1
|
Hou Z, Cui N, Liu Z, Bu H, Song F, Pi Z, Liu Z, Liu S. Study of the Pharmacodynamic Material Basis and Mechanisms of the Action of Fubai Chrysanthemum in Relieving Visual Fatigue. J Med Food 2024; 27:1028-1037. [PMID: 39207254 DOI: 10.1089/jmf.2024.k.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Fubai chrysanthemum is a kind of traditional Chinese medicine, which can be used as a common food, and is commonly used to improve and relieve visual fatigue. However, its pharmacodynamic material basis and action mechanisms in relieving visual fatigue have not been systematically studied. In this article, 11 absorbed ingredients from Fubai chrysanthemum were detected in rat plasma. Then, the target network pharmacology and KEGG pathway analysis were performed. It was found that Fubai chrysanthemum could inhibit various apoptotic cells and reduce oxidative damage of eyes by regulating the apoptosis pathway, thus alleviating visual fatigue. Further in vitro experiments showed that Fubai chrysanthemum could effectively protect against oxidation damage of adult retinal pigment epithelial cells (ARPE-19), retinal ganglion cells (RGC-5), and lens. The results of cell experiments showed that Fubai chrysanthemum could increase the cell activity, GSH content, and SOD content of ARPE-19 and RGC-5 after oxidative injury, while decreasing the IL-18 content. Similarly, in the study of lens transparency, we found that Fubai chrysanthemum could effectively alleviate the oxidative damage degree of the lens, and significantly increase the content of CAT, GSH, and SOD. The above results suggested that Fubai chrysanthemum could play an important role in alleviating visual fatigue through regulating cell apoptosis and antioxidative damage.
Collapse
Affiliation(s)
- Zong Hou
- Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Chinese Academy of Sciences, Changchun, China
| | - Naiyun Cui
- Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Chinese Academy of Sciences, Changchun, China
| | - Zhan Liu
- Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Chinese Academy of Sciences, Changchun, China
| | - Hongshi Bu
- Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Chinese Academy of Sciences, Changchun, China
| | - Fengrui Song
- Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Chinese Academy of Sciences, Changchun, China
| | - Zifeng Pi
- Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Chinese Academy of Sciences, Changchun, China
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhiqiang Liu
- Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Chinese Academy of Sciences, Changchun, China
| | - Shu Liu
- Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
2
|
Steidemann MM, Liu J, Bayes K, Castro LP, Ferguson-Miller S, LaPres JJ. Evidence for crosstalk between the aryl hydrocarbon receptor and the translocator protein in mouse lung epithelial cells. Exp Cell Res 2023; 429:113617. [PMID: 37172753 PMCID: PMC10330775 DOI: 10.1016/j.yexcr.2023.113617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Cellular homeostasis requires the use of multiple environmental sensors that can respond to a variety of endogenous and exogenous compounds. The aryl hydrocarbon receptor (AHR) is classically known as a transcription factor that induces genes that encode drug metabolizing enzymes when bound to toxicants such as 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD). The receptor has a growing number of putative endogenous ligands, such as tryptophan, cholesterol, and heme metabolites. Many of these compounds are also linked to the translocator protein (TSPO), an outer mitochondrial membrane protein. Given a portion of the cellular pool of the AHR has also been localized to mitochondria and the overlap in putative ligands, we tested the hypothesis that crosstalk exists between the two proteins. CRISPR/Cas9 was used to create knockouts for AHR and TSPO in a mouse lung epithelial cell line (MLE-12). WT, AHR-/-, and TSPO-/- cells were then exposed to AHR ligand (TCDD), TSPO ligand (PK11195), or both and RNA-seq was performed. More mitochondrial-related genes were altered by loss of both AHR and TSPO than would have been expected just by chance. Some of the genes altered included those that encode for components of the electron transport system and the mitochondrial calcium uniporter. Both proteins altered the activity of the other as AHR loss caused the increase of TSPO at both the mRNA and protein level and loss of TSPO significantly increased the expression of classic AHR battery genes after TCDD treatment. This research provides evidence that AHR and TSPO participate in similar pathways that contribute to mitochondrial homeostasis.
Collapse
Affiliation(s)
- Michelle M Steidemann
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Jian Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, United States
| | - Kalin Bayes
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, United States
| | - Lizbeth P Castro
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, United States; Department of Cell and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, United States
| | - John J LaPres
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, United States.
| |
Collapse
|
3
|
Pronsato L, Milanesi L, Vasconsuelo A. Testosterone induces up-regulation of mitochondrial gene expression in murine C2C12 skeletal muscle cells accompanied by an increase of nuclear respiratory factor-1 and its downstream effectors. Mol Cell Endocrinol 2020; 500:110631. [PMID: 31676390 DOI: 10.1016/j.mce.2019.110631] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 01/03/2023]
Abstract
The reduction in muscle mass and strength with age, sarcopenia, is a prevalent condition among the elderly, linked to skeletal muscle dysfunction and cell apoptosis. We demonstrated that testosterone protects against H2O2-induced apoptosis in C2C12 muscle cells. Here, we analyzed the effect of testosterone on mitochondrial gene expression in C2C12 skeletal muscle cells. We found that testosterone increases mRNA expression of genes encoded by mitochondrial DNA, such as NADPH dehydrogenase subunit 1 (ND1), subunit 4 (ND4), cytochrome b (CytB), cytochrome c oxidase subunit 1 (Cox1) and subunit 2 (Cox2) in C2C12. Additionally, the hormone induced the expression of the nuclear respiratory factors 1 and 2 (Nrf-1 and Nrf-2), the mitochondrial transcription factors A (Tfam) and B2 (TFB2M), and the optic atrophy 1 (OPA1). The simultaneous treatment with testosterone and the androgen receptor antagonist, Flutamide, reduced these effects. H2O2-oxidative stress induced treatment, significantly decreased mitochondrial gene expression. Computational analysis revealed that mitochondrial DNA contains specific sequences, which the androgen receptor could recognize and bind, probably taking place a direct regulation of mitochondrial transcription by the receptor. These findings indicate that androgen plays an important role in the regulation of mitochondrial transcription and biogenesis in skeletal muscle.
Collapse
Affiliation(s)
- Lucía Pronsato
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET), 8000, Bahía Blanca, Argentina.
| | - Lorena Milanesi
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET), 8000, Bahía Blanca, Argentina.
| | - Andrea Vasconsuelo
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET), 8000, Bahía Blanca, Argentina
| |
Collapse
|
4
|
Bicer T, Imamoglu GI, Caliskan S, Bicer BK, Gurdal C. The Effects of Adjuvant Tamoxifen Use on Macula Pigment Epithelium Optical Density, Visual Acuity and Retinal Thickness in Patients with Breast Cancer. Curr Eye Res 2019; 45:623-628. [PMID: 31684771 DOI: 10.1080/02713683.2019.1687725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: We aimed to compare best corrected visual acuity, macular pigment optical density and macular thickness in patients with breast cancer, who received oral adjuvant hormone therapy.Materials and Methods: We enrolled consecutive eligible patients with breast cancer who were receiving regular medical tamoxifen treatment. The participants were divided into two groups as cases and controls. Best-corrected visual acuity and retinal thickness were examined. Macular pigment optical density was measured by fundus reflectometry using the one-wavelength reflection method. The output parameters included max optical density, mean optical density, volume and area of the right eye.Results: A total of 104 eyes, cases (n: 50) and controls (n: 54) were included in the study. Mean age in cases was 49.95 ± 9.2 years and 50.21 ± 9.3 years in controls (p = .151). The mean foveal optical density and the maximum optical density differed between cases (0.13 ± 0.03 density units (DU)/0.35 ± 0.07 DU) and controls (0.18 ± 0.04 DU/0.41 ± 0.06 DU) (p = .002/p = .009). Macular pigment optical density volume was 8102.84 ± 2412.67 in cases versus 8280.18 ± 2904.56 in controls (p = .034), and mean MPOD area was 59567.79 ± 11538.06 in cases versus 61748.14 ± 10591.19 in controls (p = .023). The best corrected visual acuity and retinal thickness were similar in both groups (p > .05).Conclusions: Patients in care of oral tamoxifen therapy were found to have significantly reduced macular pigment optical density. In addition, higher drug use duration correlated significantly with reduced macular pigment optical density, suggesting that the poor long-term effects may play a role in macular pigment absorption and incorporation in the retinal tissue.
Collapse
Affiliation(s)
- Tolga Bicer
- Department of Ophthalmology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Goksen Inanc Imamoglu
- Department of Medical Oncology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Sinan Caliskan
- Department of Ophthalmology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | | | - Canan Gurdal
- Department of Ophthalmology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
5
|
Rosa-Caldwell ME, Greene NP. Muscle metabolism and atrophy: let's talk about sex. Biol Sex Differ 2019; 10:43. [PMID: 31462271 PMCID: PMC6714453 DOI: 10.1186/s13293-019-0257-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle health is a strong predictor of overall health and longevity. Pathologies affecting skeletal muscle such as cancer cachexia, intensive care unit treatment, muscular dystrophies, and others are associated with decreased quality of life and increased mortality. Recent research has begun to determine that these muscular pathologies appear to present and develop differently between males and females. However, to our knowledge, there has yet to be a comprehensive review on musculoskeletal differences between males and females and how these differences may contribute to sex differences in muscle pathologies. Herein, we present a review of the current literature on muscle phenotype and physiology between males and females and how these differences may contribute to differential responses to atrophic stimuli. In general, females appear to be more susceptible to disuse induced muscle wasting, yet protected from inflammation induced (such as cancer cachexia) muscle wasting compared to males. These differences may be due in part to differences in muscle protein turnover, satellite cell content and proliferation, hormonal interactions, and mitochondrial differences between males and females. However, more works specifically examining muscle pathologies in females are necessary to more fully understand the inherent sex-based differences in muscle pathologies between the sexes and how they may correspond to different clinical treatments.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
6
|
Kosior-Jarecka E, Sagan M, Wróbel-Dudzińska D, Łukasik U, Aung T, Khor CC, Kocki J, Żarnowski T. Estrogen receptor gene polymorphisms and their influence on clinical status of Caucasian patients with primary open angle glaucoma. Ophthalmic Genet 2019; 40:323-328. [DOI: 10.1080/13816810.2019.1639201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ewa Kosior-Jarecka
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University, Lublin, Poland
| | - Małgorzata Sagan
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University, Lublin, Poland
| | | | - Urszula Łukasik
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University, Lublin, Poland
| | - Tin Aung
- Department of Ophthalmology, National University Health System, National University of Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
- Singapore National Eye Center, Singapore, Singapore
| | - Chiea Chuen Khor
- Singapore Eye Research Institute, Singapore, Singapore
- Genome Institute of Singapore, Singapore, Singapore
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University, Lublin, Poland
| | - Tomasz Żarnowski
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University, Lublin, Poland
| |
Collapse
|
7
|
Škiljić D, Petersen A, Karlsson JO, Behndig A, Nilsson S, Zetterberg M. Effects of 17β-Estradiol on Activity, Gene and Protein Expression of Superoxide Dismutases in Primary Cultured Human Lens Epithelial Cells. Curr Eye Res 2018; 43:639-646. [PMID: 29432033 DOI: 10.1080/02713683.2018.1437923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Protective effects of estradiol against H2O2-induced oxidative stress have been demonstrated in lens epithelial cells. The purpose of this study was to investigate the effects of 17β-estradiol (E2) on the different superoxide dismutase (SOD) isoenzymes, SOD-1, SOD-2, and SOD-3, as well as estrogen receptors (ERs), ERα and ERβ, in primary cultured human lens epithelial cells (HLECs). MATERIALS AND METHODS HLECs were exposed to 0.1 µM or 1 µM E2 for 1.5 h and 24 h after which the effects were studied. Protein expression and immunolocalization of SOD-1, SOD-2, ERα, and ERβ were studied with Western blot and immunocytochemistry. Total SOD activity was measured, and gene expression analyses were performed for SOD1, SOD2, and SOD3. RESULTS Increased SOD activity was seen after 1.5 h exposure to both 0.1 µM and 1 µM E2. There were no significant changes in protein or gene expression of the different SODs. Immunolabeling of SOD-1 was evident in the cytosol and nucleus; whereas, SOD-2 was localized in the mitochondria. Both ERα and ERβ were immunolocalized to the nucleus, and mitochondrial localization of ERβ was evident by colocalization with MitoTracker. Both ERα and ERβ showed altered protein expression levels after exposure to E2. CONCLUSIONS The observed increase in SOD activity after exposure to E2 without accompanying increase in gene or protein expression supports a role for E2 in protection against oxidative stress mediated through non-genomic mechanisms.
Collapse
Affiliation(s)
- Dragana Škiljić
- a Department of Clinical Neuroscience/Ophthalmology, Institute of Neuroscience and Physiology , The Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden.,b Department of Ophthalmology , Sahlgrenska University Hospital , Mölndal , Sweden
| | - Anne Petersen
- a Department of Clinical Neuroscience/Ophthalmology, Institute of Neuroscience and Physiology , The Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | - Jan-Olof Karlsson
- c Department of Medical Chemistry and Cell Biology , Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | - Anders Behndig
- d Department of Clinical Sciences/Ophthalmology , Umeå University , Umeå , Sweden
| | - Staffan Nilsson
- e Department of Mathematical Statistics, Institute of Mathematical Sciences , Chalmers University of Technology , Gothenburg , Sweden
| | - Madeleine Zetterberg
- a Department of Clinical Neuroscience/Ophthalmology, Institute of Neuroscience and Physiology , The Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden.,b Department of Ophthalmology , Sahlgrenska University Hospital , Mölndal , Sweden
| |
Collapse
|
8
|
|
9
|
Choudhury AR, Singh KK. Mitochondrial determinants of cancer health disparities. Semin Cancer Biol 2017; 47:125-146. [PMID: 28487205 PMCID: PMC5673596 DOI: 10.1016/j.semcancer.2017.05.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 01/10/2023]
Abstract
Mitochondria, which are multi-functional, have been implicated in cancer initiation, progression, and metastasis due to metabolic alterations in transformed cells. Mitochondria are involved in the generation of energy, cell growth and differentiation, cellular signaling, cell cycle control, and cell death. To date, the mitochondrial basis of cancer disparities is unknown. The goal of this review is to provide an understanding and a framework of mitochondrial determinants that may contribute to cancer disparities in racially different populations. Due to maternal inheritance and ethnic-based diversity, the mitochondrial genome (mtDNA) contributes to inherited racial disparities. In people of African ancestry, several germline, population-specific haplotype variants in mtDNA as well as depletion of mtDNA have been linked to cancer predisposition and cancer disparities. Indeed, depletion of mtDNA and mutations in mtDNA or nuclear genome (nDNA)-encoded mitochondrial proteins lead to mitochondrial dysfunction and promote resistance to apoptosis, the epithelial-to-mesenchymal transition, and metastatic disease, all of which can contribute to cancer disparity and tumor aggressiveness related to racial disparities. Ethnic differences at the level of expression or genetic variations in nDNA encoding the mitochondrial proteome, including mitochondria-localized mtDNA replication and repair proteins, miRNA, transcription factors, kinases and phosphatases, and tumor suppressors and oncogenes may underlie susceptibility to high-risk and aggressive cancers found in African population and other ethnicities. The mitochondrial retrograde signaling that alters the expression profile of nuclear genes in response to dysfunctional mitochondria is a mechanism for tumorigenesis. In ethnic populations, differences in mitochondrial function may alter the cross talk between mitochondria and the nucleus at epigenetic and genetic levels, which can also contribute to cancer health disparities. Targeting mitochondrial determinants and mitochondrial retrograde signaling could provide a promising strategy for the development of selective anticancer therapy for dealing with cancer disparities. Further, agents that restore mitochondrial function to optimal levels should permit sensitivity to anticancer agents for the treatment of aggressive tumors that occur in racially diverse populations and hence help in reducing racial disparities.
Collapse
Affiliation(s)
| | - Keshav K Singh
- Departments of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Departments of Environmental Health, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Aging, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA.
| |
Collapse
|
10
|
Kotreka UK, Davis VL, Adeyeye MC. Development of topical ophthalmic In Situ gel-forming estradiol delivery system intended for the prevention of age-related cataracts. PLoS One 2017; 12:e0172306. [PMID: 28222100 PMCID: PMC5319703 DOI: 10.1371/journal.pone.0172306] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/02/2017] [Indexed: 11/18/2022] Open
Abstract
The goal of this study was to develop and characterize an ion-activated in situ gel-forming estradiol (E2) solution eye drops intended for the prevention of age-related cataracts. Accordingly, in situ gelling eye drops were made using gellan gum as an ion-activated gel-forming polymer, polysorbate-80 as drug solubilizing agent, mannitol as tonicity agent, and combination of potassium sorbate and edetate disodium dihydrate (EDTA) as preservatives. The formulations were tested for the following characteristics: pH, clarity, osmolality, antimicrobial efficacy, rheological behavior, and in vitro drug release. Stability of the formulation was also monitored for 6 months at multiple storage conditions per ICH Q1A (R2) guidelines. The solution eye drops resulted in an in-situ phase change to gel-state when mixed with simulated tear fluid (STF). The gel structure formation was confirmed by viscoelastic measurements. Drug release from the gel followed non-fickian mechanism with 80% of drug released in 8 hr. The formulations were found to be clear, isotonic with suitable pH and viscoelastic behavior and stable at accelerated and long-term storage conditions for 6 months. In vitro results suggest that the developed formulation is suitable for further investigation in animal models to elucidate the ability of estrogen to prevent and delay cataracts.
Collapse
Affiliation(s)
- Udaya K. Kotreka
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States of America
| | - Vicki L. Davis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States of America
| | - Moji C. Adeyeye
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States of America
| |
Collapse
|
11
|
Sepuri NBV, Tammineni P, Mohammed F, Paripati A. Nuclear Transcription Factors in the Mitochondria: A New Paradigm in Fine-Tuning Mitochondrial Metabolism. Handb Exp Pharmacol 2017; 240:3-20. [PMID: 27417432 DOI: 10.1007/164_2016_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Noncanonical functions of several nuclear transcription factors in the mitochondria have been gaining exceptional traction over the years. These transcription factors include nuclear hormone receptors like estrogen, glucocorticoid, and thyroid hormone receptors: p53, IRF3, STAT3, STAT5, CREB, NF-kB, and MEF-2D. Mitochondria-localized nuclear transcription factors regulate mitochondrial processes like apoptosis, respiration and mitochondrial transcription albeit being nuclear in origin and having nuclear functions. Hence, the cell permits these multi-stationed transcription factors to orchestrate and fine-tune cellular metabolism at various levels of operation. Despite their ubiquitous distribution in different subcompartments of mitochondria, their targeting mechanism is poorly understood. Here, we review the current status of mitochondria-localized transcription factors and discuss the possible targeting mechanism besides the functional interplay between these factors.
Collapse
Affiliation(s)
- Naresh Babu V Sepuri
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Telangana, 500046, India.
| | - Prasad Tammineni
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Telangana, 500046, India
| | - Fareed Mohammed
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Telangana, 500046, India
| | - Arunkumar Paripati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Telangana, 500046, India
| |
Collapse
|
12
|
Vafopoulou X, Steel CGH. Mitochondria and the insect steroid hormone receptor (EcR): A complex relationship. Gen Comp Endocrinol 2016; 237:68-77. [PMID: 27497706 DOI: 10.1016/j.ygcen.2016.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/28/2016] [Accepted: 08/02/2016] [Indexed: 11/23/2022]
Abstract
The actions of the insect steroid molting hormones, ecdysteroids, on the genome of target cells has been well studied, but little is known of their extranuclear actions. We previously showed in Rhodnius prolixus that much of the ecdysteroid receptor (EcR) resides in the cytoplasm of various cell types and undergoes shuttling between nucleus and cytoplasm with circadian periodicity, possibly using microtubules as tracks for translocation to the nucleus. Here we report that cytoplasmic EcR appears to be also involved in extranuclear actions of ecdysteroids by association with the mitochondria. Western blots of subcellular fractions of brain lysates revealed that EcR is localized in the mitochondrial fraction, indicating an intimate association of EcR with mitochondria. Confocal laser microscopy and immunohistochemistry using anti-EcR revealed abundant co-localization of EcR with mitochondria in brain neurons and their axons, especially intense in the subplasmalemmal region, raising the possibility of EcR involvement in mitochondrial functions in subplasmalemmal microdomains. When mitochondria are dispersed by disruption of microtubules with colchicine, EcR remains associated with mitochondria showing strong receptor association with mitochondria. Treatment in vitro with ecdysteroids of brains of developmentally arrested R. prolixus (containing neither ecdysteroids nor EcR) induces EcR and abundant co-localization with mitochondria in neurons, concurrently with a sharp increase of the mitochondrial protein COX 1, suggesting involvement of EcR in mitochondrial function. These findings align EcR with various vertebrate steroid receptors, where actions of steroid receptors on mitochondria are widely known and suggest that steroid receptors across distant phyla share similar functional attributes.
Collapse
Affiliation(s)
| | - Colin G H Steel
- Biology Department, York University, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Abstract
There is evidence from epidemiologic data that cataract is more common in women than men. This is not solely due to a higher rate of cataract extraction in women, as is the case in the western world, but several population-based studies show that females have a higher prevalence of lens opacities, especially cortical. There is no firm evidence that lifestyle-related factors are the cause of this gender discrepancy. Focus has therefore been directed towards the role of estrogen in cataract formation. Although data on endogenous and exogenous estrogen involvement in cataractogenesis are conflicting, some studies have indicated that hormone therapy may decrease the risk of cataract and thus be protective. It has been hypothesized that the decrease in estrogen at menopause cause increased risk of cataract in women, i.e. not strictly the concentration of estrogen, but more the withdrawal effect. Estrogens are known to exert several anti-aging effects that may explain the longer lifespan in women, including metabolically beneficial effects, neuroprotection, preservation of telomeres and anti-oxidative properties. Since oxidative stress is considered important in cataractogenesis, studies have investigated the effects of estrogens on lens epithelial cells in culture or in animal models. Several investigators have found protection by physiological concentrations of 17β-estradiol against oxidative stress induced by H2O2 in cultured lens epithelial cells. Although both main types of estrogen receptors, ERα and ERβ, have been demonstrated in lens epithelium, most studies so far indicate that the estrogen-mediated protection in the lens is exerted through non-genomic, i.e. receptor-independent mechanisms, possibly through phosphorylation of extracellular signal-regulated kinase (ERK1/ERK2), a member of the mitogen-activated protein kinase (MAPK)-signaling pathway. Further studies are needed, both epidemiologic as to the role of hormone therapies, and laboratory studies regarding molecular estrogen-mediated mechanisms, in order to comprehend the role of estrogens on cataract formation.
Collapse
Affiliation(s)
- Madeleine Zetterberg
- Department of Clinical Neuroscience and Rehabilitation/Ophthalmology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | | |
Collapse
|
14
|
Velarde MC. Mitochondrial and sex steroid hormone crosstalk during aging. LONGEVITY & HEALTHSPAN 2014; 3:2. [PMID: 24495597 PMCID: PMC3922316 DOI: 10.1186/2046-2395-3-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/08/2014] [Indexed: 12/21/2022]
Abstract
Decline in circulating sex steroid hormones accompanies several age-associated pathologies which may influence human healthspan. Mitochondria play important roles in biosynthesis of sex steroid hormones, and these hormones can also regulate mitochondrial function. Understanding the cross talk between mitochondria and sex steroid hormones may provide insights into the pathologies associated with aging. The aim of this review is to summarize the current knowledge regarding the interplay between mitochondria and sex steroid hormones during the aging process. The review describes the effect of mitochondria on sex steroid hormone production in the gonads, and then enumerates the contribution of sex steroid hormones on mitochondrial function in hormone responsive cells. Decline in sex steroid hormones and accumulation of mitochondrial damage may create a positive feedback loop that contributes to the progressive degeneration in tissue function during aging. The review further speculates whether regulation between mitochondrial function and sex steroid hormone action can potentially influence healthspan.
Collapse
Affiliation(s)
- Michael C Velarde
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA.
| |
Collapse
|
15
|
Wickramasekera NT, Das GM. Tumor suppressor p53 and estrogen receptors in nuclear-mitochondrial communication. Mitochondrion 2013; 16:26-37. [PMID: 24177747 DOI: 10.1016/j.mito.2013.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/04/2013] [Accepted: 10/22/2013] [Indexed: 01/09/2023]
Abstract
Several gene transcription regulators considered solely localized within the nuclear compartment are being reported to be present in the mitochondria as well. There is growing interest in the role of mitochondria in regulating cellular metabolism in normal and disease states. Various findings demonstrate the importance of crosstalk between nuclear and mitochondrial genomes, transcriptomes, and proteomes in regulating cellular functions. Both tumor suppressor p53 and estrogen receptor (ER) were originally characterized as nuclear transcription factors. In addition to their individual roles as regulators of various genes, these two proteins interact resulting in major cellular consequences. In addition to its nuclear role, p53 has been localized to the mitochondria where it executes various transcription-independent functions. Likewise, ERs are reported to be present in mitochondria; however their functional roles remain to be clearly defined. In this review, we provide an integrated view of the current knowledge of nuclear and mitochondrial p53 and ERs and how it relates to normal and pathological physiology.
Collapse
Affiliation(s)
- Nadi T Wickramasekera
- Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, United States
| | - Gokul M Das
- Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, United States.
| |
Collapse
|
16
|
Actions of 17β-estradiol and testosterone in the mitochondria and their implications in aging. Ageing Res Rev 2013; 12:907-17. [PMID: 24041489 DOI: 10.1016/j.arr.2013.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/06/2013] [Indexed: 02/02/2023]
Abstract
A decline in the mitochondrial functions and aging are two closely related processes. The presence of estrogen and androgen receptors and hormone-responsive elements in the mitochondria represents the starting point for the investigation of the effects of 17β-estradiol and testosterone on the mitochondrial functions and their relationships with aging. Both steroids trigger a complex molecular mechanism that involves crosstalk between the mitochondria, nucleus, and plasma membrane, and the cytoskeleton plays a key role in these interactions. The result of this signaling is mitochondrial protection. Therefore, the molecular components of the pathways activated by the sexual steroids could represent targets for anti-aging therapies. In this review, we discuss previous studies that describe the estrogen- and testosterone-dependent actions on the mitochondrial processes implicated in aging.
Collapse
|
17
|
Kirker MR, Gallagher KM, Witt-Enderby PA, Davis VL. High affinity nuclear and nongenomic estradiol binding sites in the human and mouse lens. Exp Eye Res 2013; 112:1-9. [PMID: 23597597 DOI: 10.1016/j.exer.2013.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/27/2013] [Accepted: 04/04/2013] [Indexed: 10/27/2022]
Abstract
Estrogen is reported to be protective against cataracts in women and animal models. Immunodetection methods have identified the classic estrogen receptors (ER), ERα and ERβ, in human lens epithelial cells and their RNAs have been detected in the rat and human lens. To verify that estrogen binding occurs in the lens, sensitive [(125)I]-17β-estradiol binding analyses were performed on subcellular lens fractions from women (ages 39-78 years). The presence of high affinity estradiol binding sites in the nuclear, cytoplasmic, and membrane fractions indicate the lens is able to respond to estrogens, even up to age 78, although fewer binding sites were detected in the postmenopausal women. Additionally, due to the importance of mouse models in estrogen action and lens research, lenses from intact female mice were also analyzed. Both the C57BL/6 and FVB/N mouse strains also possessed high affinity binding sites in all three lens fractions. Furthermore, transcripts for ERα, ERβ, and G protein-coupled estrogen receptor (GPER; previously called GPR30) that bind estradiol with high affinity were expressed in the human and mouse lenses. These data provide the first evidence of GPER expression in the lens. Its role, functions, and subcellular location are currently unknown, but a G-shift assay in the membrane fractions of human and mouse lenses did not show evidence that estradiol induced classic G protein-coupled receptor activation. All three receptor transcripts were also detected in the lens capsule region isolated from female C57BL/6 mice, which is mainly comprised of epithelial cells. In contrast, only ERα and GPER were expressed in the cortex/nuclear region, which is primarily composed of differentiating and organelle-free fiber cells. No significant differences in specific estradiol binding and receptor RNA expression were observed in the lenses between male and female C57BL/6 mice. These findings indicate that the lens is an estrogen target tissue in both sexes. The identification of GPER, in addition to ERα and ERβ, in the lens also adds to the complexity of possible estrogen responses in the lens. Accordingly, the protective effects of estrogen in women and animals may be mediated by all three estrogen receptors in the lens. In addition, the similarities in binding and receptor RNA expression in the lenses of both species suggest that mice can be used to model estrogen action in the human lens.
Collapse
Affiliation(s)
- M Rachel Kirker
- Graduate School of Pharmaceutical Sciences, Duquesne University, USA
| | | | | | | |
Collapse
|
18
|
Pronsato L, Boland R, Milanesi L. Non-classical localization of androgen receptor in the C2C12 skeletal muscle cell line. Arch Biochem Biophys 2013; 530:13-22. [DOI: 10.1016/j.abb.2012.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/29/2012] [Accepted: 12/07/2012] [Indexed: 11/27/2022]
|
19
|
Mechanism of inhibition of mitochondrial ATP synthase by 17β−Estradiol. J Bioenerg Biomembr 2012; 45:261-70. [DOI: 10.1007/s10863-012-9497-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/09/2012] [Indexed: 01/11/2023]
|
20
|
Arnold S, Victor MB, Beyer C. Estrogen and the regulation of mitochondrial structure and function in the brain. J Steroid Biochem Mol Biol 2012; 131:2-9. [PMID: 22326731 DOI: 10.1016/j.jsbmb.2012.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 09/20/2011] [Accepted: 01/20/2012] [Indexed: 12/20/2022]
Abstract
The mitochondrion is the unquestionable cellular compartment that actively preserves most of the cell functions, such as lipid metabolism, ion homeostasis, energy and ROS production, steroid biosynthesis, and control of apoptotic signaling. Thus, this cell organelle depicts a major drop-in centre for regulatory processes within a cell irrespective of the organ or tissue. However, brain tissue is unique in spite of everything due to its extremely high energy demand and sensitivity to oxidative stress. This makes brain cells, in particular neurons, considerably vulnerable against toxins and challenges that attack the mitochondrial structural organization and energetic performance. Estrogens are known to regulate a multitude of cellular functions in neural cells under physiological conditions but also play a protective role under neuropathological circumstances. In recent years, it became evident that estrogens affect distinct cellular processes by interfering with the bioenergetic mitochondrial compartment. According to the general view, estrogens indirectly regulate the mitochondrion through the control of genomic transcription of mitochondrial-located proteins and modulation of cytoplasmic signaling cascades that act upon mitochondrial physiology. More recent but still arguable data suggest that estrogens might directly signal to the mitochondrion either through classical steroid receptors or novel types of receptors/proteins associated with the mitochondrial compartment. This would allow estrogens to more rapidly modulate the function of a mitochondrion than hitherto discussed. Assuming that this novel perception of steroid action is correct, estrogen might influence the energetic control centre through long-lasting nuclear-associated processes and rapid mitochondria-intrinsic temporary mechanisms. In this article, we would like to particularly accentuate the novel conceptual approach of this duality comprising that estrogens govern the mitochondrial structural integrity and functional capacity by different cellular signaling routes. This article is part of a Special Issue entitled 'Neurosteroids'.
Collapse
Affiliation(s)
- Susanne Arnold
- Institute of Neuroanatomy, RWTH Aachen University,Aachen, Germany
| | | | | |
Collapse
|
21
|
Van Bergen NJ, Chakrabarti R, O’Neill EC, Crowston JG, Trounce IA. Mitochondrial disorders and the eye. Eye Brain 2011; 3:29-47. [PMID: 28539774 PMCID: PMC5436186 DOI: 10.2147/eb.s16192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The clinical significance of disturbed mitochondrial function in the eye has emerged since mitochondrial DNA (mtDNA) mutation was described in Leber's hereditary optic neuropathy. The spectrum of mitochondrial dysfunction has become apparent through increased understanding of the contribution of nuclear and somatic mtDNA mutations to mitochondrial dynamics and function. Common ophthalmic manifestations of mitochondrial dysfunction include optic atrophy, pigmentary retinopathy, and ophthalmoplegia. The majority of patients with ocular manifestations of mitochondrial disease also have variable central and peripheral nervous system involvement. Mitochondrial dysfunction has recently been associated with age-related retinal disease including macular degeneration and glaucoma. Therefore, therapeutic targets directed at promoting mitochondrial biogenesis and function offer a potential to both preserve retinal function and attenuate neurodegenerative processes.
Collapse
Affiliation(s)
- Nicole J Van Bergen
- Centre for Eye Research Australia, Department of Ophthalmology, University of Melbourne, Victoria, Australia
| | - Rahul Chakrabarti
- Centre for Eye Research Australia, Department of Ophthalmology, University of Melbourne, Victoria, Australia
| | - Evelyn C O’Neill
- Centre for Eye Research Australia, Department of Ophthalmology, University of Melbourne, Victoria, Australia
| | - Jonathan G Crowston
- Centre for Eye Research Australia, Department of Ophthalmology, University of Melbourne, Victoria, Australia
| | - Ian A Trounce
- Centre for Eye Research Australia, Department of Ophthalmology, University of Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Abstract
This review concerns the effects on vision and the eye of medications prescribed at three phases of treatment for women with early-stage breast cancer (BC): (1) adjuvant cytotoxic chemotherapy, (2) adjuvant endocrine therapy, and (3) symptomatic relief. The most common side effects of cytotoxic chemotherapy are epiphora and ocular surface irritation, which can be caused by any of several different regimens. Most notably, the taxane docetaxel can lead to epiphora by inducing canalicular stenosis. The selective-estrogen-receptor-modulator (SERM) tamoxifen, long the gold-standard adjuvant-endocrine-therapy for women with hormone-receptor-positive BC, increases the risk of posterior subcapsular cataract. Tamoxifen also affects the optic nerve head more often than previously thought, apparently by causing subclinical swelling within the first 2 years of use for women older than ∼50 years. Tamoxifen retinopathy is rare, but it can cause foveal cystoid spaces that are revealed with spectral-domain optical coherence tomography (OCT) and that may increase the risk for macular holes. Tamoxifen often alters the perceived color of flashed lights detected via short-wavelength-sensitive (SWS) cone response isolated psychophysically; these altered perceptions may reflect a neural-response sluggishness that becomes evident at ∼2 years of use. The aromatase inhibitor (AI) anastrozole affects perception similarly, but in an age-dependent manner suggesting that the change of estrogen activity towards lower levels is more important than the low estrogen activity itself. Based on analysis of OCT retinal thickness data, it is likely that anastrozole increases the tractional force between the vitreous and retina. Consequently, AI users, myopic AI users particularly, might be at increased risk for traction-related vision loss. Because bisphosphonates are sometimes prescribed to redress AI-induced bone loss, clinicians should be aware of their potential to cause scleritis and uveitis occasionally. We conclude by suggesting some avenues for future research into the visual and ocular effects of AIs, particularly as relates to assessment of cognitive function.
Collapse
Affiliation(s)
- Alvin Eisner
- Women's Health Research Unit, Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | |
Collapse
|
23
|
Walf AA, Paris JJ, Rhodes ME, Simpkins JW, Frye CA. Divergent mechanisms for trophic actions of estrogens in the brain and peripheral tissues. Brain Res 2011; 1379:119-36. [PMID: 21130078 PMCID: PMC3103067 DOI: 10.1016/j.brainres.2010.11.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/23/2010] [Accepted: 11/23/2010] [Indexed: 01/08/2023]
Abstract
17β-estradiol (E(2)) can enhance reproductive, cognitive, and affective functions; however, the mechanisms by which E(2) has these effects need to be better understood. Pleiotrophic effects of E(2) can occur via traditional and novel actions at various forms of estrogen receptors (ERs). In the central nervous system, trophic effects of E(2) may be related to beneficial effects of hormone replacement therapy (HRT). However, in peripheral reproductive tissues, E(2)'s capacity to evoke growth can increase risk of cancers. This review focuses on investigations aimed at elucidating divergent mechanisms of steroids to promote trophic effects in the brain, independent of effects on peripheral reproductive tissues. First, actions of estrogens via ERα or ERβ for peripheral growth (carcinogen-induced tumors, uterine growth) and hippocampus-dependent behaviors (affect, cognition) are described. Second, factors that influence these effects of estrogens are described (e.g. experience, timing/critical windows, non-ER mechanisms). Third, effects of estrogens at ERβ related to actions of progestogens, such as 5α-pregnan-3α-ol-20-one (3α,5α-THP) are described. In summary, effects of E(2) may occur via multiple mechanisms, which may underlie favorable effects in the brain with minimal peripheral trophic effects.
Collapse
Affiliation(s)
- Alicia A. Walf
- Life Sciences Research, University at Albany, Albany, NY 12222, USA
| | - Jason J. Paris
- Department of Psychology, University at Albany, Albany, NY 12222, USA
| | | | - James W. Simpkins
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Cheryl A. Frye
- Department of Psychology, University at Albany, Albany, NY 12222, USA
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
- Center for Neuroscience Research, University at Albany, Albany, NY 12222, USA
- Life Sciences Research, University at Albany, Albany, NY 12222, USA
| |
Collapse
|
24
|
Martinez G, de Iongh R. The lens epithelium in ocular health and disease. Int J Biochem Cell Biol 2010; 42:1945-63. [PMID: 20883819 DOI: 10.1016/j.biocel.2010.09.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/19/2010] [Accepted: 09/20/2010] [Indexed: 01/11/2023]
|
25
|
Shibata MA, Morimoto J, Shibata E, Kurose H, Akamatsu K, Li ZL, Kusakabe M, Ohmichi M, Otsuki Y. Raloxifene inhibits tumor growth and lymph node metastasis in a xenograft model of metastatic mammary cancer. BMC Cancer 2010; 10:566. [PMID: 20958960 PMCID: PMC2978204 DOI: 10.1186/1471-2407-10-566] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 10/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The effects of raloxifene, a novel selective estrogen receptor modulator, were studied in a mouse metastatic mammary cancer model expressing cytoplasmic ERα. METHODS Mammary tumors, induced by inoculation of syngeneic BALB/c mice with BJMC3879luc2 cells, were subsequently treated with raloxifene at 0, 18 and 27 mg/kg/day using mini-osmotic pumps. RESULTS In vitro study demonstrated that the ERα in BJMC3879luc2 cells was smaller (between 50 and 64 kDa) than the normal-sized ERα (66 kDa) and showed cytoplasmic localization. A statistically significant but weak estradiol response was observed in this cell line. When BJMC3879luc2 tumors were implanted into mice, the ERα mRNA levels were significantly higher in females than in males. In vitro studies showed that raloxifene induced mitochondria-mediated apoptosis and cell-cycle arrest in the G1-phase and a decrease in the cell population in the S-phase. In animal experiments, tumor volumes were significantly suppressed in the raloxifene-treated groups. The multiplicity of lymph node metastasis was significantly decreased in the 27 mg/kg group. Levels of apoptosis were significantly increased in the raloxifene-treated groups, whereas the levels of DNA synthesis were significantly decreased in these groups. No differences in microvessel density in tumors were observed between the control and raloxifene-treated groups. The numbers of dilated lymphatic vessels containing intraluminal tumor cells were significantly reduced in mammary tumors in the raloxifene-treated groups. The levels of ERα mRNA in mammary tumors tended to be decreased in the raloxifene-treated groups. CONCLUSION These results suggest that the antimetastatic activity of raloxifene in mammary cancer expressing cytoplasmic ERα may be a crucial finding with clinical applications and that raloxifene may be useful as an adjuvant therapy and for the chemoprevention of breast cancer development.
Collapse
Affiliation(s)
- Masa-Aki Shibata
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Junji Morimoto
- Laboratory Animal Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Eiko Shibata
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
- Department of Bioscience, National Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Hitomi Kurose
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Kanako Akamatsu
- Department of Systems Bioscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Zhong-Lian Li
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Moriaki Kusakabe
- Research Center for Food Safety, University of Tokyo Graduate School of Agricultural and Life Sciences, Tokyo, Japan
| | - Masahide Ohmichi
- Department of Gynecology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Yoshinori Otsuki
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
26
|
Zhang G, Yanamala N, Lathrop KL, Zhang L, Klein-Seetharaman J, Srinivas H. Ligand-independent antiapoptotic function of estrogen receptor-beta in lung cancer cells. Mol Endocrinol 2010; 24:1737-47. [PMID: 20660297 DOI: 10.1210/me.2010-0125] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent studies have demonstrated the presence of estrogen receptor (ER)beta in the mitochondria in various cell types and tissues, but the exact function of this localization remains unclear. In this study, we have examined the function of mitochondrial ERbeta in non-small-cell lung cancer (NSCLC) cells. Down-regulation of ERbeta by short hairpin RNA constructs sensitized NSCLC cells to various apoptosis-inducing agents such as cisplatin, taxol, and etoposide. The increased growth inhibition and induction of apoptosis in ERbeta-knockdown cells was observed irrespective of estrogen treatment, suggesting a ligand-independent role of ERbeta in regulating the intrinsic apoptotic pathway. Further, ERbeta from the mitochondrial fraction physically interacted with the proapoptotic protein Bad, in a ligand-independent manner. Glutathione-S-transferase pull-down assays and molecular modeling studies revealed that the DNA-binding domain and hinge region of ERbeta, and the BH3 domain of Bad were involved in these interactions. Further investigations revealed that ERbeta inhibited Bad function by disrupting Bad-Bcl-X(L) and Bad-Bcl-2 interactions. Reintroduction of ERbeta in the mitochondria of ERbeta knockdown cells reversed their sensitivity to cisplatin. Overall, our results demonstrate a ligand-independent role of ERbeta in regulating apoptosis, revealing a novel function for ERbeta in the mitochondria.
Collapse
Affiliation(s)
- Guangfeng Zhang
- Division of Endocrinology and Metabolism, University of Pittsburgh, E1115 Starzl Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
27
|
Crusodé de Souza M, Cruzoé-Souza M, Sasso-Cerri E, Cerri PS. Immunohistochemical detection of estrogen receptor beta in alveolar bone cells of estradiol-treated female rats: possible direct action of estrogen on osteoclast life span. J Anat 2010; 215:673-81. [PMID: 19930518 DOI: 10.1111/j.1469-7580.2009.01158.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The role of estrogen in bone resorption has been specifically related to the effect of estrogen on the signalling pathway that inhibits the formation of osteoclasts. However, osteoclast apoptosis and a significant reduction in the number of these cells have been observed in the alveolar bone of female rats treated with estradiol. In the present study, the expression of estrogen receptor beta (ERbeta) in the cells of alveolar bone was evaluated in estradiol-treated and -untreated female rats. In order to test the possible direct action of estrogen on osteoclasts, the relationship between apoptosis and ERbeta expression in these cells was also analysed. The animals received estradiol for 14 days and the alveolar bone fragments were embedded in paraffin for the quantification of tartrate-resistant acid phosphatase-positive osteoclasts. The expression of ERbeta and apoptosis in the osteoclasts were evaluated by ERbeta immunohistochemistry and Terminal deoxynucleotidyl transferase-mediated dUTP Nick-End Labelling (TUNEL) methods, respectively. To confirm osteoclast death by apoptosis, these cells were analysed under transmission electron microscopy. Some osteoclasts from estradiol-treated animals were found to be undergoing apoptosis and the number of tartrate-resistant acid phosphatase-positive osteoclasts was significantly reduced. ERbeta immunolabelling was observed in the cytoplasm and nuclei of active osteoblasts, osteocytes and osteoclasts in both groups, suggesting a direct participation of estrogen on alveolar bone cells. However, following estradiol treatment, a strong ERbeta immunolabelling was often observed in the TUNEL-positive osteoclasts. Therefore, these results indicate that, in addition to the other signalling pathway, the reduction of alveolar bone resorption is also related to a direct action of estrogen on osteoclasts, promoting apoptosis in these cells, via ERbeta.
Collapse
Affiliation(s)
- Mady Crusodé de Souza
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
28
|
Mabuchi F, Sakurada Y, Kashiwagi K, Yamagata Z, Iijima H, Tsukahara S. Estrogen receptor beta gene polymorphism and intraocular pressure elevation in female patients with primary open-angle glaucoma. Am J Ophthalmol 2010; 149:826-30.e1-2. [PMID: 20399928 DOI: 10.1016/j.ajo.2009.12.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 10/19/2022]
Abstract
PURPOSE To assess whether the genetic polymorphisms of estrogen receptor beta (ESR2) are associated with primary open-angle glaucoma (POAG). DESIGN Case-control study. METHODS Four hundred and twenty-five Japanese patients with POAG, including normal-tension glaucoma (NTG, n = 213) and high-tension glaucoma (HTG, n = 212), and 191 control subjects without glaucoma were analyzed for polymorphisms of rs1256031 and rs4986938 in the ESR2 gene. The genotypic and allelic frequencies were compared between NTG or HTG patients and control subjects. The phenotypic features of patients with POAG were compared between each genotype. RESULTS There were significant differences in the genotype frequencies of rs1256031 and rs4986938 between the HTG patients and control subjects in women (P = .033 and P = .043 respectively). The frequencies of the C allele of rs1256031 and G allele of rs4986938 were significantly higher in patients with HTG in comparison to the control subjects in women (rs1256031: 53.6% vs 43.4%, P = .044; rs4986938: 89.2% vs 80.6%, P = .027). The maximum intraocular pressures in female POAG patients with the CC or TC genotypes of rs1256031 were significantly higher than that in female POAG patients with the TT genotype (P = .039, analysis of variance, P = .018 and P = .026 respectively). CONCLUSION The ESR2 gene polymorphism is therefore considered to be associated with an intraocular pressure elevation in female patients with POAG.
Collapse
|
29
|
Alvarez-Delgado C, Mendoza-Rodríguez CA, Picazo O, Cerbón M. Different expression of alpha and beta mitochondrial estrogen receptors in the aging rat brain: interaction with respiratory complex V. Exp Gerontol 2010; 45:580-5. [PMID: 20096765 DOI: 10.1016/j.exger.2010.01.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 01/11/2010] [Accepted: 01/14/2010] [Indexed: 01/11/2023]
Abstract
Recent evidence suggests that hormonal effects on mitochondria could be mediated by mitochondrial estrogen receptors (mtERs). These receptors are new candidates for the beneficial estrogenic effects on mitochondria in different physiological conditions. The aim of this investigation was to study mtER expression during brain aging. We analyzed mtERalpha and mtERbeta expression in cortical, hippocampal and hypothalamic mitochondria of young adult (3months) and aged (18 months) female Wistar rats by Western blot. In addition, we explored the interaction of mtERbeta with respiratory complex V by using coimmunoprecipitation assays. The results show that mtERalpha and mtERbeta are present in young and aged brain mitochondria. We also demonstrate that mtERs are expressed as variants and have a brain region specific distribution. The predominant mtER variants detected were of 61 and 55KDa for mtERalpha and of 63 and 52KDa for mtERbeta. However, we did not observe differences in the mtERalpha or beta content between the two age groups studied. Additionally, we show that mtERbeta interacts with complex V. The overall results demonstrate that there is a differential expression of mtERalpha and mtERbeta variants in different brain areas, indicating that they may participate in different functions in the brain during aging.
Collapse
Affiliation(s)
- Carolina Alvarez-Delgado
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, México D.F., Mexico
| | | | | | | |
Collapse
|
30
|
Abstract
Lung cancer has long been thought of as a cancer that mainly affects men, but over the past several decades, because of the high increase in tobacco use by women, there has been a corresponding dramatic increase in lung cancer among women. Since 1998, lung cancer deaths in women have surpassed those caused by breast cancer in the United States. Annual lung cancer deaths among US women currently surpass those caused by breast, ovarian, and cervical cancers combined. Women are more likely than men to be diagnosed with adenocarcinoma and small cell carcinoma of the lung compared to squamous cell carcinoma, and never-smokers diagnosed with lung cancer are almost three times more likely to be female than male. These observations in the population, coupled to the findings that both estrogen receptors (ERs) and aromatase, the enzyme that synthesizes 17beta-estradiol, are expressed by lung tumors, suggest a role for female steroid hormones in control of lung cancer growth. Preclinical data and clinical data are increasingly emerging to support this concept, and to suggest that a local production of estrogen and expression of ERs occurs in lung tumors that arise in men as well as in women. An additional protein that recognizes 17beta-estradiol with high affinity, GPR30, also is expressed in lung tumors at high levels and may be responsible for some of the proliferation signals induced by estrogen.
Collapse
Affiliation(s)
- Jill M Siegfried
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
31
|
Chen JQ, Cammarata PR, Baines CP, Yager JD. Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:1540-70. [PMID: 19559056 PMCID: PMC2744640 DOI: 10.1016/j.bbamcr.2009.06.001] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 12/21/2022]
Abstract
There has been increasing evidence pointing to the mitochondrial respiratory chain (MRC) as a novel and important target for the actions of 17beta-estradiol (E(2)) and estrogen receptors (ER) in a number of cell types and tissues that have high demands for mitochondrial energy metabolism. This novel E(2)-mediated mitochondrial pathway involves the cooperation of both nuclear and mitochondrial ERalpha and ERbeta and their co-activators on the coordinate regulation of both nuclear DNA- and mitochondrial DNA-encoded genes for MRC proteins. In this paper, we have: 1) comprehensively reviewed studies that reveal a novel role of estrogens and ERs in the regulation of MRC biogenesis; 2) discussed their physiological, pathological and pharmacological implications in the control of cell proliferation and apoptosis in relation to estrogen-mediated carcinogenesis, anti-cancer drug resistance in human breast cancer cells, neuroprotection for Alzheimer's disease and Parkinson's disease in brain, cardiovascular protection in human heart and their beneficial effects in lens physiology related to cataract in the eye; and 3) pointed out new research directions to address the key questions in this important and newly emerging area. We also suggest a novel conceptual approach that will contribute to innovative regimens for the prevention or treatment of a wide variety of medical complications based on E(2)/ER-mediated MRC biogenesis pathway.
Collapse
MESH Headings
- Alzheimer Disease/drug therapy
- Alzheimer Disease/etiology
- Animals
- Apoptosis/genetics
- Apoptosis/physiology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/etiology
- Cardiovascular Diseases/prevention & control
- Cell Proliferation
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Drug Resistance, Neoplasm
- Electron Transport/drug effects
- Electron Transport/genetics
- Electron Transport/physiology
- Estradiol/pharmacology
- Estradiol/physiology
- Estrogens/physiology
- Female
- Genome, Mitochondrial
- Humans
- Lens, Crystalline/drug effects
- Lens, Crystalline/physiology
- Male
- Mitochondria/drug effects
- Mitochondria/genetics
- Mitochondria/physiology
- Mitochondrial Proteins/physiology
- Mitochondrial Proton-Translocating ATPases/physiology
- Models, Biological
- Neoplasms, Hormone-Dependent/drug therapy
- Neoplasms, Hormone-Dependent/etiology
- Neuroprotective Agents/pharmacology
- Parkinson Disease/drug therapy
- Parkinson Disease/etiology
- Protein Biosynthesis/drug effects
- Receptors, Estrogen/physiology
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | |
Collapse
|
32
|
Chen J, Russo J. Mitochondrial oestrogen receptors and their potential implications in oestrogen carcinogenesis in human breast cancer. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/13590840801972074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Chen JQ, Brown TR, Russo J. Regulation of energy metabolism pathways by estrogens and estrogenic chemicals and potential implications in obesity associated with increased exposure to endocrine disruptors. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:1128-43. [PMID: 19348861 PMCID: PMC2747085 DOI: 10.1016/j.bbamcr.2009.03.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 10/20/2022]
Abstract
The prevalence of obesity among children, adolescents and adults has been dramatically increasing worldwide during the last several decades. The obesity epidemic has been recognized as one of the major global health problems, because its health hazard is linked to a number of common diseases including breast and prostate cancers. Obesity is caused by combination of genetic and environmental factors. While genetic contribution to obesity has been known to be significant, the genetic factors remain relatively unchanged. Recent studies have highlighted the involvement of environmental "obesogens", i.e. the xenobiotic chemicals that can disrupt the normal development and homeostatic control over adipogenesis and energy balance. Several lines of evidence suggest that increasing exposure to chemicals with endocrine-disrupting activities (endocrine-disrupting chemicals, EDCs) contributes to the increased obesity. The cellular and molecular mechanisms underlying obesogen-associated obesity are just now being appreciated. In this paper, we comprehensively reviewed current knowledge about the role of estrogen receptors alpha and beta (ERalpha and ERbeta) in regulation of energy metabolism pathways, including glucose transport, glycolysis, tricarboxylic acid (TCA) cycle, mitochondrial respiratory chain (MRC), adenosine nucleotide translocator (ANT) and fatty acid beta-oxidation and synthesis, by estrogens; and then examined the disturbance of E(2)/ER-mediated energy metabolism pathways by environmental obesogens; and finally, we discussed the potential implications of disturbance of energy metabolism pathways by obesogens in obesity and pointed out several key aspects of this area that need to be further explored. A better understanding of the cellular and molecular mechanisms underlying obesogen-associated obesity will lead to new approaches for slow down and/or prevention of the increased trend of obesity associated with exposure to obesogens.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| | | | | |
Collapse
|
34
|
Ivanova MM, Mazhawidza W, Dougherty SM, Minna JD, Klinge CM. Activity and intracellular location of estrogen receptors alpha and beta in human bronchial epithelial cells. Mol Cell Endocrinol 2009; 305:12-21. [PMID: 19433257 PMCID: PMC2767333 DOI: 10.1016/j.mce.2009.01.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 01/22/2009] [Accepted: 01/22/2009] [Indexed: 11/26/2022]
Abstract
Gender differences in lung disease and cancer are well-established. We reported estrogenic transcriptional responses in lung adenocarcinoma cells from females but not males despite similar estrogen receptor (ER) expression. Here we tested the hypothesis that normal human bronchial epithelial cells (HBECs) show gender-independent estrogenic responses. We report that a small sample of HBECs express approximately twice as much ERbeta as ERalpha. ERalpha and ERbeta were located in the cytoplasm, nucleus, and mitochondria. In contrast to lung adenocarcinoma cells, estradiol (E2) induced estrogen response element (ERE)-mediated luciferase reporter activity in transiently transfected HBECs regardless of donor gender. Overexpression of ERalpha-VP16 increased ERE-mediated transcriptional activity in all HBECs. E2 increased and 4-hydroxytamoxifen and ICI 182,780 inhibited HBEC proliferation and cyclin D1 expression in a cell line-specific manner. In conclusion, the response of HBECs to ER ligands is gender-independent suggesting that estrogenic sensitivity may be acquired during lung carcinogenesis.
Collapse
Affiliation(s)
- Margarita M. Ivanova
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Williard Mazhawidza
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Susan M. Dougherty
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research NB8.206, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
35
|
Jazbutyte V, Kehl F, Neyses L, Pelzer T. Estrogen receptor alpha interacts with 17beta-hydroxysteroid dehydrogenase type 10 in mitochondria. Biochem Biophys Res Commun 2009; 384:450-4. [PMID: 19422801 DOI: 10.1016/j.bbrc.2009.04.139] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 04/28/2009] [Indexed: 11/19/2022]
Abstract
Estrogen receptor alpha (ERalpha) is present in the nucleus, the cytosol and in mitochondria. The rat ERalpha ligand binding domain was employed as bait in a bacterial two-hybrid screening of a human heart cDNA library to detect novel protein-protein interaction partners of ERalpha in the heart. 17beta-Hydroxysteroid dehydrogenase type 10 (17beta-HSD10), which converts potent (17beta-estradiol) to less potent estrogens (estrone), co-localized with 17beta-HSD10 in the mitochondria of rat cardiac myocytes. GST pull-down experiments confirmed the interaction of ERalpha and 17beta-HSD10. These findings suggest that the ERalpha estrogen receptor might be involved in regulating intracellular estrogen levels by modulating 17beta-HSD10 activity.
Collapse
Affiliation(s)
- Virginija Jazbutyte
- Laboratory of Molecular Cardiology, Department of Medicine, University Clinics Wuerzburg, Josef-Schneider-Strasse 2, D20, 97080 Wuerzburg, Germany.
| | | | | | | |
Collapse
|
36
|
Yang SH, Sarkar SN, Liu R, Perez EJ, Wang X, Wen Y, Yan LJ, Simpkins JW. Estrogen receptor beta as a mitochondrial vulnerability factor. J Biol Chem 2009; 284:9540-8. [PMID: 19189968 PMCID: PMC2666606 DOI: 10.1074/jbc.m808246200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Indexed: 12/19/2022] Open
Abstract
We recently demonstrated mitochondrial localization of estrogen receptor beta (ERbeta). We herein confirm the mitochondrial localization of ERbeta by the loss of mitochondrial ERbeta immunoreactivity in ERbeta knockdown cells. A phenotype change characterized as an increase in resistance to oxidative stressors is associated with ERbeta knockdown. ERbeta knockdown results in a lower resting mitochondrial membrane potential (Deltapsim) and increase in resistance to hydrogen peroxide-induced Deltapsim depolarization in both immortal hippocampal cells and primary hippocampal neurons. ERbeta knockdown cells maintained ATP concentrations despite insults that compromise ATP production and produce less mitochondrial superoxide under oxidative stress. Furthermore, similar mitochondrial phenotype changes were identified in primary hippocampal neurons derived from ERbeta knock-out mice. These data demonstrate that ERbeta is expressed in mitochondria and function as a mitochondrial vulnerability factor involved in Deltapsim maintenance, potentially through a mitochondrial transcription dependent mechanism.
Collapse
Affiliation(s)
- Shao-Hua Yang
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Mechanisms regulating the susceptibility of hematopoietic malignancies to glucocorticoid-induced apoptosis. Adv Cancer Res 2009; 101:127-248. [PMID: 19055945 DOI: 10.1016/s0065-230x(08)00406-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glucocorticoids (GCs) are commonly used in the treatment of hematopoietic malignancies owing to their ability to induce apoptosis of these cancerous cells. Whereas some types of lymphoma and leukemia respond well to this drug, others are resistant. Also, GC-resistance gradually develops upon repeated treatments ultimately leading to refractory relapsed disease. Understanding the mechanisms regulating GC-induced apoptosis is therefore uttermost important for designing novel treatment strategies that overcome GC-resistance. This review discusses updated data describing the complex regulation of the cell's susceptibility to apoptosis triggered by GCs. We address both the genomic and nongenomic effects involved in promoting the apoptotic signals as well as the resistance mechanisms opposing these signals. Eventually we address potential strategies of clinical relevance that sensitize GC-resistant lymphoma and leukemia cells to this drug. The major target is the nongenomic signal transduction machinery where the interplay between protein kinases determines the cell fate. Shifting the balance of the kinome towards a state where Glycogen synthase kinase 3alpha (GSK3alpha) is kept active, favors an apoptotic response. Accumulating data show that it is possible to therapeutically modulate GC-resistance in patients, thereby improving the response to GC therapy.
Collapse
|
38
|
Waters EM, Torres-Reveron A, McEwen BS, Milner TA. Ultrastructural localization of extranuclear progestin receptors in the rat hippocampal formation. J Comp Neurol 2008; 511:34-46. [PMID: 18720413 PMCID: PMC2577145 DOI: 10.1002/cne.21826] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Progesterone's effects on hippocampus-dependent behavior and synaptic connectivity maybe mediated through the progestin receptor (PR). Although estrogen induces PR mRNA and cytosolic PR in the hippocampus, nuclear PR immunoreactivity is undetectable by light microscopy, suggesting that PR is present at extranuclear sites. To determine whether this is the case, we used immunoelectron microscopy to examine PR distribution in the hippocampal formation of proestrus rats. Ultrastructural analysis revealed that PR labeling is present in extranuclear profiles throughout the CA1 and CA3 regions and dentate gyrus, and, in contrast to light microscopic findings, in nuclei of a few pyramidal and subgranular zone cells. Most neuronal PR labeling is extranuclear and is divided between pre- and postsynaptic compartments; approximately 30% of labeled profiles were axon terminals and 30% were dendrites and dendritic spines. In most laminae, except in CA3 stratum lucidum, about 15% of PR-immunoreactive profiles were unmyelinated axons. In stratum lucidum, where the mossy fiber axons course, more than 50% of PR-labeled profiles were axonal. The remaining 25% of PR-labeled profiles were glia, some resembling astrocytes. PR labeling is strongly dependent on estrogen priming, insofar as few PR-labeled profiles were detected in ovariectomized, oil-replaced females. Synapses formed by PR-labeled terminals were predominantly asymmetric, consistent with a role for progesterone in directly regulating excitatory transmission. These findings suggest that some of progesterone's actions in the hippocampal formation may be mediated by direct and rapid actions on extranuclear PRs and that PRs are well positioned to regulate progesterone-induced changes at synapses.
Collapse
Affiliation(s)
- Elizabeth M Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10065, USA.
| | | | | | | |
Collapse
|
39
|
Flynn JM, Dimitrijevich SD, Younes M, Skliris G, Murphy LC, Cammarata PR. Role of wild-type estrogen receptor-beta in mitochondrial cytoprotection of cultured normal male and female human lens epithelial cells. Am J Physiol Endocrinol Metab 2008; 295:E637-47. [PMID: 18577698 DOI: 10.1152/ajpendo.90407.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The influence of sexual category as a modifier of cellular function is underinvestigated. Whether sex differences affect estrogen-mediated mitochondrial cytoprotection was determined using cell cultures of normal human lens epithelia (nHLE) from postmortem male and female donors. Experimental indicators assessed included differences in estrogen receptor-beta (ERbeta) isoform expression, receptor localization in mitochondria, and estrogen-mediated prevention of loss of mitochondrial membrane potential using the potentiometric fluorescent compound JC-1 after nHLE were exposed to peroxide. The impact of wild-type ERbeta (wtERbeta1) was also assessed using wtERbeta1 siRNA to suppress expression. A triple-primer PCR assay was employed to determine the proportional distribution of the receptor isoforms (wtERbeta1, -beta2, and -beta5) from the total ERbeta message pool in male and female cell cultures. Irrespective of sex, nHLE express wtERbeta1 and the ERbeta2 and ERbeta5 splice variants in similar ratios. Confocal microscopy and immunofluorescence revealed localization of the wild-type receptor in peripheral mitochondrial arrays and perinuclear mitochondria as well as nuclear staining in both cell populations. The ERbeta2 and ERbeta5 isoforms were distributed primarily in the nucleus and cytosol, respectively; no association with the mitochondria was detected. Both male and female nHLE treated with E(2) (1 muM) displayed similar levels of protection against peroxide-induced oxidative stress. In conjunction with acute oxidative insult, RNA suppression of wtERbeta1 elicited the collapse of mitochondrial membrane potential and markedly diminished the otherwise protective effects of E(2). Thus, whereas the estrogen-mediated prevention of mitochondrial membrane permeability transition is sex independent, the mechanism of estrogen-induced mitochondrial cytoprotection is wtERbeta1 dependent.
Collapse
Affiliation(s)
- J M Flynn
- Department of Cell Biology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | | | | | | | | |
Collapse
|
40
|
Simpkins JW, Yang SH, Sarkar SN, Pearce V. Estrogen actions on mitochondria--physiological and pathological implications. Mol Cell Endocrinol 2008; 290:51-9. [PMID: 18571833 PMCID: PMC2737506 DOI: 10.1016/j.mce.2008.04.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 02/07/2023]
Abstract
Estrogens are potent neuroprotective hormones and mitochondria are the site of cellular life-death decisions. As such, it is not surprising that we and others have shown that estrogens have remarkable effects on mitochondrial function. Herein we provide evidence for a primary effect of estrogens on mitochondrial function, achieved in part by the import of estrogen receptor beta (ERbeta) into the mitochondria where it mediates a number of estrogen actions on this vital organelle. ERbeta is imported into the mitochondria, through tethering to cytosolic chaperone protein and/or through direct interaction with mitochondrial import proteins. In the mitochondria, ERbeta can affect transcription of critical mitochondrial genes through the interaction with estrogen response elements (ERE) or through protein-protein interactions with mitochondrially imported transcription factors. The potent effects of estrogens on mitochondrial function, particularly during mitochondrial stress, argues for a role of estrogens in the treatment of mitochondrial defects in chronic neurodegenerative diseases like Alzheimer's disease (AD) and Parkinson's disease (PD) and more acute conditions of mitochondrial compromise, like cerebral ischemia and traumatic brain injury.
Collapse
Affiliation(s)
- James W Simpkins
- Department of Pharmacology & Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.
| | | | | | | |
Collapse
|
41
|
Milanesi L, de Boland AR, Boland R. Expression and localization of estrogen receptor α in the C2C12 murine skeletal muscle cell line. J Cell Biochem 2008; 104:1254-73. [DOI: 10.1002/jcb.21706] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Abstract
Receptors for glucocorticoids, estrogens, androgens, and thyroid hormones have been detected in mitochondria of various cell types by Western blotting, immunofluorescence labeling, confocal microscopy, and immunogold electron microscopy. A role of these receptors in mitochondrial transcription, OXPHOS biosynthesis, and apoptosis is now being revealed. Steroid and thyroid hormones regulate energy production, inducing nuclear and mitochondrial OXPHOS genes by way of cognate receptors. In addition to the action of the nuclearly localized receptors on nuclear OXPHOS gene transcription, a parallel direct action of the mitochondrially localized receptors on mitochondrial transcription has been demonstrated. The coordination of transcription activation in nuclei and mitochondria by the respective receptors is in part realized by their binding to common trans acting elements in the two genomes. Recent evidence points to a role of the mitochondrial receptors in cell survival and apoptosis, exerted by genomic and nongenomic mechanisms. The identification of additional receptors of the superfamily of nuclear receptors and of other nuclear transcription factors in mitochondria increases their arsenal of regulatory molecules and further underlines the central role of these organelles in the integration of growth, metabolic, and cell survival signals.
Collapse
Affiliation(s)
- Anna-Maria G Psarra
- Biomedical Research Foundation, Academy of Athens, Center for Basic Research, Athens, Greece
| | | |
Collapse
|
43
|
Flynn JM, Lannigan DA, Clark DE, Garner MH, Cammarata PR. RNA suppression of ERK2 leads to collapse of mitochondrial membrane potential with acute oxidative stress in human lens epithelial cells. Am J Physiol Endocrinol Metab 2008; 294:E589-99. [PMID: 18171912 DOI: 10.1152/ajpendo.00705.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
17beta-Estradiol (E(2)) reduces oxidative stress-induced depolarization of mitochondrial membrane potential (MMP) in cultured human lens epithelial cells (HLE-B3). The mechanism by which the nongenomic effects of E(2) contributed to the protection against mitochondrial membrane depolarization was investigated. Mitochondrial membrane integrity is regulated by phosphorylation of BAD, and it is known that phosphorylation of Ser(112) inactivates BAD and prevents its participation in the mitochondrial death pathway. We found that E(2) rapidly increased both the phosphorylation of ERK2 and Ser(112) in BAD. Ser(112) is phosphorylated by p90 ribosomal S6 kinase (RSK), a Ser/Thr kinase, which is a downstream effector of ERK1/2. Inhibition of RSK by the RSK-specific inhibitor SL0101 did not reduce the level of E(2)-induced phosphorylation of Ser(112). Silencing BAD using small interfering RNA did not alter mitochondrial membrane depolarization elicited by peroxide insult. However, under the same conditions, silencing ERK2 dramatically increased membrane depolarization compared with the control small interfering RNA. Therefore, ERK2, functioning through a BAD-independent mechanism regulates MMP in humans lens epithelial cells. We propose that estrogen-induced activation of ERK2 acts to protect cells from acute oxidative stress. Moreover, despite the fact that ERK2 plays a regulatory role in mitochondrial membrane potential, estrogen was found to block mitochondrial membrane depolarization via an ERK-independent mechanism.
Collapse
Affiliation(s)
- James M Flynn
- Dept. of Cell Biology and Genetics, Univ. of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | | | | | | | | |
Collapse
|
44
|
Chen JQ, Brown TR, Yager JD. Mechanisms of hormone carcinogenesis: evolution of views, role of mitochondria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [PMID: 18637481 DOI: 10.1007/978-0-387-78818-0_1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CumuIative and excessive exposure to estrogens is associated with increased breast cancer risk. The traditional mechanism explaining this association is that estrogens affect the rate of cell division and apoptosis and thus manifest their effect on the risk of breast cancer by affecting the growth of breast epithelial tissues. Highly proliferative cells are susceptible to genetic errors during DNA replication. The action of estrogen metabolites offers a complementary genotoxic pathway mediated by the generation of reactive estrogen quinone metabolites that can form adducts with DNA and generate reactive oxygen species through redox cycling. In this chapter, we discussed a novel mitochondrial pathway mediated by estrogens and their cognate estrogen receptors (ERs) and its potential implications in estrogen-dependent carcinogenesis. Several lines of evidence are presented to show: (1) mitochondrial localization of ERs in human breast cancer cells and other cell types; (2) a functional role for the mitochondrial ERs in regulation of the mitochondrial respiratory chain (MRC) proteins and (3) potential implications of the mitochondrial ER-mediated pathway in stimulation of cell proliferation, inhibition of apoptosis and oxidative damage to mitochondrial DNA. The possible involvement of estrogens and ERs in deregulation of mitochondrial bioenergetics, an important hallmark of cancer cells, is also described. An evolutionary view is presented to suggest that persistent stimulation by estrogens through ER signaling pathways of MRC proteins and energy metabolic pathways leads to the alterations in mitochondrial bioenergetics and contributes to the development of estrogen-related cancers.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908-0546, USA.
| | | | | |
Collapse
|
45
|
Psarra AMG, Sekeris CE. Nuclear receptors and other nuclear transcription factors in mitochondria: regulatory molecules in a new environment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:1-11. [PMID: 18062929 DOI: 10.1016/j.bbamcr.2007.10.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 10/27/2007] [Accepted: 10/29/2007] [Indexed: 12/25/2022]
Abstract
The mitochondrion is the major energy generating organelle of the cell and the site of other basic processes, including apoptosis. The mitochondrial functions are performed in concert with other cell compartments and are regulated by various extracellular and intracellular signals. Several nuclear receptors and other nuclear transcription factors, such as NF-kappa B, AP-1, CREB and p53, involved in growth, metabolic and developmental processes, have been detected in mitochondria. This finding raises the question as to the role of these regulatory molecules in their "new" environment. Experimental evidence supports the action of the mitochondrially localized transcription factors on mitochondrial transcription, energy yield and apoptosis, extending the known nuclear role of these molecules outside the nucleus. A principle of coordination of nuclear and mitochondrial gene transcription has been ascertained as regards the regulatory action of steroid and thyroid hormones on energy yield. Accordingly, the same nuclear receptors, localized in the two compartments-nuclei and mitochondria-regulate transcription of genes serving a common function by way of interaction with common binding sites in the two genomes. This principle is now expanding to encompass other nuclearly and mitochondrially localized transcription factors.
Collapse
Affiliation(s)
- Anna-Maria G Psarra
- Biomedical Research Foundation, Academy of Athens, Center for Basic Research, 4 Soranou Efesiou, 11527, Athens, Greece
| | | |
Collapse
|
46
|
Stettner M, Kaulfuss S, Burfeind P, Schweyer S, Strauss A, Ringert RH, Thelen P. The relevance of estrogen receptor- expression to the antiproliferative effects observed with histone deacetylase inhibitors and phytoestrogens in prostate cancer treatment. Mol Cancer Ther 2007; 6:2626-33. [PMID: 17913855 DOI: 10.1158/1535-7163.mct-07-0197] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the prostate, estrogen receptor beta (ERbeta), the preferred receptor for phytoestrogens, has features of a tumor suppressor. To investigate the mechanisms underlying the beneficial effects on prostate cancer of histone deacetylase inhibitor valproic acid (VPA) and phytoestrogen tectorigenin, we analyzed the expression of ERbeta after tectorigenin or VPA treatment. For further functional analysis, we knocked down ERbeta expression by RNA interference. LNCaP prostate cancer cells were treated with 5 mmol/L VPA or 100 micromol/L tectorigenin and transfected with small interfering RNA (siRNA) against ERbeta. Control transfections were done with luciferase (LUC) siRNA. Expression of ERbeta was assessed by Western blot. mRNA expression was quantitated by real-time reverse transcription-PCR. Expression of ERbeta mRNA and protein markedly increased after VPA or tectorigenin treatment. When ERbeta was knocked down by siRNA, the expression of prostate-derived Ets factor, prostate-specific antigen, prostate cancer-specific indicator gene DD3(PCA3), insulin-like growth factor-1 receptor, the catalytic subunit of the telomerase, and ERalpha was up-regulated and the tectorigenin effects were abrogated. ERbeta levels were diminished in prostate cancer and loss of ERbeta was associated with proliferation. Here, we show that siRNA-mediated knockdown of ERbeta increases the expression of genes highly relevant to tumor cell proliferation. In addition, we show that one prominent result of treatment with VPA or tectorigenin is the up-regulation of ERbeta resulting in antiproliferative effects. Thus, these drugs, by restoring the regulatory function of ERbeta in tumor cells, could become useful in the intervention of prostate cancer.
Collapse
Affiliation(s)
- Mark Stettner
- Department of Urology, Georg-August-University, 37099 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Chen JQ, Russo PA, Cooke C, Russo IH, Russo J. ERbeta shifts from mitochondria to nucleus during estrogen-induced neoplastic transformation of human breast epithelial cells and is involved in estrogen-induced synthesis of mitochondrial respiratory chain proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1732-46. [PMID: 17604135 DOI: 10.1016/j.bbamcr.2007.05.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 04/28/2007] [Accepted: 05/10/2007] [Indexed: 02/06/2023]
Abstract
Both estrogen receptors (ER) alpha (ERalpha) and beta (ERbeta) are localized in the nucleus, plasma membrane, and mitochondria, where they mediate the different physiological effects of estrogens. It has been observed that the relative subcellular localization of ERs is altered in several cancer cells. We have demonstrated that MCF-10F cells, the immortal and non-tumorigenic human breast epithelial cells (HBEC) that are ERalpha-negative and ERbeta-positive, are transformed in vitro by 17beta-estradiol (E(2)), generating highly invasive cells that are tumorigenic in severe combined immunodeficient mice. E(2)-transformed MCF-10F (trMCF) cells exhibit progressive loss of ductulogenesis, invasive (bsMCF) and tumorigenic (caMCF) phenotypes. Immunolocalization of ERbeta by confocal fluorescent microscopy and electron microscopy revealed that ERbeta is predominantly localized in mitochondria of MCF-10F and trMCF cells. Silencing ERbeta expression with ERbeta-specific small interference RNA (siRNA-ERbeta) markedly diminishes both nuclear and mitochondrial ERbeta in MCF-10F cells. The ERbeta shifts from its predominant localization in the mitochondria of MCF-10F and trMCF cells to the nucleus of bsMCF cells, becoming predominantly nuclear in caMCF cells. Furthermore, we demonstrated that the mitochondrial ERbeta in MCF-10F cells is involved in E(2)-induced expression of mitochondrial DNA (mtDNA)-encoded respiratory chain (MRC) proteins. This is the first report of an association of changes in the subcellular localization of ERbeta with various stages of E(2)-induced transformation of HBEC and a functional role of mitochondrial ERbeta in mediating E(2)-induced MRC protein synthesis. Our findings provide a new insight into one of the potential roles of ERbeta in human breast cancer.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA.
| | | | | | | | | |
Collapse
|
48
|
Lu A, Frink M, Choudhry MA, Schwacha MG, Hubbard WJ, Rue LW, Bland KI, Chaudry IH. Mitochondria play an important role in 17beta-estradiol attenuation of H(2)O(2)-induced rat endothelial cell apoptosis. Am J Physiol Endocrinol Metab 2007; 292:E585-93. [PMID: 17018771 DOI: 10.1152/ajpendo.00413.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies have shown salutary effects of 17beta-estradiol following trauma-hemorrhage on different cell types. 17beta-Estradiol also induces improved circulation via relaxation of the aorta and has an anti-apoptotic effect on endothelial cells. Because mitochondria play a pivotal role in apoptosis, we hypothesized that 17beta-estradiol will maintain mitochondrial function and will have protective effects against H(2)O(2)-induced apoptosis in endothelial cells. Endothelial cells were isolated from rats' aorta and cultured in the presence or absence of H(2)O(2), a potent inducer of apoptosis. In additional studies, endothelial cells were pretreated with 17beta-estradiol. Flow cytometry analysis revealed H(2)O(2)-induced apoptosis in 80.9% of endothelial cells; however, prior treatment of endothelial cells with 17beta-estradiol resulted in an approximately 40% reduction in apoptosis. This protective effect of 17beta-estradiol was abrogated when endothelial cells were cultured in the presence ICI-182780, indicating the involvement of estrogen receptor (ER). Fluorescence microscopy revealed a 17beta-estradiol-mediated attenuation of H(2)O(2)-induced mitochondrial condensation. Western blot analysis demonstrated that H(2)O(2)-induced cytochrome c release from mitochondrion to cytosol and the activation of caspase-9 and -3 were decreased by 17beta-estradiol. These findings suggest that 17beta-estradiol attenuated H(2)O(2)-induced apoptosis via ER-dependent activation of caspase-9 and -3 in rat endothelial cells through mitochondria.
Collapse
Affiliation(s)
- Ailing Lu
- Center for Surgical Research, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Psarra AMG, Solakidi S, Sekeris CE. The Mitochondrion as a Primary Site of Action of Regulatory Agents Involved in Neuroimmunomodulation. Ann N Y Acad Sci 2006; 1088:12-22. [PMID: 17192553 DOI: 10.1196/annals.1366.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A major system of neuroimmunomodulation is the hypothalamic-pituitary-adrenocortical (HPA) axis, acting through glucocorticoids and their intracellular signaling components, exerting both stimulatory and inhibitory effects on the immune reaction. Glucocorticoids inhibit the production of proinflammatory cytokines by interacting with nuclear transcription factors (nuclear factor [NF]-kappaB, activated protein [AP]-1) and induce the production of several anti-inflammatory cytokines by gene activation. In some cells and/or in extreme stress conditions, apoptosis is evoked. In most processes related to neuroimmunomodulation a prominent role is emerging for mitochondria. These organelles generate more than 90% of the cell's energy requirements through oxidative phosphorylation (OXPHOS), which is regulated by several agents, including steroid and thyroid hormones. These hormones are inducers of nuclear and mitochondrial OXPHOS gene transcription and they exert a primary action not only on nuclear but also on mitochondrial genes by way of cognate receptors. Recently, additional nuclear transcription factors involved in neuroimmunomodulation have been detected in mitochondria (NF-kappaB, AP-1, p53, calcium/cAMP response element binding protein [CREB]), and binding sites of these and putative binding sites of other nuclear transcription factors have been identified in the mitochondrial genome. The interaction of these factors with mitochondrial regulatory proteins, with receptors and with the genome has been shown and, in some cases, modulation of mitochondrial transcription was observed with possible effects on energy yield. The mitochondria store a host of critical apoptotic activators and inhibitors in their intermembrane space and the release of these factors could be another possible mode of action of the mitochondrially translocated regulatory agents and receptors.
Collapse
Affiliation(s)
- A M G Psarra
- Foundation for Biomedical Research of the Academy of Greece, Athens, Greece
| | | | | |
Collapse
|
50
|
Wang M, Pan JY, Song GR, Chen HB, An LJ, Qu SX. Altered expression of estrogen receptor alpha and beta in advanced gastric adenocarcinoma: correlation with prothymosin alpha and clinicopathological parameters. Eur J Surg Oncol 2006; 33:195-201. [PMID: 17046193 DOI: 10.1016/j.ejso.2006.09.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 09/06/2006] [Indexed: 12/18/2022] Open
Abstract
AIMS We aimed to investigate the sources of estrogen receptor alpha (ERalpha), estrogen receptor beta (ERbeta) and estimate the value of both ER subtypes in gastric adenocarcinoma and analyze the possible relationship of prothymosin alpha (ProTalpha) to ERs. METHODS ERs at the mRNA and protein levels in matched advanced gastric adenocarcinomas and surrounding non-cancerous tissues were examined by using reverse transcription-polymerase chain reaction and immunohistochemical (IHC) methods. Cell proliferation related protein ProTalpha was also detected in IHC. The immunoreactive signal, corresponding to the proteins expression level, was quantitatively analyzed. RESULTS Both ERalpha and ERbeta mRNAs were detected in most of the cancer and matched normal tissues analyzed. At the protein level, the percentage of ERalpha and ERbeta positive cases changed. ERalpha immunoreactivity was only detected in poorly differentiated adenocarcinoma and ERalpha positive expression correlated with depth of invasion of the tumors. Compared with non-cancerous tissues, gastric tumors showed decreased ERbeta expression and lost ERbeta. Altered ERbeta in gastric adenocarcinoma correlated with decreased differentiation. And the tumors involved lymph node metastasis showed significantly lower expression level of ERbeta. ProTalpha in ERbeta-positive tumors showed higher expression than that in lost ERbeta tumors. CONCLUSIONS Altered expression of ERalpha and ERbeta in tumors compared with corresponding normal gastric tissues was more common in poorly differentiated adenocarcinomas and related to malignant properties, such as lymph node metastasis. Decreased ERbeta and increased ProTalpha expression in advanced gastric adenocarcinoma indicated that ERbeta may play an anti-proliferation role which is opposed to the role of ProTalpha in gastric epithelium.
Collapse
Affiliation(s)
- M Wang
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | | | | | | | | | | |
Collapse
|