1
|
Wang R, Feng J, Zhang W, Wang Y, Lu H, Zeng W. An in vitro nevus explant model for studying the effects of ultraviolet radiation. Pigment Cell Melanoma Res 2024; 37:762-768. [PMID: 38733366 DOI: 10.1111/pcmr.13173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/06/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Ultraviolet radiation (UVR) has been recognized as a potential trigger for the transformation of benign melanocytic nevi into melanoma. However, the mechanisms governing the formation and progression of melanocytic nevi remain poorly understood. This lack of understanding is partly due to the difficulty in isolating and culturing nevus tissues in vitro, resulting in a dearth of robust ex vivo models for nevi. Therefore, the establishment of a reliable melanocytic nevus model is imperative. Such a model is essential for elucidating nevus pathogenesis and facilitating the development of effective therapeutic interventions. Therefore, we have sought to establish an ex vivo nevus explant model to study UVR stimulation. And the structural integrity and tissue activity of the ex vivo nevi explant model was evaluated. We then observed melanogenesis and proliferation activity of the explants after UVR stimulation. There was less blister formation after Day 3 in nevi explants under our modified medium conditions. The nevi explant was able to maintain almost the same morphological structure and tissue activity as in vivo tissue within 24 h. Following UVR stimulation, we observed increased melanogenesis and proliferation activity in nevi explants. Nevi explants could serve as an ex vivo model for UVR-induced nevi stimulation research.
Collapse
Affiliation(s)
- Rui Wang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianglong Feng
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wei Zhang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yu Wang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hongguang Lu
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wen Zeng
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Sardar S, McNair CM, Ravindranath L, Chand SN, Yuan W, Bogdan D, Welti J, Sharp A, Ryan NK, Knudsen LA, Schiewer MJ, DeArment EG, Janas T, Su XA, Butler LM, de Bono JS, Frese K, Brooks N, Pegg N, Knudsen KE, Shafi AA. AR coactivators, CBP/p300, are critical mediators of DNA repair in prostate cancer. Oncogene 2024; 43:3197-3213. [PMID: 39266679 PMCID: PMC11493679 DOI: 10.1038/s41388-024-03148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024]
Abstract
Castration resistant prostate cancer (CRPC) remains an incurable disease stage with ineffective treatments options. Here, the androgen receptor (AR) coactivators CBP/p300, which are histone acetyltransferases, were identified as critical mediators of DNA damage repair (DDR) to potentially enhance therapeutic targeting of CRPC. Key findings demonstrate that CBP/p300 expression increases with disease progression and selects for poor prognosis in metastatic disease. CBP/p300 bromodomain inhibition enhances response to standard of care therapeutics. Functional studies, CBP/p300 cistrome mapping, and transcriptome in CRPC revealed that CBP/p300 regulates DDR. Further mechanistic investigation showed that CBP/p300 attenuation via therapeutic targeting and genomic knockdown decreases homologous recombination (HR) factors in vitro, in vivo, and in human prostate cancer (PCa) tumors ex vivo. Similarly, CBP/p300 expression in human prostate tissue correlates with HR factors. Lastly, targeting CBP/p300 impacts HR-mediate repair and patient outcome. Collectively, these studies identify CBP/p300 as drivers of PCa tumorigenesis and lay the groundwork to optimize therapeutic strategies for advanced PCa via CBP/p300 inhibition, potentially in combination with AR-directed and DDR therapies.
Collapse
Affiliation(s)
- Sumaira Sardar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | | | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Saswati N Chand
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom
| | - Jon Welti
- The Institute of Cancer Research, London, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Natalie K Ryan
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Liam A Knudsen
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew J Schiewer
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elise G DeArment
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Thomas Janas
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Xiaofeng A Su
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Johann S de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Kris Frese
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Neil Pegg
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Ayesha A Shafi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA.
| |
Collapse
|
3
|
Sardar S, McNair CM, Ravindranath L, Chand SN, Yuan W, Bogdan D, Welti J, Sharp A, Ryan NK, Schiewer MJ, DeArment EG, Janas T, Su XA, Butler LM, de Bono JS, Frese K, Brooks N, Pegg N, Knudsen KE, Shafi AA. AR coactivators, CBP/p300, are critical mediators of DNA repair in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592966. [PMID: 38766099 PMCID: PMC11100730 DOI: 10.1101/2024.05.07.592966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Castration resistant prostate cancer (CRPC) remains an incurable disease stage with ineffective treatments options. Here, the androgen receptor (AR) coactivators CBP/p300, which are histone acetyltransferases, were identified as critical mediators of DNA damage repair (DDR) to potentially enhance therapeutic targeting of CRPC. Key findings demonstrate that CBP/p300 expression increases with disease progression and selects for poor prognosis in metastatic disease. CBP/p300 bromodomain inhibition enhances response to standard of care therapeutics. Functional studies, CBP/p300 cistrome mapping, and transcriptome in CRPC revealed that CBP/p300 regulates DDR. Further mechanistic investigation showed that CBP/p300 attenuation via therapeutic targeting and genomic knockdown decreases homologous recombination (HR) factors in vitro, in vivo, and in human prostate cancer (PCa) tumors ex vivo. Similarly, CBP/p300 expression in human prostate tissue correlates with HR factors. Lastly, targeting CBP/p300 impacts HR-mediate repair and patient outcome. Collectively, these studies identify CBP/p300 as drivers of PCa tumorigenesis and lay the groundwork to optimize therapeutic strategies for advanced PCa via CBP/p300 inhibition, potentially in combination with AR-directed and DDR therapies.
Collapse
Affiliation(s)
- Sumaira Sardar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Christopher M. McNair
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Saswati N. Chand
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom
| | - Jon Welti
- The Institute of Cancer Research, London, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Natalie K. Ryan
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Matthew J. Schiewer
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Elise G. DeArment
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Thomas Janas
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Xiaofeng A. Su
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lisa M. Butler
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Johann S. de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Kris Frese
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Neil Pegg
- CellCentric Ltd., Cambridge, United Kingdom
| | - Karen E. Knudsen
- The American Cancer Society, Philadelphia, Pennsylvania, 19103, USA
| | - Ayesha A. Shafi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| |
Collapse
|
4
|
Brennen WN, Le Magnen C, Karkampouna S, Anselmino N, Bock N, Choo N, Clark AK, Coleman IM, Dolgos R, Ferguson AM, Goode DL, Krutihof-de Julio M, Navone NM, Nelson PS, O'Neill E, Porter LH, Ranasinghe W, Sunada T, Williams ED, Butler LM, Corey E, van Weerden WM, Taylor RA, Risbridger GP, Lawrence MG. Defining the challenges and opportunities for using patient-derived models in prostate cancer research. Prostate 2024; 84:623-635. [PMID: 38450798 PMCID: PMC11014775 DOI: 10.1002/pros.24682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND There are relatively few widely used models of prostate cancer compared to other common malignancies. This impedes translational prostate cancer research because the range of models does not reflect the diversity of disease seen in clinical practice. In response to this challenge, research laboratories around the world have been developing new patient-derived models of prostate cancer, including xenografts, organoids, and tumor explants. METHODS In May 2023, we held a workshop at the Monash University Prato Campus for researchers with expertise in establishing and using a variety of patient-derived models of prostate cancer. This review summarizes our collective ideas on how patient-derived models are currently being used, the common challenges, and future opportunities for maximizing their usefulness in prostate cancer research. RESULTS An increasing number of patient-derived models for prostate cancer are being developed. Despite their individual limitations and varying success rates, these models are valuable resources for exploring new concepts in prostate cancer biology and for preclinical testing of potential treatments. Here we focus on the need for larger collections of models that represent the changing treatment landscape of prostate cancer, robust readouts for preclinical testing, improved in vitro culture conditions, and integration of the tumor microenvironment. Additional priorities include ensuring model reproducibility, standardization, and replication, and streamlining the exchange of models and data sets among research groups. CONCLUSIONS There are several opportunities to maximize the impact of patient-derived models on prostate cancer research. We must develop large, diverse and accessible cohorts of models and more sophisticated methods for emulating the intricacy of patient tumors. In this way, we can use the samples that are generously donated by patients to advance the outcomes of patients in the future.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pharmacology & Molecular Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Clémentine Le Magnen
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sofia Karkampouna
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Nicolas Anselmino
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nathalie Bock
- School of Biomedical Sciences at Translational Research Institute, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicholas Choo
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Ashlee K Clark
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Robin Dolgos
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alison M Ferguson
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, Division of Research and Enterprise, University of New South Wales, Sydney, NSW, Australia
| | - David L Goode
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Marianna Krutihof-de Julio
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Translational Organoid Resource, University of Bern, Bern, Switzerland
| | - Nora M Navone
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Edward O'Neill
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Laura H Porter
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Weranja Ranasinghe
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Department of Surgery, Monash University, Melbourne, VIC, Australia
- Department of Urology, Monash Health, Melbourne, VIC, Australia
- Department of Urology, Austin Health, Melbourne, VIC, Australia
| | - Takuro Sunada
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Elizabeth D Williams
- School of Biomedical Sciences at Translational Research Institute, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre-Queensland, Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | | | - Renea A Taylor
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Physiology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, Australia
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, Australia
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Mitchell G Lawrence
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, Australia
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Mei J, Liu X, Tian H, Chen Y, Cao Y, Zeng J, Liu Y, Chen Y, Gao Y, Yin J, Wang P. Tumour organoids and assembloids: Patient-derived cancer avatars for immunotherapy. Clin Transl Med 2024; 14:e1656. [PMID: 38664597 PMCID: PMC11045561 DOI: 10.1002/ctm2.1656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Organoid technology is an emerging and rapidly growing field that shows promise in studying organ development and screening therapeutic regimens. Although organoids have been proposed for a decade, concerns exist, including batch-to-batch variations, lack of the native microenvironment and clinical applicability. MAIN BODY The concept of organoids has derived patient-derived tumour organoids (PDTOs) for personalized drug screening and new drug discovery, mitigating the risks of medication misuse. The greater the similarity between the PDTOs and the primary tumours, the more influential the model will be. Recently, 'tumour assembloids' inspired by cell-coculture technology have attracted attention to complement the current PDTO technology. High-quality PDTOs must reassemble critical components, including multiple cell types, tumour matrix, paracrine factors, angiogenesis and microorganisms. This review begins with a brief overview of the history of organoids and PDTOs, followed by the current approaches for generating PDTOs and tumour assembloids. Personalized drug screening has been practised; however, it remains unclear whether PDTOs can predict immunotherapies, including immune drugs (e.g. immune checkpoint inhibitors) and immune cells (e.g. tumour-infiltrating lymphocyte, T cell receptor-engineered T cell and chimeric antigen receptor-T cell). PDTOs, as cancer avatars of the patients, can be expanded and stored to form a biobank. CONCLUSION Fundamental research and clinical trials are ongoing, and the intention is to use these models to replace animals. Pre-clinical immunotherapy screening using PDTOs will be beneficial to cancer patients. KEY POINTS The current PDTO models have not yet constructed key cellular and non-cellular components. PDTOs should be expandable and editable. PDTOs are promising preclinical models for immunotherapy unless mature PDTOs can be established. PDTO biobanks with consensual standards are urgently needed.
Collapse
Affiliation(s)
- Jie Mei
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
- Engineering Research Center of Applied Technology of PharmacogenomicsMinistry of EducationChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Xingjian Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Hui‐Xiang Tian
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
| | - Yixuan Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yang Cao
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Jun Zeng
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
- Department of Thoracic Surgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Yung‐Chiang Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yaping Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yang Gao
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Department of Thoracic Surgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Xiangya Lung Cancer Center, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Ji‐Ye Yin
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
- Engineering Research Center of Applied Technology of PharmacogenomicsMinistry of EducationChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Peng‐Yuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| |
Collapse
|
6
|
Ko J, Song J, Choi N, Kim HN. Patient-Derived Microphysiological Systems for Precision Medicine. Adv Healthc Mater 2024; 13:e2303161. [PMID: 38010253 PMCID: PMC11469251 DOI: 10.1002/adhm.202303161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Patient-derived microphysiological systems (P-MPS) have emerged as powerful tools in precision medicine that provide valuable insight into individual patient characteristics. This review discusses the development of P-MPS as an integration of patient-derived samples, including patient-derived cells, organoids, and induced pluripotent stem cells, into well-defined MPSs. Emphasizing the necessity of P-MPS development, its significance as a nonclinical assessment approach that bridges the gap between traditional in vitro models and clinical outcomes is highlighted. Additionally, guidance is provided for engineering approaches to develop microfluidic devices and high-content analysis for P-MPSs, enabling high biological relevance and high-throughput experimentation. The practical implications of the P-MPS are further examined by exploring the clinically relevant outcomes obtained from various types of patient-derived samples. The construction and analysis of these diverse samples within the P-MPS have resulted in physiologically relevant data, paving the way for the development of personalized treatment strategies. This study describes the significance of the P-MPS in precision medicine, as well as its unique capacity to offer valuable insights into individual patient characteristics.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano TechnologyGachon UniversitySeongnam‐siGyeonggi‐do13120Republic of Korea
| | - Jiyoung Song
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Nakwon Choi
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolSeoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Hong Nam Kim
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolSeoul02792Republic of Korea
- School of Mechanical EngineeringYonsei UniversitySeoul03722Republic of Korea
- Yonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
7
|
Wu KZ, Adine C, Mitriashkin A, Aw BJJ, Iyer NG, Fong ELS. Making In Vitro Tumor Models Whole Again. Adv Healthc Mater 2023; 12:e2202279. [PMID: 36718949 PMCID: PMC11469124 DOI: 10.1002/adhm.202202279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/04/2023] [Indexed: 02/01/2023]
Abstract
As a reductionist approach, patient-derived in vitro tumor models are inherently still too simplistic for personalized drug testing as they do not capture many characteristics of the tumor microenvironment (TME), such as tumor architecture and stromal heterogeneity. This is especially problematic for assessing stromal-targeting drugs such as immunotherapies in which the density and distribution of immune and other stromal cells determine drug efficacy. On the other end, in vivo models are typically costly, low-throughput, and time-consuming to establish. Ex vivo patient-derived tumor explant (PDE) cultures involve the culture of resected tumor fragments that potentially retain the intact TME of the original tumor. Although developed decades ago, PDE cultures have not been widely adopted likely because of their low-throughput and poor long-term viability. However, with growing recognition of the importance of patient-specific TME in mediating drug response, especially in the field of immune-oncology, there is an urgent need to resurrect these holistic cultures. In this Review, the key limitations of patient-derived tumor explant cultures are outlined and technologies that have been developed or could be employed to address these limitations are discussed. Engineered holistic tumor explant cultures may truly realize the concept of personalized medicine for cancer patients.
Collapse
Affiliation(s)
- Kenny Zhuoran Wu
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Christabella Adine
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Aleksandr Mitriashkin
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Benjamin Jun Jie Aw
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - N. Gopalakrishna Iyer
- Department of Head and Neck Surgery, Division of Surgery and Surgical OncologyDuke‐NUS Medical SchoolSingapore169857Singapore
- Department of Head and Neck SurgeryNational Cancer Centre SingaporeSingapore169610Singapore
| | - Eliza Li Shan Fong
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
- The N.1 Institute for HealthNational University of SingaporeSingapore117456Singapore
- Cancer Science Institute (CSI)National University of SingaporeSingapore117599Singapore
| |
Collapse
|
8
|
Zhao J, Fong A, Seow SV, Toh HC. Organoids as an Enabler of Precision Immuno-Oncology. Cells 2023; 12:1165. [PMID: 37190074 PMCID: PMC10136954 DOI: 10.3390/cells12081165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Since the dawn of the past century, landmark discoveries in cell-mediated immunity have led to a greater understanding of the innate and adaptive immune systems and revolutionised the treatment of countless diseases, including cancer. Today, precision immuno-oncology (I/O) involves not only targeting immune checkpoints that inhibit T-cell immunity but also harnessing immune cell therapies. The limited efficacy in some cancers results mainly from a complex tumour microenvironment (TME) that, in addition to adaptive immune cells, comprises innate myeloid and lymphoid cells, cancer-associated fibroblasts, and the tumour vasculature that contribute towards immune evasion. As the complexity of TME has called for more sophisticated human-based tumour models, organoids have allowed the dynamic study of spatiotemporal interactions between tumour cells and individual TME cell types. Here, we discuss how organoids can study the TME across cancers and how these features may improve precision I/O. We outline the approaches to preserve or recapitulate the TME in tumour organoids and discuss their potential, advantages, and limitations. We will discuss future directions of organoid research in understanding cancer immunology in-depth and identifying novel I/O targets and treatment strategies.
Collapse
Affiliation(s)
- Junzhe Zhao
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore 169857, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Singapore
- Doctor of Medicine Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Antoinette Fong
- Doctor of Medicine Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - See Voon Seow
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Singapore
| |
Collapse
|
9
|
Zhou Q, Ou Y, Dai X, Chen X, Wu S, Chen W, Hu M, Yang C, Zhang L, Jiang H. Prevalence of tumour-infiltrating CD103 + cells identifies therapeutic-sensitive prostate cancer with poor clinical outcome. Br J Cancer 2023; 128:1466-1477. [PMID: 36759726 PMCID: PMC10070496 DOI: 10.1038/s41416-023-02183-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND The clinical significance and immune correlation of CD103+ cells in prostate cancer (PCa) remain explored. METHODS In total, 1080 patients with PCa underwent radical prostatectomy from three cohorts were enrolled for retrospective analysis. Tumour microarrays were constructed and fresh tumour samples were analysed by flow cytometry. RESULTS High CD103+ cell infiltration correlated with reduced biochemical recurrence (BCR)-free survival in PCa. Adjuvant hormone therapy (HT) prolonged the BCR-free survival for high-risk node-negative diseases with CD103+ cell abundance. CD103+ cell infiltration correlated with less cytotoxic expression and increased infiltration of CD8+ and CD4+ T cells, M1 macrophages and mast cells in PCa. Intratumoral CD8+ T cell was the predominant source of CD103, and the CD103+ subset of CD8+ T cells was featured with high IL-10, PD-1 and CTLA-4 expression. Tumour-infiltrating CD103+ CD8+ T cells exerted anti-tumour function when treated with HT ex vivo. DISCUSSION CD103+ cell infiltration predicted BCR-free survival and response to adjuvant HT in PCa. CD103+ cell infiltration correlated with an enriched but immune-evasive immune landscape. The study supported a model that CD103 expression conferred negative prognostic impact and immunosuppressive function to tumour-infiltrating CD8+ T cells, while the CD103+ CD8+ T cells exhibited a powerful anti-tumour immunity with response to HT.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiyu Dai
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Siqi Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wensun Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengbo Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China.
| | - Limin Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China.
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China.
- Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Cao C, Lu X, Guo X, Zhao H, Gao Y. Patient-derived models: Promising tools for accelerating the clinical translation of breast cancer research findings. Exp Cell Res 2023; 425:113538. [PMID: 36871856 DOI: 10.1016/j.yexcr.2023.113538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Breast cancer has become the highest incidence of cancer in women. It was extensively and deeply studied by biologists and medical workers worldwide. However, the meaningful results in lab researches cannot be realized in clinical, and a part of new drugs in clinical experiments do not obtain as good results as the preclinical researches. It is urgently that promote a kind of breast cancer research models that can get study results closer to the physiological condition of the human body. Patient-derived models (PDMs) originating from clinical tumor, contain primary elements of tumor and maintain key clinical features of tumor. So they are promising research models to facilitate laboratory researches translate to clinical application, and predict the treatment outcome of patients. In this review, we summarize the establishment of PDMs of breast cancer, reviewed the application of PDMs in clinical translational researches and personalized precision medicine with breast cancer as an example, to improve the understanding of PDMs among researchers and clinician, facilitate them to use PDMs on a large scale of breast cancer researches and promote the clinical translation of laboratory research and new drug development.
Collapse
Affiliation(s)
- Changqing Cao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, China; State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, China
| | - Xiyan Lu
- Department of Outpatient, The Second Affiliated Hospital of Air Force Medical University, China
| | - Xinyan Guo
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, China
| | - Huadong Zhao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, China.
| | - Yuan Gao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, China.
| |
Collapse
|
11
|
Functional precision oncology using patient-derived assays: bridging genotype and phenotype. Nat Rev Clin Oncol 2023; 20:305-317. [PMID: 36914745 DOI: 10.1038/s41571-023-00745-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/14/2023]
Abstract
Genomics-based precision medicine has revolutionized oncology but also has inherent limitations. Functional precision oncology is emerging as a complementary approach that aims to bridge the gap between genotype and phenotype by modelling individual tumours in vitro. These patient-derived ex vivo models largely preserve several tumour characteristics that are not captured by genomics approaches and enable the functional dissection of tumour vulnerabilities in a personalized manner. In this Review, we discuss several examples of personalized functional assays involving tumour organoids, spheroids and explants and their potential to predict treatment responses and drug-induced toxicities in individual patients. These developments have opened exciting new avenues for precision oncology, with the potential for successful clinical applications in contexts in which genomic data alone are not informative. To implement these assays into clinical practice, we outline four key barriers that need to be overcome: assay success rates, turnaround times, the need for standardized conditions and the definition of in vitro responders. Furthermore, we discuss novel technological advances such as microfluidics that might reduce sample requirements, assay times and labour intensity and thereby enable functional precision oncology to be implemented in routine clinical practice.
Collapse
|
12
|
Let’s Go 3D! New Generation of Models for Evaluating Drug Response and Resistance in Prostate Cancer. Int J Mol Sci 2023; 24:ijms24065293. [PMID: 36982368 PMCID: PMC10049142 DOI: 10.3390/ijms24065293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Prostate cancer (PC) is the third most frequently diagnosed cancer worldwide and the second most frequent in men. Several risk factors can contribute to the development of PC, and those include age, family history, and specific genetic mutations. So far, drug testing in PC, as well as in cancer research in general, has been performed on 2D cell cultures. This is mainly because of the vast benefits these models provide, including simplicity and cost effectiveness. However, it is now known that these models are exposed to much higher stiffness; lose physiological extracellular matrix on artificial plastic surfaces; and show changes in differentiation, polarization, and cell–cell communication. This leads to the loss of crucial cellular signaling pathways and changes in cell responses to stimuli when compared to in vivo conditions. Here, we emphasize the importance of a diverse collection of 3D PC models and their benefits over 2D models in drug discovery and screening from the studies done so far, outlining their benefits and limitations. We highlight the differences between the diverse types of 3D models, with the focus on tumor–stroma interactions, cell populations, and extracellular matrix composition, and we summarize various standard and novel therapies tested on 3D models of PC for the purpose of raising awareness of the possibilities for a personalized approach in PC therapy.
Collapse
|
13
|
Preclinical models of prostate cancer - modelling androgen dependency and castration resistance in vitro, ex vivo and in vivo. Nat Rev Urol 2023:10.1038/s41585-023-00726-1. [PMID: 36788359 DOI: 10.1038/s41585-023-00726-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/16/2023]
Abstract
Prostate cancer is well known to be dependent on the androgen receptor (AR) for growth and survival. Thus, AR is the main pharmacological target to treat this disease. However, after an initially positive response to AR-targeting therapies, prostate cancer will eventually evolve to castration-resistant prostate cancer, which is often lethal. Tumour growth was initially thought to become androgen-independent following treatments; however, results from molecular studies have shown that most resistance mechanisms involve the reactivation of AR. Consequently, tumour cells become resistant to castration - the blockade of testicular androgens - and not independent of AR per se. However, confusion still remains on how to properly define preclinical models of prostate cancer, including cell lines. Most cell lines were isolated from patients for cell culture after evolution of the tumour to castration-resistant prostate cancer, but not all of these cell lines are described as castration resistant. Moreover, castration refers to the blockade of testosterone production by the testes; thus, even the concept of "castration" in vitro is questionable. To ensure maximal transfer of knowledge from scientific research to the clinic, understanding the limitations and advantages of preclinical models, as well as how these models recapitulate cancer cell androgen dependency and can be used to study castration resistance mechanisms, is essential.
Collapse
|
14
|
Zhou S, Lu J, Liu S, Shao J, Liu Z, Li J, Xiao W. Role of the tumor microenvironment in malignant melanoma organoids during the development and metastasis of tumors. Front Cell Dev Biol 2023; 11:1166916. [PMID: 37152280 PMCID: PMC10154581 DOI: 10.3389/fcell.2023.1166916] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Malignant melanoma (MM) is the most metastatic and aggressive form of skin cancer, and carries a high risk of death. Immune-checkpoint inhibitor therapy and molecular-targeted therapy can prolong the survival of patients with advanced MM significantly. However, the low response rate and inevitable drug resistance prevent further improvements in efficacy, which is closely related to the tumor microenvironment (TME). The TME refers to the tumor stroma, including fibroblasts, keratinocytes, immune cells, soluble molecules, and extracellular matrix (ECM). The dynamic interaction between the TME and tumor cells is very important for the growth, local invasion, and metastatic spread of tumor cells. A patient-derived organoid (PDO) model involves isolation of tumor tissue from patients with MM and culturing it in vitro in a three-dimensional pattern. Compared with traditional cultivation methods, the PDO model preserves the heterogeneity of the tissue structure of MM and demonstrates the interaction between MM cells and the TME. It can reproduce the characteristics of proliferation, migration, and invasion of MM cells, and better simulate the structural function of MM in vivo. This review explores the role of each TME component in development of the PDO model. This review will provide a reference for research on the drug screening and targeted treatment using PDOs, particularly for the immunotherapy of MM.
Collapse
|
15
|
Mason J, Öhlund D. Key aspects for conception and construction of co-culture models of tumor-stroma interactions. Front Bioeng Biotechnol 2023; 11:1150764. [PMID: 37091337 PMCID: PMC10119418 DOI: 10.3389/fbioe.2023.1150764] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
The tumor microenvironment is crucial in the initiation and progression of cancers. The interplay between cancer cells and the surrounding stroma shapes the tumor biology and dictates the response to cancer therapies. Consequently, a better understanding of the interactions between cancer cells and different components of the tumor microenvironment will drive progress in developing novel, effective, treatment strategies. Co-cultures can be used to study various aspects of these interactions in detail. This includes studies of paracrine relationships between cancer cells and stromal cells such as fibroblasts, endothelial cells, and immune cells, as well as the influence of physical and mechanical interactions with the extracellular matrix of the tumor microenvironment. The development of novel co-culture models to study the tumor microenvironment has progressed rapidly over recent years. Many of these models have already been shown to be powerful tools for further understanding of the pathophysiological role of the stroma and provide mechanistic insights into tumor-stromal interactions. Here we give a structured overview of different co-culture models that have been established to study tumor-stromal interactions and what we have learnt from these models. We also introduce a set of guidelines for generating and reporting co-culture experiments to facilitate experimental robustness and reproducibility.
Collapse
Affiliation(s)
- James Mason
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Daniel Öhlund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- *Correspondence: Daniel Öhlund,
| |
Collapse
|
16
|
Zhou Q, Yang C, Mou Z, Wu S, Dai X, Chen X, Ou Y, Zhang L, Sha J, Jiang H. Identification and validation of a poor clinical outcome subtype of primary prostate cancer with Midkine abundance. Cancer Sci 2022; 113:3698-3709. [PMID: 36018546 PMCID: PMC9633304 DOI: 10.1111/cas.15546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Recent studies identified Midkine (MDK) as playing a key role in immune regulation. In this study, we aimed to discover the clinical significance and translational relevance in prostate cancer (PCa). We retrospectively analyzed 759 PCa patients who underwent radical prostatectomy from Huashan Hospital, Fudan University (training cohort, n = 369) and Chinese Prostate Cancer Consortium (validation cohort, n = 390). A total of 325 PCa patients from The Cancer Genome Atlas (TCGA) database (external cohort) were analyzed for exploration. Immune landscape and antitumor immunity were assessed through immunohistochemistry and flow cytometry. Patient‐derived explant culture system was applied for evaluating the targeting potential of MDK. We found that intratumoral MDK expression correlated with PCa progression, which indicated an unfavorable biochemical recurrence (BCR)‐free survival for postoperative PCa patients. Addition of MDK expression to the postoperative risk assessment tool CAPRA‐S could improve its prognostic value. Tumors with MDK abundance characterized the tumor‐infiltrating CD8+ T cells with less cytotoxicity production and increased immune checkpoint expression, which were accompanied by enriched immunosuppressive contexture. Moreover, MDK inhibition could reactivate CD8+ T cell antitumor immunity. MDK mRNA expression negatively correlated with androgen receptor activity signature and positively associated with radiotherapy‐related signature. In conclusion, intratumoral MDK expression could serve as an independent prognosticator for BCR in postoperative PCa patients. MDK expression impaired the antitumor function of CD8+ T cells through orchestrating an immunoevasive microenvironment, which could be reversed by MDK inhibition. Moreover, tumors with MDK enrichment possessed potential sensitivity to postoperative radiotherapy while resistance to adjuvant hormonal therapy of PCa. MDK could be considered as a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Zezhong Mou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Siqi Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiyu Dai
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Limin Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianjun Sha
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Udden SN, Wang Q, Kumar S, Malladi VS, Wu SY, Wei S, Posner BA, Geboers S, Williams NS, Liu YL, Sharma JK, Mani RS, Malladi S, Parra K, Hofstad M, Raj GV, Larios JM, Jagsi R, Wicha MS, Park BH, Gupta GP, Chinnaiyan AM, Chiang CM, Alluri PG. Targeting ESR1 mutation-Induced transcriptional addiction in breast cancer with BET inhibition. JCI Insight 2022; 7:151851. [PMID: 35881485 PMCID: PMC9536271 DOI: 10.1172/jci.insight.151851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Acquired mutations in the ligand-binding domain (LBD) of the gene encoding Estrogen Receptor alpha (ESR1) are a common mechanism of endocrine therapy resistance in metastatic ER-positive breast cancer patients. ESR1 Y537S mutation, in particular, is associated with development of resistance to most endocrine therapies used to treat breast cancer. Employing a high-throughput screen of nearly 1200 Federal Drug Administration (FDA)-approved drugs, we show that OTX015, a bromodomain and extraterminal domain (BET) inhibitor, is one of the top suppressors of ESR1 mutant cell growth. OTX015 was more efficacious than fulvestrant, a selective ER degrader, in inhibiting ESR1 mutant xenograft growth. When combined with abemaciclib, a CDK4/6 inhibitor, OTX015 induced more potent tumor regression than current standard-of-care treatment of abemaciclib+fulvestrant. OTX015 has preferential activity against Y537S mutant breast cancer cells and blocks their clonal selection in competition studies with wild-type cells. Thus, BET inhibition has the potential to both prevent and overcome ESR1 mutant-induced endocrine therapy resistance in breast cancer.
Collapse
Affiliation(s)
- Sm N Udden
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Qian Wang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Sunil Kumar
- Genetics, Naveris, Inc., Natick, United States of America
| | - Venkat S Malladi
- Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Shwu-Yuan Wu
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Shuguang Wei
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Bruce A Posner
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Sophie Geboers
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Noelle S Williams
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Yu-Lun Liu
- Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Jayesh K Sharma
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Ram S Mani
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Srinivas Malladi
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Karla Parra
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Mia Hofstad
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Ganesh V Raj
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Jose M Larios
- Department of Internal Medicine, Ascension Providence Hospital, Southfield, United States of America
| | - Reshma Jagsi
- Department of Radiation Oncology, University of Michigan, Ann Arbor, United States of America
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Ben Ho Park
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, United States of America
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Arul M Chinnaiyan
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, United States of America
| | - Cheng-Ming Chiang
- The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Prasanna G Alluri
- The University of Texas Southwestern Medical Center, Dallas, United States of America
| |
Collapse
|
18
|
Perez LM, Nonn L. Harnessing the Utility of Ex Vivo Patient Prostate Tissue Slice Cultures. Front Oncol 2022; 12:864723. [PMID: 35433436 PMCID: PMC9008363 DOI: 10.3389/fonc.2022.864723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Patient-derived prostate tissue explant cultures are powerful research tools that offer the potential for personalized medicine. These cultures preserve the local microenvironment of the surrounding stroma but are not without limitations and challenges. There are several methods and processing techniques to culture tissue ex vivo, that include explant tissue chunks and precision-cut tissue slices. Precision-cut tissue slices provide a consistent distribution of nutrients and gases to the explant. Herein we summarize the prostate tissue slice method, its limitations and discuss the utility of this model, to investigate prostate biology and therapeutic treatment responses.
Collapse
Affiliation(s)
- Lillian M Perez
- University of Illinois at Chicago Pathology Department, Chicago, IL, United States.,University of Illinois Cancer Center, Chicago, IL, United States
| | - Larisa Nonn
- University of Illinois at Chicago Pathology Department, Chicago, IL, United States.,University of Illinois Cancer Center, Chicago, IL, United States
| |
Collapse
|
19
|
Dylgjeri E, Kothari V, Shafi AA, Semenova G, Gallagher PT, Guan YF, Pang A, Goodwin JF, Irani S, McCann JJ, Mandigo AC, Chand S, McNair CM, Vasilevskaya I, Schiewer MJ, Lallas CD, McCue PA, Gomella LG, Seifert EL, Carroll JS, Butler LM, Holst J, Kelly WK, Knudsen KE. A Novel Role for DNA-PK in Metabolism by Regulating Glycolysis in Castration-Resistant Prostate Cancer. Clin Cancer Res 2022; 28:1446-1459. [PMID: 35078861 PMCID: PMC9365345 DOI: 10.1158/1078-0432.ccr-21-1846] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/22/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE DNA-dependent protein kinase catalytic subunit (DNA-PKcs, herein referred as DNA-PK) is a multifunctional kinase of high cancer relevance. DNA-PK is deregulated in multiple tumor types, including prostate cancer, and is associated with poor outcomes. DNA-PK was previously nominated as a therapeutic target and DNA-PK inhibitors are currently undergoing clinical investigation. Although DNA-PK is well studied in DNA repair and transcriptional regulation, much remains to be understood about the way by which DNA-PK drives aggressive disease phenotypes. EXPERIMENTAL DESIGN Here, unbiased proteomic and metabolomic approaches in clinically relevant tumor models uncovered a novel role of DNA-PK in metabolic regulation of cancer progression. DNA-PK regulation of metabolism was interrogated using pharmacologic and genetic perturbation using in vitro cell models, in vivo xenografts, and ex vivo in patient-derived explants (PDE). RESULTS Key findings reveal: (i) the first-in-field DNA-PK protein interactome; (ii) numerous DNA-PK novel partners involved in glycolysis; (iii) DNA-PK interacts with, phosphorylates (in vitro), and increases the enzymatic activity of glycolytic enzymes ALDOA and PKM2; (iv) DNA-PK drives synthesis of glucose-derived pyruvate and lactate; (v) DNA-PK regulates glycolysis in vitro, in vivo, and ex vivo; and (vi) combination of DNA-PK inhibitor with glycolytic inhibitor 2-deoxyglucose leads to additive anti-proliferative effects in aggressive disease. CONCLUSIONS Findings herein unveil novel DNA-PK partners, substrates, and function in prostate cancer. DNA-PK impacts glycolysis through direct interaction with glycolytic enzymes and modulation of enzymatic activity. These events support energy production that may contribute to generation and/or maintenance of DNA-PK-mediated aggressive disease phenotypes.
Collapse
Affiliation(s)
- Emanuela Dylgjeri
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vishal Kothari
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ayesha A. Shafi
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Galina Semenova
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Peter T. Gallagher
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yi F. Guan
- School of Medical Sciences and Prince of Wales Clinical School, UNSW Sydney, Sydney, Australia
| | - Angel Pang
- School of Medical Sciences and Prince of Wales Clinical School, UNSW Sydney, Sydney, Australia
| | - Jonathan F. Goodwin
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Swati Irani
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School and Freemasons Foundation Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia
| | - Jennifer J. McCann
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Amy C. Mandigo
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Saswati Chand
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher M. McNair
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Irina Vasilevskaya
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew J. Schiewer
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Urology, Medical Oncology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Costas D. Lallas
- Department of Urology, Medical Oncology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Peter A. McCue
- Department of Urology, Medical Oncology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Leonard G. Gomella
- Department of Urology, Medical Oncology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Erin L. Seifert
- Department of Pathology, Anatomy and Cell Biology and MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jason S. Carroll
- Cancer Research UK Cambridge Research Institute, England, United Kingdom
| | - Lisa M. Butler
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School and Freemasons Foundation Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia
| | - Jeff Holst
- School of Medical Sciences and Prince of Wales Clinical School, UNSW Sydney, Sydney, Australia
| | - William K. Kelly
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Urology, Medical Oncology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Karen E. Knudsen
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Urology, Medical Oncology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Fu W, Zhao MT, Driver LM, Schirmer AU, Yin Q, You S, Freedland SJ, DiGiovanni J, Drewry DH, Macias E. NUAK family kinase 2 is a novel therapeutic target for prostate cancer. Mol Carcinog 2021; 61:334-345. [PMID: 34818445 DOI: 10.1002/mc.23374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/10/2022]
Abstract
Current advancements in prostate cancer (PC) therapies have been successful in slowing PC progression and increasing life expectancy; however, there is still no curative treatment for advanced metastatic castration resistant PC (mCRPC). Most treatment options target the androgen receptor, to which many PCs eventually develop resistance. Thus, there is a dire need to identify and validate new molecular targets for treating PC. We found NUAK family kinase 2 (NUAK2) expression is elevated in PC and mCRPC versus normal tissue, and expression correlates with an increased risk of metastasis. Given this observation and because NUAK2, as a kinase, is actionable, we evaluated the potential of NUAK2 as a molecular target for PC. NUAK2 is a stress response kinase that also plays a role in activation of the YAP cotranscriptional oncogene. Combining pharmacological and genetic methods for modulating NUAK2, we found that targeting NUAK2 in vitro leads to reduction in proliferation, three-dimensional tumor spheroid growth, and matrigel invasion of PC cells. Differential gene expression analysis of PC cells treated NUAK2 small molecule inhibitor HTH-02-006 demonstrated that NUAK2 inhibition results in downregulation of E2F, EMT, and MYC hallmark gene sets after NUAK2 inhibition. In a syngeneic allograft model and in radical prostatectomy patient derived explants, NUAK2 inhibition slowed tumor growth and proliferation rates. Mechanistically, HTH-02-006 treatment led to inactivation of YAP and the downregulation of NUAK2 and MYC protein levels. Our results suggest that NUAK2 represents a novel actionable molecular target for PC that warrants further exploration.
Collapse
Affiliation(s)
- Weiwei Fu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Megan T Zhao
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Lucy M Driver
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Amelia U Schirmer
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Qi Yin
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sungyong You
- Department of Biomedical Science, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stephen J Freedland
- Department of Surgery and Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Durham VA Medical Center, Durham, North Carolina, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology and Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas, USA
| | - David H Drewry
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,UNC Lineberger Comprehensive Cancer Center, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Everardo Macias
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
21
|
El-Kenawi A, Dominguez-Viqueira W, Liu M, Awasthi S, Abraham-Miranda J, Keske A, Steiner KK, Noel L, Serna AN, Dhillon J, Gillies RJ, Yu X, Koomen JM, Yamoah K, Gatenby RA, Ruffell B. Macrophage-derived cholesterol contributes to therapeutic resistance in prostate cancer. Cancer Res 2021; 81:5477-5490. [PMID: 34301759 DOI: 10.1158/0008-5472.can-20-4028] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/16/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022]
Abstract
Castration-resistant prostate cancer (CRPC) is a lethal stage of disease in which androgen receptor (AR) signaling is persistent despite androgen deprivation therapy (ADT). Most studies have focused on investigating cell-autonomous alterations in CRPC, while the contributions of the tumor microenvironment are less well understood. Here we sought to determine the role of tumor-associated macrophages in CRPC, based upon their role in cancer progression and therapeutic resistance. In a syngeneic model that reflected the mutational landscape of CRPC, macrophage depletion resulted in a reduced transcriptional signature for steroid and bile acid synthesis, indicating potential perturbation of cholesterol metabolism. As cholesterol is the precursor of the five major types of steroid hormones, we hypothesized that macrophages were regulating androgen biosynthesis within the prostate tumor microenvironment. Macrophage depletion reduced androgen levels within prostate tumors and restricted androgen receptor (AR) nuclear localization in vitro and in vivo. Macrophages were also cholesterol-rich and were able to transfer cholesterol to tumor cells in vitro. AR nuclear translocation was inhibited by activation of Liver X Receptor (LXR)-β, the master regulator of cholesterol homeostasis. Consistent with these data, macrophage depletion extended survival during ADT and the presence of macrophages correlated with therapeutic resistance in patient-derived explants. Taken together, these findings support the therapeutic targeting of macrophages in CRPC.
Collapse
Affiliation(s)
- Asmaa El-Kenawi
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Min Liu
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Shivanshu Awasthi
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Julieta Abraham-Miranda
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Aysenur Keske
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - KayLee K Steiner
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Leenil Noel
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Amparo N Serna
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jasreman Dhillon
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Robert J Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - John M Koomen
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kosj Yamoah
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Robert A Gatenby
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
22
|
Abraham-Miranda J, Awasthi S, Yamoah K. Immunologic disparities in prostate cancer between American men of African and European descent. Crit Rev Oncol Hematol 2021; 164:103426. [PMID: 34273500 DOI: 10.1016/j.critrevonc.2021.103426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/18/2020] [Accepted: 07/12/2021] [Indexed: 11/27/2022] Open
Abstract
Health disparities between American men of African and European descent (AA and EA, respectively) can be attributed to multiple factors, including disparities in socioeconomic status, access to healthcare, lifestyle, ancestry, and molecular aberrations. Numerous clinical trials and research studies are being performed to identify new and better therapeutic approaches to detect and treat prostate cancer. Of potential concern is the fact that the majority of the patients enrolled on these trials are EA. This disproportionate enrollment of EA could have implications when disease management recommendations are proposed without regard to the existing disparities in prostate cancer between races. With increasing advancements in immunotherapies, the immunological disparities between men of diverse ethnicities will need to be fully explored to develop novel and effective therapeutic approaches for prostate cancer patients globally. To help address this need, this review fully describes inequalities in prostate cancer at the immunological level between AA and EA.
Collapse
Affiliation(s)
- Julieta Abraham-Miranda
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Shivanshu Awasthi
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Kosj Yamoah
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA; Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
23
|
Alexander JI, Vendramini-Costa DB, Francescone R, Luong T, Franco-Barraza J, Shah N, Gardiner JC, Nicolas E, Raghavan KS, Cukierman E. Palladin isoforms 3 and 4 regulate cancer-associated fibroblast pro-tumor functions in pancreatic ductal adenocarcinoma. Sci Rep 2021; 11:3802. [PMID: 33589694 PMCID: PMC7884442 DOI: 10.1038/s41598-021-82937-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/27/2021] [Indexed: 02/04/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) has a five-year survival under 10%. Treatment is compromised due to a fibrotic-like stromal remodeling process, known as desmoplasia, which limits therapeutic perfusion, supports tumor progression, and establishes an immunosuppressive microenvironment. These processes are driven by cancer-associated fibroblasts (CAFs), functionally activated through transforming growth factor beta1 (TGFβ1). CAFs produce a topographically aligned extracellular matrix (ECM) that correlates with reduced overall survival. Paradoxically, ablation of CAF populations results in a more aggressive disease, suggesting CAFs can also restrain PDAC progression. Thus, unraveling the mechanism(s) underlying CAF functions could lead to therapies that reinstate the tumor-suppressive features of the pancreatic stroma. CAF activation involves the f-actin organizing protein palladin. CAFs express two palladin isoforms (iso3 and iso4) which are up-regulated in response to TGFβ1. However, the roles of iso3 and iso4 in CAF functions remain elusive. Using a CAF-derived ECM model, we uncovered that iso3/iso4 are required to sustain TGFβ1-dependent CAF activation, secrete immunosuppressive cytokines, and produce a pro-tumoral ECM. Findings demonstrate a novel role for CAF palladin and suggest that iso3/iso4 regulate both redundant and specific tumor-supportive desmoplastic functions. This study highlights the therapeutic potential of targeting CAFs to restore fibroblastic anti-tumor activity in the pancreatic microenvironment.
Collapse
Affiliation(s)
- J I Alexander
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular, Cellular Biology and Genetics Program, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - D B Vendramini-Costa
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - R Francescone
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - T Luong
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - J Franco-Barraza
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - N Shah
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - J C Gardiner
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - E Nicolas
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - K S Raghavan
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular, Cellular Biology and Genetics Program, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - E Cukierman
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Varešlija D, Ward E, Purcell SP, Cosgrove NS, Cocchiglia S, O'Halloran PJ, Charmsaz S, Bane FT, Brett FM, Farrell M, Cryan J, Beausang A, Hudson L, Turnbul AK, Dixon JM, Hill ADK, Priedigkeit N, Oesterreich S, Lee AV, Sims AH, Redmond AM, Carroll JS, Young LS. Comparative analysis of the AIB1 interactome in breast cancer reveals MTA2 as a repressive partner which silences E-Cadherin to promote EMT and associates with a pro-metastatic phenotype. Oncogene 2021; 40:1318-1331. [PMID: 33420368 PMCID: PMC7892341 DOI: 10.1038/s41388-020-01606-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
Steroid regulated cancer cells use nuclear receptors and associated regulatory proteins to orchestrate transcriptional networks to drive disease progression. In primary breast cancer, the coactivator AIB1 promotes estrogen receptor (ER) transcriptional activity to enhance cell proliferation. The function of the coactivator in ER+ metastasis however is not established. Here we describe AIB1 as a survival factor, regulator of pro-metastatic transcriptional pathways and a promising actionable target. Genomic alterations and functional expression of AIB1 associated with reduced disease-free survival in patients and enhanced metastatic capacity in novel CDX and PDX ex-vivo models of ER+ metastatic disease. Comparative analysis of the AIB1 interactome with complementary RNAseq characterized AIB1 as a transcriptional repressor. Specifically, we report that AIB1 interacts with MTA2 to form a repressive complex, inhibiting CDH1 (encoding E-cadherin) to promote EMT and drive progression. We further report that pharmacological and genetic inhibition of AIB1 demonstrates significant anti-proliferative activity in patient-derived models establishing AIB1 as a viable strategy to target endocrine resistant metastasis. This work defines a novel role for AIB1 in the regulation of EMT through transcriptional repression in advanced cancer cells with a considerable implication for prognosis and therapeutic interventions.
Collapse
Affiliation(s)
- Damir Varešlija
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Elspeth Ward
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Siobhan P Purcell
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nicola S Cosgrove
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sinéad Cocchiglia
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Philip J O'Halloran
- Department of Neurosurgery, National Neurosurgical Center, Beaumont Hospital, Dublin, Ireland
| | - Sara Charmsaz
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fiona T Bane
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Francesca M Brett
- Department of Neuropathology, National Neurosurgical Center, Beaumont Hospital, Dublin, Ireland
| | - Michael Farrell
- Department of Neuropathology, National Neurosurgical Center, Beaumont Hospital, Dublin, Ireland
| | - Jane Cryan
- Department of Neuropathology, National Neurosurgical Center, Beaumont Hospital, Dublin, Ireland
| | - Alan Beausang
- Department of Neuropathology, National Neurosurgical Center, Beaumont Hospital, Dublin, Ireland
| | - Lance Hudson
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Arran K Turnbul
- Breast Cancer Now Research Laboratories, Edinburgh, EH4 2XU, UK
| | - J Michael Dixon
- Breast Cancer Now Research Laboratories, Edinburgh, EH4 2XU, UK
| | - Arnold D K Hill
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nolan Priedigkeit
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Women's Cancer Research Center, Magee-Women's Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Women's Cancer Research Center, Magee-Women's Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew H Sims
- Applied Bioinformatics of Cancer Group, University of Edinburgh Cancer Research UK Centre, MRC Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - Aisling M Redmond
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Leonie S Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
25
|
AlMusawi S, Ahmed M, Nateri AS. Understanding cell-cell communication and signaling in the colorectal cancer microenvironment. Clin Transl Med 2021; 11:e308. [PMID: 33635003 PMCID: PMC7868082 DOI: 10.1002/ctm2.308] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Carcinomas are complex heterocellular systems containing epithelial cancer cells, stromal fibroblasts, and multiple immune cell-types. Cell-cell communication between these tumor microenvironments (TME) and cells drives cancer progression and influences response to existing therapies. In order to provide better treatments for patients, we must understand how various cell-types collaborate within the TME to drive cancer and consider the multiple signals present between and within different cancer types. To investigate how tissues function, we need a model to measure both how signals are transferred between cells and how that information is processed within cells. The interplay of collaboration between different cell-types requires cell-cell communication. This article aims to review the current in vitro and in vivo mono-cellular and multi-cellular cultures models of colorectal cancer (CRC), and to explore how they can be used for single-cell multi-omics approaches for isolating multiple types of molecules from a single-cell required for cell-cell communication to distinguish cancer cells from normal cells. Integrating the existing single-cell signaling measurements and models, and through understanding the cell identity and how different cell types communicate, will help predict drug sensitivities in tumor cells and between- and within-patients responses.
Collapse
Affiliation(s)
- Shaikha AlMusawi
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Division of Cancer & Stem Cells, School of MedicineUniversity of NottinghamNottinghamUK
| | - Mehreen Ahmed
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Division of Cancer & Stem Cells, School of MedicineUniversity of NottinghamNottinghamUK
- Department of Laboratory Medicine, Division of Translational Cancer ResearchLund UniversityLundSweden
| | - Abdolrahman S. Nateri
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Division of Cancer & Stem Cells, School of MedicineUniversity of NottinghamNottinghamUK
| |
Collapse
|
26
|
Ex vivo culture of intact human patient derived pancreatic tumour tissue. Sci Rep 2021; 11:1944. [PMID: 33479301 PMCID: PMC7820421 DOI: 10.1038/s41598-021-81299-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is attributed to the highly fibrotic stroma and complex multi-cellular microenvironment that is difficult to fully recapitulate in pre-clinical models. To fast-track translation of therapies and to inform personalised medicine, we aimed to develop a whole-tissue ex vivo explant model that maintains viability, 3D multicellular architecture, and microenvironmental cues of human pancreatic tumours. Patient-derived surgically-resected PDAC tissue was cut into 1-2 mm explants and cultured on gelatin sponges for 12 days. Immunohistochemistry revealed that human PDAC explants were viable for 12 days and maintained their original tumour, stromal and extracellular matrix architecture. As proof-of-principle, human PDAC explants were treated with Abraxane and we observed different levels of response between patients. PDAC explants were also transfected with polymeric nanoparticles + Cy5-siRNA and we observed abundant cytoplasmic distribution of Cy5-siRNA throughout the PDAC explants. Overall, our novel model retains the 3D architecture of human PDAC and has advantages over standard organoids: presence of functional multi-cellular stroma and fibrosis, and no tissue manipulation, digestion, or artificial propagation of organoids. This provides unprecedented opportunity to study PDAC biology including tumour-stromal interactions and rapidly assess therapeutic response to drive personalised treatment.
Collapse
|
27
|
The circadian cryptochrome, CRY1, is a pro-tumorigenic factor that rhythmically modulates DNA repair. Nat Commun 2021; 12:401. [PMID: 33452241 PMCID: PMC7810852 DOI: 10.1038/s41467-020-20513-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/03/2020] [Indexed: 01/01/2023] Open
Abstract
Mechanisms regulating DNA repair processes remain incompletely defined. Here, the circadian factor CRY1, an evolutionally conserved transcriptional coregulator, is identified as a tumor specific regulator of DNA repair. Key findings demonstrate that CRY1 expression is androgen-responsive and associates with poor outcome in prostate cancer. Functional studies and first-in-field mapping of the CRY1 cistrome and transcriptome reveal that CRY1 regulates DNA repair and the G2/M transition. DNA damage stabilizes CRY1 in cancer (in vitro, in vivo, and human tumors ex vivo), which proves critical for efficient DNA repair. Further mechanistic investigation shows that stabilized CRY1 temporally regulates expression of genes required for homologous recombination. Collectively, these findings reveal that CRY1 is hormone-induced in tumors, is further stabilized by genomic insult, and promotes DNA repair and cell survival through temporal transcriptional regulation. These studies identify the circadian factor CRY1 as pro-tumorigenic and nominate CRY1 as a new therapeutic target. Cryptochrome 1 (CRY1) is a transcriptional coregulator associated with the circadian clock. Here the authors reveal that CRY1 is hormone-regulated, stabilized by genomic insult, and promotes DNA repair and cell survival through temporal transcriptional regulation.
Collapse
|
28
|
Patient-derived tumour models for personalized therapeutics in urological cancers. Nat Rev Urol 2020; 18:33-45. [PMID: 33173206 DOI: 10.1038/s41585-020-00389-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Preclinical knowledge of dysregulated pathways and potential biomarkers for urological cancers has undergone limited translation into the clinic. Moreover, the low approval rate of new anticancer drugs and the heterogeneous drug responses in patients indicate that current preclinical models do not always reflect the complexity of malignant disease. Patient-derived tumour models used in preclinical uro-oncology research include 3D culture systems, organotypic tissue slices and patient-derived xenograft models. Technological innovations have enabled major improvements in the capacity of these tumour models to reproduce the clinical complexity of urological cancers. Each type of patient-derived model has inherent advantages and limitations that can be exploited, either alone or in combination, to gather specific knowledge on clinical challenges and address unmet clinical needs. Nevertheless, few opportunities exist for patients with urological cancers to benefit from personalized therapeutic approaches. Clinical validation of experimental data is needed to facilitate the translation and implementation of preclinical knowledge into treatment decision making.
Collapse
|
29
|
Characterization of somatic mutation-associated microenvironment signatures in acute myeloid leukemia patients based on TCGA analysis. Sci Rep 2020; 10:19037. [PMID: 33149230 PMCID: PMC7643165 DOI: 10.1038/s41598-020-76048-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/21/2020] [Indexed: 01/05/2023] Open
Abstract
Recurrent genetic mutations occur in acute myeloid leukemia (AML) and have been incorporated into risk stratification to predict the prognoses of AML patients. The bone marrow microenvironment plays a critical role in the development and progression of AML. However, the characteristics of the genetic mutation-associated microenvironment have not been comprehensively identified to date. In this study, we obtained the gene expression profiles of 173 AML patients from The Cancer Genome Atlas (TCGA) database and calculated their immune and stromal scores by applying the ESTIMATE algorithm. Immune scores were significantly associated with OS and cytogenetic risk. Next, we categorized the intermediate and poor cytogenetic risk patients into individual-mutation and wild-type groups according to RUNX1, ASXL1, TP53, FLT3-ITD, NPM1 and biallelic CEBPA mutation status. The relationships between the immune microenvironment and each genetic mutation were investigated by identifying differentially expressed genes (DEGs) and conducting functional enrichment analyses of them. Significant immune- and stromal-relevant DEGs associated with each mutation were identified, and most of the DEGs (from the FLT3-ITD, NPM1 and biallelic CEBPA mutation groups) were validated in the GSE14468 cohort downloaded from the Gene Expression Omnibus (GEO) database. In summary, we identified key immune- and stromal-relevant gene signatures associated with genetic mutations in AML, which may provide new biomarkers for risk stratification and personalized immunotherapy.
Collapse
|
30
|
Contartese D, Salamanna F, Veronesi F, Fini M. Relevance of humanized three-dimensional tumor tissue models: a descriptive systematic literature review. Cell Mol Life Sci 2020; 77:3913-3944. [PMID: 32285137 PMCID: PMC11104864 DOI: 10.1007/s00018-020-03513-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
Despite numerous advances in tumor screening, diagnosis, and treatment, to date, tumors remain one of the leading causes of death, principally due to metastasis and the physiological damage produced by tumor growth. Among the main limits related to the study of tumor physiology there is the complex and heterogeneity nature of its environment and the absence of relevant, simple and inexpensive models able to mimic the biological processes occurring in patients allowing the correct clinical translation of results. To enhance the understanding of the mechanisms of tumors and to develop and evaluate new therapeutic approaches the set-up of advanced and alternative models is mandatory. One of the more translational approaches seems to be the use of humanized three-dimensional (3D) tissue culture. This model allows to accurately mimic tumor morphology and biology, maintaining the native microenvironment without any manipulation. However, little is still known on the real clinical relevance of these models for the study of tumor mechanisms and for the screening of new therapy. The aim of this descriptive systematic literature review was to evaluate and summarize the current knowledge on human 3D tumor tissue culture models. We reviewed the strategies employed by researchers to set-up these systems, also considering the different approaches and culture conditions used. All these aspects greatly contribute to the existing knowledge on tumors, providing a specific link to clinical scenarios and making the humanized 3D tumor tissue models a more attractive tool both for researchers and clinicians.
Collapse
Affiliation(s)
- D Contartese
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy
| | - Francesca Salamanna
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy.
| | - F Veronesi
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy
| | - M Fini
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy
| |
Collapse
|
31
|
Matossian MD, Giardina AA, Wright MK, Elliott S, Loch MM, Nguyen K, Zea AH, Lau FH, Moroz K, Riker AI, Jones SD, Martin EC, Bunnell BA, Miele L, Collins-Burow BM, Burow ME. Patient-Derived Xenografts as an Innovative Surrogate Tumor Model for the Investigation of Health Disparities in Triple Negative Breast Cancer. ACTA ACUST UNITED AC 2020; 1:383-392. [PMID: 33786503 PMCID: PMC7784803 DOI: 10.1089/whr.2020.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2020] [Indexed: 12/24/2022]
Abstract
Despite a decline in overall incidence rates for cancer in the past decade, due in part to impressive advancements in both diagnosis and treatment, breast cancer (BC) remains the leading cause of cancer-related deaths in women. BC alone accounts for ∼30% of all new cancer diagnoses in women worldwide. Triple-negative BC (TNBC), defined as having no expression of the estrogen or progesterone receptors and no amplification of the HER2 receptor, is a subtype of BC that does not benefit from the use of estrogen receptor-targeting or HER2-targeting therapies. Differences in socioeconomic factors and cell intrinsic and extrinsic characteristics have been demonstrated in Black and White TNBC patient tumors. The emergence of patient-derived xenograft (PDX) models as a surrogate, translational, and functional representation of the patient with TNBC has led to the advances in drug discovery and testing of novel targeted approaches and combination therapies. However, current established TNBC PDX models fail to represent the diverse patient population and, most importantly, the specific ethnic patient populations that have higher rates of incidence and mortality. The primary aim of this review is to emphasize the importance of using clinically relevant translatable tumor models that reflect TNBC human tumor biology and heterogeneity in high-risk patient populations. The focus is to highlight the complexity of BC as it specifically relates to the management of TNBC in Black women. We discuss the importance of utilizing PDX models to study the extracellular matrix (ECM), and the distinct differences in ECM composition and biophysical properties in Black and White women. Finally, we demonstrate the crucial importance of PDX models toward novel drug discovery in this patient population.
Collapse
Affiliation(s)
- Margarite D Matossian
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Alexandra A Giardina
- Biospecimen Core Laboratory, Louisiana Cancer Research Center, New Orleans, Louisiana, USA
| | - Maryl K Wright
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Steven Elliott
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Michelle M Loch
- Section of Hematology and Oncology, Department of Medicine, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| | - Khoa Nguyen
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Arnold H Zea
- Biospecimen Core Laboratory, Louisiana Cancer Research Center, New Orleans, Louisiana, USA.,Department of Genetics and Stanley S. Scott Cancer Center, Louisiana Health Sciences Center, New Orleans, Louisiana, USA
| | - Frank H Lau
- Department of Surgery, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| | - Krzysztof Moroz
- Biospecimen Core Laboratory, Louisiana Cancer Research Center, New Orleans, Louisiana, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Adam I Riker
- Department of Surgery, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA.,Department of Surgery, DeCesaris Cancer Institute, Anne Arundel Medical Center, Luminis Health, Annapolis, Maryland, USA
| | - Steven D Jones
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Elizabeth C Martin
- Department of Biological & Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bruce A Bunnell
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Lucio Miele
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana Health Sciences Center, New Orleans, Louisiana, USA
| | - Bridgette M Collins-Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Matthew E Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
32
|
Fontana F, Raimondi M, Marzagalli M, Sommariva M, Gagliano N, Limonta P. Three-Dimensional Cell Cultures as an In Vitro Tool for Prostate Cancer Modeling and Drug Discovery. Int J Mol Sci 2020; 21:E6806. [PMID: 32948069 PMCID: PMC7554845 DOI: 10.3390/ijms21186806] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
In the last decade, three-dimensional (3D) cell culture technology has gained a lot of interest due to its ability to better recapitulate the in vivo organization and microenvironment of in vitro cultured cancer cells. In particular, 3D tumor models have demonstrated several different characteristics compared with traditional two-dimensional (2D) cultures and have provided an interesting link between the latter and animal experiments. Indeed, 3D cell cultures represent a useful platform for the identification of the biological features of cancer cells as well as for the screening of novel antitumor agents. The present review is aimed at summarizing the most common 3D cell culture methods and applications, with a focus on prostate cancer modeling and drug discovery.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Androgens
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Culture Techniques/instrumentation
- Cell Culture Techniques/methods
- Cell Hypoxia
- Drug Discovery/methods
- Drug Screening Assays, Antitumor/instrumentation
- Drug Screening Assays, Antitumor/methods
- Energy Metabolism
- Epithelial-Mesenchymal Transition
- Extracellular Matrix/metabolism
- Humans
- Inflammation
- Male
- Molecular Targeted Therapy
- Monitoring, Immunologic
- Neoplasm Metastasis
- Neoplasm Proteins/metabolism
- Neoplasms, Hormone-Dependent/drug therapy
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Neoplastic Stem Cells/cytology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neovascularization, Pathologic/drug therapy
- Oxidation-Reduction
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/therapy
- Spheroids, Cellular/drug effects
- Therapies, Investigational
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy; (M.R.); (M.M.); (P.L.)
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy; (M.R.); (M.M.); (P.L.)
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy; (M.R.); (M.M.); (P.L.)
| | - Michele Sommariva
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 20133 Milan, Italy; (M.S.); (N.G.)
| | - Nicoletta Gagliano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 20133 Milan, Italy; (M.S.); (N.G.)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy; (M.R.); (M.M.); (P.L.)
| |
Collapse
|
33
|
Risbridger GP, Lawrence MG, Taylor RA. PDX: Moving Beyond Drug Screening to Versatile Models for Research Discovery. J Endocr Soc 2020; 4:bvaa132. [PMID: 33094211 PMCID: PMC7566391 DOI: 10.1210/jendso/bvaa132] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/10/2020] [Indexed: 01/08/2023] Open
Abstract
Patient-derived xenografts (PDXs) are tools of the trade for many researchers from all disciplines and medical specialties. Most endocrinologists, and especially those working in oncology, commonly use PDXs for preclinical drug testing and development, and over the last decade large collections of PDXs have emerged across all tumor streams. In this review, we examine how the field has evolved to include PDXs as versatile resources for research discoveries, providing evidence for guidelines and changes in clinical practice.
Collapse
Affiliation(s)
- Gail P Risbridger
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Melbourne, Victoria, Australia.,Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Mitchell G Lawrence
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Melbourne, Victoria, Australia.,Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Renea A Taylor
- Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Physiology, Biomedicine Discovery Institute Cancer Program, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Novel patient-derived 3D culture models to guide clinical decision-making in prostate cancer. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.coemr.2020.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Franco-Barraza J, Raghavan KS, Luong T, Cukierman E. Engineering clinically-relevant human fibroblastic cell-derived extracellular matrices. Methods Cell Biol 2020; 156:109-160. [PMID: 32222216 DOI: 10.1016/bs.mcb.2019.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three-dimensional (3D) culturing models, replicating in vivo tissue microenvironments that incorporate native extracellular matrix (ECM), have revolutionized the cell biology field. Fibroblastic cells generate lattices of interstitial ECM proteins. Cell interactions with ECMs and with molecules sequestered/stored within these are crucial for tissue development and homeostasis maintenance. Hence, ECMs provide cells with biochemical and biomechanical cues to support and locally control cell function. Further, dynamic changes in ECMs, and in cell-ECM interactions, partake in growth, development, and temporary occurrences such as acute wound healing. Notably, dysregulation in ECMs and fibroblasts could be important triggers and modulators of pathological events such as developmental defects, and diseases associated with fibrosis and chronic inflammation such as cancer. Studying the type of fibroblastic cells producing these matrices and how alterations to these cells enable changes in ECMs are of paramount importance. This chapter provides a step-by-step method for producing multilayered (e.g., 3D) fibroblastic cell-derived matrices (fCDM). Methods also include means to assess ECM topography and other cellular traits, indicative of fibroblastic functional statuses, like naïve/normal vs. inflammatory and/or myofibroblastic. For these, protocols include indications for isolating normal and diseased fibroblasts (i.e., cancer-associated fibroblasts known as CAFs). Protocols also include means for conducting microscopy assessments, querying whether fibroblasts present with fCDM-dependent normal or CAF phenotypes. These are supported by discrete semi-quantitative digital imaging analyses, providing some imaging processing advice. Additionally, protocols include descriptions for effective fCDM decellularization, which renders cellular debris-free patho/physiological in vivo-like scaffolds, suitable as 3D substrates for subsequent cell culturing.
Collapse
Affiliation(s)
- Janusz Franco-Barraza
- Cancer Biology, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Kristopher S Raghavan
- Cancer Biology, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, United States; College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Tiffany Luong
- Cancer Biology, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Edna Cukierman
- Cancer Biology, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, United States.
| |
Collapse
|
36
|
Powley IR, Patel M, Miles G, Pringle H, Howells L, Thomas A, Kettleborough C, Bryans J, Hammonds T, MacFarlane M, Pritchard C. Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery. Br J Cancer 2020; 122:735-744. [PMID: 31894140 PMCID: PMC7078311 DOI: 10.1038/s41416-019-0672-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/30/2019] [Accepted: 11/15/2019] [Indexed: 01/04/2023] Open
Abstract
Preclinical models that can accurately predict outcomes in the clinic are much sought after in the field of cancer drug discovery and development. Existing models such as organoids and patient-derived xenografts have many advantages, but they suffer from the drawback of not contextually preserving human tumour architecture. This is a particular problem for the preclinical testing of immunotherapies, as these agents require an intact tumour human-specific microenvironment for them to be effective. In this review, we explore the potential of patient-derived explants (PDEs) for fulfilling this need. PDEs involve the ex vivo culture of fragments of freshly resected human tumours that retain the histological features of original tumours. PDE methodology for anti-cancer drug testing has been in existence for many years, but the platform has not been widely adopted in translational research facilities, despite strong evidence for its clinical predictivity. By modifying PDE endpoint analysis to include the spatial profiling of key biomarkers by using multispectral imaging, we argue that PDEs offer many advantages, including the ability to correlate drug responses with tumour pathology, tumour heterogeneity and changes in the tumour microenvironment. As such, PDEs are a powerful model of choice for cancer drug and biomarker discovery programmes.
Collapse
Affiliation(s)
- Ian R Powley
- Leicester Cancer Research Centre, University of Leicester, Clinical Sciences Building, Leicester, LE2 7LX, UK.
| | - Meeta Patel
- Leicester Cancer Research Centre, University of Leicester, Clinical Sciences Building, Leicester, LE2 7LX, UK
| | - Gareth Miles
- Leicester Cancer Research Centre, University of Leicester, Clinical Sciences Building, Leicester, LE2 7LX, UK
| | - Howard Pringle
- Leicester Cancer Research Centre, University of Leicester, Clinical Sciences Building, Leicester, LE2 7LX, UK
| | - Lynne Howells
- Leicester Cancer Research Centre, University of Leicester, Clinical Sciences Building, Leicester, LE2 7LX, UK
| | - Anne Thomas
- Leicester Cancer Research Centre, University of Leicester, Clinical Sciences Building, Leicester, LE2 7LX, UK
| | | | - Justin Bryans
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Tim Hammonds
- Cancer Research UK, Therapeutics Discovery Laboratories, London Bioscience Innovation Centre, 2 Royal College Street, London, NW1 0NH, UK
| | - Marion MacFarlane
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK.
| | - Catrin Pritchard
- Leicester Cancer Research Centre, University of Leicester, Clinical Sciences Building, Leicester, LE2 7LX, UK.
| |
Collapse
|
37
|
Huang S, Zhang B, Fan W, Zhao Q, Yang L, Xin W, Fu D. Identification of prognostic genes in the acute myeloid leukemia microenvironment. Aging (Albany NY) 2019; 11:10557-10580. [PMID: 31740623 PMCID: PMC6914404 DOI: 10.18632/aging.102477] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
Abstract
The tumor microenvironment (TME) has a strong influence on the progression, therapeutic response, and clinical outcome of acute myeloid leukemia (AML), one of the most common hematopoietic malignancies in adults. In this study, we identified TME-related genes associated with AML prognosis. Gene expression profiles from AML patients were downloaded from TCGA database, and immune and stromal scores were calculated using the ESTIMATE algorithm. Immune scores were correlated with clinical features such as FAB subtypes and patient's age. After categorizing AML cases into high and low score groups, an association between several differentially expressed genes (DEGs) and overall survival was identified. Functional enrichment analysis of the DEGs showed that they were primarily enriched in the immune response, inflammatory response, and cytokine activity, and were involved in signaling processes related to hematopoietic cell lineage, B cell receptor, and chemokine pathways. Two significant modules, dominated respectively by CCR5 and ITGAM nodes, were identified from the PPI network, and 20 hub genes were extracted. A total of 112 DEGs correlated with poor overall survival of AML patients, and 11 of those genes were validated in a separate TARGET-AML cohort. By identifying TME-associated genes, our findings may lead to improved prognoses and therapies for AML.
Collapse
Affiliation(s)
- Shaoxin Huang
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, China
| | - Biyu Zhang
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, Jiangxi 332005, China
| | - Wenyan Fan
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, China
| | - Qihan Zhao
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, China
| | - Lei Yang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Wang Xin
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, China
| | - Denggang Fu
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, China
- Institute of Genomic and Personalized Medicine, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
38
|
Dylgjeri E, McNair C, Goodwin JF, Raymon HK, McCue PA, Shafi AA, Leiby BE, de Leeuw R, Kothari V, McCann JJ, Mandigo AC, Chand SN, Schiewer MJ, Brand LJ, Vasilevskaya I, Gordon N, Laufer TS, Gomella LG, Lallas CD, Trabulsi EJ, Feng FY, Filvaroff EH, Hege K, Rathkopf D, Knudsen KE. Pleiotropic Impact of DNA-PK in Cancer and Implications for Therapeutic Strategies. Clin Cancer Res 2019; 25:5623-5637. [PMID: 31266833 DOI: 10.1158/1078-0432.ccr-18-2207] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/28/2018] [Accepted: 03/05/2019] [Indexed: 01/14/2023]
Abstract
PURPOSE DNA-dependent protein kinase catalytic subunit (DNA-PK) is a pleiotropic kinase involved in DNA repair and transcriptional regulation. DNA-PK is deregulated in selected cancer types and is strongly associated with poor outcome. The underlying mechanisms by which DNA-PK promotes aggressive tumor phenotypes are not well understood. Here, unbiased molecular investigation in clinically relevant tumor models reveals novel functions of DNA-PK in cancer.Experimental Design: DNA-PK function was modulated using both genetic and pharmacologic methods in a series of in vitro models, in vivo xenografts, and patient-derived explants (PDE), and the impact on the downstream signaling and cellular cancer phenotypes was discerned. Data obtained were used to develop novel strategies for combinatorial targeting of DNA-PK and hormone signaling pathways. RESULTS Key findings reveal that (i) DNA-PK regulates tumor cell proliferation; (ii) pharmacologic targeting of DNA-PK suppresses tumor growth both in vitro, in vivo, and ex vivo; (iii) DNA-PK transcriptionally regulates the known DNA-PK-mediated functions as well as novel cancer-related pathways that promote tumor growth; (iv) dual targeting of DNA-PK/TOR kinase (TORK) transcriptionally upregulates androgen signaling, which can be mitigated using the androgen receptor (AR) antagonist enzalutamide; (v) cotargeting AR and DNA-PK/TORK leads to the expansion of antitumor effects, uncovering the modulation of novel, highly relevant protumorigenic cancer pathways; and (viii) cotargeting DNA-PK/TORK and AR has cooperative growth inhibitory effects in vitro and in vivo. CONCLUSIONS These findings uncovered novel DNA-PK transcriptional regulatory functions and led to the development of a combinatorial therapeutic strategy for patients with advanced prostate cancer, currently being tested in the clinical setting.
Collapse
Affiliation(s)
- Emanuela Dylgjeri
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher McNair
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jonathan F Goodwin
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Peter A McCue
- Department of Urology, Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ayesha A Shafi
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Benjamin E Leiby
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Renée de Leeuw
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vishal Kothari
- Department of Urology, Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jennifer J McCann
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Amy C Mandigo
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Saswati N Chand
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew J Schiewer
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lucas J Brand
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Irina Vasilevskaya
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nicolas Gordon
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Talya S Laufer
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Leonard G Gomella
- Department of Urology, Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Costas D Lallas
- Department of Urology, Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Edouard J Trabulsi
- Department of Urology, Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Felix Y Feng
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | | | - Dana Rathkopf
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Karen E Knudsen
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania. .,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Urology, Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, Pennsylvania.,Departments of Medical Oncology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Singla N. ETS Rearrangements, Neuroendocrine Modulators, and Androgen Resistance: What Can the Microenvironment Reveal in Prostate Cancer? Eur Urol Oncol 2019; 2:413-414. [PMID: 31202714 DOI: 10.1016/j.euo.2019.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Nirmish Singla
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
40
|
Miyahira AK, Den RB, Carlo MI, de Leeuw R, Hope TA, Karzai F, McKay RR, Salami SS, Simons JW, Pienta KJ, Soule HR. Tumor cell heterogeneity and resistance; report from the 2018 Coffey-Holden Prostate Cancer Academy Meeting. Prostate 2019; 79:244-258. [PMID: 30381857 DOI: 10.1002/pros.23729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The 2018 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Tumor Cell Heterogeneity and Resistance," was held in Los Angeles, California from June 21 to 24, 2018. METHODS The CHPCA Meeting is a unique, discussion-oriented scientific conference convened annually by the Prostate Cancer Foundation (PCF), which focuses on the most critical topics in need of further study to advance the treatment of lethal prostate cancer. The 6th Annual CHPCA Meeting was attended by 70 investigators and concentrated on prostate cancer heterogeneity and treatment resistance. RESULTS The meeting focused on topics including: recognition of tumor heterogeneity, molecular drivers of heterogeneity, the role of the tumor microenvironment, the role of heterogeneity in disease progression, metastasis and treatment resistance, clinical trials designed to target resistance and tumor heterogeneity, and immunotherapeutic approaches to target and overcome tumor heterogeneity. DISCUSSION This review article summarizes the presentations and discussions from the 2018 CHPCA Meeting in order to share this knowledge with the scientific community and encourage new studies that will lead to improved treatments and outcomes for men with prostate cancer.
Collapse
Affiliation(s)
| | - Robert B Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Maria I Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Renée de Leeuw
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- Department of Radiology, San Francisco VA Medical Center, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Fatima Karzai
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Rana R McKay
- Department of Medicine, Division of Hematology/Oncology, University of California San Diego, San Diego, California
| | - Simpa S Salami
- Department of Urology, University of Michigan Health System, Ann Arbor, Michigan
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan
| | | | - Kenneth J Pienta
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Urology, The James Buchanan Brady Urological Institute, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | | |
Collapse
|