1
|
Baekelandt S, Bouchat A, Leroux N, Robert JB, Burattin L, Cishibanji E, Lambert J, Gérard C, Delierneux C, Kestemont P. Estetrol/drospirenone versus 17α-ethinylestradiol/drospirenone: An extended one generation test to evaluate the endocrine disruption potential on zebrafish (Danio rerio). ENVIRONMENT INTERNATIONAL 2024; 187:108702. [PMID: 38678935 DOI: 10.1016/j.envint.2024.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Combined oral contraceptives, comprising of both an oestrogen and a progestin component, are released in aquatic environments and potentially pose a risk to aquatic wildlife by their capacity to disrupt physiological mechanisms. In this study, the endocrine disruptive potential of two mixtures, 17α-ethinylestradiol (EE2), a synthetic oestrogen, or estetrol (E4), a natural oestrogen, with the progestin drospirenone (DRSP) have been characterised in three generations of zebrafish, according to an adapted Medaka Extended One Generation Reproduction Test. Zebrafish (Danio rerio) were exposed to a range of concentrations of EE2/DRSP and E4/DRSP (∼1×, ∼3×, ∼10× and ∼30× predicted environmental concentration, PEC). Survival, growth, hatching success, fecundity, fertilisation success, vitellogenin (VTG), gonad histopathology, sex differentiation, and transcriptional analysis of genes related to gonadal sex steroid hormones synthesis were assessed. In the F0 generation, exposure to EE2/DRSP at ∼10 and ∼30× PEC decreased fecundity and increased male VTG concentrations. The highest concentration of EE2/DRSP also affected VTG concentrations in female zebrafish and the expression of genes implicated in steroid hormones synthesis. In the F1 generation, sex determination was impaired in fish exposed to EE2/DRSP at concentrations as low as ∼3× PEC. Decreased fecundity and fertility, and abnormal gonadal histopathology were also observed. No effects were observed in the F2 generation. In contrast, E4/DRSP induced only minor histopathological changes and an increase in the proportion of males, at the highest concentration tested (∼30× PEC) in the F1 generation and had no effect on hatching success of F2 generation. Overall, this study suggests that the combination E4/DRSP has a more favourable environmental profile than EE2/DRSP.
Collapse
Affiliation(s)
- Sébastien Baekelandt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium.
| | - Antoine Bouchat
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Nathalie Leroux
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Jean-Baptiste Robert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Laura Burattin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Emmanuel Cishibanji
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Jérôme Lambert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Céline Gérard
- Estetra SRL, An Affiliated Company of Mithra Pharmaceuticals, Rue Saint-Georges 5, 4000 Liège, Belgium
| | - Céline Delierneux
- Estetra SRL, An Affiliated Company of Mithra Pharmaceuticals, Rue Saint-Georges 5, 4000 Liège, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| |
Collapse
|
2
|
Hui X, Fakhri Y, Heidarinejad Z, Ranaei V, Daraei H, Mehri F, Limam I, Nam Thai V. Steroid hormones in surface water resources in China: systematic review and meta-analysis and probabilistic ecological risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2213-2229. [PMID: 37437042 DOI: 10.1080/09603123.2023.2234843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
A Search was conducted in international databases including Scopus, PubMed, Embase, and Web of Science from 10 January 2005 to 15 January 2023. The risk quotient (RQ) of Estrone (E1), 17β-E2 (E2), and Estriol (E3) on the surface water resources of China was calculated by Monte Carlo Simulation (MCS) technique. The rank order of steroid hormones based on pooled (weighted average) concentration in surface water was E3 (2.15 ng/l) > E2 (2.01 ng/l) > E1 (1.385 ng/l). The concentration of E1 in Dianchi lake (236.50.00 ng/l), 17β-E2 in Licun river (78.50 ng/l), and E3 in Dianchi lake (103.1 ng/l) were higher than in other surface water resources in China. RQ related to E1, 17β-E2 and E3 in 68.00%, 88.89% and 3.92% of surface water resources were high ecological risk, respectively. Therefore, carrying out source control plans for steroid hormones in surface water sources should be conducted continuously.
Collapse
Affiliation(s)
- Xiaomei Hui
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, China
- Shanxi Jinhou Ecological Environment Co, L td, Taiyuan, Shanxi, China
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, China
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zoha Heidarinejad
- Student Research Committee, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Ranaei
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Hasti Daraei
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Intissar Limam
- Laboratory of Materials, Treatment and Analysis, National Institute of Research and Physicochemical Analysis, Biotechpole Sidi-Thabet; and High School for Science and Health Techniques of Tunis, University of Tunis El Manar, Tunisia
| | - Van Nam Thai
- HUTECH Institute of Applied Sciences, HUTECH University, 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
| |
Collapse
|
3
|
Pannetier P, Gölz L, Pissarreira Mendes Fagundes MT, Knörr S, Behnstedt L, Coordes S, Matthiessen P, Morthorst JE, Vergauwen L, Knapen D, Holbech H, Braunbeck T, Baumann L. Development of the integrated fish endocrine disruptor test (iFEDT)-Part A: Merging of existing fish test guidelines. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:817-829. [PMID: 37483114 DOI: 10.1002/ieam.4819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/21/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
There has been increasing interest in endocrine-disrupting chemicals (EDCs) among scientists and public authorities over the last 30 years, notably because of their wide use and the increasing evidence of detrimental effects on humans and the environment. However, test systems for the detection of potential EDCs as well as testing strategies still require optimization. Thus, the aim of the present project was the development of an integrated test protocol that merges the existing OECD test guidelines (TGs) 229 (fish short-term reproduction assay) and 234 (fish sexual development test) and implements thyroid-related endpoints for fish. The integrated fish endocrine disruptor test (iFEDT) represents a comprehensive approach for fish testing, which covers reproduction, early development, and sexual differentiation, and will thus allow the identification of multiple endocrine-disruptive effects in fish. Using zebrafish (Danio rerio) as a model organism, two exposure tests were performed with well-studied EDCs: 6-propyl-2-thiouracil (PTU), an inhibitor of thyroid hormone synthesis, and 17α-ethinylestradiol (EE2), an estrogen receptor agonist. In part A of this article, the effects of PTU and EE2 on established endpoints of the two existing TGs are reported, whereas part B focuses on the novel thyroid-related endpoints. Results of part A document that, as expected, both PTU and EE2 had strong effects on various endocrine-related endpoints in zebrafish and their offspring. Merging of TGs 229 and 234 proved feasible, and all established biomarkers and endpoints were responsive as expected, including reproductive and morphometric changes (PTU and EE2), vitellogenin levels, sex ratio, gonad maturation, and histopathology (only for EE2) of different life stages. A validation of the iFEDT with other well-known EDCs will allow verification of the sensitivity and usability and confirm its capacity to improve the existing testing strategy for EDCs in fish. Integr Environ Assess Manag 2024;20:817-829. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Pauline Pannetier
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Laboratoire de Ploufragan-Plouzané-Niort, Site de Plouzané, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, Plouzané, France
| | - Lisa Gölz
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | | | - Susanne Knörr
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Laura Behnstedt
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sara Coordes
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | | | - Jane E Morthorst
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Lucia Vergauwen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Wilrijk, Belgium
| | - Dries Knapen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Wilrijk, Belgium
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Amsterdam Institute for Life and Environment (A-LIFE), Section Environmental Health and Toxicology, Vrije Universiteit Amsterdam, HV Amsterdam, The Netherlands
| |
Collapse
|
4
|
Huang GY, Fang GZ, Shi WJ, Li XP, Wang CS, Chen HX, Xie L, Ying GG. Interaction of 17α-ethinylestradiol and methyltestosterone in western mosquitofish (Gambusia affinis) across two generations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106854. [PMID: 38309221 DOI: 10.1016/j.aquatox.2024.106854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The interactions between estrogen and androgen in aquatic animals remain largely unknown. In this study, two generations (F0 and F1) of western mosquitofish (Gambusia affinis) were continuously exposed to 17α-ethinylestradiol (EE2, 10 ng/L), methyltestosterone (MT, 10 ng/L (MTL); 50 ng/L (MTH)), and mixtures (EE2+MTL and EE2+MTH). Various endpoints, including sex ratio (phenotypic and genetic), secondary sex characteristics, gonadal histology, and transcriptional profile of genes, were examined. The results showed that G. affinis exposed to MTH and EE2+MTH had a > 89.7 % of phenotypic males in F1 generation, with 34.5 and 50.0 % of these males originated from genetic females, respectively. Moreover, females from F0 and F1 generations exposed to MTH and EE2+MTH exhibited masculinized anal fins and skeletons. The combined effect of MT and EE2 on most endpoints was dependent on MT. Furthermore, significant transcriptional alterations in certain target genes were observed in both the F0 and F1 generations by EE2 and MT alone and by mixtures, showing some degree of interactions. These findings that the effects of EE2+MTH were primarily on the phenotypic sex of G. affinis in offspring generation suggest that G. affinis under chronic exposure to the binary mixture contaminated water could have sex-biased populations.
Collapse
Affiliation(s)
- Guo-Yong Huang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Gui-Zhen Fang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Pei Li
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chen-Si Wang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hong-Xing Chen
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lingtian Xie
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
5
|
Bovee TF, Heusinkveld HJ, Dodd S, Peijnenburg A, Rijkers D, Blokland M, Sprong RC, Crépet A, Nolles A, Zwart EP, Gremmer ER, Ven LTVD. Dose addition in mixtures of compounds with dissimilar endocrine modes of action in in vitro receptor activation assays and the zebrafish sexual development test. Food Chem Toxicol 2024; 184:114432. [PMID: 38176580 DOI: 10.1016/j.fct.2023.114432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Human exposure to pesticides is being associated with feminisation for which a decrease of the anogenital distance (AGD) is a sensitive endpoint. Dose addition for the cumulative risk assessment of pesticides in food is considered sufficiently conservative for combinations of compounds with both similar and dissimilar modes of action (MoA). OBJECTIVE The present study was designed to test the dose addition hypothesis in a binary mixture of endocrine active compounds with a dissimilar mode of action for the endpoint feminisation. METHODS Compounds were selected from a list of chemicals of which exposure is related to a decrease of the AGD in rats and completed with reference compounds. These chemicals were characterised using specific in vitro transcriptional activation (TA) assays for estrogenic and androgenic properties, leading to a final selection of dienestrol as an ER-agonist and flutamide, linuron, and deltamethrin as AR-antagonists. These compounds were then tested in an in vivo model, i.e. in zebrafish (Danio rerio), using sex ratio in the population as an endpoint in order to confirm their feminising effect and MoA. Ultimately, the fish model was used to test a binary mixture of flutamide and dienestrol. RESULTS Statistical analysis of the binary mixture of flutamide and dienestrol in the fish sexual development tests (FSDT) with zebrafish supported dose addition.
Collapse
Affiliation(s)
- Toine Fh Bovee
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands.
| | - Harm J Heusinkveld
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Sophie Dodd
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Ad Peijnenburg
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Deborah Rijkers
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Marco Blokland
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - R Corinne Sprong
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Amélie Crépet
- ANSES, French Agency for Food, Environmental and Occupational Health and Safety, Risk Assessment Department, Methodology and Studies Unit, 947001, Maisons-Alfort, France
| | - Antsje Nolles
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Edwin P Zwart
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Eric R Gremmer
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Leo Tm van der Ven
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, the Netherlands
| |
Collapse
|
6
|
Baekelandt S, Leroux N, Burattin L, Gérard C, Delierneux C, Robert JB, Cornet V, Kestemont P. Estetrol has a lower impact than 17α-ethinylestradiol on the reproductive capacity of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106505. [PMID: 37058791 DOI: 10.1016/j.aquatox.2023.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/15/2023]
Abstract
Natural and synthetic oestrogens are commonly found in aquatic ecosystems. The synthetic oestrogen 17α-ethinylestradiol (EE2) is widely used in oral contraceptives and its ecotoxicological effects on aquatic organisms have been widely reported. The natural oestrogen estetrol (E4) was recently approved for use in a new combined oral contraceptive and, after therapeutic use, is likely to be found in the aquatic environment. However, its potential effects on non-target species such as fish is unknown. In order to characterize and compare the endocrine disruptive potential of E4 with EE2, zebrafish (Danio rerio) were exposed to E4 or EE2 in a fish short-term reproduction assay conducted according to OECD Test Guideline 229. Sexually mature male and female fish were exposed to a range of concentrations, including environmentally relevant concentrations of E4 and EE2, for 21 days. Endpoints included fecundity, fertilization success, gonad histopathology, head/tail vitellogenin concentrations, as well as transcriptional analysis of genes related to ovarian sex steroid hormones synthesis. Our data confirmed the strong impact of EE2 on several parameters including an inhibition of fecundity, an induction of vitellogenin both in male and female fish, an alteration of gonadal structures and the modulation of genes involved in sex steroid hormone synthesis in female fish. In contrast, only few significant effects were observed with E4 with no impact on fecundity. The results suggest that the natural oestrogen, E4, presents a more favorable environmental profile than EE2 and is less likely to affect fish reproductive capacity.
Collapse
Affiliation(s)
- Sébastien Baekelandt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium.
| | - Nathalie Leroux
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Laura Burattin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Céline Gérard
- Estetra SRL, an affiliated company of Mithra Pharmaceuticals, Rue Saint-Georges 5, Liège 4000, Belgium
| | - Céline Delierneux
- Estetra SRL, an affiliated company of Mithra Pharmaceuticals, Rue Saint-Georges 5, Liège 4000, Belgium
| | - Jean-Baptiste Robert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, B-5000, Belgium
| |
Collapse
|
7
|
Kwon YS, Park CB, Lee SM, Zee S, Kim GE, Kim YJ, Sim HJ, Kim JH, Seo JS. Proteomic analysis of zebrafish (Danio rerio) embryos exposed to benzyl benzoate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26375-26386. [PMID: 36367642 PMCID: PMC9995408 DOI: 10.1007/s11356-022-24081-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Benzyl benzoate (BB) is widely used in the food, cosmetics, agriculture, and pharmaceutical industries and is discharged into the aquatic environment via various water sources, including wastewater. Research on the bioaccumulation and possible toxicity of BB has been conducted, but the biochemical responses to BB toxicity are not fully understood, and the specific molecular pathways by which BB causes toxicity remain unknown. In this study, label-free quantitative proteomics based on mass spectrometry was applied to investigate protein profiles in zebrafish (Danio rerio) embryos exposed to BB (1 µg/mL) for 7 days. A total of 83 differentially expressed proteins (DEPs) were identified, including 49 up-regulated and 34 down-regulated proteins. The biological functions of proteins regulated by BB were grouped into functional categories and subcategories, including the biosynthesis of organonitrogen compound biosynthetic process, translation, amide biosynthetic process, lipid transport, stress response, and cytoskeletal activity. The results provide novel insight into the molecular basis of the ecotoxicity of BB in aquatic ecosystems.
Collapse
Affiliation(s)
- Young Sang Kwon
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Chang-Beom Park
- Environmental Exposure and Toxicology Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Seung-Min Lee
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Seonggeun Zee
- Environmental Exposure and Toxicology Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Go-Eun Kim
- Environmental Exposure and Toxicology Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Yeong-Jin Kim
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Hee-Jung Sim
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Jong-Hwan Kim
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Jong-Su Seo
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea.
| |
Collapse
|
8
|
Tamagno WA, de Oliveira Sofiatti JR, Alves C, Sutorillo NT, Vanin AP, Bilibio D, Pompermaier A, Barcellos LJG. Synthetic estrogen bioaccumulates and changes the behavior and biochemical biomarkers in adult zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103857. [PMID: 35342012 DOI: 10.1016/j.etap.2022.103857] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Estrogen is considered to be an endocrine disrupter and is becoming increasingly more prevalent in the daily life of humans. In some cases, estrogen is not fully metabolized by organisms and may be excreted in either its original form or in organic complex forms, into water residue systems reaching concentrations of 0.05 ng.L-1 to 75 ng.L-1. However, estrogen 17α-ethinylestradiol (EE2), which is used in oral contraceptives, is very difficult to remove from water. Here, we evaluated whether the synthetic hormone, EE2, affects the nervous system and the behavior of adult zebrafish. We established a range of concentrations (0.05, 0.5, 5, 50, and 75 ng.L-1), in addition to the control, to evaluate the effect of this compound and its bioaccumulation in zebrafish tissues. Here we show that EE2 bioaccumulates in fish and can change its behavior with an increased time in the upper zone (novel tank test) and far from the shoal segment (social preference test), demonstrating a clear anxiolytic pattern. The anxiolytic effect of EE2 can be harmful as it can affect the stress response of the species. The results presented herein reinforce the idea that the presence of EE2 in environmental water can be dangerous for non-target animals.
Collapse
Affiliation(s)
- Wagner Antonio Tamagno
- Biochemistry and Molecular Biology Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul - Sertão Campus, City of Sertão, State of Rio Grande do Sul, Brazil; Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil.
| | - Jessica Reis de Oliveira Sofiatti
- Graduate Program in Environmental Science and Technology, Federal University of Fronteira Sul (UFFS) - Erechim Campus, City of Erechim, State of Rio Grande do Sul, Brazil.
| | - Carla Alves
- Graduate Program in Bioexperimentation and Graduate Program in Environmental Science, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil.
| | - Nathália Tafarel Sutorillo
- Biochemistry and Molecular Biology Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul - Sertão Campus, City of Sertão, State of Rio Grande do Sul, Brazil.
| | - Ana Paula Vanin
- Graduate Program in Environmental Science and Technology, Federal University of Fronteira Sul (UFFS) - Erechim Campus, City of Erechim, State of Rio Grande do Sul, Brazil.
| | - Denise Bilibio
- Biochemistry and Molecular Biology Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul - Sertão Campus, City of Sertão, State of Rio Grande do Sul, Brazil.
| | - Aline Pompermaier
- Graduate Program in Bioexperimentation and Graduate Program in Environmental Science, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil.
| | - Leonardo José Gil Barcellos
- Graduate Program in Bioexperimentation and Graduate Program in Environmental Science, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil; Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
9
|
Katti PA, Goundadkar BB. Waves of follicle development, growth and degeneration in adult ovary of zebrafish (Danio rerio) on chronic exposure to environmental estrogens in laboratory. Reprod Toxicol 2022; 110:31-38. [PMID: 35331892 DOI: 10.1016/j.reprotox.2022.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
Abstract
Patterns of quantitative production of follicles, their growth, and degeneration in the adult ovary of zebrafish (Danio rerio) in response to long-term (80 days) exposure to environmental estrogens (EE) in the laboratory, were studied. Experimentally naive female D. rerio procured from fish farm were acclimated to the laboratory (natural temperature, 26 ± 1° C, photoperiod, 11.30 L:12.30 D) for two weeks and divided into 10 groups. Each group (n = 20) was housed in a separate glass aquarium containing 10 L of conditioned water (physico-chemical parameters maintained within the permissible range prescribed for zebrafish) along with either 5 ng or 10 ng/L of 17α-ethynylestradiol (EE2) or diethylstilbestrol (DES) or bisphenol A (BPA) or estradiol 17-β (positive control) or water with no chemical (negative control). All experimental fish were fed twice daily on commercial pellets (ad libitum) supplemented with Artemia nauplius, the exposure was semi-static and chemical residues in media samples were determined by ultra-performance liquid chromatography (UPLC). Exposure of fish to estrogens increased (p < 0.05) (i) body mass and gonadosomatic indices (GSI) in E2, EE2 and DES groups (ii) previtellogenic and vitellogenic follicles in E2 and EE2 groups (iii) atretic follicles (AF) in DES and BPA groups compared to controls and (iv) decrease in total oocyte volumes (V = 4/3. π. r3) compared to those of E2 group. These results suggest that the chronic exposure of fish to EE (at environmentally relevant concentrations) has a profound influence on ovarian follicular dynamics and the effects of individual EE are discrete on the ovary.
Collapse
Affiliation(s)
- Pancharatna A Katti
- Department of Zoology, Karnatak University, Dharwad 580003, Karnataka, India.
| | - Basavaraj B Goundadkar
- Department of Zoology, Govindram Seksaria Science College, Belagavi 590006, Karnataka, India.
| |
Collapse
|
10
|
Tian H, Liu R, Zhang S, Wei S, Wang W, Ru S. 17β-Trenbolone binds to androgen receptor, decreases number of primordial germ cells, modulates expression of genes related to sexual differentiation, and affects sexual differentiation in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150959. [PMID: 34662611 DOI: 10.1016/j.scitotenv.2021.150959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/09/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Exposure to 17β-trenbolone caused a skewed sex ratio in fish. However, the molecular initiating event and key molecular event(s) remain unknown. In this study, zebrafish were exposed to 17β-trenbolone at nominal concentrations of 2 ng/L, 20 ng/L, 200 ng/L, and 2000 ng/L from fertilization to 60 days post fertilization (dpf). First, the sex ratio at 60 dpf was calculated to evaluate adverse outcomes on sexual differentiation. 17β-Trenbolone caused a skewed sex ratio toward males, with intersex individuals observed in the 20 ng/L group and all-male populations found in the 200 ng/L and 2000 ng/L groups. Then, the distribution and number of primordial germ cells, the expression of sex differentiation-related genes, and plasma vitellogenin concentrations were detected in wild-type zebrafish and the EGFP-nanos-3'UTR transgenic line using whole-mount in situ hybridization, real-time PCR, EGFP fluorescence quantification, and enzyme-linked immunosorbent assay. The results indicated that 17β-trenbolone exposure decreased the number of primordial germ cells at 1 dpf and 3 dpf, decreased expression of ovarian differentiation-related genes foxl2 and cyp19a1a at 60 dpf, increased expression of testis differentiation-related genes dmrt1, sox9a, and amh at 60 dpf, and decreased plasma vitellogenin levels at 60 dpf, revealing the key molecular events at different time points involved in affected sexual differentiation by 17β-trenbolone. Finally, molecular docking showed that 17β-trenbolone docked into ligand-binding domain of zebrafish androgen receptor with high binding energy (-3.72 kcal/mol), suggesting that binding to androgen receptor is the molecular initiating event affecting sexual differentiation by 17β-trenbolone. We found that 17β-trenbolone can bind to the zebrafish androgen receptor, decrease the number of primordial germ cells during the early embryonic stage, modulate the expression of genes related to sexual differentiation during gonadal differentiation, and eventually cause a skewed sex ratio toward males in adults.
Collapse
Affiliation(s)
- Hua Tian
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, China
| | - Rui Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, China
| | - Suqiu Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, China
| | - Shuhui Wei
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, China..
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, China
| |
Collapse
|
11
|
Zhang S, Tian H, Sun Y, Li X, Wang W, Ru S. Brightened body coloration in female guppies (Poecilia reticulata) serves as an in vivo biomarker for environmental androgens: The example of 17β-trenbolone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112698. [PMID: 34450427 DOI: 10.1016/j.ecoenv.2021.112698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/04/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
In vivo testing systems for environmental androgens are scarce. The aim of this study was to evaluate the potential of male-specific brightened body coloration in female guppies (Poecilia reticulata) to serve as an in vivo biomarker of environmental androgens using 17β-trenbolone as an example. The high bioaccumulation of 17β-trenbolone in the skin of female guppies suggests that it is a potential target tissue of environmental androgens. The coloration index, pigment cell ultrastructure, pigment levels, sexual attractiveness, and reproductive capability of female guppies were analyzed following 28 days of exposure to 20 ng/L, 200 ng/L, and 2000 ng/L 17β-trenbolone. Increases in the coloration index caused by 17β-trenbolone exposure were attributable to increased pteridine and melanin levels. Decreases in the sexual attractiveness, number of offspring, and survival rate of offspring suggested that the changes in body coloration translated into adverse outcomes. Finally, mRNA sequencing indicated that 17β-trenbolone increased pteridine levels by activating genomic effects of androgen receptor on xanthine dehydrogenase and increased melanin levels by exerting non-genomic effects targeting microphthalmia-associated transcription factor, tyrosinase, and tyrosinase-related protein 1 that were mediated by mitogen-activated protein kinase and calcium signaling pathways. We have derived a robust adverse outcome pathway of environmental androgens, and our findings suggest that indicators at different biological levels related to brightened body coloration in female guppies can serve as less-invasive or noninvasive in vivo biomarkers of short-term exposure to environmental androgens.
Collapse
Affiliation(s)
- Suqiu Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China.
| | - Yang Sun
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Xuefu Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| |
Collapse
|
12
|
Baetz N, Rothe L, Wirzberger V, Sures B, Schmidt TC, Tuerk J. High-performance thin-layer chromatography in combination with a yeast-based multi-effect bioassay to determine endocrine effects in environmental samples. Anal Bioanal Chem 2021; 413:1321-1335. [PMID: 33388849 DOI: 10.1007/s00216-020-03095-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022]
Abstract
Effect-directed analysis (EDA) that combines effect-based methods (EBMs) with high-performance thin-layer chromatography (HPTLC) is a useful technique for spatial, temporal, and process-related effect evaluation and may provide a link between effect testing and responsible substance identification. In this study, a yeast multi endocrine-effect screen (YMEES) for the detection of endocrine effects is combined with HPTLC. Simultaneous detection of estrogenic, androgenic, and gestagenic effects on the HPTLC plate is achieved by mixing different genetically modified Arxula adeninivorans yeast strains, which contain either the human estrogen, androgen, or progesterone receptor. Depending on the yeast strain, different fluorescent proteins are formed when an appropriate substance binds to the specific hormone receptor. This allows to measure hormonal effects at different wavelengths. Two yeast cell application approaches, immersion and spraying, are compared. The sensitivity and reproducibility of the method are shown by dose-response investigations for reference compounds. The spraying approach indicated similar sensitivities and higher precisions for the tested hormones compared to immersion. The EC10s for estrone (E1), 17β-estradiol (E2), 17α-ethinylestradiol (EE2), 5α-dihydrotestosterone (DHT), and progesterone (P4) were 95, 1.4, 10, 7.4, and 15 pg/spot, respectively. Recovery rates of E1, E2, EE2, DHT, and P4 between 88 and 120% show the usability of the general method in combination with sample enrichment by solid phase extraction (SPE). The simultaneous detection of estrogenic, androgenic, and gestagenic effects in wastewater and surface water samples demonstrates the successful application of the YMEES in such matrices. This promising method allows us to identify more than one endocrine effect on the same HPTLC plate, which saves time and material. The method could be used for comparison, evaluation, and monitoring of different river sites and wastewater treatment steps and should be tested in further studies.
Collapse
Affiliation(s)
- Nicolai Baetz
- Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58 - 60, 47229, Duisburg, Germany
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
- Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Louisa Rothe
- Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany
- Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Vanessa Wirzberger
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
- Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Bernd Sures
- Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany
- Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
- Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Jochen Tuerk
- Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58 - 60, 47229, Duisburg, Germany.
- Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany.
| |
Collapse
|
13
|
DeCourten BM, Forbes JP, Roark HK, Burns NP, Major KM, White JW, Li J, Mehinto AC, Connon RE, Brander SM. Multigenerational and Transgenerational Effects of Environmentally Relevant Concentrations of Endocrine Disruptors in an Estuarine Fish Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13849-13860. [PMID: 32989987 DOI: 10.1021/acs.est.0c02892] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many pollutants cause endocrine disruption in aquatic organisms. While studies of the direct effects of toxicants on exposed organisms are commonplace, little is known about the potential for toxicant exposures in a parental (F0) generation to affect unexposed F1 or F2 generations (multigenerational and transgenerational effects, respectively), particularly in estuarine fishes. To investigate this possibility, we exposed inland silversides (Menidia beryllina) to environmentally relevant (low ng/L) concentrations of ethinylestradiol, bifenthrin, trenbolone, and levonorgestrel from 8 hpf to 21 dph. We then measured development, immune response, reproduction, gene expression, and DNA methylation for two subsequent generations following the exposure. Larval exposure (F0) to each compound resulted in negative effects in the F0 and F1 generations, and for ethinylestradiol and levonorgestrel, the F2 also. The specific endpoints that were responsive to exposure in each generation varied, but included increased incidence of larval deformities, reduced larval growth and survival, impaired immune function, skewed sex ratios, ovarian atresia, reduced egg production, and altered gene expression. Additionally, exposed fish exhibited differences in DNA methylation in selected genes, across all three generations, indicating epigenetic transfer of effects. These findings suggest that assessments across multiple generations are key to determining the full magnitude of adverse effects from contaminant exposure in early life.
Collapse
Affiliation(s)
- Bethany M DeCourten
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, United States
| | - Joshua P Forbes
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Hunter K Roark
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Nathan P Burns
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Kaley M Major
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - J Wilson White
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon 97365, United States
| | - Jie Li
- Bioinformatics Core, Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Alvine C Mehinto
- Southern California Coastal Water Research Project Authority, Costa Mesa, California 92626, United States
| | - Richard E Connon
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, United States
| | - Susanne M Brander
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon 97365, United States
| |
Collapse
|
14
|
Rutherford R, Lister A, Bosker T, Blewett T, Gillio Meina E, Chehade I, Kanagasabesan T, MacLatchy D. Mummichog (Fundulus heteroclitus) are less sensitive to 17α-ethinylestradiol (EE 2) than other common model teleosts: A comparative review of reproductive effects. Gen Comp Endocrinol 2020; 289:113378. [PMID: 31899193 DOI: 10.1016/j.ygcen.2019.113378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/08/2019] [Accepted: 12/27/2019] [Indexed: 12/28/2022]
Abstract
The environmental estrogen 17α-ethinylestradiol (EE2) will depress or completely inhibit egg production in many common model teleosts at low concentrations (≤0.5 ng/L; Runnalls et al., 2015). This inhibition is not seen in the estuarine killifish, or mummichog (Fundulus heteroclitus), even when exposed to 100 ng/L EE2. This relative insensitivity to EE2 exposure indicates species-specific mechanisms for compensating for exogenous estrogenic exposure. This review compares various reproductive responses elicited by EE2 in mummichog to other common model teleosts, such as zebrafish (Danio rerio) and fathead minnow (Pimephales promelas), identifying key endpoints where mummichog differ from other studied fish. For example, EE2 accumulates primarily in the liver/gall bladder of mummichog, which is different than zebrafish and fathead minnow in which accumulation is predominantly in the carcass. Despite causing species-specific differences in fecundity, EE2 has been shown to consistently induce hepatic vitellogenin in males and cause feminization/sex reversal during gonadal differentiation in larval mummichog, similar to other species. In addition, while gonadal steroidogenesis and plasma steroid levels respond to exogenous EE2, it is generally at higher concentrations than observed in other species. In mummichog, production of 17β-estradiol (E2) by full grown ovarian follicles remains high; unlike other teleost models where E2 synthesis decreases as 17α,20β-dihydroxy-4-prenen-3-on levels increase to induce oocyte maturation. New evidence in mummichog indicates some dissimilarity in gonadal steroidogenic gene expression responses compared to gene expression responses in zebrafish and fathead minnow exposed to EE2. The role of ovarian physiology continues to warrant investigation regarding the tolerance of mummichog to exogenous EE2 exposure. Here we present a comprehensive review, highlighting key biological differences in response to EE2 exposure between mummichog and other commonly used model teleosts.
Collapse
Affiliation(s)
- Robert Rutherford
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada.
| | - Andrea Lister
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada.
| | - Thijs Bosker
- Leiden University College/Institute of Environmental Sciences, Leiden University, P.O. Box 13228, 2501 EE, The Hague, the Netherlands.
| | - Tamzin Blewett
- University of Alberta, Edmonton, AB, 116 St & 85 Ave, T6G 2R3, Canada.
| | | | - Ibrahim Chehade
- New York University Abu Dhabi, Saadiyat Island, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| | | | - Deborah MacLatchy
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada.
| |
Collapse
|
15
|
Zhang C, Li D, Ge T, Han J, Qi Y, Huang D. 2,4-Dichlorophenol induces feminization of zebrafish (Danio rerio) via DNA methylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135084. [PMID: 31780173 DOI: 10.1016/j.scitotenv.2019.135084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 05/10/2023]
Abstract
2,4-Dichlorophenol (2,4-DCP) is a ubiquitous contaminant of aquatic environments with an estrogenic effect on fish. However, the molecular mechanism underlying this effect remains elusive. To this end, the present study aimed to explore the effect of 2,4-DCP on sex differentiation and its relevant mechanism in zebrafish (Danio rerio). The results showed that a female-biased sex ratio was induced after exposing larval zebrafish to 2,4-DCP (0-160 μg/L) from 20 to 50 days post fertilization (dpf). The feminization of zebrafish was accompanied by decreased expression of male-related genes (sox9a, amh and dmrt1) under 2,4-DCP from 20 to 50 dpf. However, the expression of female-related genes (cyp19a1a, foxl2 and esr1) was also suppressed. Nevertheless, it is noteworthy that the methylation level of sox9a promoter was significantly increased, which may result in the significantly decreased expression of sox9a and ultimately the feminization effect of 2,4-DCP on zebrafish. In addition, 5-aza-2'-deoxycytidine (5-AZA), a methyltransferase inhibitor, significantly reduced the methylation level, increased the expression of sox9a, and partly impaired the feminization effect caused by 2,4-DCP, which further confirmed the importance of DNA methylation of sox9a in 2,4-DCP-induced feminization. These findings provide novel insights into the epigenetic mechanisms of DCP-induced estrogenic effect in fish.
Collapse
Affiliation(s)
- Chen Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dong Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tingting Ge
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiangyuan Han
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
16
|
Sacdal R, Madriaga J, Espino MP. Overview of the analysis, occurrence and ecological effects of hormones in lake waters in Asia. ENVIRONMENTAL RESEARCH 2020; 182:109091. [PMID: 31927242 DOI: 10.1016/j.envres.2019.109091] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/15/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Hormones are natural and synthetic compounds that are now being detected in the aquatic environment. Many lakes in Asia are important water sources that may be affected by these emerging contaminants. Lakes are drains and reservoirs of watersheds that are altered by changing land use and environmental conditions. While there are several studies on the detection of hormones in lakes, these studies were mostly done in China. Limited information is available on the presence of these contaminants in the lakes in other Asian countries. Hormones in the lake water come from discharge waters in urban areas, farm runoffs, and effluents of wastewater and sewage treatment plants. Hormones contamination in water has been shown to affect the reproduction and growth of certain aquatic organisms. In this review, a background on the chemical nature and physiological functions of hormones is provided and the existing knowledge on the occurrence and ecological impacts of hormones in lakes is described. The available analytical methods for sampling, analyte extraction and instrumental analysis are outlined. This overview provides insights on the current conditions of lakes that may be impacted by hormones contamination. Understanding the levels and possible ecological consequences will address the issues on these emerging contaminants especially in the Asian environment. This will elicit discussions on improving guidelines on wastewater discharges and will drive future research directions.
Collapse
Affiliation(s)
- Rosselle Sacdal
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Jonalyn Madriaga
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Maria Pythias Espino
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines.
| |
Collapse
|
17
|
Willi RA, Castiglioni S, Salgueiro-González N, Furia N, Mastroianni S, Faltermann S, Fent K. Physiological and Transcriptional Effects of Mixtures of Environmental Estrogens, Androgens, Progestins, and Glucocorticoids in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1092-1101. [PMID: 31829580 DOI: 10.1021/acs.est.9b05834] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fishes are exposed to mixtures of different classes of steroids, but ecotoxicological implications are not sufficiently known. Here, we systematically analyze effects of different combinations of steroid mixtures in zebrafish embryos to assess their joint activities on physiology and transcriptional alterations of steroid-specific target genes at 96 and 120 h post fertilization. In binary mixtures of clobetasol propionate (CLO) with estradiol (E2) or androstenedione (A4), each steroid exhibited its own expression profile. This was also the case in mixtures of 5-, 8-, and 13-different classes of steroids in exposure concentrations of 10-10,000 ng/L. The transcriptional expression of most genes in different mixtures was steroid-specific except for genes encoding aromatase (cyp19b), sulfotransferase (sult2st3), and cyp2k22 that were induced by androgens, progestins, and glucocorticoids. Marked alterations occurred for sult2st3 in binary mixtures of CLO + E2 and CLO + A4. Glucocorticoids increased the heart rate and muscle contractions. In mixtures containing estrogens, induction of the cyp19b transcript occurred at 10 ng/L and protc from the anticoagulation system at 100 ng/L. Our study demonstrates that steroids can act independently in mixtures; the sum of individual steroid profiles is expressed. However, some genes, including cyp19b, sult2st3, and cyp2k22, are regulated by several steroids. This joint effect on different pathways may be of concern for fish development.
Collapse
Affiliation(s)
- Raffael Alois Willi
- School of Life Sciences , University of Applied Sciences and Arts Northwestern Switzerland , Hofackerstrasse 30 , CH-4132 Muttenz , Switzerland
| | - Sara Castiglioni
- Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche Mario Negri, IRCCS , Via Mario Negri 2 , 20156 Milan , Italy
| | - Noelia Salgueiro-González
- Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche Mario Negri, IRCCS , Via Mario Negri 2 , 20156 Milan , Italy
| | - Nathan Furia
- School of Life Sciences , University of Applied Sciences and Arts Northwestern Switzerland , Hofackerstrasse 30 , CH-4132 Muttenz , Switzerland
| | - Sarah Mastroianni
- School of Life Sciences , University of Applied Sciences and Arts Northwestern Switzerland , Hofackerstrasse 30 , CH-4132 Muttenz , Switzerland
| | - Susanne Faltermann
- School of Life Sciences , University of Applied Sciences and Arts Northwestern Switzerland , Hofackerstrasse 30 , CH-4132 Muttenz , Switzerland
| | - Karl Fent
- School of Life Sciences , University of Applied Sciences and Arts Northwestern Switzerland , Hofackerstrasse 30 , CH-4132 Muttenz , Switzerland
- Department of Environmental Systems Science , Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics , CH-8092 Zürich , Switzerland
| |
Collapse
|
18
|
London S, Volkoff H. Effects of fasting on the central expression of appetite-regulating and reproductive hormones in wild-type and Casper zebrafish (Danio rerio). Gen Comp Endocrinol 2019; 282:113207. [PMID: 31202720 DOI: 10.1016/j.ygcen.2019.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
Appetite and reproduction are closely related functions that are both regulated by brain hormones. Appetite stimulators include orexin and neuropeptide Y (NPY), and reproductive hormones include gonadotropin-releasing hormone (GnRH), gonadotropin-inhibitory hormone (GnIH), kisspeptin, and neurokinin B (NKB). GnRH stimulates the secretion of pituitary gonadotropes, and kisspeptin and GnIH modulate this action. Kisspeptin secretion is further controlled by neurokinin B (NKB) and dynorphin A (Dyn). To better understand the mechanisms regulating appetite and reproduction in fish, we examined the effects of fasting, reproductive stage, gender, and strain on the brain mRNA expression of appetite (orexin and NPY) and reproductive (GnRH, kisspeptin, GnIH, and NKB) hormones in zebrafish. In order to compare strains, we used both wild-type and transparent Casper zebrafish. In female wild-type zebrafish, fasting increased the expression of all hormones investigated, with the exception of Kiss2. Only NPY and Kiss2 were increased in male wild-type zebrafish during fasting. In Casper zebrafish, only GnIH and NKB in males were affected by fasting, suggesting that Casper fish may be more resistant to fasting than wild fish. Fasting increased expressions of orexin, GnRH2, Kiss1, GnIH and NKB in wild-type females with more eggs or larger eggs relative to body weight, compared to those with fewer or smaller eggs, suggesting that more mature females are more affected by fasting. No significant interactions of fasting and reproductive stage were noted in female Casper fish. To investigate whether differences between Casper and wild-type fish were due to genes involved in pigmentation, we compared the brain mRNA expressions of enzymes involved in melanin synthesis (tyrosinase and tyrosine hydroxylase - TH), melanocortin receptors (MC3R and MC4R), and the melanocortin precursor (proopiomelanocortin - POMC) between the two strains. Casper zebrafish had lower levels of MC3R, tyrosinase, TH1, TH2, and POMC than wild-type fish. Overall, our results suggest the existence of gender- and reproductive stage-specific, as well as strain-specific variations in the mechanisms regulating feeding and reproduction in zebrafish, and that the melanocortin system and melanin pathways may be in part responsible for these differences between strains.
Collapse
Affiliation(s)
- Sydney London
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
19
|
Dang Z, Kienzler A. Changes in fish sex ratio as a basis for regulating endocrine disruptors. ENVIRONMENT INTERNATIONAL 2019; 130:104928. [PMID: 31277008 DOI: 10.1016/j.envint.2019.104928] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Fish sex ratio (SR) is an endpoint potentially indicating both endocrine activity and adversity, essential elements for identifying Endocrine Disrupting Chemicals (EDCs) as required by the EU regulations. Due to different protocols and methods in the literature studies, SR data vary greatly. This study analyses literature SR data and discusses important considerations for using SR data in the regulatory context for the hazard identification, classification, PBT (persistent, bioaccumulative and toxic) assessment, testing, and risk assessment. A total number of 106 studies were compiled for SR of zebrafish, medaka and fathead minnow exposed to 84 chemicals or mixtures. About 53% of literature studies determined SR by methods different from the standard histology method, leading to uncertainty of quantifying SR and differential sensitivity. SR was determined after depuration in 40 papers, which may lead to chemical-induced SR changes reversible to the control. SR was responsive to chemicals with EAS (estrogen, androgen, steoroidogenesis) activity and also to those with thyroid and progesterone activity. Besides, SR was influenced by non-chemical factors, e.g., inbreeding and temperature, leading to difficulty in data interpretation. The ECHA/EFSA/JRC Guidance suggests that SR and gonad histology data can be used for identifying EDCs. Due to reversibility, influence of confounding factors, and responsiveness to chemicals with endocrine activity other than EAS, this study suggests that SR/gonad histology should be combined with certain mode of action evidence for identifying EDCs. Important considerations for using SR data in the identification, classification, PBT assessment, testing, and risk assessment are discussed.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment (RIVM), A. van Leeuwenhoeklaan 9, Bilthoven, the Netherlands.
| | - Aude Kienzler
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy
| |
Collapse
|
20
|
Sant KE, Timme-Laragy AR. Zebrafish as a Model for Toxicological Perturbation of Yolk and Nutrition in the Early Embryo. Curr Environ Health Rep 2019; 5:125-133. [PMID: 29417450 DOI: 10.1007/s40572-018-0183-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Developmental toxicity assessments often focus on structural outcomes and overlook subtle metabolic differences which occur during the early embryonic period. Deviant embryonic nutrition can result in later-life disease, including diabetes, obesity, and cardiovascular disease. Prior to placenta-mediated nutrient exchange, the human embryo requires maternally supplied nutritional substrates for growth, called yolk. Here, we compare the biology of the human and zebrafish yolk and review examples of toxicant-mediated perturbation of yolk defects, composition, and utilization. RECENT FINDINGS Zebrafish embryos, like human embryos, have a protruding yolk sac that serves as a nutritional cache. Aberrant yolk morphology is a common qualitative finding in fish embryotoxicity studies, but quantitative assessment and characterization provides an opportunity to uncover mechanistic targets of toxicant effects on embryonic nutrition. The zebrafish and the study of its yolk sac is an excellent model for uncovering toxicant disruptions to early embryonic nutrition and has potential to discover mechanistic insights into the developmental origins of health and disease.
Collapse
Affiliation(s)
- Karilyn E Sant
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Goessman 171, 686 N Pleasant St, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Goessman 171, 686 N Pleasant St, Amherst, MA, 01003, USA.
| |
Collapse
|
21
|
Wieczerzak M, Namieśnik J, Kudłak B. Genotoxicity of selected pharmaceuticals, their binary mixtures, and varying environmental conditions - study with human adenocarcinoma cancer HT29 cell line. Drug Chem Toxicol 2019; 44:113-123. [PMID: 30607992 DOI: 10.1080/01480545.2018.1529783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pharmaceutical residues are present in the environment in mixtures and their adverse effects may also result from interactions that occur between compounds. Studies presented in this work focus on genotoxicity of pharmaceuticals from different therapeutic groups in mixtures and in individual solutions impacted with different environmental conditions assessed using comet assay (alkaline approach). Binary mixtures of pharmaceuticals (in different concentration ratios) and in individual solutions impacted with pH change (range from 5.5 to 8.5) or addition of inorganic ions, were incubated with HT29 cells and after 24 h time period cells were tested for the presence of DNA damage. To estimate whether mixtures act more (synergistic) or less (antagonistic) efficiently Concentrations Addition (CA) and Independent Action (IA) approaches were applied followed by a calculation of the Model Deviation Ratio (MDR) to determine deviation from the predicted values. Addition of inorganic ions mainly reduced their genotoxicity. Diclofenac s. was the most susceptible to potassium, fluoride, and bromide ions. Change of the pH of pharmaceutical solutions had significant impact on genotoxicity of diclofenac s. and fluoxetine h. Among mixtures, more commonly observed interactions were synergistic ones, exactly twenty-five cases (ten pairs containing chloramphenicol or oxytetracycline h.) and ten cases of antagonism (four for pairs containing chloramphenicol or fluoxetine h.). The results obtained indicate that interactions between tested compounds occur frequently and can lead to DNA damage. This topic especially concerning in vitro tests using cells is still rare, however, it should not be neglected.
Collapse
Affiliation(s)
- Monika Wieczerzak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| |
Collapse
|
22
|
Wastewater Reflections in Consumer Mind: Evidence from Sewage Services Consumer Behaviour. SUSTAINABILITY 2018. [DOI: 10.3390/su11010123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Environmental concerns have become an important decision-making determinant for consumers. Hundreds of emerging pollutants and their metabolites are listed as present in European aquatic environments and human settlements are blamed as major sources of water pollution. It was assumed that as long as water treatment is not totally effective and it requires a high amount of energy and resources, household’s contribution through correct behaviour in relation to the load of waste they discharge in the sewage system can reduce efforts towards wastewater treatment. Consequently, the main objective of this study was to investigate households’ perception and behaviour related to wastewater treatment services. Results are based on a random survey with a sample of 125 Romanian consumers of water supply and sewage services. A key finding is that investigated wastewater services consumers perceive the effect of discharging untreated wastewater in the environment as highly negative both on human health and on the environment, thus pointing out the importance associated by them to water treatment. This research argues that understanding wastewater services consumer behaviour enlarges the way toward reducing environmental disturbances.
Collapse
|
23
|
Huang M, Wang Q, Chen J, Chen H, Xiao L, Zhao M, Zhang H, Li S, Liu Y, Zhang Y, Lin H. The co-administration of estradiol/17α-methyltestosterone leads to male fate in the protogynous orange-spotted grouper, Epinephelus coioides. Biol Reprod 2018; 100:745-756. [DOI: 10.1093/biolre/ioy211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/18/2018] [Accepted: 11/06/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Minwei Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory for Tropical Marine Fishery Resource Protection and Utilization of Hainan Province, Hainan Tropical Ocean University, Sanya 570228, China
| | - Qing Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- College of Marine Sciences, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jiaxing Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory for Tropical Marine Fishery Resource Protection and Utilization of Hainan Province, Hainan Tropical Ocean University, Sanya 570228, China
| | - Huimin Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory for Tropical Marine Fishery Resource Protection and Utilization of Hainan Province, Hainan Tropical Ocean University, Sanya 570228, China
| | - Ling Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory for Tropical Marine Fishery Resource Protection and Utilization of Hainan Province, Hainan Tropical Ocean University, Sanya 570228, China
| | - Mi Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory for Tropical Marine Fishery Resource Protection and Utilization of Hainan Province, Hainan Tropical Ocean University, Sanya 570228, China
| | - Haifa Zhang
- Marine Fisheries Development Center of Guangdong Province, Huizhou, People's Republic of China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory for Tropical Marine Fishery Resource Protection and Utilization of Hainan Province, Hainan Tropical Ocean University, Sanya 570228, China
| | - Yun Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory for Tropical Marine Fishery Resource Protection and Utilization of Hainan Province, Hainan Tropical Ocean University, Sanya 570228, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory for Tropical Marine Fishery Resource Protection and Utilization of Hainan Province, Hainan Tropical Ocean University, Sanya 570228, China
- Marine Fisheries Development Center of Guangdong Province, Huizhou, People's Republic of China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory for Tropical Marine Fishery Resource Protection and Utilization of Hainan Province, Hainan Tropical Ocean University, Sanya 570228, China
- College of Ocean, Hainan University, Haikou, People's Republic of China
| |
Collapse
|
24
|
Pohl J, Björlenius B, Brodin T, Carlsson G, Fick J, Larsson DGJ, Norrgren L, Örn S. Effects of ozonated sewage effluent on reproduction and behavioral endpoints in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:93-101. [PMID: 29729477 DOI: 10.1016/j.aquatox.2018.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/18/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceutical residues and other micro-contaminants may enter aquatic environments through effluent from sewage treatment plants (STPs) and could cause adverse effects in wild fish. One strategy to alleviate this situation is to improve wastewater treatment by ozonation. To test the effectiveness of full-scale wastewater effluent ozonation at a Swedish municipal STP, the added removal efficiency was measured for 105 pharmaceuticals. In addition, gene expression, reproductive and behavioral endpoints were analyzed in zebrafish (Danio rerio) exposed on-site over 21 days to ozonated or non-ozonated effluents as well as to tap water. Ozone treatment (7 g O3/m3) removed pharmaceuticals by an average efficiency of 77% in addition to the conventional treatment, leaving 11 screened pharmaceuticals above detection limits. Differences in biological responses of the exposure treatments were recorded in gene expression, reproduction and behavior. Hepatic vitellogenin gene expression was higher in male zebrafish exposed to the ozonated effluent compared to the non-ozonated effluent and tap water treatments. The reproductive success was higher in fish exposed to ozonated effluent compared to non-ozonated effluent and to tap water. The behavioral measurements showed that fish exposed to the ozonated STP effluent were less active in swimming the first minute after placed in a novel vessel. Ozonation is a capable method for removing pharmaceuticals in effluents. However, its implementation should be thoroughly evaluated for any potential biological impact. Future research is needed for uncovering the factors which produced the in vivo responses in fish.
Collapse
Affiliation(s)
- Johannes Pohl
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Berndt Björlenius
- Division of Industrial Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tomas Brodin
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Gunnar Carlsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Leif Norrgren
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stefan Örn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
25
|
Thrupp TJ, Runnalls TJ, Scholze M, Kugathas S, Kortenkamp A, Sumpter JP. The consequences of exposure to mixtures of chemicals: Something from 'nothing' and 'a lot from a little' when fish are exposed to steroid hormones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1482-1492. [PMID: 29734624 DOI: 10.1016/j.scitotenv.2017.11.081] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 05/12/2023]
Abstract
Ill-defined, multi-component mixtures of steroidal pharmaceuticals are present in the aquatic environment. Fish are extremely sensitive to some of these steroids. It is important to know how fish respond to these mixtures, and from that knowledge develop methodology that enables accurate prediction of those responses. To provide some of the data required to reach this objective, pairs of fish were first exposed to five different synthetic steroidal pharmaceuticals (one estrogen, EE2; one androgen, trenbolone; one glucocorticoid, beclomethasone dipropionate; and two progestogens, desogestrel and levonorgestrel) and concentration-response data on egg production obtained. Based on those concentration-response relationships, a five component mixture was designed and tested twice. Very similar effects were observed in the two experiments. The mixture inhibited egg production in an additive manner predicted better by the model of Independent Action than that of Concentration Addition. Our data provide a reference case for independent action in an in vivo model. A significant combined effect was observed when each steroidal pharmaceutical in the mixture was present at a concentration which on its own would produce no statistically significant effect (something from 'nothing'). Further, when each component was present in the mixture at a concentration expected to inhibit egg production by between 18% (Beclomethasone diproprionate) and 40% (trenbolone), this mixture almost completely inhibited egg production: a phenomenon we term 'a lot from a little'. The results from this proof-of-principle study suggest that multiple steroids present in the aquatic environment can be analysed for their potential combined environmental risk.
Collapse
Affiliation(s)
- Tara J Thrupp
- Institute for the Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Tamsin J Runnalls
- Institute for the Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Martin Scholze
- Institute for the Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Subramaniam Kugathas
- Institute for the Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Andreas Kortenkamp
- Institute for the Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - John P Sumpter
- Institute for the Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK.
| |
Collapse
|
26
|
Wangmo C, Jarque S, Hilscherová K, Bláha L, Bittner M. In vitro assessment of sex steroids and related compounds in water and sediments - a critical review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:270-287. [PMID: 29251308 DOI: 10.1039/c7em00458c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Detection of endocrine disrupting compounds in water and sediment samples has gained much importance since the evidence of their effects was reported in aquatic ecosystems in the 1990s. The aim of this review is to highlight the advances made in the field of in vitro analysis for the detection of hormonally active compounds with estrogenic, androgenic and progestogenic effects in water and sediment samples. In vitro assays have been developed from yeast, mammalian and in a few cases from fish cells. These assays are based either on the hormone-mediated proliferation of sensitive cell lines or on the hormone-mediated expression of reporter genes. In vitro assays in combination with various sample enrichment methods have been used with limits of detection as low as 0.0027 ng L-1 in water, and 0.0026 ng g-1 in sediments for estrogenicity, 0.1 ng L-1 in water, and 0.5 ng g-1 in sediments for androgenicity, and 5 ng L-1 in water for progestogenicity expressed as equivalent concentrations of standard reference compounds of 17β-estradiol, dihydrotestosterone and progesterone, respectively. The experimental results and limits of quantification, however, are influenced by the methods of sample collection, preparation, and individual laboratory practices.
Collapse
Affiliation(s)
- Chimi Wangmo
- Masaryk University, Research Centre for Toxic Compounds in the Environment - RECETOX, Kamenice 5, 625 00, Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
27
|
Bronikowski A, Hagedoorn PL, Koschorreck K, Urlacher VB. Expression of a new laccase from Moniliophthora roreri at high levels in Pichia pastoris and its potential application in micropollutant degradation. AMB Express 2017; 7:73. [PMID: 28357784 PMCID: PMC5371579 DOI: 10.1186/s13568-017-0368-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/07/2017] [Indexed: 12/28/2022] Open
Abstract
Laccases have gained significant attention due to their emerging applications including bioremediation, biomass degradation and biofuel cells. One of the prerequisites for the industrial application of laccases is their sufficient availability. However, expression levels of recombinantly expressed laccases are often low. In this study Mrl2, a new laccase from the basidiomycete Moniliophthora roreri, was cloned in Pichia pastoris and produced in an optimized fed-batch process at an exceptionally high yield of 1.05 g l−1. With a redox potential of 0.58 V, Mrl2 belongs to mid-redox potential laccases. However, Mrl2 demonstrated high kcat values of 316, 20, 74, and 36 s−1 towards 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), syringaldazine (SGZ), 2,6-dimethoxyphenol (2,6-DMP) and guaiacol, respectively. Mrl2 remained stable above pH 6 and in the presence of many metal ions, which is important for application in bioremediation. Mrl2 was investigated for the ability to degrade endocrine disrupting chemicals (EDCs) and non-steroidal anti-inflammatory drugs (NSDAIs) at neutral pH value. The enzyme accepted and converted estrone, 17β-estradiol, estriol, the synthetic contraceptive 17α-ethinyl estradiol and bisphenol A at pH 7 faster than high-potential laccases from Trametes versicolor. For example, within 30 min Mrl2 removed more than 90% bisphenol A, 17ß-estradiol, 17α-ethinyl estradiol and estriol, respectively. The concentration of the recalcitrant drug diclofenac dropped by 56% after 20 h incubation with Mrl2.
Collapse
|
28
|
Cuco AP, Santos JI, Abrantes N, Gonçalves F, Wolinska J, Castro BB. Concentration and timing of application reveal strong fungistatic effect of tebuconazole in a Daphnia-microparasitic yeast model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:141-163. [PMID: 29096087 DOI: 10.1016/j.aquatox.2017.08.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 05/13/2023]
Abstract
Given the importance of pollutant effects on host-parasite relationships and disease spread, the main goal of this study was to assess the influence of different exposure scenarios for the fungicide tebuconazole (concentration×timing of application) on a Daphnia-microparasitic yeast experimental system. Previous results had demonstrated that tebuconazole is able to suppress Metschnikowia bicuspidata infection at ecologically-relevant concentrations; here, we aimed to obtain an understanding of the mechanism underlying the anti-parasitic (fungicidal or fungistatic) action of tebuconazole. We exposed the Daphnia-yeast system to four nominal tebuconazole concentrations at four timings of application (according to the predicted stage of parasite development), replicated on two Daphnia genotypes, in a fully crossed experiment. An "all-or-nothing" effect was observed, with tebuconazole completely suppressing infection from 13.5μgl-1 upwards, independent of the timing of tebuconazole application. A follow-up experiment confirmed that the suppression of infection occurred within a narrow range of tebuconazole concentrations (3.65-13.5μgl-1), although a later application of the fungicide had to be compensated for by a slight increase in concentration to elicit the same anti-parasitic effect. The mechanism behind this anti-parasitic effect seems to be the inhibition of M. bicuspidata sporulation, since tebuconazole was effective in preventing ascospore production even when applied at a later time. However, this fungicide also seemed to affect the vegetative growth of the yeast, as demonstrated by the enhanced negative effect of the parasite (increasing mortality in one of the host genotypes) at a later time of application of tebuconazole, when no signs of infection were observed. Fungicide contamination can thus affect the severity and spread of disease in natural populations, as well as the inherent co-evolutionary dynamics in host-parasite systems.
Collapse
Affiliation(s)
- Ana P Cuco
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal.
| | - Joana I Santos
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Nelson Abrantes
- CESAM, University of Aveiro, Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Fernando Gonçalves
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Bruno B Castro
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
29
|
Luzio A, Matos M, Santos D, Fontaínhas-Fernandes AA, Monteiro SM, Coimbra AM. Disruption of apoptosis pathways involved in zebrafish gonad differentiation by 17α-ethinylestradiol and fadrozole exposures. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:269-284. [PMID: 27337697 DOI: 10.1016/j.aquatox.2016.05.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/24/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
Zebrafish (Danio rerio) sex determination seems to involve genetic factors (GSD) but also environmental factors (ESD), such as endocrine disrupting chemicals (EDCs) that are known to mimic endogenous hormones and disrupt gonad differentiation. Apoptosis has also been proposed to play a crucial role in zebrafish gonad differentiation. Nevertheless, the interactions between EDCs and apoptosis have received little attention. Thus, this study aimed to assess if and which apoptotic pathways are involved in zebrafish gonad differentiation and how EDCs may interfere with this process. With these purposes, zebrafish were exposed to 17α-ethinylestradiol (EE2, 4ng/L) and fadrozole (Fad, 50μg/L) from 2h to 35days post-fertilization (dpf). Afterwards, a gene expression analysis by qRT-PCR and a stereological analysis, based on systematic sampling and protein immunohistochemistry, were performed. The death receptors (FAS; TRADD), anti-apoptotic (BCL-2; MDM2), pro-apoptotic (CASP-2 and -6) and cell proliferation (BIRC5/survivin; JUN) genes and proteins were evaluated. In general, apoptosis was inhibited in females through the involvement of anti-apoptotic pathways, while in males apoptosis seemed to be crucial to the failure of the "juvenile ovary" development and the induction of testes transformation. The JUN protein was shown to be necessary in juvenile ovaries, while the BIRC5 protein seemed to be involved in zebrafish spermatogenesis. Both EDCs, EE2 and Fad, increased the apoptosis stimulus in zebrafish gonad. It was noticed that the few females that were resistant to Fad-induced sex reversal had increased anti-apoptotic factor levels, while males exposed to EE2 showed increased pro-apoptotic genes/proteins and were more advanced in gonad differentiation. Overall, our findings show that apoptosis pathways are involved in zebrafish gonad differentiation and that EDCs can disrupt this process.
Collapse
Affiliation(s)
- Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal; Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal.
| | - Manuela Matos
- University of Lisbon, Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon, Portugal; Department of Genetics and Biotechnology, Life Sciences and Environment School (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Dércia Santos
- Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal
| | - António A Fontaínhas-Fernandes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal; Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal; Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal; Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal.
| |
Collapse
|
30
|
Luzio A, Monteiro SM, Rocha E, Fontaínhas-Fernandes AA, Coimbra AM. Development and recovery of histopathological alterations in the gonads of zebrafish (Danio rerio) after single and combined exposure to endocrine disruptors (17α-ethinylestradiol and fadrozole). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:90-105. [PMID: 27002526 DOI: 10.1016/j.aquatox.2016.03.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/08/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
Exposure of wildlife to endocrine disrupting chemicals (EDCs) is not necessarily continuous. Due to seasonal changes and variable industrial and agricultural activities it often occurs intermittently. Thus, it is possible that aquatic organisms may be more affected by periodic peak exposure than by chronic exposure. Therefore, an experimental scenario including an exposure from 2h to 90 days post-fertilization (dpf) and a subsequent recovery period until 150 dpf was chosen to assess the potential reversibility of the effects of sex steroids on sexual and gonad development of zebrafish (Danio rerio). The aim of this study was to investigate the persistence of the endocrine effects of an estrogen (EE2-17α-ethinylestradiol, 4ng/L), an inhibitor of estrogen synthesis (Fad-fadrozole, 50μg/L) or their binary mixture (Mix-EE2+ Fad, 4ng/L+50μg/L). Afterwards, a semi-quantitative histological assessment was used to investigate histopathological changes on gonad differentiation and development. The data showed that fadrozole, alone or in combination with EE2, permanently disrupts the sexual development, inducing masculinization and causing severe pathological alterations in testis, such as intersex associated to the enlargement of sperm ducts, interstitial changes, asynchronous development and detachment of basal membrane. After exposures to both EDCs and their mixture, the gonad histopathology revealed interstitial proteinaceous fluid deposits and, in ovaries, there were atretic oocytes, and presumably degenerative mineralization. On the other hand, the gonadal changes induced by EE2 alone seem to be partially reversible when the exposure regime changed to a recovery period. In addition, EE2 enhanced zebrafish growth in both genders, with male fish presenting signs of early obesity such as the presence of adipocytes in testis. Moreover, sex ratio was slightly skewed toward females, at 90 and 105 dpf, in zebrafish exposed to EE2. The data further indicate that long-term studies on impacts of single EDCs and their mixtures with recovery periods are crucial to reveal the possibility of sex reversal and pathological changes of gonads that can adversely affect breeding.
Collapse
Affiliation(s)
- Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Eduardo Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U. Porto), Portugal; Histomorphology, Physiopathology, and Applied Toxicology Group, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U. Porto), Portugal
| | - António A Fontaínhas-Fernandes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal.
| |
Collapse
|
31
|
|