1
|
Zheng Q, Wang T, Wang S, Chen Z, Jia X, Yang H, Chen H, Sun X, Wang K, Zhang L, Fu F. The anti-inflammatory effects of saponins from natural herbs. Pharmacol Ther 2025; 269:108827. [PMID: 40015518 DOI: 10.1016/j.pharmthera.2025.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/20/2024] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Inflammation is a protective mechanism that also starts the healing process. However, inflammatory reaction may cause severe tissue damage. The increased influx of phagocytic leukocytes may produce excessive amount of reactive oxygen species, which leads to additional cell injury. Inflammatory response activates the leukocytes and thus induces tissue damage and prolongs inflammation. The inflammation-induced activation of the complement system may also contribute to cell injury. Non-steroidal anti-inflammatory drugs (NSAIDs) and glucocorticoids are chief agents for treating inflammation associated with the diseases. However, the unwanted side effects of NSAIDs (e.g., gastrointestinal disturbances, skin reactions, adverse renal effects, cardiovascular side effects) and glucocorticoids (e.g., suppression of immune system, Cushing's syndrome, osteoporosis, hyperglycemia) limit their use in patients. Natural herbs are important sources of anti-inflammatory drugs. The ingredients extracted from natural herbs display anti-inflammatory effects to work through multiple pathways with lower risk of adverse reaction. At present, the main anti-inflammatory natural agents include saponins, flavonoids, alkaloids, polysaccharides, and so on. The present article will review the anti-inflammatory effects of saponins including escin, ginsenosides, glycyrrhizin, astragaloside, Panax notoginseng saponins, saikosaponin, platycodin, timosaponin, ophiopogonin D, dioscin, senegenin.
Collapse
Affiliation(s)
- Qinpin Zheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Sensen Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Zhuoxi Chen
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Xue Jia
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Hui Yang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Huijin Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Xin Sun
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Kejun Wang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Leiming Zhang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China.
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China.
| |
Collapse
|
2
|
Essam RM, Mohamed YS, El-Sayed SS, Kamel NM. Linking KATP channel activation to p-AKT/mTORC1/eEF2/BDNF axis unravels Nicorandil's promise in countering acetaminophen-induced hepatic encephalopathy in mice. Life Sci 2025; 366-367:123477. [PMID: 39983823 DOI: 10.1016/j.lfs.2025.123477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Nicorandil (NIC), an antianginal agent that acts both as an opener of adenosine triphosphate-sensitive potassium (KATP) channels and a nitric oxide donor, has demonstrated protective and curative effects in various diseases. The predominance of these mechanisms varies based on the dose of NIC and the specific organ affected. This study scrutinized the possible beneficial effects of NIC in acetaminophen (APAP)-induced hepatic encephalopathy (HE) model through highlighting the role of KATP channels in mediating these effects. Forty-eight mice were randomly subdivided into four groups: control (saline), APAP model (1 g/kg, i.p.), NIC treatment (15 mg/kg/day p.o. for 14 days), and glibenclamide (GLIB "KATP blocker", 5 mg/kg/day, p.o. 1 h before NIC for 14 days). NIC significantly mitigated APAP-induced liver injury, hyperammonemia, and cognitive deficits, as evidenced by reduced serum alanine aminotransferase, aspartate aminotransferase, ammonia levels, and improved performance in Y-maze and Morris Water Maze tests. Mechanistically, NIC suppressed hippocampal glutamate, activated phosphoserine 473 protein kinase B (p-AKT(Ser473))/mammalian target of rapamycin complex 1 (mTORC1) pathway, lessened the inactive phosphorylation of eukaryotic elongation factor 2 (eEF2), upsurged brain-derived neurotrophic factor (BDNF), leading to reduced neuroinflammation proved by nuclear factor-kappa B and tumor necrosis factor-alpha suppression. Histopathological analyses revealed improved liver and hippocampal morphology, while immunohistochemistry showed reduced astrocyte activation with NIC treatment. These effects were abolished by GLIB pre-treatment, indicating the crucial role of KATP channel. Accordingly, NIC could alleviate APAP-induced liver injury and HE mainly dependent on KATP channel opening, with resultant inhibition of glutamate signaling, activation of p-AKT/mTORC1/eEF2/BDNF trajectory, and abating hippocampal inflammation.
Collapse
Affiliation(s)
- Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; Biology Department, School of Pharmacy, Newgiza University, Giza 12577, Egypt.
| | - Yasmin S Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Sarah S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Nada M Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| |
Collapse
|
3
|
He J, Li L, Yan X, Li Y, Wang Y, Huang J, Li C, Liu W, Qi J. Sappanone A enhances hepatocyte proliferation in lipopolysaccharide-induced acute liver injury in mice by promoting injured hepatocyte apoptosis and regulating macrophage polarization. Int Immunopharmacol 2024; 142:113055. [PMID: 39243556 DOI: 10.1016/j.intimp.2024.113055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/03/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVES Lipopolysaccharide (LPS), also known as endotoxin, is the main toxic component of the cell wall of gram negative bacteria, which is released after bacterial death and widely exists in the living environment. Human exposure to endotoxin may cause sepsis. The occurrence of septic liver injury is a prominent factor contributing to mortality in patients with sepsis. The purpose of this study is to explore the role of Sappanone A (SA), a homoisoflavonoid isolated from the heartwood of Caesalpinia sappan Linn., in LPS-induced acute liver injury (ALI). METHODS An LPS-induced ALI mouse model was used to evaluate the effects of SA on septic ALI, and murine cells were treated with LPS to explore the mechanisms underlying SA-provided effects. RESULTS Treating SA substantially improved LPS-induced ALI. We also performed in silico prediction and RNA-seq analysis to elucidate SA's potential mechanisms of action. The terms generated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of predicted target proteins of SA include inflammation, oxidative stress, and apoptosis; protein-protein interaction network (PPI) analysis indicated that fas binding protein 1 (Fbf1) has the strongest correlation with SA. Consistently, RNA-seq analysis displayed that SA administration regulates cell apoptosis and inflammatory responses, which was further confirmed by checking related markers in livers of mice and murine cells challenged with LPS. Of note, SA significantly decreased the expression of Fbf1 in mouse livers, and promoted apoptosis of injured hepatocytes and hepatocyte proliferation, which were substantially abolished by Fbf1 knockdown in AML12 cells. Besides, SA could increase M2 phenotype polarization but inhibit M1 macrophage polarization in LPS-induced ALI in mice. CONCLUSION SA enhances hepatocyte proliferation and liver repair in LPS-induced ALI in mcie by promoting injured hepatocyte apoptosis through Fbf1 inhibition and regulating macrophage polarization.
Collapse
Affiliation(s)
- Jiale He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China.
| | - Lanqian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China.
| | - Xueqing Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China.
| | - Yehaomin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China.
| | - Yufei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China.
| | - Jiabin Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China.
| | - Chutao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China.
| | - Wenwen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China.
| | - Jing Qi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China.
| |
Collapse
|
4
|
Martinez RM, Melo CPB, Pinto IC, Mendes-Pierotti S, Vignoli JA, Verri WA, Casagrande R. Betalains: A Narrative Review on Pharmacological Mechanisms Supporting the Nutraceutical Potential Towards Health Benefits. Foods 2024; 13:3909. [PMID: 39682981 DOI: 10.3390/foods13233909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Betalains are naturally occurring pigments sourced mainly from Beta vulgaris (beetroot), Hylocereus spp. (dragon fruit), Amaranthus spp., and Opuntia spp. Betalains are widely used for their vibrant colors and health-promoting properties. These nitrogenous, water-soluble pigments are crucial colorants in the food industry, responsible for the red, purple, and yellow plant tissues, predominantly in the order Caryophyllales. They are grouped into betacyanins, with reddish-violet hues, and betaxanthins, yellow to orange. Examples include beetroot stems for betacyanins and yellow pitaya pulp for betaxanthins. Several pharmacological activities were reviewed in the scientific literature, describing their potential implications for human health. In this review, we focused on the main and latest studies on the pharmacological effects and mechanisms of betalains, including antioxidant, anti-inflammatory, antihypertensive, hypolipidemic, antidiabetic, hepatoprotective, neuroprotective, anticancer, and antimicrobial properties, in both in vitro and in vivo studies. Overall, betalain consumption is considered safe, with no major adverse effects or allergic reactions reported. We also approached topics such as the pharmacokinetics, bioavailability, stability, and enhanced stabilization of betalains. This article provides a comprehensive overview of bioactive potential of betalains, highlighting the biochemical mechanisms involved. The current knowledge broadens the clinical applicability of betalains, making them potential sources of nutraceutical compounds that can be used to develop functional foods.
Collapse
Affiliation(s)
- Renata M Martinez
- Department of Pharmaceutical Sciences, Health Sciences Center, Londrina State University, Londrina CEP 86039-440, Brazil
| | - Cristina P B Melo
- Department of Pharmaceutical Sciences, Health Sciences Center, Londrina State University, Londrina CEP 86039-440, Brazil
| | - Ingrid C Pinto
- Department of Pharmaceutical Sciences, Health Sciences Center, Londrina State University, Londrina CEP 86039-440, Brazil
| | - Soraia Mendes-Pierotti
- Department of Pharmaceutical Sciences, Health Sciences Center, Londrina State University, Londrina CEP 86039-440, Brazil
| | - Josiane A Vignoli
- Department of Biochemistry and Biotechnology, Centre of Exact Sciences, Londrina State University, Londrina CEP 86055-900, Brazil
| | - Waldiceu A Verri
- Department of Immunology, Parasitology and General Pathology, Biological Sciences Center, Londrina State University, Londrina CEP 86055-900, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Health Sciences Center, Londrina State University, Londrina CEP 86039-440, Brazil
| |
Collapse
|
5
|
Sahu SC. A proposed in vitro cytotoxicity test battery to detect and predict hepatotoxicity via multiple mechanisms and pathways: a minireview. J Appl Toxicol 2024; 44:1868-1873. [PMID: 38686668 DOI: 10.1002/jat.4619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
The 21st-century toxicity testing program recommends the use of cytotoxicity data from human cells in culture for rapid in vitro screening focusing on biological pathways of potential toxicants to predict in vivo toxicity. Liver is the major organ for both endogenous and exogenous chemical metabolism of xenobiotics. Therefore, this review was undertaken to evaluate side by side five different currently used commercial cytotoxicity assay kits for purpose of rapid predictive screening of potential hepatotoxicants. The test compounds for this review were selected from the NIH LiverTox and FDA Liver Toxicity Knowledge Base (LTKB) databases. Human liver HepG2, HepaRG, and rat liver Clone 9 cell cultures were used as the in vitro liver models. Five commercial assay kits representing different biomarkers or pathways were selected for this review. These kits are Vita-Orange Cell Viability Assay Kit (Sigma-Aldrich), CellTiter-Glo Cell Viability Assay Kit (Promega), CytoTox-ONE Homogeneous Membrane Integrity Assay Kit (Promega), DNA Quantitation Fluorescence Assay Kit (Sigma-Aldrich), and Neutral Red Based In Vitro Toxicology Assay Kit (Sigma-Aldrich). This review found that these kits can all be used for rapid predictive cytotoxicity screening of potential hepatotoxicants in human liver HepG2 and rat liver Clone 9 cells in culture as in vitro liver models without compromising quality and accuracy of endpoint measurements as well as the length of toxicity screening time. Unraveling the structure-activity relationship of potential hepatotoxins would help to classify their hepatotoxic effects. Therefore, in addition to the current regulatory hepatotoxicity testing strategies, development and regulatory approval of hepatotoxins need to be discussed in order to identify potential gaps in the safety assessment. The overall results of our study support the hypothesis that a battery of rapid, simple, and reliable assays is an excellent tool for predicting in vivo effects of suspected liver toxins. The human liver HepaRG cells do not appear to be an ideal in vitro liver model for this purpose.
Collapse
Affiliation(s)
- Saura C Sahu
- US Food and Drug Administration, Columbia, Maryland, USA
| |
Collapse
|
6
|
Ramadan OI, S. Ali L, M. Abd-Allah F, E. A. Ereba R, S. Humeda H, A. Damanhory A, E. Moustafa A, M. Younes A, M. Y. Awad M, A. A. Omar N. Co-administration of either curcumin or resveratrol with cisplatin treatment decreases hepatotoxicity in rats via anti-inflammatory and oxidative stress-apoptotic pathways. PeerJ 2024; 12:e17687. [PMID: 39056050 PMCID: PMC11271648 DOI: 10.7717/peerj.17687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Background Cisplatin (CIS) is a broad-spectrum anticancer drug, with cytotoxic effects on either malignant or normal cells. We aimed to evaluate the hepatotoxicity in rats caused by CIS and its amelioration by the co-administration of either curcumin or resveratrol. Materials and Methods Forty adult male rats divided into four equal groups: (control group): rats were given a saline solution (0.9%) once intraperitoneally, daily for the next 28 days; (cisplatin group): rats were given a daily oral dose of saline solution (0.9%) for 28 days after receiving a single dose of cisplatin (3.3 mg/kg) intraperitoneally for three successive days; (CIS plus curcumin/resveratrol groups): rats received the same previous dose of cisplatin (3.3 mg/kg) daily for three successive days followed by oral administration of either curcumin/resveratrol solution at a dose of (20 mg/kg) or (10 mg/kg) consequently daily for 28 days. Different laboratory tests (ALT, AST, ALP, bilirubin, oxidative stress markers) and light microscopic investigations were done. Results Administration of CIS resulted in hepatotoxicity in the form of increased liver enzymes, oxidative stress markers; degenerative and apoptotic changes, the co-administration of CIS with either curcumin or resveratrol improved hepatotoxicity through improved microscopic structural changes, reduction in liver enzymes activity, decreased oxidative stress markers, improved degenerative, and apoptotic changes in liver tissues. Conclusion Co-administration of either curcumin or resveratrol with cisplatin treatment could ameliorate hepatotoxicity caused by cisplatin in rats via anti-inflammatory and oxidative stress-apoptotic pathways.
Collapse
Affiliation(s)
- Osama I. Ramadan
- Department of Dental Basic Sciences, Faculty of Dentistry, Applied Science Private University, Amman, Jordan
- Histology Department, Damietta Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Lashin S. Ali
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Fatma M. Abd-Allah
- Histology Department, Damietta Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Rafik E. A. Ereba
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Humeda S. Humeda
- Department of Physiology, Faculty of Medicine, Alzaiem AlAzhari University, Khartoum North, Sudan
- Physiology Department, General Medicine Practice Program, Batterjee Medical College, Aseer, Saudi Arabia
| | - Ahmed A. Damanhory
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Department of Biochemistry, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ahmed E. Moustafa
- Medical Biochemistry Department, Damietta Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Amr M. Younes
- Anatomy and Embryology Department, Damietta Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Moaaz M. Y. Awad
- Anatomy and Embryology Department, Damietta Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Anatomy Department, General Medicine Practice Program, Batterjee Medical Collage, Aseer, Saudi Arabia
| | - Nassar A. A. Omar
- Anatomy Department, General Medicine Practice Program, Batterjee Medical Collage, Aseer, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
7
|
Li H, Cheng BJ, Yang PY, Wang C, Meng K, Li TL, Wang J, Liu R. Associations of Urinary Heavy Metal Mixtures with High Remnant Cholesterol among US Adults: Evidence from the National Health and Nutrition Examination Survey (1998-2018). TOXICS 2024; 12:430. [PMID: 38922110 PMCID: PMC11209470 DOI: 10.3390/toxics12060430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
The main objective of our study is to explore the associations between combined exposure to urinary heavy metals and high remnant cholesterol (HRC), a known cardiovascular risk factor. Utilizing data from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018, we conducted a cross-sectional analysis of 5690 participants, assessing urinary concentrations of ten heavy metals. Ten heavy metals in urine were measured by inductively coupled plasma mass spectrometry (ICP-MS). Fasting residual cholesterol ≥0.8 mmol/L was defined as HRC (using blood samples). Statistical analyses included weighted multivariable logistic regression, weighted quantile sum (WQS) regression, quantile g-computation (qgcomp), and Bayesian kernel machine regression (BKMR) to evaluate the associations of heavy metal exposure with HRC. Stratified analyses based on individual characteristics were also conducted. Multivariable logistic regression found that the four metals (OR Q4 vs. Q1: 1.33, 95% CI: 1.01-1.75 for barium (Ba); OR Q4 vs. Q1: 1.50, 95% CI: 1.16-1.94 for cadmium (Cd); OR Q4 vs. Q1: 1.52, 95% CI: 1.15-2.01 for mercury (Hg); OR Q4 vs. Q1: 1.35, 95% CI: 1.06-1.73 for lead (Pb)) were positively correlated with the elevated risk of HRC after adjusting for covariates. In addition, all three mixed models, including WQS (OR: 1.25; 95% CI: 1.07-1.46), qgcomp (OR: 1.17; 95% CI: 1.03-1.34), and BKMR, consistently showed a significant positive correlation between co-exposure to heavy metal mixtures and HRC, with Ba and Cd being the main contributors within the mixture. These associations were more pronounced in younger adults (20 to 59 years), males, and those with a higher body mass index status (≥25 kg/m2). Our findings reveal a significant relationship between exposure to the mixture of heavy metals and HRC among US adults, with Ba and Cd being the major contributors to the mixture's overall effect. Public health efforts aimed at reducing heavy metal exposure can help prevent HRC and, in turn, cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (H.L.); (B.-J.C.); (P.-Y.Y.); (C.W.); (K.M.); (T.-L.L.); (J.W.)
| |
Collapse
|
8
|
Huang YC, Tung CL, Ho ST, Li WS, Li S, Tung YT, Wu JH. Nutraceutical Potential of Djulis ( Chenopodium formosanum) Hull: Phytochemicals, Antioxidant Activity, and Liver Protection. Antioxidants (Basel) 2024; 13:721. [PMID: 38929160 PMCID: PMC11201270 DOI: 10.3390/antiox13060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Djulis (Chenopodium formosanum), a traditional Taiwanese crop enriched with phenolic compounds and betalain pigments, is associated with various health benefits, including antioxidant and hepatoprotective effects. This study analysed the phytochemical content and antioxidant capacity of extracts from both the hull and kernel of Djulis. The hull extract, which contained higher levels of flavonoids and exhibited superior antioxidant activity compared to the kernel extract, was selected for further in vivo studies. These experiments showed that oral administration of the Djulis hull crude extract significantly mitigated lipopolysaccharide (LPS)-induced acute liver injury (ALI) in mice by increasing the activity of the antioxidant enzyme glutathione peroxidase (GPx), reducing plasma levels of pro-inflammatory cytokine interferon gamma (IFN-γ), and enhancing liver levels of the anti-inflammatory cytokine interleukin-4 (IL-4). Additionally, the extract demonstrated potential in inhibiting the TLR4/NF-κB pathway, a critical signalling pathway in inflammation and apoptosis, offering insights into its protective mechanisms. These findings underscore Djulis hull's potential as a functional food ingredient for ALI prevention and propose a valuable application for agricultural by-products.
Collapse
Affiliation(s)
- Yu-Chen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
- Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan
| | - Chun-Liang Tung
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan;
| | - Shang-Tse Ho
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi 600, Taiwan;
| | - Wei-Sung Li
- Plant Pathology Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung 413, Taiwan;
| | - Shiming Li
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Jyh-Horng Wu
- Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
9
|
Chen P, Yao L, Yuan M, Wang Z, Zhang Q, Jiang Y, Li L. Mitochondrial dysfunction: A promising therapeutic target for liver diseases. Genes Dis 2024; 11:101115. [PMID: 38299199 PMCID: PMC10828599 DOI: 10.1016/j.gendis.2023.101115] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/10/2023] [Indexed: 02/02/2024] Open
Abstract
The liver is an important metabolic and detoxification organ and hence demands a large amount of energy, which is mainly produced by the mitochondria. Liver tissues of patients with alcohol-related or non-alcohol-related liver diseases contain ultrastructural mitochondrial lesions, mitochondrial DNA damage, disturbed mitochondrial dynamics, and compromised ATP production. Overproduction of mitochondrial reactive oxygen species induces oxidative damage to mitochondrial proteins and mitochondrial DNA, decreases mitochondrial membrane potential, triggers hepatocyte inflammation, and promotes programmed cell death, all of which impair liver function. Mitochondrial DNA may be a potential novel non-invasive biomarker of the risk of progression to liver cirrhosis and hepatocellular carcinoma in patients infected with the hepatitis B virus. We herein present a review of the mechanisms of mitochondrial dysfunction in the development of acute liver injury and chronic liver diseases, such as hepatocellular carcinoma, viral hepatitis, drug-induced liver injury, alcoholic liver disease, and non-alcoholic fatty liver disease. This review also discusses mitochondrion-centric therapies for treating liver diseases.
Collapse
Affiliation(s)
- Ping Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zheng Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qiuling Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
10
|
Wang X, Wang X, Bai Z, Du K, Zhang J, Han Q. Development of an activatable Lysosome-targeted fluorescent probe for the detection of endogenous ONOO - levels. Talanta 2024; 270:125581. [PMID: 38159352 DOI: 10.1016/j.talanta.2023.125581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The liver plays a crucial role in several important processes in the human body, including metabolism, detoxification, and immune function. When the liver experiences acute injury, it can cause significant harm and requires prompt detection. Traditional biomarkers lack specificity and cannot detect changes in real-time, making them unsuitable for monitoring pathological processes. Recent studies have shown that acute liver injury (ALI) is closely related to oxidative stress, with peroxynitrite (ONOO-) being a vital byproduct of liver metabolism and become a critical biomarker for detecting liver damage. As a result, this research developed an activatable near-infrared fluorescent probe W-3a that can be used to detect endogenous ONOO- in a mouse model of ALI induced by lipopolysaccharides (LPS). The probe has high selectivity and anti-interference ability, with a reaction time <10 min and a detection limit of 85 nM. It was successfully utilized in detecting endogenous ONOO- in cells and live imaging of ALI mice.
Collapse
Affiliation(s)
- Xiao Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, PR China
| | - Xuechuan Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, PR China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Zhongxue Bai
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Kaiqiang Du
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Junli Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Qingxin Han
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
11
|
Zhou Z, Li G, Gao L, Zhou Y, Xiao Y, Bi H, Yang H. Lichen pectin-containing polysaccharide from Xanthoria elegans and its ability to effectively protect LX-2 cells from H 2O 2-induced oxidative damage. Int J Biol Macromol 2024; 265:130712. [PMID: 38471602 DOI: 10.1016/j.ijbiomac.2024.130712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Xanthoria elegans, a drought-tolerant lichen, is the original plant of the traditional Chinese medicine "Shihua" and effectively treats a variety of liver diseases. However, thus far, the hepatoprotective effects of polysaccharides, the most important chemical constituents of X. elegans, have not been determined. The aim of this study was to screen the polysaccharide fraction for hepatoprotective activity by using free radical scavenging assays and a H2O2-induced Lieming Xu-2 cell (LX-2) oxidative damage model and to elucidate the chemical composition of the bioactive polysaccharide fraction. In the present study, three polysaccharide fractions (XEP-50, XEP-70 and XEP-90) were obtained from X. elegans by hot-water extraction, DEAE-cellulose anion exchange chromatography separation and ethanol gradient precipitation. Among the three polysaccharide fractions, XEP-70 exhibited the best antioxidant activity in free radical scavenging capacity and reducing power assays. Structural studies showed that XEP-70 was a pectin-containing heteropolysaccharide fraction that was composed mainly of (1 → 4)-linked and (1 → 4,6)-linked α-D-Glcp, (1 → 4)-linked α-D-GalpA, (1 → 2)-linked, (1 → 6)-linked and (1 → 2,6)-linked α-D-Manp, and (1 → 6)-linked and (1 → 2,6)-linked β-D-Galf. Furthermore, XEP-70 exhibited effectively protect LX-2 cells against H2O2-induced oxidative damage by enhancing cellular antioxidant capacity by activating the Nrf2/Keap1/ARE signaling pathway. Thus, XEP-70 has good potential to protect hepatic stellate cells against oxidative damage.
Collapse
Affiliation(s)
- Zheng Zhou
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Gao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yubi Zhou
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuancan Xiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongxia Yang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Chen H, Wang Z, Gong L, Chen J, Huang Y, Guo W, Zhang Q, Li Y, Bao G, Li D, Chen Y. Attenuation effect of a polysaccharide from large leaf yellow tea by activating autophagy. Int J Biol Macromol 2024; 265:130697. [PMID: 38490395 DOI: 10.1016/j.ijbiomac.2024.130697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Chemotherapy, the most common class of anticancer drugs, is considerably limited owing to its adverse side effects. In this study, we aimed to evaluate the protective effect and mechanism of action of large-leaf yellow tea polysaccharides (ULYTP-1, 1.29 × 104 Da) against chemotherapeutic 5-fluorouracil (5-Fu). Structural characterisation revealed that ULYTP-1 was a β-galactopyranouronic acid. Furthermore, ULYTP-1 promoted autolysosome formation, activating autophagy and reducing the oxidative stress and inflammation caused by 5-Fu. Our in vivo study of 4 T1 tumour-bearing mice revealed that ULYTP-1 also attenuated 5-Fu toxicity through modulation of the gut microbiota. Moreover, ULYTP-1 effectively protected immune organs and the liver from 5-Fu toxicity, while promoting its tumour-inhibitory properties. The current findings provide a new strategy for optimising chemotherapy regimens in the clinic.
Collapse
Affiliation(s)
- Hao Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Zhuang Wang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Lei Gong
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jielin Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yuzhe Huang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Wenqiang Guo
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Qiang Zhang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yong Li
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Guanhu Bao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Yan Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
13
|
Altyar AE, Kensara OA, Noreldin AE, Albadrani GM, El-Demerdash FM, Sayed AA, Piscopo M, Mohammedsaleh ZM, Al-Ghadi MQ, Ghaboura N, Abdel-Daim MM. Spirulina platensis ameliorates hepatic oxidative stress and DNA damage induced by aflatoxin B1 in rats. Toxicon 2024; 237:107553. [PMID: 38072319 DOI: 10.1016/j.toxicon.2023.107553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Aflatoxin B1 (AFB1) is a widely distributed mycotoxin, causing hepatotoxicity and oxidative stress. One of the most famous unicellular cyanobacteria is Spirulina platensis (SP) which is well known for its antioxidant characteristics against many toxicants. Therefore, this study aimed to investigate the antioxidant potential and hepatoprotective ability of SP against oxidative stress and cytotoxicity in male Wistar albino rats intraperitoneally injected with AFB1. Rats were separated into five groups as follows: negative control administered with saline; SP (1000 mg/kg BW) for two weeks; AFB1 (2.5 mg/kg BW) twice on days 12 and 14; AFB1 (twice) + 500 mg SP/kg BW (for two weeks) and AFB1 (twice) + 1000 mg SP/kg BW (for two weeks). Liver and blood samples were assembled for histological and biochemical analyses. AFB1 intoxicated rats showed a marked elevation in serum biochemical parameters (ALP, ALT, and AST), hepatic lipid peroxidation (MDA and NO), and proliferating cell nuclear antigen (PCNA) indicating DNA damage. Moreover, AFB1 caused suppression of antioxidant biomarkers (SOD, GHS, GSH-Px, and CAT). However, the elevated serum levels of biochemical parameters and PCNA expression were reduced by SP. Moreover, SP lowered oxidative stress and lipid peroxidation markers in a dose-dependent manner. To sum up, SP supplementation is capable of decreasing AFB1 toxicity through its powerful antioxidant activity.
Collapse
Affiliation(s)
- Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O.Box 80260, Jeddah, 21589, Saudi Arabia; Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia.
| | - Osama A Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 7067, Makkah, 21955, Saudi Arabia
| | - Ahmed E Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 84428, Riyadh, 11671, Saudi Arabia
| | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Muath Q Al-Ghadi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
14
|
Li Y, Liu Z, Chang Y, Chen N, Zhang R, Liu X, Song W, Lu J. Associations of multiple toxic metal exposures with metabolic dysfunction-associated fatty liver disease: NHANES 2011-2018. Front Nutr 2023; 10:1301319. [PMID: 38115883 PMCID: PMC10729449 DOI: 10.3389/fnut.2023.1301319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023] Open
Abstract
Background The occurrence of metabolic dysfunction-associated fatty liver disease (MASLD) is driven by multiple factors including obesity, hypertension, dyslipidemia, and insulin resistance. However, epidemiological research investigating the association between metal exposure and MASLD occurrence remains limited. Methods We conducted a large cross-sectional study with 6,520 participants who were involved in the National Health and Nutrition Examination Survey (NHANES) between 2011 and 2018. Using generalized linear regression, we examined the relationship between five heavy metals (mercury, manganese, lead, selenium, cadmium) and MASLD. Furthermore, restricted cubic spline models and weighted quantile sum (WQS) analysis were employed to characterize the exposure-response relationship between the five metals and MASLD. Results Higher blood selenium levels were associated with an increased likelihood of MASLD among US adults. Blood lead exposure was also positively correlated with MASLD risk. However, there was no significant association observed between blood cadmium, mercury, manganese levels, and MASLD risk. Among the five metals, blood cadmium exposure accounted for the highest proportion of MASLD risk. Conclusion Our study indicated the significant association between blood cadmium and lead exposure levels and the occurrence of MASLD in a representative sample of US adults.
Collapse
Affiliation(s)
- Yuguang Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Zefeng Liu
- Department of Hepatobiliary Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yu Chang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Naifei Chen
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Rong Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Xiangliang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Song
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jin Lu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Youssef IM, Khalil HA, Jaber FA, Alhazzaa RA, Alkholy SO, Almehmadi AM, Alhassani WE, Al-Shehri M, Hassan H, Hassan MS, Abd El Halim HS, El-Hack MEA, Youssef KM, Abo-Samra MA. Influence of dietary mannan-oligosaccharides supplementation on hematological characteristics, blood biochemical parameters, immune response and histological state of laying hens. Poult Sci 2023; 102:103071. [PMID: 37734356 PMCID: PMC10518593 DOI: 10.1016/j.psj.2023.103071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
This study aimed to determine the influence of dietary mannan-oligosaccharides (MOS) on the immune system, hematological traits, blood biochemical parameters, and histological state of laying hens. At 34 wk of age, The Mandarah chicken strain's 120 laying hens and 12 cocks were divided into 4 groups, each with 30 hens and 3 cocks. The first group performed as a control group, which nourished on a basal diet. The second, third, and fourth experimental groups received 0.1, 0.2, and 0.5 g/kg of MOS and a base diet, respectively. Birds obtained MOS at numerous doses significantly (P ˂ 0.05) raised serum levels of immunoglobulin Y (IgY), immunoglobulin M (IgM), and avian influenza (AI) antibodies compared to control birds. Furthermore, adding MOS at a level of 0.1 g/kg diet significantly improved the immune response of the control group. Additionally, compared to the control group, treated birds with MOS at various dosages did not significantly enhance hematological parameters such as red blood cells (RBCs), white blood cells (WBCs), hemoglobin, and hematocrit. Compared to control birds, birds fed MOS at all levels exhibited considerably lower serum cholesterol, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) values. Also, compared to other treated birds, MOS-treated birds displayed improved histological examination of the small intestine, isthmus, and testis compared to the control group, particularly in birds fed MOS at 0.1 and 0.2 g/kg diet. It could be concluded that using MOS at 0.1 or 2 g/kg diet can successfully improve the physiological performance and overall health of laying hens.
Collapse
Affiliation(s)
- Islam M Youssef
- Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt
| | - Hassan A Khalil
- Animal Production Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Kingdom of Saudi Arabia
| | - Rasha A Alhazzaa
- Basic Sciences Department, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Kingdom of Saudi Arabia; King Abdullah International Medical Research Center, Riyadh 11481, Kingdom of Saudi Arabia
| | - Sarah O Alkholy
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm AL-Qura University, Makkah, P.O. BOX. 715. 21955, Saudi Arabia
| | - Awatif M Almehmadi
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm AL-Qura University, Makkah, P.O. BOX. 715. 21955, Saudi Arabia
| | - Walaa E Alhassani
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm AL-Qura University, Makkah, P.O. BOX. 715. 21955, Saudi Arabia
| | - Mohammed Al-Shehri
- Department of Biology, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Hesham Hassan
- Department of Pathology, College of Medicine, King Khalid University, Abha 61413, Saudi Arabia
| | - Magdy S Hassan
- Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt
| | - Haiam S Abd El Halim
- Animal Production Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Khaled M Youssef
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Maher A Abo-Samra
- Animal Production Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
16
|
El-Eshmawy MM. Impact of obesity on liver function tests: is nonalcoholic fatty liver disease the only player? A review article. Porto Biomed J 2023; 8:e228. [PMID: 37846300 PMCID: PMC10575409 DOI: 10.1097/j.pbj.0000000000000228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 10/18/2023] Open
Abstract
Objectives Obesity and nonalcoholic fatty liver disease (NAFLD) are common worldwide health problems with a strong relationship in between. NAFLD is currently the most common cause of abnormal liver function tests (LFT) because of obesity pandemic. The question is NAFLD the only player of abnormal LFT in obesity? Methodology This article reviews the most important topics regarding the derangements of LFT in obesity through a PubMed search strategy for all English-language literature. Results The reported abnormal LFT in obesity were increased serum levels of transaminases (alanine aminotransaminase, aspartate aminotransaminase), gamma glutamyl transferase, and alkaline phosphatase and decreased serum levels of bilirubin and albumin. Besides novel potential hepatic markers of NAFLD/NASH such as triglycerides/high-density lipoprotein cholesterol ratio, sex hormone-binding globulin, fibroblast growth factor 21, and markers of hepatocyte apoptosis i.e. cytokeratin 18 and microribonucleic acids (miRNAs). Beyond NAFLD, there are other underlying players for the abnormal LFT in obesity such as oxidative stress, inflammation, and insulin resistance. Conclusion Derangements of LFT in obesity are attributed to NAFLD but also to obesity itself and its related oxidative stress, insulin resistance, and chronic inflammatory state. Abnormal LFT predict more than just liver disease.
Collapse
Affiliation(s)
- Mervat M. El-Eshmawy
- Department of Internal Medicine, Mansoura Specialized Medical Hospital, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
17
|
Culver A, Hamang M, Wang Y, Jiang H, Yanum J, White E, Gawrieh S, Vuppalanchi RK, Chalasani NP, Dai G, Yaden BC. GDF8 Contributes to Liver Fibrogenesis and Concomitant Skeletal Muscle Wasting. Biomedicines 2023; 11:1909. [PMID: 37509548 PMCID: PMC10377408 DOI: 10.3390/biomedicines11071909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Patients with end-stage liver disease exhibit progressive skeletal muscle atrophy, highlighting a negative crosstalk between the injured liver and muscle. Our study was to determine whether TGFβ ligands function as the mediators. Acute or chronic liver injury was induced by a single or repeated administration of carbon tetrachloride. Skeletal muscle injury and repair was induced by intramuscular injection of cardiotoxin. Activin type IIB receptor (ActRIIB) ligands and growth differentiation factor 8 (Gdf8) were neutralized with ActRIIB-Fc fusion protein and a Gdf8-specific antibody, respectively. We found that acute hepatic injury induced rapid and adverse responses in muscle, which was blunted by neutralizing ActRIIB ligands. Chronic liver injury caused muscle atrophy and repair defects, which were prevented or reversed by inactivating ActRIIB ligands. Furthermore, we found that pericentral hepatocytes produce excessive Gdf8 in injured mouse liver and cirrhotic human liver. Specific inactivation of Gdf8 prevented liver injury-induced muscle atrophy, similar to neutralization of ActRIIB ligands. Inhibition of Gdf8 also reversed muscle atrophy in a treatment paradigm following chronic liver injury. Direct injection of exogenous Gdf8 protein into muscle along with acute focal muscle injury recapitulated similar dysregulated muscle regeneration as that observed with liver injury. The results indicate that injured liver negatively communicate with the muscle largely via Gdf8. Unexpectedly, inactivation of Gdf8 simultaneously ameliorated liver fibrosis in mice following chronic liver injury. In vitro, Gdf8 induced human hepatic stellate (LX-2) cells to form a septa-like structure and stimulated expression of profibrotic factors. Our findings identified Gdf8 as a novel hepatomyokine contributing to injured liver-muscle negative crosstalk along with liver injury progression.
Collapse
Affiliation(s)
- Alexander Culver
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Matthew Hamang
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Yan Wang
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Huaizhou Jiang
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Jennifer Yanum
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Emily White
- Department of Biological Sciences, College of Science, Purdue University, West Lafayette, IN 46202, USA
| | - Samer Gawrieh
- Division of Gastroenterology and Hepatology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Raj K Vuppalanchi
- Division of Gastroenterology and Hepatology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Naga P Chalasani
- Division of Gastroenterology and Hepatology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Guoli Dai
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Benjamin C Yaden
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
18
|
Rodimova S, Mozherov A, Elagin V, Karabut M, Shchechkin I, Kozlov D, Krylov D, Gavrina A, Bobrov N, Zagainov V, Zagaynova E, Kuznetsova D. Label-Free Imaging Techniques to Evaluate Metabolic Changes Caused by Toxic Liver Injury in PCLS. Int J Mol Sci 2023; 24:ijms24119195. [PMID: 37298155 DOI: 10.3390/ijms24119195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Abuse with hepatotoxic agents is a major cause of acute liver failure. The search for new criteria indicating the acute or chronic pathological processes is still a challenging issue that requires the selection of effective tools and research models. Multiphoton microscopy with second harmonic generation (SHG) and fluorescence lifetime imaging microscopy (FLIM) are modern label-free methods of optical biomedical imaging for assessing the metabolic state of hepatocytes, therefore reflecting the functional state of the liver tissue. The aim of this work was to identify characteristic changes in the metabolic state of hepatocytes in precision-cut liver slices (PCLSs) under toxic damage by some of the most common toxins: ethanol, carbon tetrachloride (CCl4) and acetaminophen (APAP), commonly known as paracetamol. We have determined characteristic optical criteria for toxic liver damage, and these turn out to be specific for each toxic agent, reflecting the underlying pathological mechanisms of toxicity. The results obtained are consistent with standard methods of molecular and morphological analysis. Thus, our approach, based on optical biomedical imaging, is effective for intravital monitoring of the state of liver tissue in the case of toxic damage or even in cases of acute liver injury.
Collapse
Affiliation(s)
- Svetlana Rodimova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Artem Mozherov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research of the Institute of Clinical Medicine, Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Maria Karabut
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Ilya Shchechkin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research of the Institute of Clinical Medicine, Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Dmitry Kozlov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research of the Institute of Clinical Medicine, Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Dmitry Krylov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research of the Institute of Clinical Medicine, Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Alena Gavrina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research of the Institute of Clinical Medicine, Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Nikolai Bobrov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- The Volga District Medical Centre of Federal Medical and Biological Agency, 14 Ilinskaya St., 603000 Nizhny Novgorod, Russia
| | - Vladimir Zagainov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Nizhny Novgorod Regional Clinical Oncologic Dispensary, Delovaya St., 11/1, 603126 Nizhny Novgorod, Russia
| | - Elena Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Daria Kuznetsova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research of the Institute of Clinical Medicine, Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
19
|
Macit M, Duman G, Cumbul A, Sumer E, Macit C. Formulation development of Silybum marianum seed extracts and silymarin nanoparticles, and evaluation of hepatoprotective effect. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
20
|
Sun Y, Ma Y, Sun F, Feng W, Ye H, Tian T, Lei M. Astragaloside IV attenuates lipopolysaccharide induced liver injury by modulating Nrf2-mediated oxidative stress and NLRP3-mediated inflammation. Heliyon 2023; 9:e15436. [PMID: 37113780 PMCID: PMC10126932 DOI: 10.1016/j.heliyon.2023.e15436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Aims and objectives Sepsis-associated liver injury is a common public health problem in intensive care units. Astragaloside IV (AS-IV) is an active component extracted from the Chinese herb Astragalus membranaceus, and has been shown to have anti-oxidation, anti-inflammation, and anti-apoptosis properties. The research aimed to investigate the protective effect of AS-IV in lipopolysaccharide (LPS)-induced liver injury. Methods Male C57BL/6 wild-type mice (6-8 week-old) were intraperitoneally injected with 10 mg/kg LPS for 24 h and AS-IV (80 mg/kg) 2 h before the LPS injection. Biochemical and histopathological analyses were carried out to assess liver injury. The RT-qPCR analyzed the mRNA expression of IL-1β, TNF-α, and IL-6. The mRNA and protein expression of SIRT1, nuclear Nrf2, Nrf2, and HO-1 were measured by Western blotting. Results Serum alanine/aspartate aminotransferases (ALT/AST) analysis, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) were showed that AS-IV protected against LPS-induced hepatotoxicity. The protection afforded by AS-IV was confirmed by pathological examination of the liver. Pro-inflammatory cytokines, including interleukin- 1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6), were observed to be reversed by AS-IV after exposure to LPS. Western blot analysis demonstrated that AS-IV enhanced the expression levels of Sirtuin 1 (SIRT1), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1). Conclusions AS-IV protects against LPS-induced Liver Injury and Inflammation by modulating Nrf2-mediated oxidative stress and NLRP3-mediated inflammation.
Collapse
|
21
|
Gong X, Zhang F, Li Y, Peng C. Study on the mechanism of acute liver injury protection in Rhubarb anthraquinone by metabolomics based on UPLC-Q-TOF-MS. Front Pharmacol 2023; 14:1141147. [PMID: 36950014 PMCID: PMC10025310 DOI: 10.3389/fphar.2023.1141147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
As a traditional Chinese medicine, rhubarb has been used in a variety of liver diseases and it is widely used in clinic to prevent and treat acute liver injury. Anthraquinone, as the main medicinal component of rhubarb, can reverse the further development of liver fibrosis caused by acute liver injury. In this study, metabonomics was used to explore the mechanism of different doses of rhubarb anthraquinone on acute liver injury in rats. Rhubarb anthraquinone was administered intragastric to rats at doses of 3.9, 7.8 and 15.6 mg/kg, respectively, for 7 days, and then 30% CCl4 was injected intraperitoneally at the dose of 1 ml/kg to replicate the acute liver injury model. The biochemical indicators content of ALT, AST, ALP, γ-GT, TG, TC, LDL, HDL in serum and GSH, Hyp, SOD, TNF-α, IL-6 and IL-8 in liver tissue extract were tested respectively, and liver tissue was histopathologically analysis. At the same time, UPLC-Q-TOF-MS combined with non-targeted metabolomics were used to study the metabolites and metabolic pathways of rhubarb anthraquinone in treating acute liver injury. Compared with normal rats, the contents of ALT, AST, ALP, TG, TC, LDL, γ-GT in serum and Hyp, MDA, IL-6, IL-8, TNF-α in the liver tissue extract were significantly increased in model rats (p < 0.05, p < 0.01), and the content of HDL in the serum was significantly decreased (p < 0.05); the activities of GSH and SOD in liver tissue extract were also significantly decreased (p < 0.05). After administration of rhubarb anthraquinone, compared with the model group, with the increase of dosage, some biochemical indexes showed opposite changes, and gradually approached to normal rats. 12 different metabolites were identified by metabonomics, and the biosynthesis and metabolism of phenylalanine, tyrosine and tryptophan, the metabolism of amino sugars, nucleotide sugars and pyrimidines metabolism, and the biosynthesis of steroid hormone were identified based on the biomarker analysis. Based on the biochemical analysis and metabonomics analysis of rats with acute liver injury treated with different doses of rhubarb anthraquinone, combined with histopathological observation, the results show that the protective effect of rhubarb anthraquinone on acute liver injury is related to the dosage; Meanwhile, the metabolic pathway analysis suggested that rhubarb anthraquinone alleviate acute liver injury by regulating inflammation, oxidative stress and fibrosis disorders. This study explained the therapeutic effect of rhubarb anthraquinone on acute liver injury from both material basis and action pathway, and provided safe and effective research ideas for clinical application of rhubarb.
Collapse
Affiliation(s)
| | | | - Yunxia Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Abouelezz HM, Shehatou GS, Shebl AM, Salem HA. A standardized pomegranate fruit extract ameliorates thioacetamide-induced liver fibrosis in rats via AGE-RAGE-ROS signaling. Heliyon 2023; 9:e14256. [PMID: 36938469 PMCID: PMC10015255 DOI: 10.1016/j.heliyon.2023.e14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023] Open
Abstract
This work aimed to investigate a possible mechanism that may mediate the hepatoprotective effects of pomegranate fruit extract (PFE) against thioacetamide (THIO)-induced liver fibrosis in rats. Male Sprague Dawley rats were randomly allocated into four groups (n = 8 each): control; PFE (150 mg/kg/day, orally); THIO (200 mg/kg, i.p, 3 times a week); and THIO and PFE-treated groups. Oral PFE treatment decreased liver/body weight ratio by 12.4%, diminished serum function levels of ALT, AST, ALP, LDH, and total bilirubin, increased serum albumin, boosted hepatic GSH (by 35.6%) and SOD (by 17.5%), and significantly reduced hepatic levels of ROS, MDA, 4-HNE, AGEs, and RAGE in THIO-fibrotic rats relative to untreated THIO group. Moreover, PFE administration downregulated the hepatic levels of profibrotic TGF-β1 (by 23.0%, P < 0.001) and TIMP-1 (by 41.5%, P < 0.001), attenuated α-SMA protein expression, decreased serum HA levels (by 41.3%), and reduced the hepatic levels of the fibrosis markers hydroxyproline (by 26.0%, P < 0.001), collagen type IV (by 44.3%, P < 0.001) and laminin (by 43.4%, P < 0.001) compared to the untreated THIO group. The histopathological examination has corroborated these findings, where PFE decreased hepatic nodule incidence, attenuated portal necroinflammation and reduced extent of fibrosis. These findings may suggest that oral PFE administration could slow the progression of hepatic fibrogenesis via reducing hepatic levels of AGEs, RAGE, ROS, TGF-β1, and TIMP-1.
Collapse
Affiliation(s)
- Hadeer M. Abouelezz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Corresponding author.
| | - George S.G. Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Egypt
| | - Abdelhadi M. Shebl
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hatem A. Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
23
|
Huang Y, Song B, Chen K, Tang Z, Ma H, Kong D, Liu Q, Yuan J. Mitochondria-Targetable Ratiometric Time-Gated Luminescence Probe Activated by Selenocysteine for the Visual Monitoring of Liver Injuries. Anal Chem 2023; 95:4024-4032. [PMID: 36799513 DOI: 10.1021/acs.analchem.2c04409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Liver injury can result from various risk factors including diabetes, virus, alcohol, drugs, and other toxins, which is mainly responsible for global mortality and morbidity. Selenocysteine (Sec), as the main undertaker of selenium function in the life system, features prominently in a series of hepatic injuries and has close association with the pathological progression of liver injuries. Here, we report a mitochondria-targetable lanthanide complex-based probe, Mito-NPTTA-Tb3+/Eu3+, that can be used for accurately determining Sec in live cells and laboratory animals via the ratiometric time-gated luminescence (TGL) technique. This probe is composed of 2,2':6',2″-terpyridine-Tb3+/Eu3+ mixed complexes as the luminophore, 2,4-dinitrophenyl (DNP) as the responsive moiety and a lipophilic triphenylphosphonium cation (PPh3+) as the mitochondria-targeting moiety. Upon reaction with Sec, accompanied by the cleavage of DNP from the probe molecule, the I540/I690 ratio of the probe increased by 55 times, which enabled Sec to be detected with the ratiometric TGL method. After being incubated with living cells, the probe molecules were selectively accumulated in mitochondria to allow the mitochondrial Sec to be successfully imaged under the ratiometric TGL mode. Importantly, using this probe coupled with the ratiometric TGL imaging technique, the fluctuations of liver Sec in various liver injuries of model mice induced by diabetes, drug, toxin, and alcohol were precisely monitored, revealing that Sec plays an important antioxidant role during the oxidative stress process in liver injury, and the Sec levels have a close interrelationship with the degree of liver injury. All the results suggest that the new probe Mito-NPTTA-Tb3+/Eu3+ could be a potential tool for the accurate diagnosis of liver injury.
Collapse
Affiliation(s)
- Yundi Huang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Kaiwen Chen
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhixin Tang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hua Ma
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Deshu Kong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
24
|
Chandrashekar DV, DuBois BN, Rashid M, Mehvar R. Effects of chronic cirrhosis induced by intraperitoneal thioacetamide injection on the protein content and Michaelis-Menten kinetics of cytochrome P450 enzymes in the rat liver microsomes. Basic Clin Pharmacol Toxicol 2023; 132:197-210. [PMID: 36370118 PMCID: PMC10100077 DOI: 10.1111/bcpt.13813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
Chronic intraperitoneal injection of thioacetamide (TAA) in rats has been used as an animal model of human cirrhosis to study the effects of the disease on drug metabolism. However, TAA inhibits P450 enzymes directly and independently of cirrhosis. We investigated the effects of chronic cirrhosis in rats, induced by 10 weeks of intraperitoneal TAA, on the P450 enzymes after a 10-day washout period to eliminate TAA. Liver histology and serum biomarkers of hepatic function confirmed cirrhosis in all animals. Microsomal total P450 content, P450 reductase activity and ethoxycoumarin O-deethylase activity, a general marker of P450 activity, were significantly reduced by 30%-50% in cirrhotic animals. Additionally, the protein content and Michaelis-Menten kinetics of the activities of CYP2D, CYP2E1 and CYP3A were investigated. Whereas cirrhosis reduced the microsomal protein contents of CYP2D and CYP3A by 70% and 30%, respectively, the protein contents of CYP2E1 were not affected. However, the activities of all the tested isoenzymes were substantially lower in the cirrhotic livers. It is concluded that the TAA model of cirrhosis that incorporates a 10-day washout period after intraperitoneal injection of the chemical to rats produces isoenzyme-selective reductions in the P450 proteins or activities, which are independent of the direct inhibitory effects of TAA.
Collapse
Affiliation(s)
| | - Barent N DuBois
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California, USA
| | - Mamunur Rashid
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California, USA
| | - Reza Mehvar
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California, USA
| |
Collapse
|
25
|
Urinary trihalomethane concentrations and liver function indicators: a cross-sectional study in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39724-39732. [PMID: 36596971 DOI: 10.1007/s11356-022-25072-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
While it is known that exposure to disinfection by-products (DBPs), including trihalomethanes (THMs), impairs liver function, few epidemiological studies have explored this association. Here, we determined the concentrations of four urinary trihalomethanes (chloroform [TCM], and three Br-THMs, bromodichloromethane [BDCM], dibromochloromethane [DBCM], and bromoform [TBM]), and nine serum liver function indicators in 182 adults ≥ 18 years of age, examined at a medical examination center in Wuxi, China, in 2020 and 2021. Generalized linear model analysis revealed positive associations between urinary DBCM and alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), total protein (TP), and albumin (ALB). Urinary Br-THMs and total THMs (TTHMs) were positively associated with ALT, AST, TBIL, indirect bilirubin (IBIL), TP, and ALB (all P < 0.05). Urinary THMs were not associated with alkaline phosphatase (ALP) or glutamine transaminase (GGT) (all P > 0.05). Generalized additive model-based penalized regression splines were used to confirm these associations. In conclusion, THM exposure was associated with altered serum biomarkers of liver function.
Collapse
|
26
|
Zamani M, Ashtary-Larky D, Hafizi N, Naeini F, Rezaei Kelishadi M, Clark CCT, Davoodi SH, Asbaghi O. The effect of grape products on liver enzymes: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2022; 36:4491-4503. [PMID: 36264051 DOI: 10.1002/ptr.7653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 12/13/2022]
Abstract
The favorable influence of grape consumption on metabolic diseases has previously been shown in studies. We sought to assess the effects of grape intake on liver enzymes, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), in adults. We performed literature search in online databases, to find eligible randomized controlled trials (RCTs). we considered RCTs that met the following criteria: RCTs consisted of use of grape products on ALT, AST, and ALP in adults (≥18 years) with at least 2 weeks intervention duration. Pooling data from 11 trials showed that grape products intake significantly reduced ALP (p = .010), without any significant changes in ALT (p = .234) and AST (p = .300). In subgroup analysis, we found a significant reduction in ALP, ALT, and AST when the duration of intervention was ≥12 weeks, and when grape seed extract (GSE) was administered. The variable duration and dosage of intervention was one of the sources of bias in our meta-analysis. Additionally, participants involved in included studies had different physiological status and various age groups. Grape products administration may significantly improve ALT, AST, and ALP in adults in long-term interventions and/or when GSE is administered. It should be noted that the favorable effects of grape consumption were small and may not reach clinical importance.
Collapse
Affiliation(s)
- Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadia Hafizi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Science, Tehran University of Medical Science, Tehran, Iran
| | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Sayed Hosein Davoodi
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cancer Research Center, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical sciences, Tehran, Iran
| |
Collapse
|
27
|
Cheng X, Xia T, Zhan W, Xu HD, Jiang J, Liu X, Sun X, Wu FG, Liang G. Enzymatic Nanosphere-to-Nanofiber Transition and Autophagy Inducer Release Promote Tumor Chemotherapy. Adv Healthc Mater 2022; 11:e2201916. [PMID: 36148589 DOI: 10.1002/adhm.202201916] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 08/29/2022] [Indexed: 01/28/2023]
Abstract
Chemotherapy has remained an effective and predominant cancer treatment for the past decades, but is hampered by its low response rate and severe systemic toxicity. Combination chemotherapies are proposed to address these issues, yet their therapeutic outcomes are still far from satisfactory. Thus, it is urgent to develop novel strategies to promote tumor chemosensitivity while reducing toxic side effects of chemotherapeutics. Herein, employing a rationally designed peptide conjugate Nap-Phe-Phe-Lys(SA-AZD8055)-Tyr(H2 PO3 )-OH (Nap-AZD-Yp), a novel approach of simultaneous intracellular nanofiber formation and autophagy inducer release is proposed for selectively sensitizing tumor to chemotherapy. Upon sequential catalyses of alkaline phosphatase and carboxylesterase, Nap-AZD-Yp undergoes nanosphere-to-nanofiber transition accompanied by autophagy inducer AZD8055 release in cancer cells. Cell experiments show enhanced endocytosis of anticancer drug doxorubicin and inhibition of cell migration due to the intracellular nanofiber formation. The released AZD8055 further activates excessive autophagy of cancer cells, sensitizing them to chemotherapy. Animal experiment results suggest Nap-AZD-Yp can significantly enhance the therapeutic effects of doxorubicin on tumors while mitigate its toxic adverse effects on normal tissues. It is anticipated that the "smart" concept in this work c be widely employed to develop novel combinational therapies for the treatment of cancers and other diseases in near future.
Collapse
Affiliation(s)
- Xiaotong Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Tiantian Xia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Wenjun Zhan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Hai-Dong Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Jiaoming Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xianbao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
28
|
Serrano-Contreras JI, Meléndez-Camargo ME, Márquez-Flores YK, Soria-Serrano MP, Campos-Aldrete ME. Exploratory toxicology studies of 2,3-substituted imidazo[1,2- a]pyridines with antiparasitic and anti-inflammatory properties. Toxicol Res (Camb) 2022; 11:730-742. [PMID: 36337253 PMCID: PMC9618103 DOI: 10.1093/toxres/tfac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 09/08/2024] Open
Abstract
Background Trichomoniasis and amoebiasis are neglected diseases and still remain as a global health burden not only for developing countries, from where are endemic, but also for the developed world. Previously, we tested the antiparasitic activity of a number of imidazo[1,2-a]pyridine derivatives (IMPYs) on metronidazole-resistant strains of Entamoeba Hystolitica (HM1:IMSS), and Trichomonas Vaginalis (GT3). Their anti-inflammatory activity was also evaluated. Objective The present work is a part of a project whose aim is to find new alternatives to standard treatments for these maladies, and to address the current concern of emerging resistant parasite strains. Here we report a non-clinical study focused on exploratory toxicology assays of seven IMPYs that showed the best antiparasitic and/or anti-inflammatory properties. Methods Acute, and subacute toxicity tests were carried out. After 14-day oral treatment, liver and kidney functionality assays in combination with chemometric methods were implemented to detect hepatic and/or kidney damage. Results Some compounds produced off-target effects. Vehicle effects were also detected. However, no signs of hepatic or renal toxicity were observed for any IMPY. Conclusion These compounds can continue non-clinical evaluations, and if possible, clinical trials as new candidates to treat trichomoniasis and amoebiasis, and inflammatory diseases. Further studies are also needed to fully elucidate a proposed dual effect that may exert these molecules against trichomoniasis and amoebiasis, which may also signify a novel mechanism of action to treat these infections.
Collapse
Affiliation(s)
- José Iván Serrano-Contreras
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Delegación Miguel Hidalgo, Ciudad de México, México
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Unidad Profesional Adolfo López Mateos, Col. Nueva Industrial Vallejo, C.P. 07738, Delegación Gustavo A. Madero, Ciudad de México, México
| | - María Estela Meléndez-Camargo
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Unidad Profesional Adolfo López Mateos, Col. Nueva Industrial Vallejo, C.P. 07738, Delegación Gustavo A. Madero, Ciudad de México, México
| | - Yazmín Karina Márquez-Flores
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Unidad Profesional Adolfo López Mateos, Col. Nueva Industrial Vallejo, C.P. 07738, Delegación Gustavo A. Madero, Ciudad de México, México
| | - Martha Patricia Soria-Serrano
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Unidad Profesional Adolfo López Mateos, Col. Nueva Industrial Vallejo, C.P. 07738, Delegación Gustavo A. Madero, Ciudad de México, México
| | - María Elena Campos-Aldrete
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Delegación Miguel Hidalgo, Ciudad de México, México
| |
Collapse
|
29
|
Fathy M, Darwish MA, Abdelhamid ASM, Alrashedy GM, Othman OA, Naseem M, Dandekar T, Othman EM. Kinetin Ameliorates Cisplatin-Induced Hepatotoxicity and Lymphotoxicity via Attenuating Oxidative Damage, Cell Apoptosis and Inflammation in Rats. Biomedicines 2022; 10:biomedicines10071620. [PMID: 35884925 PMCID: PMC9312964 DOI: 10.3390/biomedicines10071620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Though several previous studies reported the in vitro and in vivo antioxidant effect of kinetin (Kn), details on its action in cisplatin-induced toxicity are still scarce. In this study we evaluated, for the first time, the effects of kinetin in cisplatin (cp)- induced liver and lymphocyte toxicity in rats. Wistar male albino rats were divided into nine groups: (i) the control (C), (ii) groups 2,3 and 4, which received 0.25, 0.5 and 1 mg/kg kinetin for 10 days; (iii) the cisplatin (cp) group, which received a single intraperitoneal injection of CP (7.0 mg/kg); and (iv) groups 6, 7, 8 and 9, which received, for 10 days, 0.25, 0.5 and 1 mg/kg kinetin or 200 mg/kg vitamin C, respectively, and Cp on the fourth day. CP-injected rats showed a significant impairment in biochemical, oxidative stress and inflammatory parameters in hepatic tissue and lymphocytes. PCR showed a profound increase in caspase-3, and a significant decline in AKT gene expression. Intriguingly, Kn treatment restored the biochemical, redox status and inflammatory parameters. Hepatic AKT and caspase-3 expression as well as CD95 levels in lymphocytes were also restored. In conclusion, Kn mitigated oxidative imbalance, inflammation and apoptosis in CP-induced liver and lymphocyte toxicity; therefore, it can be considered as a promising therapy.
Collapse
Affiliation(s)
- Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Mostafa A. Darwish
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Al-Shaimaa M. Abdelhamid
- Department of Chemistry, Biochemistry Division, Faculty of Science, Minia University, Minia 61519, Egypt; (A.-S.M.A.); (G.M.A.); (O.A.O.)
| | - Gehad M. Alrashedy
- Department of Chemistry, Biochemistry Division, Faculty of Science, Minia University, Minia 61519, Egypt; (A.-S.M.A.); (G.M.A.); (O.A.O.)
| | - Othman Ali Othman
- Department of Chemistry, Biochemistry Division, Faculty of Science, Minia University, Minia 61519, Egypt; (A.-S.M.A.); (G.M.A.); (O.A.O.)
| | - Muhammad Naseem
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
- Correspondence: (T.D.); (E.M.O.)
| | - Eman M. Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
- Correspondence: (T.D.); (E.M.O.)
| |
Collapse
|
30
|
Kalimuthu AK, Parasuraman P, Sivakumar P, Murugesan S, Arunachalam S, Pandian SRK, Ravishankar V, Ammunje DN, Sampath M, Panneerselvam T, Kunjiappan S. In silico, in vitro screening of antioxidant and anticancer potentials of bioactive secondary metabolites from an endophytic fungus (Curvularia sp.) from Phyllanthus niruri L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48908-48925. [PMID: 35201581 DOI: 10.1007/s11356-022-19249-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The main objective of this research work is to discover novel and efficient phytochemical substances from endophytic fungus found in medicinal plants. Curvularia geniculata L. (C. geniculata L.), an endophytic fungus isolated from Phyllanthus niruri L. (P. niruri L.), was tested against hepatoma cell lines (HepG2) in order to screen their antioxidant and anticancer potentials. The profiling of phytochemicals from the fungal extract was characterized using gas chromatography-mass spectrometry (GC-MS), and molecular docking was done for the identified compounds against one of the potential receptors predominantly present in the hepatocellular carcinoma cell lines. Among the phytochemicals found, 2-methyl-7-phenylindole had the highest binding affinity (- 8.8 kcal mol-1) for the epidermal growth factor receptor (EGFR). The stability of 2-methyl-7-phenylindole in the EGFR-binding pockets was tested using in silico molecular dynamics simulation. The fungal extract showed the highest antioxidant activity as measured by DPPH, ABTS radical scavenging, and FRAP assays. In vitro cytotoxicity assay of fungal extract demonstrated the concentration-dependent cytotoxicity against HepG2 cells after 24 h, and the IC50 (50% cell death) value was estimated to be 62.23 μg mL-1. Typical morphological changes such as condensation of nuclei and deformed membrane structures are indicative of ongoing apoptosis. The mitochondria of HepG2 cells were also targeted by the endophytic fungal extract, which resulted in substantial generation of reactive oxygen species (ROS) leading to the destruction of mitochondrial transmembrane potential integrity. These outcomes suggest that the ethyl acetate extract of C. geniculata L. has the potential to be an antioxidant agent and further to be exploited in developing potential anticancer agents.
Collapse
Affiliation(s)
- Arjun Kumar Kalimuthu
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, Tamil Nadu, India
| | - Pavadai Parasuraman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, 560054, Karnataka, India
| | - Pandian Sivakumar
- School of Petroleum Technology, Pandit Deendayal Energy University, Gandhinagar, 382426, Gujarat, India
| | - Sankaranarayanan Murugesan
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Sankarganesh Arunachalam
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, Tamil Nadu, India
| | - Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, Tamil Nadu, India
| | - Vigneshwaran Ravishankar
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamil Nadu, India
| | - Damodar Nayak Ammunje
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, 560054, Karnataka, India
| | - Muthukumar Sampath
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi-835215, Mesra, Jharkhand, India
| | - Theivendran Panneerselvam
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengodu, 637205, Tamil Nadu, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, Tamil Nadu, India.
| |
Collapse
|
31
|
Kuo YJ, Pei JK, Chao WW. Pharmacological and Chemical Potential of Spiranthes sinensis (Orchidaceae): A Narrative Review. PLANTS 2022; 11:plants11131692. [PMID: 35807644 PMCID: PMC9269428 DOI: 10.3390/plants11131692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
Orchidaceae is one of the largest families of flowering plants with more than 27,000 accepted species, and more than 31,000–35,000 species are estimated to exist in total. The orchid Spiranthes sinensis (Pers.) Ames, having ornamental and medicinal value, is widely distributed throughout Asia and Oceania. S. sinensis (Shou Tsao) is also known as Panlongshen among the common folk herbs. It has a fleshy root similar to ginseng, and the entire plant is widely used in traditional Chinese medicine. Owing to overexploitation and habitat destruction in recent years, the wild population has become scarce. The traits of this species show obvious differences in different countries. In the Taiwanese climate, it flowers during the Ching Ming Festival, also called the ching ming tsao. Previous investigations into S. sinensis have revealed the presence of flavonoids, homocyclotirucallane, dihydrophenanthrenes, ferulic acid, and 3,4-dihydroxybenzaldehyde. Phenolic constituents of structural and biological interest, including phenanthrenes and flavonoids, have been isolated and identified from S. sinensis. This natural product possesses extensive bioactivity, including anti-tumor, anti-inflammatory, and antioxidant effects. In this review, we outline the herbal medicine formulations and plant-derived natural products of S. sinensis.
Collapse
Affiliation(s)
- Yu-Jen Kuo
- Department of Health Wellness and Marketing, Kainan University, 1 Kainan Rd., Shinshing, Luchu, Taoyuan 33857, Taiwan; (Y.-J.K.); (J.-K.P.)
| | - Jin-Kuo Pei
- Department of Health Wellness and Marketing, Kainan University, 1 Kainan Rd., Shinshing, Luchu, Taoyuan 33857, Taiwan; (Y.-J.K.); (J.-K.P.)
| | - Wen-Wan Chao
- Department of Nutrition and Health Sciences, Kainan University, 1 Kainan Rd., Shinshing, Luchu, Taoyuan 33857, Taiwan
- Correspondence: ; Tel.: +886-3-3412500 (ext. 6250)
| |
Collapse
|
32
|
Xu Q, Deng Y, Ming J, Luo Z, Chen X, Chen T, Wang Y, Yan S, Zhou J, Mao L, Sun W, Zhou Q, Ren H, Zhang Y. Methyl 6-O-cinnamoyl-α-d-glucopyranoside Ameliorates Acute Liver Injury by Inhibiting Oxidative Stress Through the Activation of Nrf2 Signaling Pathway. Front Pharmacol 2022; 13:873938. [PMID: 35559264 PMCID: PMC9086595 DOI: 10.3389/fphar.2022.873938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/18/2022] [Indexed: 12/19/2022] Open
Abstract
Excessive stimulation of hepatotoxins and drugs often lead to acute liver injury, while treatment strategies for acute liver injury have been limited. Methyl 6-O-cinnamoyl-α-d-glucopyranoside (MCGP) is a structure modified compound from cinnamic acid, a key chemical found in plants with significant antioxidant, anti-inflammatory, and antidiabetic effects. In this study, we investigated the effects and underlying mechanisms of MCGP on acetaminophen (APAP)- or carbon tetrachloride (CCl4)-induced acute liver injury. As a result, MCGP inhibited cell death and apoptosis induced by APAP or CCl4, and suppressed the reactive oxygen species (ROS) generation stimulated by H2O2 in liver AML12 cells. In vivo, MCGP alleviated APAP/CCl4-induced hepatic necrosis and resumed abnormal aminotransferase activities and liver antioxidase activities. In addition, MCGP depressed APAP- or CCl4-induced oxidative stress through the suppression of CYP2E1 and activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. MCGP also enhanced the number of PCNA-positive hepatocytes, increased hepatic PCNA and Bcl-XL, and decreased BAX expression in APAP-/CCl4-intoxicated mice. Furthermore, MCGP activated the GSDMD-N/cleaved caspase 1 pathway. In summary, MCGP might act as a potential therapeutic drug against drug-induced and chemical-induced acute liver injuries, and its underlying mechanisms might engage on the pressing of oxidative stress, refraining of hepatocyte apoptosis, and facilitating of liver regeneration.
Collapse
Affiliation(s)
- Qianqian Xu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanfang Deng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxiong Ming
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwei Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Chen
- Hubei Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, China
| | - Tianqi Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafen Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Yan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Mao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Ren
- Biobank, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Liu C, Wang Z, Wang W, Zheng L, Li M. Positive effects of selenium supplementation on selenoprotein S expression and cytokine status in a murine model of acute liver injury. J Trace Elem Med Biol 2022; 71:126927. [PMID: 35030482 DOI: 10.1016/j.jtemb.2022.126927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/22/2021] [Accepted: 01/09/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND It is a consensus that selenomethionine (SeMet) can protect liver from damage, but the immune mechanism of SeMet in acute liver injury (ALI) is still unclear. This study aims to investigate the protective effects of SeMet against ALI and to elucidate the possible immune mechanism. METHODS Firstly, the role of SeMet in CCl4-induced ALI mice was investigated through survival rate, serum ALT and AST, liver necrosis and apoptosis analysis. The expression and secretion of inflammatory cytokines and chemokines in the liver and serum of CCl4-induced ALI mice were analyzed by qRT-PCR and ELISA. Then the immune cell phenotypes were analyzed by flow cytometry and confocal imaging. In addition, MDSCs depletion, CXCL12/CXCR4 axis blocking and selenoprotein S (SELENOS) knockdown assays were used to reveal the immune mechanism of SeMet. RESULTS We found that SeMet prolonged survival rate, decreased the serum ALT and AST, alleviated liver necrosis and inhibited hepatocytes apoptosis. Prospective, SeMet decreased the expression of IL-6 and TNF-α, and increased the expression of IL-10. Interestingly, SeMet decreased the expression of MCP-1, while increased the expression of CXCL12. The immune analysis showed that SeMet decreased the activation of T cells through promoting MDSCs accumulation mediated by CXCL12/CXCR4 axis. Furthermore, SeMet increased SELENOS expression in vivo, and knockdown of SELENOS effectively abolished the protective effect of SeMet during ALI. CONCLUSION This study demonstrates that SeMet alleviates CCl4-induced ALI by promoting MDSCs accumulation through SELENOS mediated CXCL12/CXCR4 axis. Therefore, our study infers that selenium intake may be as a new therapeutic option for management of inflammation-mediated liver injury.
Collapse
Affiliation(s)
- Chunliang Liu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Biochemistry, Medical College of Soochow University, Suzhou, China.
| | - Zerong Wang
- Department of Infectious Diseases, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Wei Wang
- Department of Biochemistry, Medical College of Soochow University, Suzhou, China
| | - Lei Zheng
- Department of Biochemistry, Medical College of Soochow University, Suzhou, China
| | - Ming Li
- Department of Infectious Diseases, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
34
|
Tan S, Bai J, Xu M, Zhang L, Wang Y. Thioredoxin-1 Activation by Pterostilbene Protects Against Doxorubicin-Induced Hepatotoxicity via Inhibiting the NLRP3 Inflammasome. Front Pharmacol 2022; 13:841330. [PMID: 35496300 PMCID: PMC9043100 DOI: 10.3389/fphar.2022.841330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Doxorubicin (DOX) has been widely used in cancer treatment. However, DOX can cause a range of significant side effects, of which hepatotoxicity is a common one, and therefore limits its clinical use. Pterostilbene (PTS) has been shown to exhibit anti-oxidant and anti-inflammatory effects in the treatment of liver diseases but whether PTS could protect against hepatotoxicity in DOX-treated mice is unknown. Methods: In our study, we use C57/BL6J mice and the HepG2 cell line. We divided the mice in 4 groups: the control, the PTS treatment, the DOX treatment, and the DOX + PTS treatment group. Liver histopathology was judged by performing hematoxylin–eosin and Masson staining. Immunohistochemistry was used to perform the expression of NLRP3. The levels of serum alanine transaminase (ALT) and aspartate transaminase (AST) were evaluated. Levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and DCFH-DA staining were used to evaluate the oxidative injury. Western blot and real-time PCR were applied to evaluate the expressions of proteins and mRNA. MTT was used to evaluate DOX-induced cell injury and the protective effects of PTS. Recombinant Trx-1 was used to analyze the mechanism of PTS. A TUNEL assay was used to detect apoptosis in DOX-induced HepG2 cells and the protective effects of PTS. Results: PTS ameliorated DOX-induced liver pathological changes and the levels of AST and ALT. PTS also decreased the level of MDA, increased the level of SOD, GSH, and the expression of Trx-1 in DOX-treated mice. PTS decreased the levels of NLRP3 and IL-1β mRNA and the expressions of their proteins in DOX-treated mice. In addition, PTS also decreased the expression of Cleaved Caspase-3 and BAX and increased the expression of BCL-2. In vitro, after treatment with recombinant Trx-1, ROS and NLRP3 inflammasome were both decreased. Treatment with PTS could rescue the downregulation of Trx-1, decreased the ROS level and the NLRP3 inflammasome, and protected HepG2 cells against DOX-induced apoptosis. Conclusion: The results show that PTS exhibits protective effects against DOX-induced liver injuries via suppression of oxidative stress, fibrosis, NLRP3 inflammasome stimulation, and cell apoptosis which might lead to a new approach of preventing DOX-induced hepatotoxicity.
Collapse
Affiliation(s)
- Shiqing Tan
- The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jie Bai
- Nutrition and Food Hygiene, Dalian Medical University, Dalian, China
| | - Mingxi Xu
- The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Longying Zhang
- The Second Affiliated Hospital, Dalian Medical University, Dalian, China
- *Correspondence: Longying Zhang, ; Ying Wang,
| | - Ying Wang
- The Second Affiliated Hospital, Dalian Medical University, Dalian, China
- *Correspondence: Longying Zhang, ; Ying Wang,
| |
Collapse
|
35
|
Berberis integerrima hydro-alcoholic root extract ant its constituent berberine protect against cisplatin-induced nephro- and hepato-toxicity. Am J Med Sci 2022; 364:76-87. [DOI: 10.1016/j.amjms.2021.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/03/2021] [Accepted: 10/21/2021] [Indexed: 01/04/2023]
|
36
|
Zajíčková M, Prchal L, Vokřál I, Nguyen LT, Kurz T, Gasser R, Bednářová K, Mičundová M, Lungerich B, Michel O, Skálová L. Assessing the Anthelmintic Candidates BLK127 and HBK4 for Their Efficacy on Haemonchus contortus Adults and Eggs, and Their Hepatotoxicity and Biotransformation. Pharmaceutics 2022; 14:pharmaceutics14040754. [PMID: 35456588 PMCID: PMC9024958 DOI: 10.3390/pharmaceutics14040754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022] Open
Abstract
As a widely distributed parasitic nematode of ruminants, Haemonchus contortus has become resistant to most anthelmintic classes, there has been a major demand for new compounds against H. contortus and related nematodes. Recent phenotypic screening has revealed two compounds, designated as BLK127 and HBK4, that are active against H. contortus larvae. The present study was designed to assess the activity of these compounds against H. contortus eggs and adults, hepatotoxicity in rats and sheep, as well as biotransformation in H. contortus adults and the ovine liver. Both compounds exhibited no inhibitory effect on the hatching of eggs. The benzyloxy amide BLK127 significantly decreased the viability of adults in sensitive and resistant strains of H. contortus and showed no hepatotoxic effect, even at the highest concentration tested (100 µM). In contrast, HBK4 had no impact on the viability of H. contortus adults and exhibited significant hepatotoxicity. Based on these findings, HBK4 was excluded from further studies, while BLK127 seems to be a potential candidate for a new anthelmintic. Consequently, biotransformation of BLK127 was tested in H. contortus adults and the ovine liver. In H. contortus, several metabolites formed via hydroxylation, hydrolysis and glycosidation were identified, but the extent of biotransformation was low, and the total quantity of the metabolites formed did not differ significantly between the sensitive and resistant strains. In contrast, ovine liver cells metabolized BLK127 more extensively with a glycine conjugate of 4-(pentyloxy)benzoic acid as the main BLK127 metabolite.
Collapse
Affiliation(s)
- Markéta Zajíčková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Z.); (L.T.N.); (K.B.); (M.M.)
| | - Lukáš Prchal
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 50005 Hradec Kralove, Czech Republic;
| | - Ivan Vokřál
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, 50005 Hradec Králové, Czech Republic;
| | - Linh Thuy Nguyen
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Z.); (L.T.N.); (K.B.); (M.M.)
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany; (T.K.); (B.L.); (O.M.)
| | - Robin Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Klára Bednářová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Z.); (L.T.N.); (K.B.); (M.M.)
| | - Magdalena Mičundová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Z.); (L.T.N.); (K.B.); (M.M.)
| | - Beate Lungerich
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany; (T.K.); (B.L.); (O.M.)
| | - Oliver Michel
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany; (T.K.); (B.L.); (O.M.)
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic; (M.Z.); (L.T.N.); (K.B.); (M.M.)
- Correspondence:
| |
Collapse
|
37
|
Perkins EJ, Woolard EA, Garcia-Reyero N. Integration of Adverse Outcome Pathways, Causal Networks and ‘Omics to Support Chemical Hazard Assessment. FRONTIERS IN TOXICOLOGY 2022; 4:786057. [PMID: 35399296 PMCID: PMC8987526 DOI: 10.3389/ftox.2022.786057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/14/2022] [Indexed: 12/30/2022] Open
Abstract
Several approaches have been used in an attempt to simplify and codify the events that lead to adverse effects of chemicals including systems biology, ‘omics, in vitro assays and frameworks such as the Adverse Outcome Pathway (AOP). However, these approaches are generally not integrated despite their complementary nature. Here we propose to integrate toxicogenomics data, systems biology information and AOPs using causal biological networks to define Key Events in AOPs. We demonstrate this by developing a causal subnetwork of 28 nodes that represents the Key Event of regenerative proliferation – a critical event in AOPs for liver cancer. We then assessed the effects of three chemicals known to cause liver injury and cell proliferation (carbon tetrachloride, aflatoxin B1, thioacetamide) and two with no known cell proliferation effects (diazepam, simvastatin) on the subnetwork using rat liver gene expression data from the toxicogenomic database Open TG-GATEs. Cyclin D1 (Ccnd1), a gene both causally linked to and sufficient to infer regenerative proliferation activity, was overexpressed after exposures to carbon tetrachloride, aflatoxin B1 and thioacetamide, but not in exposures to diazepam and simvastatin. These results were consistent with known effects on rat livers and liver pathology of exposed rats. Using these approaches, we demonstrate that transcriptomics, AOPs and systems biology can be applied to examine the presence and progression of AOPs in order to better understand the hazards of chemical exposure.
Collapse
Affiliation(s)
- Edward J. Perkins
- Environmental Laboratory, US Army Engineering Research and Development Center, Vicksburg, MS, United States
- *Correspondence: Edward J. Perkins,
| | - E. Alice Woolard
- UNC School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineering Research and Development Center, Vicksburg, MS, United States
| |
Collapse
|
38
|
Samad N, Rao T, Rehman MHU, Bhatti SA, Imran I. Inhibitory Effects of Selenium on Arsenic-Induced Anxiety-/Depression-Like Behavior and Memory Impairment. Biol Trace Elem Res 2022; 200:689-698. [PMID: 33745108 DOI: 10.1007/s12011-021-02679-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Elevated arsenic (As) contamination in drinking water was detected in many areas of Pakistan. The intoxication of As causes various neurological diseases in humans, which can be inhibited by the administration of potent antioxidants. Trace elements are also found in drinking water such as selenium (Se), which possess antioxidant potential. The main purpose of the current study is to find out the protective effect of Se against As toxicity which can cause anxiety- and depression-like behaviors as well as memory impairment. Thirty-six male rats were divided into six groups: (1) distilled water (dw)+dw, (2) dw+Se (0.175 mg/ml/kg), (3) dw+Se (0.35mg/ml/kg), (4) dw+As (2.5mg/ml/kg), (5) As (2.5mg/ml/kg) + Se (0.175 mg/ml/kg), and (6) As (2.5mg/ml/kg) + Se (0.35 mg/ml/kg). Rats were treated with respective treatment for 4 weeks. Sub-chronic treatment of As reduced time spent in open arm (elevated plus maze), and lightbox (light-dark activity test) and increased immobility time in forced swim test indicate anxiety- and/or depression-like behavior, respectively. Conversely, rats treated with As+Se (at both doses) increased time spent in open arm (elevated plus maze), and lightbox (light-dark activity test) and decreased immobility time in forced swim test indicate the anxiolytic and anti-depressive effect of Se, respectively. Co-administration of Se (0.175 and 0.35) inhibited As instigated reduction of spatial memory performed in Morris water maze. The reversal in the reduced level of malondialdehyde and activity of acetylcholinesterase in the hippocampus by Se was observed in As-treated animals, while the activity of antioxidant enzymes in the hippocampus was increased in As+Se than dw+As-treated animals. Histopathological studies have shown the reversal of hippocampus deterioration by Se in As-treated rats. The results may imply to prevent the intoxication of As instigated impairment in behavioral and biochemical indices by Se supplementation and/or increased safer intake.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Tazeen Rao
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | | | - Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
39
|
Zhao W, Wang L, Yang F, Zhang N, Fan J, Qin S, Shao T, Xu X, Yan S, Guo H, Li J, Zhao H. Antioxidant activity assessment of Yingjisha sweet almond oil. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Zhao
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
| | - Liwen Wang
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
- College of Food Science and Technology Hebei Agricultural University Baoding 071001 China
| | - Fan Yang
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
| | - Ning Zhang
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
| | - Jiahuan Fan
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
| | - Shini Qin
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
| | - Tong Shao
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
| | - Xianao Xu
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
| | - Shiyin Yan
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
| | - Hongxing Guo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases Tianjin Third Central Hospital. No 83 Jintang Road Tianjin 300170 China
| | - Jianying Li
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology Tianjin International Joint Center of Food Science and Engineering State Experimental and Training Centre of Food and Drug School of Biotechnology and Food Science Tianjin University of Commerce No. 409 Guangrong Road Tianjin 300134 China
| |
Collapse
|
40
|
Aboraya DM, El Baz A, Risha EF, Abdelhamid FM. Hesperidin ameliorates cisplatin induced hepatotoxicity and attenuates oxidative damage, cell apoptosis, and inflammation in rats. Saudi J Biol Sci 2022; 29:3157-3166. [PMID: 35844386 PMCID: PMC9280168 DOI: 10.1016/j.sjbs.2022.01.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/25/2022] Open
Abstract
Cisplatin is one of the most widely used chemotherapeutic anti-cancer drugs that is associated with multiple systemic toxicities limiting its use. The present study aimed to evaluate the hepato-protective effect of hesperidin against cisplatin-induced toxicity. Thirty-two adult male albino rats were equally split into four groups, the first group served as control received normal saline, the second group (CIS) received a single intraperitoneal dose of cisplatin (7.5 mg/kg bw) on the 22nd day of the experiment, the third group (HES) treated once daily with hesperidin (200 mg/kg bw, orally) for 21 days, and the last group (HES + CIS) pretreated once daily with hesperidin followed by a single intraperitoneal dose of cisplatin. Twenty-four hours later, samples were collected for further investigations. CIS-intoxication resulted in a significant decrease in the erythrogram along with thrombocytopenia leukopenia, and lymphopenia. Furthermore, CIS administration significantly elevated serum activity of liver enzymes, total, and indirect bilirubin as well serum glucose, total cholesterol, and triglycerides levels, meanwhile serum total protein, and globulin levels were significantly reduced. The hepatic MDA was markedly elevated with a concomitant decline in the hepatic antioxidant enzymes and severe alterations in the hepatic tissue architecture in CIS-intoxicated rats. Additionally, CIS-induced overexpression of hepatic Bax, caspase-3, and TNF-α, with no effect on hepatic expression of IL-10. Interestingly, HES pretreatment improved the CIS-induced hemato-biochemical, molecular and histopathological alterations. In conclusion, hesperidin hepato-protective effects against CIS might be mediated by its antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
|
41
|
Teofilović B, Tomas A, Martić N, Stilinović N, Popović M, Čapo I, Grujić N, Ilinčić B, Rašković A. Antioxidant and hepatoprotective potential of sweet basil (Ocimum basilicum L.) extract in acetaminophen-induced hepatotoxicity in rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
42
|
El Kassas M, Alboraie M, El-Sayed M, Elbehiry S, Sherief A, Youssef M, Moaz I, El Tahan A, Abdeen N, Eysa B, Aziz AA, Tawheed A, Ezzat S, Hassany M. Effect of disease stage and treatment outcomes on the dynamics of liver functions during and after treatment of hepatitis C with directly acting antivirals. Eur J Gastroenterol Hepatol 2021; 33:e302-e307. [PMID: 34080825 DOI: 10.1097/meg.0000000000002043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Virus C infection is recently treated successfully with plenty of direct antiviral agents (DAAs). We aimed to evaluate the effect of disease stage and treatment outcome on the dynamics of liver functions during treatment of hepatitis C with DAAs. METHODS We reported the liver function in 2354 subjects diagnosed as chronic hepatitis C before, during and after treatment with different DAAs regimens. Patients were classified into two groups according to treatment response with further subclassification according to the presence or absence of cirrhosis, and changes in liver functions were compared in each group and subgroup. RESULTS Totally 2213 (94%) achieved sustained virological response (SVR) to DAAs therapy with significant improvement in all liver biochemistry. Also, there was an improvement in the non-SVR group's liver enzymes in relapsers during and after treatment; however, there was no improvement in serum albumin. We noticed a slight increase in serum bilirubin at weeks 4 and 8 for both groups. CONCLUSION DAAs therapy is associated with improvement of the liver biochemical profile and improved outcome in the majority of chronic hepatitis C virus patients due to suppression of viral replication. However, the long-term impact of DAAs therapy needs to be further evaluated.
Collapse
Affiliation(s)
| | | | | | | | - Ahmed Sherief
- Tropical Medicine Department, Faculty of Medicine Ain Shams University, Cairo
| | | | - Inas Moaz
- Epidemiology and Preventive Medicine Department, National Liver Institute, Menoufia University, Menoufia
| | - Adel El Tahan
- New Cairo Viral Hepatitis, Treatment Unit, New Cairo Hospital, Cairo
| | - Nermeen Abdeen
- Tropical Medicine, Faculty of Medicine, Alexandria University, Alexandria
| | - Basem Eysa
- Tropical Medicine Department, National Hepatology and Tropical Medicine Research Institute
| | - Ayman A Aziz
- Gastroenterology and Hepatology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Ahmed Tawheed
- Endemic Medicine Department, Faculty of Medicine, Helwan University
| | - Sameera Ezzat
- Epidemiology and Preventive Medicine Department, National Liver Institute, Menoufia University, Menoufia
| | - Mohamed Hassany
- Tropical Medicine Department, National Hepatology and Tropical Medicine Research Institute
| |
Collapse
|
43
|
Surai PF, Earle-Payne K, Kidd MT. Taurine as a Natural Antioxidant: From Direct Antioxidant Effects to Protective Action in Various Toxicological Models. Antioxidants (Basel) 2021; 10:1876. [PMID: 34942978 PMCID: PMC8698923 DOI: 10.3390/antiox10121876] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Natural antioxidants have received tremendous attention over the last 3 decades. At the same time, the attitude to free radicals is slowly changing, and their signalling role in adaptation to stress has recently received a lot of attention. Among many different antioxidants in the body, taurine (Tau), a sulphur-containing non-proteinogenic β-amino acid, is shown to have a special place as an important natural modulator of the antioxidant defence networks. Indeed, Tau is synthesised in most mammals and birds, and the Tau requirement is met by both synthesis and food/feed supply. From the analysis of recent data, it could be concluded that the direct antioxidant effect of Tau due to scavenging free radicals is limited and could be expected only in a few mammalian/avian tissues (e.g., heart and eye) with comparatively high (>15-20 mM) Tau concentrations. The stabilising effects of Tau on mitochondria, a prime site of free radical formation, are characterised and deserve more attention. Tau deficiency has been shown to compromise the electron transport chain in mitochondria and significantly increase free radical production. It seems likely that by maintaining the optimal Tau status of mitochondria, it is possible to control free radical production. Tau's antioxidant protective action is of great importance in various stress conditions in human life, and is related to commercial animal and poultry production. In various in vitro and in vivo toxicological models, Tau showed AO protective effects. The membrane-stabilizing effects, inhibiting effects on ROS-producing enzymes, as well as the indirect AO effects of Tau via redox balance maintenance associated with the modulation of various transcription factors (e.g., Nrf2 and NF-κB) and vitagenes could also contribute to its protective action in stress conditions, and thus deserve more attention.
Collapse
Affiliation(s)
- Peter F. Surai
- Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Biochemistry and Physiology Department, Saint-Petersburg State University of Veterinary Medicine, 196084 St. Petersburg, Russia
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Katie Earle-Payne
- NHS Greater Glasgow and Clyde, Renfrewshire Health and Social Care Centre, 10 Ferry Road, Renfrew PA4 8RU, UK;
| | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
44
|
Therapeutic Potential of Cucumis melo (L.) Fruit Extract and Its Silver Nanopartciles Against DEN-Induced Hepatocellular Cancer in Rats. Appl Biochem Biotechnol 2021; 194:368-381. [PMID: 34792748 DOI: 10.1007/s12010-021-03765-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Biosynthesized silver nanoparticles have a wide range of biological activities and using nanoparticles as one of the novel approaches in cancer therapy. In this present research work, the anti-cancer efficacy of Cucumis melo fruit extract and its silver nanoparticles was explored. Wistar rats were divided into six groups and hepatic cancer was induced with 0.01% DEN (diethylnitrosamine) through drinking water for 16 weeks. Cyclophosphamide was given as the standard drug at the dose of 50 mg/kg body weight. Hematological parameters showed a decrease in the levels of hemoglobin (Hb), packed cell volume (PCV), red blood cells (RBC), mean corpuscular volume (MCV), mean corpuscular Hb (MCH), mean corpuscular Hb concentration (MCHC), and platelets (PLTS) levels except white blood cell (WBC) in DEN-induced cancer animals. Significant alterations in the hematological parameters were observed after treatment which indicate the protective effect of Cucumis melo fruit on the hemopoietic system. The structural integrity of the cells has been damaged in cancer-induced animals, and this results in cytoplasmic leakage of enzyme into the blood stream, leads to the elevated levels of these enzymes in blood with subsequent fall in the tissues. Hence, the levels of liver function markers such as AST ALT, ALP, LDH, GGT, and 5'NT were significantly elevated in serum and the liver of cancer-induced rats. The levels of serum tumor markers, viz., alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA), elevated in rats induced with DEN, which then were reduced following Cucumis melo fruit treatment, indicating the anti-cancer activity of the drug. Histological evaluation of the liver and kidney was also performed to authenticate the present work. Treatment with crude extract and silver nanoparticles of Cucumis melo fruit indicates that Cucumis melo fruit could have exerted its protective effect.
Collapse
|
45
|
Chen SN, Tan Y, Xiao XC, Li Q, Wu Q, Peng YY, Ren J, Dong ML. Deletion of TLR4 attenuates lipopolysaccharide-induced acute liver injury by inhibiting inflammation and apoptosis. Acta Pharmacol Sin 2021; 42:1610-1619. [PMID: 33495514 PMCID: PMC8463538 DOI: 10.1038/s41401-020-00597-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023]
Abstract
Septic acute liver injury is one of the leading causes of fatalities in patients with sepsis. Toll-like receptor 4 (TLR4) plays a vital role in response to lipopolysaccharide (LPS) challenge, but the mechanisms underlying TLR4 function in septic injury remains unclear. In this study, we investigated the role of TLR4 in LPS-induced acute liver injury (ALI) in mice with a focus on inflammation and apoptosis. Wild-type (WT) and TLR4-knockout (TLR4-/-) mice were challenged with LPS (4 mg/kg) for 6 h. TLR4 signaling cascade markers (TLR4, MyD88, and NF-κB), inflammatory markers (TNFα, IL-1β, and IL-6), and apoptotic markers (Bax, Bcl-2, and caspase 3) were evaluated. We showed that LPS challenge markedly increased the levels of serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST) and other liver pathological changes in WT mice. In addition, LPS challenge elevated the levels of liver carbonyl proteins and serum inflammatory cytokines, upregulated the expression of TLR4, MyD88, and phosphorylated NF-κB in liver tissues. Moreover, LPS challenge significantly increased hepatocyte apoptosis, caspase 3 activity, and Bax level while suppressing Bcl-2 expression in liver tissues. These pathological changes were greatly attenuated in TLR4-/- mice. Similar pathological responses were provoked in primary hepatic Kupffer cells isolated from WT and TLR4-/- mice following LPS (1 μg/mL, 6 h) challenge. In summary, these results demonstrate that silencing of TLR4 attenuates LPS-induced liver injury through inhibition of inflammation and apoptosis via TLR4/MyD88/NF-κB signaling pathway. TLR4 deletion confers hepatoprotection against ALI induced by LPS, possibly by repressing macrophage inflammation and apoptosis.
Collapse
Affiliation(s)
- Sai-Nan Chen
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Chan Xiao
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qian Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qi Wu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - You-You Peng
- Shanghai Hongrun Boyuan School, Shanghai, 201713, China
| | - Jun Ren
- Department of Cardiology, and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
| | - Mao-Long Dong
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
46
|
Mohammed HA, Eldeeb HM, Khan RA, Al-Omar MS, Mohammed SAA, Sajid MSM, Aly MSA, Ahmad AM, Abdellatif AAH, Eid SY, El-Readi MZ. Sage, Salvia officinalis L., Constituents, Hepatoprotective Activity, and Cytotoxicity Evaluations of the Essential Oils Obtained from Fresh and Differently Timed Dried Herbs: A Comparative Analysis. Molecules 2021; 26:molecules26195757. [PMID: 34641301 PMCID: PMC8510068 DOI: 10.3390/molecules26195757] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022] Open
Abstract
Sage, Salvia officinalis L., is used worldwide as an aromatic herb for culinary purposes as well as a traditional medicinal agent for various ailments. Current investigations exhibited the effects of extended dryings of the herb on the yields, composition, oil quality, and hepatoprotective as well as anti-cancer biological activities of the hydrodistillation-obtained essential oils from the aerial parts of the plant. The essential oils’ yields, compositions, and biological activities levels of the fresh and differently timed and room-temperature dried herbs differed significantly. The lowest yields of the essential oil were obtained from the fresh herbs (FH, 631 mg, 0.16%), while the highest yield was obtained from the two-week dried herbs (2WDH, 1102 mg, 0.28%). A notable decrease in monoterpenes, with increment in the sesquiterpene constituents, was observed for the FH-based essential oil as compared to all the other batches of the essential oils obtained from the different-timed dried herbs. Additionally, characteristic chemotypic constituents of sage, i.e., α-pinene, camphene, β-pinene, myrcene, 1, 8-cineole, α-thujone, and camphor, were present in significantly higher proportions in all the dried herbs’ essential oils as compared to the FH-based essential oil. The in vivo hepatoprotective activity demonstrated significant reductions in the levels of AST, ALT, and ALP, as well as a significant increase in the total protein (p < 0.05) contents level, as compared to the acetaminophen (AAP) administered experimental group of rats. A significant reduction (p < 0.05) in the ALT level was demonstrated by the 4WDH-based essential oil in comparison to the FH-based essential oil. The levels of creatinine, cholesterol, and triglycerides were reduced (p < 0.05) in the pre-treated rats by the essential oil batches, with non-significant differences found among them as a result of the herbs dryings based oils. A notable increase in the viability of the cells, and total antioxidant capacity (TAOxC) levels, together with the reduction in malondialdehyde (MDA) levels were observed by the essential oils obtained from all the batches as compared with the AAP-treated cell-lines, HepG-2, HeLa, and MCF-7, that indicated the in vitro hepatoprotective effects of the sage essential oils. However, significant improvements in the in vivo and in vitro hepatoprotective activities with the 4WDH-based oil, as compared to all other essential oil-batches and silymarin standard demonstrated the beneficial effects of the drying protocol for the herb for its medicinal purposes.
Collapse
Affiliation(s)
- Hamdoon A. Mohammed
- Department of Medicinal Chemist and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
- Correspondence: (H.A.M.); (H.M.E.); (R.A.K.); Tel.: +00966566176074 (H.A.M.)
| | - Hussein M. Eldeeb
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; (S.A.A.M.); (M.S.M.S.)
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt
- Correspondence: (H.A.M.); (H.M.E.); (R.A.K.); Tel.: +00966566176074 (H.A.M.)
| | - Riaz A. Khan
- Department of Medicinal Chemist and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Correspondence: (H.A.M.); (H.M.E.); (R.A.K.); Tel.: +00966566176074 (H.A.M.)
| | - Mohsen S. Al-Omar
- Department of Medicinal Chemist and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, JUST, Irbid 22110, Jordan
| | - Salman A. A. Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; (S.A.A.M.); (M.S.M.S.)
| | - Mohammed S. M. Sajid
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; (S.A.A.M.); (M.S.M.S.)
| | | | - Adel M. Ahmad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt;
| | - Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
| | - Safaa Yehia Eid
- Department of Clinical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Abdia, Makkah 21955, Saudi Arabia; (S.Y.E.); (M.Z.E.-R.)
| | - Mahmoud Zaki El-Readi
- Department of Clinical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Abdia, Makkah 21955, Saudi Arabia; (S.Y.E.); (M.Z.E.-R.)
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
47
|
Putative abrogation impacts of Ajwa seeds on oxidative damage, liver dysfunction and associated complications in rats exposed to carbon tetrachloride. Mol Biol Rep 2021; 48:5305-5318. [PMID: 34244886 DOI: 10.1007/s11033-021-06544-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Industrial toxicants such as Carbon tetrachloride (CCl4) are known to disrupt the oxidative-antioxidative balance, which generates excessive amounts of free radicals leading to chronic or acute liver damage. Natural antioxidants, including Ajwa, play an important role in protecting against hepatotoxicity. METHODS AND RESULTS This study investigated the prophylactic impacts of ajwa seeds aqueous extract (ASE) against hepatic oxidative injury in rats induced by CCl4. Eighty male Wistar albino rats were equally assigned to eight groups: one group receive no treatment, four groups were received CCl4-olive oil mixture [1:1(v/v)] (0.2 ml/100 g body weight (bw), intraperitoneally) two times/week for 4 weeks/rat alone or with 200 mg Vit. C/kg bw or 5 ml ASE/rat or both, and three groups received olive oil, Vit. C, or ASE. Vitamin C and ASE were orally administrated two weeks before CCl4 injection and 4 weeks concomitant with CCl4. Lipid peroxidation, lipogenesis-related genes, hepatic histopathology, Bax immunostaining and DNA fragmentation were assessed. ASE protected hepatic damage by suppressing oxidative stress and elevating activities of antioxidant enzymes, including superoxide dismutase and catalase. ASE also regulated hepatic dyslipidemia, hepatic lipid accumulation and expression of SREBP-1 and FAS genes in CCl4-treated rats. ASE decreased apoptosis through inhibition of CCl4 induced Bax activation in hepatocytes. CONCLUSION These observations provide evidence for the hepatoprotective potential of ASE via inhibiting hepatic lipogenesis and oxidative stress, suggesting being used as a natural product in attenuating CCl4 induced oxidative damage, hepatotoxicity and associated dysfunction.
Collapse
|
48
|
Kumar A, Siddiqi NJ, Alrashood ST, Khan HA, Dubey A, Sharma B. Protective effect of eugenol on hepatic inflammation and oxidative stress induced by cadmium in male rats. Biomed Pharmacother 2021; 139:111588. [PMID: 33862491 DOI: 10.1016/j.biopha.2021.111588] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cadmium is one of the most toxic heavy metals. The prolonged exposure of it can lead to severe alterations and damage in different tissues including blood, liver, kidney and brain. Eugenol, a phenolic compound, is present in various aromatic plants. It acts as a natural antioxidant and anti-inflammatory agent. The aim of this study was to investigate whether the treatment of eugenol is beneficial against the hepatic oxidative stress and inflammation induced by Cd. METHODS To study the effect of eugenol in reversal of Cd toxicity, 24 albino rats were equally divided into four different groups: G1 Control (saline), G2 Eugenol (3 mg kg-1), G3 CdCl2 (5 mg kg-1) and G4 CdCl2 + Eugenol (5 mg kg-1 + 3 mg kg-1). All the groups were treated with gavage orally for the period of 21 days. After this treatment period, rats were sacrificed and liver tissues were removed. The hepatic antioxidant status was evaluated by measuring the activities of SOD, Catalase and GST enzymes. The reduced glutathione, lipid peroxidation, protein carbonyl oxidation (PCO) and thiol contents were measured in hepatic tissues. The activities of liver marker enzymes such as ALT, AST, GGT, ALP, TP, albumin, Bilirubin content and LDH were determined to assess the hepatic damage in different groups. Cd induced hepatic inflammation was determined by evaluating the levels of TNF-a, IL-6 and NO. RESULTS Oral intoxication of Cd for 21 days significantly elevated the level of hepatic markers including activities of LDH, GGT, ALP, ALT, AST and Bilirubin level. The albumin content, reduced GSH level, and activities of antioxidant enzymes were significantly reduced in Cd treated group. The levels of inflammatory markers were significantly elevated in Cd treated group. The eugenol treatment was very effective and it significantly reversed the Cd induced biochemical alterations almost similar to that of control. CONCLUSION The results demonstrated that the eugenol possessed very strong anti-oxidative and anti-inflammatory potential. The co-treatment of eugenol with Cd exhibited protective potential of eugenol against Cd induced toxicity. Eugenol was able to improve the cellular redox system in rats treated with Cd.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Nikhat J Siddiqi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Sara T Alrashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haseeb A Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Anchal Dubey
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
49
|
Wang Z, Gao Y, Huang X, Huang S, Yang X, Wang J, Zheng N. Metabolomics analysis underlay mechanisms in the renal impairment of mice caused by combination of aflatoxin M1 and ochratoxin A. Toxicology 2021; 458:152835. [PMID: 34126166 DOI: 10.1016/j.tox.2021.152835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022]
Abstract
Aflatoxin M1 (AFM1) and ochratoxin A (OTA) are pernicious mycotoxins widely co-existing in the environment. However, nephrotoxicity and underlying mechanism induced by AFM1 coupled with OTA still remain to be explored. In this study, CD-1 mice were treated with 3.5 mg/kg b.w. AFM1, OTA, and AFM1 + OTA for 35 days, and UPLC-MS-based metabolomics method was effectuated to investigate metabolomic profiles of mice kidney. Subsequent experiments on human renal proximal tubular (HK-2) cells were performed to dig out the causal connections between distinguished differential metabolites and nephrotoxicity. Compared with DMSO vehicle group, all three toxin treatments (AFM1 and OTA alone, and in combination) significantly reduced final body weight, and remarkably elevated the concentration of serum creatinine (SCr) and caused abnormal histological phenotypes (shown by histopathological slices). OTA, AFM1 + OTA but not AFM1 reduced the relative weight index of kidney. These phenotypic results indicated that AFM1 and OTA were both toxic to the body, and it seemed that OTA exhibited a notable impairment to kidney while AFM1 had similar but limited effect compared with OTA. Further metabolomics analysis showed that when AFM1 and OTA were combined together, OTA exerted dominant effect on the alteration of metabolic processes. There were few differences in the number of changed metabolites between OTA and AFM1 + OTA group. Among the differentially expressed metabolites affected by OTA, and AFM1 + OTA, lysophosphatidylcholines (LysoPCs) were identified as the main type with significant upregulation, in which LysoPC (16:0) accounted for the most prime proportion. Western blotting results of HK-2 cells showed that single OTA and AFM1 + OTA increased the apoptotic protein expressions of Bax, caspase 3 and PARP, and decreased the expression of Bcl-2; while AFM1 only raised the expression of caspase 3. LysoPC (16:0) but not LysoPC (18:1) lifted the protein level of caspase 3 and PARP in HK-2 cells, and reduced the level of Bcl-2. Taken together, this study is the first effort trying to assess nephrotoxicity of AFM1 with OTA, and we guessed that OTA had a more pronounced toxicity to kidney in contrast to AFM1. No obvious synergism between AFM1 and OTA was found to contribute to the occurrence or development of nephropathy. LysoPC (16:0) might be the pivotal metabolite in response to single OTA and combined AFM1 + OTA engendering renal injury.
Collapse
Affiliation(s)
- Ziwei Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Xin Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Shengnan Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Xue Yang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
50
|
Khan R, Ghazali FM, Mahyudin NA, Samsudin NIP. Biocontrol of Aflatoxins Using Non-Aflatoxigenic Aspergillus flavus: A Literature Review. J Fungi (Basel) 2021; 7:jof7050381. [PMID: 34066260 PMCID: PMC8151999 DOI: 10.3390/jof7050381] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Aflatoxins (AFs) are mycotoxins, predominantly produced by Aspergillus flavus, A. parasiticus, A. nomius, and A. pseudotamarii. AFs are carcinogenic compounds causing liver cancer in humans and animals. Physical and biological factors significantly affect AF production during the pre-and post-harvest time. Several methodologies have been developed to control AF contamination, yet; they are usually expensive and unfriendly to the environment. Consequently, interest in using biocontrol agents has increased, as they are convenient, advanced, and friendly to the environment. Using non-aflatoxigenic strains of A. flavus (AF−) as biocontrol agents is the most promising method to control AFs’ contamination in cereal crops. AF− strains cannot produce AFs due to the absence of polyketide synthase genes or genetic mutation. AF− strains competitively exclude the AF+ strains in the field, giving an extra advantage to the stored grains. Several microbiological, molecular, and field-based approaches have been used to select a suitable biocontrol agent. The effectiveness of biocontrol agents in controlling AF contamination could reach up to 99.3%. Optimal inoculum rate and a perfect time of application are critical factors influencing the efficacy of biocontrol agents.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.K.); (N.I.P.S.)
| | - Farinazleen Mohamad Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.K.); (N.I.P.S.)
- Correspondence: ; Tel.: +60-12219-8912
| | - Nor Ainy Mahyudin
- Department of Food Service and Management, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nik Iskandar Putra Samsudin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.K.); (N.I.P.S.)
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|