1
|
Jouanneau W, Boulinier T, Herzke D, Nikiforov VA, Gabrielsen GW, Chastel O. Legacy and emerging per- and polyfluoroalkyl substances in eggs of yellow-legged gulls from Southern France. MARINE POLLUTION BULLETIN 2025; 216:117941. [PMID: 40220546 DOI: 10.1016/j.marpolbul.2025.117941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
More than 70 years of industrial production of per- and polyfluoroalkyl substances (PFAS) have resulted in their ubiquitous presence in the environment on a global scale, although differences in sources, transport and fate lead to variability of occurrence in the environment. Gull eggs are excellent bioindicators of environmental pollution, especially for persistent organic pollutants such as PFAS, known to bioaccumulate in organisms and to be deposited in bird eggs by maternal transfer. Using yellow-legged gull (Larus michahellis) eggs, we investigated the occurrence of more than 30 PFAS, including the most common chemicals (i.e., legacy PFAS) as well as their alternatives (i.e., emerging PFAS) in the Bay of Marseille, the second largest city in France. Compared to eggs from other colonies along the Mediterranean coast, those from Marseille had PFAS concentrations ranging from slightly higher to up to four times lower, suggesting that this area cannot be specifically identified as a hotspot for these compounds. We also found several emerging PFAS including 8:2 and 10:2 FTS, 7:3 FTCA or PFECHS in all collected eggs. Although the scarcity in toxicity thresholds for seabirds, especially during embryogenesis, does not enable any precise statement about the risks faced by this population, this study contributes to the effort in documenting legacy PFAS contamination on Mediterranean coasts while providing valuable novel inputs on PFAS of emerging concern. Identifying exposure in free-ranging species also participate to determine the main target for toxicity testing in wildlife.
Collapse
Affiliation(s)
- William Jouanneau
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 17031 La Rochelle, France; Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway.
| | - Thierry Boulinier
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier, France
| | | | | | | | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 17031 La Rochelle, France
| |
Collapse
|
2
|
Lu R, Colomer-Vidal P, Muñoz-Arnanz J, García-Barcelona S, Zheng X, Mai B, González-Solís J, Jiménez B. A 20-year study reveal decrease in per- and polyfluoroalkyl substances (PFAS) in a pelagic seabird from the Western Mediterranean Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125025. [PMID: 39326827 DOI: 10.1016/j.envpol.2024.125025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Despite the first ban on perfluorooctane sulfonic acid (PFOS) in 2009, it remains unclear whether Europe, a key regulator, has effectively reduced per- and polyfluoroalkyl substances (PFAS) in the environment over the past 20 years. This study investigates the levels and temporal trends of 19 PFAS compounds in the livers of 62 Scopoli's shearwaters (Calonectris diomedea) collected from the Mediterranean basin during 2003-2022. Over the past two decades, PFAS concentrations showed an overall significant decrease of 77%. PFOS was the most frequently and predominantly detected chemical in livers, closely followed by perfluorotridecanoic acid (PFTrDA) and perfluoroundecanoic acid (PFUnDA). However, the contribution of PFTrDA (32.4%) surpassed that of PFOS (30.3%) in 2009-2014, which can be attributed to its increased use as a substitute following the regulation on PFOS in 2009. Perfluoroalkyl carboxylic acids (PFCAs), along with PFOS, showed a general decline over the study periods, with the largest decrease occurring after 2015, corresponding to the regulations on PFCAs. An odd-numbered, long-chain PFCAs accumulation trend was observed in samples. Principal component analysis showed a shift from PFOS to PFCAs in Scopoli's shearwater PFAS patterns over 20 years. Our results offer valuable insights into the environmental behavior of PFAS, the complex interactions between regulations and compounds and their transfer to the marine ecosystems. Despite widespread declines, their persistent detection underscores the need for enhanced international cooperation efforts to comprehensively mitigate PFAS emissions, including those from developing regions and unregulated sources.
Collapse
Affiliation(s)
- Ruifeng Lu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Pere Colomer-Vidal
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Juan Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | | | - Xiaobo Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jacob González-Solís
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
3
|
Fredriksson F, Kärrman A, Eriksson U, Yeung LWY. Occurrence and Fate of Fluoroalkyl Sulfonamide-Based Copolymers in Earthworms-Bioavailability, Transformation, and Potential Impact of Sludge Application. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18304-18312. [PMID: 39363531 PMCID: PMC11483768 DOI: 10.1021/acs.est.4c01844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
To date, considerable knowledge and data gaps regarding the occurrence, environmental levels, and fate of polymeric perfluoroalkyl and polyfluoroalkyl substances (PFAS) exist. In the present study availability, accumulation, and transformation of C4- and C8-fluoroalkylsulfonamide (FASA)-based copolymers were assessed in laboratory-grown earthworms (Eisenia fetida, triplicate of exposure tests and control). Further, a field study on earthworms (18 pooled samples) in sludge-amended soil was conducted to assess the environmental impact of sludge-amended soil with regard to the FASA-based copolymers, together with the applied sludge (n = 3), and the field soils during the period (n = 4). In the laboratory study, the FASA-based copolymers were taken up by the earthworms in concentrations between 19 and 33 ng/g of dw for the C8- and between 767 and 1735 ng/g of dw for the C4-FASA-based copolymer. Higher biota soil accumulation factors (BAFs) were observed for the copolymer with a longer perfluorinated side-chain length (C8, average BAF value of 0.7) compared to the copolymer with a shorter side-chain length (C4, average BAF value of 0.02). Perfluorooctane sulfonamidoacetates (FOSAAs) and perfluorooctane sulfonamide (FOSA), including both branched and linear isomers, were detected after exposure to the C8-FASA-based copolymer. Two metabolites were detected in the earthworms exposed to the C4-FASA-based copolymer: perfluorobutanesulfonamide (FBSA) and perfluorobutanesulfonic acid (PFBS). Although the presence of other monomers or impurities in the copolymer formulation cannot be ruled out, the present laboratory study suggests that the FASA-based copolymers may be an indirect source of lower molecular weight PFAS in the environment through transformation. Elevated levels of C8-FASA-based copolymer were found in the field sludge-amended soil compared to nontreated soil (32 versus 11 ng/g d.w.), and higher concentrations of PFAS in earthworms living in sludge-amended soil compared to nontreated soil (566 versus 103 ng/g d.w.) were observed. These findings imply that the application of sludge is a potential pathway of PFAS to the environment.
Collapse
Affiliation(s)
- Felicia Fredriksson
- Man-Technology-Environment
(MTM) Research Centre, School of Science and Technology, Örebro University, Orebro SE-701 82, Sweden
| | - Anna Kärrman
- Man-Technology-Environment
(MTM) Research Centre, School of Science and Technology, Örebro University, Orebro SE-701 82, Sweden
| | - Ulrika Eriksson
- Man-Technology-Environment
(MTM) Research Centre, School of Science and Technology, Örebro University, Orebro SE-701 82, Sweden
| | - Leo WY Yeung
- Man-Technology-Environment
(MTM) Research Centre, School of Science and Technology, Örebro University, Orebro SE-701 82, Sweden
| |
Collapse
|
4
|
Lesch V, Pieters R, Bouwman H. Dioxins, PFOS, and 20 other Persistent Organic Pollutants in Eggs of Nine Wild Bird Species from the Vaal River, South Africa. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:287-310. [PMID: 39297965 PMCID: PMC11525409 DOI: 10.1007/s00244-024-01088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/28/2024] [Indexed: 11/01/2024]
Abstract
The Vaal River catchment drains the largest and most populated industrial and mining region in Southern Africa. Heron, ibis, cormorant, egrets, and darter eggs, representing three habitats and four feeding guilds, were collected at four locations in 2009/10 to identify hotspots and hazards associated with persistent organic pollutants (POPs). The POPs included 21 organochlorine pesticides, five polybrominated diphenyl ether (PBDE) classes, 18 polychlorinated biphenyls (PCBs including six non-dioxin-like PCBs; NDL-PCB), and 12 dioxin-like PCBs (DL-PCBs), 17 polychlorinated dibenzo-p-dioxins and dibenzo-p-furans (PCDD/Fs), and perfluorooctane sulfonate (PFOS). Aquatic predators had higher PFOS and PCDD/F concentrations, while PCBs dominated in terrestrial eggs. Organochlorine pesticides, PBDEs, and PCBs were strongly associated with eggs from the industrial regions, while PCDD/F concentrations were evenly distributed. PCDD/F and PCB toxic equivalency quotient concentrations were low with no adverse effects expected. PFOS peaked at Bloemhof Dam with a maximum of 2300 ng/g wm in an African Darter egg, indicating an unexpected PFOS hotspot, the source of which is unknown. Despite order of differences in compound class concentrations, there was no association with egg size. To the best of our knowledge, this is the only study that analysed all 2010 POPs in bird eggs on a large geographic scale. This study highlighted the importance of multi-species studies sampling from multiple locations to assess the risk that POPs pose to avian populations as hotspots and species at risk may be missed by studies looking at one or few species.
Collapse
Affiliation(s)
- Velesia Lesch
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | - Rialet Pieters
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Hindrik Bouwman
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
5
|
Groffen T, Buytaert J, Prinsen E, Bervoets L, Eens M. Per- and Polyfluoroalkyl Substances (PFAS) Accumulation, Reproductive Impairment, and Associations with Nestling Body Condition in Great ( Parus major)- and Blue Tits ( Cyanistes caeruleus) Living near a Hotspot in Belgium. TOXICS 2024; 12:636. [PMID: 39330564 PMCID: PMC11435652 DOI: 10.3390/toxics12090636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024]
Abstract
Due to the limited number of field studies investigating associations between environmentally relevant per- and polyfluoroalkyl substances (PFAS) mixtures and reproductive impairment, there is uncertainty as to whether birds are affected by PFAS pollution, whether species differ in sensitivity to PFAS, and whether the observed reproductive impairment is caused by PFAS or rather due to other potential confounding variables. Therefore, we investigated PFAS concentrations in eggs and blood plasma of great tit (Parus major) and blue tit (Cyanistes caeruleus) nestlings near a PFAS hotspot in Belgium, reproductive impairment, and associations between the accumulated levels and nestling body condition. In total, 29 eggs and 22 blood plasma samples of great tit clutches, and 10 egg and 10 blood plasma samples of blue tit clutches, were collected. Despite more types of PFAS being detected in eggs compared to plasma, only minor differences in profiles were observed between species. On the other hand, tissue-specific differences were more pronounced and likely reflect a combination of maternal transfer and dietary exposure post-hatching. Despite the high concentrations detected in both species, limited reproductive impairment was observed. Our results support previous findings that great tits and blue tits may not be very susceptible to PFAS pollution and provide evidence that other factors, including ecological stoichiometry, may be more important in explaining inter-species variation in PFAS accumulation and reproductive impairment.
Collapse
Affiliation(s)
- Thimo Groffen
- ECOSPHERE, Department of Biology, Faculty of Science, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; (J.B.); (L.B.)
- Behavioural Ecology and Ecophysiology Group, Department of Biology, Faculty of Science, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium;
| | - Jodie Buytaert
- ECOSPHERE, Department of Biology, Faculty of Science, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; (J.B.); (L.B.)
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research, Department of Biology, Faculty of Science, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
| | - Lieven Bervoets
- ECOSPHERE, Department of Biology, Faculty of Science, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; (J.B.); (L.B.)
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, Faculty of Science, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium;
| |
Collapse
|
6
|
Heimstad ES, Nygård T, Moe B, Herzke D. New insights from an eight-year study on per- and polyfluoroalkyl substances in an urban terrestrial ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123735. [PMID: 38458514 DOI: 10.1016/j.envpol.2024.123735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) were analysed in a high number of terrestrial samples of soil, earthworm, bird eggs and liver from red fox and brown rat in an urban area in Norway from 2013 to 2020. PFOS and the long chain PFCAs were the most dominating compounds in all samples, proving their ubiquitous distribution. Other less studied compounds such as 6:2 FTS were first and foremost detected in earthworm. 8:2 FTS was found in many samples of fieldfare egg, sparrowhawk egg and earthworm, where the eggs had highest concentrations. Highest concentrations for both 6:2 FTS and 8:2 FTS were detected at present and former industry areas. FOSA was detected in many samples of the species with highest concentrations in red fox liver and brown rat liver of 3.3 and 5.5 ng/g ww. PFAS concentrations from the urban area were significantly higher than from background areas indicating that some of the species can be suitable as markers for PFAS emissions in an urban environment. Fieldfare eggs had surprisingly high concentrations of PFOS and PFCA concentrations from areas known to be or have been influenced by industry. Biota-soil-accumulation factor and magnification calculations indicate accumulation and magnification potential for several PFAS. Earthworm and fieldfare egg had average concentrations above the Canadian and European thresholds in diet for avian wildlife and predators. For earthworms, 18 % of the samples exceeded the European threshold (33 ng/g ww) of PFOS in prey for predators, and for fieldfare eggs, 35 % of the samples were above the same threshold. None of the soil samples exceeded a proposed PNEC of PFOS for soil living organisms of 373 ng/g dw.
Collapse
Affiliation(s)
| | - Torgeir Nygård
- NINA-Norwegian Institute for Nature Research, Trondheim, Norway
| | - Børge Moe
- NINA-Norwegian Institute for Nature Research, Trondheim, Norway
| | - Dorte Herzke
- NILU, The Fram Centre, P. box 6606 Stakkevollan, NO-9296, Tromsø, Norway; NIPH-Norwegian Institute for Public Health, Oslo, Norway
| |
Collapse
|
7
|
Lasters R, Groffen T, Eens M, Bervoets L. Dynamic spatiotemporal changes of per- and polyfluoroalkyl substances (PFAS) in soil and eggs of private gardens at different distances from a fluorochemical plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123613. [PMID: 38423274 DOI: 10.1016/j.envpol.2024.123613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Homegrown food serves as an important human exposure source of per- and polyfluoroalkyl substances (PFAS), yet little is known about their spatiotemporal distribution within and among private gardens. This knowledge is essential for more accurate site-specific risk assessment, identification of new sources and evaluating the effectiveness of regulations. The present study evaluated spatiotemporal changes of legacy and emerging PFAS in surface soil from vegetable gardens (N = 78) and chicken enclosures (N = 102), as well as in homegrown eggs (N = 134) of private gardens, across the Province of Antwerp (Belgium). Hereby, the potential influence of the wind orientation and distance towards a major fluorochemical plant was examined. The ∑short-chain PFAS and precursor concentrations were higher in vegetable garden soil (8.68 ng/g dry weight (dw)) compared to chicken enclosure soil (4.43 ng/g dw) and homegrown eggs (0.77 ng/g wet weight (ww)), while long-chain sulfonates and C11-14 carboxylates showed the opposite trend. Short-term (2018/2019-2022) changes were mostly absent in vegetable garden soil, while changes in chicken enclosure soils oriented S-SW nearby (<4 km) the fluorochemical plant were characterized by a local, high-concentration plume. Moreover, soil from chicken enclosures oriented SE and remotely from the plant site was characterized by a widespread, diffuse but relatively low-concentration plume. Long-term data (2010-2022) suggest that phaseout and regulatory measures have been effective, as PFOS concentrations nearby the fluorochemical plant in soil and eggs have declined from 25.8 to 2.86 ng/g dw and from 528 to 39.4 ng/g ww, respectively. However, PFOS and PFOA concentrations have remained largely stable within this timeframe in gardens remotely from the plant site, warranting further rapid regulation and remediation measures. Future monitoring efforts are needed to allow long-term comparison for multiple PFAS and better distinction from potential confounding variables, such as variable emission outputs and variability in wind patterns.
Collapse
Affiliation(s)
- Robin Lasters
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Thimo Groffen
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Lieven Bervoets
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
8
|
Rice PA, Kabadi SV, Doerge DR, Vanlandingham MM, Churchwell MI, Tryndyak VP, Fisher JW, Aungst J, Beland FA. Evaluating the toxicokinetics of some metabolites of a C6 polyfluorinated compound, 6:2 fluorotelomer alcohol in pregnant and nonpregnant rats after oral exposure to the parent compound. Food Chem Toxicol 2024; 183:114333. [PMID: 38061571 DOI: 10.1016/j.fct.2023.114333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
The 6:2 fluorotelomer alcohol (6:2 FTOH) is a common impurity in per- and polyfluoroalkyl substances (PFASs) used in many applications. Our previous toxicokinetic (TK) evaluation of 6:2 FTOH calculated times to steady state (tss) of one of its metabolites, 5:3 fluorotelomer carboxylic acid (5:3A), in the plasma and tissues of up to a year after oral exposure to rats. Our current work further elucidated the TK of 5:3A and other metabolites of 6:2 FTOH in pregnant and nonpregnant rats after repeated oral exposure and examined the role of renal transporters in the biopersistence of 5:3A. The tss values for 5:3A in serum and tissues of adult nonpregnant animals ranged from 150 days to over a year. 4:3 fluorotelomer carboxylic acid (4:3A) was an additional potentially-biopersistent metabolite. 5:3A was the major metabolite of 6:2 FTOH in serum of pregnant dams and fetuses at each time interval. 5:3A was not a substrate for renal transporters in a human kidney cell line in vitro, indicating that renal reuptake of 5:3A is unlikely contribute to its biopersistence. Further research is needed to identify the underlying processes and evaluate the impact of these 6:2 FTOH metabolites on human health.
Collapse
Affiliation(s)
- Penelope A Rice
- FDA/CFSAN/OFAS/DFCN, 5001 Campus Drive, HFS 275, College Park, MD, 20740, USA.
| | - Shruti V Kabadi
- FDA/CFSAN/OFAS/DFCN, 5001 Campus Drive, HFS 275, College Park, MD, 20740, USA
| | | | | | | | | | | | - Jason Aungst
- FDA/CFSAN/OFAS/DFCN, 5001 Campus Drive, HFS 275, College Park, MD, 20740, USA
| | | |
Collapse
|
9
|
Dulsat-Masvidal M, Lourenço R, Mateo R, Lacorte S. Assessing Contamination Profiles in Livers from Road-Killed Owls. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023. [PMID: 38146916 DOI: 10.1002/etc.5816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/21/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Raptors are recognized as valuable sentinel species for monitoring environmental contaminants owing to their foraging behavior across terrestrial and aquatic food webs and their high trophic position. The present study monitored environmental contaminants in livers from road-killed owls to evaluate differences in the exposure patterns due to factors such as species, age, and sex of individuals. Carcasses of road-killed individuals of eagle owl (Bubo bubo), long-eared owl (Asio otus), little owl (Athene noctua), tawny owl (Strix aluco), and barn owl (Tyto alba) were collected in Alentejo (Portugal). Eighty-one organic contaminants were analyzed, including organochlorine pesticides (OCPs), per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), pharmaceuticals, in-use pesticides, and organophosphate esters (OPEs). Overall, 21 contaminants were detected. In all species ∑OCPs were prevalent at concentrations from 3.24 to 4480 ng/g wet weight, followed by perfluorooctane sulfonic acid (PFOS), the only PFASs detected (from 2.88 to 848 ng/g wet wt) and ∑PCBs (1.98-2010 ng/g wet wt); ∑PAHs were ubiquitous but detected at the lowest concentrations (7.35-123 ng/g wet wt). Differences among species were observed according to principal component analysis. Eagle owl and long-eared owl presented the highest levels of ∑OCPs, ∑PCBs, and PFOS, consistent with its higher trophic position, while ∑PAHs prevailed in tawny owl, barn owl, and little owl, related to their frequent use of urban areas for nesting and roadsides for hunting. Adults presented higher concentrations of ∑OCPs and ∑PCBs than juveniles, while no differences were observed for PFOS and ∑PAHs. Pharmaceuticals, in-use pesticides, and OPEs were not detected. Overall, the present study shows specific contamination patterns in five species with similar diet but with differences in habitat preferences. Environ Toxicol Chem 2024;00:1-12. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Maria Dulsat-Masvidal
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Rui Lourenço
- Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora (MED), Laboratory of Ornithology, and Global Change and Sustainability Institute (CHANGE), University of Évora, Évora, Portugal
| | - Rafael Mateo
- Institute for Game and Wildlife Research (IREC), Consejo Superior de Investigaciones Científicas, Universidad de Castilla-La Mancha, Junta de Comunidades de Castilla-La Mancha (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| |
Collapse
|
10
|
Zhang J, Jaspers VLB, Røe J, Castro G, Kroglund IB, Gonzalez SV, Østnes JE, Asimakopoulos AG. Per- and poly-fluoroalkyl substances in Tawny Owl (Strix aluco) feathers from Trøndelag, Norway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166213. [PMID: 37567298 DOI: 10.1016/j.scitotenv.2023.166213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are contaminants of global concern due to their ubiquitous occurrence in the environment, bioaccumulation and the adverse effects on organisms. Tawny Owls (Strix aluco) are documented to be exposed to increasing concentrations of perfluoroalkyl carboxylic acids (PFCAs), and have been suggested in literature as a key raptor monitoring species. Therefore, non-destructive biomonitoring efforts are of high interest. Thus far, the use of feathers for biomonitoring PFASs in Tawny Owls has not been investigated. In this study, 32 PFASs were analyzed in 49 Tawny Owl body feather samples collected from 2017 to 2020 in Trøndelag, Norway. There were 30 PFASs detected in at least one feather, with the sum concentrations ranging from 31 to 203 ng/g (w.w.). Perfluoroheptanoic acid (PFHpA) (median: 33 ng/g) and perfluorooctane sulfonamidoacetic acid (FOSAA) (median: 18 ng/g) were the two compounds with the highest concentrations. Perfluorooctane sulfonic acid (PFOS), which is banned for production and use in Norway since 2007, was found in all samples (median: 4.14 ng/g), indicating its high persistence. 8 PFASs were detected in at least 50 % of the samples: FOSAA (11-127 ng/g), PFHpA (<0.04-115 ng/g), perfluorobutanesulfonic acid (PFBS) (<0.28-21 ng/g), PFOS (0.23-13 ng/g), perfluorotridecanoic acid (PFTrDA) (0.24-5.15 ng/g), perfluorododecanoic acid (PFDoDA) (<0.28-4.45 ng/g), perfluoroundecanoic acid (PFUnDA) (<0.28-2.33 ng/g), and 1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2 FTSA) (0.07-1.01 ng/g). No significant differences were found for the concentrations of PFASs between calendar years and locations, but a slight increase could be observed in the sum concentration of PFASs (Ʃ32PFASs) over the sampling years. As Tawny Owls are residential owls that usually do not cover great distances, their feathers can be used as a potential alternative matrix for future biomonitoring studies. To our knowledge, this is the first study on the occurrence of 32 PFASs investigated in feathers of a Tawny Owl population.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
| | - Jonas Røe
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Gabriela Castro
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Ingvild B Kroglund
- Faculty of Biosciences and Aquaculture, Nord University, 7229 Steinkjer, Norway
| | - Susana Villa Gonzalez
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Jan Eivind Østnes
- Faculty of Biosciences and Aquaculture, Nord University, 7229 Steinkjer, Norway
| | | |
Collapse
|
11
|
Giovanetti L, Casini S, Campani T, Caliani I. State of the art, gaps and future perspectives on common kestrel ecotoxicology. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104237. [PMID: 37481048 DOI: 10.1016/j.etap.2023.104237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Anthropogenic activities have caused a steady decline of common kestrel (Falco tinnunculus) since the 1980 s. Effects, especially sublethal effects of contaminants, need to be investigated to ensure the conservation of this species. Data about countries, biological material, contaminants classes, and methodological approaches were collected from scientific publications to highlight gaps on common kestrel toxicology and ecotoxicology. We found that most studies have been conducted in Europe and in the field, underlining a lack of in vitro studies. The studies investigated mainly contaminant levels, while sublethal effects, evaluation of emerging contaminants and use of non-invasive or low-invasive samples were scarce. This work shows important gaps on toxicological status of the common kestrel, highlighting the importance of developing a non-lethal approach that combines responses at different levels of biological organization, as well as data on chemical contamination and on the environment in which the different populations inhabit.
Collapse
Affiliation(s)
- Laura Giovanetti
- Department of Physics, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| | - Silvia Casini
- Department of Physics, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy.
| | - Tommaso Campani
- Department of Physics, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| | - Ilaria Caliani
- Department of Physics, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| |
Collapse
|
12
|
Guckert M, Rupp J, Nürenberg G, Nödler K, Koschorreck J, Berger U, Drost W, Siebert U, Wibbelt G, Reemtsma T. Differences in the internal PFAS patterns of herbivores, omnivores and carnivores - lessons learned from target screening and the total oxidizable precursor assay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162361. [PMID: 36842595 DOI: 10.1016/j.scitotenv.2023.162361] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) are a group of anthropogenic chemicals, which are not (fully) biodegradable and accumulate in different environmental compartments worldwide. A comprehensive, quantitative analysis - consisting of target analysis (66 different analytes, including e. g. ultrashort-chain perfluorinated carboxylic acids (PFCAs), precursor compounds and novel substitutes) and the Total Oxidisable Precursor (TOP) assay (including trifluoroacetic acid (TFA)) - were conducted to analyse the PFAS concentrations and patterns in 12 mammalian and two bird species from different areas of Germany and Denmark. The PFAS contamination was investigated in dependance of the trophic class (herbivores, omnivores, carnivores), ecological habitat (terrestrial, (semi-) aquatic) and body tissue (liver, musculature). PFAS concentrations were highest in carnivores, followed by omnivores and herbivores, with ∑PFAS concentration ranging from 1274 μg/kg (Eurasian otter liver) to 22 μg/kg (roe deer liver). TFA dominated in the herbivorous species, whereas perfluorooctanesulfonic acid (PFOS) and the long-chain PFCAs covered the majority of the PFAS contamination in carnivorous species. Besides trophic class, ecological habitat also affected the PFAS levels in the different species, with terrestrial herbivores and omnivores showing higher PFAS concentration than their aquatic counterparts, whereas for carnivores this relationship was reversed. The TOP assay analysis indicated similar trends, with the PFCA formation pattern differing significantly between the trophic classes. TFA was formed predominantly in herbivorous and omnivorous species, whereas in carnivorous species a broad spectrum of PFCAs (chain-length C2-C14) was formed. Musculature tissue of six species exhibited significantly lower PFAS concentrations than the respective liver tissue, but with similar PFAS patterns. The comprehensive approach applied in the present study showed, that primarily the trophic class is decisive for the PFAS concentration, as herbivores, omnivores and carnivores clearly differed in their PFAS concentrations and patterns. Additionally, the TOP assay gave novel insights in the PFCA formation potential in biota samples.
Collapse
Affiliation(s)
- Marc Guckert
- TZW: DVGW Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Jana Rupp
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Gudrun Nürenberg
- TZW: DVGW Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Karsten Nödler
- TZW: DVGW Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany.
| | - Jan Koschorreck
- German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Rosslau, Germany
| | - Urs Berger
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Wiebke Drost
- German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Rosslau, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Werftstr. 6, 25761 Buesum, Germany
| | - Gudrun Wibbelt
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany; Institute of Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04301 Leipzig, Germany
| |
Collapse
|
13
|
Espinosa C, González-Fernández C, Cormier B, Keiter SH, Vieira LR, Guilhermino L, Clérandeau C, Cachot J, Esteban MA, Cuesta A. Immunotoxicological effects of perfluorooctanesulfonic acid on European seabass are reduced by polyethylene microplastics. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108793. [PMID: 37146847 DOI: 10.1016/j.fsi.2023.108793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Marine environments receive plastic waste, where it suffers a transformation process into smaller particles. Among them, microplastics (MPs; <5 mm) are ingested by aquatic organisms leading to negative effects on animal welfare. The interactions between MPs, contaminants and organisms are poorly understood. To clarify this issue, European seabass (Dicentrarchus labrax L.) were fed with diets supplemented with 0 (control), polyethylene (PE) MPs (100 mg/kg diet), perfluorooctanesulfonic acid (PFOS, 4.83 μg/kg diet) or PFOS adsorbed to MPs (MPs-PFOS; final concentrations of 4.83 μg and 100 mg of PFOS and MP per kg of feed, respectively). Samples of skin mucus, serum, head-kidney (HK), liver, muscle, brain and intestine were obtained. PFOS levels were high in the liver of fish fed with the PFOS-diet, and markedly reduced when adsorbed to MPs. Compared to the control groups, liver EROD activity did not show any significant changes, whereas brain and muscle cholinesterase activities were decreased in all the groups. The histological and morphometrical study on liver and intestine showed significant alterations in fish fed with the experimental diets. At functional level, all the experimental diets affected the humoral (peroxidase, IgM, protease and bactericidal activities) as well as cellular (phagocytosis, respiratory burst and peroxidase) activities of HK leukocytes, being more marked those effects caused by the PFOS diet. Besides, treatments produced inflammation and oxidative stress as evidenced at gene level. Principal component analysis demonstrated that seabass fed with MPs-PFOS showed more similar effects to MPs alone than to PFOS. Overall, seabass fed with MPs-PFOS diet showed similar or lower toxicological alterations than those fed with MPs or PFOS alone demonstrating the lack of additive effects or even protection against PFOS toxicity.
Collapse
Affiliation(s)
- Cristóbal Espinosa
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Carmen González-Fernández
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain; INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | - Bettie Cormier
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82, Örebro, Sweden; Department of Biology, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82, Örebro, Sweden
| | - Luis R Vieira
- ICBAS-UP - School of Medicine and Biomedical Sciences, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Portugal
| | - Lúcia Guilhermino
- ICBAS-UP - School of Medicine and Biomedical Sciences, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Portugal
| | | | - Jérôme Cachot
- Université de Bordeaux, UMR 5805 EPOC, 33400, Talence, France
| | - María A Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
14
|
Liu YZ, Yang K, Zhang W, Zhang Q, Liu TF, Xu T, Li Y, Ran RX, Yang K, Cao YF, Fang ZZ. Inhibition of human sulfotransferases (SULTs) by per- and polyfluoroalkyl substances (PFASs) and structure-activity relationship. Food Chem Toxicol 2023; 174:113664. [PMID: 36775137 DOI: 10.1016/j.fct.2023.113664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 01/15/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a family of highly fluorinated aliphatic substances widely used in industrial and commercial applications. This study aims to determine the inhibition of PFASs towards sulfotransferases (SULTs) activity, and trying to explain the toxicity mechanism of PFASs. In vitro recombinant SULTs-catalyzed sulfation of p-nitrophenol (PNP) was utilized as a probe reaction. The incubation system was consisted of PFASs, SULTs, PNP, 3'-phosphoadenosine-5'-phosphosulfate, MgCl2 and Tris-HCl buffer. Ultra-performance liquid chromatography was employed for analysis of the metabolites. All tested PFASs showed inhibition towards SULTs. The longer the carbon chain length of the PFASs terminated with -COOH, the higher is its capability of inhibiting SULT1A3. PFASs with -SO3H had a relatively higher ability to inhibit SULT1A3 activity than those with -COOH, -I and -OH. The inhibition kinetic parameter was 2.16 and 1.42 μM for PFOS-SULT1A1, PFTA-SULT1B1. In vitro in vivo extrapolation showed that the concentration of PFOS and PFTA in human matrices might be higher than the threshold for inducing inhibition of SULTs. Therefore, PFASs could interfere with the metabolic pathways catalyzed by SULTs in vivo. All these results will help to understand the toxicity of PFASs from the perspective of metabolism.
Collapse
Affiliation(s)
- Yong-Zhe Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei, 050000, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China; National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institute, Hefei, 230032, China
| | - Kai Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Wei Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Qian Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Baoding First Central Hospital, Baoding, 071000, China
| | - Tong-Feng Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Tong Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Rui-Xue Ran
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Kun Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China; National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Yun-Feng Cao
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, NHC Key Laboratory of Reproduction Regulation, ShangHai, 200032, China.
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei, 050000, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China; National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institute, Hefei, 230032, China.
| |
Collapse
|
15
|
Ratajc U, Lourenço R, Espín S, Virosta PS, Birrer S, Studler D, Wernham C, Vrezec A. The importance of population contextual data for large-scale biomonitoring using an apex predator: The Tawny Owl (Strix aluco). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160530. [PMID: 36574555 DOI: 10.1016/j.scitotenv.2022.160530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Top predators are often used as sentinel species in contaminant monitoring due to their exposure and vulnerability to persistent, bioaccumulative and, in some cases, biomagnificable contaminants. Some of their ecological traits can vary in space and time, and are known to influence the contamination levels and therefore information on ecological traits should be used as contextual data for correct interpretation of large-scale contaminant spatial patterns. These traits can explain spatiotemporal variation in contaminant exposure (traits such as diet and dispersal distances) or contaminant impacts (traits such as population trend and clutch size). The aim of our research was to review the spatial variation in selected contextual parameters in the Tawny Owl (Strix aluco), a species identified by the COST Action European Raptor Biomonitoring Facility as one of the most suitable candidates for pan-European biomonitoring. A considerable variation in availability of published and unpublished contextual data across Europe was found, with diet being the most extensively studied trait. We demonstrate that the Tawny Owl is a suitable biomonitor at local scale but also that taking spatial variation of other contextual data (e.g. diet) into account is necessary. We found spatial gaps in knowledge about the species ecology and biology in Southern Europe, along with gaps in certain population parameters (e.g. population trends) in several countries. Based on our findings, we proposed a minimal recommended scheme for monitoring of population contextual data as one of the first steps towards a pan-European monitoring scheme using the Tawny Owl.
Collapse
Affiliation(s)
- Urška Ratajc
- Department of Organisms and Ecosystems Research, National Institute of Biology, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia.
| | - Rui Lourenço
- MED Mediterranean Institute for Agriculture, Environment and Development & CHANGE Global Change and Sustainability Institute LabOr Laboratory of Ornithology, IIFA, University of Évora, Pólo da Mitra, 7006-554 Évora, Portugal
| | - Silvia Espín
- Area of Toxicology, Faculty of Veterinary Medicine, University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - Pablo Sánchez Virosta
- Area of Toxicology, Faculty of Veterinary Medicine, University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - Simon Birrer
- Swiss Ornithological Institute, CH-6204 Sempach, Switzerland
| | | | - Chris Wernham
- British Trust for Ornithology (Scotland), Unit 15 Beta Centre, Stirling University Innovation Park, Stirling FK9 4NF, Scotland, UK
| | - Al Vrezec
- Department of Organisms and Ecosystems Research, National Institute of Biology, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia; Slovenian Museum of Natural History, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Aker A, Ayotte P, Caron-Beaudoin É, De Silva A, Ricard S, Lemire M. Associations between dietary profiles and perfluoroalkyl acids in Inuit youth and adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159557. [PMID: 36272489 DOI: 10.1016/j.scitotenv.2022.159557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Perfluoroalkyl acids (PFAAs), a subset of perfluoroalkyl substances (PFAS), are synthetic chemicals used in industrial and consumer applications. They are exceptionally stable and highly mobile in the environment, and were detected in high concentrations in Arctic wildlife and Nunavik Inuit. The study's objective was to study the association between dietary profiles in Nunavik and plasma PFAAs concentrations. METHODS The study used data from the Qanuilirpitaa? 2017 Nunavik Inuit Health Survey (Q2017) (N = 1172) on Inuit adults aged 16-80 years. Nine PFAAs congeners were measured in plasma samples (six were detected). Dietary profiles were identified using latent profile analysis. Two sets of dietary profiles were included; the first included market (store-bought) and country foods (harvested/hunted from the land), and the second included only country foods. Multiple linear regression models regressed log-transformed PFAAs concentrations against the dietary profiles, adjusting for sociodemographic variables. RESULTS We identified statistically significant 24.54-57.55 % increases in all PFAAs congeners (PFOA, PFNA, PFDA, PFUnDA, PFHxS, and PFOS) in the dietary profile defined by frequent country food consumption compared to the dietary profile defined by frequent market food consumption. Individuals defined by low consumption of foods (related to food insecurity) had higher concentrations of six PFAAs compared to individuals with frequent market food consumption. The associations were stronger with profiles defined by more frequent country food consumption, and particularly those with increased marine mammal consumption. PFDA, PFUnDA, and PFOS were particularly associated with high country food consumption frequency, such that their concentrations increased by approximately 67-83 % compared to those reporting no or very little consumption of any country foods. CONCLUSIONS Increased country food consumption was strongly associated with higher PFAAs concentrations, particularly PFOS, PFDA, and PFUnDA. The results provide further evidence that the quality of country foods is being threatened by PFAAs contamination. Additional national and international regulations are required to protect the Arctic and its inhabitants from these pollutants.
Collapse
Affiliation(s)
- Amira Aker
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada.
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada; Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Élyse Caron-Beaudoin
- Department of Health and Society University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Amila De Silva
- Aquatic Contaminants Research Division, Water Science Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Sylvie Ricard
- Nunavik Regional Board of Health and Social Services, Kuujjuaq, QC, Canada
| | - Mélanie Lemire
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada; Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
17
|
Aker A, Ayotte P, Caron-Beaudoin E, De Silva A, Ricard S, Gaudreau É, Lemire M. Plasma concentrations of perfluoroalkyl acids and their determinants in youth and adults from Nunavik, Canada. CHEMOSPHERE 2023; 310:136797. [PMID: 36244416 DOI: 10.1016/j.chemosphere.2022.136797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Perfluoroalkyl acids (PFAAs), a subset of per- and poly-fluoroalkyl substances (PFAS), are environmentally stable, mobile and bioaccumulative compounds. This leads to high concentrations in wildlife species essential to the cultural identity and subsistence of Arctic populations. Our objective was to characterize the distribution and exposure determinants of PFAAs among Nunavik Inuit adults. The study included up to 1322 Nunavik residents aged 16-80 years who participated in the Qanuilirpitaa? 2017 Nunavik Inuit Health Survey (Q2017). Plasma concentrations were compared to those the general Canadian population using data from the Canadian Health Measures Survey Cycle 5 (2016-2017). Associations between plasma concentrations of nine PFAAs, determined by liquid chromatography-tandem mass spectrometry, and sociodemographic factors and traditional activity participation were examined using multiple linear regression models. Overall exposure to PFAAs was twice as high compared to the general Canadian population and less regulated perfluorononanoic acid (PFNA) and perfluoroundecanoic acid (PFUnDA) concentrations were 7-fold higher, and perfluorodecanoic acid (PFDA) concentrations were 4-fold higher. Males had higher concentrations of perfluorooctanoic acid (PFOA) and perfluorohexane sulfonate (PFHxS), whereas females had higher concentrations of PFDA and PFUnDA. PFAAs concentrations increased with age and were highest among those aged 60+ years. PFNA and PFOA concentrations followed a J-shaped pattern: those aged 16-29 years had higher concentrations than those aged 20-29 and 30-39 years. Ungava Bay generally had lower concentrations of all PFAAs congeners compared to Hudson Bay and Hudson Strait, with the exception of PFNA, which tended to have the lowest concentration in Hudson Strait. PFAAs concentrations were highly associated with hunting activity, omega-3 polyunsaturated fatty acids, and drinking water from environmental sources. The results highlight the importance of characterizing PFAAs exposure sources in Arctic communities and provide further evidence for the long-range transport of long-chain PFAAs and their precursors that necessitate international action.
Collapse
Affiliation(s)
- Amira Aker
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et Préventive, Université Laval, Québec, Quebec, Canada.
| | - Pierre Ayotte
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Elyse Caron-Beaudoin
- Department of Health and Society University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Amila De Silva
- Aquatic Contaminants Research Division, Water Science Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Sylvie Ricard
- Nunavik Regional Board of Health and Social Services, Kuujjuaq, QC, Canada
| | - Éric Gaudreau
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Melanie Lemire
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et Préventive, Université Laval, Québec, Quebec, Canada; Institut de Biologie Intégrative et des systèmes (IBIS), Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
18
|
Gkotsis G, Nika MC, Athanasopoulou AI, Vasilatos K, Alygizakis N, Boschert M, Osterauer R, Höpker KA, Thomaidis NS. Advanced throughput analytical strategies for the comprehensive HRMS screening of organic micropollutants in eggs of different bird species. CHEMOSPHERE 2023; 312:137092. [PMID: 36332731 DOI: 10.1016/j.chemosphere.2022.137092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/11/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Raptors are ideal indicators for biomonitoring studies using wildlife in order to assess the environmental pollution in the terrestrial ecosystem, since they are placed in the highest trophic position in the food webs and their life expectancy is relatively long. In this study, 26 eggs of 4 bird species (Peregrine falcon, Eurasian curlew, Little owl and Eagle owl) collected in Germany, were investigated for the presence of persistent organic pollutants (POPs) and thousands of contaminants of emerging concern (CECs). Generic sample preparation protocols were followed for the extraction of the analytes and the purification of the extracts, and the samples were analyzed both by liquid (LC) and gas chromatography (GC) coupled to high resolution mass spectrometry (HRMS), for capturing a wide range of organic micropollutants with different physicochemical properties. State-of-the-art screening methodologies were applied in the acquired HRMS data, including wide-scope target analysis of 2448 known pollutants and suspect screening of over 65,000 environmentally relevant compounds. Overall, 58 pollutants from different chemical classes, such as plant protection products, per- and polyfluoroalkyl substances and medicinal products, as well as their transformation products, were determined through target analysis. Most of the detected compounds were lipophilic (logP>2), although the presence of (semi)polar contaminants should not be overlooked, underlying the need for holistic analytical approaches in environmental monitoring studies. p,p'-DDE, PCB 153 and PCB138, PFOS and methylparaben were the most frequently detected compounds. 50 additional substances were identified and semi-quantified through suspect screening workflows, including mainly compounds of industrial use with high production volume.
Collapse
Affiliation(s)
- Georgios Gkotsis
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Maria-Christina Nika
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece.
| | - Antonia I Athanasopoulou
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Konstantinos Vasilatos
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Nikiforos Alygizakis
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece; Environmental Institute s.r.o., Okruzna 784/42, 97241, Kos, Slovak Republic
| | | | - Raphaela Osterauer
- State Institute for Environment Baden-Wuerttemberg (LUBW), Griesbachstr. 1, 76185 Karlsruhe, Germany
| | - Kai-Achim Höpker
- State Institute for Environment Baden-Wuerttemberg (LUBW), Griesbachstr. 1, 76185 Karlsruhe, Germany
| | - Nikolaos S Thomaidis
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece.
| |
Collapse
|
19
|
Bustnes JO, Bårdsen BJ, Herzke D, Bangjord G, Bollinger E, Bourgeon S, Schulz R, Fritsch C, Eulaers I. The impact of climate sensitive factors on the exposure to organohalogenated contaminants in an aquatic bird exploiting both marine and freshwater habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157667. [PMID: 35907551 DOI: 10.1016/j.scitotenv.2022.157667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
To assess how climate-sensitive factors may affect the exposure to organochlorines (OCs) and perfluoroalkyl substances (PFASs), we monitored concentrations in eggs of the common goldeneye (Bucephala clangula) over two decades (1999-2019) in central Norway. The goldeneye alternates between marine and freshwater habitats and is sensitive to climate variation, especially due to alterations in ice conditions which may affect feeding conditions. We assessed how biological factors such as diet (stable isotopes δ13C and δ15N), the onset of egg laying, and physical characteristics such as winter climate (North Atlantic Oscillation: NAOw) influenced exposure. We predicted compounds to show different temporal trends depending on whether they were still in production (i.e. some PFASs) or have been banned (i.e. legacy OCs and some PFASs). Therefore, we controlled for potential temporal trends in all analyses. There were declining trends for α- and γ-hexachlorocyclohexane (HCH), oxychlordane, cis-chlordane, cis-nonachlor, p,p'-dichlorodiphenyltrichloroethane (p.p'-DDT) and less persistent polychlorinated biphenyl (PCB) congeners (e.g. PCB101). In contrast, the dominant compounds, such as p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and persistent PCB congeners, were stable, whereas hexachlorobenzene (HCB) increased over time. Most OCs were positively related to δ15N, suggesting higher exposure in birds feeding at upper trophic levels. Chlordanes and HCB were positively associated with δ13C, indicating traces of marine input for these compounds, whereas the relationships to most PCBs were negative. Among PFASs, perfluorooctanesulfonamide (PFOSA) and perfluorohexane sulfonic acid (PFHxS) declined. Most PFASs were positively associated with δ13C, whereas there were no associations with δ15N. Egg laying date was positively associated to perfluoroheptanesulfonic acid (PFHpS), perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), suggesting that some of the PFAS load originated from the wintering locations. Although NAOw had little impact on the exposure to organohalogenated contaminants, factors sensitive to climate change, especially diet, were associated with the exposure to OHCs in goldeneyes.
Collapse
Affiliation(s)
- Jan Ove Bustnes
- Norwegian Institute for Nature Research (NINA), The Fram Centre, N-9296 Tromsø, Norway.
| | - Bård-Jørgen Bårdsen
- Norwegian Institute for Nature Research (NINA), The Fram Centre, N-9296 Tromsø, Norway
| | - Dorte Herzke
- Norwegian Institute for Air Research (NILU), The Fram Centre, N-9296 Tromsø, Norway; The Arctic University of Norway, Department of Arctic and Marine Biology, N-9037 Tromsø, Norway
| | | | - Eric Bollinger
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, DE-76829 Landau, Germany
| | - Sophie Bourgeon
- The Arctic University of Norway, Department of Arctic and Marine Biology, N-9037 Tromsø, Norway
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, DE-76829 Landau, Germany
| | - Clementine Fritsch
- UMR Chrono-environnement 6249 CNRS - University of Franche-Comté, F-25030 Besançon Cedex, France
| | - Igor Eulaers
- Norwegian Polar Institute, The Fram Centre, N-9296 Tromsø, Norway
| |
Collapse
|
20
|
Judy JD, Gravesen C, Christopher Wilson P, Lee L, Sarchapone J, Hinz F, Broadbent E. Trophic transfer of PFAS from tomato (Solanum lycopersicum) to tobacco hornworm (Manduca sexta) caterpillars. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119814. [PMID: 35926738 DOI: 10.1016/j.envpol.2022.119814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/30/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
PFASs are highly persistent in the environment and the potential exists for terrestrial biota to accumulate PFAS, which may result in exposure of higher trophic level organisms to these compounds through consumption. However, trophic transfer of proteinophilic compounds such as PFAS has not been extensively studied and the degree to which plant-accumulated PFAS will be transferred to herbivorous consumers is unclear. Here, we exposed Solanum lycopersicum (tomato) plants to a suite of 7 different PFAS, including 4 carboxylic acids (PFOA, PFHxA, PFHpA and PFDA) and 3 sulfonates (PFBS, PFHxS and PFOS). Exposed leaf tissues were subsequently fed to Manduca sexta (tobacco hornworm) caterpillars. Biomagnification factors (BMFs) were all below 1 and patterns of uptake and elimination were similar between the different PFAS. However, PFOS bioaccumulated in the hornworms to a much higher concentration, with approximately 5-fold higher BMFs and assimilation efficiencies (AEs) than other PFAS tested. AE and BMF, as well as PFAS uptake by the plants, were positively correlated with PFAS carbon chain length for both sulfonates and carboxylic acids, providing evidence that longer chain PFAS may be more efficiently accumulated (or less efficiently eliminated) than shorter-chain PFAS in some contexts.
Collapse
Affiliation(s)
- Jonathan D Judy
- University of Florida, Soil and Water Sciences Department, 1692 McCarty Dr, Gainesville, FL, 32611, USA.
| | - Caleb Gravesen
- University of Florida, Soil and Water Sciences Department, 1692 McCarty Dr, Gainesville, FL, 32611, USA
| | - P Christopher Wilson
- University of Florida, Soil and Water Sciences Department, 1692 McCarty Dr, Gainesville, FL, 32611, USA
| | - Linda Lee
- Purdue University, Department of Agronomy, West Lafayette, IN, 47907, USA; Purdue University, Ecological Sciences & Engineering Interdisciplinary Graduate Program, West Lafayette, IN, 47907, USA; Purdue University, Environmental & Ecological Engineering, West Lafayette IN, 47907, USA
| | - Jennifer Sarchapone
- University of Florida, Soil and Water Sciences Department, 1692 McCarty Dr, Gainesville, FL, 32611, USA
| | - Francisca Hinz
- University of Florida, Soil and Water Sciences Department, 1692 McCarty Dr, Gainesville, FL, 32611, USA
| | - Emma Broadbent
- University of Florida, Soil and Water Sciences Department, 1692 McCarty Dr, Gainesville, FL, 32611, USA
| |
Collapse
|
21
|
Bustnes JO, Bårdsen BJ, Herzke D, Bangjord G, Bourgeon S, Fritsch C, Eulaers I. Ecosystem specific accumulation of organohalogenated compounds: A comparison between adjacent freshwater and terrestrial avian predators. ENVIRONMENTAL RESEARCH 2022; 212:113455. [PMID: 35580663 DOI: 10.1016/j.envres.2022.113455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Insight into processes determining the exposure of organohalogenated contaminants (OHCs) in wildlife might be gained from comparing predators in different ecosystems. This study compared two avian predator species with similar food chain lengths: the goldeneye duck (Bucephala clangula) and the tawny owl (Strix aluco) breeding in adjacent freshwater- and terrestrial ecosystems in central Norway. We measured lipophilic organochlorines (OCs) and protein-bound perfluorinated substances (PFASs) in eggs of the two species over 21 years (1999-2019). Across years, the proportional distribution of OCs (∼90% of the ΣOHC load) relative to PFASs (∼10%) was similar in the two species. Moreover, ΣOC concentrations were similar between the species, but PFAS compounds were 2-12 times higher in the goldeneyes than in tawny owls. OC-pesticides dominated in tawny owls (∼60% of ΣOC), whereas persistent polychlorinated biphenyl (PCBs) congeners were the main OC components in goldeneyes (∼70% of ΣOC). The lipid-normalized concentrations of most OC-pesticides and the less persistent PCB101 declined significantly in both species. Hexachlorobenzene (HCB), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), and more persistent PCBs decreased in tawny owls, while they tended to increase in goldeneyes. The increase in HCB was particulary robust. Among the PFASs, contrasted temporal trends were found across the species for four out of 11 compounds: PFOS declined while most perfluorocarboxylic acids (PFCAs) increased in tawny owls. In contrast, most PFASs were stable in goldeneyes. Moreover, there was no annual covariance between the OHC exposure in the two species: i.e., high concentrations in one species in a given year did not translate into high concentrations in the other. Hence, the two avian predators in adjacent ecosystems seem to be subject to different processes determining the OHC exposure, probably related to variation in diet and climate, long-range transport of different contaminants, and emissions of pollution locally.
Collapse
Affiliation(s)
- Jan Ove Bustnes
- Norwegian Institute for Nature Research (NINA), The Fram Centre, 9296, Tromsø, Norway.
| | - Bård-Jørgen Bårdsen
- Norwegian Institute for Nature Research (NINA), The Fram Centre, 9296, Tromsø, Norway
| | - Dorte Herzke
- Norwegian Institute for Air Research (NILU), The Fram Centre, 9296, Tromsø, Norway
| | | | - Sophie Bourgeon
- Biology Department, Faculty of Science, University of Tromsø, 9037 Tromsø, Norway
| | - Clementine Fritsch
- Chrono-environnement UMR 6249 CNRS, University of Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Igor Eulaers
- Norwegian Polar Institute, The Fram Centre, 9296, Tromsø, Norway
| |
Collapse
|
22
|
Kourtchev I, Hellebust S, Heffernan E, Wenger J, Towers S, Diapouli E, Eleftheriadis K. A new on-line SPE LC-HRMS method for the analysis of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in PM 2.5 and its application for screening atmospheric particulates from Dublin and Enniscorthy, Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155496. [PMID: 35483471 DOI: 10.1016/j.scitotenv.2022.155496] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
A sensitive analytical method has been developed and validated for the determination of 16 polyfluorinated alkyl substances (PFAS) in fine airborne particulate matter (PM2.5) using on-line solid phase extraction (SPE) coupled with liquid chromatography (LC) - negative electrospray ionisation high resolution mass spectrometry (-) ESI-HRMS. On-line SPE allows simultaneous sample clean-up from interfering matrices and lower limits of detection (LODs) by injecting a large volume of sample into the LC system without compromising chromatographic efficiency and resolution. The method provides LODs in the range 0.08-0.5 pg/mL of sample extract allowing detection of selected PFAS in aerosol particles at low fg/m3 level and showed good tolerance to the considered PM matrix. The validated method was applied for analysis of PFAS in ambient PM2.5 samples collected at two urban locations in Ireland, i.e., Enniscorthy and Dublin. Several PFAS were observed above the detection limit, including perfluorobutyrate (PFBA), perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorobutanesulfonic acid (L-PFBS) and perfluorononanoic acid (PFNA), as well as fluorotelomer sulfonates: 4:2 FTS, 6:2 FTS and 8:2 FTS. The results indicate that some toxic PFAS, such as PFOS and PFOA, are still detected in the environment despite being phased out from production and subject to restricted use in the EU and USA for more than two decades. Observation of fluorotelomer sulfonates (4:2 FTS, 6:2 FTS and 8:2 FTS, which are used as alternatives for legacy PFOA and PFOS) in ambient PM2.5 samples raises a concern about their persistence in the atmosphere and impact on human health considering emerging evidence that they could have similar health endpoints as PFOA and PFOS. To our knowledge, this is the first study to identify PFAS in ambient PM2.5 at urban locations in Ireland and also the first study to detect 4:2 and 8:2 fluorotelomer sulfonates in atmospheric aerosol particles.
Collapse
Affiliation(s)
- Ivan Kourtchev
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore CV8 3LG, UK.
| | - Stig Hellebust
- School of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Eimear Heffernan
- School of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | - John Wenger
- School of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Sam Towers
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore CV8 3LG, UK
| | - Evangelia Diapouli
- ERL, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Athens, Greece
| | - Konstantinos Eleftheriadis
- ERL, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Athens, Greece
| |
Collapse
|
23
|
Kroglund IB, Eide SKK, Østnes JE, Kroglund RT, Frisli JE, Waugh CA. Primary Cell Lines From Feathers and Blood of Free-Living Tawny Owls (Strix aluco): A New In Vitro Tool for Non-Lethal Toxicological Studies. Front Genet 2022; 13:856766. [PMID: 35651947 PMCID: PMC9149357 DOI: 10.3389/fgene.2022.856766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
The validation of the use of primary cell lines from non-lethal matrixes of feathers and blood of nestlings of a wild bird species, the tawny owl (Strix aluco) is described. Tawny Owl Feather Fibroblast (TOFF) cells and peripheral blood mononuclear cells (PBMCs) were isolated and cultured from the pulp of the secondary wing feathers and whole blood respectively from free-living tawny owl nestlings. Cell growth was registered up until 48 h for both the PBMC cells and the TOFFs. The validation of these primary cell lines in free-living birds has the potential to advance the assessment of immunotoxicological effects in wildlife via non-lethal manner. They provide a key tool with which to study cell toxicity and responses to environmental stressors on a cellular level in wild bird species of interest.
Collapse
Affiliation(s)
| | | | - Jan Eivind Østnes
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | | | | | | |
Collapse
|
24
|
Bustnes JO, Bårdsen B, Herzke D, Bangjord G, Bourgeon S, Fritsch C, Eulaers I. Temporal Trends of Organochlorine and Perfluorinated Contaminants in a Terrestrial Raptor in Northern Europe Over 34 years (1986-2019). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1508-1519. [PMID: 35312196 PMCID: PMC9321541 DOI: 10.1002/etc.5331] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/12/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Fourteen legacy organochlorine (OC) contaminants and 12 perfluoroalkyl substances (PFASs) were measured in eggs of tawny owls (Strix alueco) in central Norway (1986-2019). We expected OCs to have reached stable equilibrium levels due to bans, and that recent phase-out of some PFASs would have slowed the increase of these compounds. ∑OC comprised on average approximately 92% of the measured compounds, whereas ∑PFAS accounted for approximately 8%. However, whereas the ∑OC to ∑PFAS ratio was approximately 60 in the first 5 years of the study, it was only approximately 11 in the last 5 years. Both OC pesticides and polychlorinated biphenyls (PCBs) showed substantial declines over the study period (~85%-98%): hexachlorocyclohexanes and chlordanes seemed to be levelling off, whereas p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and hexachlororbenzene (HCB), and most PCB congeners still seemed to decline at a more or less constant rate. While the concentration of perfluorooctane sulfonic acid (PFOS), the dominating PFAS, was reduced by approximately 43%, other perfluorinated sulfonates (PFSAs) showed only minor changes. Moreover, the median concentrations of seven perfluorinated carboxylic acids (PFCAs) increased approximately five-fold over the study period. Perfluorononanoic acid and perfluoroundecanoate acid, however, seemed to be levelling off in recent years. In contrast, perfluorododecanoic acid, perfluorodecanoate acid, perfluorotridecanoic acid, and perfluorotetradecanoic acid seemed to increase more or less linearily. Finally, perfluorooctanoic acid (PFOA) was increasingly likely to be detected over the study period. Hence, most legacy OCs and PFOS have not reached a lower threshold with stable background levels, and voluntary elimination of perfluoroalkyl carboxylates still has not resulted in declining levels in tawny owls in central Norway. Environ Toxicol Chem 2022;41:1508-1519. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Jan Ove Bustnes
- Norwegian Institute for Nature Research (NINA)The Fram Centre9296TromsøNorway
| | - Bård‐Jørgen Bårdsen
- Norwegian Institute for Nature Research (NINA)The Fram Centre9296TromsøNorway
| | - Dorte Herzke
- Norwegian Institute for Air Research (NILU)The Fram Centre9296TromsøNorway
| | | | - Sophie Bourgeon
- Department of Arctic and Marine BiologyUiT The Arctic University of Norway9037TromsøNorway
| | - Clementine Fritsch
- Chrono‐environnement UMR 6249 CNRS/University of Franche‐ComtéBesançonFrance
| | - Igor Eulaers
- Norwegian Polar Institute, The Fram Centre9296TromsøNorway
| |
Collapse
|
25
|
Jouanneau W, Léandri-Breton DJ, Corbeau A, Herzke D, Moe B, Nikiforov VA, Gabrielsen GW, Chastel O. A Bad Start in Life? Maternal Transfer of Legacy and Emerging Poly- and Perfluoroalkyl Substances to Eggs in an Arctic Seabird. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6091-6102. [PMID: 34874166 DOI: 10.1021/acs.est.1c03773] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In birds, maternal transfer is a major exposure route for several contaminants, including poly- and perfluoroalkyl substances (PFAS). Little is known, however, about the extent of the transfer of the different PFAS compounds to the eggs, especially for alternative fluorinated compounds. In the present study, we measured legacy and emerging PFAS, including Gen-X, ADONA, and F-53B, in the plasma of prelaying black-legged kittiwake females breeding in Svalbard and the yolk of their eggs. We aimed to (1) describe the contaminant levels and patterns in both females and eggs, and (2) investigate the maternal transfer, that is, biological variables and the relationship between the females and their eggs for each compound. Contamination of both females and eggs were dominated by linPFOS then PFUnA or PFTriA. We notably found 7:3 fluorotelomer carboxylic acid─a precursor of long-chain carboxylates─in 84% of the egg yolks, and provide the first documented finding of ADONA in wildlife. Emerging compounds were all below the detection limit in female plasma. There was a linear association between females and eggs for most of the PFAS. Analyses of maternal transfer ratios in females and eggs suggest that the transfer is increasing with PFAS carbon chain length, therefore the longest chain perfluoroalkyl carboxylic acids (PFCAs) were preferentially transferred to the eggs. The mean ∑PFAS in the second-laid eggs was 73% of that in the first-laid eggs. Additional effort on assessing the outcome of maternal transfers on avian development physiology is essential, especially for PFCAs and emerging fluorinated compounds which are under-represented in experimental studies.
Collapse
Affiliation(s)
- William Jouanneau
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 17031 La Rochelle, France
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| | - Don-Jean Léandri-Breton
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 17031 La Rochelle, France
- Department of Natural Resource Sciences, McGill University, Ste Anne-de-Bellevue, Quebec H9X 3 V9, Canada
| | - Alexandre Corbeau
- ECOBIO (Ecosystèmes, biodiversité, évolution), UMR 6553 CNRS - Université de Rennes, 35000 Rennes, France
| | - Dorte Herzke
- NILU - Norwegian Institute for Air Research, Fram Centre, NO-9296 Tromsø, Norway
| | - Børge Moe
- NINA - Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway
| | - Vladimir A Nikiforov
- NILU - Norwegian Institute for Air Research, Fram Centre, NO-9296 Tromsø, Norway
| | | | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 17031 La Rochelle, France
| |
Collapse
|
26
|
Roos AM, Gamberg M, Muir D, Kärrman A, Carlsson P, Cuyler C, Lind Y, Bossi R, Rigét F. Perfluoroalkyl substances in circum-ArcticRangifer: caribou and reindeer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23721-23735. [PMID: 34813015 PMCID: PMC8979910 DOI: 10.1007/s11356-021-16729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Livers of caribou and reindeer (Rangifer tarandus) from Canada (n = 146), Greenland (n = 30), Svalbard (n = 7), and Sweden (n = 60) were analyzed for concentrations of eight perfluoroalkyl carboxylic acids and four perfluoroalkane sulfonic acids. In Canadian caribou, PFNA (range < 0.01-7.4 ng/g wet weight, ww) and PFUnDA (<0.01-5.6 ng/g ww) dominated, whereas PFOS predominated in samples from South Greenland, Svalbard, and Sweden, although the highest concentrations were found in caribou from Southwest Greenland (up to 28 ng/g ww). We found the highest median concentrations of all PFAS except PFHxS in Akia-Maniitsoq caribou (Southwest Greenland, PFOS 7.2-19 ng/g ww, median 15 ng/g ww). The highest concentrations of ΣPFAS were also found in Akia-Maniitoq caribou (101 ng/g ww) followed by the nearby Kangerlussuaq caribou (45 ng/g ww), where the largest airport in Greenland is situated, along with a former military base. Decreasing trends in concentrations were seen for PFOS in the one Canadian and three Swedish populations. Furthermore, PFNA, PFDA, PFUnDA, PFDoDA, and PFTrDA showed decreasing trends in Canada's Porcupine caribou between 2005 and 2016. In Sweden, PFHxS increased in the reindeer from Norrbotten between 2003 and 2011. The reindeer from Västerbotten had higher concentrations of PFNA and lower concentrations of PFHxS in 2010 compared to 2002. Finally, we observed higher concentrations in 2010 compared to 2002 (albeit statistically insignificant) for PFHxS in Jämtland, while PFNA, PFDA, PFUnDA, PFDoDA, and PFTrDA showed no difference at all.
Collapse
Affiliation(s)
- Anna Maria Roos
- Greenland Institute of Natural Resources, PO Box 570, 3900, Nuuk, Greenland.
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, PO Box 50007, SE-10405, Stockholm, Sweden.
| | - Mary Gamberg
- Gamberg Consulting, Box 11267, Yukon, Y1A 6N5, Whitehorse, Canada
| | - Derek Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario, L7S 1A1, Canada
| | - Anna Kärrman
- MTM Research Centre, School of Science and Technology, Örebro University, SE-70182, Örebro, Sweden
| | - Pernilla Carlsson
- Norwegian Institute for Water Research (NIVA), Fram Centre, Hjalmar Johansens gate 14, 9007, Tromsø, Norway
| | - Christine Cuyler
- Greenland Institute of Natural Resources, PO Box 570, 3900, Nuuk, Greenland
| | - Ylva Lind
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, PO Box 50007, SE-10405, Stockholm, Sweden
| | - Rossana Bossi
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Frank Rigét
- Greenland Institute of Natural Resources, PO Box 570, 3900, Nuuk, Greenland
- Danish Centre for Environment and Energy, Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| |
Collapse
|
27
|
Monclús L, Løseth ME, Dahlberg Persson MJ, Eulaers I, Kleven O, Covaci A, Benskin JP, Awad R, Zubrod JP, Schulz R, Wabakken P, Heggøy O, Øien IJ, Steinsvåg MJ, Jaspers VLB, Nygård T. Legacy and emerging organohalogenated compounds in feathers of Eurasian eagle-owls (Bubo bubo) in Norway: Spatiotemporal variations and associations with dietary proxies (δ 13C and δ 15N). ENVIRONMENTAL RESEARCH 2022; 204:112372. [PMID: 34774833 DOI: 10.1016/j.envres.2021.112372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of organohalogenated compounds (OHCs) in wildlife has received considerable attention over the last decades. Among the matrices used for OHCs biomonitoring, feathers are particularly useful as they can be collected in a minimally or non-invasive manner. In this study, concentrations of various legacy OHCs -polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs)-, as well as emerging OHCs -per- and polyfluoroalkyl substances (PFAS) and organophosphate ester flame retardants (OPEs)- were determined in feathers of 72 Eurasian eagle-owls (Bubo bubo) from Norway, with the goal of studying spatiotemporal variation using a non-invasive approach. Molted feathers were collected at nest sites from northern, central and southern Norway across four summers (2013-2016). Additionally, two museum-archived feathers from 1979 to 1989 were included. Stable carbon (δ13C) and nitrogen isotopes (δ15N) were used as dietary proxies. In total, 11 PFAS (sum range 8.25-215.90 ng g-1), 15 PCBs (4.19-430.01 ng g-1), 6 OCPs (1.48-220.94 ng g-1), 5 PBDEs (0.21-5.32 ng g-1) and 3 OPEs (4.49-222.21 ng g-1) were quantified. While we observed large variation in the values of both stable isotopes, suggesting a diverse diet of the eagle-owls, only δ13C seemed to explain variation in PFAS concentrations. Geographic area and year were influential factors for δ15N and δ13C. Considerable spatial variation was observed in PFAS levels, with the southern area showing higher levels compared to northern and central Norway. For the rest of OHCs, we observed between-year variations; sum concentrations of PCBs, OCPs, PBDEs and OPEs reached a maximum in 2015 and 2016. Concentrations from 1979 to 1989 were within the ranges observed between 2013 and 2016. Overall, our data indicate high levels of legacy and emerging OHCs in a top predator in Norway, further highlighting the risk posed by OHCs to wildlife.
Collapse
Affiliation(s)
- Laura Monclús
- Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491, Trondheim, Norway.
| | - Mari Engvig Løseth
- Norwegian Geotechnical Institute (NGI), Sognsveien 72, 0855, Oslo, Norway
| | - Marie J Dahlberg Persson
- Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491, Trondheim, Norway
| | - Igor Eulaers
- Norwegian Polar Institute, FRAM Centre, 9296, Tromsø, Norway
| | - Oddmund Kleven
- Norwegian Institute for Nature Research (NINA), Høgskoleringen 9, 7034, Trondheim, Norway
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jonathan P Benskin
- Stockholm University, Department of Environmental Science, SE-106 91, Stockholm, Sweden
| | - Raed Awad
- Stockholm University, Department of Environmental Science, SE-106 91, Stockholm, Sweden; IVL Swedish Environmental Research Institute, 10031, Stockholm, Sweden
| | - Jochen P Zubrod
- University of Koblenz-Landau, IES Landau, Fortstrasse 7, 76829, Landau, Germany; Zubrod Environmental Data Science, Friesenstrasse 20, 76829, Landau, Germany
| | - Ralf Schulz
- University of Koblenz-Landau, IES Landau, Fortstrasse 7, 76829, Landau, Germany
| | - Petter Wabakken
- Faculty of Applied Ecology, Agricultural Sciences and Biochemistry, Inland Norway University of Applied Sciences, Evenstad, 2480, Koppang, Norway
| | - Oddvar Heggøy
- BirdLife Norway, Sandgata 30b, 7012, Trondheim, Norway; University Museum of Bergen, University of Bergen, 5020, Bergen, Norway
| | | | - Magnus Johan Steinsvåg
- Department of Environmental Affairs, County Governor of Vestland, 6863, Leikanger, Norway
| | - Veerle L B Jaspers
- Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491, Trondheim, Norway
| | - Torgeir Nygård
- Norwegian Institute for Nature Research (NINA), Høgskoleringen 9, 7034, Trondheim, Norway
| |
Collapse
|
28
|
Cormier B, Borchet F, Kärrman A, Szot M, Yeung LWY, Keiter SH. Sorption and desorption kinetics of PFOS to pristine microplastic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4497-4507. [PMID: 34409531 PMCID: PMC8741692 DOI: 10.1007/s11356-021-15923-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/07/2021] [Indexed: 05/23/2023]
Abstract
The sorption processes of persistent organic pollutants on microplastics particles are poorly understood. Therefore, the present study investigated the sorption processes of perfluorooctanesulfonate (PFOS) on polyethylene (PE) microplastic particles (MPs) which are representing a prominent environmental pollutant and one of the most abundant microplastic polymers in the aquatic environment, respectively. The focus was set on the investigation of the impact of the particle size on PFOS sorption using four different PE MPs size ranges. The sorption kinetics for 6 months was studied with one selected size range of PE MPs. Besides, the desorption of PFOS from PE MPs under simulated digestive conditions was carried out by using artificial gut fluid mimicking the intestinal juice of fish. The investigation of the size effects of particles over 6 months demonstrated a linear increase of PFOS concentration sorbed onto PE with a decrease of the particle size. Thus, our findings implicate efficient sorption of PFOS onto PE MPs of different sizes. The results showed that PFOS desorbed from the PE MPs into the artificial gut fluid with a rate of 70 to 80%. Besides, a longer exposure of PE MPs to PFOS leads to a higher concentration adsorbed by PE MPs, which may favor the ingestion of higher concentration of PFOS, and thus represents a higher risk to transfer relevant concentrations of PFOS during digestion.
Collapse
Affiliation(s)
- Bettie Cormier
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82, Örebro, Sweden.
- Bordeaux University, EPOC, UMR CNRS 5805, Avenue des Facultés, 33400, Talence, France.
| | - Flora Borchet
- RWTH Aachen, Institut für Umweltforschung (Biologie V), Worringerweg 1, 52074, Aachen, Germany
| | - Anna Kärrman
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82, Örebro, Sweden
| | - Marta Szot
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82, Örebro, Sweden
| | - Leo W Y Yeung
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82, Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82, Örebro, Sweden.
| |
Collapse
|
29
|
Cui W, Tan Z, Chen J, Wu H, Geng Q, Guo M, Zhai Y. Uptake, Tissue Distribution, and Elimination of 8:2 Polyfluoroalkyl Phosphate Diesters in Mytilus galloprovincialis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1992-2004. [PMID: 33818814 DOI: 10.1002/etc.5060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/27/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Although the distribution of 8:2 polyfluoroalkyl phosphate diester (8:2 diPAP) in aquatic environments has been reported, details on its uptake, tissue specificity, and elimination in bivalve mollusks remain to be clarified. The present study is the first report on the accumulation and elimination of 8:2 diPAP in mussels (Mytilus galloprovincialis). The tissue-specific accumulation and depuration of 8:2 diPAP and its metabolites were investigated via semistatic seawater exposure (8:2 diPAP at a nominal concentration of 10 μg/L), through water-borne exposure with static daily renewal over a 72-h exposure period and a 360-h depuration period. The digestive gland was found to be the target organ where accumulation and biotransformation primarily occur. The bioaccumulation factor values (mL/g dry wt) in different organs were in the following order: digestive gland (1249) > adductor muscle (315) > gills (289) > gonad (82.9) > mantle (33.0). Moreover, the distribution of 8:2 diPAP among tissues may be related to the total protein content. The 8:2 diPAP tended to be excreted in feces. The compounds 8:2 fluorotelomer carboxylic acid, 8:2 fluorotelomer unsaturated carboxylic acid, 7:3 fluorotelomer carboxylic acid, perfluorooctanoic acid, and perfluoroheptanoic acid were detected and quantified as phase I metabolites, and the concentration of all phase I metabolites relative to the 8:2 diPAP concentration (72 h) was 0.304 mol%. A phase II metabolite, 8:2 fluorotelomer alcohol conjugated with sulfate, was detected but not quantitated in the digestive gland. A biotransformation pathway of 8:2 diPAP in M. galloprovincialis was proposed on the basis of the results obtained in the present study and previous studies. These findings improve our understanding of the accumulation of perfluorocarboxylic acids in bivalve mollusks. Environ Toxicol Chem 2021;40:1992-2004. © 2021 SETAC.
Collapse
Affiliation(s)
- Wenjie Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhijun Tan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiaqi Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Haiyan Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Qianqian Geng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Mengmeng Guo
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yuxiu Zhai
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
30
|
Power A, White P, McHugh B, Berrow S, Schlingermann M, McKeown A, Cabot D, Tannian M, Newton S, McGovern E, Murphy S, Crowley D, O'Hea L, Boyle B, O'Connor I. Persistent pollutants in fresh and abandoned eggs of Common Tern (Sterna hirundo) and Arctic Tern (Sterna paradisaea) in Ireland. MARINE POLLUTION BULLETIN 2021; 168:112400. [PMID: 33957494 DOI: 10.1016/j.marpolbul.2021.112400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Higher levels of persistent pollutants (Σ16PCB, Σ6PBDE, ΣHCH, ΣDDT, ΣCHL) were detected in fresh eggs of Common Terns Sterna hirundo from Rockabill Island near Dublin (Ireland's industrialised capital city) compared to Common and Arctic Terns S. paradisaea from Ireland's west coast. Intra-clutch variation of pollutant levels in Common Terns was shown to be low, providing further evidence that random sampling of one egg may be an appropriate sampling strategy. Significant differences in pollutant concentrations were detected between fresh and abandoned eggs on Rockabill. However, abandoned eggs can still provide a useful approximation of pollutants in bird eggs if non-destructive sampling is preferred. Levels of p,p' -DDE in tern eggs have decreased over time according to this study, in concurrence with worldwide trends. Results in this study fall below toxicological thresholds for birds and OSPARs EcoQO thresholds set for Common Tern eggs, except for mercury and HCH in the west coast.
Collapse
Affiliation(s)
- Andrew Power
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Co. Galway, Ireland; Marine Institute, Rinville, Oranmore, Co. Galway, Ireland.
| | - Philip White
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Co. Galway, Ireland
| | - Brendan McHugh
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - Simon Berrow
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Co. Galway, Ireland
| | - Moira Schlingermann
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Co. Galway, Ireland
| | - Aaron McKeown
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - David Cabot
- School of Biological Earth and Environmental Sciences, University College Cork, Ireland
| | | | | | - Evin McGovern
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - Sinéad Murphy
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Co. Galway, Ireland
| | - Denis Crowley
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - Linda O'Hea
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - Brian Boyle
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - Ian O'Connor
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Co. Galway, Ireland
| |
Collapse
|
31
|
Sun K, Song Y, He F, Jing M, Tang J, Liu R. A review of human and animals exposure to polycyclic aromatic hydrocarbons: Health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145403. [PMID: 33582342 DOI: 10.1016/j.scitotenv.2021.145403] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the most widely distributed persistent organic pollutants (POPs) in the environmental media. PAHs have been widely concerned due to their significant health risk and adverse effects to human and animals. Currently, the main sources of PAHs in the environment are the incomplete combustion of fossil fuels, as well as municipal waste incineration and agricultural non-surface source emissions. In this work, the scope of our attention includes 16 typical PAHs themselves without involving their metabolites and industrial by-products. Exposure of human and animals to PAHs can lead to a variety of adverse effects, including carcinogenicity and teratogenicity, genotoxicity, reproductive- and endocrine-disrupting effects, immunotoxicity and neurotoxicity, the type and severity of which depend on a variety of factors. On the other hand, the regulatory effect of microplastics (MPs) on the bio-toxicity and bioaccumulation capacity of PAHs has now gradually attracted attention. We critically reviewed the adsorption capacity and mechanisms of MPs on PAHs as well as the effects of MPs on PAHs toxicity, thus highlighting the importance of paying attention to the joint bio-toxicity caused by PAHs-MPs interactions. In addition, due to the extensive nature of the common exposure pathway of PAHs and ultraviolet ray, an accurate understanding of biological processes exposed to both PAHs and UV light is necessary to develop effective protective strategies. Finally, based on the above critical review, we highlighted the research gaps and pointed out the priority of further studies.
Collapse
Affiliation(s)
- Kailun Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yan Song
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong Province 250022, China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Mingyang Jing
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
32
|
González-Rubio S, Ballesteros-Gómez A, Asimakopoulos AG, Jaspers VLB. A review on contaminants of emerging concern in European raptors (2002-2020). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143337. [PMID: 33190891 DOI: 10.1016/j.scitotenv.2020.143337] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 05/09/2023]
Abstract
Raptors (birds of prey and owls) have been widely used as suitable bioindicators of environmental pollution. They occupy the highest trophic positions in their food chains and are documented to bioaccumulate high concentrations of persistent pollutants such as toxic metals and legacy persistent organic pollutants (POPs).Whereas raptors played a critical role in developing awareness of and policy for chemical pollution, they have thus far played a much smaller role in current research on contaminants of emerging concern (CECs). Given the critical knowledge obtained from monitoring 'legacy contaminants' in raptors, more information on the levels and effects of CECs on raptors is urgently needed. This study critically reviews studies on raptors from Europe reporting the occurrence of CECs with focus on the investigated species, the sampled matrices, and the bioanalytical methods applied. Based on this, we aimed to identify future needs for monitoring CECs in Europe. Perfluoroalkyl substances (PFASs), novel flame retardants (NFRs), and to a lesser extent UV-filters, neonicotinoids, chlorinated paraffins, parabens and bisphenols have been reported in European raptors. White-tailed Eagle (Haliaeetus albicilla), Peregrine falcon (Falco peregrinus) and Northern goshawk (Accipiter gentilis) were the most frequently studied raptor species. Among matrices, eggs, feathers and plasma were the most widely employed, although the potential role of the preen gland as an excretory organ for CECs has recently been proposed. This review highlights the following research priorities for pollution research on raptors in Europe: 1) studies covering all the main classes of CECs; 2) research in other European regions (mainly East Europe); 3) identification of the most suitable matrices and species for the analysis of different CECs; and 4) the application of alternative sample treatment strategies (e.g. QuEChERS or pressurized liquid extraction) is still limited and conventional solvent-extraction is the preferred choice.
Collapse
Affiliation(s)
- Soledad González-Rubio
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Annex Building, Campus of Rabanales, University of Córdoba, 14071 Córdoba, Spain; Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Ana Ballesteros-Gómez
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Annex Building, Campus of Rabanales, University of Córdoba, 14071 Córdoba, Spain
| | - Alexandros G Asimakopoulos
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| |
Collapse
|
33
|
Dykstra CR, Route WT, Williams KA. Trends and Patterns of Perfluoroalkyl Substances in Blood Plasma Samples of Bald Eagle Nestlings in Wisconsin and Minnesota, USA. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:754-766. [PMID: 32866326 PMCID: PMC7984356 DOI: 10.1002/etc.4864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/10/2020] [Accepted: 08/24/2020] [Indexed: 05/06/2023]
Abstract
We analyzed concentrations and trends of perfluoroalkyl substances (PFAS) in blood plasma samples of bald eagle (Haliaeetus leucocephalus) nestlings at 6 study areas in the upper Midwest of the United States, 2006 to 2015, and long-term trends at 2 Lake Superior (USA/Canada) sites, 1995 to 2015. Nestling blood plasma concentrations of the sum of 15 PFAS analytes (∑PFAS) differed among study areas and were highest at the 3 industrialized river sites: pools 3 and 4 of the Mississippi River (pools 3 + 4; geometric mean [GM] = 754 μg/L; range = 633-2930), the Mississippi National River and Recreation Area (GM = 687 μg/L; range = 24-7371), and the lower St. Croix National Scenic Riverway (GM = 546 μg/L; range = 20-2400). Temporal trends in ∑PFAS in nestling plasma differed among study areas; concentrations decreased at pools 3 + 4, Mississippi National River and Recreation Area, and lower St. Croix National Scenic Riverway, but not at the most remote sites, the upper St. Croix River and Lake Superior. Overall, perfluorooctanesulfonate (PFOS) was the most abundant analyte at all study areas, and perfluorodecanesulfonate (PFDS) the second most abundant at industrialized river sites although not at Lake Superior; concentrations of both these analytes declined from 2006 to 2015 over the study area. In addition, nestling age significantly influenced plasma concentrations of ∑PFAS and 7 of the 12 analytes. For these analytes, concentrations increased by 1 to 2%/d as nestlings grew, indicating that age should be considered when using nestling plasma to assess PFAS. Environ Toxicol Chem 2021;40:754-766. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - William T. Route
- US National Park Service, Great Lakes Inventory and Monitoring NetworkAshlandWisconsinUSA
| | | |
Collapse
|
34
|
Szabo D, Lavers JL, Shimeta J, Green MP, Mulder RA, Clarke BO. Correlations between Per- and Polyfluoroalkyl Substances and Body Morphometrics in Fledgling Shearwaters Impacted by Plastic Consumption from a Remote Pacific Island. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:799-810. [PMID: 33170512 DOI: 10.1002/etc.4924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/08/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
We investigated the concentrations of 45 per- and polyfluoroalkyl substances (PFASs) in fledgling flesh-footed shearwater (Ardenna carneipes; n = 33) and wedge-tailed shearwater (A. pacifica; n = 9) livers via liquid chromatography-tandem mass spectrometry and their relationship to body morphometrics and ingested plastic mass recorded in 2019 on Lord Howe Island (NSW, Australia). Sixteen PFASs were detected, of which perfluorooctanesulfonate (PFOS) was the dominant compound, detected in 100% of birds (1.34-13.4 ng/g wet wt). Long-chain perfluorocarboxylic acids, including perfluorodecanoic acid (PFDA; <0.04-0.79 ng/g wet wt) and perfluorotridecanoic acid (PFTrDA; <0.05-1.6 ng/g wet wt) were detected in >50% of birds. There was a positive correlation between PFDA and PFTrDA concentrations and wing chord length (Rs = 0.36, p = 0.0204; Rs = 0.44, p = 0.0037, respectively), and between PFDA concentrations and total body mass (Rs = 0.33, p = 0.032), suggesting that these compounds may impact shearwater fledgling morphometrics. Plastic was present in the intestinal tract of 79% of individuals (<7.6 g), although there was no correlation between PFAS concentrations and plastic mass, indicating that ingested plastic is not the likely primary exposure source. The widespread occurrence of PFASs in fledgling marine birds from a relatively pristine location in the Southern Hemisphere suggests that further studies in adult shearwaters and other marine birds are warranted to investigate whether there are any long-term physiological effects on bird species. Environ Toxicol Chem 2021;40:799-810. © 2020 SETAC.
Collapse
Affiliation(s)
- Drew Szabo
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, Australia
| | - Jennifer L Lavers
- Institute for Marine and Antarctic Studies, University of Tasmania, Tasmania, Australia
| | - Jeff Shimeta
- School of Science, RMIT University, Victoria, Australia
| | - Mark P Green
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Raoul A Mulder
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Pereira MG, Lacorte S, Walker LA, Shore RF. Contrasting long term temporal trends in perfluoroalkyl substances (PFAS) in eggs of the northern gannet (Morus bassanus) from two UK colonies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141900. [PMID: 32916484 DOI: 10.1016/j.scitotenv.2020.141900] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 05/26/2023]
Abstract
We compared long-term (1977 to 2014) trends in concentrations of PFAS in eggs of the marine sentinel species, the Northern gannet (Morus bassanus), from the Irish Sea (Ailsa Craig) and the North Sea (Bass Rock). Concentrations of eight perfluorinated carboxylic acids (PFCAs) and three perfluorinated sulfonates (PFSAs) were determined and we report the first dataset on PFAS in UK seabirds before and after the PFOS ban. There were no significant differences in ∑PFAS or ∑PFSAs between both colonies. The ∑PFSAs dominated the PFAS profile (>80%); PFOS accounted for the majority of the PFSAs (98-99%). In contrast, ∑PFCAs concentrations were slightly but significantly higher in eggs from Ailsa Craig than in those from Bass Rock. The most abundant PFCAs were perfluorotridecanoate (PFTriDA) and perfluoroundecanoate (PFUnA) which, together with PFOA, comprised around 90% of the ∑PFCAs. The ∑PFSAs and ∑PFCAs had very different temporal trends. ∑PFSAs concentrations in eggs from both colonies increased significantly in the earlier part of the study but later declined significantly, demonstrating the effectiveness of the phasing out of PFOS production in the 2000s. In contrast, ∑PFCAs concentrations in eggs were constant and low in the 1970s and 1980s, suggesting minimal environmental contamination, but residues subsequently increased significantly in both colonies until the end of the study. This increase appeared driven by rises in long chain compounds, namely the odd chain numbered PFTriDA and PFUnA. PFOA, had a very different temporal trend from the other dominant acids, with an earlier rise in concentrations followed by a decline in the last 15 years in Ailsa Craig; later temporal trends in Bass Rock eggs were unclear. Although eggs from both colonies contained relatively low concentrations of PFAS, the majority had PFOS residues that exceeded a suggested Predicted No Effect Concentration and ~ 10% of the eggs exceeded a suggested Lowest-Observable-Adverse-Effect.
Collapse
Affiliation(s)
- M Glória Pereira
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK.
| | - Silvia Lacorte
- Department of Environmental Chemistry, Institute of Environmental Diagnostics and Water Studies, CSIC, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Lee A Walker
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| | - Richard F Shore
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| |
Collapse
|
36
|
YE T, CHEN Y, FU J, ZHANG A, FU J. [Perfluoroalkyl and polyfluoroalkyl substances in eggs: analytical methods and their application as pollutant bioindicator]. Se Pu 2021; 39:184-196. [PMID: 34227351 PMCID: PMC9274833 DOI: 10.3724/sp.j.1123.2020.09023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Indexed: 11/25/2022] Open
Abstract
Perfluoroalkyl and polyfluoroalkylated substances (PFASs) are environmentally persistent and biomagnified along food chains. They have been widely detected globally, even in the human body, and their potential toxicity has attracted great attention. Eggs are the origin of new life of ovipara and are rich in nutrients, thus they serve as one of the main protein sources for humans. Therefore, the level of pollutants in eggs can affect the reproduction of ovipara, and it is also related to human health by food intake. In recent years, poultry egg samples have been widely used in the assessment of biological and ecological pollution as a non-invasive biota matrix. At the same time, recent studies have used eggs to evaluate the developmental toxicity and associated health risks based on the pollutant levels in egg samples. In this study, the methods of sample pretreatment and instrumental detection of PFASs for egg samples are summarized. In addition, the application of eggs as a pollutants bioindicator of PFASs contamination has been discussed.
Collapse
|
37
|
Islam N, Garcia da Fonseca T, Vilke J, Gonçalves JM, Pedro P, Keiter S, Cunha SC, Fernandes JO, Bebianno MJ. Perfluorooctane sulfonic acid (PFOS) adsorbed to polyethylene microplastics: Accumulation and ecotoxicological effects in the clam Scrobicularia plana. MARINE ENVIRONMENTAL RESEARCH 2021; 164:105249. [PMID: 33477023 DOI: 10.1016/j.marenvres.2020.105249] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Microplastics are widespread in the marine environment, whereby the uptake of these tiny particles by organisms, can cause adverse biological responses. Plastic debris also act as a vector of many contaminants, herein depending on type, size, shape and chemical properties, possibly intensifying their effects on marine organisms. This study aimed to assess the accumulation and potential toxicity of different sizes of microplastics with and without adsorbed perfluorooctane sulfonic acid (PFOS) in the clam Scrobicularia plana. Clams were exposed to low-density polyethylene microplastics (1 mg L-1) of two different sizes (4-6 and 20-25 μm) virgin and contaminated with PFOS (55.7 ± 5.3 and 46.1 ± 2.9 μg g-1 respectively) over 14 days. Microplastic ingestion, PFOS accumulation and filtration rate were determined along with a multi biomarker approach to assess the biological effects of microplastics ingestion. Biomarkers include oxidative stress (superoxide dismutase, catalase, glutathione peroxidases), biotransformation enzymes (glutathione-S-transferases activity), neurotoxicity (acetylcholinesterase activity), oxidative damage and apoptosis. Microplastics ingestion and PFOS accumulation was microplastic size dependent but not PFOS dependent and filtration rate was reduced at the end of the exposure. Reactive oxygen species in gills and digestive gland were generated as a result of exposure to both types of microplastics, confirming the disturbance of the antioxidant system. Larger virgin microparticles lead to stronger impacts, when compared to smaller ones which was also supported by the Integrated Biomarker Responses index calculated for both tissues. An anti-apoptotic response was detected in digestive glands under exposure to any of the MPs treatments.
Collapse
Affiliation(s)
- Naimul Islam
- Centre for Marine and Environmental Research (CIMA), Universidade do Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - Tainá Garcia da Fonseca
- Centre for Marine and Environmental Research (CIMA), Universidade do Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - Juliano Vilke
- Centre for Marine and Environmental Research (CIMA), Universidade do Algarve, Campus de Gambelas, 8000-139, Faro, Portugal; Fishery Engineering Department, Santa Catarina State University, Laguna, 88790-000, Brazil
| | - Joanna M Gonçalves
- Centre for Marine and Environmental Research (CIMA), Universidade do Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - Paulo Pedro
- Laboratório de Análises Químicas, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - Steffen Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82, Örebro, Sweden
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - M J Bebianno
- Centre for Marine and Environmental Research (CIMA), Universidade do Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| |
Collapse
|
38
|
Qian L, Kopinke FD, Georgi A. Photodegradation of Perfluorooctanesulfonic Acid on Fe-Zeolites in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:614-622. [PMID: 33331783 DOI: 10.1021/acs.est.0c04558] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) decomposition in an aqueous environment remains a huge challenge because of its extreme chemical and biological inertness even when compared with other per- and polyfluoroalkyl substances (PFAS). In this work, we demonstrate for the first time a successful photochemical PFOS degradation by irradiation with 254 nm ultraviolet (UV) light after adsorption on μm-sized Fe(III)-loaded zeolites under ambient conditions with oxygen (O2) as the terminal oxidant. Twenty μM PFOS loaded on 0.5 g L-1 Fe-zeolites in aqueous suspension was degraded up to 99% within 96 h under acidic conditions (pH ≤ 5.5) in the presence of oxygen. Besides fluoride and sulfate, short-chain perfluorinated carboxylic acids (PFCAs) were identified and quantified as products. In addition, the effects of initial pH, catalyst dosages, and operation temperature on the degradation of PFOS were investigated. We also successfully applied the system to real groundwater samples where trace PFOS was present. Our results indicate that PFOS degradation is initiated by electron transfer from sulfonate to iron. The presented experimental study offers an option for a novel water remediation technology, comprising first a zeolite-based adsorption step followed by a step for photochemical regeneration of the adsorbent.
Collapse
Affiliation(s)
- Lin Qian
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
| | - Frank-Dieter Kopinke
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
| | - Anett Georgi
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
| |
Collapse
|
39
|
Caron-Beaudoin É, Ayotte P, Blanchette C, Muckle G, Avard E, Ricard S, Lemire M. Perfluoroalkyl acids in pregnant women from Nunavik (Quebec, Canada): Trends in exposure and associations with country foods consumption. ENVIRONMENT INTERNATIONAL 2020; 145:106169. [PMID: 33041046 DOI: 10.1016/j.envint.2020.106169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Perfluoroalkyl acids (PFAAs) are persistent and ubiquitous environmental contaminants that potentially disrupt endocrine system functions. While some PFAAs (perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA)) are regulated, currently used fluorotelomer alcohols (FTOHs) can be transported to the Arctic and are degraded in a number of PFAAs which biomagnify in Arctic wildlife (e.g. perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUdA)). OBJECTIVES From 2004 to 2017, 279 pregnant Inuit women were recruited as part of biomonitoring projects in Nunavik. Our goal was to evaluate: (i) time-trends in plasma/serum PFAAs levels in pregnant Nunavimmiut women between 2004 and 2017; (ii) compare plasma/serum PFAAs levels in Nunavimmiut women in 2016-2017 to those measured in women of childbearing age in the Canadian Health Measure Survey (CHMS); and (iii) evaluate the associations of PFAAs levels with the consumption of country foods and pregnancy and maternal characteristics during pregnancy in the 97 participants recruited in 2016-2017. METHODS Individual blood sample were collected for serum or plasma PFAAs (PFOS, PFOA, pentafluorobenzoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorobutanesulfonic acid (PFBS), perfluorohexane-1-sulfonic acid (PFHxS), PFNA, PFDA, PFUdA) analyses. Socio-demographic data, pregnancy and maternal characteristics and country foods consumption were documented using a questionnaire. Omega-3 and -6 polyunsaturated fatty acids (PUFA) were measured in red blood cell membranes and their ratio used as a biomarker of marine country foods consumption. Time-trends in PFAAs levels were evaluated using ANCOVA models adjusted for relevant co-variables. Serum/plasma levels of PFAAs in the 97 pregnant women aged 16 to 40 years old and recruited in 2016-2017 were compared to those measured in women aged 18 to 40 years old from the CHMS cycle 5 (2016-2017) using the geometric means (GM) and 95% confidence intervals (95% CI). Multivariate regression analyses were performed to examine associations between concentrations of PFAAs and country foods consumption data. RESULTS Statistically-significant downward time trends were noted for concentrations of PFOS, PFOA and PFHxS in pregnant Nunavik women between 2004 and 2017. Conversely, between 2011 and 2016-2017, PFNA, PFDA and PFUdA maternal serum levels increased by 19, 13 and 21% respectively. Among participants in 2016-2017, mean concentrations for PFNA (GM: 2.4 μg/L), PFDA (0.53 μg/L) and PFUdA (0.61 μg/L) were higher than those measured in women aged 18-40 years old in the Cycle 5 (2016-2017) of the CHMS. PFOA (0.53 μg/L) and PFHxS (0.26 μg/L) were lower than in CHMS, whereas PFBA, PFHxA and PFBS were not detected in 2016-2017. Ratios of serum/plasma levels of PFNA/PFOA, PFNA/PFOS, PFNA/PFHxS and PFUdA/PFDA were significantly higher in the 97 pregnant women from Nunavik recruited in 2016-2017 compared to CHMS, highlighting their distinct exposure profile. In multivariate models, PFHxS, PFOS, PFNA, PFDA and PFUdA levels in 2016-2017 were strongly associated with the omega-3/omega-6 PUFA ratio, indicating a positive association between marine country foods consumption and higher exposure to PFAAs. CONCLUSIONS The exposure of pregnant women to long-chain PFAAs (PFNA, PFDA and PFUdA) increased from 2004 to 2017 in Nunavik. Associations noted between PFAAs levels and the omega-3/omega-6 ratio highlights the importance of implementing additional strict regulations on PFAAs and their precursors to protect the high nutritional quality and cultural importance of country foods in Nunavik.
Collapse
Affiliation(s)
- Élyse Caron-Beaudoin
- Department of Health and Society and Department of Environmental and Physical Sciences, University of Toronto Scarborough, Toronto, ON, Canada; Centre for Clinical Epidemiology and Evaluation, VCH Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada; Département de médecine sociale et préventive, Université Laval, Québec, QC, Canada; Centre de toxicologie du Québec, Institut national de santé publique du Québec, Québec, QC, Canada
| | - Caty Blanchette
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada
| | - Gina Muckle
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada; École de psychologie, Université Laval, Québec, QC, Canada
| | - Ellen Avard
- Nunavik Research Centre, Makivik Corporation, Kuujjuaq, QC, Canada
| | - Sylvie Ricard
- Nunavik Regional Board of Health and Social Services, Kuujjuaq, QC, Canada
| | - Mélanie Lemire
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada; Département de médecine sociale et préventive, Université Laval, Québec, QC, Canada.
| |
Collapse
|
40
|
Robuck AR, Cantwell MG, McCord J, Addison LM, Pfohl M, Strynar MJ, McKinney R, Katz DR, Wiley DN, Lohmann R. Legacy and Novel Per- and Polyfluoroalkyl Substances in Juvenile Seabirds from the U.S. Atlantic Coast. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12938-12948. [PMID: 32894676 PMCID: PMC7700771 DOI: 10.1021/acs.est.0c01951] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are anthropogenic, globally distributed chemicals. Legacy PFAS, including perfluorooctane sulfonate (PFOS), have been regularly detected in marine fauna but little is known about their current levels or the presence of novel PFAS in seabirds. We measured 36 emerging and legacy PFAS in livers from 31 juvenile seabirds from Massachusetts Bay, Narragansett Bay, and the Cape Fear River Estuary (CFRE), United States. PFOS was the major legacy perfluoroalkyl acid present, making up 58% of concentrations observed across all habitats (range: 11-280 ng/g). Novel PFAS were confirmed in chicks hatched downstream of a fluoropolymer production site in the CFRE: a perfluorinated ether sulfonic acid (Nafion byproduct 2; range: 1-110 ng/g) and two perfluorinated ether carboxylic acids (PFO4DA and PFO5DoDA; PFO5DoDA range: 5-30 ng/g). PFOS was inversely associated with phospholipid content in livers from CFRE and Massachusetts Bay individuals, while δ 13C, an indicator of marine versus terrestrial foraging, was positively correlated with some long-chain PFAS in CFRE chick livers. There is also an indication that seabird phospholipid dynamics are negatively impacted by PFAS, which should be further explored given the importance of lipids for seabirds.
Collapse
Affiliation(s)
- Anna R. Robuck
- University of Rhode Island Graduate School of Oceanography, Narragansett, RI 02882
| | - Mark G. Cantwell
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882
| | - James McCord
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Durham, NC 27709
| | | | - Marisa Pfohl
- University of Rhode Island, Biomedical and Pharmaceutical Sciences, Kingston, RI 02881
| | - Mark J. Strynar
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Durham, NC 27709
| | - Richard McKinney
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882
| | - David R. Katz
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882
| | - David N. Wiley
- National Oceanic and Atmospheric Administration Stellwagen Bank National Marine Sanctuary, Scituate, MA 02066 0
| | - Rainer Lohmann
- University of Rhode Island Graduate School of Oceanography, Narragansett, RI 02882
| |
Collapse
|
41
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Ceccatelli S, Cravedi J, Halldorsson TI, Haug LS, Johansson N, Knutsen HK, Rose M, Roudot A, Van Loveren H, Vollmer G, Mackay K, Riolo F, Schwerdtle T. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J 2020; 18:e06223. [PMID: 32994824 PMCID: PMC7507523 DOI: 10.2903/j.efsa.2020.6223] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluoroalkyl substances (PFASs) in food. Based on several similar effects in animals, toxicokinetics and observed concentrations in human blood, the CONTAM Panel decided to perform the assessment for the sum of four PFASs: PFOA, PFNA, PFHxS and PFOS. These made up half of the lower bound (LB) exposure to those PFASs with available occurrence data, the remaining contribution being primarily from PFASs with short half-lives. Equal potencies were assumed for the four PFASs included in the assessment. The mean LB exposure in adolescents and adult age groups ranged from 3 to 22, the 95th percentile from 9 to 70 ng/kg body weight (bw) per week. Toddlers and 'other children' showed a twofold higher exposure. Upper bound exposure was 4- to 49-fold higher than LB levels, but the latter were considered more reliable. 'Fish meat', 'Fruit and fruit products' and 'Eggs and egg products' contributed most to the exposure. Based on available studies in animals and humans, effects on the immune system were considered the most critical for the risk assessment. From a human study, a lowest BMDL 10 of 17.5 ng/mL for the sum of the four PFASs in serum was identified for 1-year-old children. Using PBPK modelling, this serum level of 17.5 ng/mL in children was estimated to correspond to long-term maternal exposure of 0.63 ng/kg bw per day. Since accumulation over time is important, a tolerable weekly intake (TWI) of 4.4 ng/kg bw per week was established. This TWI also protects against other potential adverse effects observed in humans. Based on the estimated LB exposure, but also reported serum levels, the CONTAM Panel concluded that parts of the European population exceed this TWI, which is of concern.
Collapse
|
42
|
O'Donovan S, Mestre NC, Abel S, Fonseca TG, Carteny CC, Willems T, Prinsen E, Cormier B, Keiter SS, Bebianno MJ. Effects of the UV filter, oxybenzone, adsorbed to microplastics in the clam Scrobicularia plana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020. [PMID: 32446057 DOI: 10.3389/fmars.2018.00143] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microplastics (MPs) lipophilic nature and widespread distribution raises concerns due to their increasing presence in the marine environment and their ability to adsorb organic contaminants, as being potential vehicles for transport and potential source of accumulation of organic contaminants by marine organisms. The organic UV-filter, oxybenzone (BP-3) is a constituent of sunscreens and personal care products, entering the marine environment either by direct contact with swimmers or by wastewater effluents. In this study the ecotoxicological effects of exposure to low-density polyethylene (LDPE) microplastics with and without adsorbed BP-3 were investigated in the peppery furrow shell clam, Scrobicularia plana. LDPE microplastics with a size range of 11-13 μm were previously contaminated with an environmentally relevant concentration of BP-3 (82 ng g-1). S. plana individuals were exposed to a concentration of 1 mg L-1 of microplastics with and without BP-3 adsorbed in a water-sediment exposure system for 14 days. Clams were sampled at the beginning of the experiment and after 3, 7, and 14 days of exposure. Multiple biomarkers were analysed to investigate the effect of exposure in different clam tissues, gills, digestive gland, and haemolymph. Antioxidant (superoxide dismutase, catalase, glutathione peroxidase) and biotransformation (glutathione-S-transferases) enzyme activities, oxidative damage (lipid peroxidation), genotoxicity (single and double strand DNA breaks), and neurotoxicity (acetylcholinesterase activity) were assessed along with two biomarker indexes to assess the overall health status. Results indicate that after 7 days of exposure MPs with adsorbed BP-3 induced oxidative stress and damage, when compared to exposure to virgin MPs and control treatments. Neurotoxic effects were also noted in MPs with adsorbed BP-3 after 14 days exposure, while some evidence points to increased genotoxicity with exposure time. Overall results indicate that gills were more affected by exposure to microplastics than digestive gland and that biomarkers alterations are apparently more related to the toxicity of BP-3 adsorbed than virgin MPs alone.
Collapse
Affiliation(s)
- Sarit O'Donovan
- Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal
| | - Nélia C Mestre
- Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal
| | - Serena Abel
- Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal
| | - Tainá G Fonseca
- Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal
| | - Camilla C Carteny
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Tim Willems
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Bettie Cormier
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro, Sweden; UMR Centre National dela Recherche Scientifique EPOC, University of Bordeaux, Talence, France
| | - Steffen S Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro, Sweden
| | - Maria João Bebianno
- Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal.
| |
Collapse
|
43
|
Wu Y, Simon KL, Best DA, Bowerman W, Venier M. Novel and legacy per- and polyfluoroalkyl substances in bald eagle eggs from the Great Lakes region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113811. [PMID: 32369891 DOI: 10.1016/j.envpol.2019.113811] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 06/11/2023]
Abstract
Decades of large-scale production of per- and polyfluoroalkyl substances (PFASs) have resulted in their ubiquitous presence in the environment worldwide. Similarly to other persistent and bioaccumulative organic contaminants, some PFASs, particularly the long-chain congeners, can be biomagnified via food webs, making top predators vulnerable to elevated PFAS exposure. In this study, we measured seven classes of PFASs in bald eagle (Haliaeetus leucocephalus) eggs for the first time. The eggs (n = 22) were collected from the North American Great Lakes in 2000-2012. The ranges of total concentrations of perfluoroalkyl sulfonic acids (∑PFSAs) and perfluoroalkyl carboxylic acids (∑PFCAs) were 30.5-1650 and 5.4-216 ng/g wet weight (ww), respectively. In addition to these traditional PFAS compounds, 6:2 fluorotelomer sulfonic acid (6:2 FTS; median: 15.7 ng/g ww), perfluoro-4-ethylcyclohexanesulfonic acid (PFECHS; 0.22 ng/g ww), and 8-chloro-perfluorooctanesulfonic acid (Cl-PFOS, detected in wildlife for the first time; 0.53 ng/g ww) were also frequently detected. Bald eagle eggs from breeding areas located less than 8 km from a Great Lake shoreline or tributary had significantly greater total PFAS concentrations (∑PFASs) than those from breeding areas located further than 8 km (p < 0.05). In these samples, ∑PFASs rivalled the total concentration of brominated flame retardants, and were significantly greater than those of several other organic contaminants, such as dechlorane-related compounds, organophosphate esters, and flame retardant metabolites.
Collapse
Affiliation(s)
- Yan Wu
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA
| | - Kendall L Simon
- U.S. Fish and Wildlife Service, New Jersey Field Office, Galloway, NJ 08205, USA
| | - David A Best
- U.S. Fish and Wildlife Service-retired, Ecological Services Field Office, East Lansing, MI 48823, USA
| | - William Bowerman
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Marta Venier
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
44
|
Jouanneau W, Bårdsen BJ, Herzke D, Johnsen TV, Eulaers I, Bustnes JO. Spatiotemporal Analysis of Perfluoroalkyl Substances in White-Tailed Eagle ( Haliaeetus albicilla) Nestlings from Northern Norway-A Ten-Year Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5011-5020. [PMID: 32200622 DOI: 10.1021/acs.est.9b06818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The white-tailed eagle (Haliaeetus albicilla) in Scandinavia has suffered from impaired reproduction due to high exposure to industrial pollution between the 1960s and 1980s. While population numbers are rising again, new contaminants, such as per- and polyfluoroalkyl substances (PFAS), are increasingly found in high trophic avifauna and are of concern to potentially impact once again on population health. In the present study, we examined PFAS levels in plasma of white-tailed eagle nestlings from northern Norway over the last decade (2008-2017). While PFOA and PFNA exposure did not follow a significant time trend, PFOS and PFHxS concentrations decreased over time, and ≥C11 perfluorinated carboxylic acids only seem to level off during the last four years. This may in fact be the first evidence for a change in the trend for some of these compounds. Furthermore, since several PFAS are expected to be highly present in aqueous film-forming foams used at airports, we also investigate the potential of the two main airports in the region to act as hotspots for PFAS. Our results indeed show decreasing exposure to PFOA with distance to the airports. Altogether, our results seem to show that legislation actions are effective, and continued concern for PFAS exposure of high trophic wildlife is still warranted, even in the northern environment.
Collapse
Affiliation(s)
- William Jouanneau
- NINA - Norwegian Institute for Nature Research, Fram Centre, NO-9296 Tromsø, Norway
| | - Bård-Jørgen Bårdsen
- NINA - Norwegian Institute for Nature Research, Fram Centre, NO-9296 Tromsø, Norway
| | - Dorte Herzke
- NILU - Norwegian Institute for Air Research, Fram Centre, NO-9296 Tromsø, Norway
| | - Trond Vidar Johnsen
- NINA - Norwegian Institute for Nature Research, Fram Centre, NO-9296 Tromsø, Norway
| | - Igor Eulaers
- Arctic Research Centre, Department of Bioscience, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Jan Ove Bustnes
- NINA - Norwegian Institute for Nature Research, Fram Centre, NO-9296 Tromsø, Norway
| |
Collapse
|
45
|
Navarro I, de la Torre A, Sanz P, Martínez MDLÁ. Perfluoroalkyl acids (PFAAs): Distribution, trends and aquatic ecological risk assessment in surface water from Tagus River basin (Spain). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113511. [PMID: 31706767 DOI: 10.1016/j.envpol.2019.113511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 05/12/2023]
Abstract
Rivers can receive the input of treated or untreated sewage effluents from wastewater treatment plants, urban and industrial discharges and agricultural run-off, becoming an important pathway for the transport and mobilization of pollutants to the oceans. In the present study, the occurrence of 20 PFAAs was determined in the water of Tagus River basin (Spain). PFAAs were detected in 76 out of 92 water samples collected during 5 years (2013-2018), being perfluorooctanesulfonic acid (PFOS) the predominant compound (<0.01-34 ng/L). The annual average PFOS concentrations (2.9-11 ng/L) detected in Tagus River were above the annual average environmental quality standards (AA-EQS) established in the Directive, 2013/39/EU (0.65 ng/L for inland surface waters) but below the maximum allowable concentration (MAC-EQS; 36000 ng/L). The levels of PFAAs detected in urban and industrial areas were statistically higher (p < 0.01) than those at background or remote areas. The mass flow rates amounted to <0.01-46 kg/y for PFOS and <0.01-22 kg/y for perfluorooctanoic acid (PFOA). A quantitative ecotoxicological risk assessment was conducted to evaluate the environmental potential risk related to PFAAs in the aquatic ecosystem. Risk characterization ratios (RCRwater, RCRsed and RCRoral, fish) were below 1 in all cases.
Collapse
Affiliation(s)
- Irene Navarro
- Group of Persistent Organic Pollutants, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain.
| | - Adrián de la Torre
- Group of Persistent Organic Pollutants, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain
| | - Paloma Sanz
- Group of Persistent Organic Pollutants, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain
| | - María de Los Ángeles Martínez
- Group of Persistent Organic Pollutants, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain
| |
Collapse
|
46
|
Mattsson A, Sjöberg S, Kärrman A, Brunström B. Developmental exposure to a mixture of perfluoroalkyl acids (PFAAs) affects the thyroid hormone system and the bursa of Fabricius in the chicken. Sci Rep 2019; 9:19808. [PMID: 31874986 PMCID: PMC6930258 DOI: 10.1038/s41598-019-56200-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
Perfluoroalkyl acids (PFAAs) are ubiquitous environmental contaminants and eggs and nestlings of raptors and fish-eating birds often contain high levels of PFAAs. We studied developmental effects of a mixture of ten PFAAs by exposing chicken embryos to 0.5 or 3 μg/g egg of each compound in the mixture. Histological changes of the thyroid gland were noted at both doses and increased expression of mRNA coding for type III deiodinase was found at 0.5 μg/g egg. Serum concentrations of the free fraction of thyroid hormones (T3 and T4) were reduced by the PFAA mixture at 3 µg/g egg, which is in line with a decreased synthesis and increased turnover of thyroid hormones as indicated by our histological findings and the decreased mRNA expression of type III deiodinase. The relative weight of the bursa of Fabricius increased at a dose of 3 μg/g egg in females. The bursa is the site of B-cell development in birds and is crucial for the avian adaptive immune system. Analysis of plasma and liver concentrations of the mixture components showed differences depending on chain length and functional group. Our results highlight the vulnerability of the thyroid hormone and immune systems to PFAAs.
Collapse
Affiliation(s)
- Anna Mattsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden.
| | - Sofia Sjöberg
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Anna Kärrman
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Björn Brunström
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
47
|
Qi X, Zhou J, Wang M, Yang MR, Tang XY, Mao XF, Wang TT. Perfluorinated compounds in poultry products from the Yangtze River Delta and Pearl River Delta regions in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:1079-1086. [PMID: 31466148 DOI: 10.1016/j.scitotenv.2019.06.258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/16/2019] [Accepted: 06/16/2019] [Indexed: 06/10/2023]
Abstract
Chicken, duck, egg, and duck egg samples from the Yangtze River Delta and Pearl River Delta regions in China were analyzed for 17 perfluorinated compounds (PFCs). The concentrations of PFCs in chicken and duck livers ranged from <LOD to 35.53 μg/kg and 40.41 μg/kg, respectively, which is higher than in other tissues. PFDA was the predominant PFC in live with mean concentrations of 2.09 μg/kg and 1.73 μg/kg in chicken and duck livers, respectively. The mean ∑PFCs concentrations were 1.87 μg/kg and 1.88 μg/kg in chicken and duck eggs, respectively. The mean PFC concentrations were also similar in the subcutaneous fat of both chicken and duck. The total PFC concentrations in chicken and ducks ranged from <LOD to 54.63 μg/kg and 10.21 μg/kg. The current concentration levels of PFCs would not cause health risks to adults even with the frequent consumption of poultry products. However, the higher concentrations of PFCs in chicken and chicken eggs might cause health risks in children.
Collapse
Affiliation(s)
- Xin Qi
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Zhou
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Min Wang
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Meng-Rui Yang
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiao-Yan Tang
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue-Fei Mao
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tong-Tong Wang
- Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
48
|
Vorkamp K, Falk K, Møller S, Bossi R, Rigét FF, Sørensen PB. Perfluoroalkyl substances (PFASs) and polychlorinated naphthalenes (PCNs) add to the chemical cocktail in peregrine falcon eggs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:894-901. [PMID: 30144757 DOI: 10.1016/j.scitotenv.2018.08.090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
A suite of perfluoroalkyl substances (PFASs) and polychlorinated naphthalenes (PCNs) were determined in 41 peregrine falcon eggs collected in South Greenland between 1986 and 2014. Median concentrations of perfluorinated sulfonic acids (ΣPFSA) and perfluorinated carboxylic acids (ΣPFCA) were 303 ng/g dry weight (dw) (58 ng/g wet weight, ww) and 100 ng/g dw (19 ng/g ww), respectively, which was comparable to other studies. Perfluorooctane sulfonate (PFOS) accounted for 94% on average of all PFSAs, but did not show a significant time trend. Perfluorohexane sulfonate (PFHxS), perfluoroheptane sulfonate (PFHpS) and perfluorodecane sulfonate (PFDS) showed non-linear decreases over the study period, while some long-chain PFCAs increased significantly. The PCN profile was dominated by the penta-, hexa- and tetrachlorinated congeners CN-52/60, CN-66/67 and CN-42. CN-54, an indicator of combustion, accounted for 2.4% of ΣPCN on average. All PCN congeners showed a decreasing tendency, which was significant for lipid-normalized concentrations of CN-53, CN-54 and CN-63. The ΣPCN median concentration was 21 ng/g lipid weight, which is in the high end of concentrations reported for bird eggs. The PCN and PFAS concentrations add to an already high contaminant burden and a complex chemical cocktail in the peregrine falcon population in Greenland, mainly reflecting contaminant exposure during migration and winter stays in Central and South America.
Collapse
Affiliation(s)
- Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Arctic Research Centre, 4000 Roskilde, Denmark.
| | - Knud Falk
- Ljusstöparbacken 11a, 11765 Stockholm, Sweden. https://www.vandrefalk.dk
| | - Søren Møller
- Roskilde University Library, 4000 Roskilde, Denmark.
| | - Rossana Bossi
- Aarhus University, Department of Environmental Science, Arctic Research Centre, 4000 Roskilde, Denmark.
| | - Frank F Rigét
- Aarhus University, Department of Bioscience, Arctic Research Centre, 4000 Roskilde, Denmark; Greenland Institute of Natural Resources, Nuuk, Greenland.
| | - Peter B Sørensen
- Aarhus University, Department of Bioscience, 8600 Silkeborg, Denmark.
| |
Collapse
|
49
|
Bour A, Haarr A, Keiter S, Hylland K. Environmentally relevant microplastic exposure affects sediment-dwelling bivalves. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:652-660. [PMID: 29433106 DOI: 10.1016/j.envpol.2018.02.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Most microplastics are expected to sink and end up in marine sediments. However, very little is known concerning their potential impact on sediment-dwelling organisms. We studied the long-term impact of microplastic exposure on two sediment-dwelling bivalve species. Ennucula tenuis and Abra nitida were exposed to polyethylene microparticles at three concentrations (1; 10 and 25 mg/kg of sediment) for four weeks. Three size classes (4-6; 20-25 and 125-500 μm) were used to study the influence of size on microplastic ecotoxicity. Microplastic exposure did not affect survival, condition index or burrowing behaviour in either bivalve species. However, significant changes in energy reserves were observed. No changes were observed in protein, carbohydrate or lipid contents in E. tenuis, with the exception of a decrease in lipid content for one condition. However, total energy decreased in a dose-dependent manner for bivalves exposed to the largest particles. To the contrary, no significant changes in total energy were observed for A. nitida, although a significant decrease of protein content was observed for individuals exposed to the largest particles, at all concentrations. Concentration and particle size significantly influenced microplastic impacts on bivalves, the largest particles and higher concentrations leading to more severe effects. Several hypotheses are presented to explain the observed modulation of energy reserves, including the influence of microplastic size and concentration. Our results suggest that long-term exposure to microplastics at environmentally relevant concentrations can impact marine benthic biota.
Collapse
Affiliation(s)
- Agathe Bour
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - Ane Haarr
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Steffen Keiter
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82 Örebro, Sweden
| | - Ketil Hylland
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| |
Collapse
|
50
|
Stubleski J, Salihovic S, Lind PM, Lind L, Dunder L, McCleaf P, Eurén K, Ahrens L, Svartengren M, van Bavel B, Kärrman A. The effect of drinking water contaminated with perfluoroalkyl substances on a 10-year longitudinal trend of plasma levels in an elderly Uppsala cohort. ENVIRONMENTAL RESEARCH 2017; 159:95-102. [PMID: 28780137 DOI: 10.1016/j.envres.2017.07.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND In 2012, drinking water contaminated with per- and polyfluoroalkyl substances (PFASs), foremost perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) at levels over 20ng/L and 40ng/L, respectively, was confirmed in Uppsala, Sweden. OBJECTIVES We assessed how a longitudinally sampled cohort's temporal trend in PFAS plasma concentration was influenced by their residential location and determined the plausible association or disparity between the PFASs detected in the drinking water and the trend in the study cohort. METHODS The Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) cohort provided plasma samples three times from 2001 to 2014. Individuals maintaining the same zip code throughout the study (n = 399) were divided into a reference (no known PFAS exposure), low, intermediate and high exposure area depending on the proportion of contaminated drinking water received. Eight PFASs detected in the majority (75%) of the cohort's plasma samples were evaluated for significant changes in temporal PFAS concentrations using a random effects (mixed) model. RESULTS PFHxS plasma concentrations continued to significantly increase in individuals living in areas receiving the largest percentage of contaminated drinking water (p < 0.0001), while PFOS showed an overall decrease. The temporal trend of other PFAS plasma concentrations did not show an association to the quality of drinking water received. CONCLUSIONS The distribution of contaminated drinking water had a direct effect on the trend in PFHxS plasma levels among the different exposure groups, resulting in increased concentrations over time, especially in the intermediate and high exposure areas. PFOS and the remaining PFASs did not show the same relationship, suggesting other sources of exposure influenced these PFAS plasma trends.
Collapse
Affiliation(s)
- Jordan Stubleski
- MTM Research Centre, School of Science and Technology, Örebro University, 70182 Örebro, Sweden
| | - Samira Salihovic
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, 75141 Uppsala, Sweden
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, 75185 Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, 751 85 Uppsala, Sweden
| | - Linda Dunder
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, 75185 Uppsala, Sweden
| | | | - Karin Eurén
- Uppsala Vatten och Avfall AB, Box 1105, 754 141 Uppsala
| | - Lutz Ahrens
- Swedish University of Agricultural Sciences (SLU), Department of Aquatic Sciences and Assessment, Gerda Nilssons väg 5, 756 51 Uppsala, Sweden
| | - Magnus Svartengren
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, 75185 Uppsala, Sweden
| | - Bert van Bavel
- MTM Research Centre, School of Science and Technology, Örebro University, 70182 Örebro, Sweden; Norwegian Institute for Water Research, NIVA, 0349 Oslo, Norway
| | - Anna Kärrman
- MTM Research Centre, School of Science and Technology, Örebro University, 70182 Örebro, Sweden.
| |
Collapse
|