1
|
Su J, Lin J, Zhan W, Li J, Dong X, Zhang T, Yang Z, Luo Z, Guo P. Extracellular polymers substances towards the toxicity effect of Microcystis flos-aquae under subjected to nanoplastic stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125996. [PMID: 40054567 DOI: 10.1016/j.envpol.2025.125996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/09/2025] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
The widespread presence of nanoplastics in aquatic ecosystems and their harmful effects on algae have garnered significant attention. However, little is known about the mechanisms of extracellular polymeric substances (EPS) derived from algae in response to nanoplastic stress. This study investigated the impact of EPS on the toxicity of polyvinyl chloride (PVC, 537 nm) and polymethyl methacrylate (PMMA, 485 nm) nanoplastics on Microcystis flos-aquae (MFa)under nanoplastic stress. The results revealed that EPS removal reduced algal biomass. PVC nanoplastics (250 mg L-1) caused biomass inhibition of -16.87% before and -9.82% after EPS removal. PMMA nanoparticles exhibited a more significant inhibition of growth and chlorophyll synthesis compared to PVC. After EPS removal, algal cells gradually recovered their maximum quantum yield of photosystem II and exhibited increased superoxide dismutase (SOD) enzyme activity, suggesting a self-regulation mechanism. Nanoplastic stress elevated EPS protein and polysaccharide levels, with maxima of 12.38 mg L-1 at 50 mg L-1 PVC and 17.24 mg L-1 at 100 mg L-1 PMMA. At the same time, the polysaccharide content in nanoplastics was significantly higher than that of proteins, with the maximum value being 2.82 times that of proteins. Fourier-transform infrared spectroscopy (FTIR) and excitation-emission matrix (EEM) analyses showed that aldehyde functional groups on the surface of algal cells were oxidized into carboxylic acids by both types of nanoparticles. Exposure to different nanoplastics increased humic-like substances in tightly bound EPS (TB-EPS), indicating that EPS dynamically adjusts to reduce nanoplastic toxicity by enhancing viscosity and algal aggregation. These results demonstrate that EPS mitigates the direct contact between algal cells and nanoplastics by increasing viscosity and promoting algal self-aggregation, thereby reducing the toxicity of nanoplastics to algae. This phenomenon is consistent across various stress conditions, providing valuable insights into the self-protection mechanisms of microalgae against nanoplastic stress.
Collapse
Affiliation(s)
- Jianhuang Su
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Jiahui Lin
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Wenlu Zhan
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Jianjie Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Xiuxian Dong
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Zaixian Yang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Zhuanxi Luo
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China.
| | - Peiyong Guo
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
2
|
Cui Y, Feng D, Xie M, Zhang Y, Wang D. Phosphate-coupled high-carbon ferromanganese particles synergistically regulate co-composting of seaweed and corn starch residue: Improving nitrogen cycling and accelerating humification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125352. [PMID: 40233612 DOI: 10.1016/j.jenvman.2025.125352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/27/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025]
Abstract
A substantial amount of seaweed waste, rich in plant-stimulating properties, holds great potential for composting. However, without proper catalysts or additives, composting and humification are slow and inefficient, causing carbon and nitrogen losses. This study explores a novel approach to enhance composting efficacy by coupling phosphate with high-carbon ferromanganese particles (HCFMP). The results indicate that the phosphate-HCFMP coupling promotes humus precursor transformation, as evidenced by dynamic changes in reducing sugars, amino acids, and polyphenols. Additionally, ultraviolet characteristic parameters and Parallel Factor (PARAFAC) analysis show that the coupled treatment improves both the rate and degree of humification. By the end of composting, this treatment exhibited the highest HA/FA (4.38), with the HA/FA on day 21 surpassing other treatments on day 35. While the phosphate-only group achieved a relatively high degree of humification, the process was slower and accompanied by substantial NH3 volatilization. The HCFMP-only group reduced NH3 emissions, but the oxidative performance of HCFMP was enhanced under lower pH conditions, reducing organic matter participation in humus formation. Compared to phosphate alone, the coupled treatment reduced NH3 emissions by 48.6% and increased nitrate content by 12%. Further analysis suggests that the enhancement mechanisms may include: (1) phosphate stimulating humus precursor production; (2) HCFMP mainly acting as a catalyst under higher pH to promote precursor polymerization; and (3) HCFMP's acidic sites adsorbing NH3/NH4+ and facilitating nitrification. In conclusion, coupling HCFMP with phosphate enhances composting efficacy, and the resulting products, with plant-stimulating properties, offer a feasible solution for sustainable green agriculture development.
Collapse
Affiliation(s)
- Yinjie Cui
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China.
| | - Dawei Feng
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Min Xie
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Yuxue Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Derui Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
3
|
Gao L, Su Y, Zhang N, Mehmood T, Wang Z, Peng L. Ecotoxicological impact of virgin and environmental microplastics leachate on Chlorella vulgaris: Synergistic microbial-pollutant drivers cripple photosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138321. [PMID: 40267708 DOI: 10.1016/j.jhazmat.2025.138321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Microplastics (MPs, < 5 mm) leachate poses significant threats to aquatic ecosystems; however, their toxicity across different sources remains poorly understood. This study examined the toxicological effects of leachates derived from virgin MPs (VMPs) and environmentally weathered MPs (EMPs) on Chlorella vulgaris in seawater. EMPs leachate exhibited 2.5-3.4 times higher toxicity than VMPs leachate, with growth inhibition rates reaching 77.66 ± 10.25 % and 32.64 ± 6.99 %, respectively. EMPs leachate exposure induced more pronounced disruptions to algal photosynthesis than VMPs leachate, including a 35.3 % reduction in chlorophyll a content and significant downregulation of photosynthesis-related genes (e.g., PsbS, PsbY). EMPs leachate also altered carbon metabolism (59 differentially expressed genes (DEGs)) and elevated oxidative stress markers, evidenced by a 22.2 % increase in malondialdehyde (MDA) compared to VMPs leachate. In contrast, VMPs leachate primarily affected amino acid biosynthesis (44 DEGs). Crucially, EMPs leachate introduced 580 unique bacterial taxa and anthropogenic pollutants (e.g., ciprofloxacin), which synergistically exacerbated algal toxicity through nutrient competition and oxidative damage. These findings highlight the heightened ecological risks posed by EMPs due to synergistic interactions among pollutants and microorganisms, emphasizing the urgent need for targeted regulatory strategies to mitigate MPs pollution.
Collapse
Affiliation(s)
- Liu Gao
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; Yunnan Soil Fertility and Pollution Restoration Laboratory, Yunnan Agricultural University, Kunming 650201, China
| | - Yuanyuan Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Naiming Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China; Yunnan Soil Fertility and Pollution Restoration Laboratory, Yunnan Agricultural University, Kunming 650201, China
| | - Tariq Mehmood
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Department Sensors and Modeling, Max-Eyth-Allee 100, Potsdam 14469, Germany
| | - Zezheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Nava V, Dar JY, De Santis V, Fehlinger L, Pasqualini J, Adekolurejo OA, Burri B, Cabrerizo MJ, Chonova T, Cour M, Dory F, Drost AM, Figler A, Gionchetta G, Halabowski D, Harvey DR, Manzanares‐Vázquez V, Misteli B, Mori‐Bazzano L, Moser V, Rotta F, Schmid‐Paech B, Touchet CM, Gostyńska J. Zooming in the plastisphere: the ecological interface for phytoplankton-plastic interactions in aquatic ecosystems. Biol Rev Camb Philos Soc 2025; 100:834-854. [PMID: 39542439 PMCID: PMC11885710 DOI: 10.1111/brv.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Phytoplankton is an essential resource in aquatic ecosystems, situated at the base of aquatic food webs. Plastic pollution can impact these organisms, potentially affecting the functioning of aquatic ecosystems. The interaction between plastics and phytoplankton is multifaceted: while microplastics can exert toxic effects on phytoplankton, plastics can also act as a substrate for colonisation. By reviewing the existing literature, this study aims to address pivotal questions concerning the intricate interplay among plastics and phytoplankton/phytobenthos and analyse impacts on fundamental ecosystem processes (e.g. primary production, nutrient cycling). This investigation spans both marine and freshwater ecosystems, examining diverse organisational levels from subcellular processes to entire ecosystems. The diverse chemical composition of plastics, along with their variable properties and role in forming the "plastisphere", underscores the complexity of their influences on aquatic environments. Morphological changes, alterations in metabolic processes, defence and stress responses, including homoaggregation and extracellular polysaccharide biosynthesis, represent adaptive strategies employed by phytoplankton to cope with plastic-induced stress. Plastics also serve as potential habitats for harmful algae and invasive species, thereby influencing biodiversity and environmental conditions. Processes affected by phytoplankton-plastic interaction can have cascading effects throughout the aquatic food web via altered bottom-up and top-down processes. This review emphasises that our understanding of how these multiple interactions compare in impact on natural processes is far from complete, and uncertainty persists regarding whether they drive significant alterations in ecological variables. A lack of comprehensive investigation poses a risk of overlooking fundamental aspects in addressing the environmental challenges associated with widespread plastic pollution.
Collapse
Affiliation(s)
- Veronica Nava
- Department of Earth and Environmental SciencesUniversity of Milano‐BicoccaPiazza della Scienza 1Milan20126Italy
| | - Jaffer Y. Dar
- ICAR‐Central Soil Salinity Research InstituteKarnal132001India
- Department of Experimental LimnologyLeibniz Institute of Freshwater Ecology and Inland FisheriesMüggelseedamm 310Berlin12587Germany
| | - Vanessa De Santis
- Water Research Institute, National Research CouncilCorso Tonolli 50Verbania‐PallanzaVerbania28922Italy
| | - Lena Fehlinger
- GEA Aquatic Ecology GroupUniversity of Vic ‐ Central University of CataloniaCarrer de la Laura 13Catalonia08500 VicSpain
| | - Julia Pasqualini
- Department of River EcologyHelmholtz Centre for Environmental Research‐UFZBrückstr. 3aMagdeburg39114Germany
| | - Oloyede A. Adekolurejo
- Ecology and Evolution, School of BiologyUniversity of LeedsLeedsLS2 9JTUK
- Department of BiologyAdeyemi Federal University of EducationOndo CityOndoPMB 520Nigeria
| | - Bryan Burri
- Department F‐A. Forel for Environmental and Aquatic SciencesUniversity of Geneva, 30 Quai Ernest‐Ansermet Sciences IIGenèveCH‐1205Switzerland
| | - Marco J. Cabrerizo
- Department of Ecology & Institute of Water ResearchUniversity of GranadaCampus Fuentenueva s/nGranada18071Spain
- Estación de Fotobiología Playa Unióncasilla de correos 15RawsonChubut9103Argentina
| | - Teofana Chonova
- Department Environmental ChemistryEawag: Swiss Federal Institute of Aquatic Science and TechnologyÜberlandstr. 133DübendorfCH‐8600Switzerland
| | | | - Flavia Dory
- Department of Earth and Environmental SciencesUniversity of Milano‐BicoccaPiazza della Scienza 1Milan20126Italy
| | - Annemieke M. Drost
- Department of Aquatic EcologyNetherlands Institute of EcologyDroevendaalsesteeg 10Wageningen6708 PBThe Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamP.O. Box 94240Amsterdam1090 GEThe Netherlands
| | - Aida Figler
- Department of BioinformaticsSemmelweis UniversityTűzoltó utca 7‐9Budapest1094Hungary
| | - Giulia Gionchetta
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA)Spanish Council of Scientific Research (CSIC)Barcelona0803Spain
| | - Dariusz Halabowski
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental ProtectionUniversity of LodzBanacha 12/16Lodz90‐237Poland
| | - Daniel R. Harvey
- Lake Ecosystems Group, UK Centre for Ecology & HydrologyLancaster Environment CentreLibrary Avenue, BailriggLancasterLA1 4APUK
- Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| | - Víctor Manzanares‐Vázquez
- Department of Research and DevelopmentCoccosphere Environmental AnalysisC/Cruz 39, 29120 Alhaurín el GrandeMálagaSpain
| | - Benjamin Misteli
- WasserCluster Lunz ‐ Biologische StationDr Carl Kupelwieser Promenade 5Lunz am See3293Austria
| | - Laureen Mori‐Bazzano
- Department F‐A. Forel for Environmental and Aquatic SciencesUniversity of Geneva, 30 Quai Ernest‐Ansermet Sciences IIGenèveCH‐1205Switzerland
| | - Valentin Moser
- Community Ecology, Swiss Federal Institute for ForestSnow and Landscape Research WSLZürcherstrasse 111BirmensdorfCH‐8903Switzerland
- Department of Aquatic EcologyEawag: Swiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 133DübendorfCH‐8600Switzerland
| | - Federica Rotta
- Department of Earth and Environmental SciencesUniversity of PaviaVia Ferrata 1Pavia27100Italy
- Institute of Earth ScienceUniversity of Applied Science and Arts of Southern SwitzerlandVia Flora Ruchat‐Roncati 15MendrisioCH‐6850Switzerland
| | - Bianca Schmid‐Paech
- University Weihenstephan‐Triesdorf of Applied ScienceAm Hofgarten 4Freising85354Germany
| | - Camille M. Touchet
- Université Claude Bernard ‐ Lyon 1, “LEHNA UMR 5023, CNRS, ENTPE3‐6, rue Raphaël DuboisVilleurbanneF‐69622France
| | - Julia Gostyńska
- Department of Hydrobiology, Faculty of BiologyAdam Mickiewicz UniversityUniwersytetu Poznanskiego 6Poznan61‐614Poland
| |
Collapse
|
5
|
Fan R, Tian W, Qin C, Li P, Sun Y, Long M, Yang S. Polystyrene Microplastics and Cadmium Drive the Gut-Liver Axis Through the TLR4/MyD88/NF-κB Signaling Pathway to Cause Toxic Effects on Broilers. TOXICS 2025; 13:248. [PMID: 40278565 PMCID: PMC12031519 DOI: 10.3390/toxics13040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
Nowadays, the risk of oral intake of microplastics (MPs) and cadmium (Cd) by poultry is high. In some industrially polluted areas, the chicken feed samples contain 9.60 × 102 ± 1.09 × 102 MPs per kilogram (mean ± std) in wet weight, and the Cd content in chicken feed has been detected to reach up to 5.61 mg/kg. But scholars still focus more on the toxic effects of MPs and Cd on the liver and intestines of aquatic animals. There are few studies that use poultry as research animals and consider these two organs as an integrated system to investigate the toxicity of MPs and Cd on the gut-liver axis and the mechanisms of inflammation. Therefore, in this research, broilers were used as experimental subjects, and experimental models were established by single or combined exposure of MPs (100 mg/L) and Cd (140 mg/kg) to explore the effects of MPs and Cd on the intestinal mucosae and liver of broilers, as well as the mechanisms behind these toxic effects. In this study, the degree of adverse effects (decreased expression of tight junction proteins, changes in intestinal morphology, abundance and diversity of intestinal flora, liver inflammation) caused by the single exposure group was higher than that of the combined exposure group. The results showed that MPs and Cd induced intestinal damage and liver inflammation in broilers by interfering with the TLR4/MyD88/NF-κB pathway and intestinal flora homeostasis. The toxicity of combined exposure was lower than that of single exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuhua Yang
- College of Veterinary and Animal Science, Shenyang Agricultural University, Shenyang 110866, China; (R.F.); (P.L.); (Y.S.); (M.L.)
| |
Collapse
|
6
|
Zhang Q, Wu Y, Wu P, Huang L, Huang L. Application of bifunctional monomer surface MIP with MOFs nanocomposite for efficient trapping and analysis of luteolin in compound Anoectochilus roxburghii (Wall.) Lindl. oral liquid. J Pharm Biomed Anal 2025; 255:116579. [PMID: 39637746 DOI: 10.1016/j.jpba.2024.116579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Luteolin is one of the bioactive components from the compound Anoectochilus roxburghii (Wall.) Lindl. oral liquid (CAROL), which was reported to have excellent hepatoprotective and anti-inflammatory activities. However, the enrichment and quantitation of luteolin from CAROL is challenging due to the low content and complex aqueous matrix. In this study, a bifunctional monomer surface molecularly imprinted polymer (MIP) with metal-organic frameworks (MOFs) as cores was prepared for the selective adsorption of luteolin from the aqueous system CAROL. Compared with conventional MIPs, this unique nanocomposite adsorbent (MOF@MIPs) has the advantages of short kinetic equilibrium time, good selectivity, and high adsorption capacity in aqueous solution. The theoretical maximum adsorption capacity of MOF@MIPs for luteolin was 36.99 mg/g. After adsorption enrichment of luteolin from CAROL using MOF@MIPs, liquid chromatography-tandem mass spectrometry was applied to analyze the target. The corresponding linearity range for analyte was 10-6000 ng/mL with good linearity (R2 =0.9992), and the added recoveries varied from 85.70 % to 99.25 %. The present method has been successfully employed for the analysis of luteolin in five different batches of CAROL. Notably, we found no significant difference in the content of luteolin between these batches, which proved that the composition was stable between batches. The novel structure MIPs are suitable for the specific recognition of template molecules in aqueous solution. Therefore, this study provides a technical reference for the special identification and determination of trace components in complex samples, while the novel MOF@MIP nanocomposite can also provide valuable references for the extraction and purification methods of specific substances in traditional Chinese medicine and expand the application environment of MIPs material.
Collapse
Affiliation(s)
- Qiuhua Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Youjia Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Pingping Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Liying Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China.
| | - Lingyi Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China.
| |
Collapse
|
7
|
Xiong Y, Zhao Z, Peng K, Zhai G, Huang X, Zeng H. Microplastic interactions with co-existing pollutants in water environments: Synergistic or antagonistic roles on their removal through current remediation technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124355. [PMID: 39933381 DOI: 10.1016/j.jenvman.2025.124355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/07/2025] [Accepted: 01/25/2025] [Indexed: 02/13/2025]
Abstract
Composite water pollution, caused by microplastics (MPs) and co-occurring pollutants, is an emerging issue that induces synergistic toxicity. Multidimensional interactions occur between MPs and co-existing pollutants in a composite system, which alter the behavior of each component, resulting in unpredictable effects on the treatment processes. However, significant gaps exist in current review papers regarding MP‒pollutant interaction mechanisms and the corresponding synergistic or antagonistic effects on their removal processes. This review comprehensively describes the latest research in composite water pollution caused by MPs and various other pollutants with different compositions and states, systematically discusses their interaction mechanisms, and critically evaluates the impact of co-existing contaminants on the treatment performance of current remediation technologies. Based on current research progress and gaps, opportunities, challenges, and perspectives for future research directions are proposed. This review highlights state-of-the-art research related to composite water pollution caused by MPs and various pollutants, which is expected to inspire new strategies for the effective removal of multiple contaminants from the aquatic environment.
Collapse
Affiliation(s)
- Yongjiao Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Kaiming Peng
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Institute of Carbon Neutrality, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, PR China
| | - Gongqi Zhai
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China
| | - Xiangfeng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Institute of Carbon Neutrality, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, PR China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
8
|
Lei Y, Li X, Mao X. Microplastics aggravate the adverse effects of methylmercury than inorganic mercury on zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125559. [PMID: 39710179 DOI: 10.1016/j.envpol.2024.125559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
The potential health risks of microplastics (MPs) and their combined exposure with heavy metals such as mercury (Hg) in aquatic environment are increasingly concerned recently. In this work, zebrafish embryos were exposed to different levels of polystyrene microplastics (PS-MPs, ∼0.1 μm) coupled with Hg(II) or/and MeHg at 20 μg/L, to investigate the tissue biodistribution and accumulation of PS-MPs and Hg species, and their interaction, as well as embryo toxicity, oxidative stress and metabolic profiles. With zebrafish embryo development, PS-MPs were ingested and then primarily translocated to yolk sac, liver, and intestinal tissues, further acted as a significant vector for improving the bioaccumulation of MeHg vs. Hg(II). Whatever single or combined exposure of PS-MPs and Hg species, embryo disorders, such as delayed hatching, developmental abnormalities, and motor behavioral, and increased oxidative stress indications were obviously found. Herein, PS-MPs + MeHg aggravated oxidative stress compared with MeHg alone, which might been relevant to the high accumulation of Hg level in zebrafish larvae induced by PS-MPs. Non-targeted metabolomics results proved PS-MPs involvement disturbed lipid metabolism, amino acid metabolism, and energy metabolism compared with alone Hg(II) or MeHg exposure, of which excessive energy metabolism by activating the glycolysis process was found in PS-MPs + MeHg treatment. This work reveals the enhancement efficacy of PS-MPs on MeHg induced toxicity and adverse stress, further proving the differentiated effect of elemental chemical forms with microplastics. In the future, elemental species must be considered for the combined toxicity evaluation and ecological risk assessments of microplastics and heavy metals.
Collapse
Affiliation(s)
- Yajie Lei
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, And Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Xue Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, And Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Xuefei Mao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, And Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
9
|
Ganie ZA, Guchhait S, Talib M, Choudhary A, Darbha GK. Investigating the sorption of Zinc-Oxide nanoparticles on Tire-wear particles and their toxic effects on Chlorella vulgaris: Insights from toxicological models and physiological analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136648. [PMID: 39612875 DOI: 10.1016/j.jhazmat.2024.136648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
This study investigated the interaction of Tire-wear particles (TWPs) with Zinc-Oxide nanoparticles (ZNPs) and studied their individual and combined toxic effects on Chlorella vulgaris in the co-presence of Humics. Physiological parameters, including growth, photosynthetic pigments, oxidative stress, and membrane damage, were analysed using Flow cytometry. Adsorption experiments exhibited that ZNPs were significantly absorbed by TWPs (qmax= 312.49 mg/g). A positive dose-response relation concerning inhibition in growth was observed in all treatment groups, and it was associated with reduced chlorophyll levels and damaged cell membranes. A negative impact of increased concentrations of TWPs and ZNPs was observed on anti-oxidant enzymes CAT and SOD; however, the impact was more severe when combined with exposure to both contaminants. Elevated concentrations of ZNPs and TWPs led to increased ROS production, lipid peroxidation and membrane damage, which could be contributing to the observed inhibition in growth. In the combined exposure groups, the Independent Action and the Abbott toxicity models revealed a synergistic effect on growth rates, which agreed with the Integrated Biomarker model results. The current study could enhance our understanding of the interaction between TWPs and metal nanoparticles in aquatic systems and offer novel understandings of the mechanisms underlying their combined toxic effects on microalgae.
Collapse
Affiliation(s)
- Zahid Ahmad Ganie
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Soumadip Guchhait
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Mohmmed Talib
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Aniket Choudhary
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
10
|
Pedroza RHP, David C, Barriada JL, Rey-Castro C, Lodeiro P. The role of photooxidation and organic matter in Cr(III) and Cr(VI) interactions with poly(lactic acid) microplastics in aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178431. [PMID: 39818155 DOI: 10.1016/j.scitotenv.2025.178431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
There is limited research on the influence of environmental variables on the interactions of biodegradable microplastics with chromium. This study reports the results of adsorption experiments with Cr and poly(lactic acid) (PLA) in synthetic aqueous solutions. It addresses the influence of the initial oxidation state, Cr(III) or Cr(VI), the effects of UV irradiation and the presence of organic matter. The results indicate that pristine PLA has a low affinity for Cr (between 0.05 and 46 μg/g) across varying pH levels, ionic strengths, and microplastic concentrations. However, the presence of organic matter (OM), represented by humic and tannic acids, resulted in 5.2-fold and 620-fold increases for Cr(III) and Cr(VI) adsorption, respectively. Possible mechanisms for that behavior are discussed, including Cr-OM complexation and formation of surface coatings. Noteworthy, we demonstrate that Cr(VI) adsorption involves a coupled redox-complexation process that appears to be related to the antioxidant potential of OM. Indeed, the ratio of (poly)phenol content of tannic and humic acids (6.23) is consistent with the ratio of Cr(VI) reduction in presence of both acids (6.97). Finally, photooxidation of PLA enhanced Cr(III) and Cr(VI) adsorption by a factor of 60 and 15, respectively. This is primarily attributed to UV-induced changes in surface chemical groups (increased oxygen content), rather than a change in surface area. This research provides key insights into the behavior of PLA as a potential Cr carrier, revealing the importance of organic matter and the photoaging of microplastics in the mobility of trace metal pollutants in the environment.
Collapse
Affiliation(s)
- Ricardo H P Pedroza
- Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| | - Calin David
- Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| | - José L Barriada
- Department of Chemistry, University of A Coruña, Rúa da Fraga 10, 15071 A Coruña, Spain
| | - Carlos Rey-Castro
- Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain.
| | - Pablo Lodeiro
- Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
11
|
Ha TJ, Lim WR, Heo J, Lee M, Yang M. Microplastics as adsorbent for Pb 2+ and Cd 2+: A comparative study of polypropylene, polyvinyl chloride, high-density polyethylene, and low-density polyethylene. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104491. [PMID: 39740371 DOI: 10.1016/j.jconhyd.2024.104491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/05/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025]
Abstract
Microplastics (MPs) in aquatic environments adsorb heavy metals, thereby posing potential environmental risks. However, further research is needed to elucidate the adsorption behavior of different types of MPs for various heavy metals. The aim of this study was to characterize four types of MPs: polypropylene (PP), polyvinyl chloride (PVC), high-density polyethylene (HDPE), and low-density polyethylene (LDPE). Moreover, their Pb2+ and Cd2+ adsorption properties were determined to investigate the differences in their capacity to function as heavy metal adsorbents. MPs were characterized via scanning electron microscopy (SEM) using energy dispersive X-ray spectrometer (EDS), Brunauer-Emmett-Teller (BET) analysis, and Fourier transform infrared spectroscopy (FTIR). Adsorption experiment data were analyzed using the Langmuir and Freundlich isotherm models to evaluate the adsorption capacity of the MPs. Based on the results of the adsorption isotherm models and 2D-COS FTIR, the presence of oxygen-containing functional groups, including hydroxyl, carbonyl, and carboxyl groups influences the adsorption process of Pb2+ and Cd2+ onto PP and PVC, with the maximum adsorption capacities (Qm) being 0.759 mg/g and 0.495 mg/g, respectively. Combination of the adsorption isotherm data and characteristics of MPs revealed that the following order of adsorption efficiencies of MPs for each heavy metal: PP > LDPE > PVC > HDPE for Pb2+ and PP > PVC > LDPE > HDPE for Cd2+. The results of this study suggest that MPs, particularly PP and PVC, may serve as vectors for heavy metal transport in aquatic environments, highlighting the need for further research to assess their environmental impact.
Collapse
Affiliation(s)
- Tae-Jung Ha
- Division of Earth Environmental System Sciences-Major of Earth & Environmental Sciences, Pukyong National University, Busan 48513, South Korea
| | - Woo-Ri Lim
- Institute of Sustainable Earth and Environmental Dynamics (SEED), Pukyong National University, Busan 48547, South Korea
| | - Junyong Heo
- Division of Earth Environmental System Sciences-Major of Earth & Environmental Sciences, Pukyong National University, Busan 48513, South Korea
| | - Minhee Lee
- Division of Earth and Environmental System Sciences-Major of Environmental Geosciences, Pukyong National University, Busan 48513, South Korea
| | - Minjune Yang
- Division of Earth and Environmental System Sciences-Major of Environmental Geosciences, Pukyong National University, Busan 48513, South Korea; Wible Co Ltd, Pukyong National University, 365 Sinseon-ro, Nam-gu, Busan 48547, South Korea.
| |
Collapse
|
12
|
Ali S, Peña AN, Lafazanos YS, Ehrenpreis ED. What Gastroenterologists Should Know About Microplastics and Nanoplastics. J Clin Gastroenterol 2025; 59:105-109. [PMID: 39774594 DOI: 10.1097/mcg.0000000000002085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Global production and widespread use of plastics are increasing dramatically. With current limited recycling and recovery options, microplastics and nanoplastics (MNPs) persist in the natural environment. Due to their ubiquity, human exposure to MNPs is inevitable. In addition to their inherent toxic effects, MNPs can adsorb harmful contaminants and act as vectors for microorganisms, compounding toxicological effects. After entering the body, bioaccumulation occurs in several tissues and organs, including the liver and the gastrointestinal (GI) tract. Proposed clinical effects of MNP absorption include endocrine disruption, alteration of the GI microbiome, and promotion of chronic inflammatory conditions. MNPs can also influence energy metabolism, activate inflammatory pathways, and increase oxidative stress leading to apoptosis. The GI tract is a major site of bioaccumulation for the MNPs in animals and humans. In this editorial, the current understanding of how MNPs are processed is discussed. Discussion on MNP effects on internal microflora, and their proposed role in developing inflammatory bowel diseases, MNP toxicokinetics, and their significance in health and disease are also reviewed. There is a need to understand the impact of MNP exposure on gut health and gut microbiota and identify current research gaps.
Collapse
|
13
|
Fraga Filho CAD. Analysis of Brazilian plastic waste management in the global context and case study of the City of Vitória, Espírito Santo. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5645-5684. [PMID: 39961932 DOI: 10.1007/s11356-024-35865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/25/2024] [Indexed: 03/18/2025]
Abstract
This review analyses Brazil's current stage of plastic waste management, comparing it to what is being carried out worldwide. The Brazilian National Solid Waste Policy established principles and guidelines for solid waste management. However, a decade after its implementation, the results demonstrate timid results about those expected. Brazil's official solid waste and plastics recycling rates are around 4% and 1%, respectively, considerably behind countries with comparable economic growth levels. This work dedicates considerable attention to microplastic pollution, a worldwide concern with potential effects on water bodies, the atmosphere, soils, human health, and vegetal and animal lives. A case study on the solid waste management system in Vitória City, the capital of Espírito Santo, was developed. Besides, a portrait of the pollution in Vitória and Espírito Santo Bays in the atmosphere and mangrove areas is presented. The more critical issues found were the low adherence of the population's city in the selective waste collection (what is reflected in the low solid waste recycling rates), plastic debris, and tiny plastic in the waters, coexisting with heavy metals and hydrocarbons-originated from industrial and anthropogenic activities; microplastics are present in the atmosphere, adding their adverse effects to those of the pollutants already existing in the air and the illegal disposal of waste and the anthropogenic activities which degrade the mangrove ecosystems. A global treaty is being discussed at the United Nations. It's expected that their definitions, initially promised by the end of 2024, will be able to eradicate plastic pollution effectivelly.
Collapse
|
14
|
Li L, Yu J, Ma Y, Tan H, Tan F, Chai Y, Zhang H. Microplastic-enhanced chromium toxicity in Scenedesmus obliquus: Synergistic effects on algal growth and biochemical responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117813. [PMID: 39904263 DOI: 10.1016/j.ecoenv.2025.117813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
This study explores the combined toxicity of microplastics (MPs) and chromium (Cr6 +) on the freshwater green algae Scenedesmus obliquus. As emerging contaminants in aquatic ecosystems, MPs have been shown to intensify the toxicity of Cr6+, leading to a more significant impact on algal growth and biochemical responses than either stressor alone. A 30-day experimental simulation revealed that co-exposure to Cr6+ and 5 µm diameter polystyrene MPs resulted in significantly enhanced toxicity compared to individual exposures, characterized by a notable decrease in algal growth, diminished photosynthetic pigments, and protein content, alongside oxidative system damage. 100 nm MPs exhibited a distinct toxicity profile, with more pronounced effects when not combined with Cr6+, suggesting size-dependent interactions with algal cells. Transcriptomic analysis illuminated the complex regulatory mechanisms, indicating that toxicity primarily modulates metabolic pathways essential for photosynthesis, oxidative phosphorylation, the TCA cycle, and ribosome function in Scenedesmus obliquus. This study not only delineates the distinct toxicity effects of single and combined exposure systems but also emphasizes the need for a deeper understanding of the role of MPs in environmental pollution and their potential to modulate the toxicity of heavy metals in aquatic ecosystems.
Collapse
Affiliation(s)
- Luoxin Li
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, CAFS, Wuhan 4302232, China
| | - Jiani Yu
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Yonghua Ma
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Hui Tan
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Fengxia Tan
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Yi Chai
- College of Agriculture, Yangtze University, Jingzhou 434025, China.
| | - Hui Zhang
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, CAFS, Wuhan 4302232, China.
| |
Collapse
|
15
|
Lee YJ, Kim WR, Park EG, Lee DH, Kim JM, Jeong HS, Roh HY, Choi YH, Srivastava V, Mishra A, Kim HS. Phenotypic and Gene Expression Alterations in Aquatic Organisms Exposed to Microplastics. Int J Mol Sci 2025; 26:1080. [PMID: 39940847 PMCID: PMC11817008 DOI: 10.3390/ijms26031080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The use of plastics, valued for its affordability, durability, and convenience, has grown significantly with the advancement of industry. Paradoxically, these very properties of plastics have also led to significant environmental challenges. Plastics are highly resistant to decomposition, resulting in their accumulation on land, where they eventually enter aquatic environments, due to natural processes or human activities. Among these plastics, microplastics, which are tiny plastic particles, are particularly concerning when they enter aquatic ecosystems, including rivers and seas. Their small size makes them easily ingestible by aquatic organisms, either by mistake or through natural feeding behaviors, which poses serious risks. Moreover, microplastics readily adsorb other pollutants present in aquatic environments, creating pollutant complexes that can have a synergistic impact, magnifying their harmful effects compared to microplastics or pollutants acting alone. As a result, extensive research has focused on understanding the effects of microplastics on aquatic organisms. Numerous studies have demonstrated that aquatic organisms exposed to microplastics, either alone or in combination with other pollutants, exhibit abnormal hatching, development, and growth. Additionally, many genes, particularly those associated with the antioxidant system, display abnormal expression patterns in these conditions. In this review, we examine these impacts, by discussing specific studies that explore changes in phenotype and gene expression in aquatic organisms exposed to microplastics, both independently and in combination with adsorbed pollutants.
Collapse
Affiliation(s)
- Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea (J.-m.K.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea (J.-m.K.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea (J.-m.K.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea (J.-m.K.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea (J.-m.K.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea (J.-m.K.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun-Young Roh
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea (J.-m.K.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden;
| | - Anshuman Mishra
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, 590 53 Ulrika, Sweden
- International Institute of Water, Air Force Radar Road, Bijolai, Jodhpur 342003, India
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
16
|
Uguen M, Gaudron SM, Seuront L. Plastic pollution and marine mussels: Unravelling disparities in research efforts, biological effects and influences of global warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178078. [PMID: 39709840 DOI: 10.1016/j.scitotenv.2024.178078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
The ever-growing contamination of the environment by plastics is a major scientific and societal concern. Specifically, the study of microplastics (1 μm to 5 mm), nanoplastics (< 1 μm), and their leachates is a critical research area as they have the potential to cause detrimental effects, especially when they impact key ecological species. Marine mussels, as ecosystem engineers and filter feeders, are particularly vulnerable to this type of pollution. In this study, we reviewed the 106 articles that focus on the impacts of plastic pollution on marine mussels. First, we examined the research efforts in terms of plastic characteristics (size, polymer, shape, and leachates) and exposure conditions (concentration, duration, species, life stages, and internal factors), their disparities, and their environmental relevance. Then, we provided an overview of the effects of plastics on mussels at each organisational levels, from the smaller scales (molecular, cellular, tissue and organ impacts) to the organism level (functional, physiological, and behavioural impacts) as well as larger-scale implications (associated community impacts). We finally discussed the limited research available on multi-stressor studies involving plastics, particularly in relation to temperature stress. We identified temperature as an underestimated factor that could shape the impacts of plastics, and proposed a roadmap for future research to address their combined effects. This review also highlights the impact of plastic pollution on mussels at multiple levels and emphasises the strong disparities in research effort and the need for more holistic research, notably through the consideration of multiple stressors, with a specific focus on temperature which is likely to become an increasingly relevant forcing factor in an era of global warming. By identifying critical gaps in current knowledge, we advocate for more coordinated interdisciplinary and international collaborations and raise awareness of the need for environmental coherence in the choice and implementation of experimental protocols.
Collapse
Affiliation(s)
- Marine Uguen
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France.
| | - Sylvie M Gaudron
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France; Sorbonne Université, UFR 927, F-75005 Paris, France
| | - Laurent Seuront
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
17
|
Hu C, Xiao Y, Jiang Q, Wang M, Xue T, Tao R, Mei Y. Adsorption and Desorption Behavior of Cr(VI) on Two Typical UV-Aged Microplastics in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27492-27500. [PMID: 39680861 DOI: 10.1021/acs.langmuir.4c03841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Microplastics (MPs) are novel pollutants that can adsorb heavy metals in water environments and migrate together as carriers and are prone to aging due to the light in water. However, few reports have been published on the synergistic behavior and effects of these different types of aged MPs on the adsorption and desorption of Cr(VI). Here, two MP types─polyamide (PA) and polylactic acid (PLA)─were aged by UV irradiation, and the adsorption and desorption behaviors of MPs on Cr(VI) were studied. The results indicated that UV light can rapidly age MPs. After the MPs were exposed to UV light, their specific surface area, negative charge, and oxygenic groups increased, resulting in enhanced hydrophilicity. The aged MPs depicted a markedly enhanced adsorption capacity for Cr(VI) compared with the results of aged-PA > pristine-PA > aged-PLA > pristine-PLA. The process followed the Langmuir and pseudo-second-order models, confirming that chemical and monolayer adsorption are the primary processes involved in the adsorption of Cr(VI) by aged MPs. Cr(VI) was more easily desorbed in the simulated gastric fluid environment. The desorption rate of aged MPs was lower than that of pristine MPs because of their stronger binding forces to Cr(VI). The binding of Cr(VI) to MPs mainly depends on synergistic mechanisms such as electrostatic attraction, reduction reactions, and chelation of oxygenic groups. This study clarifies the reciprocity mechanism between aging MPs and Cr(VI) and provides further insights and guidance for controlling the joint pollution between MPs and heavy metal pollutants in the future.
Collapse
Affiliation(s)
- Chun Hu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yaodong Xiao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Qingrong Jiang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Mengyao Wang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Tingdan Xue
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Ruidong Tao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yunjun Mei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| |
Collapse
|
18
|
Qiu Y, Zhang T, Zhang P. Micro/nano plastics inhibit the formation of barium sulfate scale on metal surface. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136151. [PMID: 39426152 DOI: 10.1016/j.jhazmat.2024.136151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Mineral scale (scale) is the crystalline inorganic precipitate from aqueous solution. Scale formation in pipelines has long been a challenge in various industrial systems. Micro/nano plastics (MNPs) have the potential to strongly influence scale formation process. However, comprehensive studies and mechanistic understanding of the interactions between MNPs and scales remain significantly underexplored. To fill this gap, we firstly adopted quartz crystal microbalance with dissipation (QCM-D) technology to monitor the in situ formation of barium sulfate (BaSO4) (0.001 M, saturation index 2.5) scale influenced by MNPs on metal surfaces. Microplastic (MP) (5 µm)-loaded surface exhibits hydrophobicity (contact angle > 123.1º), which reduces the rate of scale formation (90.86 ± 11.01 (ng cm-2 min-1)). Electrostatic repulsion impeded crystal growth while ion adsorption has a limited effect. Experiments on BaSO4 formation on metal pipes loaded with foam packaging debris were conducted over 30 days, and similar inhibition results were obtained. This study highlights the important role of MNPs in controlling heterogeneous nucleation and crystal growth of scale on metal surfaces, providing valuable insights for both MNPs and scale research.
Collapse
Affiliation(s)
- Ye Qiu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao
| | - Tong Zhang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao.
| |
Collapse
|
19
|
Kandaiah R, Ravindran A, Panneerselvan L, Manivannan AC, Kulanthaisamy M, Sobhani Z, Bhagwat-Russell G, Palanisami T. A comprehensive analysis and risk evaluation of microplastics contamination in Australian commercial plant growth substrates: Unveiling the invisible threat. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136310. [PMID: 39486335 DOI: 10.1016/j.jhazmat.2024.136310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
In Australia, quality standards for composts and potting mixes are defined by AS4454-2012 and AS3743-2012. These standards outline key parameters, including physicochemical properties, nutrient content, and plant toxicity. However, they do not address emerging pollutants like microplastics (< 1 mm). This study investigates the prevalence and characteristics of MPs in commercial plant growth substrates (PGS), including nineteen potting mixes and five composts, revealing a significant occurrence of MPs, with concentrations ranging from 233 to 7367 particles Kg-1 and an average of 1869 ± 109 particles Kg-1. MPs categorized by shape, size, and color, with fragments (491 ± 34 particles Kg-1), white colour (3700 ± 917 particles Kg-1), and size 500 µm being predominant. The polymer composition was diverse, with polyethylene being the most prevalent, followed by polypropylene and others. Polyterpene, Polyalkene, Pentaerythritol, and Propylene glycol were identified in PGS for the first time. The structural equation model showed that physicochemical properties like pH, EC, TOC, and heavy metals influence MPs abundance and characteristics. The Polymer Risk Index and Pollution Load Index indicated varying risk levels among the samples. These findings highlight the need to address MPs contamination in PGS to ensure ecosystem safety and human health.
Collapse
Affiliation(s)
- Raji Kandaiah
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Akila Ravindran
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Logeshwaran Panneerselvan
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Arun Chandra Manivannan
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Mohanrasu Kulanthaisamy
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Zahra Sobhani
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Geetika Bhagwat-Russell
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Thava Palanisami
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia.
| |
Collapse
|
20
|
Zhang J, Noor ZZ, Baharuddin NH, Setu SA, Hamzah MAAM, Zakaria ZA. Uptake of lead, cadmium and copper by heavy metal-resistant Pseudomonas aeruginosa strain DR7 isolated from soil. World J Microbiol Biotechnol 2024; 40:387. [PMID: 39567441 DOI: 10.1007/s11274-024-04194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
This study highlights the biosorption capacity for Cd (II), Cu (II) and Pb (II) by a locally isolated Pseudomonas aeruginosa DR7. At initial concentrations of 150 mg L-1 and 240 min of contact time, P. aeruginosa DR7 showed a 62.56 mg/g removal capacity for Cd (II) at an optimum pH of 6.0, 72.49 mg/g for Cu (II) at an optimum pH of 6.0, and 94.2 mg/g for Pb (II) at an optimum pH of 7.0. The experimental data of Cd (II), Cu (II), and Pb (II) adsorbed by the pseudo-second-order kinetic model correlates well with P. aeruginosa DR7, with R2 all above 0.99, showing that the fitting effect was satisfactory. The isothermal adsorption processes of Cd (II) (0.980) and Cu (II) (0.986) were more consistent with the Freundlich model, whereas Pb (II) was more consistent with the Langmuir model (0.978). FTIR analysis suggested the involvement of hydroxyl, carbonyl, carboxyl, and amine groups present in the inner regions of P. aeruginosa cells during the biosorption process. SEM-EDS analysis revealed that after contact with metals, there were slight changes in the surface appearance of the cells, which confirmed the deposition of metals on the bacterial surface. There was also the possibility of the metals being translocated into the bacterial inner regions by the appearance of electron-dense particles, as observed using TEM. As a conclusion, the removal of metals from solutions using P. aeruginosa DR7 was a plausible alternative as a safe, cheap, and easily used biosorbent.
Collapse
Affiliation(s)
- Jianhui Zhang
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Zainura Zainon Noor
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
- Centre for Environmental Sustainability and Water Security (IPASA), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Nurul Huda Baharuddin
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Siti Aminah Setu
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Mohd Amir Asyraf Mohd Hamzah
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Zainul Akmar Zakaria
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| |
Collapse
|
21
|
Rapljenović A, Viskić M, Frančišković-Bilinski S, Cuculić V. Influence of Organic Matter and Speciation on the Dynamics of Trace Metal Adsorption on Microplastics in Marine Conditions. TOXICS 2024; 12:820. [PMID: 39590999 PMCID: PMC11598581 DOI: 10.3390/toxics12110820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
Dissolved organic matter (DOM), primarily in the form of humic acid (HA), plays a crucial role in trace metal (TM) speciation and their subsequent adsorption dynamics on microplastics (MP) in aquatic environments. This study evaluates the impact of environmentally relevant concentrations of HA on the adsorption behaviors of essential (Co, Cu, Ni, and Zn) and toxic (Cd and Pb) TMs onto polyethylene (PE) and polypropylene (PP) pellets, as well as PP fibers under marine conditions, during a six-week experiment. The HA concentrations were 0.1, 1, and 5 mg/L, while all metals were in the same amounts (10 µg/L). Results reveal that HA significantly influences the adsorption of Cu, Pb, and Zn on MP, particularly on PP fibers, which exhibited the greatest TM adsorption dynamics. The adsorption patterns correspond to the concentrations of these metals in seawater, with the sequence for pellets being Zn > Cu > Pb > Ni > Co~Cd, and for fibers Cu > Zn > Pb > Co~Ni > Cd. Speciation modeling supported these findings, indicating that Cu, Pb, and Zn predominantly associate with HA in seawater, facilitating their adsorption on MP, whereas Cd, Co, and Ni mainly form free ions and inorganic complexes, resulting in slower adsorption dynamics. Statistical analysis confirmed the influence of HA on the adsorption of Cd, Pb, Cu, and Ni. By investigating the dynamics of TM adsorption on plastics, the influence of DOM on these two contaminants under marine conditions was evaluated. The presented results can help in forming a better understanding of synergistic plastic and trace metal pollution in marine systems that are relevant at the global level, since both contaminants pose a serious threat to aquatic ecosystems.
Collapse
Affiliation(s)
- Ana Rapljenović
- Laboratory for Physical Chemistry of Traces, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia; (A.R.); (M.V.); (S.F.-B.)
| | - Marko Viskić
- Laboratory for Physical Chemistry of Traces, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia; (A.R.); (M.V.); (S.F.-B.)
- Selvita Ltd., Prilaz Baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Stanislav Frančišković-Bilinski
- Laboratory for Physical Chemistry of Traces, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia; (A.R.); (M.V.); (S.F.-B.)
| | - Vlado Cuculić
- Laboratory for Physical Chemistry of Traces, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia; (A.R.); (M.V.); (S.F.-B.)
| |
Collapse
|
22
|
He Q, Pang K, Tian L, Ma Y, Guo X, Zhang J, Yu M. Melamine-Derived Mesoporous Carbon for Efficient and Selective Removal of Trace Hg(II) from Honeysuckle Decoction. ACS OMEGA 2024; 9:44931-44941. [PMID: 39554436 PMCID: PMC11561613 DOI: 10.1021/acsomega.4c03269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024]
Abstract
Melamine-derived mesoporous carbon, which was obtained from pyrolysis of modified melamine, was employed for the purpose of eliminating trace amounts of Hg(II) from honeysuckle decoction. The specific surface area of the mesoporous carbons with N-functional (MCN1) was 648.372 m2·g-1. The chemical composition and morphology of MCN1 were thoroughly examined, and a comprehensive analysis led to the identification of its formation mechanism. A noteworthy association has been identified between the adsorption efficacy and the chemical composition of MCN1. In the elimination of trace mercury in aqueous solutions over a broad pH range (pH 2-9), MCN1 demonstrates high effectiveness, approaching 100%. Adsorption kinetics and isotherm results indicate that a more accurate representation of Hg(II) adsorption on MCN1 is provided by pseudo-second-order kinetics and Freundlich models, with chemical adsorption being the dominant mechanism. This study further examined the removal of chlorogenic acid, a bioactive component, by MCN1. The findings imply that MCN1 has a noteworthy 80% efficacy in removing mercury from honeysuckle decoction while maintaining the purity of its medicinal ingredients, particularly chlorogenic acid. As a result, utilizing MCN1 for the adsorption of Hg(II) in honeysuckle decoction appears to be a reasonable approach.
Collapse
Affiliation(s)
- Qing He
- School of
Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Kun Pang
- School of
Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Lin Tian
- School of
Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yiqian Ma
- Guizhou
Institute of Products Quality Inspection & Testing, Guiyang 550025, China
| | - Xiang Guo
- School of
Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Jianyong Zhang
- School of
Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Ming Yu
- School of
Pharmacy, Zunyi Medical University, Zunyi 563000, China
- State Key
Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
23
|
Zhang Y, Wang C, Jia R, Long H, Zhou J, Sun G, Wang Y, Zhang Z, Rong X, Jiang Y. Transfer from ciliate to zebrafish: Unveiling mechanisms and combined effects of microplastics and heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135645. [PMID: 39191009 DOI: 10.1016/j.jhazmat.2024.135645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
The impacts and toxicological mechanisms of microplastics (MPs) or heavy metals on aquatic ecosystems have been the subject of extensive research and initial understanding. However, the combined toxicity of co-pollutants on organisms and cumulative toxic effects along the food chain are still underexplored. In this study, the ciliate protozoan Paramecium caudatum and zebrafish Danio rerio were used to represent the microbial loop and the higher trophic level, respectively, to illustrate the progressive exposure of MPs and cadmium (Cd2+). The findings indicate that MPs (ca. 1 ×105 items/L) containing with Cd2+ (below 0.1 µg/L) could permeate the bodies of zebrafish through trophic levels after primary ingestion by ciliates. This could cause adverse effects on zebrafish, including alterations in bioindicators (total sugar, triglycerides, lactate, and glycogen) associated with metabolism, delayed hepatic development, disruption of intestinal microbiota, DNA damage, inflammatory responses, and abnormal cellular apoptosis. In addition, the potential risks associated with the transfer of composite pollutants through the microbial loop into traditional food chain were examined, offering novel insights on the evaluation of the ecological risks associated with MPs. As observed, understanding the bioaccumulation and toxic effects of combined pollutants in zebrafish holds crucial implications for food safety and human health.
Collapse
Affiliation(s)
- Yan Zhang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Caixia Wang
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ruiqi Jia
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hongan Long
- MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Gaojingwen Sun
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - YunLong Wang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Zhaoji Zhang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Yong Jiang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
24
|
Chu X, Tian Y, An R, Jiang M, Zhao W, Guo H, Zhao P. Interfacial interactions between colloidal polystyrene microplastics and Cu in aqueous solution and saturated porous media: Model fitting and mechanism analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122741. [PMID: 39368375 DOI: 10.1016/j.jenvman.2024.122741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Microplastic (MP) and heavy metal pollution have received much attention. Few researches have been carried out on the influence of the interaction between MPs and heavy metals on their transport in saturated porous media, which concerns their fate. Therefore, the interaction mechanisms between colloidal polystyrene microplastics (PSMPs) and Cu were first carried out by applying batch adsorption experiments. Subsequently, the transport and retention of PSMPs and Cu in saturated porous media was explored through column experiments. The interaction process between PSMPs and Cu was further investigated using density functional theory (DFT) calculations. Findings demonstrated that PSMPs had strong adsorption capacity for Cu ((60.07 ± 2.57) mg g-1 at pH 7 and ionic strength 0 M) and the adsorption process was chemically dominated, non-uniform, and endothermic. The O-containing functional groups on PSMP surfaces showed essential roles in Cu adsorption, and the adsorption process mainly contained electrostatic and complexation interactions. In column experiments, Cu could inhibit PSMP transport by the cation bridging effect and changing the electrical properties of glass beads, while PSMPs may facilitate Cu transport through the carrying effect. These findings confirmed that interfacial interactions between MPs and Cu could influence their transport in saturated porous media directly, providing great environmental significance.
Collapse
Affiliation(s)
- Xianxian Chu
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yimei Tian
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Ruopan An
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Menghan Jiang
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Weigao Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Hao Guo
- The Institute of Seawater Desalination and Multipurpose Utilization, Tianjin, 300192, China
| | - Peng Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
25
|
Pei L, Sheng L, Ye Y, Sun J, Wang JS, Sun X. Microplastics from face masks: Unraveling combined toxicity with environmental hazards and their impacts on food safety. Compr Rev Food Sci Food Saf 2024; 23:e70042. [PMID: 39523687 DOI: 10.1111/1541-4337.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
Microplastics (MPs) refer to tiny plastic particles, typically smaller than 5 mm in size. Due to increased mask usage during COVID-19, improper disposal has led to masks entering the environment and releasing MPs into the surroundings. MPs can absorb environmental hazards and transfer them to humans and animals via the food chain, yet their impacts on food safety and human health are largely neglected. This review summarizes the release process of MPs from face masks, influencing factors, and impacts on food safety. Highlights are given to the prevalence of MPs and their combined toxicities with other environmental hazards. Control strategies are also explored. The release of MPs from face masks is affected by environmental factors like pH, UV light, temperature, ionic strength, and weathering. Due to the chemical active surface and large surface area, MPs can act as vectors for heavy metals, toxins, pesticides, antibiotics and antibiotic resistance genes, and foodborne pathogens through different mechanisms, such as electrostatic interaction, precipitation, and bioaccumulation. After being adsorbed by MPs, the toxicity of these environmental hazards, such as oxidative stress, cell apoptosis, and disruption of metabolic energy levels, can be magnified. However, there is a lack of comprehensive research on both the combined toxicities of MPs and environmental hazards, as well as their corresponding control strategies. Future research should prioritize understanding the interaction of MPs with other hazards in the food chain, their combined toxicity, and integrating MPs detection and degradation methods with other hazards.
Collapse
Affiliation(s)
- Luyu Pei
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing, P. R. China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing, P. R. China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing, P. R. China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing, P. R. China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Key Laboratory of Screening, Prevention, and Control of Food Safety Risks, State Administration for Market Regulation, Beijing, P. R. China
| |
Collapse
|
26
|
Prakash Ranjan V, Joseph A, Srivastava S, Bhakta Sharma H, Biswas B, Goel S, Kumar S. From cosmetics to Contamination: Microplastics in personal care products as vectors for chromium in aquatic environments. WASTE MANAGEMENT BULLETIN 2024; 2:229-240. [DOI: 10.1016/j.wmb.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
27
|
Chen L, Xie N, Yuan S, Shao H. Adsorption mechanism of hexavalent chromium on electron beam-irradiated aged microplastics: Novel aging processes and environmental factors. CHEMOSPHERE 2024; 363:142741. [PMID: 38977247 DOI: 10.1016/j.chemosphere.2024.142741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Microplastics are widely present in the natural environment and exhibit a strong affinity for heavy metals in water, resulting in the formation of microplastics composite heavy metal pollutants. This study investigated the adsorption of heavy metals by electron beam-aged microplastics. For the first time, electron beam irradiation was employed to degrade polypropylene, demonstrating its ability to rapidly age microplastics and generate a substantial number of oxygen-containing functional groups on aged microplastics surface. Adsorption experiments revealed that the maximum adsorption equilibrium capacity of hexavalent chromium by aged microplastics reached 9.3 mg g-1. The adsorption process followed second-order kinetic model and Freundlich model, indicating that the main processes of heavy metal adsorption by aged microplastics are chemical adsorption and multilayer adsorption. The adsorption of heavy metals on aged microplastics primarily relies on the electrostatic and chelation effects of oxygen-containing functional groups. The study results demonstrate that environmental factors, such as pH, salinity, coexisting metal ions, humic acid, and water matrix, exert inhibitory effects on the adsorption of heavy metals by microplastics. Theoretical calculations confirm that the aging process of microplastics primarily relies on hydroxyl radicals breaking carbon chains and forming oxygen-containing functional groups on the surface. The results indicate that electron beam irradiation can simultaneously oxidize and degrade microplastics while reducing hexavalent chromium levels by approximately 90%, proposing a novel method for treating microplastics composite pollutants. Gas chromatography-mass spectrometry analysis reveals that electron beam irradiation can oxidatively degrade microplastics into esters, alcohols, and other small molecules. This study proposes an innovative and efficient approach to treat both microplastics composite heavy metal pollutants while elucidating the impact of environmental factors on the adsorption of heavy metals by electron beam-aged microplastics. The aim is to provide a theoretical basis and guidance for controlling microplastics composite pollution.
Collapse
Affiliation(s)
- Lei Chen
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, China
| | - Nan Xie
- School of Environmental Science and Engineering, University of Lisbon, Lisbon 1649-004, Portugal
| | - Shanning Yuan
- School of Environmental Science and Engineering, University of Lisbon, Lisbon 1649-004, Portugal
| | - Haiyang Shao
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
28
|
Maruthupandy M, Jeon JH, Noh J, Yang SI, Cho WS. Mitigated toxicity of polystyrene nanoplastics in combination exposure with copper ions by transformation into copper (I) oxide: Inhibits the oxidative potential of nanoplastics. CHEMOSPHERE 2024; 364:143288. [PMID: 39243901 DOI: 10.1016/j.chemosphere.2024.143288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024]
Abstract
The combined impact of trace metals and polystyrene (PS) microplastics is extremely concerning for human health because PS microplastics can serve as a vehicle for other contaminants. Herein, we investigated the combined effect of copper ions (Cu2+) on the toxicity of PS nanoplastics in vivo and in vitro. The pristine PS (PPS) and ultraviolet irradiated oxidized PS (OPS) nanoplastics with 50 nm-size were conjugated with Cu2+ (13-27 mg/g) for 4 days to get four types of samples: PPS, OPS, PPS/Cu, and OPS/Cu. The comparative toxic potentials of test samples were evaluated using a mouse pharyngeal aspiration model and relevant human cell lines (A549 and differentiated THP-1 cells). The results showed an antagonistic effect in vivo and in vitro by the presence of Cu ions: PPS > PPS/Cu; OPS > OPS/Cu. Furthermore, the OPS produced significantly increased toxic potentials compared to the corresponding PPS: OPS > PPS; OPS/Cu > PPS/Cu. The antagonistic effect of Cu2+ on the toxicity of PS was due to the transformation of Cu2+ and balanced the surface charge of the nanoplastics, which inhibited the oxidative potential of corresponding nanoplastics. These antagonistic effects may provide a better understanding of the combined effects of metals on the intrinsic toxic potential of microplastics under natural conditions.
Collapse
Affiliation(s)
- Muthuchamy Maruthupandy
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
| | - Jun Hui Jeon
- Department of Applied Chemistry, Kyung Hee University, Yongin-si, 17104, Republic of Korea
| | - Jiyeon Noh
- Department of Applied Chemistry, Kyung Hee University, Yongin-si, 17104, Republic of Korea
| | - Sung Ik Yang
- Department of Applied Chemistry, Kyung Hee University, Yongin-si, 17104, Republic of Korea.
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
| |
Collapse
|
29
|
Tenea AG, Dinu C, Rus PA, Ionescu IA, Gheorghe S, Iancu VI, Vasile GG, Pascu LF, Chiriac FL. Exploring adsorption dynamics of heavy metals onto varied commercial microplastic substrates: Isothermal models and kinetics analysis. Heliyon 2024; 10:e35364. [PMID: 39166070 PMCID: PMC11334899 DOI: 10.1016/j.heliyon.2024.e35364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
The increasing presence of plastics in the environment has raised concerns about their potential impact, especially as carriers of heavy metals such as Cd, Ni, and Pb. However, the adsorption mechanism of heavy metals on microplastics remains poorly understood. In this study, we investigated the adsorption behavior of Cd, Ni, and Pb by polystyrene (PS) and polypropylene (PP) microplastics to better comprehend their interaction and potential environmental implications. Our results revealed that equilibrium adsorption of microplastics with different heavy metals was achieved within a 6-h contact time. The FTIR analysis findings, which suggest that physical interactions play a significant role in the adsorption of heavy metals onto microplastics, are further supported by the observed changes in surface morphology after adsorption. We explored the influence of solution pH, contact duration, and initial concentration on the adsorption capacity and found significant effects on the adsorption behavior. To model the adsorption process, we applied Langmuir and Freundlich adsorption isotherm models and observed that the Langmuir model better fit the experimental data. Furthermore, we compared the pseudo-first and pseudo-second-order kinetic models and found that the pseudo-second-order model provided a more accurate description of the adsorption kinetics. Notably, the adsorption percentages varied depending on the type of microplastic and experimental conditions. Overall, this study enhances our understanding of the adsorption mechanism of heavy metals on microplastics and provides valuable insights into their behavior in aquatic environments. These findings have implications for the development of effective strategies for mitigating pollution caused by microplastics and heavy metals in aquatic ecosystems.
Collapse
Affiliation(s)
- Anda-Gabriela Tenea
- National Research and Development Institute for Industrial Ecology ECOIND Bucharest, 51-73 Drumul Podul Dambovitei Street, 060652, Bucharest, Romania
| | - Cristina Dinu
- National Research and Development Institute for Industrial Ecology ECOIND Bucharest, 51-73 Drumul Podul Dambovitei Street, 060652, Bucharest, Romania
| | - Paul Alexandru Rus
- National Research and Development Institute for Industrial Ecology ECOIND Bucharest, 51-73 Drumul Podul Dambovitei Street, 060652, Bucharest, Romania
| | - Ioana Alexandra Ionescu
- National Research and Development Institute for Industrial Ecology ECOIND Bucharest, 51-73 Drumul Podul Dambovitei Street, 060652, Bucharest, Romania
| | - Stefania Gheorghe
- National Research and Development Institute for Industrial Ecology ECOIND Bucharest, 51-73 Drumul Podul Dambovitei Street, 060652, Bucharest, Romania
| | - Vasile Ion Iancu
- National Research and Development Institute for Industrial Ecology ECOIND Bucharest, 51-73 Drumul Podul Dambovitei Street, 060652, Bucharest, Romania
| | - Gabriela Geanina Vasile
- National Research and Development Institute for Industrial Ecology ECOIND Bucharest, 51-73 Drumul Podul Dambovitei Street, 060652, Bucharest, Romania
| | - Luoana Florentina Pascu
- National Research and Development Institute for Industrial Ecology ECOIND Bucharest, 51-73 Drumul Podul Dambovitei Street, 060652, Bucharest, Romania
| | - Florentina Laura Chiriac
- National Research and Development Institute for Industrial Ecology ECOIND Bucharest, 51-73 Drumul Podul Dambovitei Street, 060652, Bucharest, Romania
| |
Collapse
|
30
|
Bastante-Rabadán M, Boltes K. Mixtures of Micro and Nanoplastics and Contaminants of Emerging Concern in Environment: What We Know about Their Toxicological Effects. TOXICS 2024; 12:589. [PMID: 39195691 PMCID: PMC11359687 DOI: 10.3390/toxics12080589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
In real environments, pollutants do not occur in isolation. Instead, they can be found in complex mixtures with effects that are completely different from those of the individual components. In this review, articles from 2017 to May 2024 have been selected to provide an overview of the existing knowledge on complex mixtures between micropollutants and micro and nanoplastics in organisms in terrestrial and aquatic environments. It was found that the corresponding toxicological parameters to determine the interaction between the compounds were not calculated in most of the literature reviewed. Our analysis shows that, in aquatic environments, synergistic effects have been found more frequently than antagonistic effects. In terrestrial environments, the joint toxicological action of microplastics or nanoplastics with emerging contaminants has been less studied, but synergistic effects may also predominate. Future work should thoroughly investigate the nature of the interactions in order to properly assess the risk posed by this cocktail of compounds in ecosystems.
Collapse
Affiliation(s)
- Marina Bastante-Rabadán
- Departamento de Química Analítica Química Física e Ingeniería Química, Universidad de Alcalá, Campus Científica Tecnológico, Ctra. A-II km 33.6, 28871 Alcalá de Henares, Madrid, Spain;
| | - Karina Boltes
- Departamento de Química Analítica Química Física e Ingeniería Química, Universidad de Alcalá, Campus Científica Tecnológico, Ctra. A-II km 33.6, 28871 Alcalá de Henares, Madrid, Spain;
- IMDEA Instituto Madrileño de Estudios Avanzados Water, Avda. Punto Com, 2, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
31
|
He J, Zhang H, Yang R, Jin J, Huang M, Qin Y, Dong G, Yang F, Yang Y. Analysis of the Adsorption Behavior of Phenanthrene on Microplastics Based on Two-Dimensional Correlation Spectroscopy. APPLIED SPECTROSCOPY 2024:37028241267326. [PMID: 39095054 DOI: 10.1177/00037028241267326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Microplastics (MPs), an emerging pollutant, widely co-occur with polycyclic aromatic hydrocarbons (PAHs) in the environment. Therefore, the interaction between MPs and PAHs has been the focus of much attention in recent years. In this study, three types of MPs, i.e., polypropylene, polystyrene, and poly(vinyl chloride), with the same main chain were selected as the adsorbents, with phenanthrene (PHE) as the representative PAHs. The adsorption mechanisms were explored from the perspective of the molecular spectral level using a combination of Fourier transform infrared spectroscopy (FT-IR) with a two-dimensional correlation technique. The adsorption kinetics results showed that the adsorption of PHE on the three MPs was dominated by chemisorption. However, the FT-IR analysis results indicated that no new covalent bond was created during the adsorption process. Based on the above research, a generalized two-dimensional (2D) correlation spectral technique was employed to investigate the sequence of functional group changes during the adsorption process for different MPs. Furthermore, the hybrid 2D correlation spectral technique explored the effect of side groups attached to the main chain molecules of MPs on adsorption. The results showed that for all three MPs, the functional groups in the side chain have a higher affinity for PHE, which is due to their higher hydrophobicity. This study provides a feasible way to analyze the adsorption of pollutants on MPs, and the results are important for understanding the adsorption interaction between PAHs and MPs in the aquatic environment.
Collapse
Affiliation(s)
- Jiyuan He
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Han Zhang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Renjie Yang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Jianmin Jin
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Minyue Huang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Yiyang Qin
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Guimei Dong
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Fan Yang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Yanrong Yang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
32
|
Zhang J, Lin Z, Ai F, Du W, Yin Y, Guo H. Effect of ultraviolet aged polytetrafluoroethylene microplastics on copper bioavailability and Microcystis aeruginosa growth. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106967. [PMID: 38833998 DOI: 10.1016/j.aquatox.2024.106967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Microplastics (MPs) are ubiquitous in aquatic environments, which can act as carriers to affect the bioavailability of heavy metals. The aging process in the environment changes the physicochemical properties of MPs, thereby affecting their environmental behavior and co-toxicity with other pollutants. However, relevant research is limited. In this study, we compared the properties and Cu2+ adsorption capacity of pristine and aged polytetrafluoroethylene (PTFE) MPs and further explored the influence on copper bioavailability and bio-effects on Microcystis aeruginosa. Aging process induced surface oxidation and cracks of PTFE MPs, and decreased the stability of MPs in water by increasing zeta potential. PTFE MPs had a strong adsorption capacity for Cu2+ and increased the bioavailability of copper to microalgae, which was not affected by the aging process. Pristine and aged PTFE MPs adhered to cyanobacterium surfaces and caused shrinkage and deformation of cells. Inhibition of cyanobacterium growth, photosynthesis and reduction of total antioxidant capacity were observed in the treatment of PTFE MPs. Combined exposure of pristine MPs and Cu2+ had stronger toxic effects to cyanobacterium, and increased Microcystin-LR release, which could cause harm to aquatic environment. Aging reduced the toxic effects of PTFE MPs on microalgae. Furthermore, soluble exopolysaccharide (EPS) content was significantly higher in co-exposure of aged MPs and Cu2+, which could reduce the toxicity to cyanobacterium cells. These results indicate that aging process alleviates the toxicity to microalgae and environmental risks caused by PTFE MPs. This study improves understanding of the combined toxicity of aged MPs and metals in freshwater ecosystems.
Collapse
Affiliation(s)
- Juanjuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zihan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210036, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China
| |
Collapse
|
33
|
Giyahchi M, Moghimi H. Acceleration a yeast-based biodegradation process of polyethylene terephthalate microplastics by Tween 20: Efficiency, by-product analysis, and metabolic pathway Prediction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124106. [PMID: 38705445 DOI: 10.1016/j.envpol.2024.124106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Polyethylene terephthalate is a widely produced plastic polymer that exhibits considerable biodegradation resistance, making its derived microplastics ubiquitous environmental pollutants. In this study, a new yeast strain (Vanrija sp. SlgEBL5) was isolated and found to have lipase and esterase-positive capabilities for degrading polyethylene terephthalate microplastics. This isolate changed the microplastic surface charge from -19.3 to +31.0 mV and reduced more than 150 μm of its size in addition to reducing the intensity of the terephthalate, methylene, and ester bond functional groups of the polymer in 30 days. Tween 20 as a chemical auxiliary treatment combined with biodegradation increased the microplastic degradation rate from 10 to 16.6% and the thermal degradation rate from 85 to 89%. Releasing less potentially hazardous by-products like 1,2 diethyl-benzene despite the higher abundance of long-chain n-alkanes, including octadecane and tetracosane was also the result of the bio + chemical treatment. Altogether, the findings showed that Vanrija sp. SlgEBL5 has the potential as a biological treating agent for polyethylene terephthalate microplastics, and the simultaneous bio + chemical treatment enhanced the biodegradation rate and efficiency.
Collapse
Affiliation(s)
- Minoo Giyahchi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
34
|
Yarahmadi A, Heidari S, Sepahvand P, Afkhami H, Kheradjoo H. Microplastics and environmental effects: investigating the effects of microplastics on aquatic habitats and their impact on human health. Front Public Health 2024; 12:1411389. [PMID: 38912266 PMCID: PMC11191580 DOI: 10.3389/fpubh.2024.1411389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024] Open
Abstract
Microplastics (MPs) are particles with a diameter of <5 mm. The disposal of plastic waste into the environment poses a significant and pressing issue concern globally. Growing worry has been expressed in recent years over the impact of MPs on both human health and the entire natural ecosystem. MPs impact the feeding and digestive capabilities of marine organisms, as well as hinder the development of plant roots and leaves. Numerous studies have shown that the majority of individuals consume substantial quantities of MPs either through their dietary intake or by inhaling them. MPs have been identified in various human biological samples, such as lungs, stool, placenta, sputum, breast milk, liver, and blood. MPs can cause various illnesses in humans, depending on how they enter the body. Healthy and sustainable ecosystems depend on the proper functioning of microbiota, however, MPs disrupt the balance of microbiota. Also, due to their high surface area compared to their volume and chemical characteristics, MPs act as pollutant absorbers in different environments. Multiple policies and initiatives exist at both the domestic and global levels to mitigate pollution caused by MPs. Various techniques are currently employed to remove MPs, such as biodegradation, filtration systems, incineration, landfill disposal, and recycling, among others. In this review, we will discuss the sources and types of MPs, the presence of MPs in different environments and food, the impact of MPs on human health and microbiota, mechanisms of pollutant adsorption on MPs, and the methods of removing MPs with algae and microbes.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | | | - Parisa Sepahvand
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
35
|
Chu X, Liu J, He N, Li J, Li T, Tian Y, Zhao P. Cu fate driven by colloidal polystyrene microplastics with pipe scale destabilization in drinking water distribution systems. WATER RESEARCH 2024; 256:121613. [PMID: 38663210 DOI: 10.1016/j.watres.2024.121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
Microplastics (MPs) and Cu have been detected in drinking water distribution systems (DWDSs). Investigating MP effects on Cu adsorption by pipe scales and concomitant variations of pipe scales was critical for improving the water quality, which remained unclear to date. Therefore, polystyrene microplastics (PSMPs) were adopted for the model MPs to determine their effects on Cu fate and pipe scale stabilization, containing batch adsorption, metal speciation extraction, and Cu release experiments. Findings demonstrated that complexation and electrostatic interactions were involved in Cu adsorption on pipe scales. PSMPs contributed to Cu adsorption via increasing negative charges of pipe scales and providing additional adsorption sites for Cu, which included the carrying and component effects of free and adsorbed PSMPs, respectively. The decreased iron and manganese oxides fraction (45.57 % to 29.91 %) and increased organic fraction (48.51 % to 63.58 %) of Cu in pipe scales when PSMPs were coexisting illustrated that PSMPs had a greater affinity for Cu than pipe scales and thus influenced its mobility. Additionally, the release of Cu could be facilitated by the coexisted PSMPs, with the destabilization of pipe scales. This study was the first to exhibit that Cu fate and pipe scale stabilization were impacted by MPs, providing new insight into MP hazards in DWDSs.
Collapse
Affiliation(s)
- Xianxian Chu
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jing Liu
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Nan He
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaxin Li
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tiantian Li
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yimei Tian
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Peng Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
36
|
Miller C, Neidhart A, Hess K, Ali AMS, Benavidez A, Spilde M, Peterson E, Brearley A, Wang X, Dhanapala BD, Cerrato JM, Gonzalez-Estrella J, El Hayek E. Uranium accumulation in environmentally relevant microplastics and agricultural soil at acidic and circumneutral pH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171834. [PMID: 38521258 PMCID: PMC11141427 DOI: 10.1016/j.scitotenv.2024.171834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
The co-occurrence of microplastics (MPs) with potentially toxic metals in the environment stresses the need to address their physicochemical interactions and the potential ecological and human health implications. Here, we investigated the reaction of aqueous U with agricultural soil and high-density polyethylene (HDPE) through the integration of batch experiments, microscopy, and spectroscopy. The aqueous initial concentration of U (100 μM) decreased between 98.6 and 99.2 % at pH 5 and between 86.2 and 98.9 % at pH 7.5 following the first half hour of reaction with 10 g of soil. In similar experimental conditions but with added HDPE, aqueous U decreased between 98.6 and 99.7 % at pH 5 and between 76.1 and 95.2 % at pH 7.5, suggesting that HDPE modified the accumulation of U in soil as a function of pH. Uranium-bearing precipitates on the cracked surface of HDPE were identified by SEM/EDS after two weeks of agitation in water at both pH 5 and 7.5. Accumulation of U on the near-surface region of reacted HDPE was confirmed by XPS. Our findings suggest that the precipitation of U was facilitated by the weathering of the surface of HDPE. These results provide insights about surface-mediated reactions of aqueous metals with MPs, contributing relevant information about the mobility of metals and MPs at co-contaminated agricultural sites.
Collapse
Affiliation(s)
- Casey Miller
- Gerald May Department of Civil, Construction & Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, NM 87131, USA; Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, NM 87131, USA
| | - Andrew Neidhart
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, MSC03 2060, University of New Mexico, Albuquerque, NM 87131, USA
| | - Kendra Hess
- School of Civil and Environmental Engineering, EN0059, Oklahoma State University, Stillwater, OK 740784, USA
| | - Abdul-Mehdi S Ali
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, USA
| | - Michael Spilde
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Eric Peterson
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Xuewen Wang
- School of Civil and Environmental Engineering, EN0059, Oklahoma State University, Stillwater, OK 740784, USA
| | - B Dulani Dhanapala
- College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 740784, USA
| | - José M Cerrato
- Gerald May Department of Civil, Construction & Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jorge Gonzalez-Estrella
- School of Civil and Environmental Engineering, EN0059, Oklahoma State University, Stillwater, OK 740784, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, NM 87131, USA.
| |
Collapse
|
37
|
Zhang S, Sun Z, Zheng T, He C, Lin D. Nanoplastics increase algal absorption and toxicity of Cd through alterations in cell wall structure and composition. WATER RESEARCH 2024; 254:121394. [PMID: 38442610 DOI: 10.1016/j.watres.2024.121394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
Nanoplastics (NPs) may act as carriers of heavy metals and cause complex toxicity to aquatic organisms, while the exact role of NPs in the joint toxicity remains unclear. Here, we investigated the joint toxicity of polystyrene NPs (PS-NPs) and Cd to freshwater algae (Chlorella vulgaris). It was found that PS-NPs (1 mg L-1) could hardly enter algal cells and slightly inhibit algal growth (p < 0.01). The effect of PS-NPs as carriers on the joint toxicity of PS-NPs and heavy metals could be neglected because of the limited adsorption of Cd by PS-NPs, while the PS-NPs altered the cell wall structure and composition, which resulted in the increased algal absorption and toxicity of Cd. Compared to the low dose Cd (0.4 mg L-1) treatment alone, the extracellular and intracellular Cd contents in the cotreatment were significantly increased by 27.3 % and 18.0 %, respectively, due to the increased contents of cell wall polysaccharides (pectin and hemicellulose in particular) by the PS-NPs. Furthermore, after the high dose Cd (2 mg L-1) exposure, the inhibited polysaccharide biosynthesis and the loosen cell wall structure weakened the tolerance of cell wall to abiotic stress, facilitating the entry of PS-NPs into the algal cells and inducing the higher toxicity. These results elucidate the mechanism by which NPs enhance heavy metal toxicity to algae, providing a novel insight into environmental risks of NPs.
Collapse
Affiliation(s)
- Shuang Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ziyi Sun
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Tianying Zheng
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Caijiao He
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Anji 313300, China.
| |
Collapse
|
38
|
Ta AT, Babel S, Nguyen LTP, Sembiring E. Microplastic Pollution in High Population Density Zones of Selected Rivers from Southeast Asia. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:73. [PMID: 38691196 DOI: 10.1007/s00128-024-03901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Southeast Asia (SEA) faces significant environmental challenges due to rapid population growth and economic activity. Rivers in the region are major sources of plastic waste in oceans. Concerns about their contribution have grown, but knowledge of microplastics in the area is still limited. This article compares microplastic levels in sediment and water from urban zones of three major rivers in SEA: Chao Phraya River (Thailand), Saigon River (Vietnam), and Citarum River (Indonesia). The study reveals that in all three rivers, microplastics were found, with the highest concentrations in Chao Phraya's water (80 ± 60 items/m3) and Saigon's sediment (9167 ± 4559 items/kg). The variations in microplastic sizes and concentrations among these rivers may be attributed to environmental factors and the exposure duration of plastic to the environment. Since these rivers are important water supply sources, rigorous land-use regulations and raising public awareness are crucial to mitigate plastic and microplastic pollution.
Collapse
Affiliation(s)
- Anh Tuan Ta
- School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Pathum Thani, 12121, Thailand
| | - Sandhya Babel
- School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Pathum Thani, 12121, Thailand.
| | - Loan Thi Phuong Nguyen
- Faculty of Environment, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Emenda Sembiring
- Bandung Institute of Technology, Kota Bandung, Jawa Barat 40132, Indonesia
| |
Collapse
|
39
|
Yang X, Xu N, Wang X, Yang L, Sun S. Mechanisms of increased small nanoplastic particle retention in water-saturated sand media with montmorillonite and diatomite: Particle sizes, water components, and modelling. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133056. [PMID: 38008050 DOI: 10.1016/j.jhazmat.2023.133056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
The processes by which small nanoplastics (NPs) accumulate in soil are unclear. To clarify the different deposition processes that affect small NPs (< 30 nm) compared to larger NPs in the soil environment, due to their interaction with clays as major soil components, the transport behavior of two-sized NPs (20 and 80 nm) with two clays (diatomite (Diat) and montmorillonite (Mont)) in NaCl and CaCl2 solutions were investigated in water-saturated quartz sand columns. The experimental results showed that more 20 nm NPs could enter the lattice structure of Diat than Mont in NaCl solution. This contributed to the stronger deposition of 20 nm NPs by Diat on sand, which was associated with a lower k1d/k1 value (obtained from two-site kinetic attachment model). In contrast, 80 nm NPs had a stronger reversible retention than 20 nm NPs with Mont, even though both sizes of NPs-Mont displayed a similar transportability. In CaCl2 solution, the larger NPs-Mont hetero-aggregates formed with a stronger suppressed depth of φmax based on Derjaguin-Landau-Verwey-Overbeek theory. Thus, Mont had a stronger transport inhibition than Diat for both NPs sizes, with a lower k1d/k1. These findings could benefit in predicting the size-based deposition of NPs in a heterogenous soil environment.
Collapse
Affiliation(s)
- Xiangrong Yang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Nan Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xuelian Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Li Yang
- Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Siyi Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
40
|
Chakravorty M, Jaiswal KK, Bhatnagar P, Parveen A, Upadhyay S, Vlaskin MS, Alajmi MF, Chauhan PK, Nanda M, Kumar V. Exogenous GABA supplementation to facilitate Cr (III) tolerance and lipid biosynthesis in Chlorella sorokiniana. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120441. [PMID: 38430879 DOI: 10.1016/j.jenvman.2024.120441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Microalgae possess the prospective to be efficiently involved in bioremediation and biodiesel generation. However, conditions of stress often restrict their growth and diminish different metabolic processes. The current study evaluates the potential of GABA to improve the growth of the microalga Chlorella sorokiniana under Cr (III) stress through the exogenous administration of GABA. The research also investigates the concurrent impact of GABA and Cr (III) stress on various metabolic and biochemical pathways of the microalgae. In addition to the control, cultures treated with Cr (III), GABA, and both Cr (III) and GABA treated were assessed for accurately analysing the influence of GABA. The outcomes illustrated that GABA significantly promoted growth of the microalgae, resulting in higher biomass productivity (19.14 mg/L/day), lipid productivity (3.445 mg/L/day) and lipid content (18%) when compared with the cultures under Cr (III) treatment only. GABA also enhanced Chl a content (5.992 μg/ml) and percentage of protein (23.75%). FAMEs analysis by GC-MS and total lipid profile revealed that GABA treatment can boost the production of SFA and lower the level of PUFA, a distribution ideal for improving biodiesel quality. ICP-MS analysis revealed that GABA supplementation could extend Cr (III) mitigation level up to 97.7%, suggesting a potential strategy for bioremediation. This novel study demonstrates the merits of incorporating GABA in C. sorokiniana cultures under Cr (III) stress, in terms of its potential in bioremediation and biodiesel production without disrupting the pathways of photosynthesis and protein production.
Collapse
Affiliation(s)
- Manami Chakravorty
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, United Kingdom
| | - Krishna Kumar Jaiswal
- Bioprocess Engineering Laboratory, Department of Green Energy Technology, Pondicherry University, Puducherry, 605014, India
| | - Pooja Bhatnagar
- Algal Research and Bioenergy Lab, Department of Food Science and Technology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Afreen Parveen
- Algal Research and Bioenergy Lab, Department of Food Science and Technology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Shuchi Upadhyay
- Department of Allied Health Sciences, School of Health Sciences and Technology SoHST, University of Petroleum and Energy Studies UPES, Bidholi, Dehradun, 248007, India
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Mohamed Fahad Alajmi
- Department of Pharmacognosy College of Pharmacy King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - P K Chauhan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, HP, India
| | - Manisha Nanda
- Department of Microbiology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India.
| | - Vinod Kumar
- Algal Research and Bioenergy Lab, Department of Food Science and Technology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India; Peoples' Friendship, University of Russia (RUDN University), Moscow, 117198, Russian Federation; Graphic Era Hill University, Dehradun, Uttarakhand 248002, India.
| |
Collapse
|
41
|
Zhang Y, Wang JX, Liu Y, Zhang JT, Wang JH, Chi ZY. Effects of environmental microplastic exposure on Chlorella sp. biofilm characteristics and its interaction with nitric oxide signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169659. [PMID: 38159749 DOI: 10.1016/j.scitotenv.2023.169659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Microalgal biofilm is promising in simultaneous pollutants removal, CO2 fixation, and biomass resource transformation when wastewater is used as culturing medium. Nitric oxide (NO) often accumulates in microalgal cells under wastewater treatment relevant abiotic stresses such as nitrogen deficiency, heavy metals, and antibiotics. However, the influence of emerging contaminants such as microplastics (MPs) on microalgal intracellular NO is still unknown. Moreover, the investigated MPs concentrations among existing studies were mostly several magnitudes higher than in real wastewaters, which could offer limited guidance for the effects of MPs on microalgae at environment-relevant concentrations. Therefore, this study investigated three commonly observed MPs in wastewater at environment-relevant concentrations (10-10,000 μg/L) and explored their impacts on attached Chlorella sp. growth characteristics, nutrients removal, and anti-oxidative responses (including intracellular NO content). The nitrogen source NO3--N at 49 mg/L being 20 % of the nitrogen strength in classic BG-11 medium was selected for MPs exposure experiments because of least intracellular NO accumulation, so that disturbance of intracellular NO by nitrogen availability could be avoided. Under such condition, 10 μg/L polyethylene (PE) MPs displayed most significant microalgal growth inhibition comparing with polyvinyl chloride (PVC) and polyamide (PA) MPs, showing extraordinarily low chlorophyll a/b ratios, and highest superoxide dismutase (SOD) activity and intracellular NO content after 12 days of MPs exposure. PVC MPs exposed cultures displayed highest malonaldehyde (MDA) content because of the toxic characteristics of organochlorines, and most significant correlations of intracellular NO content with conventional anti-oxidative parameters of SOD, CAT (catalase), and MDA. MPs accelerated phosphorus removal, and the type rather than concentration of MPs displayed higher influences, following the trend of PE > PA > PVC. This study expanded the knowledge of microalgal biofilm under environment-relevant concentrations of MPs, and innovatively discovered the significance of intracellular NO as a more sensitive indicator than conventional anti-oxidative parameters under MPs exposure.
Collapse
Affiliation(s)
- Ying Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jian-Xia Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yang Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Tian Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China.
| | - Zhan-You Chi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
42
|
Athulya PA, Waychal Y, Rodriguez-Seijo A, Devalla S, Doss CGP, Chandrasekaran N. Microplastic interactions in the agroecosystems: methodological advances and limitations in quantifying microplastics from agricultural soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:85. [PMID: 38367078 DOI: 10.1007/s10653-023-01800-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/17/2023] [Indexed: 02/19/2024]
Abstract
The instantaneous growth of the world population is intensifying the pressure on the agricultural sector. On the other hand, the critical climate changes and increasing load of pollutants in the soil are imposing formidable challenges on agroecosystems, affecting productivity and quality of the crops. Microplastics are among the most prevalent pollutants that have already invaded all terrestrial and aquatic zones. The increasing microplastic concentration in soil critically impacts crop plants growth and yield. The current review elaborates on the behaviors of microplastics in soil and their impact on soil quality and plant growth. The study shows that microplastics alter the soil's biophysical properties, including water-holding capacity, bulk density, aeration, texture, and microbial composition. In addition, microplastics interact with multiple pollutants, such as polyaromatic hydrocarbons and heavy metals, making them more bioavailable to crop plants. The study also provides a detailed insight into the current techniques available for the isolation and identification of soil microplastics, providing solutions to some of the critical challenges faced and highlighting the research gaps. In our study, we have taken a holistic, comprehensive approach by analysing and comparing various interconnected aspects to provide a deeper understanding of all research perspectives on microplastics in agroecosystems.
Collapse
Affiliation(s)
| | - Yojana Waychal
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Andres Rodriguez-Seijo
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias de Ourense, Universidade de Vigo, As Lagoas S/N, 32004, Ourense, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo-Campus Auga, 32004, Ourense, Spain
| | - Sandhya Devalla
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - C George Priya Doss
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
43
|
Rafa N, Ahmed B, Zohora F, Bakya J, Ahmed S, Ahmed SF, Mofijur M, Chowdhury AA, Almomani F. Microplastics as carriers of toxic pollutants: Source, transport, and toxicological effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123190. [PMID: 38142809 DOI: 10.1016/j.envpol.2023.123190] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/25/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Microplastic pollution has emerged as a new environmental concern due to our reliance on plastic. Recent years have seen an upward trend in scholarly interest in the topic of microplastics carrying contaminants; however, the available review studies have largely focused on specific aspects of this issue, such as sorption, transport, and toxicological effects. Consequently, this review synthesizes the state-of-the-art knowledge on these topics by presenting key findings to guide better policy action toward microplastic management. Microplastics have been reported to absorb pollutants such as persistent organic pollutants, heavy metals, and antibiotics, leading to their bioaccumulation in marine and terrestrial ecosystems. Hydrophobic interactions are found to be the predominant sorption mechanism, especially for organic pollutants, although electrostatic forces, van der Waals forces, hydrogen bonding, and pi-pi interactions are also noteworthy. This review reveals that physicochemical properties of microplastics, such as size, structure, and functional groups, and environmental compartment properties, such as pH, temperature, and salinity, influence the sorption of pollutants by microplastic. It has been found that microplastics influence the growth and metabolism of organisms. Inadequate methods for collection and analysis of environmental samples, lack of replication of real-world settings in laboratories, and a lack of understanding of the sorption mechanism and toxicity of microplastics impede current microplastic research. Therefore, future research should focus on filling in these knowledge gaps.
Collapse
Affiliation(s)
- Nazifa Rafa
- Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EN, United Kingdom
| | - Bushra Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Fatema Zohora
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Jannatul Bakya
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Samiya Ahmed
- Biological and Biomedical Sciences Department, College of Health and Life sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ashfaque Ahmed Chowdhury
- School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4702, Australia; Centre for Intelligent Systems, Clean Energy Academy, Central Queensland University, Rockhampton, QLD 4702, Australia
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, Doha, Qatar.
| |
Collapse
|
44
|
Xiong X, Wang J, Liu J, Xiao T. Microplastics and potentially toxic elements: A review of interactions, fate and bioavailability in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122754. [PMID: 37844862 DOI: 10.1016/j.envpol.2023.122754] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
In recent years, microplastics (MPs) have obtained growing public concern due to widespread distribution and harmful impacts. Their distinctive features including porous structure, small size, as well as large specific surface area render MPs to be carriers for transporting other pollutants in the environment, especially potentially toxic elements (PTEs). Considering the hot topic of MPs, it is of great significance to comb the reported literature on environmental behaviors of co-occurrence of MPs and PTEs, and systematically discuss their co-mobility, transportation and biotoxicity to different living organisms in diverse environmental media. Therefore, the aim of this work is to systematically review and summarize recent advances on interactions and co-toxicity of MPs and PTEs, in order to provide in-depth understanding on the transport behaviors as well as environmental impacts. Electrostatic attraction and surface complexation mainly govern the interactions between MPs and PTEs, which are subordinated by other physical sorption processes. Besides, the adsorption behaviors are mainly determined by physicochemical properties regarding to different MPs types and various condition factors (e.g., ageing and PTEs concentrations, presence of substances). Generally speaking, recently published papers make a great progress in elucidating the mechanisms, impact factors, as well as thermodynamic and kinetic studies. Bioavailability and bioaccumulation by plant, microbes, and other organisms in both aquatic and terrestrial environment have also been under investigation. This review will shed novel perspectives on future research to meet the sustainable development goals, and obtain critical insights on revealing comprehensive mechanisms. It is crucial to promote efficient approaches on environmental quality improvement as well as management strategies towards the challenge of MPs-PTEs.
Collapse
Affiliation(s)
- Xinni Xiong
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jin Wang
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Juan Liu
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Tangfu Xiao
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
45
|
Surendran D, Varghese GK, Zafiu C. Characterization and source apportionment of microplastics in Indian composts. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:5. [PMID: 38044370 DOI: 10.1007/s10661-023-12177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Microplastics (MP), small plastic particles under 5 mm, are pollutants known to carry heavy metals in ecosystems. Composts are a significant source of soil microplastics. This study examined MSW composts from Kochi and Kozhikode in India for microplastic concentrations and heavy metals' accumulation thereon. Microplastics were isolated using zinc chloride density separation, with Fenton's reagent used for organic matter oxidation. Resin types were identified using FTIR analysis that showed the presence of PE, PP, PS, nylon, PET, and allyl alcohol copolymer. In Kozhikode's compost, the average concentration of microplastics was 840 ± 30 items/kg, while Kochi had 1600 ± 111 items/kg, mainly polyethylene films. PE was the most prevalent resin, comprising 58.3% in Kozhikode and 73.37% in Kochi. Heavy metal analysis of MP showed significant concentrations of lead, cadmium, zinc, copper, and manganese adsorbed on the surface of microplastics. The concentrations of heavy metals in the MP before Fenton oxidation ranged from 1.02 to 2.02 times the corresponding concentrations in compost for Kozhikode and 1.23 to 2.85 times for Kochi. Source apportionment studies revealed that 64% of microplastics in Kozhikode and 77% in Kochi originated from single-use plastics. Ecological risk indices, PLI and PHI, showed that composts from both locations fall under hazard level V. The study revealed that compost from unsegregated MSW can act as a significant source of microplastics and heavy metals in the soil environment, with single-use plastics contributing major share of the issue.
Collapse
Affiliation(s)
| | | | - Christian Zafiu
- Institute of Waste Management and Circularity, Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
46
|
Zhang H, Shen N, Li Y, Hu C, Yuan P. Source, transport, and toxicity of emerging contaminants in aquatic environments: A review on recent studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121420-121437. [PMID: 37999842 DOI: 10.1007/s11356-023-30869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Emerging contaminants (ECs) are gaining global attention owing to their widespread presence and adverse effects on human health. ECs comprise numerous composite types and pose a potential threat to the growth and functional traits of species and ecosystems. Although the occurrence and fate of ECs has been extensively studied, little is known about their long-term biological effects. This review attempts to gain insights into the unhindered connections and overlaps in aquatic ecosystems. Microplastics (MPs), one of the most representative ECs, are carriers of other pollutants because of their strong adsorption capacity. They form a complex of pollutants that can be transmitted to aquatic organisms and humans through the extended food chain, increasing the concentration of pollutants by tens of thousands of times. Adsorption, interaction and transport effects of emerging contaminants in the aquatic environment are also discussed. Furthermore, the current state of knowledge on the ecotoxicity of single- and two-pollutant models is presented. Herein, we discuss how aquatic organisms within complex food networks may be particularly vulnerable to harm from ECs in the presence of perturbations. This review provides an advanced understanding of the interactions and potential toxic effects of ECs on aquatic organisms.
Collapse
Affiliation(s)
- Heran Zhang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Nan Shen
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Beijing, 100012, China
| | - Yafeng Li
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Cheng Hu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Peng Yuan
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Beijing, 100012, China.
| |
Collapse
|
47
|
Vrinda PK, Amal R, Abhirami N, Mini DA, Kumar VJR, Devipriya SP. Co-exposure of microplastics and heavy metals in the marine environment and remediation techniques: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114822-114843. [PMID: 37922080 DOI: 10.1007/s11356-023-30679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2023]
Abstract
Microplastics (MPs) and heavy metals are significant pollutants in the marine environment, necessitating effective remediation strategies to prevent their release into the sea through sewage and industrial effluent. This comprehensive review explores the current understanding of the co-exposure of MPs and heavy metal-enriched MPs, highlighting the need for effective remediation methods. Various mechanisms, including surface ion complexation, hydrogen bonding, and electrostatic forces, contribute to the adsorption of heavy metals onto MPs, with factors like surface area and environmental exposure duration playing crucial roles. Additionally, biofilm formation on MPs alters their chemical properties, influencing metal adsorption behaviors. Different thermodynamic models are used to explain the adsorption mechanisms of heavy metals on MPs. The adsorption process is influenced by various factors, including the morphological characteristics of MPs, their adsorption capacity, and environmental conditions. Additionally, the desorption of heavy metals from MPs has implications for their bioavailability and poses risks to marine organisms, emphasizing the importance of source reduction and remedial measures. Hybrid approaches that combine both conventional and modern technologies show promise for the efficient removal of MPs and heavy metals from marine environments. This review identifies critical gaps in existing research that should be addressed in future studies including standardized sampling methods to ensure accurate data, further investigation into the specific interactions between MPs and metals, and the development of hybrid technologies at an industrial scale. Overall, this review sheds light on the adsorption and desorption mechanisms of heavy metal-enriched MPs, underscoring the necessity of implementing effective remediation strategies.
Collapse
Affiliation(s)
- Punmoth Kalyadan Vrinda
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair, 744112, Andaman and Nicobar Islands, India
| | - Radhakrishnan Amal
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, India, 682022
| | - Nandakumar Abhirami
- Department of Aquatic Environment Management, Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra, 400061, India
| | - Divya Alex Mini
- Department of Aquatic Environment Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682508, Kerala, India
| | | | | |
Collapse
|
48
|
Simionov IA, Călmuc M, Iticescu C, Călmuc V, Georgescu PL, Faggio C, Petrea ŞM. Human health risk assessment of potentially toxic elements and microplastics accumulation in products from the Danube River Basin fish market. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104307. [PMID: 37914033 DOI: 10.1016/j.etap.2023.104307] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/03/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
The present study aimed to quantify the concentration levels of potentially toxic elements (PTEs) such as aluminum, arsenic, cadmium, chromium, copper, nickel, lead, zinc, and mercury, as well as microplastics occurrence in various tissues of fish and seafood species, commercialized in the Lower Danube River Basin. A health risk assessment analysis was performed based on the PTEs concentration levels in the muscle tissue. Estimated daily intake (EDI), target hazard quotient (THQ), hazard index (HI), and target cancer risk (TR) of PTEs were calculated. It was observed that the species within the seafood category registered the highest levels of PTEs. For instance, in the muscle tissue of bivalve Mytilus galloprovincialis (from the Black Sea), the highest value was observed in the case of Zn (37.693 mg/kg), and the presence of polystyrene polymer was identified. The values associated with EDI, THQ, HI, and TR of PTE exposure were significantly lower than 1.
Collapse
Affiliation(s)
- Ira-Adeline Simionov
- Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008 Galati, Romania; Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, "Dunarea de Jos" University Galati, 800008 Galati, Romania
| | - Mădălina Călmuc
- Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008 Galati, Romania
| | - Cătălina Iticescu
- Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008 Galati, Romania; Department of Chemistry, Physics and Environment, "Dunarea de Jos" University Galati, 800008 Galati, Romania.
| | - Valentina Călmuc
- Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008 Galati, Romania
| | - Puiu-Lucian Georgescu
- Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008 Galati, Romania; Department of Chemistry, Physics and Environment, "Dunarea de Jos" University Galati, 800008 Galati, Romania
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Ştefan-Mihai Petrea
- Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008 Galati, Romania; Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, "Dunarea de Jos" University Galati, 800008 Galati, Romania
| |
Collapse
|
49
|
Soliman HAM, Salaah SM, Hamed M, Sayed AEDH. Toxicity of co-exposure of microplastics and lead in African catfish ( Clarias gariepinus). Front Vet Sci 2023; 10:1279382. [PMID: 37869502 PMCID: PMC10588188 DOI: 10.3389/fvets.2023.1279382] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Microplastics (MPs) are an emerging threat to freshwater ecosystems with several ecotoxicological ramifications for fish. Microplastics (MPs) can adsorb heavy metals on their surfaces and increase their availability to aquatic organisms. The combined impact of lead and microplastics on fish has only been studied seldom utilizing a variety of markers. The present study aimed to evaluate the hematological, biochemical, and inflammatory signals (cytokines), as well as antioxidant enzymes in African catfish (Clarias gariepinus) exposed to lead (Pb) and MPs individually and combined for 15 days (acute toxicity experiment). The fish were split into four groups, the first of which was the control group. The second group received exposure to 1 mg/L of lead nitrate [Pb(NO3)2]. The third group was given 100 mg/L of MPs. A solution containing 100 mg/L of MPs and 1 mg/L of lead nitrate [Pb(NO3)2] was administered to the fourth group (the combination group). According to the findings, when MPs and Pb were combined for 15 days, the red blood cells (RBCs), thrombocytes, and lymphocytes were significantly reduced in comparison to the control fish. When compared to the control fish, the fish exposed to MPs and Pb alone or together showed a significant rise in blood interleukin-1β (IL-1β) and interleukin-6 (IL-6) cytokines. Both MPs and Pb exposure in catfish resulted in significant changes in the plasma electrolytes. The fish treated with MPs and Pb individually or in combination showed significant reduction in superoxide dismutase (SOD) and total antioxidant capacity (TAC) levels compared to the control group. The fish exposed to the combined action of MPs and Pb showed a considerable modification in all biochemical markers. The difference in the mean concentration of Pb (mg/L) between the fish exposed to Pb alone and the fish subjected to Pb and MPs combination was not statistically significant. In conclusion, according to this investigation, exposure to Pb caused an insignificant increase in Pb accumulation when MPs were present. However, co-exposure may result in anemia, cellular harm, extremely high levels of oxidative stress, and an inflammatory reaction.
Collapse
Affiliation(s)
| | - Sally M. Salaah
- Fresh Water Division, National Institute of Oceanography and Fisheries, NIOF, Alexandria, Egypt
| | - Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, Egypt
| | - Alaa El-Din H. Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
- Molecular Biology Research and Studies Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
50
|
Tian X, Weixie L, Wang S, Zhang Y, Xiang Q, Yu X, Zhao K, Zhang L, Penttinen P, Gu Y. Effect of polylactic acid microplastics and lead on the growth and physiological characteristics of buckwheat. CHEMOSPHERE 2023; 337:139356. [PMID: 37379973 DOI: 10.1016/j.chemosphere.2023.139356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
Microplastics (MPs) and heavy metals are common, often co-existing pollutants, that threaten crop growth and productivity worldwide. We analysed the adsorption of lead ions (Pb2+) to polylactic acid MPs (PLA-MPs) and their single factor and combined effects on tartary buckwheat (Fagopyrum tataricum L. Gaertn.) in hydroponics by measuring changes in the growth characteristics, antioxidant enzyme activities and Pb2+ uptake of buckwheat in response to PLA-MPs and Pb2+. PLA-MPs adsorbed Pb2+, and the better fitting second-order adsorption model implied that Pb2+ was adsorbed by chemisorption. However, the similar Pb2+ contents in the plants treated with Pb2+ only and those treated with the combined PLA-MPs-Pb2+ suggested that the adsorption played no role in the uptake of Pb2+. Low concentrations of PLA-MPs promoted shoot length. At high concentrations of both PLA-MPs and Pb2+, buckwheat growth was inhibited, and leaf peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) activities and malondialdehyde (MDA) contents were higher than in the control. No significant differences were observed in seedling growth between exposure to Pb2+ only and combined exposure to PLA-MPs with Pb2+, implying that PLA-MPs did not increase the toxicity of Pb2+ at macroscopic level. POD activity was higher and chlorophyll content was lower with PLA-MPs in the low Pb2+ dose treatments, suggesting that PLA-MPs may increase the toxicity of naturally occurring Pb2+. However, the conclusions must be verified in controlled experiments in natural soil conditions over the whole cultivation period of buckwheat.
Collapse
Affiliation(s)
- Xianrui Tian
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Luyao Weixie
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuya Wang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingzi Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|