1
|
López-Vicente M, Kusters M, Binter AC, Petricola S, Tiemeier H, Muetzel R, Guxens M. Long-Term Exposure to Traffic-Related Air Pollution and Noise and Dynamic Brain Connectivity across Adolescence. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:57002. [PMID: 40131185 PMCID: PMC12052081 DOI: 10.1289/ehp14525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2025] [Accepted: 03/20/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Traffic-related exposures, such as air pollution and noise, show long-term associations with brain alterations in children and adolescents. The associations with functional connectivity have been studied using static approaches of resting-state functional magnetic resonance imaging (rs-fMRI) (i.e., average connectivity between regions across the scanning session). OBJECTIVES Our aim was to investigate the long-term association of traffic air pollution and noise during pregnancy and childhood with functional connectivity across adolescence using a dynamic approach, which captures different connectivity patterns across the scanning session. METHODS We used data from the Generation R population-based birth cohort. We estimated levels of 14 air pollutants and traffic noise at home addresses during pregnancy and childhood. We acquired rs-fMRI data at the age-10 y and age-14 y visits. We included participants with rs-fMRI data in at least one visit and either air pollution data (n = 3,588 ) or noise data (n = 2,642 ). We used k-means clustering to identify five connectivity patterns, called "states," that reoccur over time and across subjects and visits. We calculated the mean time spent in each state for each participant and visit. We performed multi- and single-pollutant mixed effects models adjusted for socioeconomic and lifestyle variables, including the individual as random effect to test the associations between the exposures and the mean time spent in each state. RESULTS Exposure to nitrogen oxides, particulate matter (PM), and road-traffic noise was related to differences in the time spent in the connectivity states, both in the multi- and single-pollutant models. For instance, higher levels of exposure to PM with aerodynamic diameter between 2.5 μ m and 10 μ m (PM COARSE ) during pregnancy and higher noise exposure during childhood were associated with more time spent in a state in which the default-mode network, related to self-referential processes and mind-wandering, shows high connectivity. DISCUSSION Traffic-related exposures might be related to long-term alterations in brain functional network organization in adolescents. Further research should explore the potential impact of these differences on cognition and psychopathology. https://doi.org/10.1289/EHP14525.
Collapse
Affiliation(s)
- Mónica López-Vicente
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Michelle Kusters
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | - Sami Petricola
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Department of Social and Behavioral Science, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ryan Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, The Netherlands
- ICREA, Barcelona, Spain
| |
Collapse
|
2
|
Rodriguez P, López-Landa A, Romo-Parra H, Rubio-Osornio M, Rubio C. Unraveling the ozone impact and oxidative stress on the nervous system. Toxicology 2024; 509:153973. [PMID: 39423999 DOI: 10.1016/j.tox.2024.153973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Ozone (O₃), a potent oxidant, can penetrate the body through breathing, generating reactive oxygen species (ROS) and triggering inflammatory processes. Oxidative stress, an imbalance between the production of ROS and the body's antioxidant capacity, plays a crucial role in the pathophysiology of various neurodegenerative diseases. This phenomenon can negatively impact the Central Nervous System (CNS), inducing structural and functional alterations that contribute to the development of neurological pathologies. This review examines how O₃-induced oxidative stress affects the nervous system by analyzing existing literature on the involved molecular mechanisms and potential antioxidant systems to mitigate its effects. Through a comprehensive review of experimental studies, our objective is to shed light on the interaction between O₃ and the nervous system, as well as its signaling pathways and altered genes, providing a foundation for future research in this field. Several studies have demonstrated that prolonged exposure to O₃ leads to increased expression of reactive oxygen species, causing alterations in the blood-brain barrier and damage to astrocytes and microglia. These effects can lead to an increase in the production of proinflammatory cytokines, neurotoxins, and genes, exacerbating neuronal damage and accelerating the progression of neurodegenerative diseases such as Alzheimer's, Parkinson's, and other neurological disorders. The results of this review suggest that exposure to O₃ may induce oxidative damage to the nervous system, which could have significant implications for public health.
Collapse
Affiliation(s)
- Paola Rodriguez
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico, Mexico
| | - Alejandro López-Landa
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico, Mexico; Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Héctor Romo-Parra
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico, Mexico; Psychology Department, Universidad Iberoamericana, Mexico, Mexico
| | - Moisés Rubio-Osornio
- Neurochemistry Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico, Mexico
| | - Carmen Rubio
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico, Mexico.
| |
Collapse
|
3
|
Cowell W, Kloog I, Just AC, Coull BA, Carroll K, Wright RJ. Ambient PM 2.5 exposure and salivary cortisol output during pregnancy in a multi-ethnic urban sample. Inhal Toxicol 2023; 35:101-108. [PMID: 35312378 PMCID: PMC10264094 DOI: 10.1080/08958378.2022.2051647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/05/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Evidence from murine research supports that fine particulate matter (PM2.5) may stimulate the hypothalamic-pituitary-adrenal axis, leading to elevated circulating glucocorticoid levels. Epidemiologic research examining parallel associations document similar associations. We examined these associations among a diverse sample of pregnant individuals exposed to lower levels of ambient PM2.5. MATERIALS AND METHODS Participants included pregnant individuals enrolled in the PRogramming of Intergenerational Stress Mechanisms (PRISM) pre-birth cohort. Daily residential PM2.5 exposure was estimated using a satellite-based spatial-temporal hybrid model. Maternal 3rd trimester salivary cortisol levels were used to calculate several features of the diurnal cortisol rhythm. We used multivariable linear regression to examine PM2.5 during the pre-conception period and during each trimester in relation to cortisol awakening rise (CAR), slope, and area under the curve relative to ground (AUCG). RESULTS AND DISCUSSION The average PM2.5 exposure level across pregnancy was 8.13 µg/m3. PM2.5 in each exposure period was positively associated with AUCG, a measure of total cortisol output across the day. We also observed an inverse association between PM2.5 in the 3rd trimester and diurnal slope, indicating a steeper decline in cortisol throughout the day with increasing exposure. We did not detect strong associations between PM2.5 and slope for the other exposure periods or between PM2.5 and CAR for any exposure period. CONCLUSIONS In this sample, PM2.5 exposure across the preconception and pregnancy periods was associated with increased cortisol output, even at levels below the U.S. National Ambient Air Quality Annual Standard for PM2.5 of 12.0 µg/m3.
Collapse
Affiliation(s)
- Whitney Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Allan C. Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Brent A. Coull
- Department of Biostatistics, Harvard TH Chan School of Public Health, Harvard University, Boston, MA
| | - Kecia Carroll
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Kravis Children’s Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Rosalind J. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Kravis Children’s Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
4
|
Mallach G, Shutt R, Thomson EM, Valcin F, Kulka R, Weichenthal S. Randomized Cross-Over Study of In-Vehicle Cabin Air Filtration, Air Pollution Exposure, and Acute Changes to Heart Rate Variability, Saliva Cortisol, and Cognitive Function. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3238-3247. [PMID: 36787278 PMCID: PMC9979657 DOI: 10.1021/acs.est.2c06556] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
To determine how traffic-related air pollution (TRAP) exposures affect commuter health, and whether cabin air filtration (CAF) can mitigate exposures, we conducted a cross-over study of 48 adults exposed to TRAP during two commutes with and without CAF. Measurements included particulate air pollutants (PM2.5, black carbon [BC], ultrafine particles [UFPs]), volatile organic compounds, and nitrogen dioxide. We measured participants' heart rate variability (HRV), saliva cortisol, and cognitive function. On average, CAF reduced concentrations of UFPs by 26,232 (95%CI: 11,734, 40,730) n/cm3, PM2.5 by 6 (95%CI: 5, 8) μg/m3, and BC by 1348 (95%CI: 1042, 1654) ng/m3, or 28, 30, and 32%, respectively. Each IQR increase in PM2.5 was associated with a 28% (95%CI: 2, 60) increase in high-frequency power HRV at the end of the commute and a 22% (95%CI: 7, 39) increase 45 min afterward. IQR increases in UFPs were associated with increased saliva cortisol in women during the commute (18% [95%CI: 0, 40]). IQR increases in UFPs were associated with strong switching costs (19% [95%CI: 2, 39]), indicating a reduced capacity for multitasking, and PM2.5 was associated with increased reaction latency, indicating slower responses (5% [95%CI: 1, 10]). CAF can reduce particulate exposures by almost a third.
Collapse
Affiliation(s)
- Gary Mallach
- Water
and Air Quality Bureau, Health Canada, Ottawa K1A 0K9, Canada
| | - Robin Shutt
- Environmental
Health Science and Research Bureau, Health Canada, Ottawa K1A 0K9, Canada
| | - Errol M. Thomson
- Environmental
Health Science and Research Bureau, Health Canada, Ottawa K1A 0K9, Canada
- Department
of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Frédéric Valcin
- Water
and Air Quality Bureau, Health Canada, Ottawa K1A 0K9, Canada
| | - Ryan Kulka
- Water
and Air Quality Bureau, Health Canada, Ottawa K1A 0K9, Canada
| | - Scott Weichenthal
- Water
and Air Quality Bureau, Health Canada, Ottawa K1A 0K9, Canada
- Department
of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal H3A 1G1, Canada
| |
Collapse
|
5
|
Long-term particulate matter 2.5 exposure and dementia: a systematic review and meta-analysis. Public Health 2022; 212:33-41. [DOI: 10.1016/j.puhe.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 11/11/2022]
|
6
|
Sapienza S, Tedeschi V, Apicella B, Palestra F, Russo C, Piccialli I, Pannaccione A, Loffredo S, Secondo A. Size-Based Effects of Anthropogenic Ultrafine Particles on Lysosomal TRPML1 Channel and Autophagy in Motoneuron-like Cells. Int J Mol Sci 2022; 23:ijms232113041. [PMID: 36361823 PMCID: PMC9656695 DOI: 10.3390/ijms232113041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background: An emerging body of evidence indicates an association between anthropogenic particulate matter (PM) and neurodegeneration. Although the historical focus of PM toxicity has been on the cardiopulmonary system, ultrafine PM particles can also exert detrimental effects in the brain. However, only a few studies are available on the harmful interaction between PM and CNS and on the putative pathomechanisms. Methods: Ultrafine PM particles with a diameter < 0.1 μm (PM0.1) and nanoparticles < 20 nm (NP20) were sampled in a lab-scale combustion system. Their effect on cell tracking in the space was studied by time-lapse and high-content microscopy in NSC-34 motor neurons while pHrodo™ Green conjugates were used to detect PM endocytosis. Western blotting analysis was used to quantify protein expression of lysosomal channels (i.e., TRPML1 and TPC2) and autophagy markers. Current-clamp electrophysiology and Fura2-video imaging techniques were used to measure membrane potential, intracellular Ca2+ homeostasis and TRPML1 activity in NSC-34 cells exposed to PM0.1 and NP20. Results: NP20, but not PM0.1, reduced NSC-34 motor neuron movement in the space. Furthermore, NP20 was able to shift membrane potential of motor neurons toward more depolarizing values. PM0.1 and NP20 were able to enter into the cells by endocytosis and exerted mitochondrial toxicity with the consequent stimulation of ROS production. This latter event was sufficient to determine the hyperactivation of the lysosomal channel TRPML1. Consequently, both LC3-II and p62 protein expression increased after 48 h of exposure together with AMPK activation, suggesting an engulfment of autophagy. The antioxidant molecule Trolox restored TRPML1 function and autophagy. Conclusions: Restoring TRPML1 function by an antioxidant agent may be considered a protective mechanism able to reestablish autophagy flux in motor neurons exposed to nanoparticles.
Collapse
Affiliation(s)
- Silvia Sapienza
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Valentina Tedeschi
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Barbara Apicella
- Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS)-CNR, 80125 Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University of Naples Federico II, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Carmela Russo
- Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS)-CNR, 80125 Naples, Italy
| | - Ilaria Piccialli
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Pannaccione
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University of Naples Federico II, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Agnese Secondo
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
7
|
Zang ST, Wu QJ, Li XY, Gao C, Liu YS, Jiang YT, Zhang JY, Sun H, Chang Q, Zhao YH. Long-term PM 2.5 exposure and various health outcomes: An umbrella review of systematic reviews and meta-analyses of observational studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152381. [PMID: 34914980 DOI: 10.1016/j.scitotenv.2021.152381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Adverse effects from exposure to particulate matter <2.5 μm in diameter (PM2.5) on health-related outcomes have been found in a range of experimental and epidemiological studies. This study aimed to assess the significance, validity, and reliability of the relationship between long-term PM2.5 exposure and various health outcomes. The Embase, PubMed, Web of Science, CNKI, WANFANG, VIP, and SinoMed databases and reference lists of the retrieved review articles were searched to obtain meta-analysis and systematic reviews focusing on PM2.5-related outcomes as of August 31, 2021. Random-/fixed-effects models were applied to estimate summary effect size and 95% confidence intervals (CIs). The quality of included meta-analyses was evaluated based on the AMSTAR 2 tool. Small-study effect and excess significance bias studies were conducted to further assess the associations. Registered PROSPERO number: CRD42020200606. This included 24 articles involving 71 associations between PM2.5 exposure and the health outcomes. The evidence for the positive association of 10 μg/m3 increments of long-term exposure to PM2.5 and stroke incidence in Europe was convincing (effect size = 1.07, 95% CI: 1.05-1.10). There was evidence that was highly suggestive of a positive association between 10 μg/m3 increments of long-term exposure to PM2.5 and the following health-related outcomes: mortality of lung cancer (effect size = 1.11, 95% CI: 1.08-1.13) and Alzheimer's disease (effect size = 4.79, 95% CI: 2.79-8.21). There was highly suggestive evidence that chronic obstructive pulmonary disease risk is positively associated with higher long-term PM2.5 exposure versus lower long-term PM2.5 exposure (effect size = 2.32, 95% CI: 1.88-2.86). In conclusion, the positive association of long-term exposure to PM2.5 and stroke incidence in Europe was convincing. Given the validity of numerous associations of long-term exposure to PM2.5 and health-related outcomes is subject to biases, more robust evidence is urgently needed.
Collapse
Affiliation(s)
- Si-Tian Zang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xin-Yu Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chang Gao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ya-Shu Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu-Ting Jiang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jia-Yu Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hui Sun
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
8
|
The pathogenic effects of particulate matter on neurodegeneration: a review. J Biomed Sci 2022; 29:15. [PMID: 35189880 PMCID: PMC8862284 DOI: 10.1186/s12929-022-00799-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/16/2022] [Indexed: 12/15/2022] Open
Abstract
The increasing amount of particulate matter (PM) in the ambient air is a pressing public health issue globally. Epidemiological studies involving data from millions of patients or volunteers have associated PM with increased risk of dementia and Alzheimer’s disease in the elderly and cognitive dysfunction and neurodegenerative pathology across all age groups, suggesting that PM may be a risk factor for neurodegenerative diseases. Neurodegenerative diseases affect an increasing population in this aging society, putting a heavy burden on economics and family. Therefore, understanding the mechanism by which PM contributes to neurodegeneration is essential to develop effective interventions. Evidence in human and animal studies suggested that PM induced neurodenegerative-like pathology including neurotoxicity, neuroinflammation, oxidative stress, and damage in blood–brain barrier and neurovascular units, which may contribute to the increased risk of neurodegeneration. Interestingly, antagonizing oxidative stress alleviated the neurotoxicity of PM, which may underlie the essential role of oxidative stress in PM’s potential effect in neurodegeneration. This review summarized up-to-date epidemiological and experimental studies on the pathogenic role of PM in neurodegenerative diseases and discussed the possible underlying mechanisms.
Collapse
|
9
|
Chen H, Cheng Z, Li M, Luo P, Duan Y, Fan J, Xu Y, Pu K, Zhou L. Ambient Air Pollution and Hospitalizations for Ischemic Stroke: A Time Series Analysis Using a Distributed Lag Nonlinear Model in Chongqing, China. Front Public Health 2022; 9:762597. [PMID: 35118040 PMCID: PMC8804166 DOI: 10.3389/fpubh.2021.762597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/02/2021] [Indexed: 01/11/2023] Open
Abstract
Short-term exposure to air pollution has been associated with ischemic stroke (IS) hospitalizations, but the evidence of its effects on IS in low- and middle-income countries is limited and inconsistent. We aimed to quantitatively estimate the association between air pollution and hospitalizations for IS in Chongqing, China. This time series study included 2,299 inpatients with IS from three hospitals in Chongqing from January 2015 to December 2016. Generalized linear regression models combined with a distributed lag nonlinear model (DLNM) were used to investigate the impact of air pollution on IS hospitalizations. Stratification analysis was further implemented by sex, age, and season. The maximum lag-specific and cumulative percentage changes of IS were 1.2% (95% CI: 0.4–2.1%, lag 3 day) and 3.6% (95% CI: 0.5–6.7%, lag 05 day) for each 10 μg/m3 increase in PM2.5; 1.0% (95% CI: 0.3–1.7%, lag 3 day) and 2.9% (95% CI: 0.6–5.2%, lag 05 day) for each 10 μg/m3 increase in PM10; 4.8% (95% CI: 0.1–9.7%, lag 4 day) for each 10 μg/m3 increase in SO2; 2.5% (95% CI: 0.3–4.7%, lag 3 day) and 8.2% (95% CI: 0.9–16.0%, lag 05 day) for each 10 μg/m3 increase in NO2; 0.7% (95% CI: 0.0–1.5%, lag 6 day) for each 10 μg/m3 increase in O3. No effect modifications were detected for sex, age, and season. Our findings suggest that short-term exposure to PM2.5, PM10, SO2, NO2, and O3 contributes to more IS hospitalizations, which warrant the government to take effective actions in addressing air pollution issues.
Collapse
Affiliation(s)
- Hao Chen
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Zheng Cheng
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Mengmeng Li
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Pan Luo
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yong Duan
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Jie Fan
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Ying Xu
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Kexue Pu
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- *Correspondence: Li Zhou
| |
Collapse
|
10
|
Lecordier S, Manrique-Castano D, El Moghrabi Y, ElAli A. Neurovascular Alterations in Vascular Dementia: Emphasis on Risk Factors. Front Aging Neurosci 2021; 13:727590. [PMID: 34566627 PMCID: PMC8461067 DOI: 10.3389/fnagi.2021.727590] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
Vascular dementia (VaD) constitutes the second most prevalent cause of dementia in the world after Alzheimer’s disease (AD). VaD regroups heterogeneous neurological conditions in which the decline of cognitive functions, including executive functions, is associated with structural and functional alterations in the cerebral vasculature. Among these cerebrovascular disorders, major stroke, and cerebral small vessel disease (cSVD) constitute the major risk factors for VaD. These conditions alter neurovascular functions leading to blood-brain barrier (BBB) deregulation, neurovascular coupling dysfunction, and inflammation. Accumulation of neurovascular impairments over time underlies the cognitive function decline associated with VaD. Furthermore, several vascular risk factors, such as hypertension, obesity, and diabetes have been shown to exacerbate neurovascular impairments and thus increase VaD prevalence. Importantly, air pollution constitutes an underestimated risk factor that triggers vascular dysfunction via inflammation and oxidative stress. The review summarizes the current knowledge related to the pathological mechanisms linking neurovascular impairments associated with stroke, cSVD, and vascular risk factors with a particular emphasis on air pollution, to VaD etiology and progression. Furthermore, the review discusses the major challenges to fully elucidate the pathobiology of VaD, as well as research directions to outline new therapeutic interventions.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Daniel Manrique-Castano
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Yara El Moghrabi
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
11
|
Cong X, Zhang J, Sun R, Pu Y. Indoor unclean fuel cessation linked with adult cognitive performance in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145518. [PMID: 33621876 DOI: 10.1016/j.scitotenv.2021.145518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/03/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Both indoor unclean fuel use and CVD associates with cognitive function. Indoor fuel has transitioned from the use of unclean fuel to clean fuel in recent years in China. The aim of this study was to evaluate the association between adult cognitive function and such a transition and to investigate the potential role of CVD in this association. 7112 participants (26- to 98-years of age) with 12,676 observations living in twelve provinces of China from 1997 to 2015 were extracted based on having complete data. The associations, combined effects, and further mediation effects between indoor unclean fuel use and its transition, CVD, and cognitive function were tested using regression models, stratified analyses, the relative excess risk due to interaction (RERI), mediation analysis methods, and sensitivity analyses. Between 1997 and 2015, cooking fuel use coal and wood went down a lot in China, from a baseline of 26.9% to 6.1%, from 30.1% to 11.5%, respectively. Such a transition showed a positive association with delayed verbal recall (B = 0.288, p < 0.01), especially in rural area, subjects with age ≥ 65 years old, and women (all P < 0.05). The combined effect of the presence of hypertension during a baseline visit and such a transition on changes in delayed verbal recall was antagonistic (RERI = -0.529, p < 0.05). Moreover, the development of hypertension explained more than 50% of such a fuel transition-related decline of verbal memory. The transition of household energy to clean fuel was associated with a higher adult cognitive function. The presence or the development of CVD appeared to affect the association between indoor air pollution and cognitive function, which suggests a need to further optimize prevention of concurrent CVD and risk factor control in adults at higher risk for cognitive impairment and with indoor unclean cooking fuel, especially in potentially susceptible subgroups.
Collapse
Affiliation(s)
- Xiaowei Cong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
12
|
Franza L, Cianci R. Pollution, Inflammation, and Vaccines: A Complex Crosstalk. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126330. [PMID: 34208042 PMCID: PMC8296132 DOI: 10.3390/ijerph18126330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022]
Abstract
The importance of pollution in determining human health is becoming increasingly clear, also given the dramatic consequences it has had on recent geopolitical events. Yet, the consequences of contamination are not always straightforward. In this paper, we will discuss the effects of different pollutants on different aspects of human health, in particular on the immune system and inflammation. Different environmental pollutants can have different effects on the immune system, which can then promote complex pathologies, such as autoimmune disorders and cancer. The interaction with the microbiota also further helps to determine the consequences of contamination on wellbeing. The pollution can affect vaccination efficacy, given the widespread effects of vaccination on immunity. At the same time, some vaccinations also can exert protective effects against some forms of pollution.
Collapse
Affiliation(s)
- Laura Franza
- Emergency Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 8-00168 Rome, Italy;
| | - Rossella Cianci
- Dipartimento di Medicina e Chirurgia Traslazionale, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 8-00168 Rome, Italy
- Correspondence: ; Tel.: +39-06-3015-7597; Fax: +39-06-3550-2775
| |
Collapse
|
13
|
Haghani A, Morgan TE, Forman HJ, Finch CE. Air Pollution Neurotoxicity in the Adult Brain: Emerging Concepts from Experimental Findings. J Alzheimers Dis 2021; 76:773-797. [PMID: 32538853 DOI: 10.3233/jad-200377] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epidemiological studies are associating elevated exposure to air pollution with increased risk of Alzheimer's disease and other neurodegenerative disorders. In effect, air pollution accelerates many aging conditions that promote cognitive declines of aging. The underlying mechanisms and scale of effects remain largely unknown due to its chemical and physical complexity. Moreover, individual responses to air pollution are shaped by an intricate interface of pollutant mixture with the biological features of the exposed individual such as age, sex, genetic background, underlying diseases, and nutrition, but also other environmental factors including exposure to cigarette smoke. Resolving this complex manifold requires more detailed environmental and lifestyle data on diverse populations, and a systematic experimental approach. Our review aims to summarize the modest existing literature on experimental studies on air pollution neurotoxicity for adult rodents and identify key gaps and emerging challenges as we go forward. It is timely for experimental biologists to critically understand prior findings and develop innovative approaches to this urgent global problem. We hope to increase recognition of the importance of air pollution on brain aging by our colleagues in the neurosciences and in biomedical gerontology, and to support the immediate translation of the findings into public health guidelines for the regulation of remedial environmental factors that accelerate aging processes.
Collapse
Affiliation(s)
- Amin Haghani
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA
| | | | - Caleb E Finch
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA.,Dornsife College, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Abstract
Climate change is one of the biggest challenges humanity is facing in the 21st century. Two recognized sequelae of climate change are global warming and air pollution. The gradual increase in ambient temperature, coupled with elevated pollution levels have a devastating effect on our health, potentially contributing to the increased rate and severity of numerous neurological disorders. The main aim of this review paper is to shed some light on the association between the phenomena of global warming and air pollution, and two of the most common and debilitating neurological conditions: stroke and neurodegenerative disorders. Extreme ambient temperatures induce neurological impairment and increase stroke incidence and mortality. Global warming does not participate in the etiology of neurodegenerative disorders, but it exacerbates symptoms of dementia, Alzheimer's disease (AD) and Parkinson's Disease (PD). A very close link exists between accumulated levels of air pollutants (principally particulate matter), and the incidence of ischemic rather than hemorrhagic strokes. People exposed to air pollutants have a higher risk of developing dementia and AD, but not PD. Oxidative stress, changes in cardiovascular and cerebrovascular haemodynamics, excitotoxicity, microglial activation, and cellular apoptosis, all play a central role in the overlap of the effect of climate change on neurological disorders. The complex interactions between global warming and air pollution, and their intricate effect on the nervous system, imply that future policies aimed to mitigate climate change must address these two challenges in unison.
Collapse
Affiliation(s)
- Christian Zammit
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.
| | - Natalia Torzhenskaya
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.
| | | | - Jean Calleja Agius
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.
| |
Collapse
|
15
|
Shabani S. A mechanistic view on the neurotoxic effects of air pollution on central nervous system: risk for autism and neurodegenerative diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6349-6373. [PMID: 33398761 DOI: 10.1007/s11356-020-11620-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Many reports have shown a strong association between exposure to neurotoxic air pollutants like heavy metal and particulate matter (PM) as an active participant and neurological disorders. While the effects of these toxic pollutants on cardiopulmonary morbidity have principally been studied, growing evidence has shown that exposure to polluted air is associated with memory impairment, communication deficits, and anxiety/depression among all ages. So, these toxic pollutants in the environment increase the risk of neurodegenerative disease, ischemia, and autism spectrum disorders (ASD). The precise mechanisms in which air pollutants lead to communicative inability, social inability, and declined cognition have remained unknown. Various animal model studies show that amyloid precursor protein (APP), processing, oxidant/antioxidant balance, and inflammation pathways change following the exposure to constituents of polluted air. In the present review study, we collect the probable molecular mechanisms of deleterious CNS effects in response to various air pollutants.
Collapse
Affiliation(s)
- Sahreh Shabani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
16
|
Mei P, Malik V, Harper RW, Jiménez JM. Air pollution, human health and the benefits of trees: a biomolecular and physiologic perspective. ACTA ACUST UNITED AC 2021. [DOI: 10.1080/03071375.2020.1854995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Patrick Mei
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Vaishali Malik
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Richard W. Harper
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
| | - Juan M. Jiménez
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
17
|
Sahu B, Mackos AR, Floden AM, Wold LE, Combs CK. Particulate Matter Exposure Exacerbates Amyloid-β Plaque Deposition and Gliosis in APP/PS1 Mice. J Alzheimers Dis 2021; 80:761-774. [PMID: 33554902 PMCID: PMC8100996 DOI: 10.3233/jad-200919] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) plaques, neuroinflammation, and neuronal death. There are several well-established genetic and environmental factors hypothesized to contribute to AD progression including air pollution. However, the molecular mechanisms by which air pollution exacerbates AD are unclear. OBJECTIVE This study explored the effects of particulate matter exposure on AD-related brain changes using the APP/PS1 transgenic model of disease. METHODS Male C57BL/6;C3H wild type and APP/PS1 mice were exposed to either filtered air (FA) or particulate matter sized under 2.5μm (PM2.5) for 6 h/day, 5 days/week for 3 months and brains were collected. Immunohistochemistry for Aβ, GFAP, Iba1, and CD68 and western blot analysis for PS1, BACE, APP, GFAP, and Iba1 were performed. Aβ ELISAs and cytokine arrays were performed on frozen hippocampal and cortical lysates, respectively. RESULTS The Aβ plaque load was significantly increased in the hippocampus of PM2.5-exposed APP/PS1 mice compared to their respective FA controls. Additionally, in the PM2.5-exposed APP/PS1 group, increased astrocytosis and microgliosis were observed as indicated by elevated GFAP, Iba1, and CD68 immunoreactivities. PM2.5 exposure also led to an elevation in the levels of PS1 and BACE in APP/PS1 mice. The cytokines TNF-α, IL-6, IL-1β, IFN-γ, and MIP-3α were also elevated in the cortices of PM2.5-exposed APP/PS1 mice compared to FA controls. CONCLUSION Our data suggest that chronic particulate matter exposure exacerbates AD by increasing Aβ plaque load, gliosis, and the brain inflammatory status.
Collapse
Affiliation(s)
- Bijayani Sahu
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037
| | - Amy R. Mackos
- College of Nursing, The Ohio State University, Columbus, OH
| | - Angela M. Floden
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037
| | - Loren E. Wold
- College of Nursing, The Ohio State University, Columbus, OH
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH
| | - Colin K. Combs
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037
| |
Collapse
|
18
|
Wang Y, Liu X, Chen G, Tu R, Abdulai T, Qiao D, Liu X, Dong X, Luo Z, Wang Y, Li R, Huo W, Yu S, Guo Y, Li S, Wang C. Association of long-term exposure to ambient air pollutants with prolonged sleep latency: The Henan Rural Cohort Study. ENVIRONMENTAL RESEARCH 2020; 191:110116. [PMID: 32846171 DOI: 10.1016/j.envres.2020.110116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Prolonged sleep latency is associated with far-reaching public health consequences. Although evidence about the effect of air pollution on sleep problem has been shown, the effect on sleep latency remained unknown. The study aimed to analyze the association between long-term exposure to air pollution and prolonged sleep latency in rural China. METHODS In all, 27935 participants were included in the study from Henan Rural Cohort Study. A satellite-based spatiotemporal model was used to evaluate the 3-year average concentration of air pollutants at the home address of participants before the baseline survey. Air pollutants included NO2 (nitrogen dioxide), PM1 (particulate matter with aerodynamic diameters ≤1 μm), PM2.5 (particulate matter with aerodynamic diameters ≤ 2.5 μm), and PM10 (particulate matter with aerodynamic diametes ≤ 10 μm). A logistic regression model was conducted to assess the odds ratio (OR) and 95% confidence interval (95% CI) between air pollutants and prolonged sleep latency. RESULTS There were 5825 (20.85%) participants with prolonged sleep latency. The average concentration of NO2, PM1, PM2.5, and PM10 were 38.22 (2.54) μg/m3, 56.29 (1.75) μg/m3, 72.30 (1.87) μg/m3, and 130.01 (4.58) μg/m3. The odds ratio (95%CI) of prolonged sleep latency with an IQR increase of NO2, PM1, PM2.5, and PM10 were 1.59 (1.33-1.90), 1.23 (1.13-1.33), 1.28 (1.13-1.45) and 1.43 (1.22-1.67). The stratified analysis showed the effect of air pollutants was stronger among those with stroke. CONCLUSION Long-term exposure to NO2, PM1, PM2.5 and PM10 were associated with prolonged sleep latency. The adverse impact of air pollution should be considered when treating sleep problems.
Collapse
Affiliation(s)
- Yan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Gongbo Chen
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Runqi Tu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tanko Abdulai
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Dou Qiao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xue Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaokang Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhicheng Luo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yikang Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Songcheng Yu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuming Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
19
|
Thomson EM. Air Pollution, Stress, and Allostatic Load: Linking Systemic and Central Nervous System Impacts. J Alzheimers Dis 2020; 69:597-614. [PMID: 31127781 PMCID: PMC6598002 DOI: 10.3233/jad-190015] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Air pollution is a risk factor for cardiovascular and respiratory morbidity and mortality. A growing literature also links exposure to diverse air pollutants (e.g., nanoparticles, particulate matter, ozone, traffic-related air pollution) with brain health, including increased incidence of neurological and psychiatric disorders such as cognitive decline, dementia (including Alzheimer’s disease), anxiety, depression, and suicide. A critical gap in our understanding of adverse impacts of pollutants on the central nervous system (CNS) is the early initiating events triggered by pollutant inhalation that contribute to disease progression. Recent experimental evidence has shown that particulate matter and ozone, two common pollutants with differing characteristics and reactivity, can activate the hypothalamic-pituitary-adrenal (HPA) axis and release glucocorticoid stress hormones (cortisol in humans, corticosterone in rodents) as part of a neuroendocrine stress response. The brain is highly sensitive to stress: stress hormones affect cognition and mental health, and chronic stress can produce profound biochemical and structural changes in the brain. Chronic activation and/or dysfunction of the HPA axis also increases the burden on physiological stress response systems, conceptualized as allostatic load, and is a common pathway implicated in many diseases. The present paper provides an overview of how systemic stress-dependent biological responses common to particulate matter and ozone may provide insight into early CNS effects of pollutants, including links with oxidative, inflammatory, and metabolic processes. Evidence of pollutant effect modification by non-chemical stressors (e.g., socioeconomic position, psychosocial, noise), age (prenatal to elderly), and sex will also be reviewed in the context of susceptibility across the lifespan.
Collapse
Affiliation(s)
- Errol M Thomson
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
20
|
Yuan S, Wang J, Jiang Q, He Z, Huang Y, Li Z, Cai L, Cao S. Long-term exposure to PM 2.5 and stroke: A systematic review and meta-analysis of cohort studies. ENVIRONMENTAL RESEARCH 2019; 177:108587. [PMID: 31326714 DOI: 10.1016/j.envres.2019.108587] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/10/2019] [Accepted: 07/14/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Stroke is one of the world's leading causes of death. Many studies have checked the relationship between short-term exposure to particulate matter (PM) and stroke, but few have focused on the effect of long-term exposure to PM2.5 (particulate matters with an aerodynamic diameter of ≤2.5 μm). This study aimed to quantitatively examine the relationship of long-term exposure to PM2.5 with stroke incidence and mortality. METHODS We identified relevant studies by searching the PubMed, EMBASE and MEDLINE. After the systematical review of pertinent studies, random-effect meta-analysis was conducted to investigate the association between long-term exposure to PM2.5 and stroke. RESULTS Our meta-analysis included 16 cohort studies with more than 2.2 million people and above 49 149 endpoint events (incident stroke and death from stroke). The pooled hazard ratio (HR) for each 5 μg/m3 increment in PM2.5 was 1.11 (95% CI: 1.05, 1.17) (CI for confidence interval) for incidence of stroke and 1.11 (95% CI:1.05, 1.17) for mortality of stroke. In the region-specific analysis, significant association between PM2.5 and incidence of stroke was found in North America (HR=1.09, 95% CI:1.05, 1.14) and Europe (HR=1.07, 95% CI:1.05, 1.10), while the pooled result of Asia showed no significance (HR=2.31, 95% CI:0.49, 10.95). CONCLUSIONS Long-term exposure to PM2.5 is an important risk factor for stroke. Since air quality is intimately related to everyone, policies aimed at reducing particulate matters will benefit public health a lot.
Collapse
Affiliation(s)
- Sheng Yuan
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; FuWai Hospital & Key Laboratory of Pulmonary Vascular Medicine, State Key Laboratory of Cardiovascular Disease, National Centre for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy Medical Sciences, Beijing, China
| | - Jiaxin Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qingqing Jiang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziyu He
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yuchai Huang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengyang Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Luyao Cai
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shiyi Cao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Croze ML, Zimmer L. Ozone Atmospheric Pollution and Alzheimer's Disease: From Epidemiological Facts to Molecular Mechanisms. J Alzheimers Dis 2019; 62:503-522. [PMID: 29480184 DOI: 10.3233/jad-170857] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atmospheric pollution is a well-known environmental hazard, especially in developing countries where millions of people are exposed to airborne pollutant levels above safety standards. Accordingly, several epidemiological and animal studies confirmed its role in respiratory and cardiovascular pathologies and identified a strong link between ambient air pollution exposure and adverse health outcomes such as hospitalization and mortality. More recently, the potential deleterious effect of air pollution inhalation on the central nervous system was also investigated and mounting evidence supports a link between air pollution exposure and neurodegenerative pathologies, especially Alzheimer's disease (AD). The focus of this review is to highlight the possible link between ozone air pollution exposure and AD incidence. This review's approach will go from observational and epidemiological facts to the proposal of molecular mechanisms. First, epidemiological and postmortem human study data concerning residents of ozone-severely polluted megacities will be presented and discussed. Then, the more particular role of ozone air pollution in AD pathology will be described and evidenced by toxicological studies in rat or mouse with ozone pollution exposure only. The experimental paradigms used to reproduce in rodent the human exposure to ozone air pollution will be described. Finally, current insights into the molecular mechanisms through which ozone inhalation can affect the brain and play a role in AD development or progression will be recapitulated.
Collapse
Affiliation(s)
- Marine L Croze
- Université Claude Bernard Lyon 1, INSERM, CNRS, Lyon Neuroscience Research Center, Lyon, France
| | - Luc Zimmer
- Université Claude Bernard Lyon 1, INSERM, CNRS, Lyon Neuroscience Research Center, Lyon, France.,Hospices Civils de Lyon, CERMEP-Imaging Platform, Bron, France
| |
Collapse
|
22
|
Schwartz J, Fong K, Zanobetti A. A National Multicity Analysis of the Causal Effect of Local Pollution,
NO
2
, and
PM
2.5
on Mortality. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:087004. [PMID: 30235421 PMCID: PMC6375387 DOI: 10.1289/ehp2732] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Studies have long associatedPM 2.5 with daily mortality, but few applied causal-modeling methods, or at low exposures. Short-term exposure toNO 2 , a marker of local traffic, has also been associated with mortality but is less studied. We previously found a causal effect between local air pollution and mortality in Boston. OBJECTIVES We aimed to estimate the causal effects of local pollution,PM 2.5 , andNO 2 on mortality in 135 U.S. cities. METHODS We used three methods which, under different assumptions, provide causal marginal estimates of effect: a marginal structural model, an instrumental variable analysis, and a negative exposure control. The instrumental approach used planetary boundary layer, wind speed, and air pressure as instruments for concentrations of local pollutants; the marginal structural model separated the effects ofNO 2 from the effects ofPM 2.5 , and the negative exposure control provided protection against unmeasured confounders. RESULTS In 7.3 million deaths, the instrumental approach estimated that mortality increased 1.5% [95% confidence interval (CI): 1.1%, 2.0%] per10 μ g / m 3 increase in local pollution indexed asPM 2.5 . The negative control exposure was not associated with mortality. Restricting our analysis to days withPM 2.5 below25 μ g / m 3 , we found a 1.70% (95% CI 1.11%, 2.29%) increase. With marginal structural models, we found positive significant increases in deaths with bothPM 2.5 and25 μ g / m 3 . On days withPM 2.5 below25 μ g / m 3 , we found a 0.83% (95% CI 0.39%, 1.27%) increase. Including negative exposure controls changed estimates minimally. CONCLUSIONS Causal-modeling techniques, each subject to different assumptions, demonstrated causal effects of locally generated pollutants on daily deaths with effects at concentrations below the current EPA dailyPM 2.5 standard. https://doi.org/10.1289/EHP2732.
Collapse
Affiliation(s)
- Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kelvin Fong
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Jayaraj RL, Rodriguez EA, Wang Y, Block ML. Outdoor Ambient Air Pollution and Neurodegenerative Diseases: the Neuroinflammation Hypothesis. Curr Environ Health Rep 2017; 4:166-179. [PMID: 28444645 DOI: 10.1007/s40572-017-0142-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Accumulating research indicates that ambient outdoor air pollution impacts the brain and may affect neurodegenerative diseases, yet the potential underlying mechanisms are poorly understood. RECENT FINDINGS The neuroinflammation hypothesis holds that elevation of cytokines and reactive oxygen species in the brain mediates the deleterious effects of urban air pollution on the central nervous system (CNS). Studies in human and animal research document that neuroinflammation occurs in response to several inhaled pollutants. Microglia are a prominent source of cytokines and reactive oxygen species in the brain, implicated in the progressive neuron damage in diverse neurodegenerative diseases, and activated by inhaled components of urban air pollution through both direct and indirect pathways. The MAC1-NOX2 pathway has been identified as a mechanism through which microglia respond to different forms of air pollution, suggesting a potential common deleterious pathway. Multiple direct and indirect pathways in response to air pollution exposure likely interact in concert to exert CNS effects.
Collapse
Affiliation(s)
- Richard L Jayaraj
- Department of Anatomy and Cell Biology, The Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Eric A Rodriguez
- Department of Anatomy and Cell Biology, The Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yi Wang
- Department of Environmental Health, Indiana University Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Michelle L Block
- Department of Anatomy and Cell Biology, The Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
24
|
Erickson MA, Jude J, Zhao H, Rhea EM, Salameh TS, Jester W, Pu S, Harrowitz J, Nguyen N, Banks WA, Panettieri RA, Jordan-Sciutto KL. Serum amyloid A: an ozone-induced circulating factor with potentially important functions in the lung-brain axis. FASEB J 2017; 31:3950-3965. [PMID: 28533327 DOI: 10.1096/fj.201600857rrr] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 05/01/2017] [Indexed: 01/24/2023]
Abstract
Accumulating evidence suggests that O3 exposure may contribute to CNS dysfunction. Here, we posit that inflammatory and acute-phase proteins in the circulation increase after O3 exposure and systemically convey signals of O3 exposure to the CNS. To model acute O3 exposure, female Balb/c mice were exposed to 3 ppm O3 or forced air for 2 h and were studied after 6 or 24 h. Of 23 cytokines and chemokines, only KC/CXCL1 was increased in blood 6 h after O3 exposure. The acute-phase protein serum amyloid A (A-SAA) was significantly increased by 24 h, whereas C-reactive protein was unchanged. A-SAA in blood correlated with total leukocytes, macrophages, and neutrophils in bronchoalveolar lavage from O3-exposed mice. A-SAA mRNA and protein were increased in the liver. We found that both isoforms of A-SAA completely crossed the intact blood-brain barrier, although the rate of SAA2.1 influx was approximately 5 times faster than that of SAA1.1. Finally, A-SAA protein, but not mRNA, was increased in the CNS 24 h post-O3 exposure. Our findings suggest that A-SAA is functionally linked to pulmonary inflammation in our O3 exposure model and that A-SAA could be an important systemic signal of O3 exposure to the CNS.-Erickson, M. A., Jude, J., Zhao, H., Rhea, E. M., Salameh, T. S., Jester, W., Pu, S., Harrowitz, J., Nguyen, N., Banks, W. A., Panettieri, R. A., Jr., Jordan-Sciutto, K. L. Serum amyloid A: an ozone-induced circulating factor with potentially important functions in the lung-brain axis.
Collapse
Affiliation(s)
- Michelle A Erickson
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; .,Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Joseph Jude
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey, USA.,Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hengjiang Zhao
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth M Rhea
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Therese S Salameh
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - William Jester
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey, USA.,Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shelley Pu
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jenna Harrowitz
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ngan Nguyen
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William A Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Reynold A Panettieri
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelly L Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Li B, Chen M, Guo L, Yun Y, Li G, Sang N. Endocannabinoid 2-arachidonoylglycerol protects inflammatory insults from sulfur dioxide inhalation via cannabinoid receptors in the brain. J Environ Sci (China) 2017; 51:265-274. [PMID: 28115138 DOI: 10.1016/j.jes.2016.05.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/05/2016] [Accepted: 05/24/2016] [Indexed: 06/06/2023]
Abstract
Sulfur dioxide (SO2) pollution in the atmospheric environment causes brain inflammatory insult and inflammatory-related microvasculature dysfunction. However, there are currently no effective medications targeting the harmful outcomes from chemical inhalation. Endocannabinoids (eCBs) are involved in neuronal protection against inflammation-induced neuronal injury. The 2-arachidonoylglycerol (2-AG), the most abundant eCBs and a full agonist for cannabinoid receptors (CB1 and CB2), is also capable of suppressing proinflammatory stimuli and improving microvasculature dysfunction. Here, we indicated that endogenous 2-AG protected against neuroinflammation in response to SO2 inhalation by inhibiting the activation of microglia and astrocytes and attenuating the overexpression of inflammatory cytokines, including tumor necrosis factor alpha (TNF-a), interleukin (IL)-1β, and inducible nitric oxide synthase (iNOS). In addition, endogenous 2-AG prevented cerebral vasculature dysfunction following SO2 inhalation by inhibiting endothelin 1 (ET-1), vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) expression, elevating endothelial nitric oxide synthase (eNOS) level, and restoring the imbalance between thromboxane A2 (TXA2) and prostaglandin I2 (PGI2). In addition, the action of endogenous 2-AG on the suppression of inflammatory insult and inflammatory-related microvasculature dysfunction appeared to be mainly mediated by CB1 and CB2 receptors. Our results provided a mechanistic basis for the development of new therapeutic approaches for protecting brain injuries from SO2 inhalation.
Collapse
Affiliation(s)
- Ben Li
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Minjun Chen
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Lin Guo
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yang Yun
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Guangke Li
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
26
|
Calderón-Garcidueñas L, de la Monte SM. Apolipoprotein E4, Gender, Body Mass Index, Inflammation, Insulin Resistance, and Air Pollution Interactions: Recipe for Alzheimer's Disease Development in Mexico City Young Females. J Alzheimers Dis 2017; 58:613-630. [PMID: 28527212 PMCID: PMC9996388 DOI: 10.3233/jad-161299] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Given the epidemiological trends of increasing Alzheimer's disease (AD) and growing evidence that exposure and lifestyle factors contribute to AD risk and pathogenesis, attention should be paid to variables such as air pollution, in order to reduce rates of cognitive decline and dementia. Exposure to fine particulate matter (PM2.5) and ozone (O3) above the US EPA standards is associated with AD risk. Mexico City children experienced pre- and postnatal high exposures to PM2.5, O3, combustion-derived iron-rich nanoparticles, metals, polycyclic aromatic hydrocarbons, and endotoxins. Exposures are associated with early brain gene imbalance in oxidative stress, inflammation, innate and adaptive immune responses, along with epigenetic changes, accumulation of misfolded proteins, cognitive deficits, and brain structural and metabolic changes. The Apolipoprotein E (APOE) 4 allele, the most prevalent genetic risk for AD, plays a key role in the response to air pollution in young girls. APOE 4 heterozygous females with >75% to <94% BMI percentiles are at the highest risk of severe cognitive deficits (1.5-2 SD from average IQ). This review focused on the relationships between gender, BMI, systemic and neural inflammation, insulin resistance, hyperleptinemia, dyslipidemia, vascular risk factors, and central nervous system involvement in APOE4 urbanites exposed to PM2.5 and magnetite combustion-derived iron-rich nanoparticles that can reach the brain. APOE4 young female heterozygous carriers constitute a high-risk group for a fatal disease: AD. Multidisciplinary intervention strategies could be critical for prevention or amelioration of cognitive deficits and long-term AD progression in young individuals at high risk.
Collapse
|
27
|
Saenen ND, Provost EB, Viaene MK, Vanpoucke C, Lefebvre W, Vrijens K, Roels HA, Nawrot TS. Recent versus chronic exposure to particulate matter air pollution in association with neurobehavioral performance in a panel study of primary schoolchildren. ENVIRONMENT INTERNATIONAL 2016; 95:112-9. [PMID: 27575366 DOI: 10.1016/j.envint.2016.07.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/19/2016] [Accepted: 07/24/2016] [Indexed: 05/23/2023]
Abstract
Children's neuropsychological abilities are in a developmental stage. Recent air pollution exposure and neurobehavioral performance are scarcely studied. In a panel study, we repeatedly administered to each child the following neurobehavioral tests: Stroop Test (selective attention) and Continuous Performance Test (sustained attention), Digit Span Forward and Backward Tests (short-term memory), and Digit-Symbol and Pattern Comparison Tests (visual information processing speed). At school, recent inside classroom particulate matter ≤2.5 or 10μm exposure (PM2.5, PM10) was monitored on each examination day. At the child's residence, recent (same day up to 2days before) and chronic (365days before examination) exposures to PM2.5, PM10 and black carbon (BC) were modeled. Repeated neurobehavioral test performances (n=894) of the children (n=310) reflected slower Stroop Test (p=0.05) and Digit-Symbol Test (p=0.01) performances with increasing recent inside classroom PM2.5 exposure. An interquartile range (IQR) increment in recent residential outdoor PM2.5 exposure was associated with an increase in average latency of 0.087s (SE: ±0.034; p=0.01) in the Pattern Comparison Test. Regarding chronic exposure at residence, an IQR increment of PM2.5 exposure was associated with slower performances in the Continuous Performance (9.45±3.47msec; p=0.007) and Stroop Tests (59.9±26.5msec; p=0.02). Similar results were obtained for PM10 exposure. In essence, we showed differential neurobehavioral changes robustly and adversely associated with recent or chronic ambient exposure to PM air pollution at residence, i.e., with recent exposure for visual information processing speed (Pattern Comparison Test) and with chronic exposure for sustained and selective attention.
Collapse
Affiliation(s)
- Nelly D Saenen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Eline B Provost
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Mineke K Viaene
- Department of Neurology, Sint Dimphna Hospital, Geel, Belgium
| | | | - Wouter Lefebvre
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Karen Vrijens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Harry A Roels
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Brussels, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Department of Public Health & Primary Care, Leuven University, Leuven, Belgium.
| |
Collapse
|
28
|
Chan EAW, Buckley B, Farraj AK, Thompson LC. The heart as an extravascular target of endothelin-1 in particulate matter-induced cardiac dysfunction. Pharmacol Ther 2016; 165:63-78. [PMID: 27222357 PMCID: PMC6390286 DOI: 10.1016/j.pharmthera.2016.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Exposure to particulate matter air pollution has been causally linked to cardiovascular disease in humans. Several broad and overlapping hypotheses describing the biological mechanisms by which particulate matter exposure leads to cardiovascular disease have been explored, although linkage with specific factors or genes remains limited. These hypotheses may or may not also lead to particulate matter-induced cardiac dysfunction. Evidence pointing to autocrine/paracrine signaling systems as modulators of cardiac dysfunction has increased interest in the emerging role of endothelins as mediators of cardiac function following particulate matter exposure. Endothelin-1, a well-described small peptide expressed in the pulmonary and cardiovascular systems, is best known for its ability to constrict blood vessels, although it can also induce extravascular effects. Research on the role of endothelins in the context of air pollution has largely focused on vascular effects, with limited investigation of responses resulting from the direct effects of endothelins on cardiac tissue. This represents a significant knowledge gap in air pollution health effects research, given the abundance of endothelin receptors found on cardiac tissue and the ability of endothelin-1 to modulate cardiac contractility, heart rate, and rhythm. The plausibility of endothelin-1 as a mediator of particulate matter-induced cardiac dysfunction is further supported by the therapeutic utility of certain endothelin receptor antagonists. The present review examines the possibility that endothelin-1 release caused by exposure to PM directly modulates extravascular effects on the heart, deleteriously altering cardiac function.
Collapse
Affiliation(s)
- Elizabeth A W Chan
- Oak Ridge Institute for Science and Education (ORISE) Fellow at the National Center for Environmental Assessment, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC, USA
| | - Barbara Buckley
- National Center for Environmental Assessment, U.S. EPA, Research Triangle Park, NC, USA
| | - Aimen K Farraj
- Environmental Public Health Division, U.S. EPA, Research Triangle Park, NC, USA
| | - Leslie C Thompson
- Environmental Public Health Division, U.S. EPA, Research Triangle Park, NC, USA.
| |
Collapse
|
29
|
Calderón-Garcidueñas L, San Juan Chávez V, Vacaseydel-Aceves NB, Calderón-Sánchez R, Macías-Escobedo E, Frías C, Giacometto M, Velasquez L, Félix-Villarreal R, Martin JD, Draheim C, Engle RW. Chocolate, Air Pollution and Children's Neuroprotection: What Cognition Tools should be at Hand to Evaluate Interventions? Front Pharmacol 2016; 7:232. [PMID: 27563291 PMCID: PMC4980563 DOI: 10.3389/fphar.2016.00232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/18/2016] [Indexed: 12/19/2022] Open
Abstract
Millions of children across the world are exposed to multiple sources of indoor and outdoor air pollutants, including high concentrations of fine particulate matter (PM2.5) and ozone (O3). The established link between exposure to PM2.5, brain structural, volumetric and metabolic changes, severe cognitive deficits (1.5-2 SD from average IQ) in APOE 4 heterozygous females with >75 − < 94% BMI percentiles, and the presence of Alzheimer's disease (AD) hallmarks in urban children and young adults necessitates exploration of ways to protect these individuals from the deleterious neural effects of pollution exposure. Emerging research suggests that cocoa interventions may be a viable option for neuroprotection, with evidence suggesting that early cocoa interventions could limit the risk of cognitive and developmental concerns including: endothelial dysfunction, cerebral hypoperfusion, neuroinflammation, and metabolic detrimental brain effects. Currently, however, it is not clear how early we should implement consumption of cocoa to optimize its neuroprotective effects. Moreover, we have yet to identify suitable instruments for evaluating cognitive responses to these interventions in clinically healthy children, teens, and young adults. An approach to guide the selection of cognitive tools should take into account neuropsychological markers of cognitive declines in patients with Alzheimer's neuropathology, the distinct patterns of memory impairment between early and late onset AD, and the key literature associating white matter integrity and poor memory binding performance in cases of asymptomatic familial AD. We highlight potential systemic and neural benefits of cocoa consumption. We also highlight Working Memory Capacity (WMC) and attention control tasks as opened avenues for exploration in the air pollution scenario. Exposures to air pollutants during brain development have serious brain consequences in the short and long term and reliable cognition tools should be at hand to evaluate interventions.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- Biomedical Sciences, University of MontanaMissoula, MT, USA; Universidad del Valle de MéxicoCiudad de México, Mexico
| | | | | | | | | | | | | | - Luis Velasquez
- Facultad de Medicina, Universidad Andrés Bello Santiago de Chile, Chile
| | | | - Jessie D Martin
- School of Psychology, Georgia Institute of Technology Atlanta, GA, USA
| | | | - Randall W Engle
- School of Psychology, Georgia Institute of Technology Atlanta, GA, USA
| |
Collapse
|
30
|
Thomson EM, Pal S, Guénette J, Wade MG, Atlas E, Holloway AC, Williams A, Vincent R. Ozone Inhalation Provokes Glucocorticoid-Dependent and -Independent Effects on Inflammatory and Metabolic Pathways. Toxicol Sci 2016; 152:17-28. [PMID: 27037194 PMCID: PMC12077420 DOI: 10.1093/toxsci/kfw061] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
Growing evidence implicates air pollutants in adverse health effects beyond respiratory and cardiovascular disease, including metabolic impacts (diabetes, metabolic syndrome, obesity) and neurological/neurobehavioral outcomes (neurodegenerative disease, cognitive decline, perceived stress, depression, suicide). We have shown that inhalation of particulate matter or ozone activates the hypothalamic-pituitary-adrenal axis in rats and increases plasma levels of the glucocorticoid corticosterone. To investigate the role of corticosterone in mediating inflammatory and metabolic effects of pollutant exposure, in this study male Fischer-344 rats were administered the 11β-hydroxylase inhibitor metyrapone (0, 50, 150 mg/kg body weight) and exposed by nose-only inhalation for 4 h to air or 0.8 ppm ozone. Ozone inhalation provoked a 2-fold increase in plasma corticosterone, an effect blocked by metyrapone, but did not alter epinephrine levels. Inhibition of corticosterone production was associated with increased inflammatory signaling in the lungs and plasma in response to ozone, consistent with a role for glucocorticoids in limiting local and systemic inflammatory responses. Effects of ozone on insulin and glucagon, but not ghrelin or plasminogen activator inhibitor-1, were modified by metyrapone, revealing glucocorticoid-dependent and -independent effects on circulating metabolic and hemostatic factors. Several immunosuppressive and metabolic impacts of ozone in the lungs, heart, liver, kidney, and spleen were blocked by metyrapone and reproduced through exogenous administration of corticosterone (10 mg/kg body weight), demonstrating glucocorticoid-dependent effects in target tissues. Our results support involvement of endogenous glucocorticoids in ozone-induced inflammatory and metabolic effects, providing insight into potential biological mechanisms underlying health impacts and susceptibility.
Collapse
Affiliation(s)
- Errol M Thomson
- *Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada and
| | - Shinjini Pal
- *Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada and
| | - Josée Guénette
- *Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada and
| | - Michael G Wade
- *Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada and
| | - Ella Atlas
- *Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada and
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Andrew Williams
- *Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada and
| | - Renaud Vincent
- *Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada and
| |
Collapse
|
31
|
Particulate Matter Facilitates C6 Glioma Cells Activation and the Release of Inflammatory Factors Through MAPK and JAK2/STAT3 Pathways. Neurochem Res 2016; 41:1969-81. [DOI: 10.1007/s11064-016-1908-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 03/09/2016] [Accepted: 04/05/2016] [Indexed: 11/27/2022]
|
32
|
Poursafa P, Baradaran-Mahdavi S, Moradi B, Haghjooy Javanmard S, Tajadini M, Mehrabian F, Kelishadi R. The relationship of exposure to air pollutants in pregnancy with surrogate markers of endothelial dysfunction in umbilical cord. ENVIRONMENTAL RESEARCH 2016; 146:154-160. [PMID: 26761592 DOI: 10.1016/j.envres.2015.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/03/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND This study aims to investigate the association of exposure to ambient air pollution during pregnancy with cord blood concentrations of surrogate markers of endothelial dysfunction. METHODS This population-based cohort was conducted from March 2014 to March 2015 among 250 mother-neonate pairs in urban areas of Isfahan, the second large and air-polluted city in Iran. We analyzed the association between the ambient carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), particular matter 10 (PM10), and air quality index (AQI) with cord blood levels of endothelin-1, vascular adhesion molecule (VCAM), and intercellular adhesion molecule (ICAM). Multiple regression analysis was conducted after adjustment for potential confounding factors and covariates. The regression coefficient (beta), standard error of the estimate (SE), and 95% confidence intervals for each regression coefficient (95% CI) are reported. RESULTS Data of 233 mother-neonate pairs were complete, and included in the analysis. Multiple regression analyses showed that AQI, CO and O3 had significant correlation with cord blood ICAM-1 [Beta (SE), 95%CI: 2.93 (0.72), 1.33,5.54; 2.28(1.44), 1.56,5.12; and 2.02(0.01), 1.03,2.04, respectively] as well as with VCAM-1 [2.78(0.91), 1.69,4.57; 2.47(1.47), 1.43,5.37; and 2.01(0.01),1.07,2.04, respectively]. AQI, PM10, and SO2 were significantly associated with Endothelin-1 concentrations [Beta (SE), 95%CI: 10.16(5.08),7.61,14.28; 9.70(3.46), 2.88,16.52; and 1.07(0.02), 1.03,2.11, respectively]. CONCLUSIONS The significant associations of air pollutants with markers of endothelial dysfunction during fetal period may provide another evidence on the adverse health effects of air pollutants on early stages of atherosclerosis from fetal period. Our findings underscore the importance of considering environmental factors in primordial prevention of chronic diseases.
Collapse
Affiliation(s)
- Parinaz Poursafa
- Environmental Health Department, Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Bita Moradi
- Biostatistics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mohammadhasan Tajadini
- Biotechnology Department, Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ferdous Mehrabian
- Obstetric & Gynecology Department, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
33
|
Ganesh D, Kumarathasan P, Thomson EM, St-Germain C, Blais E, Crapo J, Vincent R. Impact of Superoxide Dismutase Mimetic AEOL 10150 on the Endothelin System of Fischer 344 Rats. PLoS One 2016; 11:e0151810. [PMID: 26990293 PMCID: PMC4798617 DOI: 10.1371/journal.pone.0151810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 03/04/2016] [Indexed: 12/24/2022] Open
Abstract
Endothelin-1 is a potent vasoconstrictor and mitogenic peptide involved in the regulation of vasomotor tone and maintenance of blood pressure. Oxidative stress activates the endothelin system, and is implicated in pulmonary and cardiovascular diseases including hypertension, congestive heart failure, and atherosclerosis. Superoxide dismutase mimetics designed with the aim of treating diseases that involve reactive oxygen species in their pathophysiology may exert a hypotensive effect, but effects on the endothelin system are unknown. Our objective was to determine the effect of the superoxide dismutase mimetic AEOL 10150 on the basal endothelin system in vivo. Male Fischer-344 rats were injected subcutaneously with 0, 2 or 5 mg/kg body weight of AEOL 10150 in saline. Plasma oxidative stress markers and endothelins (bigET-1, ET-1, ET-2, ET-3) as well as lung and heart endothelin/nitric oxide system gene expressions were measured using HPLC-Coularray, HPLC-Fluorescence and RT-PCR respectively. AEOL 10150 reduced (p<0.05) the circulating levels of isoprostane (-25%) and 3-nitrotyrosine (-50%) measured in plasma 2h and 24h after treatment, confirming delivery of a physiologically-relevant dose and the potent antioxidant activity of the drug. The reduction in markers of oxidative stress coincided with sustained 24h decrease (p<0.05) of plasma levels of ET-1 (-50%) and ET-3 (-10%). Expression of preproET-1 and endothelin converting enzyme-1 mRNA were not altered significantly in the lungs. However preproET-1 (not significant) and ECE-1 mRNA (p<0.05) were increased (10-25%) in the heart. Changes in the lungs included decrease (p<0.05) of mRNA for the ET-1 clearance receptor ETB and the vasoconstriction-signaling ETA receptor (-30%), and an early surge of inducible nitric oxide synthase expression followed by sustained decrease (-40% after 24 hours). The results indicate that interception of the endogenous physiological flux of reactive nitrogen species and reactive oxygen species in rats impacts the endothelin/nitric oxide system, supporting a homeostatic relationship between those systems.
Collapse
Affiliation(s)
- Devi Ganesh
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Prem Kumarathasan
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Errol M Thomson
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Carly St-Germain
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Erica Blais
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - James Crapo
- National Jewish Health, Denver, Colorado, United States of America
| | - Renaud Vincent
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
34
|
Fagundes LS, Fleck ADS, Zanchi AC, Saldiva PHN, Rhoden CR. Direct contact with particulate matter increases oxidative stress in different brain structures. Inhal Toxicol 2015; 27:462-7. [PMID: 26327340 DOI: 10.3109/08958378.2015.1060278] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Several experimental and epidemiological studies have demonstrated the neurological adverse effects caused by exposure to air pollution, specifically in relation to pollutant particulate matter (PM). The objective of this study was to investigate the direct effect of PM in increased concentrations in different brain regions, as well as the mechanisms involving its neurotoxicity, by evaluating oxidative stress parameters in vitro. METHODS Olfactory bulb, cerebral cortex, striatum, hippocampus and cerebellum of rats were homogenized and incubated with PM < 2.5 μm of diameter (PM2.5) at concentrations of 3, 5 and 10 µg/mg of tissue. The oxidative damage caused by lipid peroxidation of these structures was determined by testing the thiobarbituric acid reactive species (TBA-RS). In addition, we measured the activity of antioxidant enzyme catalase (CAT) and superoxide dismutase (SOD). RESULTS All PM concentrations were able to damage the cerebellum and hippocampus, strongly enhancing the lipid peroxidation in both structures. PM incubation also decreased the CAT activity of the hippocampus, cerebellum, striatum and olfactory bulb, though it did not generate higher levels of lipid peroxidation in either of the last two structures. PM incubation did not alter any measurement of the cerebral cortex. CONCLUSION The cerebellum and hippocampus seem to be more susceptible than other brain structures to in vitro direct PM exposure assay and the oxidative stress pathway catalyzes the neurotoxic effect of PM exposure, as evidenced by high consumption of CAT and high levels of TBA-RS. Thus, PM direct exposure seems to activate toxic neurological effects.
Collapse
Affiliation(s)
- Lucas Sagrillo Fagundes
- a Laboratório de Estresse Oxidativo e Poluição Atmosférica - Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA , Porto Alegre , RS , Brazil and
| | - Alan da Silveira Fleck
- a Laboratório de Estresse Oxidativo e Poluição Atmosférica - Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA , Porto Alegre , RS , Brazil and
| | - Ana Claudia Zanchi
- a Laboratório de Estresse Oxidativo e Poluição Atmosférica - Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA , Porto Alegre , RS , Brazil and
| | - Paulo Hilário Nascimento Saldiva
- b Laboratório de Poluição Atmosférica Experimental, Faculdade de Medicina, Universidade de São Paulo-USP , São Paulo , SP , Brazil
| | - Cláudia Ramos Rhoden
- a Laboratório de Estresse Oxidativo e Poluição Atmosférica - Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA , Porto Alegre , RS , Brazil and
| |
Collapse
|
35
|
Calderón-Garcidueñas L, Franco-Lira M, D'Angiulli A, Rodríguez-Díaz J, Blaurock-Busch E, Busch Y, Chao CK, Thompson C, Mukherjee PS, Torres-Jardón R, Perry G. Mexico City normal weight children exposed to high concentrations of ambient PM2.5 show high blood leptin and endothelin-1, vitamin D deficiency, and food reward hormone dysregulation versus low pollution controls. Relevance for obesity and Alzheimer disease. ENVIRONMENTAL RESEARCH 2015; 140:579-592. [PMID: 26037109 DOI: 10.1016/j.envres.2015.05.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/07/2015] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
Millions of Mexico, US and across the world children are overweight and obese. Exposure to fossil-fuel combustion sources increases the risk for obesity and diabetes, while long-term exposure to fine particulate matter (PM2.5) and ozone (O3) above US EPA standards is associated with increased risk of Alzheimer's disease (AD). Mexico City Metropolitan Area children are chronically exposed to PM2.5 and O3 concentrations above the standards and exhibit systemic, brain and intrathecal inflammation, cognitive deficits, and Alzheimer disease neuropathology. We investigated adipokines, food reward hormones, endothelial dysfunction, vitamin D and apolipoprotein E (APOE) relationships in 80 healthy, normal weight 11.1±3.2 year olds matched by age, gender, BMI and SES, low (n: 26) versus high (n:54) PM2.5 exposures. Mexico City children had higher leptin and endothelin-1 (p<0.01 and p<0.000), and decreases in glucagon-like peptide-1 (GLP 1), ghrelin, and glucagon (<0.02) versus controls. BMI and leptin relationships were significantly different in low versus high PM2.5 exposed children. Mexico City APOE 4 versus 3 children had higher glucose (p=0.009). Serum 25-hydroxyvitamin D<30 ng/mL was documented in 87% of Mexico City children. Leptin is strongly positively associated to PM 2.5 cumulative exposures. Residing in a high PM2.5 and O3 environment is associated with 12h fasting hyperleptinemia, altered appetite-regulating peptides, vitamin D deficiency, and increases in ET-1 in clinically healthy children. These changes could signal the future trajectory of urban children towards the development of insulin resistance, obesity, type II diabetes, premature cardiovascular disease, addiction-like behavior, cognitive impairment and Alzheimer's disease. Increased efforts should be made to decrease pediatric PM2.5 exposures, to deliver health interventions prior to the development of obesity and to identify and mitigate environmental factors influencing obesity and Alzheimer disease.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The Center for Structural and Functional Neurosciences, The University of Montana, Missoula, MT 59812, USA; Hospital Central Militar, Mexico City 11649, Mexico.
| | | | - Amedeo D'Angiulli
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Joel Rodríguez-Díaz
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Saltillo, Coahuila 25204, Mexico
| | | | - Yvette Busch
- Clinical and Environmental Laboratory Micro Trace Minerals (MTM), 91217 Hersbruck, Germany
| | - Chih-kai Chao
- The Center for Structural and Functional Neurosciences, The University of Montana, Missoula, MT 59812, USA
| | - Charles Thompson
- The Center for Structural and Functional Neurosciences, The University of Montana, Missoula, MT 59812, USA
| | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, 04510, Mexico
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
36
|
Bhatt DP, Puig KL, Gorr MW, Wold LE, Combs CK. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain. PLoS One 2015; 10:e0127102. [PMID: 25992783 PMCID: PMC4439054 DOI: 10.1371/journal.pone.0127102] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/10/2015] [Indexed: 11/19/2022] Open
Abstract
Exposure to air pollutants, including particulate matter, results in activation of the brain inflammatory response and Alzheimer disease (AD)-like pathology in dogs and humans. However, the length of time required for inhalation of ambient particulate matter to influence brain inflammation and AD pathology is less clear. Here, we studied the effect of 3 and 9 months of air particulate matter (<2.5 μm diameter, PM2.5) exposure on brain inflammatory phenotype and pathological hallmarks of AD in C57BL/6 mice. Using western blot, ELISA, and cytokine array analysis we quantified brain APP, beta-site APP cleaving enzyme (BACE), oligomeric protein, total Aβ 1-40 and Aβ 1-42 levels, inducible nitric oxide synthase (iNOS), nitrotyrosine-modified proteins, HNE-Michael adducts, vascular cell adhesion molecule 1 (VCAM-1), glial markers (GFAP, Iba-1), pre- and post- synaptic markers (synaptophysin and PSD-95), cyclooxygenase (COX-1, COX-2) levels, and the cytokine profile in PM2.5 exposed and filtered air control mice. Only 9 month PM2.5 exposure increased BACE protein levels, APP processing, and Aβ 1-40 levels. This correlated with a concomitant increase in COX-1 and COX-2 protein levels and a modest alteration in the cytokine profile. These data support the hypothesis that prolonged exposure to airborne particulate matter has the potential to alter brain inflammatory phenotype and promote development of early AD-like pathology.
Collapse
Affiliation(s)
- Dhaval P. Bhatt
- Department of Basic Sciences, UND School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States of America
| | - Kendra L. Puig
- Department of Basic Sciences, UND School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | - Matthew W. Gorr
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- College of Nursing, The Ohio State University, Columbus, Ohio, United States of America
| | - Loren E. Wold
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- College of Nursing, The Ohio State University, Columbus, Ohio, United States of America
| | - Colin K. Combs
- Department of Basic Sciences, UND School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| |
Collapse
|
37
|
Guo C, Xia Y, Niu P, Jiang L, Duan J, Yu Y, Zhou X, Li Y, Sun Z. Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-κB signaling. Int J Nanomedicine 2015; 10:1463-77. [PMID: 25759575 PMCID: PMC4345992 DOI: 10.2147/ijn.s76114] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Despite the widespread application of silica nanoparticles (SiNPs) in industrial, commercial, and biomedical fields, their response to human cells has not been fully elucidated. Overall, little is known about the toxicological effects of SiNPs on the cardiovascular system. In this study, SiNPs with a 58 nm diameter were used to study their interaction with human umbilical vein endothelial cells (HUVECs). Dose- and time-dependent decrease in cell viability and damage on cell plasma-membrane integrity showed the cytotoxic potential of the SiNPs. SiNPs were found to induce oxidative stress, as evidenced by the significant elevation of reactive oxygen species generation and malondialdehyde production and downregulated activity in glutathione peroxidase. SiNPs also stimulated release of cytoprotective nitric oxide (NO) and upregulated inducible nitric oxide synthase (NOS) messenger ribonucleic acid, while downregulating endothelial NOS and ET-1 messenger ribonucleic acid, suggesting that SiNPs disturbed the NO/NOS system. SiNP-induced oxidative stress and NO/NOS imbalance resulted in endothelial dysfunction. SiNPs induced inflammation characterized by the upregulation of key inflammatory mediators, including IL-1β, IL-6, IL-8, TNFα, ICAM-1, VCAM-1, and MCP-1. In addition, SiNPs triggered the activation of the Nrf2-mediated antioxidant system, as evidenced by the induction of nuclear factor-κB and MAPK pathway activation. Our findings demonstrated that SiNPs could induce oxidative stress, inflammation, and NO/NOS system imbalance, and eventually lead to endothelial dysfunction via activation of the MAPK/Nrf2 pathway and nuclear factor-κB signaling. This study indicated a potential deleterious effect of SiNPs on the vascular endothelium, which warrants more careful assessment of SiNPs before their application.
Collapse
Affiliation(s)
- Caixia Guo
- School of Public Health, Capital Medical University, Beijing, People's Republic of China ; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Yinye Xia
- School of Public Health, Capital Medical University, Beijing, People's Republic of China ; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Piye Niu
- School of Public Health, Capital Medical University, Beijing, People's Republic of China ; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Lizhen Jiang
- School of Public Health, Capital Medical University, Beijing, People's Republic of China ; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Junchao Duan
- School of Public Health, Capital Medical University, Beijing, People's Republic of China ; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Yang Yu
- School of Public Health, Capital Medical University, Beijing, People's Republic of China ; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Xianqing Zhou
- School of Public Health, Capital Medical University, Beijing, People's Republic of China ; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Yanbo Li
- School of Public Health, Capital Medical University, Beijing, People's Republic of China ; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, Beijing, People's Republic of China ; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
38
|
Guo L, Li B, Miao JJ, Yun Y, Li GK, Sang N. Seasonal Variation in Air Particulate Matter (PM10) Exposure-Induced Ischemia-Like Injuries in the Rat Brain. Chem Res Toxicol 2014; 28:431-9. [DOI: 10.1021/tx500392n] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Lin Guo
- College of Environment and
Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Ben Li
- College of Environment and
Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Juan-juan Miao
- College of Environment and
Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Yang Yun
- College of Environment and
Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Guang-ke Li
- College of Environment and
Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Nan Sang
- College of Environment and
Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| |
Collapse
|
39
|
Bind MA, Coull B, Suh H, Wright R, Baccarelli A, Vokonas P, Schwartz J. A novel genetic score approach using instruments to investigate interactions between pathways and environment: application to air pollution. PLoS One 2014; 9:e96000. [PMID: 24755831 PMCID: PMC3995963 DOI: 10.1371/journal.pone.0096000] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 04/02/2014] [Indexed: 11/18/2022] Open
Abstract
Air pollution has been associated with increased systemic inflammation markers. We developed a new pathway analysis approach to investigate whether gene variants within relevant pathways (oxidative stress, endothelial function, and metal processing) modified the association between particulate air pollution and fibrinogen, C-reactive protein (CRP), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1). Our study population consisted of 822 elderly participants of the Normative Aging Study (1999-2011). To investigate the role of biological mechanisms and to reduce the number of comparisons in the analysis, we created pathway-specific scores using gene variants related to each pathway. To select the most appropriate gene variants, we used the least absolute shrinkage and selection operator (Lasso) to relate independent outcomes representative of each pathway (8-hydroxydeoxyguanosine for oxidative stress, augmentation index for endothelial function, and patella lead for metal processing) to gene variants. A high genetic score corresponds to a higher allelic risk profile. We fit mixed-effects models to examine modification by the genetic score of the weekly air pollution association with the outcome. Among participants with higher genetic scores within the oxidative stress pathway, we observed significant associations between particle number and fibrinogen, while we did not find any association among participants with lower scores (p(interaction) = 0.04). Compared to individuals with low genetic scores of metal processing gene variants, participants with higher scores had greater effects of particle number on fibrinogen (p(interaction) = 0.12), CRP (p(interaction) = 0.02), and ICAM-1 (pinteraction = 0.08). This two-stage penalization method is easy to implement and can be used for large-scale genetic applications.
Collapse
Affiliation(s)
- Marie-Abele Bind
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| | - Brent Coull
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Helen Suh
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Robert Wright
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Andrea Baccarelli
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Pantel Vokonas
- VA Normative Aging Study, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Joel Schwartz
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
40
|
Effects of prenatal community violence and ambient air pollution on childhood wheeze in an urban population. J Allergy Clin Immunol 2013; 133:713-22.e4. [PMID: 24200349 DOI: 10.1016/j.jaci.2013.09.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/06/2013] [Accepted: 09/16/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND Prenatal exposures to stress and physical toxins influence children's respiratory health, although few studies consider these factors together. OBJECTIVES We sought to concurrently examine the effects of prenatal community-level psychosocial (exposure to community violence [ECV]) and physical (air pollution) stressors on repeated wheeze in 708 urban children followed to age 2 years. METHODS Multi-item ECV reported by mothers in pregnancy was summarized into a continuous score by using Rasch modeling. Prenatal black carbon exposure was estimated by using land-use regression (LUR) modeling; particulate matter with a diameter of less than 2.5 μm (PM2.5) was estimated by using LUR modeling incorporating satellite data. Mothers reported child's wheeze every 3 months. The effects of ECV and air pollutants on repeated wheeze (≥ 2 episodes) were examined by using logistic regression. Interactions between ECV and pollutants were examined. RESULTS Mothers were primarily black (29%) and Hispanic (55%), with lower education (62% with ≤ 12 years); 87 (12%) children wheezed repeatedly. In models examining concurrent exposures, ECV (odds ratio [OR], 1.95; 95% CI, 1.13-3.36; highest vs lowest tertile) and black carbon (OR, 1.84; 95% CI, 1.08-3.12; median or greater vs less than median) were independently associated with wheeze adjusting for sex, birth season, maternal atopy, education, race, and cockroach antigen. Associations were similar for PM2.5 (adjusted OR, 2.02; 95% CI, 1.20-3.40). An interaction between ECV with air pollution levels was suggested. CONCLUSIONS These findings suggest that both prenatal community violence and air pollution can contribute to respiratory health in these urban children. Moreover, place-based psychosocial stressors might affect host resistance such that physical pollutants can have adverse effects, even at relatively lower levels.
Collapse
|
41
|
Calderón-Garcidueñas L, Mora-Tiscareño A, Franco-Lira M, Cross JV, Engle R, Aragón-Flores M, Gómez-Garza G, Jewells V, Medina-Cortina H, Solorio E, Chao CK, Zhu H, Mukherjee PS, Ferreira-Azevedo L, Torres-Jardón R, D'Angiulli A. Flavonol-rich dark cocoa significantly decreases plasma endothelin-1 and improves cognition in urban children. Front Pharmacol 2013; 4:104. [PMID: 23986703 PMCID: PMC3749371 DOI: 10.3389/fphar.2013.00104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/02/2013] [Indexed: 01/17/2023] Open
Abstract
Air pollution exposures are linked to systemic inflammation, cardiovascular and respiratory morbidity and mortality, neuroinflammation and neuropathology in young urbanites. In particular, most Mexico City Metropolitan Area (MCMA) children exhibit subtle cognitive deficits, and neuropathology studies show 40% of them exhibiting frontal tau hyperphosphorylation and 51% amyloid-β diffuse plaques (compared to 0% in low pollution control children). We assessed whether a short cocoa intervention can be effective in decreasing plasma endothelin 1 (ET-1) and/or inflammatory mediators in MCMA children. Thirty gram of dark cocoa with 680 mg of total flavonols were given daily for 10.11 ± 3.4 days (range 9–24 days) to 18 children (10.55 years, SD = 1.45; 11F/7M). Key metabolite ratios in frontal white matter and in hippocampus pre and during cocoa intervention were quantified by magnetic resonance spectroscopy. ET-1 significantly decreased after cocoa treatment (p = 0.0002). Fifteen children (83%) showed a marginally significant individual improvement in one or both of the applied simple short memory tasks. Endothelial dysfunction is a key feature of exposure to particulate matter (PM) and decreased endothelin-1 bioavailability is likely useful for brain function in the context of air pollution. Our findings suggest that cocoa interventions may be critical for early implementation of neuroprotection of highly exposed urban children. Multi-domain nutraceutical interventions could limit the risk for endothelial dysfunction, cerebral hypoperfusion, neuroinflammation, cognitive deficits, structural volumetric detrimental brain effects, and the early development of the neuropathological hallmarks of Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- Biomedical Sciences, The Center for Structural and Functional Neurosciences, The University of Montana Missoula, MT, USA ; Hospital Central Militar, Secretaría de la Defensa Nacional Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Thomson EM, Vladisavljevic D, Mohottalage S, Kumarathasan P, Vincent R. Mapping acute systemic effects of inhaled particulate matter and ozone: multiorgan gene expression and glucocorticoid activity. Toxicol Sci 2013; 135:169-81. [PMID: 23805001 PMCID: PMC3748763 DOI: 10.1093/toxsci/kft137] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent epidemiological studies have demonstrated associations between air pollution and adverse effects that extend beyond respiratory and cardiovascular disease, including low birth weight, appendicitis, stroke, and neurological/neurobehavioural outcomes (e.g., neurodegenerative disease, cognitive decline, depression, and suicide). To gain insight into mechanisms underlying such effects, we mapped gene profiles in the lungs, heart, liver, kidney, spleen, cerebral hemisphere, and pituitary of male Fischer-344 rats immediately and 24h after a 4-h exposure by inhalation to particulate matter (0, 5, and 50mg/m3 EHC-93 urban particles) and ozone (0, 0.4, and 0.8 ppm). Pollutant exposure provoked differential expression of genes involved in a number of pathways, including antioxidant response, xenobiotic metabolism, inflammatory signalling, and endothelial dysfunction. The mRNA profiles, while exhibiting some interorgan and pollutant-specific differences, were remarkably similar across organs for a set of genes, including increased expression of redox/glucocorticoid-sensitive genes and decreased expression of inflammatory genes, suggesting a possible hormonal effect. Pollutant exposure increased plasma levels of adrenocorticotropic hormone and the glucocorticoid corticosterone, confirming activation of the hypothalamic-pituitary-adrenal axis, and there was a corresponding increase in markers of glucocorticoid activity. Although effects were transient and presumably represent an adaptive response to acute exposure in these healthy animals, chronic activation and inappropriate regulation of the hypothalamic-pituitary-adrenal axis are associated with adverse neurobehavioral, metabolic, immune, developmental, and cardiovascular effects. The experimental data are consistent with epidemiological associations of air pollutants with extrapulmonary health outcomes and suggest a mechanism through which such health effects may be induced.
Collapse
Affiliation(s)
- Errol M Thomson
- Hazard Identification Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada.
| | | | | | | | | |
Collapse
|
43
|
Miyata R, Hiraiwa K, Cheng JC, Bai N, Vincent R, Francis GA, Sin DD, Van Eeden SF. Statins attenuate the development of atherosclerosis and endothelial dysfunction induced by exposure to urban particulate matter (PM10). Toxicol Appl Pharmacol 2013; 272:1-11. [PMID: 23756175 DOI: 10.1016/j.taap.2013.05.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 01/04/2023]
Abstract
Exposure to ambient air particulate matter (particles less than 10μm or PM10) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM10. New Zealand White rabbits fed with a high fat diet were subjected to balloon injury to their abdominal aorta followed by PM10/saline exposure for 4weeks±lovastatin (5mg/kg/day) treatment. PM10 exposure accelerated balloon catheter induced plaque formation and increased intimal macrophages and lipid accumulation while lovastatin attenuated these changes and promoted smooth muscle cell recruitment into plaques. PM10 impaired vascular acetylcholine (Ach) responses and increased vasoconstriction induced by phenylephrine as assessed by wire myograph. Supplementation of nitric oxide improved the impaired Ach responses. PM10 increased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in blood vessels and increased the plasma levels of endothelin-1 (ET-1). Incubation with specific inhibitors for iNOS, COX-2 or ET-1 in the myograph chambers significantly improved the impaired vascular function. Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM10. Taken together, statins protect against PM10-induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties.
Collapse
Affiliation(s)
- Ryohei Miyata
- UBC James Hogg Research Centre, St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cheng J, Zhao W, Wang Q, Liu X, Wang W. Accumulation of mercury, selenium and PCBs in domestic duck brain, liver and egg from a contaminated area with an investigation of their redox responses. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:388-394. [PMID: 23454823 DOI: 10.1016/j.etap.2013.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 01/18/2013] [Accepted: 01/25/2013] [Indexed: 06/01/2023]
Abstract
PCBs and methylmercury (MeHg) are two of the most ubiquitous contaminants in the Qingzhen (QZ) area of Guizhou province. The estimated tolerable daily intakes (TDIs) of total mercury (T-Hg), MeHg, PCBs and Se from contaminated rice, eggs and fish by Chinese people in QZ showed that both MeHg and PCBs exceeded the corresponding safety limits. Pearson's correlation analyses of mercury and Se in all duck tissues showed that there were high correlations with T-Hg or MeHg and Se in QZ samples. However, the molar ratio between T-Hg and Se in brain tissues was close to 1, suggesting that Se is antagonistic to mercury toxicity only in brain tissues. Biochemical analyses showed that both superoxide dismutase and glutathione peroxidase increased in the brain, whereas in the liver and egg these enzymes decreased. However, lipid peroxidation and H2O2 generation in liver and egg tissues showed contrary responses, where significant increases in these tissues were seen relative to controls. Mercury and PCBs co-accumulation in liver and egg tissues gave rise to large numbers of free radicals as well as aggravated alkyl free radicals, superoxide radical and nitric oxide, thereby resulting in oxidative stress in these tissues. It can be concluded that an adaptive response of the redox defense system is present in brain tissues, as opposed to a general break down of the redox defense system in liver and egg. The results obtained in this study will provide basic information on exposure and risk assessment in local residents.
Collapse
Affiliation(s)
- Jinping Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW This overview highlights recent experimental and epidemiological evidence for the programming effects of outdoor air pollution exposures during early development on lung function and chronic respiratory disorders, such as asthma and related allergic disorders. RECENT FINDINGS Air pollutants may impact anatomy and/or physiological functioning of the lung and interrelated systems. Programming effects may result from pollutant-induced shifts in a number of molecular, cellular, and physiological states and their interacting systems. Specific key regulatory systems susceptible to programming may influence lung development and vulnerability to respiratory diseases, including both central and peripheral components of neuroendocrine pathways and autonomic nervous system (ANS) functioning which, in turn, influence the immune system. Starting in utero, environmental factors, including air pollutants, may permanently organize these systems toward trajectories of enhanced pediatric (e.g., asthma, allergy) as well as adult disease risk (e.g., chronic obstructive pulmonary disease). Evidence supports a central role of oxidative stress in the toxic effects of air pollution. Additional research suggests xenobiotic metabolism and subcellular components, such as mitochondria are targets of ambient air pollution and play a role in asthma and allergy programming. Mechanisms operating at the level of the placenta are being elucidated. Epigenetic mechanisms may be at the roots of adaptive developmental programming. SUMMARY Optimal coordinated functioning of many complex processes and their networks of interaction are necessary for normal lung development and the maintenance of respiratory health. Outdoor air pollution may play an important role in early programming of respiratory health and is potentially amenable to intervention.
Collapse
|
46
|
Zhu N, Li H, Han M, Guo L, Chen L, Yun Y, Guo Z, Li G, Sang N. Environmental nitrogen dioxide (NO2) exposure influences development and progression of ischemic stroke. Toxicol Lett 2012; 214:120-30. [DOI: 10.1016/j.toxlet.2012.08.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 10/27/2022]
|
47
|
Block ML, Elder A, Auten RL, Bilbo SD, Chen H, Chen JC, Cory-Slechta DA, Costa D, Diaz-Sanchez D, Dorman DC, Gold DR, Gray K, Jeng HA, Kaufman JD, Kleinman MT, Kirshner A, Lawler C, Miller DS, Nadadur SS, Ritz B, Semmens EO, Tonelli LH, Veronesi B, Wright RO, Wright RJ. The outdoor air pollution and brain health workshop. Neurotoxicology 2012; 33:972-84. [PMID: 22981845 PMCID: PMC3726250 DOI: 10.1016/j.neuro.2012.08.014] [Citation(s) in RCA: 374] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/15/2012] [Accepted: 08/30/2012] [Indexed: 12/14/2022]
Abstract
Accumulating evidence suggests that outdoor air pollution may have a significant impact on central nervous system (CNS) health and disease. To address this issue, the National Institute of Environmental Health Sciences/National Institute of Health convened a panel of research scientists that was assigned the task of identifying research gaps and priority goals essential for advancing this growing field and addressing an emerging human health concern. Here, we review recent findings that have established the effects of inhaled air pollutants in the brain, explore the potential mechanisms driving these phenomena, and discuss the recommended research priorities/approaches that were identified by the panel.
Collapse
Affiliation(s)
- Michelle L Block
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, VA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Guo L, Zhu N, Guo Z, Li GK, Chen C, Sang N, Yao QC. Particulate matter (PM10) exposure induces endothelial dysfunction and inflammation in rat brain. JOURNAL OF HAZARDOUS MATERIALS 2012; 213-214:28-37. [PMID: 22365138 DOI: 10.1016/j.jhazmat.2012.01.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 12/05/2011] [Accepted: 01/11/2012] [Indexed: 05/04/2023]
Abstract
Epidemiological studies suggest that particulate matter (PM(10)) inhalation was associated with adverse effects on brain-related health, however, existing experimental data lacked relevant evidences. In this study, we treated Wistar rats with PM(10) at different concentrations (0.3, 1, 3 and 10 mg/kg body weight (bw)), and investigated endothelial dysfunction and inflammatory responses in the brain. The results indicate that mild pathological abnormal occurred after 15-day exposure (five times with 3 days each), followed by the changes of endothelial mediators (ET-1 and eNOS) and inflammatory markers (IL-1β, TNF-α, COX-2, iNOS and ICAM-1). Also, the sample up-regulated bax/bcl-2 ratio and p53 expression, and induced neuronal apoptosis. It implicates that PM(10) exerted injuries to mammals' brain, and the mechanisms might be involved in endothelial dysfunction and inflammatory responses.
Collapse
Affiliation(s)
- Lin Guo
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | | | | | | | | | | | | |
Collapse
|
49
|
Calderón-Garcidueñas L, Engle R, Mora-Tiscareño A, Styner M, Gómez-Garza G, Zhu H, Jewells V, Torres-Jardón R, Romero L, Monroy-Acosta ME, Bryant C, González-González LO, Medina-Cortina H, D'Angiulli A. Exposure to severe urban air pollution influences cognitive outcomes, brain volume and systemic inflammation in clinically healthy children. Brain Cogn 2011; 77:345-55. [PMID: 22032805 DOI: 10.1016/j.bandc.2011.09.006] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 12/31/2022]
Abstract
Exposure to severe air pollution produces neuroinflammation and structural brain alterations in children. We tested whether patterns of brain growth, cognitive deficits and white matter hyperintensities (WMH) are associated with exposures to severe air pollution. Baseline and 1 year follow-up measurements of global and regional brain MRI volumes, cognitive abilities (Wechsler Intelligence Scale for Children-Revised, WISC-R), and serum inflammatory mediators were collected in 20 Mexico City (MC) children (10 with white matter hyperintensities, WMH(+), and 10 without, WMH(-)) and 10 matched controls (CTL) from a low polluted city. There were significant differences in white matter volumes between CTL and MC children - both WMH(+) and WMH(-) - in right parietal and bilateral temporal areas. Both WMH(-) and WMH(+) MC children showed progressive deficits, compared to CTL children, on the WISC-R Vocabulary and Digit Span subtests. The cognitive deficits in highly exposed children match the localization of the volumetric differences detected over the 1 year follow-up, since the deficits observed are consistent with impairment of parietal and temporal lobe functions. Regardless of the presence of prefrontal WMH, Mexico City children performed more poorly across a variety of cognitive tests, compared to CTL children, thus WMH(+) is likely only partially identifying underlying white matter pathology. Together these findings reveal that exposure to air pollution may perturb the trajectory of cerebral development and result in cognitive deficits during childhood.
Collapse
|
50
|
Weldy CS, Wilkerson HW, Larson TV, Stewart JA, Kavanagh TJ. DIESEL particulate exposed macrophages alter endothelial cell expression of eNOS, iNOS, MCP1, and glutathione synthesis genes. Toxicol In Vitro 2011; 25:2064-73. [PMID: 21920430 DOI: 10.1016/j.tiv.2011.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/16/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
There is considerable debate regarding inhaled diesel exhaust particulate (DEP) causing impairments in vascular reactivity. Although there is evidence that inhaled particles can translocate from the lung into the systemic circulation, it has been suggested that inflammatory factors produced in the lung following macrophage particle engulfment also pass into the circulation. To investigate these differing hypotheses, we used in vitro systems to model each exposure. By using a direct exposure system and a macrophage-endothelial cell co-culture model, we compared the effects of direct DEP exposure and exposure to inflammatory factors produced by DEP-treated macrophages, on endothelial cell mRNA levels for eNOS, iNOS, endothelin-1, and endothelin-converting-enzyme-1. As markers of oxidative stress, we measured the effects of DEP treatment on glutathione (GSH) synthesis genes and on total GSH. In addition, we analyzed the effect of DEP treatment on monocyte chemo-attractant protein-1. Direct DEP exposure increased endothelial GCLC and GCLM as well as total GSH in addition to increased eNOS, iNOS, and Mcp1 mRNA. Alternatively, inflammatory factors released from DEP-exposed macrophages markedly up-regulated endothelial iNOS and Mcp1 while modestly down-regulating eNOS. These data support both direct exposure to DEP and the release of inflammatory cytokines as explanations for DEP-induced impairments in vascular reactivity.
Collapse
Affiliation(s)
- Chad S Weldy
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States.
| | | | | | | | | |
Collapse
|