1
|
Gestels Z, Torfs B, Abdellati S, De Baetselier I, Rombouts C, Dermauw V, Manoharan-Basil SS, Kenyon C. "Acceptable" concentrations of enrofloxacin in food lead to reduced enrofloxacin susceptibility in a mouse model of gastrointestinal Klebsiella pneumoniae. Microbiol Spectr 2025:e0038525. [PMID: 40401967 DOI: 10.1128/spectrum.00385-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/14/2025] [Indexed: 05/23/2025] Open
Abstract
Concentrations of antimicrobials up to 1,000-fold lower than the minimum inhibitory concentration can select for antimicrobial resistance. This generates the hypothesis that the low concentrations of antimicrobials allowed in our food could select for resistance. We assessed if the dose of enrofloxacin allowed in food by the European Medicines Agency (6.2 µg/kg) could decrease susceptibility to enrofloxacin in a strain of Klebsiella pneumoniae colonizing the gastrointestinal tracts of Specific Opportunistic Pathogen-Free Naval Medical Research Institute (NMRI) mice. We found that one-tenth of this dose given daily was able to increase the K. pneumoniae enrofloxacin MIC 8-fold (from 0.047 µg/mL to 0.38 µg/mL). Our findings suggest the need for studies to assess if the same could occur in humans.IMPORTANCEAntimicrobial-resistant infections are responsible for over a million deaths a year. Reducing antimicrobial resistance requires addressing all the sources of unnecessary antimicrobial exposure. Because the antimicrobial concentration in our food frequently approaches or exceeds the maximum allowed limits, it is crucial to ensure that the legal concentrations of antimicrobials in food do not induce antimicrobial resistance. We found that enrofloxacin doses, 10 times lower than those classified as safe, could increase enrofloxacin MICs 8-fold in K. pneumoniae in the gastrointestinal tracts of mice. These findings suggest that we need to consider the induction of antimicrobial resistance when defining safe concentrations of antimicrobials in our food.
Collapse
Affiliation(s)
- Zina Gestels
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Flanders, Belgium
| | - Bianca Torfs
- Applied Technology and Production unit, Institute of Tropical Medicine, Antwerp, Flanders, Belgium
| | - Said Abdellati
- Clinical and Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Flanders, Belgium
| | - Irith De Baetselier
- Clinical and Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Flanders, Belgium
| | - Caroline Rombouts
- Applied Technology and Production unit, Institute of Tropical Medicine, Antwerp, Flanders, Belgium
| | - Veronique Dermauw
- Unit of Zoonoses, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Flanders, Belgium
| | | | - Chris Kenyon
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Flanders, Belgium
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, Western Cape, South Africa
| |
Collapse
|
2
|
Zhou X, Li W, Li R, Dang H, Wang X. Dynamic assessment of phthalate exposure: Linking internal and external monitoring in diverse indoor environments. ENVIRONMENT INTERNATIONAL 2025; 198:109423. [PMID: 40209396 DOI: 10.1016/j.envint.2025.109423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/27/2025] [Accepted: 03/27/2025] [Indexed: 04/12/2025]
Abstract
Phthalates (PAEs), as prevalent endocrine disruptors, are widely distributed in indoor environments and enter the human body through dermal contact, respiratory inhalation, and ingestion, subsequently participating in metabolic processes across various organs and tissues. Existing studies primarily focus on predicting regional exposure scenarios to assess internal or external exposures risks; however, limited studies have systematically examined the correlation and discrepancies between internal and external exposures. This study collected PAEs samples from three phases (gas, particle, and dust phases) across three representative indoor environments and conducted urinary biomonitoring of phthalate metabolites (mPAEs) among exposed populations. Results showed that PAEs concentrations in the gas phase (21.67 μg·m-3) and particle phase (2.38 μg·m-3) were significantly higher in laboratories than in dormitories and offices, whereas office desktops exhibited the highest dust phase concentration (312 μg·g-1). Urinary analysis revealed distinct metabolic profiles across populations: MBP was the dominant metabolite in office and dormitory groups (median: 19.3 ng·mL-1 and 10.4 ng·mL-1, respectively), while MMP prevailed in laboratory populations (median: 18.3 ng·mL-1). Seasonal variation analysis indicated that urinary mPAEs concentrations were 4.28 times higher in summer than in winter. Demographic analysis showed that mPAEs levels were higher in males, individuals with obesity, and those with frequent plastic use compared to females, individuals with normal BMI, and those with infrequent plastic use. Furthermore, external exposure estimated from ambient PAEs concentrations exceeded internal exposure derived from urinary mPAEs concentrations by 17.3 %. These findings provide critical insights into exposure pathway differentiation and risk assessment optimization for indoor PAEs contamination.
Collapse
Affiliation(s)
- Xiaojun Zhou
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wenlong Li
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Runjie Li
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haoyu Dang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xinke Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
3
|
Gestels Z, Abdellati S, Kenyon C, Manoharan-Basil SS. Ciprofloxacin Concentrations 100-Fold Lower than the MIC Can Select for Ciprofloxacin Resistance in Neisseria subflava: An In Vitro Study. Antibiotics (Basel) 2024; 13:560. [PMID: 38927226 PMCID: PMC11200666 DOI: 10.3390/antibiotics13060560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Neisseria gonorrhoeae can acquire antimicrobial resistance (AMR) through horizontal gene transfer (HGT) from other Neisseria spp. such as commensals like Neisseria subflava. Low doses of antimicrobials in food could select for AMR in N. subflava, which could then be transferred to N. gonorrhoeae. In this study, we aimed to determine the lowest concentration of ciprofloxacin that can induce ciprofloxacin resistance (minimum selection concentration-MSC) in a N. subflava isolate (ID-Co000790/2, a clinical isolate collected from a previous community study conducted at ITM). In this study, Neisseria subflava was serially passaged on gonococcal (GC) medium agar plates containing ciprofloxacin concentrations ranging from 1:100 to 1:10,000 below its ciprofloxacin MIC (0.006 µg/mL) for 6 days. After 6 days of serial passaging at ciprofloxacin concentrations of 1/100th of the MIC, 24 colonies emerged on the plate containing 0.06 µg/mL ciprofloxacin, which corresponds to the EUCAST breakpoint for N. gonorrhoeae. Their ciprofloxacin MICs were between 0.19 to 0.25 µg/mL, and whole genome sequencing revealed a missense mutation T91I in the gyrA gene, which has previously been found to cause reduced susceptibility to fluoroquinolones. The N. subflava MSCde novo was determined to be 0.06 ng/mL (0.00006 µg/mL), which is 100×-fold lower than the ciprofloxacin MIC. The implications of this finding are that the low concentrations of fluoroquinolones found in certain environmental samples, such as soil, river water, and even the food we eat, may be able to select for ciprofloxacin resistance in N. subflava.
Collapse
Affiliation(s)
- Zina Gestels
- Sexually Transmitted Infections Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (C.K.); (S.S.M.-B.)
| | - Saïd Abdellati
- Clinical and Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Chris Kenyon
- Sexually Transmitted Infections Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (C.K.); (S.S.M.-B.)
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town 7700, South Africa
| | - Sheeba Santhini Manoharan-Basil
- Sexually Transmitted Infections Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (C.K.); (S.S.M.-B.)
| |
Collapse
|
4
|
Gestels Z, Baranchyk Y, Van den Bossche D, Laumen J, Abdellati S, Britto Xavier B, Manoharan-Basil SS, Kenyon C. Could traces of fluoroquinolones in food induce ciprofloxacin resistance in Escherichia coli and Klebsiella pneumoniae? An in vivo study in Galleria mellonella with important implications for maximum residue limits in food. Microbiol Spectr 2024; 12:e0359523. [PMID: 38687060 PMCID: PMC11237748 DOI: 10.1128/spectrum.03595-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/13/2024] [Indexed: 05/02/2024] Open
Abstract
We hypothesized that the residual concentrations of fluoroquinolones allowed in food (acceptable daily intake-ADIs) could select for ciprofloxacin resistance in our resident microbiota. We developed models of chronic Escherichia coli and Klebsiella pneumoniae infection in Galleria mellonella larvae and exposed them to ADI doses of ciprofloxacin via single dosing and daily dosing regimens. The emergence of ciprofloxacin resistance was assessed via isolation of the target bacteria in selective agar plates. Exposure to as low as one-tenth of the ADI dose of the single and daily dosing regimens of ciprofloxacin resulted in the selection of ciprofloxacin resistance in K. pneumoniae but not E. coli. This resistance was associated with cross-resistance to doxycycline and ceftriaxone. Whole genome sequencing revealed inactivating mutations in the transcription repressors, ramR and rrf2, as well as mutations in gyrA and gyrB. We found that ciprofloxacin doses 10-fold lower than those classified as acceptable for daily intake could induce resistance to ciprofloxacin in K. pneumoniae. These results suggest that it would be prudent to include the induction of antimicrobial resistance as a significant criterion for determining ADIs and the associated maximum residue limits in food.IMPORTANCEThis study found that the concentrations of ciprofloxacin/enrofloxacin allowed in food can induce de novo ciprofloxacin resistance in Klebsiella pneumoniae. This suggests that it would be prudent to reconsider the criteria used to determine "safe" upper concentration limits in food.
Collapse
Affiliation(s)
- Zina Gestels
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Yuliia Baranchyk
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Dorien Van den Bossche
- Clinical and Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jolein Laumen
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Said Abdellati
- Clinical and Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Basil Britto Xavier
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Hospital Outbreak Support Team—HOST, Ziekenhuis Netwerk Antwerpen Middelheim, Antwerp, Belgium
| | | | - Chris Kenyon
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Sieck NE, Bruening M, van Woerden I, Whisner C, Payne-Sturges DC. Effects of Behavioral, Clinical, and Policy Interventions in Reducing Human Exposure to Bisphenols and Phthalates: A Scoping Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:36001. [PMID: 38477609 PMCID: PMC10936218 DOI: 10.1289/ehp11760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND There is growing interest in evidence-based interventions, programs, and policies to mitigate exposures to bisphenols and phthalates and in using implementation science frameworks to evaluate hypotheses regarding the importance of specific approaches to individual or household behavior change or institutions adopting interventions. OBJECTIVES This scoping review aimed to identify, categorize, and summarize the effects of behavioral, clinical, and policy interventions focused on exposure to the most widely used and studied bisphenols [bisphenol A (BPA), bisphenol S (BPS), and bisphenol F (BPF)] and phthalates with an implementation science lens. METHODS A comprehensive search of all individual behavior, clinical, and policy interventions to reduce exposure to bisphenols and phthalates was conducted using PubMed, Web of Science, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Google Scholar. We included studies published between January 2000 and November 2022. Two reviewers screened references in CADIMA, then extracted data (population characteristics, intervention design, chemicals assessed, and outcomes) for studies meeting inclusion criteria for the present review. RESULTS A total of 58 interventions met the inclusion criteria. We classified interventions as dietary (n = 27 ), clinical (n = 13 ), policy (n = 14 ), and those falling outside of these three categories as "other" (n = 4 ). Most interventions (81%, 47/58) demonstrated a decrease in exposure to bisphenols and/or phthalates, with policy level interventions having the largest magnitude of effect. DISCUSSION Studies evaluating policy interventions that targeted the reduction of phthalates and BPA in goods and packaging showed widespread, long-term impact on decreasing exposure to bisphenols and phthalates. Clinical interventions removing bisphenol and phthalate materials from medical devices and equipment showed overall reductions in exposure biomarkers. Dietary interventions tended to lower exposure with the greatest magnitude of effect in trials where fresh foods were provided to participants. The lower exposure reductions observed in pragmatic nutrition education trials and the lack of diversity (sociodemographic backgrounds) present limitations for generalizability to all populations. https://doi.org/10.1289/EHP11760.
Collapse
Affiliation(s)
- Nicole E. Sieck
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Meg Bruening
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Irene van Woerden
- Department of Community and Public Health, Idaho State University, Pocatello, Idaho, USA
| | - Corrie Whisner
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Devon C. Payne-Sturges
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
6
|
Yang H, Ye DM, Lin ZZ, Lin XY, Yuan JJ, Guo Y. Young people exposure to antibiotics: Implication for health risk and the impact from eating habits of takeaway food. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166377. [PMID: 37597538 DOI: 10.1016/j.scitotenv.2023.166377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Exposure to antibiotics, mainly from animal food ingestion, may have adverse effects on human health. Takeaway food is the preferred choice for the dietary of most Chinese young people nowadays, but the relationship between takeaway eating and antibiotic exposure is not yet adequately understood. In the present study, 297 young people were recruited to collect urine samples and questionnaires with an emphasis on their takeaway eating habits. The internal exposure to 16 antibiotics and three metabolites was measured in urine samples by high-performance liquid chromatography-tandem mass spectrometry, as well as a DNA oxidative damage marker, 8-hydroxydeoxyguanosine (8-OHdG). At least one kind of antibiotic was found in over 90 % of urine samples, with total concentrations from 0.667 to 3.02 × 104 ng/mL. High exposure levels of antibiotics were more likely to be found in individuals with a larger body mass index. The concentrations of six antibiotics were significantly different among people with different overall weekly eating frequencies, usually an upward trend. The estimated daily intakes of antibiotics were on the levels of 0.001-1.0 μg/kg/day, mainly contributed by clarithromycin, ciprofloxacin and oxytetracycline, indicating a potential health risk based on the microbiological effect. A significantly positive correlation was found between DNA oxidative damage and exposure for four categories of antibiotics, conformed by both Spearman correlation and multiple linear regression analysis. The levels of 8-OHdG were 355 %, 239 %, 234 %, and 334 % higher with elevated levels of phenicols, macrolides, tetracyclines and sulfonamides from quartiles 2 to 4. Our results suggest that high-frequency consumption of takeaways may exacerbate oxidative stress trends through human exposure to antibiotics.
Collapse
Affiliation(s)
- Hao Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Dong-Min Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Ze-Zhao Lin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xiao-Ya Lin
- Sanya Woman and Children's Hospital, Sanya 572022, China
| | - Jia-Jun Yuan
- Sanya Woman and Children's Hospital, Sanya 572022, China; Shanghai Engineering Research Center of Intelligence Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
7
|
Wen J, Geng S, Zhu L, Yao X, Zhou Y, Shen F, Wang Z, Ma Y, Feng Y, Huo Z, Zhu F. Urinary antibiotic concentrations in preschool children from eastern China and health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82547-82559. [PMID: 37326733 DOI: 10.1007/s11356-023-28209-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Despite limited biomonitoring studies suggesting extensive antibiotic exposure in general population, the body burden of antibiotics in young children and their potential health risks remain unclear. To assess the antibiotic exposure levels in young children, 508 preschoolers aged 3-6 years were recruited from eastern China in 2022, and a total of 50 representative antibiotics from 8 categories, including 17 human antibiotics (HAs), 4 antibiotics preferred as HAs (PHAs), 16 veterinary antibiotics (VAs), and 13 antibiotics preferred as VAs (PVAs), were analyzed by UPLC-MS/MS. Hazard quotient (HQ) and hazard index (HI) were calculated to evaluate the health risks, and multivariate logistic regression was applied to examine diet with antibiotic exposure. Our results showed that there were 41 antibiotics detected in children's urine, and the overall detection frequency was as high as 100%. Sulfonamides, macrolides, β-lactams, quinolones, and azoles were the predominant categories of antibiotic detected. Among the studied children, 6.5% had a sum of estimated daily intake (EDI) of all VAs and PVAs larger than 1 μg/kg/day. Notably, 10.0% of the children had a microbiological HI value exceeding 1, primarily contributed by ciprofloxacin. Children with higher consumption of seafood had a relatively increased exposure to multiple categories of antibiotics, including HAs, VAs, quinolones, azoles, and others. Principal component analysis suggested that "Aquatic products and viscera preferred dietary pattern" scores were positively correlated with the exposure levels of ciprofloxacin (OR: 1.23; 95% CI: 1.02-1.47) and carbadox (OR: 1.32; 95% CI: 1.10-1.59), and a relatively increased exposure of PHAs was realized in children with higher "Meat-egg preferred dietary pattern" scores (OR: 1.24; 95% CI: 1.03-1.50). In conclusion, there was a widespread exposure to antibiotics among preschool children from eastern China, and children who consumed more animal-derived foods may had an increased exposure to antibiotics.
Collapse
Affiliation(s)
- Juan Wen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Shijie Geng
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Lijun Zhu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Xiaodie Yao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Yonglin Zhou
- Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Road 172, Gulou District, Nanjing, 210000, Jiangsu, China
| | - Fei Shen
- Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Road 172, Gulou District, Nanjing, 210000, Jiangsu, China
| | - Zhe Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yinghua Ma
- Wenchang Experimental Kindergarten of Suzhou High-Tech Zone, Suzhou, 215011, China
| | - Yifang Feng
- Wenchang Experimental Kindergarten of Suzhou High-Tech Zone, Suzhou, 215011, China
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Road 172, Gulou District, Nanjing, 210000, Jiangsu, China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Road 172, Gulou District, Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
8
|
Yang TC, Jovanovic N, Chong F, Worcester M, Sakhi AK, Thomsen C, Garlantézec R, Chevrier C, Jensen G, Cingotti N, Casas M, McEachan RR, Vrijheid M, Philippat C. Interventions to Reduce Exposure to Synthetic Phenols and Phthalates from Dietary Intake and Personal Care Products: a Scoping Review. Curr Environ Health Rep 2023; 10:184-214. [PMID: 36988899 PMCID: PMC10300154 DOI: 10.1007/s40572-023-00394-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/30/2023]
Abstract
PURPOSE OF REVIEW A scoping review was conducted to identify interventions that successfully alter biomarker concentrations of phenols, glycol ethers, and phthalates resulting from dietary intake and personal care product (PCPs) use. RECENT FINDINGS Twenty-six interventions in populations ranging from children to older adults were identified; 11 actively removed or replaced products, 9 provided products containing the chemicals being studied, and 6 were education-only based interventions. Twelve interventions manipulated only dietary intake with a focus on bisphenol A (BPA) and phthalates, 8 studies intervened only on PCPs use and focused on a wider range of chemicals including BPA, phthalates, triclosan, parabens, and ultraviolet absorbers, while 6 studies intervened on both diet and PCPs and focused on phthalates, parabens, and BPA and its alternatives. No studies assessed glycol ethers. All but five studies reported results in the expected direction, with interventions removing potential sources of exposures lowering EDC concentrations and interventions providing exposures increasing EDC concentrations. Short interventions lasting a few days were successful. Barriers to intervention success included participant compliance and unintentional contamination of products. The identified interventions were generally successful but illustrated the influence of participant motivation, compliance, ease of intervention adherence, and the difficulty of fully removing exposures due their ubiquity and the difficulties of identifying "safer" replacement products. Policy which reduces or removes EDC in manufacturing and processing across multiple sectors, rather than individual behavior change, may have the greatest impact on population exposure.
Collapse
Affiliation(s)
- Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK.
| | - Nicolas Jovanovic
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Felisha Chong
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Meegan Worcester
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | | | | | - Ronan Garlantézec
- CHU de Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement Et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Cécile Chevrier
- CHU de Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement Et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Génon Jensen
- Health and Environment Alliance (HEAL), Brussels, Belgium
| | | | - Maribel Casas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Barcelona, Spain
| | - Rosemary Rc McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Barcelona, Spain
| | - Claire Philippat
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| |
Collapse
|
9
|
Abdo N, Al-Khalaileh H, Alajlouni M, Hamadneh J, Alajlouni AM. Screening for phthalates biomarkers and its potential role in infertility outcomes in Jordan. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:273-282. [PMID: 36593351 PMCID: PMC9807094 DOI: 10.1038/s41370-022-00517-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Phthalates are endocrine disrupting chemicals that are used in plastic and personal care products. Phthalate exposure has been linked to reproductive and fertility outcomes. OBJECTIVES This study aimed to assess the phthalate exposures using both urinary level of two DEHP metabolites in females and questionnaires. It also aimed to investigate the association between phthalate levels and reproductive and fertility outcomes. METHODS 325 females with and without fertility problems at gynaecology clinics filled out a questionnaire and provided a urine sample. Urine samples were analyzed for two DEHP metabolites: MEHHP, mono (2-ethyl-5-hydroxyhexyl) phthalate; MEOHP, mono (2-ethyl-5-oxohexyl) phthalate, using an HPLC/MS/MS analytical method. RESULTS We observed a significant difference between cases and controls in terms of heating plastic in the microwave and use of skin and eye make-up, sunscreen, and nail polish. Our findings showed that MEOHP exposure is significantly associated with infertility among Jordanian women (Adjusted OR = 1.66, 95% CI: 1.14, 2.40, p-value = 0.002). SIGNIFICANCE To the best of our knowledge, our study is the first of its kind done in Jordan to screen for phthalate exposure and investigate its association with infertility. Our study demonstrated high exposure of the Jordanian population to DEHP. It confirms the association between DEHP exposure and infertility. IMPACT STATEMENT We measured phthalates in infertile and fertile women, in a community unaware of phthalate sources or its impacts, and with no regulation limits set. We aimed to increase awareness to environmental exposure to phthalates, emphasize the importance of implementation of public health interventions to control and minimize the effects of phthalate exposure and provide a base for further studies and future research to aid in the formation of policies and guidelines for the manufacturing and use of phthalates.
Collapse
Affiliation(s)
- Nour Abdo
- Department of Public Health and Family Medicine, College of Medicine, Jordan University of Science and Technology, P.O. Box, 3030, Irbid, 22110, Jordan.
| | - Hana Al-Khalaileh
- Department of Public Health and Family Medicine, College of Medicine, Jordan University of Science and Technology, P.O. Box, 3030, Irbid, 22110, Jordan
| | - Marwan Alajlouni
- Department of Public Health and Family Medicine, College of Medicine, Jordan University of Science and Technology, P.O. Box, 3030, Irbid, 22110, Jordan
| | - Jehan Hamadneh
- Department of Obstetrics and Genecology, College of Medicine, Jordan University of Science and Technology, P.O. Box, 3030, Irbid, 22110, Jordan
| | | |
Collapse
|
10
|
Shan L, Gao M, Pan X, Li W, Wang J, Li H, Tian H. Association between fluoroquinolone exposure and children's growth and development: A multisite biomonitoring-based study in northern China. ENVIRONMENTAL RESEARCH 2022; 214:113924. [PMID: 35868578 DOI: 10.1016/j.envres.2022.113924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Although animal experiments found that antibiotic exposure during early life increased adiposity, limited human epidemiological evidence is available for the effects of veterinary antibiotic exposure on children's growth and development. OBJECTIVE This study was conducted to examine the body burden of fluoroquinolones in northern Chinese children and assess its association with growth and development. METHODS After recruiting 233 children aged 0-15 years from 12 different sites in northern China in 2020, we measured urinary concentrations of 5 respective fluoroquinolones (fleroxacin, ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin) by high performance liquid chromatography. Categories of children's growth and development were identified based on the Z score of body mass index. The health risks of individual and combined antibiotic exposure were estimated by the hazard quotient (HQ) and hazard index (HI), respectively. The association between children's growth and development with antibiotic concentrations was evaluated via multiple logistic regression analysis. RESULTS In total, 4 antibiotics, fleroxacin, ofloxacin, ciprofloxacin, and enrofloxacin, were found in urine samples of northern Chinese children at an overall frequency of 57.08%. Due to diet and economic differences, antibiotic concentrations in urine samples differed by study area, and the highest concentrations were found in Tianjin, Henan, and Beijing. The percentage of the participants with HQ > 1 caused by ciprofloxacin exposure was 20.61%, and the HI values in 23.18% of samples exceeded 1, suggesting potential health risks. The odds ratio (95% confidence interval) of overweight or obesity risk of tertile 2 of enrofloxacin was 3.01 (1.12, 8.11), indicating an increase in overweight or obesity risk for children with middle-concentration enrofloxacin exposure. CONCLUSION This is the first study to show a positive association of enrofloxacin internal exposure with overweight or obesity risk in children, demonstrating that more attention should be given to the usage and disposal of fluoroquinolones to safeguard children's health.
Collapse
Affiliation(s)
- Lixin Shan
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ming Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China
| | - Xiaohua Pan
- Qingdao Women and Children's Hospital, Qingdao, 266034, Qingdao, China
| | - Wenjie Li
- Qingdao Women and Children's Hospital, Qingdao, 266034, Qingdao, China
| | - Jingjie Wang
- Qingdao Women and Children's Hospital, Qingdao, 266034, Qingdao, China
| | - Huaxin Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
11
|
Ciprofloxacin Concentrations 1/1000th the MIC Can Select for Antimicrobial Resistance in N. gonorrhoeae—Important Implications for Maximum Residue Limits in Food. Antibiotics (Basel) 2022; 11:antibiotics11101430. [PMID: 36290088 PMCID: PMC9598464 DOI: 10.3390/antibiotics11101430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Concentrations of fluoroquinolones up to 200-fold lower than the minimal inhibitory concentration (MIC) have been shown to be able to select for antimicrobial resistance in E. coli and Salmonella spp. (the minimum selection concentration—MSC). We hypothesized that the low concentrations of quinolones found in meat may play a role in the genesis of quinolone resistance in Neisseria gonorrhoeae. We aimed to (i) establish the ciprofloxacin MSC for N. gonorrhoeae and (ii) assess if, at the ecological level, the prevalence of gonococcal ciprofloxacin resistance is associated with the concentration of quinolones used in food animal production, which is an important determinant of long-term low-dose exposure to ciprofloxacin in humans. Methods: (i) To assess if subinhibitory ciprofloxacin concentrations could select for de novo generated resistant mutants, a susceptible WHO-P N. gonorrhoeae isolate was serially passaged at 1, 1:10, 1:100 and 1:1000 of the ciprofloxacin MIC of WHO-P (0.004 mg/L) on GC agar plates. (ii) Spearman’s correlation was used to assess the association between the prevalence of ciprofloxacin resistance in N. gonorrhoeae and quinolone use for animals and quinolone consumption by humans. Results: Ciprofloxacin concentrations as low as 0.004 µg/L (1/1000 of the MIC of WHO-P) were able to select for ciprofloxacin resistance. The prevalence of ciprofloxacin resistance in N. gonorrhoeae was positively associated with quinolone use for food animals (ρ = 0.47; p = 0.004; N = 34). Conclusion: Further individual level research is required to assess if low doses of ciprofloxacin from ingested foodstuffs are able to select for ciprofloxacin resistance in bacteria colonizing humans and other species.
Collapse
|
12
|
Zhong HW, Guo JL, Hu YB, Jia LL, Guo Y. Phthalate exposure and DNA oxidative damage in young people of takeaway food lovers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71978-71987. [PMID: 35606587 DOI: 10.1007/s11356-022-20849-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Numerous studies have demonstrated the ubiquitous of phthalates in materials of food and food packaging, and the effects of regular eating takeaway food for a long time on human health and phthalate exposure levels were not fully investigated. A total of 288 college students who love eating takeaway food were recruited to explore phthalate exposure and oxidative stress, by measuring metabolites of traditional or alternative phthalates and 8-hydroxydeoxyguanosine (8-OHdG, a biomarker of DNA oxidative damage) in their urine samples. Both traditional and alternative phthalates were highly detected. Based on weekly frequency of takeaway eating collecting from questionnaire, the students were divided into four groups including level 1 (L1, < 3 times), level 2 (L2, 3-7 times), level 3 (L3, 8-12 times) and level 4 (L4, > 12 times). The total concentrations of all phthalate metabolites were 42.5-893 ng/mL in all students, which were significantly different among four groups, with the lowest level in L1 (p < 0.05). Checking with the generalized linear model (L1 as the reference), the concentrations of most phthalate metabolites increased 12.0-144% in L2 and L3 compared with those in L1. For each group increase, the concentrations of total metabolites, and metabolites of high and low molecular weight phthalates will increase by 0.156%, 0.128%, and 0.142%, respectively. Besides, levels of 8-OHdG (0.639-33.7 ng/mL) were positively correlated with phthalate daily exposure doses. The each increase of a percentage unit of daily exposure of phthalates, the concentrations of 8-OHdG will increase by 0.258-0.405%. However, levels of 8-OHdG were not significantly different among the four groups. The alternative phthalates have already entered the body of Chinese young people. Our results indicated the regular consumption of takeaway food (e.g., more than three times per week) may increase the chance of exposure to certain phthalates, and may not significantly increase the levels of DNA oxidative damage, unless exposed to other pollutants such as phthalates.
Collapse
Affiliation(s)
- Hao-Wen Zhong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Jia-Liang Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Yi-Bin Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Lu-Lu Jia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China.
| |
Collapse
|
13
|
Yan S, Hu C, Wang Y, Gao J, Wang Z, Han T, Sun C, Jiang W. Association of phthalate exposure with all-cause and cause-specific mortality among people with hypertension: The U.S. National Health and Nutrition Examination Survey, 2003-2014. CHEMOSPHERE 2022; 303:135190. [PMID: 35660055 DOI: 10.1016/j.chemosphere.2022.135190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
There is growing evidence that phthalate exposure results in a deteriorated effect on human health, while very few studies directly investigate the relationship of phthalate metabolites with mortality among people with hypertension. We aimed to explore whether exposure to phthalates is associated with all-cause and cause-specific mortality among people with hypertension. This study included 4012 people with hypertension from the National Health and Nutrition Examination Survey from 2003 to 2014. Death information was obtained from the National Death Index until 2015. A total of 577 deaths including 196 deaths due to cardiovascular disease (CVD) and 119 deaths due to cancer were documented. Cox proportional hazards regression models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI). After adjustment for potential covariates, participants exposed to mono-ethyl phthalate (MEP) had a higher risk of cancer mortality (HR, 2.06; 95% CI, 1.07-3.95). Participants exposed to mono-n-butyl phthalate (MnBP) had higher risks of all-cause (HR, 1.83; 95% CI, 1.28-2.60), CVD (HR, 2.19; 95% CI, 1.21-3.95), and cancer (HR, 2.35; 95% CI, 1.07-5.17) mortality. Participants exposed to mono-benzyl phthalate (MBzP) had higher risks of all-cause (HR, 2.19; 95% CI, 1.58-3.05) and CVD (HR, 2.36; 95% CI, 1.35-4.13) mortality. Participants exposed to di-2-ethylhexylphthalate (DEHP) had a higher risk of all-cause mortality (HR, 1.69; 95% CI, 1.19-2.39). Our findings suggested that higher levels of specific phthalates were significantly associated with increased risks of all-cause, CVD, and cancer mortality among people with hypertension. Further studies are needed to confirm these findings and identify the underlying mechanisms.
Collapse
Affiliation(s)
- Shiwei Yan
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China
| | - Cong Hu
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China
| | - Yu Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China
| | - Jian Gao
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China
| | - Ziqi Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China
| | - Tianshu Han
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China.
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China.
| | - Wenbo Jiang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China.
| |
Collapse
|
14
|
Protective effects of polyphenols against endocrine disrupting chemicals. Food Sci Biotechnol 2022; 31:905-934. [DOI: 10.1007/s10068-022-01105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/24/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022] Open
|
15
|
Zhang Y, Tang W, Wang Y, Nian M, Jiang F, Zhang J, Chen Q. Environmental antibiotics exposure in school-age children in Shanghai and health risk assessment: A population-based representative investigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153859. [PMID: 35176387 DOI: 10.1016/j.scitotenv.2022.153859] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The widespread use of antibiotics has left extensive residues in the environment and food. Antibiotics can accumulate in human body. As the potential health risks of antibiotic exposure in children are of a great concern in recent years, our study aimed to describe the status of antibiotic exposure in primary school students in Shanghai, China, and to explore the relationships of dietary patterns with internal antibiotic levels. METHODS The Shanghai Children's Health, Education, and Lifestyle Evaluation (SCHEDULE) Survey was a cross-sectional study with a staged, cluster random sample of all primary school students in Shanghai, China. In the present study, we randomly selected 2199 children aged 6-12 years old. A total of 10 antibiotics in urine samples were measured by liquid chromatography-tandem mass spectrometry. Multivariable survey logistic regression models were used to investigate dietary patterns associated with detection rates of antibiotics. RESULTS The detection rates of individual antibiotics ranged from 4.3% to 30.7%. 68.7% of children were exposed to at least one antibiotic. There was a significant difference in child exposure to overall antibiotics by residential locations (60.9% in urban vs. 71.1% in suburban areas). Principal component analyses suggested that higher unhealthy dietary pattern scores were significantly associated with increased detection rates of tetracyclines [1.27 (95% CI: 1.18, 1.38)] and sulfonamides [1.20 (95% CI: 1.05, 1.36)]. In addition, 9.05% of children had a hazard index (HI) value greater than 1, which was mainly contributed by ciprofloxacin. CONCLUSIONS School-age children were widely exposed to antibiotics in Shanghai. Unhealthy diet was associated with a higher level of antibiotic exposure.
Collapse
Affiliation(s)
- Yu Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Tang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqing Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Nian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Jiang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Knowledge, Attitudes, and Behaviors Regarding Chemical Exposure among a Population Sample of Reproductive-Aged Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053015. [PMID: 35270707 PMCID: PMC8910600 DOI: 10.3390/ijerph19053015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022]
Abstract
We examined the knowledge and attitudes of reproductive-age women toward environmental chemicals and determined how these affect consumer behaviors. At the 2018 Minnesota State Fair, a large community sample of reproductive-age women was recruited to complete a survey on environmental health attitudes and behaviors. Descriptive statistics, chi-square tests, and logistic regression models were used to characterize current attitudes about chemicals. Multivariable logistic regression models examined how sociodemographic characteristics predict knowledge, attitudes, and consumer behaviors. A total of 871 women completed the survey; 74% strongly agreed that chemicals in the environment are dangerous, and 44% of women reported having heard of phthalates, while only 29% reported always practicing at least one environmentally healthy behavior (such as consuming food and beverages from safe plastics). Older age (35-39 versus 18-24: aOR 2.3, 95% CI 1.3, 4.3; 40-44 versus 18-24; aOR 2.0, 95% CI 1.2, 3.2) and working in a healthcare profession (aOR: 1.7, 95% CI: 1.2, 2.5) were associated with strong agreement that chemicals in the environmental are dangerous. Women who strongly agreed chemicals are dangerous were more likely to practice consumer behaviors to reduce their exposure. Interventions targeting knowledge and attitudes towards environmental chemicals could be an effective strategy for reducing harmful exposures.
Collapse
|
17
|
Liu Y, Wang S, Pan J, Zhu F, Wu M, Xu G. Antibiotics in urine of the general population: Exposure, health risk assessment, and food factors. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 57:1-12. [PMID: 34933642 DOI: 10.1080/03601234.2021.2017211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diet is known to be one of the main sources from which human intake many environmental contaminants, for example, antibiotics. To determine the effect of dietary factors on antibiotic intake, we identified the levels of antibiotics present in the urine of the general population from two regions of Shanghai. Moreover, we assessed the amount of exposure to these substances and the health risks they posed. There were a total of 18 antibiotics, which were sorted into five categories. Based on the above, we used the Food Frequency Questionnaire (FFQ) and demographic data to evaluate the effects of food consumption and demographic factors on levels of the antibiotics in urine. The results found that food sourced from animals had a direct relation to the level of veterinary antibiotics or preferred veterinary antibiotics (VAs/PVAs) detected in urine. Those who regularly consumed, for example, meat, milk and eggs, had considerably more VAs/PVAs in their urine compared to those who didn't. These results demonstrated that animal-derived foods are the main causes of unintentional exposure to antibiotics in human. Our study, therefore, evidenced that more attention must be paid to the residues of unneeded VAs/PVAs derived from animal-sourced food.
Collapse
Affiliation(s)
- Yujie Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, P. R. China
| | - Siqi Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Jiali Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Feng Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, P. R. China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, P. R. China
| |
Collapse
|
18
|
Huang YC, Huang PR, Lo YTC, Sun CW, Pan WH, Wang SL, Huang HB. Food Processing and Phthalate Exposure: The Nutrition and Health Survey in Taiwan (1993-1996 and 2005-2008). Front Nutr 2021; 8:766992. [PMID: 34869535 PMCID: PMC8635797 DOI: 10.3389/fnut.2021.766992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Phthalates esters are widely used commercially and can leach from a food container or food packaging. Few studies have been conducted in Asia regarding food processed to varying levels and human phthalate exposure. This study aimed to evaluate the association between unprocessed and ultra-processed food intake and urinary phthalate metabolite levels in the Taiwanese adult population. Methods: A total of 516 participant data were extracted from the cross-sectional 1993–1996 and 2005–2008 Nutrition and Health Survey in Taiwan of those aged over 18 years, where urinary measures and one 24-h dietary recall were collected. Urinary concentrations of dimethyl phthalate, diethyl phthalate, dibutyl phthalate, butyl benzyl phthalate, and di-(2-ethylhexyl) phthalate metabolites including monomethyl phthalate, monoethyl phthalate (MEP), monobutyl phthalate (MBP), monobenzyl phthalate, mono-(2-ethylhexyl) phthalate, mono-(2-ethyl-5-hydroxyhexyl) phthalate, and mono-(2-ethyl-5-oxohexyl) phthalate were measured in spot urine samples. The NOVA food processing classification system was applied to divide all consumed foods into four mutually exclusive groups including unprocessed or minimally processed, processed culinary ingredients, processed and ultra-processed food. Generalized linear models were employed to examine the associations between the percentage quartiles (Qs) of unprocessed and ultra-processed foods in the total weight of food and the urinary phthalate metabolites. Results: Compared with participants in the lowest quartiles (Q1) of ultra-processed food intake, highest ultra-processed food intake (Q4) had 65.7% (95% confidence interval [CI]: 4.83, 162) higher urinary concentrations of MEP after adjusted for covariates. In contrast, the higher unprocessed food consumption was inversely associated with urinary concentrations of MEP and MBP (P for trend = 0.03). When compared to the lowest unprocessed food consumers (Q1), higher consumers (Q4) presented 38.6% (95% CI: −61.3, −2.59) lower MEP concentrations and 23.1% (95% CI: −38.5, −3.71) lower MBP concentrations. Conclusion: Ultra-processed food consumption was associated with increased concentrations of urinary MEP. Conversely, consuming unprocessed food was associated with lower concentrations of MEP and MBP in the Asian Taiwanese adult population.
Collapse
Affiliation(s)
- Yi-Chen Huang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Pei-Ru Huang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yuan-Ting C Lo
- National Defense Medical Center, School of Public Health, Taipei, Taiwan
| | - Chien-Wen Sun
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Wen-Harn Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shu-Li Wang
- National Defense Medical Center, School of Public Health, Taipei, Taiwan.,National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Han-Bin Huang
- National Defense Medical Center, School of Public Health, Taipei, Taiwan
| |
Collapse
|
19
|
Abdi S, Sobhanardakani S, Lorestani B, Cheraghi M, Panahi HA. Analysis and health risk assessment of phthalate esters (PAEs) in indoor dust of preschool and elementary school centers in city of Tehran, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61151-61162. [PMID: 34173141 DOI: 10.1007/s11356-021-14845-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Individuals spend a lot of time indoors; thus they are generally exposed to phthalates used in consumer products. Therefore, those exposed to phthalates as indoor contaminants are at high risks. The present study was conducted to evaluate the carcinogenic and non-carcinogenic hazard of phthalate esters (PAEs), like dimethyl phthalate, diethyl phthalate, di(nbutyl) phthalate, butyl benzyl phthalate, dioctyl phthalate, and di(2-ethylhexyl) phthalate in the dust obtained from 21 schools in Tehran, in 2019. A total of 63 indoor dust specimens were obtained by a vacuum cleaner. After transferring dust samples to the laboratory, 100 mg of each sample was centrifuged and mixed with 20 ml acetone and kept through a night and ultrasonicated within 30 min. Eventually, PAEs' contents were measured via gas chromatography-mass spectrometry. Based on the findings, median concentrations of DMP, DEP, DnBP, BBP, DEHP, and DnOP were 0.90, 0.10, 6.0, 0.20, 118.30, and 4.10 mg kg-1 respectively. Moreover, the overall average daily exposure doses (ADD) of phthalate esters via dust ingestion, skin contact, and inhalation were 1.56E-03, 1.70E-06, and 1.56E-07 mg kg-1 day-1, respectively, and the lifetime average daily exposure doses (LADD) were 1.83E-04, 2.34E-08, and 2.46E-08 mg kg-1 day-1, respectively; thus ingestion of dust particles was found to be the main pathway of exposure to phthalate for non-carcinogenic and carcinogenic risks. Although based on the results, the studied samples were below the US Environmental Protection Agency threshold of 1.00E-06, due to the disadvantages of phthalates in human safety, these kinds of investigations are helpful in understanding the main ways of exposure to PAEs and providing a science-based framework for the future attempts for mitigating the PAEs indoor emissions.
Collapse
Affiliation(s)
- Somayeh Abdi
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Soheil Sobhanardakani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
| | - Bahareh Lorestani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Mehrdad Cheraghi
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Homayon Ahmad Panahi
- Department of Chemistry, College of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
20
|
Kenyon C. Positive Association between the Use of Quinolones in Food Animals and the Prevalence of Fluoroquinolone Resistance in E. coli and K. pneumoniae, A. baumannii and P. aeruginosa: A Global Ecological Analysis. Antibiotics (Basel) 2021; 10:antibiotics10101193. [PMID: 34680775 PMCID: PMC8532820 DOI: 10.3390/antibiotics10101193] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: It is unclear what underpins the large global variations in the prevalence of fluoroquinolone resistance in Gram-negative bacteria. We tested the hypothesis that different intensities in the use of quinolones for food-animals play a role. (2) Methods: We used Spearman’s correlation to assess if the country-level prevalence of fluoroquinolone resistance in human infections with Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa was correlated with the use of quinolones for food producing animals. Linear regression was used to assess the relative contributions of country-level quinolone consumption for food-animals and humans on fluoroquinolone resistance in these 4 species. (3) Results: The prevalence of fluoroquinolone resistance in each species was positively associated with quinolone use for food-producing animals (E. coli [ρ = 0.55; p < 0.001], K. pneumoniae [ρ = 0.58; p < 0.001]; A. baumanii [ρ = 0.54; p = 0.004]; P. aeruginosa [ρ = 0.48; p = 0.008]). Linear regression revealed that both quinolone consumption in humans and food animals were independently associated with fluoroquinolone resistance in E. coli and A. baumanii. (4) Conclusions: Besides the prudent use of quinolones in humans, reducing quinolone use in food-producing animals may help retard the spread of fluoroquinolone resistance in various Gram-negative bacterial species.
Collapse
Affiliation(s)
- Chris Kenyon
- HIV/STI Unit, Institute of Tropical Medicine, 2000 Antwerp, Belgium; ; Tel.: +32-3-2480796; Fax: +32-3-2480831
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Anzio Road, Cape Town 7700, South Africa
| |
Collapse
|
21
|
Rahman MS, Hassan MM, Chowdhury S. Determination of antibiotic residues in milk and assessment of human health risk in Bangladesh. Heliyon 2021; 7:e07739. [PMID: 34430734 PMCID: PMC8365374 DOI: 10.1016/j.heliyon.2021.e07739] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/18/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
Consumption of milk contaminated with antibiotic residues above the maximum residue limit (MRL) causes toxicity to humans and the development of superbugs that leads to the failure of antibiotic therapy and threatens human life. Moreover, long-duration exposure might alter the nature of gut microflora, resulting in the enhancement of many diseases. Therefore, our study aims to find out the residues level of selected antibiotics in milk and assessments of humans health risks. We examined 300 raw and processed milk samples using thin-layer chromatography (TLC) and ultra-high-performance liquid chromatography (UHPLC) methods against five veterinary antibiotics and assessed the health risk for consumers in Chattogram, Bangladesh. Risk analysis was done by using a hazard quotient based on 165 ml per capita milk consumption. We found a total of 7 % prevalence of antibiotic residues in raw milk, which were higher (8 %) in individual milk samples than the pooled samples (4 %). However, we did not find any antibiotic residues in processed milk. The mean concentration of oxytetracycline residue was detected at 61.29 μg/l, and amoxicillin was 124 μg/l in individual milk samples. Risk analysis showed that, the hazard quotient values are 0.0056 for oxytetracycline and 0.0017 for amoxicillin residues. This result implied no significant health risks associated with the consumption of milk produced and marketed in the study area. Our study might fill up the gaps of knowledge in measuring the safety status of milk regarding public health issues.
Collapse
Affiliation(s)
- Md Sahidur Rahman
- One Health Institute, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh
| | - Mohammad Mahmudul Hassan
- Department of Physiology, Biochemistry and Pharmacology, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh
| | - Sharmin Chowdhury
- One Health Institute, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh.,Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh
| |
Collapse
|
22
|
Reducing Prenatal Exposure to Toxic Environmental Agents: ACOG Committee Opinion, Number 832. Obstet Gynecol 2021; 138:e40-e54. [PMID: 34259492 DOI: 10.1097/aog.0000000000004449] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
ABSTRACT There is emerging evidence that links exposure to toxic environmental agents and adverse reproductive and developmental health outcomes. Toxic exposures related to reproductive and developmental health primarily have been associated with infertility and miscarriage, obstetric outcomes such as preterm birth and low birth weight, neurodevelopmental delay such as autism and attention deficit hyperactivity disorder, and adult and childhood cancer. Although there is substantial overlap in the type of exposure and the associated health outcomes, for the purposes of this document, exposures generally can be grouped into the following categories: toxic chemicals, air pollution, and climate change-related exposures. Obstetric care clinicians do not need to be experts in environmental health science to provide useful information to patients and refer patients to appropriate specialists, if needed, when a hazardous exposure is identified. It is important for obstetrician-gynecologists and other obstetric care clinicians to become knowledgeable about toxic environmental exposures that are endemic to their specific geographic areas, such as local water safety advisories (eg, lead-contaminated water), local air quality levels, and patients' proximity to power plants and fracking sites. Although exposure to toxic environmental agents is widespread across populations, many environmental factors that are harmful to reproductive health disproportionately affect underserved populations and are subsumed in issues of environmental justice. Clinical encounters offer an opportunity to screen and counsel patients during the prepregnancy and prenatal periods-particularly individuals most disproportionately affected-about opportunities to reduce toxic environmental health exposures. This Committee Opinion is revised to integrate more recent literature regarding reducing prepregnancy and prenatal toxic environmental exposures.
Collapse
|
23
|
Sedha S, Lee H, Singh S, Kumar S, Jain S, Ahmad A, Bin Jardan YA, Sonwal S, Shukla S, Simal-Gandara J, Xiao J, Huh YS, Han YK, Bajpai VK. Reproductive toxic potential of phthalate compounds - State of art review. Pharmacol Res 2021; 167:105536. [PMID: 33677105 DOI: 10.1016/j.phrs.2021.105536] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 02/05/2023]
Abstract
Phthalates are pervasive compounds, and due to the ubiquitous usage of phthalates, humans or even children are widely exposed to them. Since phthalates are not chemically bound to the plastic matrix, they can easily leach out to contaminate the peripheral environment. Various animal and human studies have raised vital health concern including developmental and reproductive toxicity of phthalate exposure. The present review is based upon the available literature on phthalates with respect to their reproductive toxic potential. Common reproductive effects such as declined fertility, reduced testis weight, variations in accessory sex organs and several female reproductive disorders appeared to be largely associated with the transitional phthalates. Among the higher molecular weight phthalates (≥ C7), di-isononyl phthalate (DINP) produces some minor effects on development of male reproductive tract and among low molecular weight phthalates (≤C3), di-methyl (DMP) and di-isobutyl (DIBP) phthalate produce some adverse effects on male reproductive system. Whereas transitional phthalates such as di-butyl phthalate, benzyl butyl phthalate, and di-(2-ethylhexyl) phthalate have shown adverse effects on female reproductive system. Owing to these, non-toxic alternatives to phthalates may be developed and use of phthalates could be rationalized as an important issue where human reproduction system is involved. Though, more epidemiological studies are needed to substantiate the reported findings on phthalates.
Collapse
Affiliation(s)
- Sapna Sedha
- Department of Biotechnology, Dr Hari Singh Gour Vishwavidyalaya, Sagar 470003, MP, India
| | - Hoomin Lee
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea
| | - Siddhartha Singh
- Government Girls P.G. College for Excellence, Sagar 470002, MP, India
| | - Sunil Kumar
- National Institute of Occupational Health - ICMR, Meghaninagar, Ahmedabad 380016, Gujarat, India
| | - Subodh Jain
- Department of Biotechnology, Dr Hari Singh Gour Vishwavidyalaya, Sagar 470003, MP, India
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sonam Sonwal
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea
| | - Shruti Shukla
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana 131028, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense E-32004, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense E-32004, Spain.
| | - Yun Suk Huh
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro 1-gil, Seoul 04620, South Korea.
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro 1-gil, Seoul 04620, South Korea.
| |
Collapse
|
24
|
Zhou YJ, Zhu F, Zheng DY, Gao MM, Guo BF, Zhang N, Meng Y, Wu GL, Zhou YL, Huo X. Detection of antibiotics in the urine of children and pregnant women in Jiangsu, China. ENVIRONMENTAL RESEARCH 2021; 196:110945. [PMID: 33647296 DOI: 10.1016/j.envres.2021.110945] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Exposure to low concentrations of antibiotics links to multiple health hazards, such as drug resistance of bacteria, and childhood obesity. In this study, seven antibiotics were measured in the urine of 107 children and 126 pregnant women in Jiangsu Province by ultra-performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS). The overall urinary antibiotics detection rate was 38.6%. Most (98.3%) of the participants' antibiotics concentrations were no more than 10 ng/mL. Children had a significantly higher detection rate than pregnant women (47.7% vs. 31.0%, P = 0.009), as well as the concentration (95th percentile: 6.49 vs. 4.08 ng/mL, P = 0.002). The detection rates of individual antibiotics ranged from 0.4% to 15.0%, and the concentrations ranged from lower than the limit of detection (LOD) through up to 31.96 ng/mL individually. Two or more antibiotics were detected in 11.2% of the urines. Tetracyclines were more frequently detected than phenicols (30.9% vs.12.4%). Oxytetracycline was the most frequently detected (15.0%). Multivariate logistic regression showed that consuming puffed food every day was associated with a significantly increased likelihood of detection, and higher concentration of overall antibiotics, and of doxycycline. Children were more likely to be detected of doxycycline and florfenicol, and to have elevated concentration of doxycycline, compared with pregnant women. This study highlights the relatively heavier antibiotics exposure in children, and a possible impact of puffed food on it, which needs to be warranted in future studies.
Collapse
Affiliation(s)
- Yi-Jing Zhou
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Dong-Yu Zheng
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Ming-Ming Gao
- Yancheng City Center for Disease Control and Prevention, Yancheng, People's Republic of China
| | - Bao-Fu Guo
- Nanjing City Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Ning Zhang
- Suzhou City Center for Disease Control and Prevention, Suzhou, People's Republic of China
| | - Yu Meng
- Wuxi City Center for Disease Control and Prevention, Wuxi, People's Republic of China
| | - Gao-Lin Wu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Yong-Lin Zhou
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People's Republic of China.
| | - Xiang Huo
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People's Republic of China.
| |
Collapse
|
25
|
Ji X, Xu Y, Wang J, Lyu W, Li R, Tan S, Xiao Y, Tang B, Yang H, Qian M. Multiresidue determination of antibiotics in ready-to-eat duck eggs marketed through e-commerce stores in China and subsequent assessment of dietary risks to consumers. J Food Sci 2021; 86:2145-2162. [PMID: 33928644 DOI: 10.1111/1750-3841.15724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 01/24/2023]
Abstract
In this work, the occurrence of 34 common antibiotic (15 sulfonamides and 19 quinolones) residues were evaluated in 236 ready-to-eat duck eggs (salted and preserved duck eggs) marketed through e-commerce stores by ultra-performance liquid chromatography coupled to tandem mass spectrometry, and subsequent dietary risk assessments for Chinese consumers were conducted. Among violated positives in duck egg samples, 11 analytes were found including sulfamethazine, sulfaquinoxaline, sulfamethoxazole, sulfadiazine, sulfamonomethoxine, ciprofloxacin, enrofloxacin, ofloxacin, flumequine, sarafloxacin, and nalidixic acid. A higher number of antibiotics were detected in salted duck eggs (five sulfonamides and six quinolones) than in preserved duck eggs (one sulfonamide and two quinolones). The maximum contamination of sulfonamides and quniolones was 448.0 µg/kg (sulfaquinoxaline) and 563.7 µg/kg (enrofloxacin) in salted duck eggs, respectively. Dietary exposure was evaluated through the estimated daily intake (EDI) of risky antibiotics (sulfamethazine, ciprofloxacin, and enrofloxacin) and hazard quotients (HQs). The results showed that EDIs and HQs were in the range of 0.0004 to 0.0099 µg/kg bw/day and 0.0009 to 0.1594%, respectively. The risk was low since HQs obtained were less than 100%. However, a special attention should be paid to ready-to-eat duck egg products high percentile consumers with the prosperity of e-commerce market in China. PRACTICAL APPLICATION: The present analytical method could be used for multiresidue determination of antibiotics in ready-to-eat duck eggs, and dietary risk assessments of risky antibiotics provided a support for the work of regulatory bodies to conduct surveillance programs regarding food safety evaluation of ready-to-eat foods.
Collapse
Affiliation(s)
- Xiaofeng Ji
- Institute of Agro-product Safety and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; National Reference Laboratory for Agricultural Testing (Pesticide residues); Agricultural Ministry Key Laboratory for Pesticide Residue Detection; Zhejiang Province Key Laboratory for Food Safety, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| | - Yan Xu
- Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310021, China
| | - Jianmei Wang
- Institute of Agro-product Safety and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; National Reference Laboratory for Agricultural Testing (Pesticide residues); Agricultural Ministry Key Laboratory for Pesticide Residue Detection; Zhejiang Province Key Laboratory for Food Safety, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| | - Wentao Lyu
- Institute of Agro-product Safety and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; National Reference Laboratory for Agricultural Testing (Pesticide residues); Agricultural Ministry Key Laboratory for Pesticide Residue Detection; Zhejiang Province Key Laboratory for Food Safety, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| | - Rui Li
- Institute of Agro-product Safety and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; National Reference Laboratory for Agricultural Testing (Pesticide residues); Agricultural Ministry Key Laboratory for Pesticide Residue Detection; Zhejiang Province Key Laboratory for Food Safety, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| | - Simin Tan
- Institute of Agro-product Safety and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; National Reference Laboratory for Agricultural Testing (Pesticide residues); Agricultural Ministry Key Laboratory for Pesticide Residue Detection; Zhejiang Province Key Laboratory for Food Safety, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| | - Yingping Xiao
- Institute of Agro-product Safety and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; National Reference Laboratory for Agricultural Testing (Pesticide residues); Agricultural Ministry Key Laboratory for Pesticide Residue Detection; Zhejiang Province Key Laboratory for Food Safety, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| | - Biao Tang
- Institute of Agro-product Safety and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; National Reference Laboratory for Agricultural Testing (Pesticide residues); Agricultural Ministry Key Laboratory for Pesticide Residue Detection; Zhejiang Province Key Laboratory for Food Safety, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| | - Hua Yang
- Institute of Agro-product Safety and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; National Reference Laboratory for Agricultural Testing (Pesticide residues); Agricultural Ministry Key Laboratory for Pesticide Residue Detection; Zhejiang Province Key Laboratory for Food Safety, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| | - Mingrong Qian
- Institute of Agro-product Safety and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; National Reference Laboratory for Agricultural Testing (Pesticide residues); Agricultural Ministry Key Laboratory for Pesticide Residue Detection; Zhejiang Province Key Laboratory for Food Safety, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| |
Collapse
|
26
|
Chaturvedi P, Shukla P, Giri BS, Chowdhary P, Chandra R, Gupta P, Pandey A. Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants. ENVIRONMENTAL RESEARCH 2021; 194:110664. [PMID: 33400949 DOI: 10.1016/j.envres.2020.110664] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/02/2020] [Accepted: 12/20/2020] [Indexed: 05/24/2023]
Abstract
Antibiotic resistance is a global health emergency linked to unrestrained use of pharmaceutical and personal care products (PPCPs) as prophylactic agent and therapeutic purposes across various industries. Occurrence of pharmaceuticals are identified in ground water, surface water, soils, and wastewater treatment plants (WWTPs) in ng/L to μg/L concentration range. The prevalence of organic compounds including antimicrobial agents, hormones, antibiotics, preservatives, disinfectants, synthetic musks etc. in environment have posed serious health concerns. The aim of this review is to elucidate the major sources accountable for emergence of antibiotic resistance. For this purpose, variety of introductory sources and fate of PPCPs in aquatic environment including human and veterinary wastes, aquaculture and agriculture related wastes, and other anthropogenic activities have been discussed. Furthermore, genetic and enzymatic factors responsible for transfer and appearance of antibiotic resistance genes are presented. Ecotoxicity of PPCPs has been studied in environment in order to present risk imposed to human and ecological health. As per published literature reports, the removal of antibiotics and related traces being difficult, couples the possibility of emergence of antibiotic resistance and hence sustainability in global water resources. Therefore, research on environmental behavior and control strategies should be conducted along with assessing their chronic toxicity to identify potential human and ecological risks.
Collapse
Affiliation(s)
- Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur, 492010, Chhattisgarh, India.
| | - Parul Shukla
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Balendu Shekher Giri
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Pankaj Chowdhary
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ram Chandra
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur, 492010, Chhattisgarh, India.
| | - Ashok Pandey
- Centre for Innovation and Transnational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, Uttar Pradesh, India
| |
Collapse
|
27
|
Association between Phthalate Exposure and Frailty among Community-Dwelling Older Adults: A Repeated Panel Data Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041985. [PMID: 33670787 PMCID: PMC7922338 DOI: 10.3390/ijerph18041985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
Only a few studies have examined the impacts of environmental exposure on frailty. This study investigated the association between phthalates and frailty among community-dwelling older adults. The Korean Elderly Environmental Panel II (KEEP II) study is a repeated panel data study of 800 community-dwelling older adults in South Korea. Frailty was measured with five items defined by Fried and colleagues. Environmental pollutants in the form of two types of metabolites for Di-ethylhexyl phthalate (DEHPs)-Mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and Mono (2-ethyl-5-oxohexyl) phthalate (MEOHP)-were obtained from urine specimens. Analyses were performed using repeated linear mixed models. The concentration levels of both MEOHP and MEHHP in urine were significantly higher in the pre-frail or frail group than its counterparts. While adjusting for covariates, MEOHP level was positively associated with the likelihood of being pre-frail or frail in both males and females; the concentration level of MEHHP also had a positive impact on the likelihood of being pre-frail or frail in females. The DEHP metabolite concentrations were significantly lower among adults with daily fruit consumption in both males and females. DEHPs, measured by metabolite concentrations, may increase the risk of frailty among older men and women; further studies are necessary. The preventive effects of nutrition on DEHP risk should also be further investigated.
Collapse
|
28
|
Kyriakides D, Lazaris AC, Arsenoglou K, Emmanouil M, Kyriakides O, Kavantzas N, Panderi I. Dietary Exposure Assessment of Veterinary Antibiotics in Pork Meat on Children and Adolescents in Cyprus. Foods 2020; 9:foods9101479. [PMID: 33081220 PMCID: PMC7602826 DOI: 10.3390/foods9101479] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, huge amounts of antibiotics have been administered to farm animals, and as a result, residues of these antibiotics can accumulate in livestock products and, once consumed, may be transmitted to humans. Farm animals' antibiotic treatment may therefore present a risk for consumers health, especially for children and adolescents. In children, the immune system is not fully developed, and thus, they are more susceptible than adults to resistant bacteria. A dietary exposure assessment was conducted on veterinary antibiotics found in raw pork meat among children and adolescents in Cyprus, since pork is the most consumed red meat in Cypriot population. The study was based on the results of the occurrence of 45 residual antibiotics in raw pork meat samples in Cyprus between 2012 and 2017 in combination with data on the consumption of pork meat on children and adolescents taken from the latest demographic report in Cyprus. Estimated daily intake (EDI) values of veterinary antibiotics for children aged 6-9 years old, were higher compared to EDI values for adolescents aged 10-17 years old. The percentage ratio of the estimated daily intake to the acceptable daily intake for all the veterinary antibiotic residues was less than 5.6. The results indicate that antibiotic residues in pork meat of inland production are below the acceptable daily intake and are of low risk to human health related to the exposure of antibiotics. Nevertheless, continuous exposure to low levels of antibiotic residues in respect to age vulnerability should be of a great concern.
Collapse
Affiliation(s)
- Demetra Kyriakides
- Laboratory of Pathological Anatomy, Department of Clinical and Laboratory Medicine, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Avenue, Goudi, 11527 Athens, Greece; (A.C.L.); (N.K.)
- Veterinary Services, Ministry of Agriculture, Rural Development and Environment, 1417 Nicosia, Cyprus; (K.A.); (M.E.)
- Correspondence: (D.K.); (I.P.); Tel.: +30-210-727-4820 (I.P.)
| | - Andreas C. Lazaris
- Laboratory of Pathological Anatomy, Department of Clinical and Laboratory Medicine, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Avenue, Goudi, 11527 Athens, Greece; (A.C.L.); (N.K.)
| | - Konstantinos Arsenoglou
- Veterinary Services, Ministry of Agriculture, Rural Development and Environment, 1417 Nicosia, Cyprus; (K.A.); (M.E.)
| | - Maria Emmanouil
- Veterinary Services, Ministry of Agriculture, Rural Development and Environment, 1417 Nicosia, Cyprus; (K.A.); (M.E.)
| | | | - Nikolaos Kavantzas
- Laboratory of Pathological Anatomy, Department of Clinical and Laboratory Medicine, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Avenue, Goudi, 11527 Athens, Greece; (A.C.L.); (N.K.)
| | - Irene Panderi
- Laboratory of Pharmaceutical Analysis, Panepistimiopolis, Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
- Correspondence: (D.K.); (I.P.); Tel.: +30-210-727-4820 (I.P.)
| |
Collapse
|
29
|
Jacobson MH, Wu Y, Liu M, Attina TM, Naidu M, Karthikraj R, Kannan K, Warady BA, Furth S, Vento S, Trachtman H, Trasande L. Serially assessed bisphenol A and phthalate exposure and association with kidney function in children with chronic kidney disease in the US and Canada: A longitudinal cohort study. PLoS Med 2020; 17:e1003384. [PMID: 33052911 PMCID: PMC7556524 DOI: 10.1371/journal.pmed.1003384] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Exposure to environmental chemicals may be a modifiable risk factor for progression of chronic kidney disease (CKD). The purpose of this study was to examine the impact of serially assessed exposure to bisphenol A (BPA) and phthalates on measures of kidney function, tubular injury, and oxidative stress over time in a cohort of children with CKD. METHODS AND FINDINGS Samples were collected between 2005 and 2015 from 618 children and adolescents enrolled in the Chronic Kidney Disease in Children study, an observational cohort study of pediatric CKD patients from the US and Canada. Most study participants were male (63.8%) and white (58.3%), and participants had a median age of 11.0 years (interquartile range 7.6 to 14.6) at the baseline visit. In urine samples collected serially over an average of 3.0 years (standard deviation [SD] 1.6), concentrations of BPA, phthalic acid (PA), and phthalate metabolites were measured as well as biomarkers of tubular injury (kidney injury molecule-1 [KIM-1] and neutrophil gelatinase-associated lipocalin [NGAL]) and oxidative stress (8-hydroxy-2'-deoxyguanosine [8-OHdG] and F2-isoprostane). Clinical renal function measures included estimated glomerular filtration rate (eGFR), proteinuria, and blood pressure. Linear mixed models were fit to estimate the associations between urinary concentrations of 6 chemical exposure measures (i.e., BPA, PA, and 4 phthalate metabolite groups) and clinical renal outcomes and urinary concentrations of KIM-1, NGAL, 8-OHdG, and F2-isoprostane controlling for sex, age, race/ethnicity, glomerular status, birth weight, premature birth, angiotensin-converting enzyme inhibitor use, angiotensin receptor blocker use, BMI z-score for age and sex, and urinary creatinine. Urinary concentrations of BPA, PA, and phthalate metabolites were positively associated with urinary KIM-1, NGAL, 8-OHdG, and F2-isoprostane levels over time. For example, a 1-SD increase in ∑di-n-octyl phthalate metabolites was associated with increases in NGAL (β = 0.13 [95% CI: 0.05, 0.21], p = 0.001), KIM-1 (β = 0.30 [95% CI: 0.21, 0.40], p < 0.001), 8-OHdG (β = 0.10 [95% CI: 0.06, 0.13], p < 0.001), and F2-isoprostane (β = 0.13 [95% CI: 0.01, 0.25], p = 0.04) over time. BPA and phthalate metabolites were not associated with eGFR, proteinuria, or blood pressure, but PA was associated with lower eGFR over time. For a 1-SD increase in ln-transformed PA, there was an average decrease in eGFR of 0.38 ml/min/1.73 m2 (95% CI: -0.75, -0.01; p = 0.04). Limitations of this study included utilization of spot urine samples for exposure assessment of non-persistent compounds and lack of specific information on potential sources of exposure. CONCLUSIONS Although BPA and phthalate metabolites were not associated with clinical renal endpoints such as eGFR or proteinuria, there was a consistent pattern of increased tubular injury and oxidative stress over time, which have been shown to affect renal function in the long term. This raises concerns about the potential for clinically significant changes in renal function in relation to exposure to common environmental toxicants at current levels.
Collapse
Affiliation(s)
- Melanie H. Jacobson
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Langone Medical Center, New York, New York, United States of America
| | - Yinxiang Wu
- Department of Population Health, NYU Langone Medical Center, New York, New York, United States of America
| | - Mengling Liu
- Department of Population Health, NYU Langone Medical Center, New York, New York, United States of America
- Department of Environmental Medicine, NYU Langone Medical Center, New York, New York, United States of America
| | - Teresa M. Attina
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Langone Medical Center, New York, New York, United States of America
| | - Mrudula Naidu
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Langone Medical Center, New York, New York, United States of America
| | - Rajendiran Karthikraj
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York, United States of America
| | - Kurunthachalam Kannan
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Langone Medical Center, New York, New York, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York, United States of America
| | - Bradley A. Warady
- Division of Nephrology, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, Missouri, United States of America
| | - Susan Furth
- Division of Nephrology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Suzanne Vento
- Division of Nephrology, Department of Pediatrics, NYU Langone Medical Center, New York, New York, United States of America
| | - Howard Trachtman
- Division of Nephrology, Department of Pediatrics, NYU Langone Medical Center, New York, New York, United States of America
| | - Leonardo Trasande
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Langone Medical Center, New York, New York, United States of America
- Department of Population Health, NYU Langone Medical Center, New York, New York, United States of America
- Department of Environmental Medicine, NYU Langone Medical Center, New York, New York, United States of America
- Wagner Graduate School of Public Service, New York University, New York, New York, United States of America
- School of Global Public Health, New York University, New York, New York, United States of America
| |
Collapse
|
30
|
Jo A, Kim S, Ji K, Kho Y, Choi K. Influence of Vegetarian Dietary Intervention on Urinary Paraben Concentrations: A Pilot Study with 'Temple Stay' Participants. TOXICS 2020; 8:toxics8010003. [PMID: 31963390 PMCID: PMC7151732 DOI: 10.3390/toxics8010003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/04/2022]
Abstract
Personal care products and cosmetics have been identified as major sources of paraben exposure among humans. However, the contribution of dietary factors has not been well understood. We recruited temple stay participants (n = 25) who followed a strict Buddhist vegetarian diet during a five-day period, and assessed the influence of this lifestyle change, employing their urine samples collected before and after the temple stay. Before the temple stay, methylparaben (MeP) was detected at the highest levels, followed by ethylparaben (EtP), propylparaben (PrP), butylparaben (BuP), and benzophenones (BPs) in the urine samples. Following the temple stay, the urinary EtP concentrations remarkably increased from 14.0 to 105 μg/L, and were around two orders of magnitude higher than those reported from other countries. Dietary factors associated with the temple diet may partly explain the increase, because EtP is allowed in Korea for seasoning and condiments, which are frequently added in vegetarian diets. Following the temple stay, however, MeP, PrP, and BPs did not show significant decreasing trends. In contrast, BuP levels decreased significantly, especially in male urine samples, that is, from 3.60 to 1.03 μ/L, suggesting a reduced use of certain personal care products during the temple stay. Our observations outline the potential importance of dietary factors on EtP exposure, and might help explain its high exposure levels among Korean population.
Collapse
Affiliation(s)
- Areum Jo
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, Korea; (A.J.); (S.K.)
- Accident Prevention and Assessment Division II, National Institute of Chemical Safety, Daejeon 34111, Korea
| | - Sunmi Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, Korea; (A.J.); (S.K.)
- Institute of Health and Environment, Seoul National University, Seoul 08826, Korea
| | - Kyunghee Ji
- Department of Occupational and Environmental Health, Yongin University, Yongin 17092, Korea;
| | - Younglim Kho
- School of Human and Environmental Sciences, Eulji University, Seongnam 13135, Korea;
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, Korea; (A.J.); (S.K.)
- Correspondence: ; Tel.: +82-2-880-2738
| |
Collapse
|
31
|
Zhu Y, Liu K, Zhang J, Liu X, Yang L, Wei R, Wang S, Zhang D, Xie S, Tao F. Antibiotic body burden of elderly Chinese population and health risk assessment: A human biomonitoring-based study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113311. [PMID: 31813705 DOI: 10.1016/j.envpol.2019.113311] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Recently, the widespread use of antibiotic has raised concerns about the potential health risks associated with their microbiological effect. In the present study, we investigated 990 elderly individuals (age ≥ 60 years) from the Cohort of Elderly Health and Environment Controllable Factors in West Anhui, China. A total of 45 representative antibiotics and two antibiotic metabolites were monitored in urine samples through liquid chromatography electrospray tandem mass spectrometry. The results revealed that 34 antibiotics were detected in 93.0% of all urine samples and the detection frequencies of each antibiotic varied between 0.2% and 35.5%. The overall detection frequencies of seven human antibiotics (HAs), 10 veterinary antibiotics (VAs), three antibiotics preferred as HAs (PHAs), and 14 preferred as VAs (PVAs) in urines were 27.4%, 62.9%, 30.9% and 72.7%, respectively. Notably, the samples with concentrations of six PVAs (sulfamethoxazole, trimethoprim, oxytetracycline, danofloxacin, norfloxacin and lincomycin) above 5000 ng/mL accounted for 1.7% of all urine samples. Additionally, in 62.7% of urine samples, the total antibiotic concentration was in the range of the limits of detection to 20.0 ng/mL. Furthermore, the elderly individuals with the sum of estimated daily intakes of VAs and PVAs more than 1 μg/kg/day accounted for 15.2% of all participants, and a health risk related to change in gut microbiota under antibiotic stimulation was expected in 6.7% of the elderly individuals. Especially, ciprofloxacin was the foremost contributor to the health risk, and its hazard quotient value was more than one in 3.5% of all subjects. Taken together, the elderly Chinese people were extensively exposed to VAs, and some elderly individuals may have a health risk associated with dysbiosis of the gut microbiota.
Collapse
Affiliation(s)
- Yitian Zhu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jingjing Zhang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinji Liu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Linsheng Yang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Rong Wei
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Sufang Wang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongmei Zhang
- School of Health Management, Anhui Medical University, Hefei, 230032, China
| | - Shaoyu Xie
- Lu'an Center of Disease Control and Prevention, Lu'an, Anhui, 237000, PR China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
32
|
Hammel SC, Levasseur JL, Hoffman K, Phillips AL, Lorenzo AM, Calafat AM, Webster TF, Stapleton HM. Children's exposure to phthalates and non-phthalate plasticizers in the home: The TESIE study. ENVIRONMENT INTERNATIONAL 2019; 132:105061. [PMID: 31400598 PMCID: PMC7511177 DOI: 10.1016/j.envint.2019.105061] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Phthalates and their potential replacements, including non-phthalate plasticizers, are ubiquitous in home environments due to their presence in building materials, plastics, and personal care products. As a result, exposure to these compounds is universal. However, the primary pathways of exposure and understanding which products in the home are associated most strongly with particular exposures are unclear. OBJECTIVES We sought to investigate the relationships between phthalates and non-phthalate plasticizers in paired samples of house dust, hand wipes, and their corresponding metabolites in children's urine samples (n = 180). In addition, we compared product use or presence of materials in the household against all compounds to investigate the relationship between product use or presence and exposure. METHODS Children aged 3-6 years provided hand wipe and urine samples. Questionnaires were completed by mothers or legal guardians to capture product use and housing characteristics, and house dust samples were collected from the main living area during home visits. RESULTS Phthalates and non-phthalate replacements were detected frequently in the environmental matrices. All urine samples had at least 13 of 19 phthalate or non-phthalate replacement metabolites present. Hand wipe mass and dust concentrations of diisobutyl phthalate, benzyl butyl phthalate (BBP), bis(2-ethylhexyl) phthalate, and di-isononyl phthalate were significantly associated with their corresponding urinary metabolites (rs = 0.18-0.56, p < 0.05). Bis(2-ethylhexyl) terephthalate (DEHTP) in dust was also significantly and positively correlated with its urinary metabolites (rs = 0.33, p < 0.001). Vinyl flooring was most significantly and positively associated with particular phthalate exposures (indicated by concentrations in environmental matrices and urinary biomarkers). In particular, children who lived in homes with 100% vinyl flooring had urinary concentrations of monobenzyl phthalate, a BBP metabolite, that were 15 times higher than those of children who lived in homes with no vinyl flooring (p < 0.0001). Levels of BBP in hand wipes and dust were 3.5 and 4.5 times higher, respectively, in those homes with 100% vinyl flooring (p < 0.0001 for both). CONCLUSIONS This paper summarizes one of the most comprehensive phthalate and non-phthalate plasticizer investigation of potential residential exposure sources conducted in North America to date. The data presented herein provide evidence that dermal contact and hand-to-mouth behaviors are important sources of exposure to phthalates and non-phthalate plasticizers. In addition, the percentage of vinyl flooring is an important consideration when examining residential exposures to these compounds.
Collapse
Affiliation(s)
- Stephanie C Hammel
- Nicholas School of Environment, Duke University, Durham, NC, United States.
| | | | - Kate Hoffman
- Nicholas School of Environment, Duke University, Durham, NC, United States.
| | - Allison L Phillips
- Nicholas School of Environment, Duke University, Durham, NC, United States.
| | - Amelia M Lorenzo
- Nicholas School of Environment, Duke University, Durham, NC, United States.
| | - Antonia M Calafat
- Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | - Thomas F Webster
- Boston University School of Public Health, Boston University, Boston, MA, United States.
| | - Heather M Stapleton
- Nicholas School of Environment, Duke University, Durham, NC, United States; Children's Health Discovery Initiative, Duke School of Medicine, NC, United States.
| |
Collapse
|
33
|
Mondal S, Ghosh S, Bhattacharya S, Mukherjee S. Chronic dietary administration of lower levels of diethyl phthalate induces murine testicular germ cell inflammation and sperm pathologies: Involvement of oxidative stress. CHEMOSPHERE 2019; 229:443-451. [PMID: 31085347 DOI: 10.1016/j.chemosphere.2019.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
The wide occurrence of male infertility is a matter of grave concern. One of the major causes being exposure to endocrine disrupting chemicals (EDCs) many of which are known reproductive toxicants but the molecular mechanisms of action remain much unexplored. Diethyl phthalate (DEP) is ubiquitous in the environment due to its extensive use as plasticizer in myriad consumer products. In the present study, we sought to find out whether chronic DEP exposure affects reproductive function in sexually mature adult male mice. For this, 8-week old Swiss albino mice were treated with DEP (1 mg and 10 mg kg-1 body weight day-1) in diet for three months, mirroring the relevant doses of human exposure, and various analyses were carried out in the testicular germ cells and epididymal spermatozoa. We found that altered testicular histoarchitecture was accompanied with disturbed prooxidant: antioxidant balance in the germ cells. Involvement of Nrf2-HO-1 pathway was crucial in this altered cellular redox state. Besides, NFκB mediated inflammatory response was triggered in the germ cells leading to enhanced levels of proinflammatory cytokines. DEP adversely affected sperm count, motility, viability and morphology. Numerous structural anomalies were found in DEP treated mice spermatozoa reflecting decline in sperm function. Our results revealed overactivation of PARP-1 and subsequent cleavage in spermatozoa with induction of apoptosis as a key mechanism in DEP mediated sperm pathology. Given the indiscriminate use of plasticizers and long term low level human exposure, the present study highlights the undesirable male reproductive outcomes following chronic DEP exposure.
Collapse
Affiliation(s)
- Shirsha Mondal
- Department of Zoology, Visva-Bharati (A Central University), Santiniketan, 731 235, West Bengal, India
| | - Songita Ghosh
- Department of Zoology, Visva-Bharati (A Central University), Santiniketan, 731 235, West Bengal, India
| | - Samir Bhattacharya
- Department of Zoology, Visva-Bharati (A Central University), Santiniketan, 731 235, West Bengal, India
| | - Sutapa Mukherjee
- Department of Zoology, Visva-Bharati (A Central University), Santiniketan, 731 235, West Bengal, India.
| |
Collapse
|
34
|
A Review of Biomonitoring of Phthalate Exposures. TOXICS 2019; 7:toxics7020021. [PMID: 30959800 PMCID: PMC6630674 DOI: 10.3390/toxics7020021] [Citation(s) in RCA: 456] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 01/19/2023]
Abstract
Phthalates (diesters of phthalic acid) are widely used as plasticizers and additives in many consumer products. Laboratory animal studies have reported the endocrine-disrupting and reproductive effects of phthalates, and human exposure to this class of chemicals is a concern. Several phthalates have been recognized as substances of high concern. Human exposure to phthalates occurs mainly via dietary sources, dermal absorption, and air inhalation. Phthalates are excreted as conjugated monoesters in urine, and some phthalates, such as di-2-ethylhexyl phthalate (DEHP), undergo secondary metabolism, including oxidative transformation, prior to urinary excretion. The occurrence of phthalates and their metabolites in urine, serum, breast milk, and semen has been widely reported. Urine has been the preferred matrix in human biomonitoring studies, and concentrations on the order of several tens to hundreds of nanograms per milliliter have been reported for several phthalate metabolites. Metabolites of diethyl phthalate (DEP), dibutyl- (DBP) and diisobutyl- (DiBP) phthalates, and DEHP were the most abundant compounds measured in urine. Temporal trends in phthalate exposures varied among countries. In the United States (US), DEHP exposure has declined since 2005, whereas DiNP exposure has increased. In China, DEHP exposure has increased since 2000. For many phthalates, exposures in children are higher than those in adults. Human epidemiological studies have shown a significant association between phthalate exposures and adverse reproductive outcomes in women and men, type II diabetes and insulin resistance, overweight/obesity, allergy, and asthma. This review compiles biomonitoring studies of phthalates and exposure doses to assess health risks from phthalate exposures in populations across the globe.
Collapse
|
35
|
Zarean M, Keikha M, Feizi A, Kazemitabaee M, Kelishadi R. The role of exposure to phthalates in variations of anogenital distance: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:172-179. [PMID: 30677661 DOI: 10.1016/j.envpol.2019.01.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/29/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Environmental chemicals such as phthalate esters may have adverse effects on anogenital distance (AGD), but the evidence in both genders has not been reviewed systematically. The objective of the present study is to conduct a systematic review and meta-analysis of studies that analyzed the relationship between exposure to phthalates and AGD. English papers published up to March 2018 were searched in PubMed, Scopus, Clarivate-Web of Science, and Google scholar. We applied fixed-effects models to calculate pooled beta coefficient [β]. In the case of heterogeneity, random-effects models were used. Using the comprehensive search strategies, 313 papers were identified and after screening, 10 of them were included in this study. In primary analyses, we found that exposure to phthalates was not associated with short AGD (β = -0.11; 95% CI, -0.27, 0.06; I2 = 0%). However, results of subgroup analyses indicated that in boys, the sum of di-2-ethylhexyl phthalate (∑DEHP) metabolites had significant association with the risk of shortened anopenile distance (AGDAP) (β = -0.915, 95% CI: 1.629, -0.2) and anoscrotal distance (AGDAS) (β = -0.857, 95% CI: 1.455, -0.26). In addition, urinary monobutyl phthalate (MBP), monoethyl phthalate (MEP), and monoisobutyl phthalate (MiBP) were associated with short AGDAP. We also observed significant association between monobenzylphthalate (MBzP) and anofourchette distance (AGDAF) in girls. Our study provided findings on significant association of exposure to ∑DEHP metabolites, MBP, MEP, and MiBP with shortened AGDAP in boys. The mechanisms of phthalates effect on AGD may involve receptors and enzymes involved in steroidgenesis, negative influence on Leydig cells, cell proliferation, gonocyte cell numbers, and testosterone production.
Collapse
Affiliation(s)
- Maryam Zarean
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran; Environmental Health Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Keikha
- Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Roya Kelishadi
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
36
|
Zhao Y, Zhou Y, Zhu Q, Xia B, Ma W, Xiao X, Shi H, Zhang Y. Determination of antibiotic concentration in meconium and its association with fetal growth and development. ENVIRONMENT INTERNATIONAL 2019; 123:70-78. [PMID: 30500730 DOI: 10.1016/j.envint.2018.11.053] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The association between antibiotic use during pregnancy and neonatal birth outcomes has received considerable attention. Most of the previous assessment of antibiotic exposure during pregnancy relied on questionnaires and clinical prescriptions, and very few studies examined pregnancy exposure to antibiotics using human biomonitoring data. OBJECTIVE To explore the association between the cumulative exposure of antibiotics during the whole pregnancy and neonatal birth measurements using biomonitoring data of antibiotics in meconium. METHODS Three hundred and sixty nine pregnant women within the Maternal Psychological and Environmental Assessments of Kids Cohort Study were randomly selected into this study. Eighteen common antibiotics of six categories (six β‑lactams, three tetracyclines, four sulfonamides, one phenicols, one lincosamides and three fluoroquinolones) were selected as the target antibiotics in meconium. The measurement was conducted by ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry platform. Neonatal birth measurements were obtained from the medical records. Multiple linear regression models were used to examine the associations of antibiotic exposure with neonatal birth outcome (birth weight, birth length) and placental growth indicators (placental surface area, placental weight). Logistic regressions were used to evaluate associations with small for gestational age (SGA) and large for gestational age (LGA). RESULTS Twelve of the eighteen antibiotics were found in 62.1% of the meconium, with detection rates ranging from 0.3% to 43.9%. The three antibiotics with the highest detection rates were chlortetracycline (43.9%), penicillin (16.5%) and chloramphenicol (10.8%), respectively. The highest antibiotic concentration among detected antibiotics was penicillin (24,243.15 μg/kg). The concentration of penicillin was positively associated with the birth weight (β: 0.025; 95% CIs: 0.003-0.047). A significant positive association was also observed between the concentration of chlortetracycline and the placental surface area (β: 2.559; 95% CIs: 0.296-4.822). These associations were sex related and mainly observed in female newborns. Exposure to penicillin was also found to be associated with increased risk of LGA, which was consistent with changes in birth weight. CONCLUSIONS Pregnancy exposure to certain antibiotics was associated with altered fetal growth and development, which may affect the normal growth trajectory of infants and children in later life.
Collapse
Affiliation(s)
- Yingya Zhao
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuhan Zhou
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Qingyang Zhu
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Bing Xia
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wenjuan Ma
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xirong Xiao
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
37
|
Marie C, Lémery D, Vendittelli F, Sauvant-Rochat MP. Phthalate Exposure in Pregnant Women: Risk Perception and Preventive Advice of Perinatal Health Professionals. Matern Child Health J 2018; 23:335-345. [DOI: 10.1007/s10995-018-2668-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
38
|
Wang W, Leung AOW, Chu LH, Wong MH. Phthalates contamination in China: Status, trends and human exposure-with an emphasis on oral intake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:771-782. [PMID: 29625301 DOI: 10.1016/j.envpol.2018.02.088] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
Despite the extensive production and use of phthalates in Asian countries, especially China, limited information is available about the current situation of human exposure in this region, and thus identification of further research needs is warranted. This review summarized the current trends of phthalates related to industrial production and human exposure by conducting a comprehensive assessment of phthalates contaminations in air, indoor dust, personal care products (PCPs), foodstuff and internal exposure in China, with comparisons with other countries. The concentrations of phthalates in indoor dust and PCPs in China were moderate, while concentrations in foods and air were among the highest worldwide. Dietary intake of phthalates varied with location, with hotspots in the southern and eastern coastal regions of China which correlated with the extensive industrial production recorded in these regions. This review firstly revealed the significantly differentiated food-type contribution profiles for phthalates in China and in other countries, which were affected by dietary habits and food contamination. The internal exposure for the Chinese population was found to be moderate, however there is a paucity of data available. Knowledge gaps identified concerning phthalates in China include trends in phthalates exposure, sources (e.g. PCPs, pharmaceuticals and medical treatment), and internal exposure derived from biomonitoring, warranting phthalates a research priority.
Collapse
Affiliation(s)
- Wei Wang
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China; Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY, 12201-0509, United States
| | - Anna Oi Wah Leung
- Department of Biology, and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Lam Hang Chu
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
39
|
Obesity or diet? Levels and determinants of phthalate body burden – A case study on Portuguese children. Int J Hyg Environ Health 2018; 221:519-530. [DOI: 10.1016/j.ijheh.2018.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023]
|
40
|
|
41
|
Duan Y, Wang L, Han L, Wang B, Sun H, Chen L, Zhu L, Luo Y. Exposure to phthalates in patients with diabetes and its association with oxidative stress, adiponectin, and inflammatory cytokines. ENVIRONMENT INTERNATIONAL 2017; 109:53-63. [PMID: 28938100 DOI: 10.1016/j.envint.2017.09.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Epidemiologic studies have revealed higher concentrations of the metabolites of phthalic acid esters (mPAEs) in patients with type 2 diabetes. On the other hand, oxidative stress, adiponectin, and inflammatory cytokines play important roles in the pathogenesis of diabetes and its complications. However, little information is known about the association between exposure to PAEs and these physiological parameters. Hence, paired urine and blood samples were collected from a total of 329 volunteers, and 11 main mPAEs and malondialdehyde (MDA), as a biomarker of oxidative stress, were measured in the urine samples. Serum adiponectin and tumor necrosis factor-α (TNF-α), a biomarker of inflammation, were also measured. Multivariable linear regression was used to assess the association between urinary mPAEs and these physiological parameters in the total subjects and subjects stratified by age, sex, and body mass index (BMI) to elucidate their possible interactions. All 11 mPAEs were detected in the urine with detection rates of 42.9%-100% and geometric means of 0.30-54.52ng/mL (0.44-79.93μg/g creatinine). The mPAEs were all positively associated with MDA levels. There were significant positive associations between monomethyl phthalate (mMP) and TNF-α, and inverse associations between mMP and adiponectin levels. In the stratified analysis, there were age-, sex-, and BMI-specific differences for these associations. The positive associations between mPAEs and MDA were insignificant in some subgroups, especially in the larger age group. However, in the larger BMI group, summed metabolites of di-(2-ethylhexyl) phthalate (∑DEHP) and mono(2-ethylhexyl) phthalate were positively associated with TNF-α, and the concentrations of ∑DEHP were negatively associated with adiponectin. Our findings suggested that PAE exposure is associated with oxidative stress, adiponectin, and inflammatory cytokines in diabetic patients; further studies on toxicology and a comparison with general population are needed.
Collapse
Affiliation(s)
- Yishuang Duan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Liping Han
- Tianjin Medical University Metabolic Diseases Hospital, Tianjin, China.
| | - Bin Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China.
| | - Liming Chen
- Tianjin Medical University Metabolic Diseases Hospital, Tianjin, China
| | - Lingyan Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
42
|
Li N, Ho KWK, Ying GG, Deng WJ. Veterinary antibiotics in food, drinking water, and the urine of preschool children in Hong Kong. ENVIRONMENT INTERNATIONAL 2017; 108:246-252. [PMID: 28889029 DOI: 10.1016/j.envint.2017.08.014] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/05/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Due to the harmful effects of veterinary antibiotics (VAs) residues in food on children's health, urine samples from 31 preschool and primary school children were analyzed for 13 common VAs. Samples of raw and cooked pork, chicken, fish, milk and drinking water from the children's living areas were also analyzed for residual VAs. Urinalysis revealed one to four target antibiotics in 77.4% of the sample group, with concentrations as high as 0.36ng/mL. Norfloxacin and penicillin had the highest detection rates (48.4% and 35.5%, respectively), with median concentrations of 0.037 and 0.13ng/mL, respectively. The VA burden of children in HK was lower than that in Shanghai. Enrofloxacin, penicillin, and erythromycin were the most detected VAs in raw and cooked food. Only oxytetracycline was detected in terminal tap water, and none were detected in milk. Tetracycline and doxycycline hyclate were detected in organic eggs (up to 7.1ng/g) and regular eggs (up to 6.6ng/g), which were common in children's diets. Traditional Chinese cooking processes did not completely eliminate VAs, and the concentrations of some VAs increased, especially after frying and roasting. The estimated daily intake (EDI) results show that the contribution of dietary intake and that based on the urine concentrations of VAs were far below the acceptable daily intake (ADI). The EDIs from urine were significantly lower than those based on cooked foods. The highest level of achievement percentage (LAP) based on dietary consumption and urine concentrations were 39.7% and 1.79%, respectively, and thus current levels of exposure to VAs would not seem to pose a risk to children's health. However, harmful effects of residual VAs during developmental periods may occur with exposure to much lower doses than those considered harmful to adults, and further investigation of these emerging pollutants is urgently encouraged.
Collapse
Affiliation(s)
- Na Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong Special Administrative Region
| | - Keith W K Ho
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong Special Administrative Region
| | - Guang-Guo Ying
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Wen-Jing Deng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong Special Administrative Region.
| |
Collapse
|
43
|
|
44
|
Gray JM, Rasanayagam S, Engel C, Rizzo J. State of the evidence 2017: an update on the connection between breast cancer and the environment. Environ Health 2017; 16:94. [PMID: 28865460 PMCID: PMC5581466 DOI: 10.1186/s12940-017-0287-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/17/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND In this review, we examine the continually expanding and increasingly compelling data linking radiation and various chemicals in our environment to the current high incidence of breast cancer. Singly and in combination, these toxicants may have contributed significantly to the increasing rates of breast cancer observed over the past several decades. Exposures early in development from gestation through adolescence and early adulthood are particularly of concern as they re-shape the program of genetic, epigenetic and physiological processes in the developing mammary system, leading to an increased risk for developing breast cancer. In the 8 years since we last published a comprehensive review of the relevant literature, hundreds of new papers have appeared supporting this link, and in this update, the evidence on this topic is more extensive and of better quality than that previously available. CONCLUSION Increasing evidence from epidemiological studies, as well as a better understanding of mechanisms linking toxicants with development of breast cancer, all reinforce the conclusion that exposures to these substances - many of which are found in common, everyday products and byproducts - may lead to increased risk of developing breast cancer. Moving forward, attention to methodological limitations, especially in relevant epidemiological and animal models, will need to be addressed to allow clearer and more direct connections to be evaluated.
Collapse
Affiliation(s)
- Janet M. Gray
- Department of Psychology and Program in Science, Technology, and Society, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604-0246 USA
| | - Sharima Rasanayagam
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| | - Connie Engel
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| | - Jeanne Rizzo
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| |
Collapse
|
45
|
Pell T, Eliot M, Chen A, Lanphear BP, Yolton K, Sathyanarayana S, Braun JM. Parental Concern about Environmental Chemical Exposures and Children's Urinary Concentrations of Phthalates and Phenols. J Pediatr 2017; 186:138-144.e3. [PMID: 28476460 PMCID: PMC5484741 DOI: 10.1016/j.jpeds.2017.03.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/16/2017] [Accepted: 03/31/2017] [Indexed: 02/04/2023]
Abstract
OBJECTIVES To examine whether parents' concerns about environmental chemical exposures were associated with urinary phthalate and phenol concentrations in their school-age children. STUDY DESIGN In a prospective cohort of 218 mother-child pairs from Cincinnati, Ohio (2010-2014), we measured 11 phthalate metabolites and 5 phenols in urine samples when children were age 8 years and used questionnaire data from caregivers. We estimated the covariate-adjusted percent difference in phthalates and phenols among children of parents who expressed concern about environmental chemical exposures compared with children whose parents did not. RESULTS Concentrations of 4 phthalates, bisphenol S, and bisphenol A were lower among children whose parents expressed concern about environmental chemicals (n = 122) compared with those who did not (n = 96). Di-2-ethylhexyl phthalate metabolites, bisphenol S, and bisphenol A concentrations were 23% (95% CI -38, -5), 37% (95% CI -49, -21), and 13% (95% CI -26, 3) lower, respectively, among children whose parents expressed concern compared with those whose parents did not. Triclosan concentrations were 35% greater (95% CI -2, 87) among children whose parents expressed concern compared with children whose parents did not. CONCLUSIONS Parental concern about environmental chemicals was associated with lower childhood urine concentrations of several phthalates and phenols; unexpectedly, parental concern was associated with greater triclosan concentrations. These results suggest that parental concern may be an important factor in mitigating children's phthalate and phenol exposures.
Collapse
Affiliation(s)
- Tripler Pell
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Melissa Eliot
- Department of Epidemiology, Brown University School of Public Health, Providence, RI
| | - Aimin Chen
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH
| | - Bruce P Lanphear
- Faculty of Health and Sciences, Simon Fraser University, Burnaby, BC, Canada; Child and Family Research Institute, BC Children's and Women's Hospital, Vancouver, BC, Canada
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | | | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI.
| |
Collapse
|
46
|
Lee KM, Kho Y, Kim PG, Park SH, Lee JH. Urinary levels of phthalate metabolites and associations with demographic characteristics in Korean adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14669-14681. [PMID: 28455571 DOI: 10.1007/s11356-017-9068-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
The objective of this study is to assess human exposure to phthalates and its associations with demographic characteristics of the subjects in the Korean National Human Biomonitoring Survey. The subjects aged between 18 and 69 were selected through nationwide stratified sampling. A total of 1874 urine samples were collected and stored at -20 °C until measurement for ten selected metabolites of phthalates (MnBP, MiBP, MBzP, MCHP, MnOP, MEHP, MEOHP, MEHHP, MiNP, and MiDP) using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The difference in the level of urinary phthalate metabolites by the characteristics of the subjects was tested for statistical significance using SAS Surveyreg procedure. The coefficients and standard errors from multiple linear regressions were exponentiated to estimate the adjusted proportional change (APC) and 95% CIs compared with a referent level. The proportion of data above LOQ was less than 20% for MCHP, MnOP, MiNP, and MiDP. Geometric means of creatinine-adjusted concentrations (unit: μg/g creatinine) of six other phthalate metabolites among Korean adults were 41.7 (95% CI 39.6-43.9) for MnBP, 17.1 (95% CI 16.1-18.1) for MiBP, 15.7 (95% CI 14.4-17.1) for MBzP, 8.65 (95% CI 8.10-9.22) for MEHP, 17.5 (95% CI 16.8-18.3) for MEOHP, and 38.1 (95% CI 36.2-40.2) for MEHHP. Urinary level of phthalates tended to be higher among subjects with older age, females, and those with vigorous daily physical activity and tended to be lower among drinkers and those with higher income. Our results suggest that the level of phthalate exposure is significant among Korean adults and thus warrants further studies to identify major source and route of exposure to phthalates.
Collapse
Affiliation(s)
- Kyoung-Mu Lee
- Department of Environmental Health, Korea National Open University, Daehak-Ro 86, Chongno-Gu, Seoul, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Sungnam, Gyeonggi-Do, Republic of Korea.
| | - Pan-Gyi Kim
- Department of Occupational and Environmental Health, Yongin University, Yongin, Gyeonggi-Do, Republic of Korea
| | - Seok-Hwan Park
- Department of Environmental Engineering, Seowon University, Cheongju, Chungcheongnam-Do, Republic of Korea
| | - Jin-Heon Lee
- Department of Environmental Education, Kongju National University, Gongju, Chungcheongnam-Do, Republic of Korea.
| |
Collapse
|
47
|
Albar HMSA, Ali N, Shahzad K, Ismail IMI, Rashid MI, Wang W, Ali LN, Eqani SAMAS. Phthalate esters in settled dust of different indoor microenvironments; source of non-dietary human exposure. Microchem J 2017. [DOI: 10.1016/j.microc.2017.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Dong R, Zhou T, Zhao S, Zhang H, Zhang M, Chen J, Wang M, Wu M, Li S, Chen B. Food consumption survey of Shanghai adults in 2012 and its associations with phthalate metabolites in urine. ENVIRONMENT INTERNATIONAL 2017; 101:80-88. [PMID: 28117142 DOI: 10.1016/j.envint.2017.01.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Diet is considered to be a significant exposure pathway for phthalates. In this study, we assessed the associations between food consumption and urinary concentrations of phthalate metabolites among Shanghai adults. METHODS A cross-sectional study involving 2418 participants was conducted in the fall of 2012. Recent food consumption was assessed by a 24-h dietary recall survey, and a Food Frequency Questionnaire (FFQ) characterized long-term dietary patterns. Urinary metabolites of six phthalates were measured. RESULTS Both the 24-h recall survey and FFQ identified wheat, dairy, and fruits as being positively associated with the excretion of phthalate metabolites. The 24-h recall data also showed positive associations with processed meats and alcohol. We evaluated the impact of reported consumption of multiple food categories simultaneously (wheat, fruits, meats, etc.) on metabolite excretion and found that, as more food types were consumed, the number of metabolites excreted, as well as their concentrations, increased with high significance (p values<0.0001). We also evaluated the two survey instruments together. When both surveys reported consumption of fruits and dairy, the numbers of metabolites and their concentrations were significantly higher compared to when both surveys reported non-consumption, (p values<0.000001). Rice consumption was found to be negatively associated with phthalate excretion; frequent and high levels of rice consumption were found to be associated with lower excretion of metabolites. CONCLUSION Food consumption was associated with phthalate exposure in Shanghai adults. Both 24-h recall and FFQ identified significant associations between consumption of food types and phthalate exposure.
Collapse
Affiliation(s)
- Ruihua Dong
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Tong Zhou
- Shanghai Institutes of Preventive Medicine, China
| | - Shanzhen Zhao
- Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai, China
| | - Han Zhang
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Meiru Zhang
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Jingsi Chen
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Min Wang
- Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai, China
| | - Min Wu
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Shuguang Li
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Bo Chen
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Chang JW, Lee CC, Pan WH, Chou WC, Huang HB, Chiang HC, Huang PC. Estimated Daily Intake and Cumulative Risk Assessment of Phthalates in the General Taiwanese after the 2011 DEHP Food Scandal. Sci Rep 2017; 7:45009. [PMID: 28327585 PMCID: PMC5361203 DOI: 10.1038/srep45009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/20/2017] [Indexed: 01/06/2023] Open
Abstract
A food scandal occurred in Taiwan in 2011 because the DEHP (di-2-ethylhexyl phthalate) had been intentionally used in food products. We assessed the daily intakes (DIs) and cumulative risk of phthalates in Taiwan’s general population after the scandal. The DIs of 6 phthalates, including di-n-butyl phthalate (DnBP), di-iso-butyl phthalate (DiBP), and DEHP, were evaluated using urinary phthalate metabolites. Hazard quotients of phthalates classified as affecting the reproductive (HQrep) and hepatic (HQhep) systems were assessed using cumulative approach. The creatinine-based model showed that the highest DI values in children 7-to 12- years-old were for DEHP (males: median: 4.79 μg/kg bw/d; females: median: 2.62 μg/kg bw/d). The 95th percentile (P95) of HQrep values were all >1 in the 7- to 12-year-old and 18- to 40-year-old male groups. The P95 of HQhep values were all >1 in the 7- to 18- year-old male groups. Most of the HQrep was attributable to the HQs of DnBP and DiBP (53.9–84.7%), and DEHP contributed most to HQhep (83.1–98.6%), which reveals that DnBP, DiBP and DEHP were the main risk of phthalate exposure for Taiwanese. Taiwan’s general population is widely exposed to DnBP, DiBP and DEHP, especially for young children.
Collapse
Affiliation(s)
- Jung-Wei Chang
- Research Center for Environmental Trace Toxic Substances, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Chang Lee
- Research Center for Environmental Trace Toxic Substances, National Cheng Kung University, Tainan, Taiwan.,Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Harn Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Division of Preventive Medicine and Health Service Research, Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Wei-Chun Chou
- National Environmental Health Research Center, National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Han-Bin Huang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Hung-Che Chiang
- National Environmental Health Research Center, National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Po-Chin Huang
- National Environmental Health Research Center, National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Safety, Health and Environmental Engineering, National United University, Miaoli, Taiwan
| |
Collapse
|
50
|
Wang H, Wang N, Qian J, Hu L, Huang P, Su M, Yu X, Fu C, Jiang F, Zhao Q, Zhou Y, Lin H, He G, Chen Y, Jiang Q. Urinary Antibiotics of Pregnant Women in Eastern China and Cumulative Health Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3518-3525. [PMID: 28230987 DOI: 10.1021/acs.est.6b06474] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Exposure to antibiotics during pregnancy can pose a systematic effect on human health. A few biomonitoring studies have demonstrated an extensive exposure of children to antibiotics, but there is still a lack of data for pregnant women. To assess the exposure of pregnant women to antibiotics and potential health risk, we investigated 536 pregnant women aged 16-42 years from two geographically different study sites in Eastern China in 2015. We measured 21 antibiotics of five categories (seven fluoroquinolones, three phenicols, four tetracyclines, three macrolides, and four sulfonamides) in urine using the isotope dilution ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. The hazard index (HI) was calculated on the basis of estimated daily exposure dose and acceptable daily intakes. A total of 16 antibiotics were found in urine, with detection frequencies between 0.2 and 16.0%. Antibiotics were overall detected in 41.6% of urine, and two or more antibiotics were detected in 13.1% of urine. Ciprofloxacin, ofloxacin, and trimethoprim were most frequently detected in urine, with detection frequencies between 10 and 20%. The majority of the antibiotics tested had an estimated daily exposure dose less than 1 μg/kg/day, and 4.3% of pregnant women had a HI value of more than 1. These findings indicated that pregnant women were frequently exposed to antibiotics and some individuals were in the potential risk of adverse microbiological effects induced by antibiotics.
Collapse
Affiliation(s)
- Hexing Wang
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University , Shanghai 200032, People's Republic of China
| | - Na Wang
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University , Shanghai 200032, People's Republic of China
| | - Junhua Qian
- Haimen City Center for Disease Control and Prevention , Haimen, Jiangsu 226100, People's Republic of China
| | - Lingyun Hu
- Yuhuan County Maternal and Child Health Hospital , Yuhuan, Taizhou, Zhejiang 317600, People's Republic of China
| | - Peixin Huang
- Haimen City Center for Disease Control and Prevention , Haimen, Jiangsu 226100, People's Republic of China
| | - Meifang Su
- Yuhuan County Center for Disease Control and Prevention , Yuhuan, Taizhou, Zhejiang 317600, People's Republic of China
| | - Xin Yu
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University , Shanghai 200032, People's Republic of China
| | - Chaowei Fu
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University , Shanghai 200032, People's Republic of China
| | - Feng Jiang
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University , Shanghai 200032, People's Republic of China
| | - Qi Zhao
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University , Shanghai 200032, People's Republic of China
| | - Ying Zhou
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University , Shanghai 200032, People's Republic of China
| | - Haijiang Lin
- Taizhou City Center for Disease Control and Prevention , Taizhou, Zhejiang 318000, People's Republic of China
| | - Gengsheng He
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University , Shanghai 200032, People's Republic of China
| | - Yue Chen
- School of Epidemiology, Public Health and Preventive Medicine, Faculty of Medicine, University of Ottawa , Ottawa, Ontario K1H 8M5, Canada
| | - Qingwu Jiang
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University , Shanghai 200032, People's Republic of China
| |
Collapse
|