, toxicity, and potential for long-range transport. LCMs are inevitably released into the environment throughout the life cycle of electronic products, and their presence has been found in various abiotic matrixes (air, dust, sediment, leachate, soil) and biotic matrixes (aquatic organisms, human serum, and human skin wipe). Given that studies on LCMs are still in their infancy, this review comprehensively summarizes the extensive literature data on LCMs and identifies key knowledge gaps and future research needs. The physicochemical properties, production, and usage of LCMs are described. Their environmental distribution, degradation, toxicity, and human exposure are also discussed based on the available data and results. Existing data show that LCMs have large-scale environmental pollution and may pose potential ecological and health risks, but it is still insufficient to accurately assess their risks due to the lack of knowledge on LCMs in many areas, such as global contamination trend, environmental behavior, toxic effects, and human exposure assessment. We believe that future studies of LCMs need to investigate LCMs pollution on a large geographic scale, explore their sources, behavior, and fate in the environment, and assess their potential health hazards to organisms and humans.
Collapse
Affiliation(s)
- Jiali Ge
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Mingjie Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Zhiqing Feng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
34
|
Jin Q, Fan Y, Lu Y, Zhan Y, Sun J, Tao D, He Y. Liquid crystal monomers in ventilation and air conditioning dust: Indoor characteristics, sources analysis and toxicity assessment. ENVIRONMENT INTERNATIONAL 2023; 180:108212. [PMID: 37738697 DOI: 10.1016/j.envint.2023.108212] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/25/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Indoor dust contaminated with liquid crystal monomers (LCMs) released from various commercial liquid crystal display (LCD) screens may pose environmental health risks to humans. This study aimed to investigate the occurrence of 64 LCMs in ventilation and air conditioning filters (VACF) dust, characterize their composition profiles, potential sources, and associations with indoor characteristics, and assess their in vitro toxicity using the human lung bronchial epithelial cells (BEAS-2B). A total of 31 LCMs with concentrations (ΣLCMs) ranging from 43.7 ng/g to 448 ng/g were detected in the collected VACF dust. Additional analysis revealed the potential interactions between indoor environmental conditions and human exposure risks associated with the detected LCMs in VACF dust. The service area and working time of the ventilation and air conditioning system, and the number of indoor LCD screens were positively correlated with the fluorinated ΣLCMs in VACF dust (r = 0.355 ∼ 0.511, p < 0.05), while the associations with the non-fluorinated ΣLCMs were not found (p > 0.05), suggesting different environmental behavior and fates of fluorinated and non-fluorinated LCMs in the indoor environment. Four main indoor sources of LCMs (i.e., computer (37.1%), television (28.3%), Brand A smartphone (21.2%) and Brand S smartphone (13.4%)) were identified by positive matrix factorization-multiple linear regression (PMF-MLR). Exposure to 14 relatively frequently detected LCMs, individually and in the mixture, induced significant oxidative stress in BEAS-2B cells. Among them, non-fluorinated LCMs, specifically 3cH2B and MeP3bcH, caused dominant decreased cell viability. This study provides new insights into the indoor LCMs pollution and the associated potential health risks due to the daily use of electronic devices.
Collapse
Affiliation(s)
- Qianqian Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yinzheng Fan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Yichun Lu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Yuting Zhan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Jiaji Sun
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Danyang Tao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
35
|
Cheng Z, Zhang S, Su H, Zhao H, Su G, Fang M, Wang L. Emerging organic contaminants of liquid crystal monomers: Environmental occurrence, recycling and removal technologies, toxicities and health risks. ECO-ENVIRONMENT & HEALTH 2023; 2:131-141. [PMID: 38074986 PMCID: PMC10702903 DOI: 10.1016/j.eehl.2023.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 09/19/2024]
Abstract
Liquid crystal monomers (LCMs) are a family of synthetic organic chemicals applied in the liquid crystal displays (LCDs) of various electric and electronic products (e-products). Due to their unique properties (i.e., persistence, bioaccumulative potential, and toxicity) and widespread environmental distributions, LCMs have attracted increasing attention across the world. Recent studies have focused on the source, distribution, fate, and toxicity of LCMs; however, a comprehensive review is scarce. Herein, we highlighted the persistence and bioaccumulation potential of LCMs by reviewing their physical-chemical properties. The naming rules were suggested to standardize the abbreviations regarding LCMs. The sources and occurrences of LCMs in different environmental compartments, including dust, sediment, soil, leachate, air and particulate, human serum, and biota samples, were reviewed. It is concluded that the LCMs in the environment mainly originate from the usage and disassembly of e-products with LCDs. Moreover, the review of the potential recycling and removal technologies regarding LCMs from waste LCD panels suggests that a combination of natural attenuation and physic-chemical remediation should be developed for LCMs remediations in the future. By reviewing the health risks and toxicity of LCMs, it is found that a large gap exists in their toxicity and risk to organisms. The fate and toxicity investigation of LCMs, and further investigations on the effects on the human exposure risks of LCMs to residents, especially to occupational workers, should be considered in the future.
Collapse
Affiliation(s)
- Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Huijun Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haoduo Zhao
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599, USA
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
36
|
Hou S, Liu Y, Chen T, Zhou D, Zhang M, Li Y, Bai Y, Zheng S, Yang S, Zhang G, Xu H. Tunable Fluorine-Functionalized Scholl-Coupled Microporous Polymer for the Selective Adsorption and Ultrasensitive Analysis of Environmental Liquid-Crystal Monomers. Anal Chem 2023. [PMID: 37433191 DOI: 10.1021/acs.analchem.3c00182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Liquid-crystal monomers (LCMs), especially fluorinated biphenyls and analogues (FBAs), are identified to be an emerging generation of persistent organic pollutants. However, there is a dearth of information about their occurrence and distribution in environmental water and lacustrine soil samples. Herein, a series of fluorine-functionalized Scholl-coupled microporous polymers (FSMP-X, X = 1-3) were designed and synthesized for the highly efficient and selective enrichment of FABs. Their hydrophobicity, porosity, chemical stability, and adsorption performance (capacity, rate, and selectivity) were regulated preciously. The best-performing material (FSMP-2) was employed as the on-line fluorous solid-phase extraction (on-line FSPE) adsorbent owing to its high adsorption capacity (313.68 mg g-1), fast adsorption rate (1.05 g h-1), and specific selectivity for FBAs. Notably, an enrichment factor of up to 590.2 was obtained for FSMP-2, outperforming commercial C18 (12.6-fold). Also, the underlying adsorption mechanism was uncovered by density functional theory calculations and experiments. Based on this, a novel and automated on-line FSPE-high-performance liquid chromatography method was developed for ultrasensitive (detection limits: 0.0004-0.0150 ng mL-1) and low matrix effect (73.79-113.3%) determination of LCMs in lake water and lacustrine soils. This study offers new insight into the highly selective quantification of LCMs and the first evidence for their occurrence and distribution in these environmental samples.
Collapse
Affiliation(s)
- Shenghuai Hou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ying Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Tiantian Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Dandan Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Manlin Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yan Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yuxuan Bai
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shuang Zheng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ganbing Zhang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
37
|
Jin Q, Yu J, Fan Y, Zhan Y, Tao D, Tang J, He Y. Release Behavior of Liquid Crystal Monomers from Waste Smartphone Screens: Occurrence, Distribution, and Mechanistic Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37369363 DOI: 10.1021/acs.est.2c09602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Liquid crystal display (LCD) screens can release many organic pollutants into the indoor environment, including liquid crystal monomers (LCMs), which have been proposed as a novel class of emerging pollutants. Knowing the release pathways and mechanisms of LCMs from various components of LCD screens is important to accurately assess the LCM release and reveal their environmental transport behavior and fate in the ambient environment. A total of 47, 43, and 33 out of 64 target LCMs were detected in three disassembled parts of waste smartphone screens, including the LCM layer (LL), light guide plate (LGP), and screen protector (SP), respectively. Correlation analysis confirmed LL was the source of LCMs detected in LGP and SP. The emission factors of LCMs from waste screen, SP, and LGP parts were estimated as 2.38 × 10-3, 1.36 × 10-3, and 1.02 × 10-3, respectively. A mechanism model was developed to describe the release behaviors of LCMs from waste screens, where three characteristics parameters of released LCMs, including average mass proportion (AP), predicted subcooled vapor pressures (PL), and octanol-air partitioning coefficients (Koa), involving coexistence of absorption and adsorption mechanisms, could control the diffusion-partitioning. The released LCMs in LGP could reach diffusion-partition equilibrium more quickly than those in SP, indicating that LCM release could be mainly governed through SP diffusions.
Collapse
Affiliation(s)
- Qianqian Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Jianxin Yu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Yinzheng Fan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Yuting Zhan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Danyang Tao
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
38
|
Yang R, Wang X, Niu Y, Chen X, Shao B. Fluorinated liquid-crystal monomers in paired breast milk and indoor dust: A pilot prospective study. ENVIRONMENT INTERNATIONAL 2023; 176:107993. [PMID: 37263127 DOI: 10.1016/j.envint.2023.107993] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Fluorinated liquid-crystal monomers (FLCMs), one class of emerging persistent, bioaccumulative and toxic (PBT) compounds, are widely used in liquid-crystal displays (LCDs). As a result, they have been found in the environment and serum from occupational workers. However, little is known about their occurrence in non-occupational exposing populations. Herein, we provided an evaluation of the health risks of FLCMs for infants based on breastfeeding exposure and dust ingestion. The detection frequencies (DF) of FLCMs in indoor dust and breast milk was 100 %, with median concentrations of 12.00 ng/g dry weight (dw) and 133.40 ng/g lipid weight (lw), respectively. 1-butoxy-2,3-difluoro-4-(trans-4-propylcyclohexyl)benzene (BDPrB) was the predominant pollutant in indoor dust and human breast milk. Significant positive correlations were observed between the dust concentrations of seven FLCMs including BDPrB, and their breast milk concentrations (r = 0.275-0.660, P < 0.05). Further, associations were also found in some demographic and behavioral factors and concentrations of some FLCMs (P < 0.05). The highest EDI of ∑FLCMs was observed for infants who were < 1 month of age, with a median breast milk intake of 700.35 ng/kg bw/day, in which 1-ethoxy-2,3-difluoro-4-(trans-4-propylcyclohexyl)benzene (EDPrB), BDPrB, and 4'-[(trans, trans)-4'-butyl[1,1'-bicyclohexyl]-4-yl]-3,4-difluoro-1,1'-biphenyl (BBDB) collectively contributed 94.4 % of the total EDIs. Notably, the lactational intake of FLCMs was higher than that of some environmental pollutants (EPs). Overall, our results suggest higher exposure risks for infants and breastfeeding is the predominant exposure route for daily intake of FLCMs for infants.
Collapse
Affiliation(s)
- Runhui Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinyi Wang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Xianggui Chen
- School of Food and Biological Engineering, Xihua University, Chengdu 610039, China
| | - Bing Shao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; School of Food and Biological Engineering, Xihua University, Chengdu 610039, China.
| |
Collapse
|
39
|
Yang R, Wang X, Gao Q, Sang C, Zhao Y, Niu Y, Shao B. Dietary Exposure and Health Risk of the Emerging Contaminant Fluorinated Liquid-Crystal Monomers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6309-6319. [PMID: 37010985 DOI: 10.1021/acs.est.3c00322] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Fluorinated liquid-crystal monomers (FLCMs) widely used in liquid crystal displays are considered to be a new generation of persistent, bioaccumulative, and toxic contaminants. They have been widely detected in the environment. However, little is known about their occurrence in food and human dietary exposure until now. Herein, we provided an evaluation of dietary exposure and health risks of FLCMs in the Chinese adult population based on the fifth and sixth total diet studies (TDSs). The detection frequencies of FLCMs in the two surveys were 90.5 and 99.5%, with concentrations ranging from not detected ∼72.6 μg/kg wet weight (ww) and ND ∼74.7 μg/kg ww, respectively. All TDS samples contained the multiresidue of FLCMs. The mean estimated daily intakes (EDIs) of FLCMs were 172.86 and 163.10 ng/kg bw/day in the fifth and sixth TDS, respectively. Meats, vegetables, and cereals contributed the most to the EDI of FLCMs. According to the threshold of toxicological concern (TTC) method, the EDIs of 1-fluoro-4-[2-(4-propylphenyl)ethynyl]benzene (4.56 and 3.26 ng/kg bw/day) and 2-fluoro-4-[4'-propyl-1,1'-bi(cyclohexyl)-4-yl]phenyl trifluoromethyl ether (3.12 and 3.28 ng/kg bw/day) were above their TTC value (2.5 ng/kg bw/day), suggesting their potential health risk. This is the first comprehensive national dietary exposure assessment of FLCMs.
Collapse
Affiliation(s)
- Runhui Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinyi Wang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Qun Gao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Chenhui Sang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Bing Shao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
- School of Food and Biological Engineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
40
|
Zhang S, Cheng Z, Yang M, Guo Z, Zhao L, Baqar M, Lu Y, Wang L, Sun H. Percutaneous Penetration of Liquid Crystal Monomers (LCMs) by In Vitro Three-Dimensional Human Skin Equivalents: Possible Mechanisms and Implications for Human Dermal Exposure Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4454-4463. [PMID: 36867107 DOI: 10.1021/acs.est.2c07844] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid crystal monomers (LCMs) are indispensable materials in liquid crystal displays, which have been recognized as emerging persistent, bioaccumulative, and toxic organic pollutants. Occupational and nonoccupational exposure risk assessment suggested that dermal exposure is the primary exposure route for LCMs. However, the bioavailability and possible mechanisms of dermal exposure to LCMs via skin absorption and penetration remain unclear. Herein, we used EpiKutis 3D-Human Skin Equivalents (3D-HSE) to quantitatively assess the percutaneous penetration of nine LCMs, which were detected in e-waste dismantling workers' hand wipes with high detection frequencies. LCMs with higher log Kow and greater molecular weight (MW) were more difficult to penetrate through the skin. Molecular docking results showed that ABCG2 (an efflux transporter) may be responsible for percutaneous penetration of LCMs. These results suggest that passive diffusion and active efflux transport may be involved in the penetration of LCMs across the skin barrier. Furthermore, the occupational dermal exposure risks evaluated based on the dermal absorption factor suggested the underestimation of the continuous LCMs' health risks via dermal previously.
Collapse
Affiliation(s)
- Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ming Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zijin Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Lu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
41
|
Feng JJ, Sun XF, Zeng EY. Predicted health and environmental hazards of liquid crystal materials via quantitative structure-property relationship modeling. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130592. [PMID: 36580781 DOI: 10.1016/j.jhazmat.2022.130592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Liquid crystal materials (LCMs) are considered as emerging contaminants with high persistent and bioaccumulative potentials, but their toxicological effects are not well understood. To address this issue, a list of 1431 LCMs commercially available in the market was established through literature reviews and surveys of LCM suppliers. Toxicological properties of 221 target LCMs were derived from the Classification and Labeling Inventory by the European Chemicals Agency. More than 80 % of target LCMs likely pose adverse effects on human health or aquatic ecosystems. Two quantitative structure-property relationship (QSPR) models developed from the toxicological properties of LCMs achieved approximately 90 % accuracy in external data sets. The probability-based approach was more efficient in defining the applicability domain for the QSPR models than a range- or distance-based approach. The highest accuracy was achieved for chemicals within the probability-based applicability domain. The QSPR models were applied to predict health and environmental hazards of 1210 LCMs that had not been notified to the Classification and Labeling Inventory, and 301 and 94 LCMs were recognized as posing potential hazards to human health and the environment, respectively. The present study highlights the potential detrimental effects of LCMs and offers a specific in silico technique for screening hazardous LCMs.
Collapse
Affiliation(s)
- Jing-Jing Feng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xiang-Fei Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Research Center of Low Carbon Economy for Guangzhou Region, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
42
|
Zhong Y, Ren J, Li R, Xuan Y, Yao W, Yang Q, Gan Y, Yu S, Yuan J. Prediction of the Endocrine disruption profile of fluorinated biphenyls and analogues: An in silico study. CHEMOSPHERE 2023; 314:137701. [PMID: 36587920 DOI: 10.1016/j.chemosphere.2022.137701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Fluorinated biphenyls and their analogues (FBAs) are considered new persistent organic pollutants, but their endocrine-disrupting effects are still unknown. To fill this gap, the binding probability of 44 FBAs to different nuclear hormone receptors (NHRs) was predicted using Endocrine Disruptome. And molecular similarity and network toxicology analysis were used to strengthen the docking screening. The docking results showed that FBAs could have high binding potential for various NHRs, such as estrogen receptors β antagonism (ERβ an), liver X receptors α (LXRα), estrogen receptors α (ERα), and liver X receptors β (LXRβ). The similarity analysis found that the degree of overlap of the NHR repertoire was related to the Tanimoto coefficient of FBAs. Network toxicology verified a part of docking screening results and identified endocrine-disrupting pathways worthy of attention. This study found out potential endocrine-disrupting FBAs and their vulnerable, and developed a workflow that would leverage in silico approaches including molecular docking, similarity, and network toxicology for risk prioritization of potential endocrine-disrupting compounds.
Collapse
Affiliation(s)
- Yuyan Zhong
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jing Ren
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Rui Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yuxin Xuan
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Wu Yao
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Qianye Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yin Gan
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, PR China
| | - Shuling Yu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, PR China.
| | - Jintao Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
43
|
Li R, Ren K, Su H, Wei Y, Su G. Target and suspect analysis of liquid crystal monomers in soil from different urban functional zones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158408. [PMID: 36057313 DOI: 10.1016/j.scitotenv.2022.158408] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Recent studies have reported the occurrence of liquid crystal monomers (LCMs) in sediment, indoor dust, hand wipes, and human serum samples; however, information regarding their contamination status in soil is currently unavailable. The concentrations of 39 target LCMs were determined in n = 96 surface soil samples collected from five different urban functional zones including agricultural, scenic, industrial, commercial, and residential zones. We observed that 76 of 96 surface soil samples contained at least 19, 13, 16, 19, and 14 of the 39 target LCMs that were detectable in samples from agricultural, scenic, industrial, commercial, and residential zones, respectively. The LCMs in the samples from the agricultural zone exhibited the highest mean concentrations of 12.9 ng/g dry weight (dw), followed by those from commercial (5.23 ng/g dw), residential (3.30 ng/g dw), industrial (2.48 ng/g dw), and scenic zones (0.774 ng/g dw). Furthermore, strong and statistically significant (p < 0.05) correlations were observed for several pairs of LCMs (3cH2B vs. 5bcHdFB in the agricultural zone; 5bcHdFB vs. 2bcHdFB, 5bcHdFB vs. 3cH2B in the commercial zone; 5bcHdFB vs. 2bcHdFB in the industrial zone), indicating that they might have similar commercial applications and sources. Based on a newly established database containing 1173 LCMs, suspect screening was applied to discover other LCMs in these 96 soil samples using gas chromatograph coupled with quadrupole-time-of-flight mass spectrometry (GC-QTOF/MS). We tentatively identified 51 LCM formulas with 69 chemical structures. Collectively, this study provides the first evidence for the occurrence of LCMs in soil samples, and suggests that LCMs could be widely distributed across all five urban functional zones.
Collapse
Affiliation(s)
- Rongrong Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Kefan Ren
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Huijun Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yu Wei
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
44
|
Li Y, Zhang T, Cheng Z, Zhang Q, Yang M, Zhao L, Zhang S, Lu Y, Sun H, Wang L. Direct evidence on occurrence of emerging liquid crystal monomers in human serum from E-waste dismantling workers: Implication for intake assessment. ENVIRONMENT INTERNATIONAL 2022; 169:107535. [PMID: 36152360 DOI: 10.1016/j.envint.2022.107535] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Liquid crystal monomers (LCMs) are widely used chemicals and ubiquitous emerging organic pollutants in the environment, some of which have persistent, bio-accumulative, and toxic potentials. Elevated levels of LCMs have been found in the e-waste dismantling associated areas. However, information on their internal exposure bio-monitoring is scarce. For the first time, occurrences of LCMs were observed in the serum samples of occupational workers (n = 85) from an e-waste dismantling area in South China. Twenty-nine LCMs were detected in serum samples of the workers, with a median value of 35.2 ng/mL (range: 7.78-276 ng/mL). Eight noticed LCMs were found to have relatively high detection frequencies ranging from 52.9% to 96.5%. The correlation analysis of individual LCMs indicated potential common applications and similar sources to the LCMs in occupational workers. Fluorinated LCMs were identified as the predominant monomers in the workers. Additionally, the estimated daily intake of the LCMs in the occupational workers was significantly higher than those in residents from the reference areas (p < 0.05, Mann-Whitney U Test, median values: 1.46 ng/kg bw/day versus 0.40 ng/kg bw/day), indicating a substantially higher exposure level to e-waste dismantling workers.
Collapse
Affiliation(s)
- Yuhe Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Qianru Zhang
- Institute of Agriculture Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Ming Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Lu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|