1
|
López-Miranda JL, González-Reyna MA, Elizalde-Mata A, Mares-Briones F, Esparza R, Molina GA, Estévez M. A green approach for biomedical and photocatalytic applications using sargassum-derived nanocellulose foams decorated with MO nanoparticles (M = Zn, Cu). Int J Biol Macromol 2025; 315:144439. [PMID: 40403815 DOI: 10.1016/j.ijbiomac.2025.144439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/30/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Since 2011, Sargassum algae have been invading the shores of the Caribbean, where it has been expanding at an unprecedented rate, generating large quantities of decomposing organic matter and harming the region's economy and ecosystems. As an alternative to mitigate this complex issue, the present study proposes the use and application of Sargassum natans VIII as a source for extracting nanocellulose fibers and as a stabilizing agent during the co-precipitation synthesis of ZnO and CuO quasi-spherical nanoparticles with average sizes of 29 nm and 42 nm, respectively. The environmental and biological properties were evaluated, showing a synergistic effect between nanoparticles and nanocellulose. By forming a decorated foam, the synthesis process described enables us to optimize nanoparticle dispersion, stability, and functional performance within the nanocellulose matrix and a functional composite. With this approach, we achieve improved surface activity of the NPs, resulting in enhanced performance in their anti-inflammatory, antibacterial, and photocatalytic properties. The nanocellulose/CuO inhibited the growth of both Gram-positive and Gram-negative bacterial strains, whereas the nanocellulose/ZnO exhibited antibacterial activity only against Gram-positive strains. On the other hand, nanocellulose/ZnO presented higher anti-inflammatory properties than those of CuO, mainly at high concentrations. Finally, both materials were effective in degrading methylene blue and Congo Red. Therefore, this type of nanomaterial, with its high potential in biomedical and environmental applications, represents an economical, sustainable, highly efficient, reusable, and environmentally friendly material, offering promise in these areas.
Collapse
Affiliation(s)
- J Luis López-Miranda
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Qro., 76230, Mexico
| | - M A González-Reyna
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Qro., 76230, Mexico
| | - Alberto Elizalde-Mata
- Posgrado en Ciencia e Ingeniería de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3000, Querétaro 76230, Mexico
| | - Fabian Mares-Briones
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Qro., 76230, Mexico
| | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Qro., 76230, Mexico
| | - Gustavo A Molina
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Qro., 76230, Mexico; Instituto de Ingeniería, Universidad Nacional Autónoma de México, Edificio 17, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Miriam Estévez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Qro., 76230, Mexico.
| |
Collapse
|
2
|
Yadav PK, Chauhan D, Yadav P, Tiwari AK, Sultana N, Gupta D, Mishra K, Gayen JR, Wahajuddin M, Chourasia MK. Nanotechnology Assisted Drug Delivery Strategies for Chemotherapy: Recent Advances and Future Prospects. ACS APPLIED BIO MATERIALS 2025; 8:3601-3622. [PMID: 40318022 DOI: 10.1021/acsabm.5c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
In pursuit of the treatment of cancer, nanotechnology engineering has emerged as the simplest and most effective means, with the potential to deliver antitumor chemotherapeutics at the targeted site. Employing nanotechnology for drug delivery provides diverse nanosize particles ranging from one to a thousand nanometers. Reduced size improves drug bioavailability by increasing drug diffusion and decreasing the efflux rate. These nanocarriers offer an enormous scope for modification following the chemical and biological properties of both the drug and its disease. Moreover, these nanoformulations assist in targeting pharmaceutically active drug molecules to the desired site and have gained importance in recent years. Their modern use has revolutionized the antitumor action of many therapeutic agents. Higher drug loading efficiency, thermal stability, easy fabrication, low production cost, and large-scale industrial production draw attention to the application of nanotechnology as a better platform for the delivery of drug molecules. Furthermore, the interaction of nanocarrier technology-assisted agents lowers a drug's toxicity and therapeutic dosage, reduces drug tolerance, and enhances active drug concentration in neoplasm tissue, thus decreasing the concentration in healthy tissue. Nanotechnology-based medications are being widely explored and have depicted effective cancer management in vivo and in vitro systems, leading to many clinical trials with promising results. This review summarizes the innovative impact and application of different nanocarriers developed in recent years in cancer therapy. Subsequently, it also describes the essential findings and methodologies and their effects on cancer treatment. Compared with conventional therapy, nanomedicines can significantly improve the therapeutic effectiveness of antitumor drugs. Thus, the adverse effects associated with healthy tissues are decreased, and adverse effects are scaled back through enhanced permeability and retention effects. Lastly, future insights assisting nanotechnology in active therapeutics delivery and their scope in cancer chemotherapeutics have also been discussed.
Collapse
Affiliation(s)
- Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Chauhan
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pooja Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amrendra K Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nazneen Sultana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Deepak Gupta
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Keerti Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Paul S, Joseph A, Hridhya PD, Badawi M, Ajithkumar TG, Parameswaranpillai J, Asrofi M, Midhun Dominic CD. Extraction of highly crystalline and thermally stable cellulose nanofiber from Heliconia psittacorum L.f. leaves. Int J Biol Macromol 2025; 308:142264. [PMID: 40120918 DOI: 10.1016/j.ijbiomac.2025.142264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Extracting cellulose nanofibers (CNF) from agro-waste is one of the promising and practical ways to develop sustainable nanocomposites. In this study, cellulose nanofibers were extracted from the leaves of Heliconia psittacorum for the first time. The combination of oxalic acid hydrolysis (5 wt%) and steam explosion was used for the isolation of CNF from the leaves of Heliconia psittacorum. The structural and chemical features of the prepared CNF were analyzed using various techniques, including Fourier Transform Infrared Spectroscopy (FTIR), Solid state 13C Nuclear Magnetic Resonance Spectroscopy (13C NMR), Scanning Electron Microscopy (SEM), Energy Dispersive X ray analysis (EDX), Transmission electron Microscopy (TEM), X-Ray Diffraction (XRD) and Thermogravimetric analysis (TGA). TEM micrographs reported 15 to 40 nm diameter for the nanofibers synthesized. XRD analysis reported 91 % crystallinity index for CNF, whereas that of the untreated sample was 76 %. The maximum degradation of the CNF is reported at 355 °C, exceeds the untreated sample (316 °C). The tensile strength of the CNF derived paper was found to be 23 MPa. The recovered nanocellulose can be further utilized for various applications such as the automobile industry for developing lightweight parts, biosensors, super capacitors, absorption of greenhouse gases, wastewater treatment, and packaging applications.
Collapse
Affiliation(s)
- Sharon Paul
- Department of Botany, Sacred Heart College (Autonomous), Thevara, Kochi, Kerala, India-682013
| | - Anto Joseph
- Department of Botany, Sacred Heart College (Autonomous), Thevara, Kochi, Kerala, India-682013.
| | - P D Hridhya
- Department of Chemistry, Sacred Heart College (Autonomous), Thevara, Kochi, Kerala, India-682013
| | - Michael Badawi
- Laboratoire Lorrain de Chimie Moléculaire, CNRS, Université de Lorraine, 54000 Nancy, France
| | - T G Ajithkumar
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Jyotishkumar Parameswaranpillai
- AU-Sophisticated Testing and Instrumentation Center, Alliance University, Chandapura Anekal Main Road, Bengaluru 562106, Karnataka, India
| | - Mochamad Asrofi
- Department of Mechanical Engineering, Faculty of Engineering, University of Jember, Indonesia.
| | - C D Midhun Dominic
- Department of Chemistry, Sacred Heart College (Autonomous), Thevara, Kochi, Kerala, India-682013.
| |
Collapse
|
4
|
Takagi A, Niu X, Wang P, Mehling M, Pritchard S, Hahn S, Young H, Guo T, Lu Y, Rojas OJ. High strength kami-ito yarns from microbial cellulose biofilms. Int J Biol Macromol 2025; 307:141861. [PMID: 40058435 DOI: 10.1016/j.ijbiomac.2025.141861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
We develop high-strength, sustainable yarns from microbial biofilms with minimal processing and chemical use. Inspired by the Japanese "kami-ito" () technique for creating yarns from paper, we introduce an eco-friendly alternative to cotton and industrially-produced man-made cellulose fibers using a microbial cellulose source. We culture and dye bacterial cellulose biofilms to produce yarns with tensile strengths of up to 200 MPa (55 MPa in the wet state). These bacterial cellulose (BC) yarns exhibit significant stretchability, with elongation reaching 23 % in dry condition, which is a remarkable improvement when considering the stiffness of typical man-made cellulose filaments and dried BC films. The BC yarns are shown to absorb up to 24 % water at 100 % relative humidity, comparable to natural fibers like hemp and flax. Our findings further underscore a multidisciplinary exploration that integrates biology, art, and design to develop durable, dyeable, and environmentally sustainable textile yarns.
Collapse
Affiliation(s)
- Ayako Takagi
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, BC V6T 1Z4, Canada; Master of Interdisciplinary Design, Industrial Design, Emily Carr University of Art + Design, 520 E 1st Ave, Vancouver, BC V5T 0H2, Canada
| | - Xun Niu
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Peipei Wang
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Marina Mehling
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Samantha Pritchard
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Samuel Hahn
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Heather Young
- Master of Interdisciplinary Design, Industrial Design, Emily Carr University of Art + Design, 520 E 1st Ave, Vancouver, BC V5T 0H2, Canada
| | - Tianyu Guo
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Yi Lu
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Orlando J Rojas
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada; Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada..
| |
Collapse
|
5
|
Zhu J, Du C. Revealing the variation in cellulose microfibrilization dynamics in palm fibers and parenchyma cells. Int J Biol Macromol 2025; 308:142623. [PMID: 40158593 DOI: 10.1016/j.ijbiomac.2025.142623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/26/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
The biomacromolecules spatial arrangement and anatomical structure of plant cell wall play a crucial role in influencing the dynamic process of cellulose microfibrilization. In this work, the microfibrilization dynamics in palm fibers and parenchyma cells has been comprehensively and systematically analyzed via morphology, crystallinity, and biomacromolecule orientation characterization. The results indicate significant differences between the two types of palm cells. Specifically, compared to fibers, parenchyma cells have larger lumens and thinner walls, which make them more accessible to reagent contact. Additionally, the biomacromolecule orientation in parenchyma cells is more disordered, which facilitates easier dissociation. These factors lead to the preferential disintegration of the parenchyma cell walls during the palm microfibrillation process. Specifically, after 20 min of ultrasonic treatment, the parenchyma cells were completely disintegrated, whereas the fiber cell walls began to disintegrate only after 60 min of ultrasonic treatment. The differences in microfibrilization dynamics between two types of palm cells can be used to prepare fiber-reinforced aerogels, where parenchyma cells are preferentially disintegrated into nanocellulose, forming the aerogel matrix. Meanwhile, the fibers, which are not fully disintegrated, retain some strength to serve as the mechanical support units of the aerogel.
Collapse
Affiliation(s)
- Jiawei Zhu
- Bamboo Industry Institute, Zhejiang A & F University, Hangzhou 311300, PR China; College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, PR China; Research Center of Wood-based Resources Comprehensive Utilization, and Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, PR China.
| | - Chungui Du
- Bamboo Industry Institute, Zhejiang A & F University, Hangzhou 311300, PR China; College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, PR China; Research Center of Wood-based Resources Comprehensive Utilization, and Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, PR China.
| |
Collapse
|
6
|
Yang C, Duan G, Zhang C, Huang Y, Li S, Jiang S. Preparation and applications of magnetic nanocellulose composites: A review. Carbohydr Polym 2025; 354:123317. [PMID: 39978902 DOI: 10.1016/j.carbpol.2025.123317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/22/2025]
Abstract
Cellulose is the most abundant biomass material in the world. Magnetic nanoparticles can be used as reinforcing materials to give cellulose more functions due to their unique magnetism. According to the dispersion stability of nanocellulose, magnetic nanocellulose is divided into homogeneous preparation and heterogeneous preparation. In addition, the directional arrangement of nanocellulose by external magnetic field is also a way of cellulose functionalization. The current preparation of magnetic nanocellulose is mainly based on heterogeneous preparation. Magnetic nanofiber cellulose has great application potential in the field of biomedicine and sewage purification due to its special magnetic properties. It can also be applied to sensors, food packaging and other fields. In this paper, the preparation methods of magnetic nanocellulose and its physical magnetism are introduced. Then, the application of magnetic nanocellulose in different fields is reviewed. Finally, the current challenges of magnetic nanocellulose are summarized and the future development trend is prospected.
Collapse
Affiliation(s)
- Chen Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yong Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610000, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
7
|
Gong J, Guo R, Xue P, Zheng Y, Qian G, Chen C, Min D, Tong Y, Lu M. Anionic polyelectrolyte-regulated cellulose nanocrystal-based hydrogels for controllable drug release. Int J Biol Macromol 2025; 303:140712. [PMID: 39914531 DOI: 10.1016/j.ijbiomac.2025.140712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/09/2025]
Abstract
The application of inorganic salt-regulated Hofmeister effects in cellulose nanocrystals (CNC)-based hydrogels is hindered by limitations, including poor biocompatibility and difficulties in achieving precise drug release. In this study, we show that the anionic polyelectrolyte regulated Hofmeister effect promotes the aggregation and crystallization of CNC and polyvinyl alcohol (PVA) chains. This structural transformation significantly enhances the controllability of drug release in CNC-based hydrogels. The incorporation of anionic polyelectrolytes into CNC-based hydrogels creates a semi-interpenetrating polymer network (semi-IPN), significantly enhancing their mechanical properties and improving in vitro drug release controllability. Our hydrogel exhibits significant flexibility in controlling both drug release duration and capacity, with adjustable release times ranging from 16 to 52 h and tunable drug release capacities between 10.13 mg/g and 19.21 mg/g. Furthermore, antibacterial and cytotoxicity assays confirm its favorable biocompatibility and moderate antibacterial properties. Overall, our research findings emphasize that the preparation of cellulose-based hydrogels using polyelectrolytes has certain flexible regulatory functions in drug release.
Collapse
Affiliation(s)
- Jianyu Gong
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Rong Guo
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Pengcheng Xue
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Yao Zheng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Guangfu Qian
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Changzhou Chen
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Douyong Min
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Yan Tong
- Intelligent Manufacturing College, Guangxi Vocational & Technical Institute of Industry, Nanning 530001, China.
| | - Minsheng Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
8
|
Eyni MB, Shojaei A, Khasraghi SS. Enhancing performance of in-situ synthesized biocompatible shape memory polyurethane acrylate by cellulose nanocrystals. Int J Biol Macromol 2025; 300:140232. [PMID: 39855508 DOI: 10.1016/j.ijbiomac.2025.140232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
This study presents the development of biocompatible and biodegradable nanocomposites utilizing renewable cellulose nanocrystals (CNCs) in polycaprolactone (PCL)-based polyurethane acrylates (PUA) through in situ polymerization. First, CNCs were derived from cotton linter via acid hydrolysis; then functionalized with 3-methacryloxypropyltrimethoxysilane to produce silane-modified CNCs (S-CNCs). CNCs offered uniform dispersion in PUA up to 2 wt% loading, resulting in significant property enhancements, including ∼60 % increase in tensile strength and ∼25 % increase in Young's modulus. Despite the chemical interaction of S-CNCs with PUA, they tended to agglomerate beyond 0.5 wt% loading due to the promotion of chemical interactions between S-CNC particles at higher concentrations. Despite this, comparable improvements (e.g. ∼50 % in tensile strength and ∼25 % in Young's modulus) were observed at just 0.5 wt% S-CNC loading. Both neat PUA and PUA nanocomposites demonstrated exceptional shape memory properties, with shape fixity exceeding 95 % and shape recovery approaching 100 %. However, S-CNCs also halved the shape recovery time compared to neat PUA, a critical advancement for time-sensitive applications. Meanwhile, the biocompatibility of PUA was largely preserved in the presence of the nanoparticles, particularly for S-CNC.
Collapse
Affiliation(s)
- Mahbubeh Beikmohammadi Eyni
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran, Iran
| | - Akbar Shojaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran, Iran.
| | - Samaneh Salkhi Khasraghi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran, Iran
| |
Collapse
|
9
|
Ghahramani S, Hedjazi S, Izadyar S, Fischer S, Abdulkhani A. Influence of different pulping processes, cold caustic extraction, and bleaching as common post-treatments on properties of produced lignocellulose nanocrystals (LCNCs) from bagasse. Int J Biol Macromol 2025; 304:141448. [PMID: 40010466 DOI: 10.1016/j.ijbiomac.2025.141448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
The influence of different pulping processes-soda, monoethanolamine, and Formacell-along with cold caustic extraction (CCE) and a bleaching sequence (DEpD) as post-treatments on the properties of lignocellulosic nanocrystals (LCNCs) was evaluated. LCNCs were produced through acid hydrolysis from the pulps. SEM and AFM analyses confirmed the successful production of LCNCs with dimensions under 100 nm. FT-IR analysis indicated the presence of lignin in the nanocrystals. X-ray diffraction demonstrated that acid hydrolysis and CCE significantly impacted the crystallinity of the LCNCs; however, the bleaching effect was minimal. Thermal analysis revealed that LCNCs derived from post-treated pulps exhibited greater thermal stability than those from untreated pulps. LCNCs were utilized to create films using the solution-casting method. The produced films from various pulps and post-treatments displayed excellent and diverse mechanical and aesthetic properties. The results indicated that the pulping processes, post-treatments, and chemical composition of the pulps influenced the characteristics of both LCNCs and LCNC films. The findings suggest that CCE can be a cost-effective and eco-friendly alternative to bleaching in the production of LCNCs. Furthermore, an increase in lignin content within the pulps was found to reduce the efficiency of acid hydrolysis and crystallinity while increasing the dimensions of the LCNCs.
Collapse
Affiliation(s)
- Saleh Ghahramani
- Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Sahab Hedjazi
- Department of Paper Sciences and Engineering, Faculty of Wood and Paper Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Soheila Izadyar
- Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Steffen Fischer
- Institute of Wood and Plant Chemistry, Technical University of Dresden, Tharandt, Dresden, Germany
| | - Ali Abdulkhani
- Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
10
|
Azhakesan A, Kern J, Mishra A, Selhuber‐Unkel C, Affolter A, Gatenholm P, Rotter N, Bieback K. 3D Bioprinted Head and Neck Squamous Cell Carcinoma (HNSCC) Model Using Tunicate Derived Nanocellulose (NC) Bioink. Adv Healthc Mater 2025; 14:e2403114. [PMID: 39801216 PMCID: PMC11912098 DOI: 10.1002/adhm.202403114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/20/2024] [Indexed: 03/18/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) are invasive solid tumors accounting for high mortality. To improve the clinical outcome, a better understanding of the tumor and its microenvironment (TME) is crucial. Three -dimensional (3D) bioprinting is emerging as a powerful tool for recreating the TME in vitro. To establish long-term HNSCC bioprinted constructs for personalized drug-testing, this proof-of-principle study aims to compare two different innovative tunicate-derived nanocellulose (NC) hydrogels against the widely used semi-synthetic gelatin methacryloyl (GelMA). Cell lines of different tumor origin sites are printed in TEMPO and Carboxy-NC, and GelMA in alginate (GelMAA). Both NC hydrogels show higher bioprintability than GelMAA. Carboxy-NC supported long-term HNSCC survival, proliferation, and maintenance of epithelial phenotype in 3D bioprinted constructs similar to GelMAA. The hydrogel microstructure revealed differences in pore size. Importantly, the established HNSCC bioprinted model allowed the testing of radiochemotherapy (RCT) both in cell lines and patient-derived cultures. Compared to a spheroid model, the cytotoxic effects are less, better reflecting the response in patients. The proof-of-principle findings indicate that Carboxy-NC is a viable alternative to gelatin-based bioink with improved bioprintability allowing personalized drug-testing. By adding other cell-types of the TME, this model can be advanced to a heterotypic one.
Collapse
Affiliation(s)
- Alexya Azhakesan
- Medical Faculty of MannheimUniversity of HeidelbergDepartment of OtorhinolarynlogyHead and Neck Surgery68167MannheimGermany
| | - Johann Kern
- Medical Faculty of MannheimUniversity of HeidelbergDepartment of OtorhinolarynlogyHead and Neck Surgery68167MannheimGermany
| | - Ankit Mishra
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg University69120HeidelbergGermany
| | - Christine Selhuber‐Unkel
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg University69120HeidelbergGermany
| | - Annette Affolter
- Medical Faculty of MannheimUniversity of HeidelbergDepartment of OtorhinolarynlogyHead and Neck Surgery68167MannheimGermany
| | - Paul Gatenholm
- 3D Bioprinting CentreDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyGothenburg41296Sweden
| | - Nicole Rotter
- Medical Faculty of MannheimUniversity of HeidelbergDepartment of OtorhinolarynlogyHead and Neck Surgery68167MannheimGermany
| | - Karen Bieback
- Institute of Transfusion Medicine and ImmunologyMedical Faculty MannheimHeidelberg UniversityGerman Red Cross Blood Donor Service Baden‐Württemberg – Hessen68167MannheimGermany
| |
Collapse
|
11
|
Antony Jose S, Cowan N, Davidson M, Godina G, Smith I, Xin J, Menezes PL. A Comprehensive Review on Cellulose Nanofibers, Nanomaterials, and Composites: Manufacturing, Properties, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:356. [PMID: 40072159 PMCID: PMC11901645 DOI: 10.3390/nano15050356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Cellulose nanofibers (CNFs), cellulose nanomaterials (CNMs), and cellulose-based composites represent a convergence of material science, sustainability, and advanced engineering, paving the way for innovative and eco-friendly materials. This paper presents a comprehensive review of these materials, encompassing their extraction, preparation methods, properties, applications, and future directions. The manufacturing of CNFs and CNMs leverages diverse techniques-chemical, mechanical, and enzymatic-with each offering distinct advantages in tailoring material characteristics to meet specific needs. Strategies for functionalization and surface modification are detailed, highlighting their role in enhancing the properties of CNFs and composites while addressing challenges in scaling production to industrial levels. The structural, mechanical, thermal, optical, electrical, and biocompatibility properties of CNFs, CNMs, and their composites are explored, underscoring their versatility for applications across various industries. Cellulose-based composites, in particular, demonstrate exceptional tunable properties for specific uses, although achieving uniform dispersion remains a key technical hurdle. These materials have applications in packaging, automotive, aerospace, biomedical devices, energy storage, and environmental remediation. Emerging research trends emphasize the integration of CNFs and CNMs with advanced manufacturing technologies, promoting sustainable practices and life cycle considerations while advancing their commercialization potential. This rapidly evolving field holds immense promise for addressing global challenges by creating high-performance, and sustainable materials. This review is crucial in advancing the understanding of cellulose nanofibers, nanomaterials, and cellulose-based composites, providing valuable insights that will drive the development of sustainable, high-performance materials for a wide range of applications, ultimately addressing key global challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pradeep L. Menezes
- Department of Mechanical Engineering, University of Nevada-Reno, Reno, NV 89557, USA; (S.A.J.); (N.C.); (M.D.); (G.G.); (I.S.); (J.X.)
| |
Collapse
|
12
|
Peltokallio NMM, Noël S, Bolen G, Kuure S, Raussi-Lehto E, Reyes G, Ajdary R, Kuula J, Hamaide A, Laitinen-Vapaavuori OM. In vivo biocompatibility and long-term durability of nanofibrillated cellulose as a urethral bulking agent in rats and Beagle dogs. PLoS One 2025; 20:e0317859. [PMID: 39992971 PMCID: PMC11849868 DOI: 10.1371/journal.pone.0317859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/06/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Cystoscopy-assisted submucosal injections of urethral bulking agents offer a safe and efficient alternative to surgery for treating urinary incontinence in both dogs and women. To address the concern of their transient therapeutic effect, a preclinical study evaluating the biocompatibility, safety, and durability of nanofibrillated cellulose as a bulking agent was designed. Plant-based nanofibrillated cellulose is considered renewable, biocompatible, and non-degradable in vivo. To the best of our knowledge, no studies of nanofibrillated cellulose injected into the urethral wall of experimental animals have been published to date. METHODS After assessing the rheological behavior of nanofibrillated cellulose, a biocompatibility study with 50 rats and a durability study with two Beagle dogs were conducted. In anesthesized rats, deposits of either nanofibrillated cellulose or sodium chloride as an inert control were injected into the urethral wall via a caudal laparotomy. The rats were euthanized for histopathological assessment after 7, 30, and 90 days. In dogs, cystoscopy-assisted injections of nanofibrillated cellulose were followed with magnetic resonance imaging at 14 days and at 2, 3, 6, and 12 months. RESULTS The rheological studies demonstrated a gel-like behavior under a wide range of shear stress. Nanofibrillated cellulose induced a moderate host tissue response according to the EN ISO 10993-6 standard, consisting primarily of macrophages, foreign body giant cells, lymphocytes, and plasma cells. No significant difference was observed in the tissue response at different time points. In dogs, the bulking agent was visible in 4/5 (80%) injection sites on magnetic resonance imaging at 12 months post-injection. No signs of migration, abscess formation or any major or long-term complications were observed. CONCLUSIONS Nanofibrillated cellulose maintains a chronic but stable and tolerable inflammatory response for up to 90 days in the urethral wall of rats. Durability in the urethral wall of dogs indicates a potential long-term effect.
Collapse
Affiliation(s)
- Nina M. M. Peltokallio
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Stéphanie Noël
- Teaching and Clinical Department of Companion Animals, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Géraldine Bolen
- Teaching and Clinical Department of Companion Animals, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Satu Kuure
- GM Unit, Helsinki Institute of Life Science/STEMM, Research Program’s Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eija Raussi-Lehto
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland
| | - Guillermo Reyes
- VTT Technical Research Centre of Finland Ltd., Tampere, Finland
| | - Rubina Ajdary
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Jani Kuula
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland
| | - Annick Hamaide
- Teaching and Clinical Department of Companion Animals, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Outi M. Laitinen-Vapaavuori
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Finland
| |
Collapse
|
13
|
Najahi A, Delgado-Aguilar M, Putaux JL, Boufi S. High-Yield Cellulose Nanocrystals from Bleached Eucalyptus Fibers via Maleic Acid Hydrothermal Treatment and High-Pressure Homogenization. Biomacromolecules 2025; 26:1372-1385. [PMID: 39885169 PMCID: PMC11815828 DOI: 10.1021/acs.biomac.4c01737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
This study reports the preparation of cellulose nanocrystals (CNCs) from commercial bleached eucalyptus Kraft pulp (BEKP) using a hydrothermal treatment in the presence of maleic acid (MA), followed by high-pressure homogenization. Compared with conventional hydrolysis methods, this approach offers significant advantages, including lower acid concentration, higher yield, and milder processing conditions. CNCs were produced with a high yield (70-85 wt %) by high-pressure homogenization of hydrothermally treated BEKP fibers with 10-20 wt % maleic acid at 150 °C, giving rise to a stable translucent gel of CNCs with a rod-like morphology (200-400 nm length and 10-40 nm width). The reinforcing potential of the CNCs was also assessed by preparing nanocomposite films with CNC contents of up to 15 wt %, and the results were compared to commercial CNCs from CelluForce. Additionally, their biodegradability in aquatic media was assessed using biological oxygen demand, with results compared to those of neat cellulose fibers. The MA-assisted hydrothermal process is an environmentally friendly alternative to conventional CNC production methods, offering higher yields and enhanced thermal stability while preserving a strong reinforcing property.
Collapse
Affiliation(s)
- Amira Najahi
- LMSE
- Faculty of Science, University of Sfax, BP 802, Sfax 3018, Tunisia
| | - Marc Delgado-Aguilar
- LEPAMAP-PRODIS
Research group, University of Girona, C/Maria Aurèlia Capmany, Girona 61-17003, Spain
| | - Jean-Luc Putaux
- CNRS,
CERMAV, Univ. Grenoble Alpes, Grenoble F-38000, France
| | - Sami Boufi
- LMSE
- Faculty of Science, University of Sfax, BP 802, Sfax 3018, Tunisia
| |
Collapse
|
14
|
Hata Y, Serizawa T. Nanoarchitectonics of cello-oligosaccharides: A route toward artificial nanocelluloses. Adv Colloid Interface Sci 2025; 336:103361. [PMID: 39642432 DOI: 10.1016/j.cis.2024.103361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Colloidal cellulose nanoparticles, or nanocelluloses, are derived from natural cellulose sources in a top-down manner via physical and/or chemical treatments that extract naturally occurring cellulose nanostructures. Naturally derived nanocelluloses have been successfully commercialized in various fields, and their potential is still being widely explored in materials science. Moreover, recent advances in nanoarchitectonics of low-molecular-weight cellulose, or cello-oligosaccharides, have opened new avenues for developing "artificial nanocelluloses". Artificial nanocelluloses composed of cello-oligosaccharides synthesized via enzymatic oligomerization or solid-phase glycan synthesis technology are termed "synthetic nanocelluloses". These nanostructures are abiotically constructed in a bottom-up manner at the molecular level via self-assembly of cello-oligosaccharides in vitro. Modulation of the assembly process and molecular design provides control over the molecular alignment, nanomorphology, and surface functionality of artificial nanocelluloses. This review summarizes recent research progress in artificial nanocelluloses, from the preparation and self-assembly of cello-oligosaccharides to their potential applications.
Collapse
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1-H-121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1-H-121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
15
|
Al-Shemy MT, El-Demerdash AS, Marzec A, Dawwam GE. Biocontrol of virulent Listeria monocytogenes using green carboxylated cellulose nanocrystals-silver nano-biohybrids. Int J Biol Macromol 2025; 290:139012. [PMID: 39708864 DOI: 10.1016/j.ijbiomac.2024.139012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
L. monocytogenes is a Gram-positive bacterial pathogen, known to cause food poisoning and systemic disease, specifically listeriosis. This species has shown resistance to many commonly used antibiotics, making the search for new alternative therapies is a pressing matter. A facile and eco-friendly sono-co-method was developed to produce Ag nanoparticles from palm sheath fiber agricultural waste, using carboxylated cellulose nanocrystals (CCNs). Spectroscopic analysis, including UV-visible, TEM, FTIR, and EDS, confirmed the successful synthesis of the CCN-Ag nano-biohybrids. The nano-biohybrids exhibited potent antibacterial activity against various L.monocytogenes strains, with inhibition zones ranging from 16 to 19 mm. Concentrations of the CCN-Ag suspension between 0.25 and 1 μg/mL were found to completely prevent the growth of L.monocytogenes. Conventional PCR analysis revealed the presence of several virulence genes, including actA, inlA, inlB, plcA, iap, and hlyA, in all the tested strains. Notably, CCN-Ag treatment significantly downregulated these genes, indicating a reduction in virulence and potential for biocontrol applications. The novelty of this research lies in the development of a sustainable and eco-friendly method for producing potent antimicrobial nanohybrids from agricultural waste. These nanohybrids' ability to effectively inhibit L.monocytogenes' growth and downregulate its virulence genes offers a promising avenue for combating this pathogenic bacterium.
Collapse
Affiliation(s)
- Mona T Al-Shemy
- National Research Centre, Cellulose and Paper Department, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, P.O. 126220, Giza, Egypt
| | - Azza S El-Demerdash
- Laboratory of Biotechnology, Department of Microbiology, Agricultural Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig 44516, Egypt.
| | - Anna Marzec
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-537 Lodz, Poland
| | - Ghada E Dawwam
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
16
|
Korkeamäki JT, Rashad A, Ojansivu M, Karvinen J, Koivisto JT, Syverud K, Kellomäki M, Miettinen S, Mustafa K. Systematic development and bioprinting of novel nanostructured multi-material bioinks for bone tissue engineering. Biofabrication 2025; 17:025005. [PMID: 39761639 DOI: 10.1088/1758-5090/ada63b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025]
Abstract
A functional bioink with potential in bone tissue engineering must be subjected to critical investigation throughout its intended lifespan. The aim of this study was to develop alginate-gelatin-based (Alg-Gel) multicomponent bioinks systematically and to assess the short- and long-term exposure responses of human bone marrow stromal cells (hBMSCs) printed within these bioinks with and without crosslinking.The first generation of bioinkswas established by incorporating a range of cellulose nanofibrils (CNFs), to evaluate their effect on viscosity, printability and cell viability. Adding CNFs to Alg-Gel solution increased viscosity and printability without compromising cell viability. Inthe second generation of bioinks, the influence of nano-hydroxyapatite (nHA) on the performance of the optimized Alg-Gel-CNF formulation was investigated. The addition of nHA increased the viscosity and improved printability, and an adjustment in alginate concentration improved the stability of the structures in long-term culture. The third generation bioink incorporated RGD-functionalized alginate to support cell attachment and osteogenic differentiation. The optimized bioink composition exhibited improved printability, structural integrity in long-term culture and high hBMSC viability. In addition, the final bioink composition, RGD-Alg-Gel-CNF-nHA, showed osteogenic potential: production of the osteogenic marker proteins (Runx2, OCN), enzyme (ALP), and gene expression (Runx2,OCN). A further aim of the study was to evaluate the osteogenic functionality of cells released from the structures after bioprinting. Cells were printed in two bioinks with different viscosities and incubated at 37 °C in growth medium without additional CaCl2. This caused gelatin to dissolve, releasing the cells to attach to tissue culture plates. The results demonstrated differences in hBMSC osteogenic differentiation. Moreover, the osteogenic differentiation of the released cells was different from that of the embedded cells cultured in 3D. Thus, this systematic investigation into bioink development shows improved results through the generations and sheds light on the biological effects of the bioprinting process.
Collapse
Affiliation(s)
- Jannika T Korkeamäki
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Ahmad Rashad
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Miina Ojansivu
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Jennika Karvinen
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, Finland
| | - Janne T Koivisto
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, Finland
| | - Kristin Syverud
- RISE PFI, Trondheim, Norway
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Minna Kellomäki
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, Tampere, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Kamal Mustafa
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Ahmed S, Khan RA, Rashid TU. Cellulose nanocrystal based electrospun nanofiber for biomedical applications-A review. Carbohydr Polym 2025; 348:122838. [PMID: 39562112 DOI: 10.1016/j.carbpol.2024.122838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 11/21/2024]
Abstract
Electrospinning has become a revolutionized technique for nanofiber fabrication by offering versatile procedures to precisely regulate the nanofibers' properties suitable for a wide range of advanced applications. Nanofibers are utilized as carriers for delivering medications and other health supplements as well as their ability to discharge their contents can be easily programmed and tailored in a specific manner, while serving as tissue engineering scaffolds or medical devices. Cellulose nanocrystals (CNC) are one of the most significant natural biopolymers incorporated as reinforcing agents for nanostructured fibrous frameworks. The integration of electrospinning technology and CNC offers a viable method for manufacturing nanostructured porous substances with favorable functionality, a high ratio of surface area to volume, a tunable crystal structure along with non-toxicity and cytocompatibility, outstanding mechanical properties, flexibility, sustainability, and biodegradable properties. This article offers a thorough summary of the latest progress in the application of CNC based electrospun nanofibers in various biomedical fields such as drug delivery, tissue engineering, and wound healing. It covers the techniques and parameters used for their fabrication, the different types of raw materials employed, and their application criteria. The review concludes by discussing the prospects and challenges in this rapidly evolving research domains.
Collapse
Affiliation(s)
- Saifuddin Ahmed
- Department Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Ratul Ahmed Khan
- Department Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Taslim Ur Rashid
- Department Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh.
| |
Collapse
|
18
|
Ahmed S, Islam MS, Antu UB, Islam MM, Rajput VD, Mahiddin NA, Paul JR, Ismail Z, Ibrahim KA, Idris AM. Nanocellulose: A novel pathway to sustainable agriculture, environmental protection, and circular bioeconomy. Int J Biol Macromol 2025; 285:137979. [PMID: 39592042 DOI: 10.1016/j.ijbiomac.2024.137979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Nanocellulose, obtained from natural cellulose, has attracted considerable interest for its distinctive properties and wide-ranging potential applications. Studies suggest that nanocellulose improves the thermal, mechanical, and barrier properties of conventional cellulose. This review investigates the production, properties, approach, and application of nanocellulose from various sources in agriculture. The main role play of cellulose-nanocomposite is discussed as a seed coating agent to improve seed dispersal, germination, protection against fungi and insects, plant growth promoter, adsorption of targeted pollutants, providing water and nutrient retention, and other advantages. As a nobility, we included all mechanical, chemical, and static culture approaches to the production procedure of nanocellulose and its application as a nanocarrier in soil, including the unique properties of nanocellulose, such as its high surface area, inherent hydrophilicity, and ease of surface modification. Here, methods such as melt compounding, solution casting, and in situ polymerization were evaluated to incorporate nanoparticles into cellulose materials and produce nanocellulose and cellulose-nanocomposites with improved strength, stability, water resistance, and reduced gas permeability. The commercialization faces challenges such as high production costs, scalability issues, and the need for more research on environmental impacts and plant interactions. Despite these hurdles, this field is promising, with ongoing advancements likely to yield new and improved agricultural materials. This review thoroughly examines the innovative application of nanocellulose in slow and controlled-release fertilizers and pesticides, to transform nutrient management, boost crop productivity, and minimize the environmental impact.
Collapse
Affiliation(s)
- Sujat Ahmed
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Md Saiful Islam
- Department of Soil Science, Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh; East Coast Environmental Research Institute (ESERI), Gong Badak Campus, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia.
| | - Uttam Biswas Antu
- Department of Soil Science, Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md Moshiul Islam
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.
| | - Nor Aida Mahiddin
- East Coast Environmental Research Institute (ESERI), Gong Badak Campus, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia.
| | - Joyti Rani Paul
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Zulhilmi Ismail
- Centre for River and Coastal Engineering (CRCE), Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia; Department of Water & Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia.
| | - Khalid A Ibrahim
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Center for Environment and Tourism Studies and Research, King Khalid University, Abha, Saudi Arabia.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
19
|
Dai X, Nie W, Shen H, Machens HG, Böker K, Taheri S, Lehmann W, Shen Y, Schilling AF. Electrospinning based biomaterials for biomimetic fabrication, bioactive protein delivery and wound regenerative repair. Regen Biomater 2024; 12:rbae139. [PMID: 39803356 PMCID: PMC11723536 DOI: 10.1093/rb/rbae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/25/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Electrospinning is a remarkably straightforward and adaptable technique that can be employed to process an array of synthetic and natural materials, resulting in the production of nanoscale fibers. It has emerged as a novel technique for biomedical applications and has gained increasing popularity in the research community in recent times. In the context of tissue repair and tissue engineering, there is a growing tendency toward the integration of biomimetic scaffolds and bioactive macromolecules, particularly proteins and growth factors. The design of 'smart' systems provides not merely physical support, but also microenvironmental cues that can guide regenerative tissue repair. Electrospun nanofibrous matrices are regarded as a highly promising tool in this area, as they can serve as both an extracellular matrix (ECM)-mimicking scaffold and a vehicle for the delivery of bioactive proteins. Their highly porous architecture and high surface-to-volume ratio facilitate the loading of drugs and mass transfer. By employing a judicious selection of materials and processing techniques, there is considerable flexibility in efficiently customizing nanofiber architecture and incorporating bioactive proteins. This article presents a review of the strategies employed for the structural modification and protein delivery of electrospun nanofibrous materials, with a focus on the objective of achieving a tailored tissue response. The article goes on to discuss the challenges currently facing the field and to suggest future research directions.
Collapse
Affiliation(s)
- Xinyi Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wei Nie
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC 27103, USA
| | - Hua Shen
- Department of Plastic and Reconstructive Surgery, Shanghai First People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, Faculty of Medicine, Technical University of Munich, Munich 81675, Germany
| | - Kai Böker
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany
| | - Shahed Taheri
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany
| | - Wolfgang Lehmann
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany
| | - Yi Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Arndt F Schilling
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany
| |
Collapse
|
20
|
Weerarathna IN, Kumar P, Luharia A, Mishra G. Engineering with Biomedical Sciences Changing the Horizon of Healthcare-A Review. Bioengineered 2024; 15:2401269. [PMID: 39285709 PMCID: PMC11409512 DOI: 10.1080/21655979.2024.2401269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/20/2024] [Accepted: 07/18/2024] [Indexed: 01/16/2025] Open
Abstract
In the dynamic realm of healthcare, the convergence of engineering and biomedical sciences has emerged as a pivotal frontier. In this review we go into specific areas of innovation, including medical imaging and diagnosis, developments in biomedical sensors, and drug delivery systems. Wearable biosensors, non-wearable biosensors, and biochips, which include gene chips, protein chips, and cell chips, are all included in the scope of the topic that pertains to biomedical sensors. Extensive research is conducted on drug delivery systems, spanning topics such as the integration of computer modeling, the optimization of drug formulations, and the design of delivery devices. Furthermore, the paper investigates intelligent drug delivery methods, which encompass stimuli-responsive systems such as temperature, redox, pH, light, enzyme, and magnetic responsive systems. In addition to that, the review goes into topics such as tissue engineering, regenerative medicine, biomedical robotics, automation, biomechanics, and the utilization of green biomaterials. The purpose of this analysis is to provide insights that will enhance continuing research and development efforts in engineering-driven biomedical breakthroughs, ultimately contributing to the improvement of healthcare. These insights will be provided by addressing difficulties and highlighting future prospects.
Collapse
Affiliation(s)
- Induni N. Weerarathna
- School of Allied Health Sciences, Department of Biomedical Sciences, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Praveen Kumar
- Department of Computer Science and Medical Engineering, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Anurag Luharia
- Department of Radio Physicist and Radio Safety, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Gaurav Mishra
- Department of Radio Diagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| |
Collapse
|
21
|
Kassie BB, Getahun MJ, Azanaw A, Ferede BT, Tassew DF. Surface modification of cellulose nanocrystals for biomedical and personal hygiene applications. Int J Biol Macromol 2024; 282:136949. [PMID: 39490486 DOI: 10.1016/j.ijbiomac.2024.136949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The increasing demand for sustainable and effective materials in biomedical and personal hygiene applications has driven the exploration of cellulose nanocrystals (CNCs) derived from biomass. These nanomaterials are highly valued for their exceptional mechanical properties, biocompatibility, and renewable nature. Researchers are exploring CNCs for advancing medical and hygiene products, but surface modification is often needed to maximize their benefits. Techniques such as chemical functionalization, physical coating, and hybridization can significantly enhance CNCs dispersibility, stability, and interaction with biological systems. This versatility makes CNCs suitable for a variety of applications, including drug delivery systems, wound dressings, and personal hygiene products. Despite their advantages, maintaining the inherent properties of CNCs while integrating new functionalities through modification poses a challenge. Understanding the impact of various modification techniques on CNC performance is crucial for optimizing their effectiveness. This review aimed to consolidate current knowledge on the surface modification of biomass-derived CNCs, offering insights into different methods and their implications for biomedical and personal hygiene applications. By highlighting advancements, challenges, and prospects, it served as a crucial resource for advancing the development and application of CNCs in these critical fields.
Collapse
Affiliation(s)
- Bantamlak Birlie Kassie
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia; Medical Textile Research Center, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia.
| | | | - Aklilu Azanaw
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Bayu Teshome Ferede
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Dehenenet Flatie Tassew
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| |
Collapse
|
22
|
Peltokallio NMM, Ajdary R, Reyes G, Kankuri E, Junnila JJT, Kuure S, Meller AS, Kuula J, Raussi-Lehto E, Sariola H, Laitinen-Vapaavuori OM, Rojas OJ. Comparative In Vivo Biocompatibility of Cellulose-Derived and Synthetic Meshes in Subcutaneous Transplantation Models. Biomacromolecules 2024; 25:7298-7310. [PMID: 39376005 PMCID: PMC11558565 DOI: 10.1021/acs.biomac.4c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
Despite the increasing interest in cellulose-derived materials in biomedical research, there remains a significant gap in comprehensive in vivo analyses of cellulosic materials obtained from various sources and processing methods. To explore durable alternatives to synthetic medical meshes, we evaluated the in vivo biocompatibility of bacterial nanocellulose, regenerated cellulose, and cellulose nanofibrils in a subcutaneous transplantation model, alongside incumbent polypropylene and polydioxanone. Notably, this study demonstrates the in vivo biocompatibility of regenerated cellulose obtained through alkali dissolution and subsequent regeneration. All cellulose-derived implants triggered the expected foreign body response in the host tissue, characterized predominantly by macrophages and foreign body giant cells. Porous materials promoted cell ingrowth and biointegration. Our results highlight the potential of bacterial nanocellulose and regenerated cellulose as safe alternatives to commercial polypropylene meshes. However, the in vivo fragmentation observed for cellulose nanofibril meshes suggests the need for measures to optimize their processing and preparation.
Collapse
Affiliation(s)
- Nina M. M. Peltokallio
- Department
of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, FI-00014 Helsinki University, Finland
| | - Rubina Ajdary
- Biobased
Colloids and Materials, Department of Bioproducts and Biosystems,
School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo,Finland
| | - Guillermo Reyes
- Biobased
Colloids and Materials, Department of Bioproducts and Biosystems,
School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo,Finland
| | - Esko Kankuri
- Department
of Pharmacology, Faculty of Medicine, University
of Helsinki, P.O. Box 29, Helsinki 00014, Finland
| | | | - Satu Kuure
- GM
unit, Helsinki Institute of Life Science/STEMM, Research Program′s
Unit, Faculty of Medicine, University of
Helsinki, P.O. Box 63, Helsinki 00014, Finland
| | - Anna S. Meller
- Laboratory
Animal Centre, HiLIFE, University of Helsinki, P.O. Box 29, Helsinki 00014, Finland
| | - Jani Kuula
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, P.O.
Box 16300, FI-00076 Aalto, Espoo, Finland
| | - Eija Raussi-Lehto
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, P.O.
Box 16300, FI-00076 Aalto, Espoo, Finland
- Customer-oriented
Wellbeing and Health Services, Metropolia
University of Applied Sciences, PL 4000, FI-00079 Metropolia, Helsinki,Finland
| | - Hannu Sariola
- Department
of Pathology, Faculty of Medicine, University
of Helsinki, P.O. Box 63, Helsinki 00014, Finland
| | - Outi M. Laitinen-Vapaavuori
- Department
of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, FI-00014 Helsinki University, Finland
| | - Orlando J. Rojas
- Biobased
Colloids and Materials, Department of Bioproducts and Biosystems,
School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo,Finland
- Bioproducts
Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Wood
Science, University
of British Columbia, 2385 East Mall, Vancouver, BC V6T 1Z4, Canada
- Department of Chemistry, University of
British Columbia, 2036
Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
23
|
Zhang J, Zhang X, Zhu Y, Chen H, Chen Z, Hu Z. Recent advances in moisture-induced electricity generation based on wood lignocellulose: Preparation, properties, and applications. Int J Biol Macromol 2024; 279:135258. [PMID: 39233166 DOI: 10.1016/j.ijbiomac.2024.135258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Moisture-induced electricity generation (MEG), which can directly harvest electricity from moisture, is considered as an effective strategy for alleviating the growing energy crisis. Recently, tremendous efforts have been devoted to developing MEG active materials from wood lignocellulose (WLC) due to its excellent properties including environmental friendliness, sustainability, and biodegradability. This review comprehensively summarizes the recent advances in MEG based on WLC (wood, cellulose, lignin, and woody biochar), covering its principles, preparation, performances, and applications. In detail, the basic working mechanisms of MEG are discussed, and the natural features of WLC and their significant advantages in the fabrication of MEG active materials are emphasized. Furthermore, the recent advances in WLC-based MEG for harvesting electrical energy from moisture are specifically discussed, together with their potential applications (sensors and power sources). Finally, the main challenges of current WLC-based MEG are presented, as well as the potential solutions or directions to develop highly efficient MEG from WLC.
Collapse
Affiliation(s)
- Jinchao Zhang
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
| | - Xuejin Zhang
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Yachong Zhu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Hua Chen
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Zhuo Chen
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Zhijun Hu
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
| |
Collapse
|
24
|
Atakhanov AA, Ashurov NS, Kuzieva MM, Mamadiyorov BN, Ergashev DJ, Rashidova SS, Khutoryanskiy VV. Novel Acryloylated and Methacryloylated Nanocellulose Derivatives with Improved Mucoadhesive Properties. Macromol Biosci 2024; 24:e2400183. [PMID: 39177149 DOI: 10.1002/mabi.202400183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/24/2024] [Indexed: 08/24/2024]
Abstract
In this work, three nanocellulose derivatives are synthesized with the aim of preparing new mucoadhesive materials. Nanocellulose is reacted with glycidyl methacrylate in dimethylsulphoxide, and with acryloyl and methacryloyl chloride in dimethylacetamide in the presence of 4-(N,N-dimethylamino)pyridine as a catalyst. These reactions are carried out under heterogeneous conditions, and the reaction products are characterized using various spectroscopic techniques, X-ray diffraction, atomic force microscopy, and thermogravimetric analysis. The Fourier-transform infrared spectra showed all the characteristic absorption bands typical for cellulose and also new peaks at 1720 cm-1 for the carbonyl group (C═O) and 1639, 812 cm-1 for the double bond (C═C). It is established that the crystal structure of the nanocellulose is slightly changed with derivatisation and the thermal stability of these derivatives increased. Mucoadhesive properties of nanocellulose and its derivatives is evaluated using the tensile test, rotating basket method, and fluorescence flow-through method. The retention of these polymers is evaluated on sheep oral mucosal tissue ex vivo using artificial saliva. Test results demonstrated that the new derivatives of nanocellulose have improved mucoadhesive properties compared to the parent nanocellulose.
Collapse
Affiliation(s)
- Abdumutolib A Atakhanov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Science, A. Kadiriy str., 7b, Tashkent, 100128, Uzbekistan
| | - Nurbek Sh Ashurov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Science, A. Kadiriy str., 7b, Tashkent, 100128, Uzbekistan
| | - Makhliyo M Kuzieva
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Science, A. Kadiriy str., 7b, Tashkent, 100128, Uzbekistan
| | - Burhon N Mamadiyorov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Science, A. Kadiriy str., 7b, Tashkent, 100128, Uzbekistan
| | - Doniyor J Ergashev
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Science, A. Kadiriy str., 7b, Tashkent, 100128, Uzbekistan
| | - Sayyora Sh Rashidova
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Science, A. Kadiriy str., 7b, Tashkent, 100128, Uzbekistan
| | | |
Collapse
|
25
|
Wang Z, Gao D, Shu Z. Mechanisms, Applications, and Challenges of Utilizing Nanomaterials in Cryopreservation. ADVANCED ENGINEERING MATERIALS 2024; 26. [DOI: 10.1002/adem.202400800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Indexed: 01/05/2025]
Abstract
Cryopreservation of biological samples, including cells, tissues, and organs, has become an essential component in various biomedical research and applications, such as cellular therapy, tissue engineering, organ transplantation, and conservation of endangered species. However, it faces critical challenges throughout the cryopreservation process, such as loading/unloading of cryoprotective agent (CPA), ice inhibition during cooling, and ultrafast and uniform heating during rewarming. Applying nanomaterials in cryopreservation has emerged as a promising solution to address these challenges in each step due to their unique properties. For instance, in order to deliver nonpermeating CPA into cells, some nanomaterials, such as polymeric nanocapsule, can carry nonpermeating CPA to penetrate into the cells, regulating the intracellular ice crystal. During cooling, some nanomaterials, such as graphene oxide, can bind to basal or prism planes of ice crystals, suppressing the ice growth. During rewarming, some nanomaterials, such as magnetic nanoparticles, can improve the heating performance, preventing devitrification and recrystallization during rewarming. However, challenges in nanomaterials‐assisted cryopreservation remain, including the need for comprehensive studies on nanomaterials toxicity and the development of scalable manufacturing processes for industrial applications. This review examines the role of nanomaterials in cryopreservation, focusing on their mechanisms, applications, and associated challenges.
Collapse
Affiliation(s)
- Ziyuan Wang
- Department of Mechanical Engineering University of Washington Seattle WA 98195 USA
| | - Dayong Gao
- Department of Mechanical Engineering University of Washington Seattle WA 98195 USA
| | - Zhiquan Shu
- Department of Mechanical Engineering University of Washington Seattle WA 98195 USA
- School of Engineering and Technology University of Washington Tacoma Tacoma WA 98402 USA
| |
Collapse
|
26
|
Shibata M, Okahisa Y. Tough gelatine hydrogels reinforced with silk fibroin nanofiber. Heliyon 2024; 10:e39101. [PMID: 39640684 PMCID: PMC11620089 DOI: 10.1016/j.heliyon.2024.e39101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Gelatine hydrogels exhibit potential as biomaterials such as wound-healing materials, artificial organs, scaffolds for cell culture and drug delivery systems because of their good biocompatibility. However, their practical applications are limited by their poor mechanical properties and high degradability. In this study, mechanically fibrillated silk fibroin (fibroin nanofibers; FNF) was used to reinforce gelatine hydrogels. The resulting gelatine hydrogels with FNF exhibited enhanced toughness compared to those reinforced with conventional aqueous regenerated fibroin (RF), which were prepared by treatment with a highly concentrated LiBr solvent or a neat gelatine hydrogel while retaining their softness. The average pore size of the gelatine hydrogel was 2.2 μm, while the gelatine hydrogel containing 25 % FNF expanded to 6.7 μm. A web-like network was formed between the pores. The addition of FNF increased the relative β-sheet contents in the hydrogels to 60.3 %, suggesting that this may have caused structural changes such as increased crystallinity for gelatine-derived proteins. Furthermore, the addition of FNF inhibited the rapid enzymatic degradation of gelatine hydrogels. FNF, which can be easily prepared in water, is a safe material for both the environment and living organisms and holds promise as a biomaterial in the future.
Collapse
Affiliation(s)
- Maho Shibata
- Department of Biobased Materials Science, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yoko Okahisa
- Fibre Science and Engineering, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
27
|
Sánchez-Osorno DM, Amaya-Bustos SL, Molina-Ramírez C, López-Jaramillo MC, Martínez-Galán JP. Vitamin B Complex Encapsulation in Bacterial Nanocellulose: A Novel System for Heat and Chemical Stabilization in Food Products. Polymers (Basel) 2024; 16:2961. [PMID: 39518170 PMCID: PMC11548489 DOI: 10.3390/polym16212961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Bacterial nanocellulose has been commonly used as a gelling or stabilizing agent in the food industry and as an excipient in pharmacology. However, due to its physical and chemical properties, such as its high degradation temperature and the ease with which it can interact with other molecules, bacterial nanocellulose has been established as a material with great potential for the protection of bioactive compounds. This research shows the capacity of bacterial nanocellulose to establish interactions with B vitamins (B1, B2, B3 and B12) through different sorption isotherms, mainly by means of the BET, GAB and TSS models. First, the degradation of the vitamin B complex, which mostly occurs upon heating, is minimized in the presence of BNC, herein proposed as a thermal stabilizer. Secondly, BNC is shown to bind to micronutrients and act as dietary fiber. BNC acts as a thickening and water-binding agent. The effects of BNC are determined to occur as an encapsulation system that facilitates affinity adsorption in mono- and multilayers. Finally, bacterial nanocellulose was used as an encapsulating agent for the vitamin B complex by spray drying. It is demonstrated that BNC is a very successful new nanomaterial for encapsulation, with a high level of adsorption, and for the protection of hydro-soluble vitamins. BNC has shown great potential to adsorb vitamins B1, B2, B3 and B12 owing to their hydroxyl groups, which are responsible for its water or vitamin sorption. Due to the features of bacterial nanocellulose, it is possible to use it as a raw material in the food industry to protect micronutrients during the thermal process.
Collapse
Affiliation(s)
- Diego Mauricio Sánchez-Osorno
- Grupo de Investigación e Innovación Ambiental (GIIAM), Institución Universitaria Pascual Bravo, Cl. 73, No 73a-226, Medellín 050034, Colombia; (D.M.S.-O.); (M.C.L.-J.)
- Grupo de Investigación Alimentación y Nutrición Humana (GIANH), Escuela de Nutrición y Dietética, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
| | - Sandra L. Amaya-Bustos
- Grupo de Investigación e Innovación en Energía (GIIEN), Institución Universitaria Pascual Bravo, Cl. 73, No 73a-226, Medellín 050034, Colombia;
| | - Carlos Molina-Ramírez
- Grupo de Investigación en Química y Bioprospección de Productos Naturales (QUIBIP), Universidad del Magdalena, Cl. 29H3 No 22-01, Santa Marta 470004, Colombia;
| | - María Camila López-Jaramillo
- Grupo de Investigación e Innovación Ambiental (GIIAM), Institución Universitaria Pascual Bravo, Cl. 73, No 73a-226, Medellín 050034, Colombia; (D.M.S.-O.); (M.C.L.-J.)
| | - Julián Paul Martínez-Galán
- Grupo de Investigación Alimentación y Nutrición Humana (GIANH), Escuela de Nutrición y Dietética, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
| |
Collapse
|
28
|
Jamaluddin NAN, Jasmani L, Md Pisar M, Adnan S, Rusli R, Zakaria S. Hydrophobization of nanofibrillated cellulose from Macaranga gigantea for binding of curcumin. Carbohydr Polym 2024; 342:122405. [PMID: 39048240 DOI: 10.1016/j.carbpol.2024.122405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Nanofibrillated cellulose (NFC) has found extensive potential and existing utilizations across various industries. Nonetheless, a notable constraint of NFC lies in its inherent hydrophilic nature, which restricts its suitability for non-aqueous application. This study aims at synthesising hydrophobic NFC through a two-step surface modification by reacting NFC with tannic acid and amine group. The study also investigated the effect of using various alkylamines on the properties of modified NFC. The hydrophobic NFC was characterized using various analytical techniques namely Thermogravimetric Analysis (TGA), X-Ray Diffraction analysis (XRD), Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR), elemental analysis, and contact angle measurements. The present study also looked into the possible use of modified NFC as a pharmaceutical excipient for the delivery of water insoluble curcumin. The analysis of curcumin binding onto the modified NFC was conducted using UV-Visible spectrophotometry. The findings from the study indicated that the modified NFC effectively bound a substantial quantity of curcumin (80 % - 87 %) and the binding varied for samples of different degree of substitution.
Collapse
Affiliation(s)
- Nurul Ain Nadirah Jamaluddin
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia; Universiti Kebangsaan Malaysia (UKM), 43600, UKM, Bangi, Selangor, Malaysia
| | - Latifah Jasmani
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia.
| | - Mazura Md Pisar
- Natural Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
| | - Sharmiza Adnan
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
| | - Rafeadah Rusli
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
| | - Sarani Zakaria
- Universiti Kebangsaan Malaysia (UKM), 43600, UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
29
|
Freville E, Sergienko JP, Mujica R, Rey C, Bras J. Novel technologies for producing tridimensional cellulosic materials for packaging: A review. Carbohydr Polym 2024; 342:122413. [PMID: 39048242 DOI: 10.1016/j.carbpol.2024.122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024]
Abstract
Petroleum-based packaging have been developed during the last century to transport and protect many products, regardless of the field of applications (food, electronics, cosmetics, leisure, etc.). Such protection has been very useful for the development of our society by favoring economic growth, limiting food waste and product deterioration, and consequently avoiding strong environmental impacts. An environmental concern has now been taken into consideration by numerous countries, with several legislations being promulgated to avoid or limit plastic waste. In this context, cellulose emerges as an alternative material for packaging applications since it is bio-based, biodegradable, and in most cases recyclable in an existing stream. However, most of the existing cellulose packaging is based on roll-to-roll 2D products or plied boxes and is not suitable to substitute plastics in 3D-shaped packaging. Recently, the interest in molded cellulose has increased exponentially thanks to new adaptations of raw materials and processes. Alternatively, research groups and companies try to adapt the injection molding to the production of cellulose-based packaging solutions. This review details for the first time the various processes and recent works in this direction. After proposing the basics of cellulose, this work focuses on the different types of molded cellulose and the novel strategies to produce 3D cellulose-based materials.
Collapse
Affiliation(s)
- Emilien Freville
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, 38000 Grenoble, France; Centre technique du papier, 38000 Grenoble, France
| | | | - Randy Mujica
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, 38000 Grenoble, France
| | - Candice Rey
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, 38000 Grenoble, France
| | - Julien Bras
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, 38000 Grenoble, France; Institut Universitaire de France (IUF), 75000 Paris, France.
| |
Collapse
|
30
|
Jeon HC, Kim YS. Mechanical Performance of Cellulose Nanocrystal and Bioceramic-Based Composites for Surgical Training. Polymers (Basel) 2024; 16:2849. [PMID: 39408560 PMCID: PMC11478534 DOI: 10.3390/polym16192849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
This study evaluated the mechanical performance of a cellulose nanocrystal (CNC)-based composite, consisting of hydroxyapatite and natural fibers, mimicking the mechanical properties of real bone. The effect of natural nanofibers on the cutting force of the composite was evaluated for suitability in surgical training. Although hydroxyapatite has been extensively studied in bone-related applications, the exploration of epoxy-based composites incorporating both hydroxyapatite and CNC represents a novel approach. The evaluation involved a load cell with an oscillating saw. The uniform distribution of CNCs within the composite was assessed using 3D X-ray imaging. The cutting force was found to be 4.005 ± 0.5469 N at a feed rate of 0.5 mm/s, comparable to that required when cutting real bone with the osteon at 90°. The 90-degree orientation of the osteon aligns with the cutting direction of the oscillating saw when performing knee replacements on the tibia and femur bones. The addition of CNCs resulted in changes in fracture toughness, leading to increased material fragmentation and surface irregularities. Furthermore, the change in the cutting force with depth was similar to that of real bone. The developed composite material enables bone-cutting surgeries using bioceramics and natural fibers without the risks associated with cadavers or synthetic fibers. Mold-based computed tomography data allows for the creation of various bone forms, enhancing skill development for surgeons.
Collapse
Affiliation(s)
- Hee-Chang Jeon
- Quantum Functional Semiconductor Research Center, Dongguk University, Jung-gu, Seoul 04620, Republic of Korea;
| | - Young-Seong Kim
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Jung-gu, Seoul 04620, Republic of Korea
| |
Collapse
|
31
|
Tuleubayev B, Kamyshanskiy Y, Saginova D, Akhmetova S, Vinokurov V, Koshanova A, Kossilova Y. Comparative histomorphological assessment of the osteoinductive capacity of a nanofibrillated cellulose-based composite and autologous blood clot. J Exp Orthop 2024; 11:e70067. [PMID: 39507299 PMCID: PMC11538357 DOI: 10.1002/jeo2.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 11/08/2024] Open
Abstract
Purpose The present study aimed to evaluate and compare the effect of nanofibrillated cellulose (NFC)-based composite with dicalcium phosphate dihydrate and an autologous blood clot (ABC) on the formation of new bone tissue in vivo by histological and histomorphometric assessment. Materials and Methods A total of 72 rats with created femoral defects (2 mm) were used. The rats were divided into three groups: (1) with filling of the defect with an ABC, (2) NFC-1-with filling of both the cortical plate and intramedullary space in the defect area, and (3) NFC-2-with filling of only the intramedullary space in the defect area. Histological and histomorphometric analysis was performed to assess the healing of the bone defect after 14, 30 and 60 days. Results Complete closure of the cortical plate defect was detected in the NFC-2 group on Day 30 (p < 0.0001). Moreover, in both NFC groups on the 30th and 60th days, ongoing osteogenesis was observed, characterized by a large volume of newly formed circular pattern bone tissue in the intramedullary space. Сonclusion This study demonstrated that the NFC-based composite, which is located below the level of the cortical plate, tamponing only the intramedullary space (NFC-2), improves bone tissue repair at the site of a bone defect of the cortical plate and has the potential of prolonged osteoinductivity. Level of Evidence Not applicable.
Collapse
Affiliation(s)
- Berik Tuleubayev
- Department of Surgical DiseasesKaraganda Medical UniversityKaragandaKazakhstan
| | - Yevgeniy Kamyshanskiy
- Pathology Unit of the University ClinicKaraganda Medical UniversityKaragandaKazakhstan
| | - Dina Saginova
- Center for Applied Scientific ResearchNational Scientific Center of Traumatology and Orthopaedics Named after Academician N.D. BatpenovAstanaKazakhstan
| | - Saule Akhmetova
- Department of Clinical ImmunologyKaraganda Medical UniversityKaragandaKazakhstan
| | - Vladimir Vinokurov
- Department of Physical and Colloidal ChemistryFederal State Autonomous Educational Institution of Higher Education Gubkin Russian State University of Oil and Gas, National Research UniversityMoscowRussian Federation
| | - Amina Koshanova
- Department of Surgical DiseasesKaraganda Medical UniversityKaragandaKazakhstan
| | | |
Collapse
|
32
|
Othman JAS, Ilyas RA, Nordin AH, Ngadi N, Alkbir MFM. Recent advancements in bamboo nanocellulose-based bioadsorbents and their potential in wastewater applications: A review. Int J Biol Macromol 2024; 277:134451. [PMID: 39102907 DOI: 10.1016/j.ijbiomac.2024.134451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
The research interest in sustainable and eco-friendly materials based on natural sources has increased dramatically due to their recyclability, biodegradability, compatibility, and nontoxic behavior. Recently, nanocellulose-based green composites are under extensive exploration and have gained popularity among researchers owing to their lightweight, lost cost, low density, excellent mechanical and physical characteristics. This review provides a comprehensive overview of the recent advancements in the extraction, modification, and application of bamboo nanocellulose as a high-performance bioadsorbent. Bamboo, a rapidly renewable resource, offers an eco-friendly alternative to traditional materials due to its abundant availability and unique structural properties. Significantly, bamboo comprises a considerable amount of cellulose, approximately 40 % to 50%, rendering it a valuable source of cellulose fiber for the fabrication of cellulose nanocrystals. The review highlights different various modification techniques which enhance the adsorption capacities and selectivity of bamboo nanocellulose. Furthermore, the integration of bamboo nanocellulose into novel composite materials and its performance in removing contaminants such as heavy metals, dyes, and organic pollutants from wastewater are critically analyzed. Emphasis is placed on the mechanisms of adsorption, regeneration potential, and the economic and environmental benefits of using bamboo-based bioadsorbents. The findings underscore the potential of bamboo nanocellulose to play a pivotal role in developing sustainable wastewater treatment technologies, offering a promising pathway towards cleaner water and a greener future.
Collapse
Affiliation(s)
- Jameelah Alhad Salih Othman
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - R A Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - Abu Hassan Nordin
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia
| | - Norzita Ngadi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia.
| | - M F M Alkbir
- Advanced Facilities Engineering Technology Research Cluster, Malaysian Institute of Industrial Technology (MITEC), University Kuala Lumpur, Malaysia; Plant Engineering Technology (PETech), UniKL Malaysian Institute of Industrial Technology (MITEC), Persiaran Sinaran Ilmu, Johor, Darul Takzim, Malaysia
| |
Collapse
|
33
|
Babaei-Ghazvini A, Patel R, Vafakish B, Yazdi AFA, Acharya B. Nanocellulose in targeted drug delivery: A review of modifications and synergistic applications. Int J Biol Macromol 2024; 278:135200. [PMID: 39256122 DOI: 10.1016/j.ijbiomac.2024.135200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
Nanocellulose, a versatile biopolymer renowned for its exceptional physicochemical attributes including lightweight, biocompatibility, biodegradability, and higher mechanical strength properties has captured significant attention in biomedical research. This renewable material, extracted from widely abundant biosources including plants, bacteria, and algae, exists in three primary forms: cellulose-based nanocrystals (CNCs), nanofibrils (CNFs), and bacterial nanocellulose (BNC). CNCs are characterized by their highly crystalline, needle-shaped structure, while CNFs possess a blend of amorphous and crystalline regions. BNC stands out as the purest form of nanocellulose. Chemical functionalization enables precise tuning of nanocellulose properties, enhancing its suitability for diverse biomedical applications. In drug delivery systems, nanocellulose's unique structure and surface chemistry offer opportunities for targeted delivery of active molecules. Surface-modified nanocellulose can effectively deliver drugs to specific sites, utilizing its inherent properties to control drug release kinetics and improve therapeutic outcomes. Despite these advantages, challenges such as achieving optimal drug loading capacity and ensuring sustained drug release remain. Future research aims to address these challenges and explore novel applications of nano-structured cellulose in targeted drug delivery, highlighting the continued evolution of this promising biomaterial in biomedicine. Furthermore, the review delves into the impact of chemical, physical, and enzymatic methods for CNC surface modifications, showcasing how these approaches enhance the functionalization of CNCs for targeted delivery of different compounds in biological systems.
Collapse
Affiliation(s)
- Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| | - Ravi Patel
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Bahareh Vafakish
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Abbas Fazel Anvari Yazdi
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon S7K 5A9, Canada
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| |
Collapse
|
34
|
Eladl SN, Elnabawy AM, Eltanahy EG. Recent biotechnological applications of value-added bioactive compounds from microalgae and seaweeds. BOTANICAL STUDIES 2024; 65:28. [PMID: 39312045 PMCID: PMC11420431 DOI: 10.1186/s40529-024-00434-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/24/2024] [Indexed: 09/26/2024]
Abstract
Microalgae and seaweed have been consumed as food for several decades to combat starvation and food shortages worldwide. The most famous edible microalgae species are Nostoc, Spirulina, and Aphanizomenon, in addition to seaweeds, which are used in traditional medicine and food, such as Nori, which is one of the most popular foods containing Pyropia alga as a major ingredient. Recently, many applications use algae-derived polysaccharides such as agar, alginate, carrageenan, cellulose, fucoidan, mannan, laminarin, ulvan, and xylan as gelling agents in food, pharmaceuticals, and cosmetics industries. Moreover, pigments (carotenoids particularly astaxanthins, chlorophylls, and phycobilins), minerals, vitamins, polyunsaturated fatty acids, peptides, proteins, polyphenols, and diterpenes compounds are accumulated under specific cultivation and stress conditions in the algal cells to be harvested and their biomass used as a feedstock for the relevant industries and applications. No less critical is the use of algae in bioremediation, thus contributing significantly to environmental sustainability.This review will explore and discuss the various applications of microalgae and seaweeds, emphasising their role in bioremediation, recent products with algal added-value compounds that are now on the market, and novel under-developing applications such as bioplastics and nanoparticle production. Nonetheless, special attention is also drawn towards the limitations of these applications and the technologies applied, and how they may be overcome.
Collapse
Affiliation(s)
- Salma N Eladl
- Algae Biotechnology and Water Quality Lab, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Aya M Elnabawy
- Algae Biotechnology and Water Quality Lab, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Eladl G Eltanahy
- Algae Biotechnology and Water Quality Lab, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
35
|
Qin Q, Zeng S, Duan G, Liu Y, Han X, Yu R, Huang Y, Zhang C, Han J, Jiang S. "Bottom-up" and "top-down" strategies toward strong cellulose-based materials. Chem Soc Rev 2024; 53:9306-9343. [PMID: 39143951 DOI: 10.1039/d4cs00387j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Cellulose, as the most abundant natural polymer on Earth, has long captured researchers' attention due to its high strength and modulus. Nevertheless, transferring its exceptional mechanical properties to macroscopic 2D and 3D materials poses numerous challenges. This review provides an overview of the research progress in the development of strong cellulose-based materials using both the "bottom-up" and "top-down" approaches. In the "bottom-up" strategy, various forms of regenerated cellulose-based materials and nanocellulose-based high-strength materials assembled by different methods are discussed. Under the "top-down" approach, the focus is on the development of reinforced cellulose-based materials derived from wood, bamboo, rattan and straw. Furthermore, a brief overview of the potential applications fordifferent types of strong cellulose-based materials is given, followed by a concise discussion on future directions.
Collapse
Affiliation(s)
- Qin Qin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shiyi Zeng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanbo Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Ruizhi Yu
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, Zhejiang, China.
| | - Yong Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jingquan Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
36
|
Mastrodimos M, Jain S, Badv M, Shen J, Montazerian H, Meyer CE, Annabi N, Weiss PS. Human Skeletal Muscle Myoblast Culture in Aligned Bacterial Nanocellulose and Commercial Matrices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47150-47162. [PMID: 39206938 PMCID: PMC11403597 DOI: 10.1021/acsami.4c07612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Bacterial nanocellulose (BNC) is a durable, flexible, and dynamic biomaterial capable of serving a wide variety of fields, sectors, and applications within biotechnology, healthcare, electronics, agriculture, fashion, and others. BNC is produced spontaneously in carbohydrate-rich bacterial culture media, forming a cellulosic pellicle via a nanonetwork of fibrils extruded from certain genera. Herein, we demonstrate engineering BNC-based scaffolds with tunable physical and mechanical properties through postprocessing. Human skeletal muscle myoblasts (HSMMs) were cultured on these scaffolds, and in vitro electrical stimulation was applied to promote cellular function for tissue engineering applications. We compared physiologic maturation markers of human skeletal muscle myoblast development using a 2.5-dimensional culture paradigm in fabricated BNC scaffolds, compared to two-dimensional (2D) controls. We demonstrate that the culture of human skeletal muscle myoblasts on BNC scaffolds developed under electrical stimulation produced highly aligned, physiologic morphology of human skeletal muscle myofibers compared to unstimulated BNC and standard 2D culture. Furthermore, we compared an array of metrics to assess the BNC scaffold in a rigorous head-to-head study with commercially available, clinically approved matrices, Kerecis Omega3 Wound Matrix (Marigen) and Phoenix as well as a gelatin methacryloyl (GelMA) hydrogel. The BNC scaffold outcompeted industry standard matrices as well as a 20% GelMA hydrogel in durability and sustained the support of human skeletal muscle myoblasts in vitro. This work offers a robust demonstration of BNC scaffold cytocompatibility with human skeletal muscle cells and sets the basis for future work in healthcare, bioengineering, and medical implant technological development.
Collapse
Affiliation(s)
- Melina Mastrodimos
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Saumya Jain
- Department
of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Maryam Badv
- Department
of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Jun Shen
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry & Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Hossein Montazerian
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- Terasaki
Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Claire E. Meyer
- Department
of Chemistry & Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Nasim Annabi
- Department
of Bioengineering, University of California,
Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- Department
of Chemistry & Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| |
Collapse
|
37
|
Chang Y, Zhao W, Li W, Zhang Q, Wang G. Bioadhesive and drug-loaded cellulose nanofiber/alginate film for healing oral mucosal wounds. Int J Biol Macromol 2024; 276:133858. [PMID: 39009262 DOI: 10.1016/j.ijbiomac.2024.133858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/25/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Recurrent oral ulcers are common oral mucosal lesions that severely reduce patients' quality of life. Commercial mucoadhesive films are easily disrupted due to oral movement and complex wet environments, thus reducing drug utilization and even causing toxic side effects. Herein, we report a mucoadhesive film composed of Ca2+-crosslinked carboxymethylated cellulose nanofibers and alginate, in which two drugs of dexamethasone (DXM) and dyclonine hydrochloride (DYC) are loaded for the treatment of oral ulcers. The wet films have a high Young's modulus of 7.1 ± 2.6 MPa and a large strain of 53.6 ± 9.8 % and adhere to tissue strongly, which allows them to resist the deformation caused by frequent oral movement. The films also have nice durability against water and excellent biocompatibility. Moreover, the drug release was controlled at different rates. The fast release of DYC facilitates the quick relief of pain, while the slow release of DXM benefits the long-term treatment of wounds. Finally, the animal experiment demonstrates the films displayed excellent therapeutic efficacy in healing oral ulcers.
Collapse
Affiliation(s)
- Yuqing Chang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wei Zhao
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Wei Li
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China.
| | - Guodong Wang
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China.
| |
Collapse
|
38
|
Garcia KR, Menezes RCR, Dos Santos V, Koester LS, Dallegrave E. Toward a greener multifunctional pharmaceutical excipient: in vivo safety evaluation of nanofibrillated cellulose from tobacco stalk. Drug Chem Toxicol 2024; 47:507-515. [PMID: 38326987 DOI: 10.1080/01480545.2024.2311288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Tobacco stalk is a cellulose-rich material and a sustainable alternative to be applied as a plant-based nanofibrillated cellulose (NFC) source. NFC use has garnered attention in the development of oral pharmaceutical forms, despite concerns about its safety due to the adverse effects of nicotine on health. Therefore, we aimed at establishing the safety of NFC derived from tobacco stalk for its potential use as a novel pharmaceutical excipient, exploring its potential functions for tablet production. We conducted acute and subchronic oral toxicity tests in adult female Wistar rats. Initially, individual animals received sequential doses (175-5,000 mg·kg-1) for 24 hours followed by a careful observation of any toxic effects. Subsequently, 20 rats were divided into four groups for a subchronic assay, evaluating toxicity signs, body weight changes, hematological, biochemical, and histopathological parameters. No deaths or other clinical toxicity signs were observed in either the acute or the subchronic assays. We noticed a significant reduction in body weight gain (p < 0.05) after 14 days. We found statistical differences for hematological and biochemical parameters, unrelated to dosage. There were no observed toxic effects, and tobacco stalk ingestion did not adversely affect organ morphology in the histopathological evaluation. The oral administration of NFC at 5,000 mg·kg-1 per day for 28 days was well-tolerated by treated rats, with no reported deaths. In conclusion, NFC derived from tobacco stalk has shown to be a sustainable and safe alternative for use as an excipient at experimental doses, demonstrating compatibility with its proposed applications.
Collapse
Affiliation(s)
- Keth Ribeiro Garcia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafaella Câmara Rocha Menezes
- Programa de Pós-Graduação em Ciências da Nutrição, Laboratório de Pesquisa em Toxicologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, Porto Alegre, RS, Brazil
| | - Venina Dos Santos
- Programa de Pós-Graduação em Engenharia de Processos e Tecnologias, Universidade de Caxias do Sul (UCS), Rua Francisco Getúlio Vargas, Caxias do Sul, RS, Brazil
| | - Letícia Scherer Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Eliane Dallegrave
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Pesquisa em Toxicologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, Porto Alegre, RS, Brazil
| |
Collapse
|
39
|
Shishparenok AN, Koroleva SA, Dobryakova NV, Gladilina YA, Gromovykh TI, Solopov AB, Kudryashova EV, Zhdanov DD. Bacterial cellulose films for L-asparaginase delivery to melanoma cells. Int J Biol Macromol 2024; 276:133932. [PMID: 39025173 DOI: 10.1016/j.ijbiomac.2024.133932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
L-asparaginase (L-ASNase) is an enzyme that catalyzes the hydrolysis of L-asparagine to L-aspartic acid and ammonia and is used to treat acute lymphoblastic leukemia. It is also toxic to the cells of some solid tumors, including melanoma cells. Immobilization of this enzyme can improve its activity against melanoma tumor cells. In this work, the properties of bacterial cellulose (BC) and feasibility of BC films as a new carrier for immobilized L-ASNase were investigated. Different values of growth time were used to obtain BC films with different thicknesses and porosities, which determine the water content and the ability to adsorb and release L-ASNase. Fourier transform infrared spectroscopy confirmed the adsorption of the enzyme on the BC films. The total activity of adsorbed L-ASNase and its release were investigated for films grown for 48, 72 or 96 h. BC films grown for 96 h showed the most pronounced release as described by zero-order and Korsmayer-Peppas models. The release was characterized by controlled diffusion where the drug was released at a constant rate. BC films with immobilized L-ASNase could induce cytotoxicity in A875 human melanoma cells. With further development, immobilization of L-ASNase on BC may become a potent strategy for anticancer drug delivery to superficial tumors.
Collapse
Affiliation(s)
- Anastasiya N Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia
| | - Svetlana A Koroleva
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia; Institute of Biochemical Technology and Nanotechnology, People's Friendship University of Russia Named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia; ChemBioTech Department, Moscow Polytechnic University, 38 Bolshaya Semenovskaya st., Moscow 107023, Russia
| | - Natalya V Dobryakova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia
| | - Yulia A Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia
| | - Tatiana I Gromovykh
- ChemBioTech Department, Moscow Polytechnic University, 38 Bolshaya Semenovskaya st., Moscow 107023, Russia
| | - Alexey B Solopov
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS (TIPS RAS), 29 Leninsky Prospekt, 119991 Moscow, Russia
| | - Elena V Kudryashova
- Chemical Faculty, Lomonosov Moscow State University, Leninskie Gory St. 1, 119991 Moscow, Russia
| | - Dmitry D Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia.
| |
Collapse
|
40
|
Shishparenok AN, Furman VV, Dobryakova NV, Zhdanov DD. Protein Immobilization on Bacterial Cellulose for Biomedical Application. Polymers (Basel) 2024; 16:2468. [PMID: 39274101 PMCID: PMC11397966 DOI: 10.3390/polym16172468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
New carriers for protein immobilization are objects of interest in various fields of biomedicine. Immobilization is a technique used to stabilize and provide physical support for biological micro- and macromolecules and whole cells. Special efforts have been made to develop new materials for protein immobilization that are non-toxic to both the body and the environment, inexpensive, readily available, and easy to modify. Currently, biodegradable and non-toxic polymers, including cellulose, are widely used for protein immobilization. Bacterial cellulose (BC) is a natural polymer with excellent biocompatibility, purity, high porosity, high water uptake capacity, non-immunogenicity, and ease of production and modification. BC is composed of glucose units and does not contain lignin or hemicellulose, which is an advantage allowing the avoidance of the chemical purification step before use. Recently, BC-protein composites have been developed as wound dressings, tissue engineering scaffolds, three-dimensional (3D) cell culture systems, drug delivery systems, and enzyme immobilization matrices. Proteins or peptides are often added to polymeric scaffolds to improve their biocompatibility and biological, physical-chemical, and mechanical properties. To broaden BC applications, various ex situ and in situ modifications of native BC are used to improve its properties for a specific application. In vivo studies showed that several BC-protein composites exhibited excellent biocompatibility, demonstrated prolonged treatment time, and increased the survival of animals. Today, there are several patents and commercial BC-based composites for wounds and vascular grafts. Therefore, further research on BC-protein composites has great prospects. This review focuses on the major advances in protein immobilization on BC for biomedical applications.
Collapse
Affiliation(s)
| | - Vitalina V Furman
- The Center for Chemical Engineering, ITMO University, 197101 Saint Petersburg, Russia
| | | | - Dmitry D Zhdanov
- Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia
- Department of Biochemistry, People's Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
41
|
Zimowska K, Filipovic V, Nikodinovic-Runic J, Simic J, Ilic-Tomic T, Zimowska M, Gurgul J, Ponjavic M. Modulating the Release Kinetics of Natural Product Actinomycin from Bacterial Nanocellulose Films and Their Antimicrobial Activity. Bioengineering (Basel) 2024; 11:847. [PMID: 39199804 PMCID: PMC11352114 DOI: 10.3390/bioengineering11080847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
The present study aimed to create a more sustainable and controlled delivery system based on natural biopolymer bacterial nanocellulose (BNC) and bacterial natural product actinomycin (Act), with the applicative potential in the biomedical field. In order to provide improved interaction between BNC and the active compound, and thus to modulate the release kinetics, the TEMPO oxidation of BNC support was carried out. A mix of actinomycins from bacterial fermentation (ActX) were used as natural antimicrobial agents with an established bioactivity profile and clinical use. BNC and TEMPO-oxidized BNC films with incorporated active compounds were obtained and analyzed by FTIR, SEM, XPS, and XRD. The ActX release profiles were determined in phosphate-buffer solution, PBS, at 37 °C over time. FTIR analysis confirmed the improved incorporation and efficiency of ActX adsorption on oxidized BNC due to the availability of more active sites provided by oxidation. SEM analysis indicated the incorporation of ActX into the less-dense morphology of the TEMPO-oxidized BNC in comparison to pure BNC. The release kinetics of ActX were significantly affected by the BNC structure, and the activated BNC sample indicated the sustained release of active compounds over time, corresponding to the Fickian diffusion mechanism. Antimicrobial tests using Staphylococcus aureus NCTC 6571 confirmed the potency of this BNC-based system for biomedical applications, taking advantage of the capacity of modified BNC to control and modulate the release of bioactive compounds.
Collapse
Affiliation(s)
- Katarzyna Zimowska
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.Z.); (V.F.); (J.N.-R.); (J.S.); (T.I.-T.)
| | - Vuk Filipovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.Z.); (V.F.); (J.N.-R.); (J.S.); (T.I.-T.)
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.Z.); (V.F.); (J.N.-R.); (J.S.); (T.I.-T.)
| | - Jelena Simic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.Z.); (V.F.); (J.N.-R.); (J.S.); (T.I.-T.)
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.Z.); (V.F.); (J.N.-R.); (J.S.); (T.I.-T.)
| | - Malgorzata Zimowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.Z.); (J.G.)
| | - Jacek Gurgul
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.Z.); (J.G.)
| | - Marijana Ponjavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.Z.); (V.F.); (J.N.-R.); (J.S.); (T.I.-T.)
| |
Collapse
|
42
|
Tamo AK. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. J Mater Chem B 2024; 12:7692-7759. [PMID: 38805188 DOI: 10.1039/d4tb00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tissue engineering has emerged as a remarkable field aiming to restore or replace damaged tissues through the use of biomimetic constructs. Among the diverse materials investigated for this purpose, nanocellulose-based hydrogels have garnered attention due to their intriguing biocompatibility, tunable mechanical properties, and sustainability. Over the past few years, numerous research works have been published focusing on the successful use of nanocellulose-based hydrogels as artificial extracellular matrices for regenerating various types of tissues. The review emphasizes the importance of tissue engineering, highlighting hydrogels as biomimetic scaffolds, and specifically focuses on the role of nanocellulose in composites that mimic the structures, properties, and functions of the native extracellular matrix for regenerating damaged tissues. It also summarizes the types of nanocellulose, as well as their structural, mechanical, and biological properties, and their contributions to enhancing the properties and characteristics of functional hydrogels for tissue engineering of skin, bone, cartilage, heart, nerves and blood vessels. Additionally, recent advancements in the application of nanocellulose-based hydrogels for tissue engineering have been evaluated and documented. The review also addresses the challenges encountered in their fabrication while exploring the potential future prospects of these hydrogel matrices for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
43
|
Wang B, Wang Z, Chen M, Du Y, Li N, Chai Y, Wang L, Zhang Y, Liu Z, Guo C, Jiang X, Guo X, Tian Z, Yang J, Zhu C, Li W, Ou L. Immobilized Urease Vector System Based on the Dynamic Defect Regeneration Strategy for Efficient Urea Removal. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39051622 DOI: 10.1021/acsami.4c08323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The clearance of urea poses a formidable challenge, and its excessive accumulation can cause various renal diseases. Urease demonstrates remarkable efficacy in eliminating urea, but cannot be reused. This study aimed to develop a composite vector system comprising microcrystalline cellulose (MCC) immobilized with urease and metal-organic framework (MOF) UiO-66-NH2, denoted as MCC@UiO/U, through the dynamic defect generation strategy. By utilizing competitive coordination, effective immobilization of urease into MCC@UiO was achieved for efficient urea removal. Within 2 h, the urea removal efficiency could reach up to 1500 mg/g, surpassing an 80% clearance rate. Furthermore, an 80% clearance rate can also be attained in peritoneal dialyzate from patients. MCC@UiO/U also exhibits an exceptional bioactivity even after undergoing 5 cycles of perfusion, demonstrating remarkable stability and biocompatibility. This innovative approach and methodology provide a novel avenue and a wide range of immobilized enzyme vectors for clinical urea removal and treatment of kidney diseases, presenting immense potential for future clinical applications.
Collapse
Affiliation(s)
- Biao Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zimeng Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengya Chen
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunzheng Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nan Li
- Changping Laboratory, Beijing 102200, China
| | - Yamin Chai
- General Hospital Tianjin Medical University, Tianjin 300052, China
| | - Lichun Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yanjia Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhuang Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chen Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinbang Jiang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaofang Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ziying Tian
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jingxuan Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chunling Zhu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenzhong Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
44
|
Solomakha O, Stepanova M, Dobrodumov A, Gofman I, Nashchekina Y, Nashchekin A, Korzhikova-Vlakh E. Chemical Modification of Nanocrystalline Cellulose for Manufacturing of Osteoconductive Composite Materials. Polymers (Basel) 2024; 16:1936. [PMID: 39000790 PMCID: PMC11244019 DOI: 10.3390/polym16131936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
Cellulose is one of the main renewable polymers whose properties are very attractive in many fields, including biomedical applications. The modification of nanocrystalline cellulose (NCC) opens up the possibility of creating nanomaterials with properties of interest as well as combining them with other biomedical polymers. In this work, we proposed the covalent modification of NCC with amphiphilic polyanions such as modified heparin (Hep) and poly(αL-glutamic acid) (PGlu). The modification of NCC should overcome two drawbacks in the production of composite materials based on poly(ε-caprolactone) (PCL), namely, (1) to improve the distribution of modified NCC in the PCL matrix, and (2) to provide the composite material with osteoconductive properties. The obtained specimens of modified NCC were characterized by Fourier-transform infrared spectroscopy and solid-state 13C nuclear magnetic resonance spectroscopy, dynamic and electrophoretic light scattering, as well as thermogravimetric analysis. The morphology of PCL-based composites containing neat or modified NCC as filler was studied by optical and scanning electron microscopy. The mechanical properties of the obtained composites were examined in tensile tests. The homogeneity of filler distribution as well as the mechanical properties of the composites depended on the method of NCC modification and the amount of attached polyanion. In vitro biological evaluation showed improved adhesion of human fetal mesenchymal stem cells (FetMSCs) and human osteoblast-like cells (MG-63 osteosarcoma cell line) to PCL-based composites filled with NCC bearing Hep or PGlu derivatives compared to pure PCL. Furthermore, these composites demonstrated the osteoconductive properties in the experiment on the osteogenic differentiation of FetMSCs.
Collapse
Affiliation(s)
- Olga Solomakha
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Anatoliy Dobrodumov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Iosif Gofman
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Yulia Nashchekina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | | | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| |
Collapse
|
45
|
Herrera-Rivera MDR, Torres-Arellanes SP, Cortés-Martínez CI, Navarro-Ibarra DC, Hernández-Sánchez L, Solis-Pomar F, Pérez-Tijerina E, Román-Doval R. Nanotechnology in food packaging materials: role and application of nanoparticles. RSC Adv 2024; 14:21832-21858. [PMID: 38984259 PMCID: PMC11231830 DOI: 10.1039/d4ra03711a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Global concerns about food security, driven by rising demand, have prompted the exploration of nanotechnology as a solution to enhance food supply. This shift comes in response to the limitations of conventional technologies in meeting the ever-increasing demand for food products. Consequently, nanoparticles play a crucial role in enhancing food production, preservation, and extending shelf life by imparting exceptional properties to materials. Nanoparticles and nanostructures with attributes like expansive surface area and antimicrobial efficacy, are versatile in both traditional packaging and integration into biopolymer matrices. These distinctive qualities contribute to their extensive use in various food sector applications. Hence, this review explores the physicochemical properties, functions, and biological aspects of nanoparticles in the context of food packaging. Furthermore, the synergistic effect of nanoparticles with different biopolymers, alongside its different potential applications such as food shelf-life extenders, antimicrobial agents and as nanomaterials for developing smart packaging systems were summarily explored. While the ongoing exploration of this research area is evident, our review highlights the substantial potential of nanomaterials to emerge as a viable choice for food packaging if the challenges regarding toxicity are carefully and effectively modulated.
Collapse
Affiliation(s)
| | - Sandra P Torres-Arellanes
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla Abasolo S/N, Barrio del Agua Buena Santiago Suchilquitongo Oaxaca 68230 Mexico
| | - Carlos Inocencio Cortés-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla Abasolo S/N, Barrio del Agua Buena Santiago Suchilquitongo Oaxaca 68230 Mexico
| | - Diana C Navarro-Ibarra
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla Abasolo S/N, Barrio del Agua Buena Santiago Suchilquitongo Oaxaca 68230 Mexico
| | - Laura Hernández-Sánchez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla Abasolo S/N, Barrio del Agua Buena Santiago Suchilquitongo Oaxaca 68230 Mexico
| | - Francisco Solis-Pomar
- Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León San Nicolas de los Garza Nuevo León 66451 Mexico
| | - Eduardo Pérez-Tijerina
- Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León San Nicolas de los Garza Nuevo León 66451 Mexico
| | - Ramón Román-Doval
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla Abasolo S/N, Barrio del Agua Buena Santiago Suchilquitongo Oaxaca 68230 Mexico
| |
Collapse
|
46
|
Chauhan K, Singh P, Sen K, Singhal RK, Thakur VK. Recent Advancements in the Field of Chitosan/Cellulose-Based Nanocomposites for Maximizing Arsenic Removal from Aqueous Environment. ACS OMEGA 2024; 9:27766-27788. [PMID: 38973859 PMCID: PMC11223156 DOI: 10.1021/acsomega.3c09713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024]
Abstract
Water remediation, acknowledged as a significant scientific topic, guarantees the safety of drinking water, considering the diverse range of pollutants that can contaminate it. Among these pollutants, arsenic stands out as a particularly severe threat to human health, significantly compromising the overall quality of life. Despite widespread awareness of the harmful effects of arsenic poisoning, there remains a scarcity of literature on the utilization of biobased polymers as sustainable alternatives for comprehensive arsenic removal in practical concern. Cellulose and chitosan, two of the most prevalent biopolymers in nature, provide a wide range of potential benefits in cutting-edge industries, including water remediation. Nanocomposites derived from cellulose and chitosan offer numerous advantages over their larger equivalents, including high chelating properties, cost-effective production, strength, integrity during usage, and the potential to close the recycling loop. Within the sphere of arsenic remediation, this Review outlines the selection criteria for novel cellulose/chitosan-nanocomposites, such as scalability in synthesis, complete arsenic removal, and recyclability for technical significance. Especially, it aims to give an overview of the historical development of research in cellulose and chitosan, techniques for enhancing their performance, the current state of the art of the field, and the mechanisms underlying the adsorption of arsenic using cellulose/chitosan nanocomposites. Additionally, it extensively discusses the impact of shape and size on adsorbent efficiency, highlighting the crucial role of physical characteristics in optimizing performance for practical applications. Furthermore, this Review addresses regeneration, reuse, and future prospects for chitosan/cellulose-nanocomposites, which bear practical relevance. Therefore, this Review underscores the significant research gap and offers insights into refining the structural features of adsorbents to improve total inorganic arsenic removal, thereby facilitating the transition of green-material-based technology into operational use.
Collapse
Affiliation(s)
- Kalpana Chauhan
- Chemistry
under School of Engineering and Technology, Central University of Haryana, Mahendragarh, Haryana 123031, India
| | - Prem Singh
- Shoolini
University, Solan, Himachal Pradesh 173229, India
| | - Kshipra Sen
- Shoolini
University, Solan, Himachal Pradesh 173229, India
| | - Rakesh Kumar Singhal
- Analytical
Chemistry Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Centre, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| |
Collapse
|
47
|
V LP, Ramar K. Comparative Evaluation of the Mechanical and Physical Properties of Mineral Trioxide Aggregate vs. Bacterial Cellulose Nanocrystal-Reinforced Mineral Trioxide Aggregate: An In Vitro Study. Cureus 2024; 16:e63632. [PMID: 39092330 PMCID: PMC11291990 DOI: 10.7759/cureus.63632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
AIM This study aims to compare and assess the compression strength, microhardness, and surface texture of two sets of materials: mineral trioxide aggregate (MTA) PlusTM and bacterial cellulose nanocrystal (BCNC)-reinforced MTA PlusTM. MATERIALS AND METHODS According to the ASTM E384 standard, the cylindrical molds made of plexiglass with an internal diameter of 6 mm and a height of 4 mm were fabricated using computer numerical control laser cutting. A total of 20 samples (n=10) in each group were considered in this experimental study: Group I (control group) MTA PlusTM (Prevest DenPro Limited, India) and Group II (experimental group) BCNC (Vedayukt India Private Limited, India)-reinforced MTA PlusTM. After preparation, the molds were incubated at 37°C in a fully saturated condition for about 24 hours, and then the compression strength, microhardness, and scanning electron microscopy analyses were performed at different magnifications. The obtained data were then statistically analyzed. RESULTS Quantitative analysis revealed that there is a statistically significant difference between MTA PlusTM and BCNC-reinforced MTA PlusTM (p<0.002). The Wilcoxon signed-rank test and Mann-Whitney U-test revealed that BCNC-reinforced MTA PlusTM showed significantly higher compression strength (33.80±3.83 MPa, p=0.00) and surface microhardness (642.85±24.00 μm, p=0.00) than the control group. CONCLUSION Based on our findings, it was concluded that there is a statistically significant difference between both study groups. Thus, incorporating BCNC into the MTA PlusTM significantly increased the compression strength and surface microhardness of the MTA PlusTM cement. CLINICAL SIGNIFICANCE Numerous dental applications have been investigated for bacterial cellulose. Many benefits of bacterial cellulose are available, which include its effects on moldability, low cost, high water retention capacity, biocompatibility, and biodegradability. Furthermore, the addition of BCNC to MTA PlusTM accelerates the material's hardening process and decreases its setting time, which in turn shortens clinical chairside procedural timing and thereby improves patient satisfaction.
Collapse
Affiliation(s)
- Lalitha Priya V
- Department of Pediatric and Preventive Dentistry, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Chennai, IND
| | - Kavitha Ramar
- Department of Pediatric and Preventive Dentistry, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Chennai, IND
| |
Collapse
|
48
|
Abd Manaf M, Harun S, Md. Jahim J, Sajab MS, Ibrahim Z. Synergistic sequential oxidative extraction for nanofibrillated cellulose isolated from oil palm empty fruit bunch. PLoS One 2024; 19:e0299312. [PMID: 38843202 PMCID: PMC11156338 DOI: 10.1371/journal.pone.0299312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/08/2024] [Indexed: 06/09/2024] Open
Abstract
This research presents a comprehensive study of sequential oxidative extraction (SOE) consisting of alkaline and acidic oxidation processes to extract nanocellulose from plant biomass. This proposed process is advantageous as its operation requires a minimum process with mild solvents, and yet successfully isolated high-quality nanofibrillated cellulose (NFC) from raw OPEFB. The SOE involved ammonium hydroxide (NH4OH, 2.6 M) and formic acid (HCOOH, 5.3 M) catalyzed by hydrogen peroxide (H2O2, 3.2 M). This approach was used to efficiently solubilize the lignin and hemicellulose from Oil Palm Empty Fruit Bunch (OPEFB) at the temperature of 100°C and 1 h extraction time, which managed to retain fibrous NFC. The extracted solid and liquor at each stage were studied extensively through physiochemical analysis. The finding indicated that approximately 75.3%dwb of hemicellulose, 68.9%dwb of lignin, and 42.0%dwb of extractive were solubilized in the first SOE cycle, while the second SOE cycle resulted in 92.3%dwb, 99.6%dwb and 99.8%dwb of solubilized hemicellulose, lignin, and extractive/ash, respectively. High-quality NFC (75.52%dwb) was obtained for the final extracted solid with 76.4% crystallinity, which is near the crystallinity of standard commercial NFC. The proposed process possesses an effective synergy in producing NFC from raw OPEFB with less cellulose degradation, and most of the degraded hemicellulose and lignin are solubilized in the liquor.
Collapse
Affiliation(s)
- Mastura Abd Manaf
- Faculty of Engineering and Built Environment, Research Centre for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Shuhaida Harun
- Faculty of Engineering and Built Environment, Research Centre for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Faculty of Engineering and Built Environment, Chemical Engineering Programme, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Jamaliah Md. Jahim
- Faculty of Engineering and Built Environment, Research Centre for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Faculty of Engineering and Built Environment, Chemical Engineering Programme, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Mohd Shaiful Sajab
- Faculty of Engineering and Built Environment, Research Centre for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Faculty of Engineering and Built Environment, Chemical Engineering Programme, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Zulkifli Ibrahim
- Faculty of Electrical and Electronic Engineering Technology, Electrical Engineering Technology Department, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia
| |
Collapse
|
49
|
Fate AS, Maheshwari Y, Shekhar Tiwari S, Das P, Bal M. Exploring nanocellulose's role in revolutionizing the pharmaceutical and biomedical fields. Int J Biol Macromol 2024; 272:132837. [PMID: 38848844 DOI: 10.1016/j.ijbiomac.2024.132837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/28/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
The increasing global demand for eco-friendly products derived from natural resources has spurred intensive research into biomaterials. Among these materials, nanocellulose stands out as a highly efficient option, consisting of tightly packed cellulose fibrils derived from lignocellulosic biomass. Nanocellulose boasts a remarkable combination of attributes, including a high specific surface area, impressive mechanical strength, abundant hydroxyl groups for easy modification, as well as non-toxic, biodegradable, and environmentally friendly properties. Consequently, nanocellulose has been extensively studied for advanced applications. This paper provides a comprehensive overview of the various sources of nanocellulose derived from diverse natural sources and outlines the wide array of production methods available. Furthermore, it delves into the extensive utility of nanocellulose within the biomedical and pharmaceutical industries, shedding light on its potential role in these fields. Additionally, it highlights the significance of nanocellulose composites and their applications, while also addressing key challenges that must be overcome to enable widespread utilization of nanocellulose.
Collapse
Affiliation(s)
- Abhay Sandip Fate
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Yash Maheshwari
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Shashank Shekhar Tiwari
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Payal Das
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Manisha Bal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India.
| |
Collapse
|
50
|
Chen T, Yan Y, Zhou X, Liu W, Tan R, Wei D, Feng Y, Cui Q, Wang W, Zhang R, Wu N, Xu H, Qu D, Zhang H, Wu G, Zhao Y. An antioxidant hydrogel dressing with wound pH indication function prepared based on silanized bacterial nanocellulose crosslinked with beet red pigment extract. Int J Biol Macromol 2024; 269:131824. [PMID: 38697411 DOI: 10.1016/j.ijbiomac.2024.131824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
Maintaining wound moisture and monitoring of infection are crucial aspects of chronic wound treatment. The development of a pH-sensitive functional hydrogel dressing is an effective approach to monitor, protect, and facilitate wound healing. In this study, beet red pigment extract (BRPE) served as a native and efficient pH indicator by being grafted into silane-modified bacterial nanocellulose (BNC) to prepare a pH-sensitive wound hydrogel dressing (S-g-BNC/BRPE). FTIR confirmed the successful grafting of BRPE into the BNC matrix. The S-g-BNC/BRPE showed superior mechanical properties (0.25 MPa), swelling rate (1251 % on average), and hydrophilic properties (contact angle 21.83°). The composite exhibited a notable color change as the pH changed between 4.0 and 9.0. It appeared purple-red when the pH ranged from 4.0 to 6.0, and appeared light pink at pH 7.0 and 7.4, and appeared ginger-yellow at pH 8.0 and 9.0. Subsequently, the antioxidant activity and cytotoxicity of the composite was evaluated, its DPPH·, ABTS+, ·OH scavenging rates were 32.33 %, 19.31 %, and 30.06 %, respectively, and the cytotoxicity test clearly demonstrated the safety of the dressing. The antioxidant hydrogel dressing, fabricated with a cost-effective and easy method, not only showed excellent biocompatibility and dressing performance but could also indicated the wound state based on pH changes.
Collapse
Affiliation(s)
- Tao Chen
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Yiran Yan
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Xiaoshuang Zhou
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Wanli Liu
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Ran Tan
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Dingkang Wei
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Yetong Feng
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Qi Cui
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 26003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 26003, China
| | - Rui Zhang
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Nan Wu
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Hailong Xu
- Institute of blue economic Research, Weihai 264200, China
| | - Dehui Qu
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Hongyuan Zhang
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China
| | - Guochao Wu
- Shandong Key Laboratory of Edible Mushroom Technology, College of Agriculture, Ludong University, Yantai 264025, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai 264025, China.
| | - Ying Zhao
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China.
| |
Collapse
|