1
|
Jangid H, Kumar G. Ecotoxicity of fungal-synthesized silver nanoparticles: mechanisms, impacts, and sustainable mitigation strategies. 3 Biotech 2025; 15:101. [PMID: 40160431 PMCID: PMC11953517 DOI: 10.1007/s13205-025-04266-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/08/2025] [Indexed: 04/02/2025] Open
Abstract
The review investigates the ecotoxicological implications of fungal-synthesized silver nanoparticles (AgNPs), focusing on their behavior, transformations, and impacts across aquatic and terrestrial ecosystems. Advanced techniques, such as Single-Particle ICP-MS and Nanoparticle Tracking Analysis, reveal the persistence and biotransformation of AgNPs, including silver ion (Ag⁺) release and reactive oxygen species (ROS) generation. The review highlights species-specific bio-accumulation pathways in algae, soil microbes, invertebrates, and vertebrates, along with the limited biomagnification potential within trophic levels. Long-term exposure to AgNPs leads to reduced soil fertility, altered microbial communities, and inhibited plant growth, raising significant ecological concerns. Sustainable mitigation strategies, including bioremediation and advanced filtration systems, are proposed to reduce the environmental risks of AgNPs. This comprehensive analysis provides a framework for future ecological studies and regulatory measures, balancing the technological benefits of fungal-synthesized AgNPs with their environmental safety.
Collapse
Affiliation(s)
- Himanshu Jangid
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411 India
| | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411 India
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
| |
Collapse
|
2
|
Sedlakova-Kadukova J, Sincak M, Demčakova V. Does the Silver Nanoparticles Production Route Affect the Proliferation of Antibiotic Resistance in Soil Ecosystem? Antibiotics (Basel) 2024; 14:15. [PMID: 39858301 PMCID: PMC11762139 DOI: 10.3390/antibiotics14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
INTRODUCTION Silver nanoparticles (AgNPs) are widely utilized for their exceptional antimicrobial properties, but concerns persist regarding their environmental impacts, particularly in soil and water ecosystems. This study compared the effects of chemically and biologically synthesized AgNPs and ionic silver on bacterial communities commonly present in soil and the proliferation of antibiotic resistance in the soil ecosystem. RESULTS AND DISCUSSION Biologically synthesized AgNPs exhibited the strongest antimicrobial activity, significantly reducing bacterial populations within a day, and demonstrated minimal impacts on the development of antibiotic resistance in long-term. Notably, resistance to ampicillin was lower by 72% in comparison with a control after 90 days in the presence of biologically produced AgNPs, while resistance to tetracycline and kanamycin dropped to nearly negligible levels. In contrast, chemically synthesized AgNPs and ionic silver substantially increased antibiotic resistance in long-term, particularly to ampicillin and chloramphenicol, where resistance levels were 11 to 13 times higher than the controls, respectively. Chemically synthesized AgNPs caused a gradual rise in resistance, while ionic silver induced consistently elevated resistance throughout the study. CONCLUSIONS These differences highlight the complex interplay between nanoparticle composition and bacterial adaptation. The findings suggest that biologically synthesized AgNPs are a promising environmentally friendly alternative, reducing bacterial resistance and mitigating the risks associated with silver-induced antibiotic resistance in soil ecosystems. They have greater potential for sustainable applications while addressing critical concerns about antimicrobial resistance and environmental safety.
Collapse
Affiliation(s)
- Jana Sedlakova-Kadukova
- Institute of Chemistry and Environmental Sciences, Faculty of Natural Sciences, Ss. Cyril and Methodius University in Trnava, Nam. J. Herdu 2, 917 01 Trnava, Slovakia;
- ALGAJAS s.r.o., Prazska 16, 040 11 Kosice, Slovakia
| | - Miroslava Sincak
- Institute of Chemistry and Environmental Sciences, Faculty of Natural Sciences, Ss. Cyril and Methodius University in Trnava, Nam. J. Herdu 2, 917 01 Trnava, Slovakia;
| | - Veronika Demčakova
- Faculty of Natural Science, Pavol Jozef Safarik University in Kosice, Srobarova 2, 041 54 Kosice, Slovakia;
| |
Collapse
|
3
|
Aminzai MT, Yildirim M, Yabalak E. Metallic nanoparticles unveiled: Synthesis, characterization, and their environmental, medicinal, and agricultural applications. Talanta 2024; 280:126790. [PMID: 39217711 DOI: 10.1016/j.talanta.2024.126790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Metallic nanoparticles (MNPs) have attracted great interest among scientists and researchers for years due to their unique optical, physiochemical, biological, and magnetic properties. As a result, MNPs have been widely utilized across a variety of scientific fields, including biomedicine, agriculture, electronics, food, cosmetics, and the environment. In this regard, the current review article offers a comprehensive overview of recent studies on the synthesis of MNPs (metal and metal oxide nanoparticles), outlining the benefits and drawbacks of chemical, physical, and biological methods. However, the biological synthesis of MNPs is of great importance considering the biocompatibility and biological activity of certain MNPs. A variety of characterization techniques, including X-ray diffraction, transmission electron microscopy, UV-visible spectroscopy, scanning electron microscopy, dynamic light scattering, atomic force microscopy, Fourier transform infrared spectroscopy, and others, have been discussed in depth to gain deeper insights into the unique structural and spectroscopic properties of MNPs. Furthermore, their unique properties and applications in the fields of medicine, agriculture, and the environment are summarized and deeply discussed. Finally, the main challenges and limitations of MNPs synthesis and applications, as well as their future prospects have also been discussed.
Collapse
Affiliation(s)
- Mohammad Tahir Aminzai
- Department of Organic Chemistry, Faculty of Chemistry, Kabul University, Kabul, Afghanistan
| | - Metin Yildirim
- Harran University, Faculty of Pharmacy, Department of Biochemistry, Şanlıurfa, Turkey
| | - Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, 33343, Mersin, Turkey; Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey.
| |
Collapse
|
4
|
Fernández-Marcos ML. Current Developments in Soil Ecotoxicology. TOXICS 2024; 12:734. [PMID: 39453154 PMCID: PMC11511362 DOI: 10.3390/toxics12100734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 09/28/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Ecotoxicology focuses on how chemicals affect organisms in the environment, with the ultimate goal of safeguarding the structure and function of ecosystems [...].
Collapse
Affiliation(s)
- Maria Luisa Fernández-Marcos
- Department of Soil Science and Agricultural Chemistry, Universidad de Santiago de Compostela, 27002 Lugo, Spain; ; Tel.: +34-982823119
- Institute of Agricultural Biodiversity and Rural Development, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
5
|
Wu J, Xiong L, Huang X, Li C, Li F, Wong JWC. Silver sulfide nanoparticles eliminate the stimulative effects of earthworms on nutrient uptake by soybeans in high organic matter soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174433. [PMID: 38960153 DOI: 10.1016/j.scitotenv.2024.174433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 06/03/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
A significant knowledge gap exists regarding the impact of soil organic matter on the bioavailability of Ag2S-NPs (environmentally relevant forms of Ag-NPs) in soil-earthworm-plant systems. This study used two soils with varying organic matter content, both with and without earthworms, to investigate the bioavailability of Ag2S-NPs. The findings revealed an 80 % increase in Ag bioaccessibility to soybeans in soils with high organic matter content compared to soils with low organic matter. Additionally, the presence of earthworms significantly increased Cl concentrations from 24.3-62.2 mg L-1 to 80.1-147.2 mg L-1, triggering the elevated bioavailability of Ag. Interestingly, Ag2S-NPs eliminated the stimulative effects of earthworms on plant nutrient uptake. In the presence of earthworms, the high organic matter soil amended with Ag2S-NPs exhibited lower concentrations of essential elements (Ca, Cu, Fe, K, and P) in plant tissues compared to soils without earthworms. Our study presents evidence of the transformation of Ag2S-NPs into Ag-NPs across various soil solutions, resulting in the formation of Ag nanoparticle complexes. Particularly noteworthy is the significant reduction in particle sizes in soils incubated with earthworms and high organic matter content, from 85.0 nm to 40.2 nm. Notably, in the rhizosphere soil, a decrease in the relative abundance of nutrient cycling-related phyla was observed, with reductions of 18.5 % for Proteobacteria and 30.0 % for Actinobacteriota. These findings offer valuable insights into the biological and biochemical consequences of Ag2S-NP exposure on earthworm-mediated plant nutrient acquisition.
Collapse
Affiliation(s)
- Jingtao Wu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - Lei Xiong
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia; Smart Water Affairs Research Center, Shenzhen University, Shenzhen 518000, China
| | - Xingyun Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Cui Li
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia; Northwestern Polytechnical University, Research Centre for Ecology and Environmental Sciences, Xi'an 710072, China
| | - Feng Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China; College of Chemistry & Biology and Environmental Engineering, Xiangnan University, Chenzhou 423043, Hunan, PR China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Jonathan W C Wong
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| |
Collapse
|
6
|
Orfei B, Moretti C, Scian A, Paglialunga M, Loreti S, Tatulli G, Scotti L, Aceto A, Buonaurio R. Combat phytopathogenic bacteria employing Argirium-SUNCs: limits and perspectives. Appl Microbiol Biotechnol 2024; 108:357. [PMID: 38822872 PMCID: PMC11144149 DOI: 10.1007/s00253-024-13189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Bacterial plant diseases are difficult to control as the durability of deployed control measures is thwarted by continuous and rapid changing of bacterial populations. Although application of copper compounds to plants is the most widespread and inexpensive control measure, it is often partially efficacious for the frequent appearance of copper-resistant bacterial strains and it is raising concerns for the harmful effects of copper on environment and human health. Consequently, European Community included copper compounds in the list of substances candidates for substitution. Nanotechnologies and the application of nanoparticles seem to respond to the need to find new very effective and durable measures. We believe that Argirium-SUNCs®, silver ultra nanoclusters with an average size of 1.79 nm and characterized by rare oxidative states (Ag2+/3+), represent a valid candidate as a nano-bactericide in the control of plant bacterial diseases. Respect to the many silver nanoparticles described in the literature, Argirium-SUNCs have many strengths due to the reproducibility of the synthesis method, the purity and the stability of the preparation, the very strong (less than 1 ppm) antimicrobial, and anti-biofilm activities. In this mini-review, we provide information on this nanomaterial and on the possible application in agriculture. KEY POINTS: • Argirium-SUNCs have strong antimicrobial activities against phytopathogenic bacteria. • Argirium-SUNCs are a possible plant protection product. • Argirium-SUNCs protect tomato plants against bacterial speck disease.
Collapse
Affiliation(s)
- Benedetta Orfei
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Chiaraluce Moretti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy.
| | - Anna Scian
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Michela Paglialunga
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Stefania Loreti
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Giuseppe Tatulli
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Luca Scotti
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Antonio Aceto
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Roberto Buonaurio
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
7
|
Ji C, E T, Cheng Y, Yang S, Chen L, Wang D, Wang Y, Li Y. Preparation of Mn modified waste dander biochar and its effect on soil carbon sequestration. ENVIRONMENTAL RESEARCH 2024; 247:118147. [PMID: 38220076 DOI: 10.1016/j.envres.2024.118147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
In order to reduce the mineralization of soil organic carbon (SOC) and enhance the ability of soil carbon sequestration. Mn-modified waste dander biochar (Mn-BC) was successfully prepared via impregnation and pyrolysis, and MnSO4 was formed on its surface. Mn-BC increases the carbon retention and reduces the emissions of CO2 and SO2 in way of forming CO, Mn-O-C bond and MnSO4. At the same time, the stability of the original biochar was reserved due to forming a conjugated structure (CC and pyridine-N bond), and the carbon sequestration content was increased to 25.63%. Importantly, the application of Mn-BC can directly regulate the transformation of microbial bacterial community and lead to create stable carbon dominant bacteria (Firmicutes). And the mineralization rate of SOC is reduced to 0.48 mg CO2/(g·d), together with an increased content of TOC (48.16%), thus the purpose of efficient carbon sequestration is achieved in soil.
Collapse
Affiliation(s)
- Cheng Ji
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Tao E
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China.
| | - Ying Cheng
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Shuyi Yang
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Liang Chen
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Daohan Wang
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Yuanfei Wang
- Liaoning Huadian Environmental Testing Co., LTD, Jinzhou, 121013, Liaoning, China
| | - Yun Li
- Chemistry & Chemical Engineering of College Yantai University, Yantai, 264005, China.
| |
Collapse
|
8
|
Geng H, Xu Y, Dai X, Yang D. Abiotic and biotic roles of metals in the anaerobic digestion of sewage sludge: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169313. [PMID: 38123094 DOI: 10.1016/j.scitotenv.2023.169313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Anaerobic digestion (AD) is a promising technique for sludge treatment and resource recovery. Metals are very important components of sludge and can have substantial effects on its complex nature and microbial activity. However, systematic reviews have not addressed how metals in sludge affect AD and how they can be regulated to improve AD. This paper comprehensively reviews the effects of metals on the AD of sludge from both abiotic and biotic perspectives. First, we introduce the contents and basic characteristics (e.g., chemical forms) of intrinsic metals in sewage sludge. Then, we summarise the main mechanism by which metals influence sludge properties and the methods for removing metals and thus improving AD. Next, we analyze the effects of both intrinsic and exogenous metals on the enzymes and microbial communities involved in anaerobic bioconversion, focusing on the types, critical concentrations and valence states of the metals. Finally, we propose ideas for future research on the roles of metals in the AD of sludge. In summary, this review systematically clarifies the roles of metals in the AD of sludge and provides a reference for improving AD by regulating these metals.
Collapse
Affiliation(s)
- Hui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
9
|
Jahan I, Matpan Bekler F, Tunç A, Güven K. The Effects of Silver Nanoparticles (AgNPs) on Thermophilic Bacteria: Antibacterial, Morphological, Physiological and Biochemical Investigations. Microorganisms 2024; 12:402. [PMID: 38399806 PMCID: PMC10892981 DOI: 10.3390/microorganisms12020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/19/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Since thermophilic microorganisms are valuable sources of thermostable enzymes, it is essential to recognize the potential toxicity of silver nanoparticles used in diverse industrial sectors. Thermophilic bacteria Geobacillus vulcani 2Cx, Bacillus licheniformis 3CA, Paenibacillus macerans 3CA1, Anoxybacillus ayderensis FMB1, and Bacillus paralicheniformis FMB2-1 were selected, and their MIC and MBC values were assessed by treatment with AgNPs in a range of 62.5-1500 μg mL-1. The growth inhibition curves showed that the G. vulcani 2Cx, and B. paralicheniformis FMB2-1 strains were more sensitive to AgNPs, demonstrating a reduction in population by 71.1% and 31.7% at 62.5 μg mL-1 and by 82.9% and 72.8% at 250 μg mL-1, respectively. TEM and FT-IR analysis revealed that AgNPs caused structural damage, cytoplasmic leakage, and disruption of cellular integrity. Furthermore, cell viability showed a significant decrease alongside an increase in superoxide radical (SOR; O2-) production. β-galactosidase biosynthesis decreased to 28.8% level at 500 μg mL-1 AgNPs for G. vulcani 2Cx, 32.2% at 250 μg mL-1 for A. ayderensis FMB1, and 38.8% only at 62.5 μg mL-1, but it was completely inhibited at 500 μg mL-1 for B. licheniformis 3CA. Moreover, B. paralicheniformis FMB2-1 showed a significant decrease to 11.2% at 125 μg mL-1. This study is the first to reveal the toxic effects of AgNPs on thermophilic bacteria.
Collapse
Affiliation(s)
- Israt Jahan
- Department of Health Care Services, Vocational School of Health Services, Mardin Artuklu University, 47100 Mardin, Türkiye;
| | - Fatma Matpan Bekler
- Department of Molecular Biology and Genetics, Faculty of Science, Dicle University, 21280 Diyarbakir, Türkiye;
| | - Ahmed Tunç
- Department of Interdisciplinary Nanotechnology, Graduate School of Natural and Applied Sciences, Dicle University, 21280 Diyarbakir, Türkiye;
| | - Kemal Güven
- Department of Molecular Biology and Genetics, Faculty of Science, Dicle University, 21280 Diyarbakir, Türkiye;
| |
Collapse
|
10
|
Samal D, Khandayataray P, Sravani M, Murthy MK. Silver nanoparticle ecotoxicity and phytoremediation: a critical review of current research and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8400-8428. [PMID: 38182947 DOI: 10.1007/s11356-023-31669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Silver nanoparticles (AgNPs) are widely used in various industries, including textiles, electronics, and biomedical fields, due to their unique optical, electronic, and antimicrobial properties. However, the extensive use of AgNPs has raised concerns about their potential ecotoxicity and adverse effects on the environment. AgNPs can enter the environment through different pathways, such as wastewater, surface runoff, and soil application and can interact with living organisms through adsorption, ingestion, and accumulation, causing toxicity and harm. The small size, high surface area-to-volume ratio, and ability to generate reactive oxygen species (ROS) make AgNPs particularly toxic. Various bioremediation strategies, such as phytoremediation, have been proposed to mitigate the toxic effects of AgNPs and minimize their impact on the environment. Further research is needed to improve these strategies and ensure their safety and efficacy in different environmental settings.
Collapse
Affiliation(s)
- Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Bhopal, Madhya Pradesh, India
| | - Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, 752057, Odisha, India
| | - Meesala Sravani
- Department of Computer Science and Engineering, GMR Institute of Technology, Rajam, 532127, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
11
|
Orzechowska A, Szymańska R, Sarna M, Żądło A, Trtílek M, Kruk J. The interaction between titanium dioxide nanoparticles and light can have dualistic effects on the physiological responses of plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13706-13721. [PMID: 38265580 DOI: 10.1007/s11356-024-31970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024]
Abstract
The model plant Arabidopsis thaliana was exposed to combined stress factors, i.e., titanium dioxide nanoparticles (TiNPs) and high light. The concentrations of TiNPs used for irrigation were 250, 500, and 1000 μg/mL. This study shows that TiNPs alter the morphology and nanomechanical properties of chloroplasts in A. thaliana, which leads to a decrease in membrane elasticity. We found that TiNPs contributed to a delay in the thermal response of A. thaliana under dynamic light conditions, as revealed by non-invasive thermal imaging. The thermal time constants of TiNP-treated plants under excessive light are determined, showing a shortening in comparison to control plants. The results indicate that TiNPs may contribute to an alleviation of temperature stress experienced by plants under exposure to high light. In this research, we observed a decline in photosystem II photochemical efficiency accompanied by an increase in energy dissipation upon exposure to TiNPs. Interestingly, concentrations exceeding 250 µg/mL TiNPs appeared to mitigate the effects of high light, as shown by reduced differences in the values of specific OJIP parameters (FV/FM, ABS/RC, DI0/RC, and Pi_Abs) before and after light exposure.
Collapse
Affiliation(s)
- Aleksandra Orzechowska
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059, Kraków, Poland.
| | - Renata Szymańska
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059, Kraków, Poland
| | - Michał Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Andrzej Żądło
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Department of Biophysics, Jagiellonian University Medical College, Św. Łazarza 16, 31-530, Kraków, Poland
| | - Martin Trtílek
- Photon Systems Instruments, Průmyslova 470, 664 24, Drásov, Czech Republic
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
12
|
Sharma S, Singh G, Wang Y, White JC, Xing B, Dhankher OP. Nanoscale sulfur alleviates silver nanoparticle toxicity and improves seed and oil yield in Soybean (Glycine max). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122423. [PMID: 37604392 DOI: 10.1016/j.envpol.2023.122423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Silver nanoparticles (AgNPs) are commonly used in many commercial products due to their antimicrobial properties, and their significant exposure in agricultural systems is anticipated. AgNPs accumulation in soil and subsequent uptake by plants can be harmful to plant growth and exposure to animals and humans through the food chain is a major concern. This study evaluated the potential protective role of nanosulfur (NS) and bulk sulfur (BS) at 200 and 400 mg/kg soil application in alleviating silver nanoparticle (AgNPs; 32 and 64 mg/kg) phytotoxicity to soybean [Glycine max (L) Merr.]. The treatments were added in the soil before soybean transplantation; growth, yield, nutrient, and silver accumulation were measured in the shoot, root, and seeds. Exposure to AgNPs significantly affected plant growth and yield, reducing nodule weight by 40%, fresh shoot weight by 66%, and seed yield by 68% when compared to controls. However, nanosulfur application in soil alleviated AgNPs toxicity, and importantly, this impact was nanoscale specific at the higher concentration because the benefits of corresponding bulk sulfur (BS) treatments were marginal. Specifically, nanosulfur at 400 mg/kg significantly increased seed yield (∼3-fold more than AgNP at 64 mg/kg) and shoot biomass (2.6-fold more than AgNP at 64 mg/kg) upon co-exposure with AgNPs, essentially alleviating AgNPs toxicity. Moreover, NS increased nodule mass by 3.5 times compared to AgNPs-treated plants, which was 170% greater than the Ag- and NS-free controls. Plants treated with NS with AgNPs co-exposure accumulated significantly less Ag in the shoots (∼80% reduction) and roots (∼95% reduction); no Ag contents were detected in seeds. These findings demonstrate the potential of sulfur, especially NS, as a sustainable soil amendment to reduce the accumulation and toxicity of AgNPs and as a valuable nano-enabled strategy to promote food safety and security.
Collapse
Affiliation(s)
- Sudhir Sharma
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| | - Gurpal Singh
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| | - Yi Wang
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA.
| |
Collapse
|
13
|
Iori V, Muzzini VG, Venditti I, Casentini B, Iannelli MA. Phytotoxic impact of bifunctionalized silver nanoparticles (AgNPs-Cit-L-Cys) and silver nitrate (AgNO 3) on chronically exposed callus cultures of Populus nigra L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116175-116185. [PMID: 37907823 PMCID: PMC10682225 DOI: 10.1007/s11356-023-30690-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
Owing to the unique physicochemical properties and the low manufacturing costs, silver nanoparticles (AgNPs) have gained growing interest and their application has expanded considerably in industrial and agricultural sectors. The large-scale production of these nanoparticles inevitably entails their direct or indirect release into the environment, raising some concerns about their hazardous aspects. Callus culture represents an important tool in toxicological studies to evaluate the impact of nanomaterials on plants and their potential environmental risk. In this study, we investigated the chronic phytotoxic effects of different concentrations of novel bifunctionalized silver nanoparticles (AgNPs-Cit-L-Cys) and silver nitrate (AgNO3) on callus culture of Populus nigra L., a pioneer tree species in the riparian ecosystem. Our results showed that AgNPs-Cit-L-Cys were more toxic on poplar calli compared to AgNO3, especially at low concentration (2.5 mg/L), leading to a significant reduction in biomass production, accompanied by a decrease in protein content, a significant increase in both lipid peroxidation level, ascorbate peroxidase (APX), and catalase (CAT) enzymatic activities. In addition, these findings suggested that the harmful activity of AgNPs-Cit-L-Cys might be correlated with their physicochemical properties and not solely attributed to the released Ag+ ions and confirmed that AgNPs-Cit-L-Cys phytoxicity is associated to oxidative stress.
Collapse
Affiliation(s)
- Valentina Iori
- Institute of Agricultural Biology and Biotechnology - National Research Council (IBBA-CNR), Strada Provinciale 35d, 9, 00010, Montelibretti, Rome, Italy.
| | - Valerio Giorgio Muzzini
- Research Institute On Terrestrial Ecosystems - National Research Council (IRET-CNR), Strada Provinciale 35d, 9, 00010, Montelibretti, Rome, Italy
| | - Iole Venditti
- Department of Sciences, University of Roma Tre, Via Della Vasca Navale 79, 00146, Rome, Italy
| | - Barbara Casentini
- Water Research Institute - National Research Council (IRSA-CNR), Strada Provinciale 35d, 9, 00010, Montelibretti, Rome, Italy
| | - Maria Adelaide Iannelli
- Institute of Agricultural Biology and Biotechnology - National Research Council (IBBA-CNR), Strada Provinciale 35d, 9, 00010, Montelibretti, Rome, Italy
| |
Collapse
|
14
|
Padhye LP, Jasemizad T, Bolan S, Tsyusko OV, Unrine JM, Biswal BK, Balasubramanian R, Zhang Y, Zhang T, Zhao J, Li Y, Rinklebe J, Wang H, Siddique KHM, Bolan N. Silver contamination and its toxicity and risk management in terrestrial and aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161926. [PMID: 36739022 DOI: 10.1016/j.scitotenv.2023.161926] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Silver (Ag), a naturally occurring, rare and precious metal, is found in major minerals such as cerargyrite (AgCl), pyrargyrite (Ag3SbS3), proustite (Ag3AsS3), and stephanite (Ag5SbS4). From these minerals, Ag is released into soil and water through the weathering of rocks and mining activities. Silver also enters the environment by manufacturing and using Ag compounds in electroplating and photography, catalysts, medical devices, and batteries. With >400 t of Ag NPs produced yearly, Ag NPs have become a rapidly growing source of anthropogenic Ag input in the environment. In soils and natural waters, most Ag is sorbed to soil particles and sediments and precipitated as oxides, carbonates, sulphides, chlorides and hydroxides. Silver and its compounds are toxic, and humans and other animals are exposed to Ag through inhalation of air and the consumption of Ag-contaminated food and drinking water. Remediation of Ag-contaminated soil and water sources can be achieved through immobilization and mobilization processes. Immobilization of Ag in soil and groundwater reduces the bioavailability and mobility of Ag, while mobilization of Ag in the soil can facilitate its removal. This review provides an overview of the current understanding of the sources, geochemistry, health hazards, remediation practices and regulatory mandates of Ag contamination in complex environmental settings, including soil and aquatic ecosystems. Knowledge gaps and future research priorities in the sustainable management of Ag contamination in these settings are also discussed.
Collapse
Affiliation(s)
- Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA; Kentucky Water Resources Research Institute, University of Kentucky, Lexington, KY, 40506, USA
| | - Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | | | - Yingyu Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jian Zhao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
15
|
Palani G, Trilaksana H, Sujatha RM, Kannan K, Rajendran S, Korniejenko K, Nykiel M, Uthayakumar M. Silver Nanoparticles for Waste Water Management. Molecules 2023; 28:molecules28083520. [PMID: 37110755 PMCID: PMC10145794 DOI: 10.3390/molecules28083520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Rapidly increasing industrialisation has human needs, but the consequences have added to the environmental harm. The pollution caused by several industries, including the dye industries, generates a large volume of wastewater containing dyes and hazardous chemicals that drains industrial effluents. The growing demand for readily available water, as well as the problem of polluted organic waste in reservoirs and streams, is a critical challenge for proper and sustainable development. Remediation has resulted in the need for an appropriate alternative to clear up the implications. Nanotechnology is an efficient and effective path to improve wastewater treatment/remediation. The effective surface properties and chemical activity of nanoparticles give them a better chance to remove or degrade the dye material from wastewater treatment. AgNPs (silver nanoparticles) are an efficient nanoparticle for the treatment of dye effluent that have been explored in many studies. The antimicrobial activity of AgNPs against several pathogens is well-recognised in the health and agriculture sectors. This review article summarises the applications of nanosilver-based particles in the dye removal/degradation process, effective water management strategies, and the field of agriculture.
Collapse
Affiliation(s)
- Geetha Palani
- Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Herri Trilaksana
- Department of Physics, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - R Merlyn Sujatha
- Department of Biomedical Engineering, JNN Institute of Engineering, Kannigaipair 601102, India
| | - Karthik Kannan
- Chemical Sciences Department and the Radical Research Centre, Ariel University, Ariel 40700, Israel
| | - Sundarakannan Rajendran
- Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Kinga Korniejenko
- Faculty of Material Engineering and Physics, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Kraków, Poland
| | - Marek Nykiel
- Faculty of Material Engineering and Physics, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Kraków, Poland
| | - Marimuthu Uthayakumar
- Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| |
Collapse
|
16
|
Yuan YG, Xing YT, Liu SZ, Li L, Reza AMMT, Cai HQ, Wang JL, Wu P, Zhong P, Kong IK. Identification of circular RNAs expression pattern in caprine fetal fibroblast cells exposed to a chronic non-cytotoxic dose of graphene oxide-silver nanoparticle nanocomposites. Front Bioeng Biotechnol 2023; 11:1090814. [PMID: 37020511 PMCID: PMC10069586 DOI: 10.3389/fbioe.2023.1090814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
The widespread use of graphene oxide-silver nanoparticle nanocomposites (GO-AgNPs) in biomedical sciences is increasing the chances of human and animal exposure to its chronic non-toxic doses. Exposure to AgNPs-related nanomaterials may result in the negative effect on the dam, fetus and offspring. However, there are only little available information for profound understanding of the epigenetic alteration in the cells and animals caused by low-dose chronic exposure of GO-AgNPs. The present study investigated the effect of 0.5 μg/mL GO-AgNPs for 10 weeks on the differential expression of circular RNAs (circRNAs) in caprine fetal fibroblast cells (CFFCs), and this dose of GO-AgNPs did not affect cell viability and ROS level. We predicted the functions of those differentially expressed (DE) circRNAs in CFFCs by bioinformatics analysis. Furthermore, we validated the expression of ten DE circRNAs using quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) to ensure the reliability of the sequencing data. Our results showed that the DE circRNAs may potentially regulate the GO-AgNPs-inducing epigenetic toxicity through a regulatory network consisted of circRNAs, miRNAs and messenger RNAs (mRNAs). Therefore, the epigenetics toxicity is essential to assess the biosafety level of GO-AgNPs.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Yu-Guo Yuan, ; Ping Zhong, ; Il-Keun Kong,
| | - Yi-Tian Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Song-Zi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ling Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Abu Musa Md Talimur Reza
- Department of Molecular Biology and Genetics, Faculty of Basic Sciences, Gebze Technical University, Gebze, Kocaeli, Türkiye
| | - He-Qing Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jia-Lin Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Pengfei Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ping Zhong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- *Correspondence: Yu-Guo Yuan, ; Ping Zhong, ; Il-Keun Kong,
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
- *Correspondence: Yu-Guo Yuan, ; Ping Zhong, ; Il-Keun Kong,
| |
Collapse
|
17
|
Abdelaziz AM, Elshaer MA, Abd-Elraheem MA, Ali OMOM, Haggag MI, El-Sayyad GS, Attia MS. Ziziphus spina-christi extract-stabilized novel silver nanoparticle synthesis for combating Fusarium oxysporum-causing pepper wilt disease: in vitro and in vivo studies. Arch Microbiol 2023; 205:69. [PMID: 36670250 DOI: 10.1007/s00203-023-03400-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/09/2022] [Accepted: 01/01/2023] [Indexed: 01/22/2023]
Abstract
The novelty of the present study is studying the ability of aqueous Ziziphus spina-christi leaves' extract (ZSCE) to produce eco-friendly and cost-effective silver nanoparticles (Ag NPs) against Fusarium wilt disease. Phytochemical screening of ZSCE by HPLC showed that they contain important antimicrobial substances such as Rutin, Naringin, Myricetin, Quercetin, Kaempferol, Hesperidin, Syringeic, Eugenol, Pyrogallol, Gallic and Ferulic. Characterization methods reveal a stable Ag NPs with a crystalline structure, spherical in shape with average particle size about 11.25 nm. ZSCE and Ag NPs showed antifungal potential against F. oxysporum at different concentrations with MIC of Ag NPs as 0.125 mM. Ag NPs treatment was the most effective, as it gave the least disease severity (20.8%) and the highest protection rate (75%). The application of ZSCE or Ag NPs showed a clear recovery, and its effectiveness was not limited for improving growth and metabolic characteristics only, but also inducing substances responsible for defense against pathogens and activating plant immunity (such as increasing phenols and strong expression of peroxidase and polyphenol oxidase as well as isozymes). Owing to beneficial properties such as antifungal activity, and the eco-friendly approach of cost and safety, they can be applied in agricultural field as novel therapeutic nutrients.
Collapse
Affiliation(s)
- Amer M Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 13759, Egypt
| | - Mohammed A Elshaer
- Agricultural Biochemistry Department, Faculty of Agriculture, Al-Azhar University, Cairo, 13759, Egypt
| | - Mohamed A Abd-Elraheem
- Agricultural Biochemistry Department, Faculty of Agriculture, Al-Azhar University, Cairo, 13759, Egypt
| | - Omar M Omar M Ali
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt
| | - Muhammad I Haggag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 13759, Egypt
| | - Gharieb S El-Sayyad
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt. .,Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 13759, Egypt
| |
Collapse
|
18
|
Khodaparast Z, van Gestel CAM, Silva ARR, Cornelis G, Lahive E, Etxabe AG, Svendsen C, Baccaro M, van den Brink N, Medvešček N, Novak S, Kokalj AJ, Drobne D, Jurkschat K, Loureiro S. Toxicokinetics of Ag from Ag 2S NP exposure in Tenebrio molitor and Porcellio scaber: Comparing single-species tests to indoor mesocosm experiments. NANOIMPACT 2023; 29:100454. [PMID: 36781073 DOI: 10.1016/j.impact.2023.100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Determining the potential for accumulation of Ag from Ag2S NPs as an environmentally relevant form of AgNPs in different terrestrial organisms is an essential component of a realistic risk assessment of AgNP emissions to soils. The objectives of this study were first to determine the uptake kinetics of Ag in mealworms (Tenebrio molitor) and woodlice (Porcellio scaber) exposed to Ag2S NPs in a mesocosm test, and second, to check if the obtained toxicokinetics could be predicted by single-species bioaccumulation tests. In the mesocosms, mealworms and woodlice were exposed together with plants and earthworms in soil columns spiked with 10 μg Ag g-1 dry soil as Ag2S NPs or AgNO3. The total Ag concentrations in the biota were measured after 7, 14, and 28 days of exposure. A one-compartment model was used to calculate the Ag uptake and elimination rate constants. Ag from Ag2S NPs appeared to be taken up by the mealworms with significantly different uptake rate constants in the mesocosm compared to single-species tests (K1 = 0.056 and 1.66 g dry soil g-1 dry body weight day-1, respectively), and a significant difference was found for the Ag bioaccumulation factor (BAFk = 0.79 and 0.15 g dry soil g-1 dry body weight, respectively). Woodlice did not accumulate Ag from Ag2S NPs in both tests, but uptake from AgNO3 was significantly slower in mesocosm than in single-species tests (K1 = 0.037 and 0.26 g dry soil g-1 dry body weight day-1, respectively). Our results are of high significance because they show that single-species tests may not be a good predictor for the Ag uptake in mealworms and woodlice in exposure systems having greater levels of biological complexity. Nevertheless, single-species tests could be used as a fast screening approach to assess the potential of a substance to accumulate in biota before more complex tests are conducted.
Collapse
Affiliation(s)
- Zahra Khodaparast
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Portugal.
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Ana Rita R Silva
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Portugal
| | - Geert Cornelis
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Sweden
| | - Elma Lahive
- Centre of Ecology and Hydrology (CEH-NERC), UK
| | | | | | - Marta Baccaro
- Division of Toxicology, Wageningen University, the Netherlands
| | | | | | - Sara Novak
- Biotechnical Faculty, University of Ljubljana, Slovenia
| | | | | | - Kerstin Jurkschat
- Department of Materials, Oxford University Begbroke Science Park, United Kingdom
| | - Susana Loureiro
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
19
|
Przemieniecki SW, Oćwieja M, Ciesielski S, Halecki W, Matras E, Gorczyca A. Chemical Structure of Stabilizing Layers of Negatively Charged Silver Nanoparticles as an Effector of Shifts in Soil Bacterial Microbiome under Short-Term Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14438. [PMID: 36361318 PMCID: PMC9658158 DOI: 10.3390/ijerph192114438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In this work, we have assessed the exposure of soil bacteria from potato monoculture to three types of silver nanoparticles (AgNPs) as well as silver ions (Ag+ ions) delivered in the form of silver nitrate and a commercially available fungicide. The diversity of the soil microbial community, enzymatic activity, and carbon source utilization were evaluated. It was found that only the fungicide significantly limited the abundance and activity of soil bacteria. Silver ions significantly reduced bacterial metabolic activity. In turn, one type of AgNPs prepared with the use of tannic acid (TA) increased bacterial load and activity. There was found in all AgNPs treated soils (1) a greater proportion of all types of persistent bacteria, i.e., Bacillus, Paenibacillus, and Clostridium; (2) a visible decrease in the proportion of Nocardioides, Arthrobacter, and Candidatus Solibacter; (3) almost complete depletion of Pseudomonas; (4) increase in the number of low-frequency taxa and decrease in dominant taxa compared to the control soil. Despite the general trend of qualitative changes in the bacterial community, it was found that the differences in the chemical structure of the AgNP stabilizing layers had a significant impact on the specific metabolic activity resulting from qualitative changes in the microbiome.
Collapse
Affiliation(s)
- Sebastian Wojciech Przemieniecki
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawochenskiego 17, PL-10721 Olsztyn, Poland
| | - Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, PL-10719 Olsztyn, Poland
| | - Wiktor Halecki
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, PL-31120 Kraków, Poland
| | - Ewelina Matras
- Department of Microbiology and Biomonitoring, University of Agriculture in Krakow, Mickiewicza 21, PL-31120 Krakow, Poland
| | - Anna Gorczyca
- Department of Microbiology and Biomonitoring, University of Agriculture in Krakow, Mickiewicza 21, PL-31120 Krakow, Poland
| |
Collapse
|
20
|
Khodaparast Z, Loureiro S, van Gestel CAM. The effect of sulfidation and soil type on the uptake of silver nanoparticles in annelid Enchytraeus crypticus. NANOIMPACT 2022; 28:100433. [PMID: 36273810 DOI: 10.1016/j.impact.2022.100433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Hazard assessment of silver nanoparticles is crucial as their presence in agricultural land is increasing through sewage sludge application. This study compared the uptake and elimination kinetics in the annelid Enchytraeus crypticus of AgNPs with different core sizes and coatings in Lufa 2.2 soil, and of Ag2S NPs (simulating aged AgNPs) in three different soils. For both experiments, AgNO3 was used as ionic control. E. crypticus was exposed to soil spiked at 10 μg Ag g-1 dry soil for 14 days and then transferred to clean soil for a 14-day elimination phase. The uptake rate constants were similar for 3-8 nm and 60 nm AgNPs and AgNO3, but significantly different between 3 and 8 nm and 50 nm AgNPs. The uptake kinetics of Ag from Ag2S NPs did not significantly differ compared to pristine AgNPs. Therefore, Ag bioavailability was influenced by AgNP form and characteristics. Uptake and elimination rate constants of both Ag forms (AgNO3 and Ag2S NPs) significantly differed between different test soils (Lufa 2.2, Dorset, and Woburn). For AgNO3, significantly higher uptake and elimination rate constants were found in the Dorset soil compared to the other soils, while for Ag2S NPs this soil showed the lowest uptake and elimination rate constants. Therefore, not only the form and characteristics but also soil properties affect the bioavailability and uptake of Ag nanoparticles.
Collapse
Affiliation(s)
- Zahra Khodaparast
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Susana Loureiro
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| |
Collapse
|
21
|
Wang X, Liu X, Yang X, Wang L, Yang J, Yan X, Liang T, Bruun Hansen HC, Yousaf B, Shaheen SM, Bolan N, Rinklebe J. In vivo phytotoxic effect of yttrium-oxide nanoparticles on the growth, uptake and translocation of tomato seedlings (Lycopersicon esculentum). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113939. [PMID: 35930836 DOI: 10.1016/j.ecoenv.2022.113939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 05/09/2023]
Abstract
The potential toxicity and ecological risks of rare-earth nanoparticles in the environment have become a concern due to their widespread application and inevitable releases. The integration of hydroponics experiments, partial least squares structural equation modeling (PLS-SEM), and Transmission Electron Microscopy (TEM) were utilized to investigate the physiological toxicity, uptake and translocation of yttrium oxide nanoparticles (Y2O3 NPs) under different hydroponic treatments (1, 5, 10, 20, 50 and 100 mg·L-1 of Y2O3 NPs, 19.2 mg·L-1 Y(NO3)3 and control) in tomato (Lycopersicon esculentum) seedlings. The results indicated that Y2O3 NPs had a phytotoxic effect on tomato seedlings' germination, morphology, physiology, and oxidative stress. The Y2O3 NPs and soluble YIII reduced the root elongation, bud elongation, root activity, chlorophyll, soluble protein content and superoxide dismutase and accelerated the proline and malondialdehyde in the plant with increasing concentrations. The phytotoxic effects of Y2O3 NPs on tomato seedlings had a higher phytotoxic effect than soluble YIII under the all treatments. The inhibition rates of different levels of Y2O3 NPs in shoot and root biomass ranged from 0.2% to 6.3% and 1.0-11.3%, respectively. The bioaccumulation and translocation factors were less than 1, which suggested that Y2O3 NPs significantly suppressed shoot and root biomass of tomato seedlings and easily bioaccumulated in the root. The observations were consistent with the process of concentration-dependent uptake and translocation factor and confirmed by TEM. Y2O3 NPs penetrate the epidermis, enter the cell wall, and exist in the intercellular space and cytoplasm of mesophyll cells of tomato seedlings by endocytic pathway. Moreover, PLS-SEM revealed that the concentration of NPs significantly negatively affects the morphology and physiology, leading to the change in biomass of plants. This study demonstrated the possible pathway of Y2O3 NPs in uptake, phytotoxicity and translocation of Y2O3 NPs in tomato seedlings.
Collapse
Affiliation(s)
- Xueping Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojie Liu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jun Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiulan Yan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hans Chr Bruun Hansen
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefai 230026, Anhui, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt.
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India.
| |
Collapse
|
22
|
Iannelli MA, Bellini A, Venditti I, Casentini B, Battocchio C, Scalici M, Ceschin S. Differential phytotoxic effect of silver nitrate (AgNO 3) and bifunctionalized silver nanoparticles (AgNPs-Cit-L-Cys) on Lemna plants (duckweeds). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106260. [PMID: 35933908 DOI: 10.1016/j.aquatox.2022.106260] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Duckweeds are aquatic plants often used in phytotoxic studies for their small size, simple structure, rapid growth, high sensitivity to pollutants and facility of maintaining under laboratory conditions. In this paper, induced phytotoxic effects were investigated in Lemna minor and Lemna minuta after exposition to silver nitrate (AgNO3) and silver nanoparticles stabilized with sodium citrate and L-Cysteine (AgNPs-Cit-L-Cys) at different concentrations (0, 20 and 50 mg/L) and times (7 and 14 days). Lemna species responses were evaluated analyzing plant growth (mat thickness, fresh and dry biomass, relative growth rate - RGR) and physiological parameters (chlorophyll - Chl, malondialdehyde - MDA, ascorbate peroxidase - APX and catalase - CAT). Ag content was measured in the fronds of the two Lemna species by inductively coupled plasma optical emission spectrometry. AgNO3 and AgNPs-Cit-L-CYs produced phytotoxic effects on both duckweed species (plant growth and Chl reduction, MDA increase) that enhanced in response to increasing concentrations and exposure times. AgNPs-Cit-L-Cys caused much less alteration in the plants compared to AgNO3 suggesting that the presence of bifunctionalized AgNPs-Cit-L-Cys have a reduced phytotoxic effect as compared to Ag+ released in water. Based on the physiological performance, L. minuta plants showed a large growth reduction and higher levels of chlorosis and stress in respect to L. minor plants, probably due to greater Ag+ ions accumulation in the fronds. Albeit with some differences, both Lemna species were able to uptake Ag+ ions from the aqueous medium, especially over a period of 14 days, and could be considered adapt as phytoremediation agents for decontaminating silver ion-polluted water.
Collapse
Affiliation(s)
- M A Iannelli
- Institute of Agricultural Biology and Biotechnology - National Research Council (IBBA-CNR), Via Salaria Km 29.300, 00015 Monterotondo Scalo, Rome, Italy.
| | - A Bellini
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - I Venditti
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - B Casentini
- Water Research Institute - National Research Council (IRSA-CNR), Via Salaria Km 29.300, 00015 Monterotondo Scalo, Rome, Italy.
| | - C Battocchio
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - M Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - S Ceschin
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| |
Collapse
|
23
|
Levard C, Le Bars M, Formentini T, Legros S, Doelsch E. Organic waste-borne ZnS nanoparticles: The forgotten ones. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119629. [PMID: 35709918 DOI: 10.1016/j.envpol.2022.119629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Affiliation(s)
- C Levard
- Aix Marseille Université, CNRS, IRD, INRAE, CEREGE, 13545, Aix-en-Provence, France.
| | - M Le Bars
- Aix Marseille Université, CNRS, IRD, INRAE, CEREGE, 13545, Aix-en-Provence, France; Recyclage et Risque, Univ. Montpellier, CIRAD, Montpellier, France; CIRAD, UPR Recyclage et risque, F-34398, Montpellier, France
| | - T Formentini
- Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, SE-750 07, Uppsala, Sweden
| | - S Legros
- CIRAD, UPR Recyclage et risque, 18524, Dakar, Senegal; CIRAD, UPR Recyclage et risque, F-34398, Montpellier, France
| | - E Doelsch
- Recyclage et Risque, Univ. Montpellier, CIRAD, Montpellier, France; CIRAD, UPR Recyclage et risque, F-34398, Montpellier, France
| |
Collapse
|
24
|
Yan H, Yin S, Dang F, Li M, Zhou D, Wang Y. Greater Bioaccessibility of Silver Nanoparticles in Earthworm than in Soils. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:470-476. [PMID: 35441855 DOI: 10.1007/s00128-022-03527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The buildup of silver nanoparticles (AgNPs) in soil has raised mounting concerns on their impact on human health. Human are exposed to AgNPs in soils via hand-to-mouth activities (direct exposure) and food consumption (indirect exposure). However, the bioaccessibility of AgNPs under these exposure scenarios remains largely unknown. We used a physiologically based extraction test (PBET) to assess Ag bioaccessibility in AgNP-containing soils and in earthworms (Pheretima guillemi) cultured in these soils. Silver bioaccessibility was 1.2 - 8.4% and 8.1 - 78.7% upon direct exposure and indirect exposure, respectively. These results indicated greater Ag bioaccessibility in earthworms than in soils. Moreover, particle size decreased upon direct exposure, but remained constant upon indirect exposure in wetland soil, as revealed by single particle inductively coupled plasma-mass spectrometry (spICP-MS) analysis. Our results highlight the importance of indirect exposure to NPs.
Collapse
Affiliation(s)
- Huijun Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, P.R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P.R. China
| | - Shiyu Yin
- Department of Food Quality and Safety, China Pharmaceutical University, 210009, Nanjing, P.R. China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, P.R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P.R. China
| | - Min Li
- College of Environmental Science and Engineering, Yangzhou University, 225000, Yangzhou, P.R. China
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, P.R. China.
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, P.R. China.
- University of Chinese Academy of Sciences, 100049, Beijing, P.R. China.
| |
Collapse
|
25
|
Hušek M, Moško J, Pohořelý M. Sewage sludge treatment methods and P-recovery possibilities: Current state-of-the-art. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115090. [PMID: 35489186 DOI: 10.1016/j.jenvman.2022.115090] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
With the growing emphasis on environmental protection, the ways of sewage sludge treatment are changing. In this review, we analyse different methods of sewage sludge treatment in terms of potential environmental risk and raw materials recovery. The review begins with a comparison and assessment of existing reviews on this topic. Then, it focuses on the properties and current utilisation of sewage sludge in agriculture and a brief description of sludge thermal treatment methods (mono- and co-incineration, pyrolysis, and gasification). The final part of the review is devoted to technologies for treating sludge ash from mono-incinerators to recover phosphorus, a substance listed as a critical raw material by the EU. Our results show that direct use of sewage sludge likewise composts containing sewage sludge should no longer be considered as a direct source of nutrients and organic matter in agriculture, because of its pollutant content. Co-incineration and landfilling represent a dead-end in sludge treatment due to the loss of raw materials, whereas pyrolysis is sustainable for remote locations with low heavy metal content sludge. Heavy metals also pose a problem for the direct use of sludge ash and must be therefore removed. There are already sludge ash processing technologies that are capable of processing ash to form a variety of raw materials such as phosphorus. These regeneration approaches are currently in their infancy, but are gradually being introduced. The sewage sludge treatment industry is rapidly evolving, and we have attempted to summarise and discuss the current state of knowledge in this review, which will provide a baseline towards the future of sewage sludge suitable treatment.
Collapse
Affiliation(s)
- Matěj Hušek
- Department of Power Engineering, Faculty of Environmental Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, 6, Czech Republic; The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02, Prague, 6-Suchdol, Czech Republic
| | - Jaroslav Moško
- Department of Power Engineering, Faculty of Environmental Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, 6, Czech Republic; The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02, Prague, 6-Suchdol, Czech Republic
| | - Michael Pohořelý
- Department of Power Engineering, Faculty of Environmental Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, 6, Czech Republic; The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02, Prague, 6-Suchdol, Czech Republic.
| |
Collapse
|
26
|
Li M, Ruan LY, Dang F, Liu HL, Zhou DM, Yin B, Wang JS. Metabolic response of earthworms (Pheretima guillemi) to silver nanoparticles in sludge-amended soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118954. [PMID: 35122920 DOI: 10.1016/j.envpol.2022.118954] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Silver nanoparticles (AgNPs) can enter soils via the application of sludge and pose risks to soil invertebrates. However, current knowledge regarding the toxicity of AgNPs at environmentally relevant concentration is insufficient, especially at the molecular level. Therefore, we examined the effects of low-level AgNPs (7.2 mg kg-1, dry weight) on the bioaccumulation, pathology and metabolism of earthworms (Pheretima guillemi). After exposure for 28 d, earthworms were dissected into digestive system and the rest of the body to explore the response of different body parts to AgNPs. Ag concentration in the digestive system of exposed group (2.5 mg kg-1, dry weight) was significantly higher than that of the control group (0.5 mg kg-1, dry weight). AgNPs exposure had no significant effects on the survival and growth, but induced intestinal damage and metabolic interference to earthworms relative to the control. Metabolomics analysis showed that AgNPs exposure disturbed the glycerophospholipid metabolism, glutathione metabolism and energy metabolism in the digestive system and the energy metabolism in the rest of the body. AgNPs exposure also induced lipid peroxidation in the digestive system. The different metabolic responses between two body parts highlighted the importance of the uptake routes of Ag. These results provide a biochemical insight for the risk assessment of low-level AgNPs in terrestrial environment.
Collapse
Affiliation(s)
- Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, China; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ling-Yu Ruan
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Fei Dang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hai-Long Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, China
| | - Dong-Mei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Bin Yin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Jun-Song Wang
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| |
Collapse
|
27
|
Mocová KA, Petrová Š, Pohořelý M, Martinec M, Tourinho PS. Biochar reduces the toxicity of silver to barley (Hordeum vulgare) and springtails (Folsomia candida) in a natural soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37435-37444. [PMID: 35066846 DOI: 10.1007/s11356-021-18289-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
The use of biochar in soil remediation is a promising method to deal with metal contamination. In the present study, the influence of biochar amendment on the toxicity of silver (as AgNO3) to terrestrial organisms was assessed. For this, toxicity tests were conducted with terrestrial plant barley (Hordeum vulgare) and invertebrate springtails (Folsomia candida) in the standard natural Lufa soil amended or not with a wood-derived biochar at 5% (w/w). Biochar addition increased root length and mass in barley, compared to unamended soil. However, the effects of Ag on barley growth were masked by a great variation among replicates in biochar-amended soil. Photosynthetic pigment contents (total chlorophyll and carotenoids) were lower in plants exposed to Ag in Lufa soil, but not in biochar-amended soil. Moreover, Ag drastically decreased dehydrogenase activity in Lufa soil. For springtails, the addition of biochar clearly decreased the toxicity of Ag. The LC50 was 320 mg Ag/kg in Lufa soil, while no mortality was observed up to 500 mg Ag/kg in biochar-amended soil. The EC50 for effects on reproduction was significantly higher in biochar-amended soil compared to unamended Lufa soil (315 and 215 mg Ag/kg, respectively). The wood-derived biochar used in this study has shown a potential for remediation of contaminated soils, as a decrease in Ag toxicity was observed in most endpoints analysed in barley and springtails.
Collapse
Affiliation(s)
- Klára Anna Mocová
- Department of Environmental Chemistry, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.
| | - Šárka Petrová
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany of the Czech Academy of Sciences V.V.I, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Michael Pohořelý
- Department of Power Engineering, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, V. V. I, Rozvojová 135, 165 02, Prague 6, Czech Republic
| | - Marek Martinec
- Department of Environmental Chemistry, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Paula S Tourinho
- Department of Environmental Chemistry, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| |
Collapse
|
28
|
Hoppe M, Köser J, Hund-Rinke K, Schlich K. Ecotoxicity and fate of silver nanomaterial in an outdoor lysimeter study after twofold application by sewage sludge. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:524-535. [PMID: 35262834 PMCID: PMC8940752 DOI: 10.1007/s10646-022-02529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The increasing use of antibacterial silver nanomaterials (AgNM) in consumer products leads to their release into sewers. High amounts of AgNM become retained in sewage sludge, which causes their accumulation in agricultural soils when sewage sludge is applied as fertilizer. This increase in AgNM arouses concerns about toxicity to soil organisms and transfer within trophic levels. Long-term field studies simulating the sewage sludge pathway to soils are sparse, and the effects of a second sewage sludge application are unknown. In this perennial field lysimeter study, a twofold application of AgNM (NM-300K, 2 + 3 mg AgNM/kg dry matter soil (DMS)) and a onefold application of silver nitrate (AgNO3, 2 mg Ag/kg DMS) by sewage sludge to the uppermost 20 cm of the soil (Cambisol) were applied. The response of microorganisms to the applications was determined by measuring the inhibition of ammonium-oxidizing bacteria (AOB). Silver concentration in soil, leachates, and crops were measured after acid digestion by inductively coupled plasma mass spectrometry (ICP-MS). Almost no vertical Ag translocation to deeper soil layers and negligible Ag release to leachates suggest that soil is a large sink for AgNM and AgNO3. For AgNM, an increase in toxicity to AOB was shown after the second sewage sludge application. The application of AgNO3 resulted in long-term toxicity comparable to the toxicity of AgNM. Low root uptake from both AgNM- and AgNO3-spiked lysimeters to crops indicates their incomplete immobilization, which is why food chain uptake cannot completely be excluded. However, the root-shoot barrier for wheat (9.8 → 0.1 mg/kg) and skin body barrier for sugar beets (1.0 → 0.2 mg/kg) will further reduce the accumulation within trophic levels. Moreover, the applied AgNM concentration was above the predicted environmental concentration, which is why the root uptake might be negligible in agricultural practice.
Collapse
Affiliation(s)
- Martin Hoppe
- Federal Institute for Geosciences and Natural Resources, Hanover, Germany.
| | - Jan Köser
- Federal Institute for Geosciences and Natural Resources, Hanover, Germany
| | - Kerstin Hund-Rinke
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Karsten Schlich
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| |
Collapse
|
29
|
Turki F, Ben Younes R, Sakly M, Ben Rhouma K, Martinez-Guitarte JL, Amara S. Effect of silver nanoparticles on gene transcription of land snail Helix aspersa. Sci Rep 2022; 12:2078. [PMID: 35136168 PMCID: PMC8826417 DOI: 10.1038/s41598-022-06090-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/24/2022] [Indexed: 11/09/2022] Open
Abstract
Silver nanoparticles (Ag-NPs) are extremely useful in a diverse range of consumer goods. However, their impact on the environment is still under research, especially regarding the mechanisms involved in their effect. Aiming to provide some insight, the present work analyzes the transcriptional activity of six genes (Hsp83, Hsp17.2, Hsp19.8, SOD Cu-Zn, Mn-SOD, and BPI) in the terrestrial snail Helix aspersa in the presence of different concentrations of Ag-NPs. The animals were exposed for seven days to Lactuca sativa soaked for one hour in different concentrations of Ag-NPs (20, 50, 100 mg/L). The results revealed that the highest concentration tested of Ag-NPs (100 mg/L) led to a statistically significant induction of the Hsp83 and BPI expression in the digestive gland compared to the control group. However, a trend to upregulation with no statistical significance was observed for all the genes in the digestive gland and the foot, while in the hemolymph, the trend was to downregulation. Ag-NPs affected the stress response and immunity under the tested conditions, although the impact was weak. It is necessary to explore longer exposure times to confirm that the effect can be maintained and impact on health. Our results highlight the usefulness of the terrestrial snail Helix aspersa as a bioindicator organism for silver nanoparticle pollution biomonitoring and, in particular, the use of molecular biomarkers of pollutant effect as candidates to be included in a multi-biomarker strategy.
Collapse
Affiliation(s)
- Faten Turki
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - Ridha Ben Younes
- Research Unit of Immuno-Microbiology Environmental and Carcinogenesis, Sciences Faculty of Bizerte, University of Carthage, Bizerte, Tunisia
| | - Mohsen Sakly
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - Khemais Ben Rhouma
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - José-Luis Martinez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, c/ Paseo de la Senda del Rey 9, 28040, Madrid, Spain.
| | - Salem Amara
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
- Department of Natural and Applied Sciences in Afif, Faculty of Sciences and Humanities, Shaqra University, Afif, 11921, Saudi Arabia
| |
Collapse
|
30
|
Burketová L, Martinec J, Siegel J, Macůrková A, Maryška L, Valentová O. Noble metal nanoparticles in agriculture: impacts on plants, associated microorganisms, and biotechnological practices. Biotechnol Adv 2022; 58:107929. [DOI: 10.1016/j.biotechadv.2022.107929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
|
31
|
Li P, Liu J, Zhang H. Insights into the interaction of microplastic with silver nanoparticles in natural surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150315. [PMID: 34537696 DOI: 10.1016/j.scitotenv.2021.150315] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The combined pollution induced by microplastics (MPs) and other pollutants, such as nanomaterials, has received increasing attention. The interaction between MPs and silver nanoparticles (AgNPs) may affect both their behaviors in natural environments, however, knowledge on these effects remains limited. In this study, AgNPs and three common MPs, polypropylene (PP), polyethylene (PE), and polystyrene (PS), were co-exposed to natural freshwater and brackish water to investigate the interaction between MPs and AgNPs in natural surface water. The results showed that the environmental behaviour of AgNPs in natural freshwater and brackish water is first of all affected by water chemistry and only in second instance affected by MPs. In natural freshwater, AgNPs remained stable largely dominated by dissolved organic matter (DOM), parts of which were subsequently captured by three MPs in the form of single particles without significant difference. In contrast, both ionic strength and DOM contributed to the aggregation of AgNPs in natural brackish water. PE and PP captured a small amount of AgNPs in the form of aggregates in natural brackish water, while the majority of AgNP aggregates were trapped by PS in natural brackish water. Therefore, both water chemistry and MPs types were found to play crucial roles in the interaction between MPs and AgNPs. These observations also revealed that MPs could serve as carriers for AgNP transport and advance the current understanding of combined pollution between MPs and engineered nanomaterials in natural aquatic environments.
Collapse
Affiliation(s)
- Penghui Li
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jingfu Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongwu Zhang
- School of Chemistry and Material Sciences, Ludong University, Yantai 264025, China.
| |
Collapse
|
32
|
Huang D, Dang F, Huang Y, Chen N, Zhou D. Uptake, translocation, and transformation of silver nanoparticles in plants. ENVIRONMENTAL SCIENCE: NANO 2022; 9:12-39. [PMID: 0 DOI: 10.1039/d1en00870f] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This article reviews the plant uptake of silver nanoparticles (AgNPs) that occurred in soil systems and the in planta fate of Ag.
Collapse
Affiliation(s)
- Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, P.R. China
| | - Yingnan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| |
Collapse
|
33
|
Chen X, Yang H, Fan J, Li J, Warren A, Lin X. Toxicity of silver nanoparticles (AgNPs) in the model ciliate Paramecium multimicronucleatum: Molecular mechanisms of activation are dose- and particle size-dependent. Eur J Protistol 2021; 81:125792. [PMID: 34695764 DOI: 10.1016/j.ejop.2021.125792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
Current understanding of toxicity mechanisms of nanoparticles is still far from comprehensive, partly because of the neglect of control factors such as the dependence of mechanism activation on the exposure dosage and particle size. To reveal molecular mechanisms of silver nanoparticle (AgNP) toxicity, the model ciliate Paramecium multimicronucleatum was exposed for 12 h to different concentrations of AgNPs with particle size of 20 nm (0.08, 0.12, and 0.30 mg/l) and 40 nm (0.08 and 0.30 mg/l). Transcriptomes of the tested ciliates were then analyzed based on dendrograms of gene expression, Gene Ontology (GO) terms, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, and up- and down-regulated genes. Results showed that: (1) toxicity mechanisms of AgNP revealed by analyses of GO and KEEG were significantly involved in the metabolic pathways of nutrients and the biosynthesis of macromolecules; (2) the top five up-regulated genes were mainly related to biological oxidation, biosynthesis, and oxidative stress, while top five down-regulated genes were mainly related to glycolysis; (3) activated mechanisms varied both in quantity and in type with dosages and particle sizes of AgNPs; (4) AgNP-treatments with different exposure dosages and particle sizes can produce the same toxicity in terms of 12 h-EC50, but the underlying molecular mechanisms differed significantly. In brief, this study provides insights into the molecular mechanisms of AgNP toxicity through transcriptome analyses and confirmed their dependence of activation on the exposure dosage and particle size of AgNPs.
Collapse
Affiliation(s)
- Xin Chen
- The Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| | - Hao Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| | - Jie Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| | - Jiqiu Li
- The Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Xiaofeng Lin
- The Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
34
|
Malandrakis AA, Kavroulakis N, Avramidou M, Papadopoulou KK, Tsaniklidis G, Chrysikopoulos CV. Metal nanoparticles: Phytotoxicity on tomato and effect on symbiosis with the Fusarium solani FsK strain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147606. [PMID: 33991907 DOI: 10.1016/j.scitotenv.2021.147606] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
The effect of copper (Cu-NPs, CuO-NPs), silver (Ag-NPs) and zinc oxide (ZnO-NPs) nanoparticles (NPs) on plant growth, physiological properties of tomato plants and their symbiotic relationships with the endophytic Fusarium solani FsK strain was investigated. Fungitoxicity tests revealed that the FsK strain was significantly more sensitive to Cu-NPs and ZnO-NPs than CuO-NPs and Ag-NPs both in terms of mycelial growth and spore germination. All NPs were more toxic to FsK compared to their bulk counterparts except for AgNO3, which was 8 to 9-fold more toxic than Ag-NPs. Apart from AgNO3, NPs and bulk counterparts did not affect the number of germinated tomato seeds even in higher concentrations, while root length was significantly reduced in a dose dependent way in most cases. Dry weight of tomato plants was also significantly reduced upon treatment with NPs and counterparts with most pronounced effects in the cases of AgNO3, Cu-NPs, ZnO-NPs, and ZnSO4. Root and shoot length of grown tomato plants was also affected by treatments while differences between NPs and bulk counterparts varied. A marked oxidative stress response was recorded in all cases of NPs/bulk counterparts as indicated by increased MDA and H2O2 levels of treated plants. Treated plants had significantly reduced chlorophyl-a and carotenoid levels compared to the untreated control. NPs and counterparts did not affect FsK colonization of roots indicating a possible shielding effect of tomato plants once the endophyte was established inside the roots. Vice versa, a possible alleviation of CuO-NPs, ZnO-NPs, and ZnSO4 toxicity was observed in the presence of FsK inside tomato roots in terms of plant dry weight. The results suggest that phytotoxicity of NPs in tomato treated plants should be considered before application and while both FsK and tomato are sensitive to NPs, their reciprocal benefits may extent to resistance towards these toxic agents.
Collapse
Affiliation(s)
- Anastasios A Malandrakis
- School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece.
| | - Nektarios Kavroulakis
- Hellenic Agricultural Organization "ELGO-Dimitra", Institute for Olive Tree, Subtropical Plants and Viticulture, Agrokipio-Souda, 73164 Chania, Greece
| | - Marianna Avramidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500, Larissa, Greece
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500, Larissa, Greece
| | - Georgios Tsaniklidis
- Hellenic Agricultural Organization "ELGO-Dimitra", Institute for Olive Tree, Subtropical Plants and Viticulture, Agrokipio-Souda, 73164 Chania, Greece
| | | |
Collapse
|
35
|
Zawadzka K, Felczak A, Nowak M, Kowalczyk A, Piwoński I, Lisowska K. Antimicrobial activity and toxicological risk assessment of silver nanoparticles synthesized using an eco-friendly method with Gloeophyllum striatum. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126316. [PMID: 34118550 DOI: 10.1016/j.jhazmat.2021.126316] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Recently, nanomaterials synthesized ecologically using microorganisms have attracted much interest. In the present study, the ability of Gloeophyllum striatum to synthesize silver nanoparticles is described for the first time. Nanoparticles were formed in an eco-friendly extracellular manner and characterized by UV-Vis, FT-IR, MADLS and SEM techniques. The obtained nanoparticles showed excellent activity against gram-positive and gram-negative bacteria. The MIC values for gram-negative bacteria were 15 µM, while for gram-positive strains they reached 30 µM. The haemolytic and cytotoxic activities of the synthesized nanoparticles towards mammalian cells were also determined. The addition of AgNPs at the concentrations above 30 µM caused 50% haemolysis of red blood cells after they 24-hour incubation. A decrease in the viability of fibroblasts by over 50% was also found in the samples treated with nanoparticles at the concentrations above 30 µM. The ecotoxicological risk of silver nanoparticles was assessed using A. franciscana and D. magna crustaceans as well as L. sativum plants. The EC50 values for A. franciscana and D. magna were 61.97 and 0.275 µM, respectively. An about 20% reduction in the length of L. sativum shoots and roots was noted after the treatment with AgNPs at the concentration of 100 µM.
Collapse
Affiliation(s)
- Katarzyna Zawadzka
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | - Aleksandra Felczak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Marta Nowak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Aleksandra Kowalczyk
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Ireneusz Piwoński
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, 163 Pomorska Street, 90-236 Lodz, Poland
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| |
Collapse
|
36
|
Ihtisham M, Noori A, Yadav S, Sarraf M, Kumari P, Brestic M, Imran M, Jiang F, Yan X, Rastogi A. Silver Nanoparticle's Toxicological Effects and Phytoremediation. NANOMATERIALS 2021; 11:nano11092164. [PMID: 34578480 PMCID: PMC8465113 DOI: 10.3390/nano11092164] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
The advancement in nanotechnology has brought numerous benefits for humans in diverse areas including industry, medicine, and agriculture. The demand in the application of nanomaterials can result in the release of these anthropogenic materials into soil and water that can potentially harm the environment by affecting water and soil properties (e.g., soil texture, pH, organic matter, and water content), plants, animals, and subsequently human health. The properties of nanoparticles including their size, surface area, and reactivity affect their fate in the environment and can potentially result in their toxicological effects in the ecosystem and on living organisms. There is extensive research on the application of nano-based materials and the consequences of their release into the environment. However, there is little information about environmentally friendly approaches for removing nanomaterials from the environment. This article provides insight into the application of silver nanoparticles (AgNPs), as one of the most commonly used nanomaterials, their toxicological effects, their impacts on plants and microorganisms, and briefly reviews the possibility of remediation of these metabolites using phytotechnology approaches. This article provides invaluable information to better understand the fate of nanomaterials in the environment and strategies in removing them from the environment.
Collapse
Affiliation(s)
- Muhammad Ihtisham
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (M.I.); (F.J.)
| | - Azam Noori
- Department of Biology, Merrimack College, North Andover, MA 01845, USA;
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University, Garhwal, Srinagar 246174, Uttarakhand, India;
| | - Mohammad Sarraf
- Department of Horticulture Science, Shiraz Branch, Islamic Azad University, Shiraz 71987-74731, Iran;
| | - Pragati Kumari
- Scientist Hostel-S-02, Chauras Campus, Garhwal, Srinagar 246174, Uttarakhand, India;
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| | - Fuxing Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (M.I.); (F.J.)
| | - Xiaojun Yan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (M.I.); (F.J.)
- Correspondence: (X.Y.); (A.R.)
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7500 AE Enschede, The Netherlands
- Correspondence: (X.Y.); (A.R.)
| |
Collapse
|
37
|
Endophytic and rhizospheric bacterial communities are affected differently by the host plant species and environmental contamination. Symbiosis 2021. [DOI: 10.1007/s13199-021-00804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Wu S, Gaillard JF, Gray KA. The impacts of metal-based engineered nanomaterial mixtures on microbial systems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146496. [PMID: 34030287 DOI: 10.1016/j.scitotenv.2021.146496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 05/24/2023]
Abstract
The last decade has witnessed tremendous growth in the commercial use of metal-based engineered nanomaterials (ENMs) for a wide range of products and processes. Consequently, direct and indirect release into environmental systems may no longer be considered negligible or insignificant. Yet, there is an active debate as to whether there are real risks to human or ecological health with environmental exposure to ENMs. Previous research has focused primarily on the acute effects of individual ENMs using pure cultures under controlled laboratory environments, which may not accurately reveal the ecological impacts of ENMs under real environmental conditions. The goal of this review is to assess our current understanding of ENM effects as we move from exposure of single to multiple ENMs or microbial species. For instance, are ENMs' impacts on microbial communities predicted by their intrinsic physical or chemical characteristics or their effects on single microbial populations; how do chronic ENM interactions compare to acute toxicity; does behavior under simplified laboratory conditions reflect that in environmental media; finally, is biological stress modified by interactions in ENM mixtures relative to that of individual ENM? This review summarizes key findings and our evolving understanding of the ecological effects of ENMs under complex environmental conditions on microbial systems, identifies the gaps in our current knowledge, and indicates the direction of future research.
Collapse
Affiliation(s)
- Shushan Wu
- Department of Civil and Environmental Engineering, Northwestern University, USA.
| | | | - Kimberly A Gray
- Department of Civil and Environmental Engineering, Northwestern University, USA.
| |
Collapse
|
39
|
Courtois P, de Vaufleury A, Grosser A, Lors C, Vandenbulcke F. Transfer of sulfidized silver from silver nanoparticles, in sewage sludge, to plants and primary consumers in agricultural soil environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145900. [PMID: 33676211 DOI: 10.1016/j.scitotenv.2021.145900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Consumer products containing silver nanoparticles (AgNPs) release silver (Ag) to the environment, particularly wastewater. Sewage sludge (SS), which contains numerous contaminants including Ag, is recycled by spreading on agricultural land. Although slight impacts and bioaccumulation of Ag sulfide (Ag2S, the main species found in SS) in terrestrial organisms have been demonstrated, possible trophic transfer into plants and subsequently animal species has not been examined. Accordingly, the present study experimentally measured the transfer of Ag from AgNPs and sulfidized Ag into plants and primary consumers and compared their bioavailability. Nine plant cultivars were grown in soil mixed with SS containing Ag, which revealed that bioaccumulation of Ag by plants is species-dependent. Ryegrass (the plant species with the greatest accumulation - up to 0.2 mg kg-1) was then cultivated on a larger scale to expose snails and locusts for several weeks. While locusts did not accumulate Ag after two weeks of exposure, snails exhibited Ag bioaccumulation after 5 weeks when soil was accessible. Sulfidized Ag derived from AgNPs were less available (bioaccumulation up to 2.5 mg kg-1) than the Ag from the original AgNPs (bioaccumulation up to 15 mg kg-1). This transfer potential of Ag could have consequences for food webs due to chronic exposure linked to SS spreading practices. This study shows that transformations of AgNPs in treatment plants attenuate but do not completely eliminate the risk of Ag to plant and animal species SS.
Collapse
Affiliation(s)
- Pauline Courtois
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515 - LGCgE - Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Annette de Vaufleury
- University of Bourgogne Franche-Comté, Department Chrono-environnement, UMR UFC/CNRS 6249, 16 route de Gray, Besançon Cedex 25030, France
| | - Anna Grosser
- Częstochowa University of Technology, Faculty of Infrastructure and Environment, Częstochowa, Poland
| | - Christine Lors
- IMT Lille Douai, Institut Mines-Télécom, Univ. Lille, Centre for Materials and Processes, F-59000 Lille, France
| | - Franck Vandenbulcke
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515 - LGCgE - Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| |
Collapse
|
40
|
Noori A, Bharath LP, White JC. Type-specific impacts of silver on the protein profile of tomato ( Lycopersicon esculentum L.). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:12-24. [PMID: 34000928 DOI: 10.1080/15226514.2021.1919052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Silver nanoparticles (AgNPs) are particularly among the widely used nanomaterials in medicine, industry, and agriculture. The small size and large surface area of AgNPs and other nanomaterials result in their high reactivity in biological systems. To better understand the effects of AgNPs on plants at the molecular level, tomato (Lycopersicon esculentum L.) seedlings were exposed to 30 mg/L silver in the form of nanoparticle (AgNPs), ionic (AgNO3), or bulk (Ag0) in 50% Hoagland media for 7 days. The effects of silver on the expression of plant membrane transporters H+-ATPase, vacuolar type H+-ATPase (V-ATPase), and enzymes isocitrate dehydrogenase (IDH), and catalase in roots was assessed using RT-qPCR and immunofluorescence-confocal microscopy. We observed significantly higher expression of catalase in plants exposed to AgNPs (Fold of expression 1.1) and AgNO3 (Fold of expression 1.2) than the control group. The immunofluorescence imaging of the proteins confirmed the gene expression data; the expression of the enzyme catalase was upregulated 41, 216, and 770% higher than the control group in plants exposed to AgNPs, Ag0, and AgNO3, respectively. Exposure to AgnO3 resulted in the upregulation (fold of expression 1.2) of H+-ATPase and downregulation (fold of expression 0.7) of V-ATPase. A significant reduction in the expression of the redox-sensitive tricarboxylic cycle (TCA) enzyme mitochondrial IDH was observed in plants exposed to AgNPs (38%), AgNO3 (48%), or Ag0 (77%) compared to the control. This study shows that exposure to silver affects the expression of genes and protein involved in membrane transportation and oxidative response. The ionic form of silver had the most significant effect on the expression of genes and proteins compared to other forms of silver. The results from this study improve our understanding about the molecular effects of different forms of silver on important crop species. Novelty statementSilver nanoparticles released into the environment can be oxidized and be transformed into ionic form. Both the particulate and ionic forms of silver can be taken by plants and affect plants physiological and molecular responses. Despite the extensive research in this area, there is a scarce of information about the effects of silver nanoparticles on the expression of membrane transporters especially H+-ATPase involved in regulating cells' electrochemical charge, and the activity of enzymes involved in oxidative stress responses. This is a unique study that evaluates the expression of cellular proton transporters and enzymes of redox balance and energy metabolisms such as membrane transporters, H+-ATPase, and V-ATPases, and enzymes catalase and IDH. The results provide us valuable information about the impact of silver on plants at the molecular level by evaluating the expression of genes and proteins. Key MessageThe exposure of plants to silver as an environmental stressor affects the expression of genes and proteins involved in maintaining cell's electrochemical gradient (H+-ATPase, V-ATPase) and redox potential (IDH, catalase).
Collapse
Affiliation(s)
- Azam Noori
- Department of Biology, Merrimack College, North Andover, MA, USA
| | - Leena P Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| |
Collapse
|
41
|
Bimová P, Barbieriková Z, Grenčíková A, Šípoš R, Škulcová AB, Krivjanská A, Mackuľak T. Environmental risk of nanomaterials and nanoparticles and EPR technique as an effective tool to study them-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22203-22220. [PMID: 33733403 DOI: 10.1007/s11356-021-13270-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Nanotechnologies and different types of nanomaterials belong in present day to intensively studied materials due to their unique properties and diverse potential applications in, e.g., electronics, medicine, or display technologies. Together with the investigation of their desired beneficial properties, a need to investigate and evaluate their influence on the environment and possible harmful effects towards living organisms is growing. This review summarizes possible toxic effects of nanomaterials on environment and living organisms, focusing on the possible bioaccumulation in organisms, toxicity, and its mechanisms. The main goal of this review is to refer to potential environmental risks rising from the use of nanomaterials and the necessity to deal with the possible toxic effects considering the growing interest in the wide-scale utilization of these materials. Electron paramagnetic resonance spectroscopy as the only analytical technique capable of detecting radical species enables detection, quantification, and monitoring of the generation of short-lived radicals often coupled with toxic effects of nanomaterials, which makes it an important method in the process of nanotoxicity mechanism determination.
Collapse
Affiliation(s)
- Paula Bimová
- Department of Inorganic Technology, Institute of Inorganic Chemistry, Technology and Materials, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia.
| | - Zuzana Barbieriková
- Department of Physical Chemistry, Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Anna Grenčíková
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Rastislav Šípoš
- Department of Inorganic Chemistry, Institute of Inorganic Chemistry, Technology and Materials, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Andrea Butor Škulcová
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Anna Krivjanská
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Tomáš Mackuľak
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| |
Collapse
|
42
|
Das D, Ghosh D, Mandal P. Preservative potential of biosynthesized silver nanoparticles: prevention of xylem occlusion and microbial proliferation at postharvest stage of preservation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22038-22063. [PMID: 33415628 DOI: 10.1007/s11356-020-11832-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The purpose of the current study was to determine the appropriate genotype and concentration of biosynthesized silver nanoparticles effectual in preserving mulberry leaves at the postharvest stage. The preservative effect of silver nanoparticles was determined by their potentiality to prevent xylem blockage, chlorophyll content retention and inhibition of microbial proliferation within a preservative solution. For synthesizing silver nanoparticles, a blend of 10-3 M silver nitrate and S1 genotype of the mulberry leaf was found to be most effective. Silver nanoparticles at 6 ppm were observed to be the least effective concentration for preserving mulberry leaves for at least 7 days at the postharvest stage, as evident from physical texture and retention of chlorophyll content. Biosynthesized silver nanoparticles showed negative microbial count during the course of preservation as evident from no colony-forming unit (CFU) until the last day of preservation, while conventional preservative silver nitrate showed traces of CFU on a nutrient agar plate. Besides, these leaves preserved in nanosilver solution showed an almost negligible number of xylem blockage in the petiole, almost equivalent to the blockage nature of fresh leaves caused by the deposition of macromolecules like protein, lignin and suberin. Nanosilver- and silver nitrate-preserved leaves also displayed insignificant accumulation of reactive oxygen species (ROS) and greater retention of membrane integrity than leaves preserved in normal distilled water. Nanosilver solution showed greater durability of preserving mulberry leaves than conventional floral preservative silver nitrate, useful for feeding silkworm larvae during the rainy season.
Collapse
Affiliation(s)
- Dipayan Das
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Raja Rammohanpur, Siliguri, West Bengal, 734013, India
- Plant Physiology and Pharmacognosy Research Laboratory, Department of Botany, University of North Bengal, Raja Rammohanpur, Siliguri, West Bengal, 734013, India
| | - Debasmita Ghosh
- Plant Physiology and Pharmacognosy Research Laboratory, Department of Botany, University of North Bengal, Raja Rammohanpur, Siliguri, West Bengal, 734013, India
| | - Palash Mandal
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Raja Rammohanpur, Siliguri, West Bengal, 734013, India.
- Plant Physiology and Pharmacognosy Research Laboratory, Department of Botany, University of North Bengal, Raja Rammohanpur, Siliguri, West Bengal, 734013, India.
| |
Collapse
|
43
|
Courtois P, Rorat A, Lemiere S, Guyoneaud R, Attard E, Longepierre M, Rigal F, Levard C, Chaurand P, Grosser A, Grobelak A, Kacprzak M, Lors C, Richaume A, Vandenbulcke F. Medium-term effects of Ag supplied directly or via sewage sludge to an agricultural soil on Eisenia fetida earthworm and soil microbial communities. CHEMOSPHERE 2021; 269:128761. [PMID: 33168285 DOI: 10.1016/j.chemosphere.2020.128761] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
The widespread use of silver nanoparticles (AgNPs) in consumer products that release Ag throughout their life cycle has raised potential environmental concerns. AgNPs primarily accumulate in soil through the spreading of sewage sludge (SS). In this study, the effects of direct exposure to AgNPs or indirect exposure via SS contaminated with AgNPs on the earthworm Eisenia fetida and soil microbial communities were compared, through 3 scenarios offering increasing exposure concentrations. The effects of Ag speciation were analyzed by spiking SS with AgNPs or AgNO3 before application to soil. SS treatment strongly impacted Ag speciation due to the formation of Ag2S species that remained sulfided after mixing in the soil. The life traits and expression of lysenin, superoxide dismutase, cd-metallothionein genes in earthworms were not impacted by Ag after 5 weeks of exposure, but direct exposure to Ag without SS led to bioaccumulation of Ag, suggesting transfer in the food chain. Ag exposure led to a decrease in potential carbon respiration only when directly added to the soil. The addition of SS had a greater effect on soil microbial diversity than the form of Ag, and the formation of Ag sulfides in SS reduced the impact of AgNPs on E. fetida and soil microorganisms compared with direct addition.
Collapse
Affiliation(s)
- Pauline Courtois
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR4515 - LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000, Lille, France.
| | - Agnieszka Rorat
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR4515 - LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000, Lille, France
| | - Sébastien Lemiere
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR4515 - LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000, Lille, France
| | - Rémy Guyoneaud
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, UMR IPREM 5254, Environmental Microbiology, 64000, Pau, France
| | - Eléonore Attard
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, UMR IPREM 5254, Environmental Microbiology, 64000, Pau, France
| | - Manon Longepierre
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, UMR IPREM 5254, Environmental Microbiology, 64000, Pau, France
| | - François Rigal
- Azorean Biodiversity Group, Centre for Ecology, Evolution and Environmental Changes (CE3C), Departamento de Ciencias Agráriase Engenharia Do Ambiente, Universidade Dos Açores, PT-9700-042, Angra Do Heroísmo, Açores, Portugal
| | - Clément Levard
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Perrine Chaurand
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Anna Grosser
- Częstochowa University of Technology, Faculty of Infrastructure and Environment, Czestochowa, Poland
| | - Anna Grobelak
- Częstochowa University of Technology, Faculty of Infrastructure and Environment, Czestochowa, Poland
| | - Malgorzata Kacprzak
- Częstochowa University of Technology, Faculty of Infrastructure and Environment, Czestochowa, Poland
| | - Christine Lors
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR4515 - LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000, Lille, France
| | - Agnès Richaume
- LEM, Laboratoire D'Ecologie Microbienne, UMR 5557, 69622, Villeurbanne, France
| | - Franck Vandenbulcke
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR4515 - LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000, Lille, France
| |
Collapse
|
44
|
Bahrulolum H, Nooraei S, Javanshir N, Tarrahimofrad H, Mirbagheri VS, Easton AJ, Ahmadian G. Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J Nanobiotechnology 2021; 19:86. [PMID: 33771172 PMCID: PMC7995756 DOI: 10.1186/s12951-021-00834-3] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/14/2021] [Indexed: 01/11/2023] Open
Abstract
The agricultural sector is currently facing many global challenges, such as climate change, and environmental problems such as the release of pesticides and fertilizers, which will be exacerbated in the face of population growth and food shortages. Therefore, the need to change traditional farming methods and replace them with new technologies is essential, and the application of nanotechnology, especially green technology offers considerable promise in alleviating these problems. Nanotechnology has led to changes and advances in many technologies and has the potential to transform various fields of the agricultural sector, including biosensors, pesticides, fertilizers, food packaging and other areas of the agricultural industry. Due to their unique properties, nanomaterials are considered as suitable carriers for stabilizing fertilizers and pesticides, as well as facilitating controlled nutrient transfer and increasing crop protection. The production of nanoparticles by physical and chemical methods requires the use of hazardous materials, advanced equipment, and has a negative impact on the environment. Thus, over the last decade, research activities in the context of nanotechnology have shifted towards environmentally friendly and economically viable 'green' synthesis to support the increasing use of nanoparticles in various industries. Green synthesis, as part of bio-inspired protocols, provides reliable and sustainable methods for the biosynthesis of nanoparticles by a wide range of microorganisms rather than current synthetic processes. Therefore, this field is developing rapidly and new methods in this field are constantly being invented to improve the properties of nanoparticles. In this review, we consider the latest advances and innovations in the production of metal nanoparticles using green synthesis by different groups of microorganisms and the application of these nanoparticles in various agricultural sectors to achieve food security, improve crop production and reduce the use of pesticides. In addition, the mechanism of synthesis of metal nanoparticles by different microorganisms and their advantages and disadvantages compared to other common methods are presented.
Collapse
Affiliation(s)
- Howra Bahrulolum
- Department of Industrial Environmental and Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O.BOX: 14155-6343, 1497716316, Tehran, Iran
| | - Saghi Nooraei
- Department of Industrial Environmental and Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O.BOX: 14155-6343, 1497716316, Tehran, Iran
| | - Nahid Javanshir
- Department of Industrial Environmental and Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O.BOX: 14155-6343, 1497716316, Tehran, Iran
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Vasighe Sadat Mirbagheri
- Department of Industrial Environmental and Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O.BOX: 14155-6343, 1497716316, Tehran, Iran
- Faculty of Fisheries and Environment Science, Gorgan University of Agriculture Science and Natural Resources, Gorgan, Iran
| | - Andrew J Easton
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK
| | - Gholamreza Ahmadian
- Department of Industrial Environmental and Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O.BOX: 14155-6343, 1497716316, Tehran, Iran.
| |
Collapse
|
45
|
Yuan YG, Cai HQ, Wang JL, Mesalam A, Md Talimur Reza AM, Li L, Chen L, Qian C. Graphene Oxide-Silver Nanoparticle Nanocomposites Induce Oxidative Stress and Aberrant Methylation in Caprine Fetal Fibroblast Cells. Cells 2021; 10:cells10030682. [PMID: 33808775 PMCID: PMC8003532 DOI: 10.3390/cells10030682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Graphene oxide–silver nanoparticle (GO-AgNPs) nanocomposites have drawn much attention for their potential in biomedical uses. However, the potential toxicity of GO-AgNPs in animals and humans remains unknown, particularly in the developing fetus. Here, we reported the GO-AgNP-mediated cytotoxicity and epigenetic alteration status in caprine fetal fibroblast cells (CFFCs). In brief, the proliferation and apoptosis rate of GO-AgNP-treated CFFCs (4 and 8 µg/mL of GO-AgNPs) were measured using the cell-counting kit (CCK-8) assay and the annexin V/propidium iodide (PI) assay, respectively. In addition, the oxidative stress induced by GO-AgNPs and detailed mechanisms were studied by evaluating the generation of reactive oxygen species (ROS), superoxide dismutase (SOD), lactate dehydrogenase (LDH), malondialdehyde (MDA), and caspase-3 and abnormal methylation. The expression of pro- and anti-apoptotic genes and DNA methyltransferases was measured using reverse transcription followed by RT-qPCR. Our data indicated that GO-AgNPs cause cytotoxicity in a dose-dependent manner. GO-AgNPs induced significant cytotoxicity by the loss of cell viability, production of ROS, increasing leakage of LDH and level of MDA, increasing expression of pro-apoptotic genes, and decreasing expression of anti-apoptotic genes. GO-AgNPs incited DNA hypomethylation and the decreased expression of DNMT3A. Taken together, this study showed that GO-AgNPs increase the generation of ROS and cause apoptosis and DNA hypomethylation in CFFCs. Therefore, the potential applications of GO-AgNPs in biomedicine should be re-evaluated.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (H.-Q.C.); (J.-L.W.); (L.L.); (L.C.); (C.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses/Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-514-87979228
| | - He-Qing Cai
- College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (H.-Q.C.); (J.-L.W.); (L.L.); (L.C.); (C.Q.)
| | - Jia-Lin Wang
- College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (H.-Q.C.); (J.-L.W.); (L.L.); (L.C.); (C.Q.)
| | - Ayman Mesalam
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Abu Musa Md Talimur Reza
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland;
| | - Ling Li
- College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (H.-Q.C.); (J.-L.W.); (L.L.); (L.C.); (C.Q.)
| | - Li Chen
- College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (H.-Q.C.); (J.-L.W.); (L.L.); (L.C.); (C.Q.)
| | - Chen Qian
- College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (H.-Q.C.); (J.-L.W.); (L.L.); (L.C.); (C.Q.)
| |
Collapse
|
46
|
Huang D, Chen N, Zhu C, Fang G, Zhou D. The overlooked oxidative dissolution of silver sulfide nanoparticles by thermal activation of persulfate: Processes, mechanisms, and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144504. [PMID: 33360171 DOI: 10.1016/j.scitotenv.2020.144504] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 05/03/2023]
Abstract
The widely occurring silver sulfide nanoparticles (Ag2S-NPs) are regarded as stable Ag species in subsurface environments, where are often disturbed by human activities, such as the application of advanced oxidation technologies (e.g. persulfate based in situ chemical oxidation (PS-ISCO)) in the remediation of contaminated soil and groundwater. However, stability of Ag2S-NPs was rarely investigated referring to these processes. Here, we systematically investigated the dissolution process of Ag2S-NPs in thermal activation of PS system. Results showed that dissolution of Ag2S-NPs fitted the pseudo-first-order kinetics and the kobs increased from 0.017 h-1 to 0.249 h-1 with increasing PS concentration from 2 mM to 10 mM (36 h, 40 °C). Quenching experiments and EPR results showed that sulfate radical (SO4•-) and hydroxyl radical (•OH) were the dominant oxidants in inducing the oxidative dissolution of Ag2S-NPs. XPS analysis showed that surface-bound S2- in Ag2S-NPs was oxidized and transformed into aqueous sulfur species. The released Ag+ may also act as effective catalysts to activate PS and therefore promote the oxidation process. These findings suggest that stability of Ag2S-NPs should be reevaluated to better understand its risk to the ecological system in the subsurface environment where ISCO was widely applied.
Collapse
Affiliation(s)
- Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, PR China
| | - Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, PR China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, PR China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, PR China.
| |
Collapse
|
47
|
Ziotti ABS, Ottoni CA, Correa CN, de Almeida OJG, de Souza AO, Neto MCL. Differential physiological responses of a biogenic silver nanoparticle and its production matrix silver nitrate in Sorghum bicolor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-13069-4. [PMID: 33625697 DOI: 10.1007/s11356-021-13069-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Silver nanoparticles (AgNP) have been extensively applied in different industrial areas, mainly due to their antibiotic properties. One of the environmental concerns with AgNP is its incorrect disposal, which might lead to severe environmental pollution. The interplay between AgNP and plants is receiving increasing attention. However, little is known regarding the phytotoxic effects of biogenic AgNP on terrestrial plants. This study aimed to compare the effects of a biogenic AgNP and AgNO3 in Sorghum bicolor seedlings. Seeds were germinated in increasing concentrations of a biogenic AgNP and AgNO3 (0, 10, 100, 500, and 1000 μM) in a growth chamber with controlled conditions. The establishment and development of the seedlings were evaluated for 15 days. Physiological and morpho-anatomical indicators of stress, enzymatic, and non-enzymatic antioxidants and photosynthetic yields were assessed. The results showed that both AgNP and AgNO3 disturbed germination and the establishment of sorghum seedlings. AgNO3 released more free Ag+ spontaneously compared to AgNP, promoting increased Ag+ toxicity. Furthermore, plants exposed to AgNP triggered more efficient protective mechanisms compared with plants exposed to AgNO3. Also, the topology and connectivity of the correlation-based networks were more impacted by the exposure of AgNO3 than AgNP. In conclusion, it is plausible to say that the biogenic AgNP is less toxic to sorghum than its matrix AgNO3.
Collapse
Affiliation(s)
- Ana Beatriz Sicchieri Ziotti
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Don Henrique, s/n, Parque Bitarú, São Vicente, SP, 11380-972, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Cristiane Angélica Ottoni
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Don Henrique, s/n, Parque Bitarú, São Vicente, SP, 11380-972, Brazil
- Instituto de Estudos Avançados do Mar (IEAMar), São Paulo State University, São Vicente, SP, Brazil
| | - Cláudia Neves Correa
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Don Henrique, s/n, Parque Bitarú, São Vicente, SP, 11380-972, Brazil
| | - Odair José Garcia de Almeida
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Don Henrique, s/n, Parque Bitarú, São Vicente, SP, 11380-972, Brazil
| | - Ana Olivia de Souza
- Innovation and Development Laboratory, Instituto Butantan, São Paulo, SP, Brazil
| | - Milton Costa Lima Neto
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Don Henrique, s/n, Parque Bitarú, São Vicente, SP, 11380-972, Brazil.
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
48
|
Hong A, Tang Q, Khan AU, Miao M, Xu Z, Dang F, Liu Q, Wang Y, Lin D, Filser J, Li L. Identification and Speciation of Nanoscale Silver in Complex Solid Matrices by Sequential Extraction Coupled with Inductively Coupled Plasma Optical Emission Spectrometry. Anal Chem 2021; 93:1962-1968. [DOI: 10.1021/acs.analchem.0c04741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Aimei Hong
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qing Tang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ashfeen Ubaid Khan
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Maozhong Miao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhenlan Xu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Juliane Filser
- Centre for Environmental Research and Sustainable Technology (UFT), Department of General and Theoretical Ecology, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen 28359, Germany
| | - Lingxiangyu Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
49
|
Juárez-Maldonado A, Tortella G, Rubilar O, Fincheira P, Benavides-Mendoza A. Biostimulation and toxicity: The magnitude of the impact of nanomaterials in microorganisms and plants. J Adv Res 2021; 31:113-126. [PMID: 34194836 PMCID: PMC8240115 DOI: 10.1016/j.jare.2020.12.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 01/02/2023] Open
Abstract
Background Biostimulation and toxicity constitute the continuous response spectrum of a biological organism against physicochemical or biological factors. Among the environmental agents capable of inducing biostimulation or toxicity are nanomaterials. On the < 100 nm scale, nanomaterials impose both physical effects resulting from the core’s and corona’s surface properties, and chemical effects related to the core’s composition and the corona’s functional groups. Aim of Review The purpose of this review is to describe the impact of nanomaterials on microorganisms and plants, considering two of the most studied physical and chemical properties: size and concentration. Key Scientific Concepts of Review Using a graphical analysis, the presence of a continuous biostimulation-toxicity spectrum is shown considering different biological responses. In microorganisms, the results showed high susceptibility to nanomaterials. Simultaneously, in plants, a hormetic response was found related to nanomaterials concentration and, in a few cases, a positive response in the smaller nanomaterials when these were applied at a higher level. With the above, it is concluded that: (1) microorganisms are more susceptible to nanomaterials than plants, (2) practically all nanomaterials seem to induce responses from biostimulation to toxicity in plants, and (3) the kind of response observed will depend in a complex way on the nanomateriaĺs physical and chemical characteristics, of the biological species with which they interact, and of the form and route of application and on the nature of the medium -soil, soil pore water, and biological surfaces- where the interaction occurs.
Collapse
Affiliation(s)
| | - Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Adalberto Benavides-Mendoza
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, 25315 Saltillo, Mexico
- Corresponding author.
| |
Collapse
|
50
|
Courtois P, Rorat A, Lemiere S, Levard C, Chaurand P, Grobelak A, Lors C, Vandenbulcke F. Accumulation, speciation and localization of silver nanoparticles in the earthworm Eisenia fetida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3756-3765. [PMID: 32270459 DOI: 10.1007/s11356-020-08548-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The use of silver nanoparticles (AgNPs) in agriculture and many consumer products has led to a significant release of Ag in the environment. Although Ag toxicity in terrestrial organisms has been studied extensively, very little is known about the accumulation capacity and coping mechanisms of organisms in Ag-contaminated soil. In this context, we exposed Eisenia fetida earthworms to artificial OECD soil spiked with a range of concentrations of Ag (AgNPs or AgNO3). The main aims were to (1) identify the location and form of accumulation of Ag in the exposed earthworms and (2) better understand the physiological mechanisms involved in Ag detoxification. The results showed that similar doses of AgNPs or AgNO3 did not have the same effect on E. fetida survival. The two forms of Ag added to soil exhibited substantial differences in speciation at the end of exposure, but the Ag speciation and content of Ag in earthworms were similar, suggesting that biotransformation of Ag occurred. Finally, 3D images of intact earthworms obtained by X-ray micro-computed tomography revealed that Ag accumulated preferentially in the chloragogen tissue, coelomocytes, and nephridial epithelium. Thus, E. fetida bioaccumulates Ag, but a regulation mechanism limits its impact in a very efficient manner. The location of Ag in the organism, the competition between Ag and Cu, and the speciation of internal Ag suggest a link between Ag and the thiol-rich proteins that are widely present in these tissues, most probably metallothioneins, which are key proteins in the sequestration and detoxification of metals.
Collapse
Affiliation(s)
- Pauline Courtois
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR 4515, - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Agnieszka Rorat
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR 4515, - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Sébastien Lemiere
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR 4515, - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Clément Levard
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Perrine Chaurand
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Anna Grobelak
- Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology, Czestochowa, Poland
| | - Christine Lors
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR 4515, - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Franck Vandenbulcke
- Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-de-France, ULR 4515, - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France.
| |
Collapse
|