1
|
Abdi R, Mashayekhan S. Development of an oxidized alginate/decellularized retinal matrix composite scaffold for retinal tissue engineering applications. Int J Biol Macromol 2025; 308:142581. [PMID: 40154691 DOI: 10.1016/j.ijbiomac.2025.142581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The retinal extracellular matrix (rECM) offers architectural support, adhesion sites, and signaling cues that regulate retinal development and viability. However, rECM's poor mechanical properties and rapid degradation rate hinder its application for scaffold fabrication, especially during handling their counterpart hydrogel and transplantation procedures. To address these issues, this study introduces oxidized alginate (OA) to develop and optimize a scaffold composed of rECM and OA. To achieve this, alginate was partially oxidized with an oxidation degree of 5 % and the resulting oxidized alginate (OA) was subsequently cross-linked via calcium ions. In addition, varying concentrations of OA (2 %, 3 %, and 4 % w/v) reacted with the amine groups of rECM through a Schiff-base reaction. The results showed that increasing OA concentration led to enhanced porosity and swelling ratio, as well as improvements in the compressive Young's modulus and biodegradation rate. The scaffolds composed of 3 % w/v OA and 0.8 % w/v rECM showed appropriate compressive Young's modulus (16.8 kPa), which was within the range associated with the characteristics of retinal tissue. The same scaffold showed the highest cell proliferation compared to the other samples. These findings suggested that the rECM-OA scaffold may have a desirable platform for retinal tissue engineering applications.
Collapse
Affiliation(s)
- Romina Abdi
- Department of Chemical & Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical & Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
2
|
Wang T, Cao W, Wang X, Dong M, Yu L, Feng Y, Yang N, Song H. Composite synthetic protein hydrogel for inhibition of corneal fibrosis and treatment of corneal wounds. Int J Biol Macromol 2025; 307:142013. [PMID: 40090660 DOI: 10.1016/j.ijbiomac.2025.142013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
Corneal fibrosis, a severe complication linked to ocular injuries and post-surgery, lacks effective treatment. Hydrogels are regarded as one of the most promising biomaterials, particularly in the context of corneal wound treatment, where they have attracted considerable attention. Synthetic protein hydrogels are of particular interest due to their biocompatibility, biodegradability, capacity to mitigate induced tissue inflammatory responses, and their editable and modular integrative properties. Accordingly, the present study was designed to create a mechanically stable 4XT recombinant protein based on the mechanism of corneal fibrosis. A bio-synthetic protein gel scaffold incorporating cerium oxide nanoparticles (CeONs) with reactive oxygen species (ROS) scavenging capabilities and siRNA that inhibits transforming growth factor beta 1 (TGF-β1) protein expression was constructed using 4XT as a matrix. This resulted in a composite synthetic protein hydrogel treatment system. This system is capable of achieving in situ curing in the corneal defect area, effectively promoting the repair of corneal wounds in mice while also inhibiting the progression of corneal fibrosis. By combining the programmability and controllability of synthetic protein hydrogels with therapeutic approaches targeting wound mechanisms, it is possible to achieve scarless healing of corneal wounds, thereby providing valuable insights for wound management.
Collapse
Affiliation(s)
- Tian Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Wenye Cao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Xuemei Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Min Dong
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Lu Yu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Yinyin Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430072, Hubei Province, PR China.
| | - Heng Song
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China; Wuhan University Shenzhen Research Institute, Shenzhen 518000, Guangdong Province, PR China.
| |
Collapse
|
3
|
Huling J, Oschatz S, Lange H, Sterenczak KA, Stahnke T, Markhoff J, Stachs O, Möller S, Undre N, Peil A, Jünemann A, Grabow N, Fuellen G, Eickner T. γ-Cyclodextrin hydrogel for the sustained release of josamycin for potential ocular application. Drug Deliv 2024; 31:2361168. [PMID: 38899440 PMCID: PMC11191840 DOI: 10.1080/10717544.2024.2361168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Glaucoma is the leading cause of blindness worldwide. However, its surgical treatment, in particular via trabeculectomy, can be complicated by fibrosis. In current clinical practice, application of the drug, Mitomycin C, prevents or delays fibrosis, but can lead to additional side effects, such as bleb leakage and hypotony. Previous in silico drug screening and in vitro testing has identified the known antibiotic, josamycin, as a possible alternative antifibrotic medication with potentially fewer side effects. However, a suitable ocular delivery mechanism for the hydrophobic drug to the surgical site does not yet exist. Therefore, the focus of this paper is the development of an implantable drug delivery system for sustained delivery of josamycin after glaucoma surgery based on crosslinked γ-cyclodextrin. γ-Cyclodextrin is a commonly used solubilizer which was shown to complex with josamycin, drastically increasing the drug's solubility in aqueous solutions. A simple γ-cyclodextrin crosslinking method produced biocompatible hydrogels well-suited for implantation. The crosslinked γ - cyclodextrin retained the ability to form complexes with josamycin, resulting in a 4-fold higher drug loading efficiency when compared to linear dextran hydrogels, and prolonged drug release over 4 days.
Collapse
Affiliation(s)
- Jennifer Huling
- Institute for Biomedical Engineering, Rostock University Medical Center, Rostock, Germany
| | - Stefan Oschatz
- Institute for Biomedical Engineering, Rostock University Medical Center, Rostock, Germany
| | - Helge Lange
- Institute for Biomedical Engineering, Rostock University Medical Center, Rostock, Germany
| | | | - Thomas Stahnke
- Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| | - Jana Markhoff
- Institute for Biomedical Engineering, Rostock University Medical Center, Rostock, Germany
| | - Oliver Stachs
- Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| | - Steffen Möller
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Nasrullah Undre
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Anita Peil
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Anselm Jünemann
- Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| | - Niels Grabow
- Institute for Biomedical Engineering, Rostock University Medical Center, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, Rostock, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Thomas Eickner
- Institute for Biomedical Engineering, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
4
|
Wu KY, Gao A, Giunta M, Tran SD. What's New in Ocular Drug Delivery: Advances in Suprachoroidal Injection since 2023. Pharmaceuticals (Basel) 2024; 17:1007. [PMID: 39204112 PMCID: PMC11357265 DOI: 10.3390/ph17081007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Despite significant advancements in ocular drug delivery, challenges persist in treating posterior segment diseases like macular edema (ME) and age-related macular degeneration (AMD). Suprachoroidal (SC) injections are a promising new method for targeted drug delivery to the posterior segment of the eye, providing direct access to the choroid and retina while minimizing systemic exposure and side effects. This review examines the anatomical and physiological foundations of the SC space; evaluates delivery devices such as microcatheters, hypodermic needles, and microneedles; and discusses pharmacokinetic principles. Additionally, advancements in gene delivery through SC injections are explored, emphasizing their potential to transform ocular disease management. This review also highlights clinical applications in treating macular edema, diabetic macular edema, age-related macular degeneration, choroidal melanoma, and glaucoma. Overall, SC injections are emerging as a promising novel route for administering ophthalmic treatments, with high bioavailability, reduced systemic exposure, and favorable safety profiles. Key therapeutic agents such as triamcinolone acetonide, dexamethasone, AAV-based gene therapy, and axitinib have shown promise. The field of suprachoroidal injection is progressing rapidly, and this review article, while attempting to encapsulate most of the published preclinical and clinical studies, mainly focuses on those that are published within 2023 and 2024.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Angel Gao
- Faculty of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Michel Giunta
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
5
|
Wendland RJ, Tucker BA, Worthington KS. Influence of Substrate Stiffness on iPSC-Derived Retinal Pigmented Epithelial Cells. Stem Cells Transl Med 2024; 13:582-592. [PMID: 38560893 PMCID: PMC11165161 DOI: 10.1093/stcltm/szae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/03/2024] [Indexed: 04/04/2024] Open
Abstract
Retinal degenerative diseases are a major cause of blindness involving the dysfunction of photoreceptors, retinal pigmented epithelium (RPE), or both. A promising treatment approach involves replacing these cells via surgical transplantation, and previous work has shown that cell delivery scaffolds are vital to ensure sufficient cell survival. Thus, identifying scaffold properties that are conducive to cell viability and maturation (such as suitable material and mechanical properties) is critical to ensuring a successful treatment approach. In this study, we investigated the effect of scaffold stiffness on human RPE attachment, survival, and differentiation, comparing immortalized (ARPE-19) and stem cell-derived RPE (iRPE) cells. Polydimethylsiloxane was used as a model polymer substrate, and varying stiffness (~12 to 800 kPa) was achieved by modulating the cross-link-to-base ratio. Post-attachment changes in gene and protein expression were assessed using qPCR and immunocytochemistry. We found that while ARPE-19 and iRPE exhibited significant differences in morphology and expression of RPE markers, substrate stiffness did not have a substantial impact on cell growth or maturation for either cell type. These results highlight the differences in expression between immortalized and iPSC-derived RPE cells, and also suggest that stiffnesses in this range (~12-800 kPa) may not result in significant differences in RPE growth and maturation, an important consideration in scaffold design.
Collapse
Affiliation(s)
- Rion J Wendland
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Institute for Vision Research, Department of Ophthalmology and Visual Science, University of Iowa, Iowa City, IA, USA
| | - Budd A Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Science, University of Iowa, Iowa City, IA, USA
| | - Kristan S Worthington
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Institute for Vision Research, Department of Ophthalmology and Visual Science, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
6
|
Guo H, Lan Y, Gao Z, Zhang C, Zhang L, Li X, Lin J, Elsheikh A, Chen W. Interaction between eye movements and adhesion of extraocular muscles. Acta Biomater 2024; 176:304-320. [PMID: 38296013 DOI: 10.1016/j.actbio.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
The contact and pull-off tests and finite element simulations were used to study the extraocular muscle-sclera adhesion and its variation with eye movement in this research. The effect of the adhesion on the eye movements was also determined using equilibrium equations of eye motion. The contact and pull-off tests were performed using quasi-static and non-quasi-static unloading velocities. Finite element models were developed to simulate these tests in cases with high unloading velocity which could not be achieved experimentally. These velocities range from the eye's fixation to saccade movement. The tests confirmed that the pull-off force is related to the unloading velocity. As the unloading velocity increases, the pull-off force increases, with an insignificant increase at the high ocular saccade velocities. The adhesion moment between the extraocular muscles and the sclera exhibited the same trend, increasing with higher eye movement velocities and higher separation angles between the two interfaces. The adhesion moment ratio to the total moment was calculated by the traditional model and the active pulley model of eye movements to assess the effect of adhesion behavior on eye movements. At the high ocular saccade velocities (about 461 deg/s), the adhesion moment was found to be 0.53% and 0.50% of the total moment based on the traditional and active pulley models, respectively. The results suggest that the adhesion behavior between the extraocular muscles and the sclera has a negligible effect on eye movements. At the same time, this adhesion behavior can be ignored in eye modeling, which simplifies the model reasonably well. STATEMENT OF SIGNIFICANCE: 1. Adhesion behavior between the extraocular muscles and the sclera at different indenter unloading velocities determined by contact and pull-off tests. 2. A finite element model was developed to simulate the adhesive contact between the extraocular muscles and the sclera at different indenter unloading velocities. The bilinear cohesive zone model was used for adhesive interactions. 3. The elastic modulus and viscoelastic parameters of the extraocular muscle along the thickness direction were obtained by using compressive stress-relaxation tests. 4. The influence of the adhesion moment between the extraocular muscles and the sclera on eye movement was obtained according to the equation of oculomotor balance. The adhesion moment between the extraocular muscles and the sclera was found to increase with increased eye movement velocity and increased separation angle between the two interfaces.
Collapse
Affiliation(s)
- Hongmei Guo
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital), Taiyuan 030032, China.
| | - Yunfei Lan
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhipeng Gao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Chenxi Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Liping Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaona Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jianying Lin
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ahmed Elsheikh
- School of Engineering, University of Liverpool, Liverpool, United Kingdom
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
7
|
Liu Y, Lin Y, Lin Y, Lin C, Lan G, Su Y, Hu F, Chang K, Chen V, Yeh Y, Chen T, Yu J. Injectable, Antioxidative, and Tissue-Adhesive Nanocomposite Hydrogel as a Potential Treatment for Inner Retina Injuries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308635. [PMID: 38233151 PMCID: PMC10953571 DOI: 10.1002/advs.202308635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Reactive oxygen species (ROS) have been recognized as prevalent contributors to the development of inner retinal injuries including optic neuropathies such as glaucoma, non-arteritic anterior ischemic optic neuropathy, traumatic optic neuropathy, and Leber hereditary optic neuropathy, among others. This underscores the pivotal significance of oxidative stress in the damage inflicted upon retinal tissue. To combat ROS-related challenges, this study focuses on creating an injectable and tissue-adhesive hydrogel with tailored antioxidant properties for retinal applications. GelCA, a gelatin-modified hydrogel with photo-crosslinkable and injectable properties, is developed. To enhance its antioxidant capabilities, curcumin-loaded polydopamine nanoparticles (Cur@PDA NPs) are incorporated into the GelCA matrix, resulting in a multifunctional nanocomposite hydrogel referred to as Cur@PDA@GelCA. This hydrogel exhibits excellent biocompatibility in both in vitro and in vivo assessments, along with enhanced tissue adhesion facilitated by NPs in an in vivo model. Importantly, Cur@PDA@GelCA demonstrates the potential to mitigate oxidative stress when administered via intravitreal injection in retinal injury models such as the optic nerve crush model. These findings underscore its promise in advancing retinal tissue engineering and providing an innovative strategy for acute neuroprotection in the context of inner retinal injuries.
Collapse
Affiliation(s)
- Yi‐Chen Liu
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Yi‐Ke Lin
- Department of OphthalmologyCollege of MedicineNational Taiwan UniversityTaipei100233Taiwan
| | - Yu‐Ting Lin
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Che‐Wei Lin
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Guan‐Yu Lan
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Yu‐Chia Su
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Fung‐Rong Hu
- Department of OphthalmologyCollege of MedicineNational Taiwan UniversityTaipei100233Taiwan
- Department of OphthalmologyNational Taiwan University HospitalTaipei100225Taiwan
| | - Kai‐Hsiang Chang
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Vincent Chen
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Yi‐Cheun Yeh
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Ta‐Ching Chen
- Department of OphthalmologyNational Taiwan University HospitalTaipei100225Taiwan
- Center of Frontier MedicineNational Taiwan University HospitalTaipei100225Taiwan
| | - Jiashing Yu
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| |
Collapse
|
8
|
Luo J, Zhang Y, Ai S, Shi G, Han X, Wang Y, Zhao Y, Yang H, Li Y, He X. Two-dimensional elastic distribution imaging of the sclera using acoustic radiation force optical coherence elastography. JOURNAL OF BIOPHOTONICS 2024; 17:e202300368. [PMID: 38010344 DOI: 10.1002/jbio.202300368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/23/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
The scleral elasticity is closely related with many ocular diseases, but the relevant research is still insufficient. Here, we utilized optical coherence elastography to carefully study biomechanical properties of the sclera at different positions and under different intraocular pressures. Meanwhile, elastic wave velocity and Young's modulus of each position were obtained using a phase velocity algorithm. Accordingly, the two-dimensional elasticity distribution image was achieved by mapping the Young's modulus values to the corresponding structure based on the relationship between the position and its Young's modulus. Therefore, elastic information in regions-of-interest can be read and compared directly from the scleral structure, indicating that our method may be a very useful tool to evaluate the elasticity of sclera and provide intuitive and reliable proof for diagnosis and research.
Collapse
Affiliation(s)
- Jiahui Luo
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, PR China
| | - Yubao Zhang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, PR China
| | - Sizhu Ai
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, PR China
| | - Gang Shi
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, PR China
| | - Xiao Han
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, PR China
| | - Yidi Wang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, PR China
| | - Yanzhi Zhao
- Eye Center, Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Hongwei Yang
- Eye Center, Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Yingjie Li
- Department of Ophthalmology, Nanchang First Hospital, Nanchang, PR China
| | - Xingdao He
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, PR China
| |
Collapse
|
9
|
Knaus KR, Hipsley A, Blemker SS. A new look at an old problem: 3D modeling of accommodation reveals how age-related biomechanical changes contribute to dysfunction in presbyopia. Biomech Model Mechanobiol 2024; 23:193-205. [PMID: 37733144 DOI: 10.1007/s10237-023-01767-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023]
Abstract
Presbyopia is an age-related ocular disorder where accommodative ability declines so that an individual's focusing range is insufficient to provide visual clarity for near and distance vision tasks without corrective measures. With age, the eye exhibits changes in biomechanical properties of many components involved in accommodation, including the lens, sclera, and ciliary muscle. Changes occur at different rates, affecting accommodative biomechanics differently, but individual contributions to presbyopia are unknown. We used a finite element model (FEM) of the accommodative mechanism to simulate age-related changes in lens stiffness, scleral stiffness, and ciliary contraction to predict differences in accommodative function. The FEM predicts how ciliary muscle action leads to lens displacement by initializing a tensioned unaccommodated lens (Phase 0) then simulating ciliary muscle contraction in accommodation (Phase 1). Model inputs were calibrated to replicate experimentally measured lens and ciliary muscle in 30-year-old eyes. Predictions of accommodative lens deformation were verified with additional imaging studies. Model variations were created with altered lens component stiffnesses, scleral stiffness, or ciliary muscle section activations, representing fifteen-year incremental age-related changes. Model variations predict significant changes in accommodative function with age-related biomechanical property changes. Lens changes only significantly altered lens thickening with advanced age (46% decrease at 75 years old) while sclera changes produced progressive dysfunction with increasing age (23%, 36%, 49% decrease at 45, 60, and 75 years old). Ciliary muscle changes effected lens position modulation. Model predictions identified potential mechanisms of presbyopia that likely work in combination to reduce accommodative function and could indicate effectiveness of treatment strategies and their dependency on patient age or relative ocular mechanical properties.
Collapse
Affiliation(s)
- Katherine R Knaus
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | - Silvia S Blemker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Ophthalmology, University of Virginia, 415 Lane Road, MR5 Room 2133, Box 800759, Charlottesville, VA, USA.
| |
Collapse
|
10
|
Jonas JB, Jonas RA, Bikbov MM, Wang YX, Panda-Jonas S. Myopia: Histology, clinical features, and potential implications for the etiology of axial elongation. Prog Retin Eye Res 2023; 96:101156. [PMID: 36585290 DOI: 10.1016/j.preteyeres.2022.101156] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Myopic axial elongation is associated with various non-pathological changes. These include a decrease in photoreceptor cell and retinal pigment epithelium (RPE) cell density and retinal layer thickness, mainly in the retro-equatorial to equatorial regions; choroidal and scleral thinning pronounced at the posterior pole and least marked at the ora serrata; and a shift in Bruch's membrane opening (BMO) occurring in moderately myopic eyes and typically in the temporal/inferior direction. The BMO shift leads to an overhang of Bruch's membrane (BM) into the nasal intrapapillary compartment and BM absence in the temporal region (i.e., parapapillary gamma zone), optic disc ovalization due to shortening of the ophthalmoscopically visible horizontal disc diameter, fovea-optic disc distance elongation, reduction in angle kappa, and straightening/stretching of the papillomacular retinal blood vessels and retinal nerve fibers. Highly myopic eyes additionally show an enlargement of all layers of the optic nerve canal, elongation and thinning of the lamina cribrosa, peripapillary scleral flange (i.e., parapapillary delta zone) and peripapillary choroidal border tissue, and development of circular parapapillary beta, gamma, and delta zone. Pathological features of high myopia include development of macular linear RPE defects (lacquer cracks), which widen to round RPE defects (patchy atrophies) with central BM defects, macular neovascularization, myopic macular retinoschisis, and glaucomatous/glaucoma-like and non-glaucomatous optic neuropathy. BM thickness is unrelated to axial length. Including the change in eye shape from a sphere in emmetropia to a prolate (rotational) ellipsoid in myopia, the features may be explained by a primary BM enlargement in the retro-equatorial/equatorial region leading to axial elongation.
Collapse
Affiliation(s)
- Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karis-University, Mannheim, Germany; Institute for Clinical and Scientific Ophthalmology and Acupuncture Jonas & Panda, Heidelberg, Germany.
| | - Rahul A Jonas
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | | | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | | |
Collapse
|
11
|
Baumli P, Liu C, Bekčić A, Fuller GG. The Role of Membrane-Tethered Mucins in Axial Epithelial Adhesion in Controlled Normal Stress Environments. Adv Biol (Weinh) 2023; 7:e2300043. [PMID: 37271859 DOI: 10.1002/adbi.202300043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/08/2023] [Indexed: 06/06/2023]
Abstract
The collective adhesive behavior of epithelial cell layers mediated by complex macromolecular fluid environments plays a vital role in many biological processes. Mucins, a family of highly glycosylated proteins, are known to lubricate cell-on-cell contacts in the shear direction. However, the role of mucins mediating axial epithelial adhesion in the direction perpendicular to the plane of the cell sheet has received less attention. This article subjects cell-on-cell layers of live ocular epithelia that express mucins on their apical surfaces to compression/decompression cycles and tensile loading using a customized instrument. In addition to providing compressive moduli of native cell-on-cell layers, it is found that the mucin layer between the epithelia acts as a soft cushion between the epithelial cell layers. Decompression experiments reveal mucin layers act as soft, nonlinear springs in the axial direction. The cell-on-cell layers withstand decompression before fracturing by a cohesive failure within the mucin layer. When mucin deficiency is induced via a protease treatment, it is found that the axial adhesion between the cell layers is increased. The findings which correlate changes in biological factors with changes in mechanical properties might be of interest to challenges in ophthalmology, vision care, and mucus research.
Collapse
Affiliation(s)
- Philipp Baumli
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Chunzi Liu
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Aleksandar Bekčić
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
12
|
Abedin Zadeh M, Alany RG, Satarian L, Shavandi A, Abdullah Almousa M, Brocchini S, Khoder M. Maillard Reaction Crosslinked Alginate-Albumin Scaffolds for Enhanced Fenofibrate Delivery to the Retina: A Promising Strategy to Treat RPE-Related Dysfunction. Pharmaceutics 2023; 15:pharmaceutics15051330. [PMID: 37242572 DOI: 10.3390/pharmaceutics15051330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
There are limited treatments currently available for retinal diseases such as age-related macular degeneration (AMD). Cell-based therapy holds great promise in treating these degenerative diseases. Three-dimensional (3D) polymeric scaffolds have gained attention for tissue restoration by mimicking the native extracellular matrix (ECM). The scaffolds can deliver therapeutic agents to the retina, potentially overcoming current treatment limitations and minimizing secondary complications. In the present study, 3D scaffolds made up of alginate and bovine serum albumin (BSA) containing fenofibrate (FNB) were prepared by freeze-drying technique. The incorporation of BSA enhanced the scaffold porosity due to its foamability, and the Maillard reaction increased crosslinking degree between ALG with BSA resulting in a robust scaffold with thicker pore walls with a compression modulus of 13.08 KPa suitable for retinal regeneration. Compared with ALG and ALG-BSA physical mixture scaffolds, ALG-BSA conjugated scaffolds had higher FNB loading capacity, slower release of FNB in the simulated vitreous humour and less swelling in water and buffers, and better cell viability and distribution when tested with ARPE-19 cells. These results suggest that ALG-BSA MR conjugate scaffolds may be a promising option for implantable scaffolds for drug delivery and retinal disease treatment.
Collapse
Affiliation(s)
- Maria Abedin Zadeh
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames KT1 2EE, UK
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames KT1 2EE, UK
- School of Pharmacy, The University of Auckland, Auckland 1010, New Zealand
| | - Leila Satarian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | | | - Steve Brocchini
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Mouhamad Khoder
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames KT1 2EE, UK
| |
Collapse
|
13
|
Anatomic Peculiarities Associated with Axial Elongation of the Myopic Eye. J Clin Med 2023; 12:jcm12041317. [PMID: 36835853 PMCID: PMC9966891 DOI: 10.3390/jcm12041317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/08/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
PURPOSE To describe anatomical peculiarities associated with axial elongation in the human myopic eye. METHODS Reviewing the results of previous histomorphometrical investigations of enucleated human globes, as well as reviewing findings obtained in population-based studies and hospital-based clinical investigations of myopic patients and non-myopic individuals. RESULTS Myopic axial elongation is associated with a change from a mostly spherical eye shape to a prolate ellipsoid form. It is combined with choroidal and scleral thinning, most pronounced at the posterior pole and less pronounced in the fundus midperiphery. In the fundus midperiphery, the retina and density of the retinal pigment epithelium (RPE) and photoreceptors decrease with a longer axial length, while in the macular region, retinal thickness, RPE cell density, and choriocapillaris thickness are not related to axial length. With axial elongation, a parapapillary gamma zone develops, leading to an enlargement of the optic disc-fovea distance and a decrease in angle kappa. Axial elongation is also correlated with an increase in the surface and volume of Bruch's membrane (BM), while BM thickness remains unchanged. Axial elongation causes moderately myopic eyes to show a shift of BM opening to the foveal direction so that the horizontal disc diameter becomes shorter (with a consequent vertical ovalization of the optic disc shape), a temporal gamma zone develops, and the optic nerve exit takes an oblique course. Features of high myopia are an enlargement of the RPE opening (myopic parapapillary beta zone) and BM opening (secondary macrodisc), elongation and thinning of the lamina cribrosa, peripapillary scleral flange (parapapillary delta zone) and peripapillary choroidal border tissue, secondary BM defects in the macular region, myopic maculoschisis, macular neovascularization, and cobblestones in the fundus periphery. CONCLUSIONS These features combined may be explained by a growth in BM in the fundus midperiphery leading to axial elongation.
Collapse
|
14
|
Ali SM, Patrawalla NY, Kajave NS, Brown AB, Kishore V. Species-Based Differences in Mechanical Properties, Cytocompatibility, and Printability of Methacrylated Collagen Hydrogels. Biomacromolecules 2022; 23:5137-5147. [PMID: 36417692 PMCID: PMC11103796 DOI: 10.1021/acs.biomac.2c00985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Collagen methacrylation is a promising approach to generate photo-cross-linkable cell-laden hydrogels with improved mechanical properties. However, the impact of species-based variations in amino acid composition and collagen isolation method on methacrylation degree (MD) and its subsequent effects on the physical properties of methacrylated collagen (CMA) hydrogels and cell response are unknown. Herein, we compared the effects of three collagen species (bovine, human, and rat), two collagen extraction methods (pepsin digestion and acid extraction), and two photoinitiators (lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) and Irgacure-2959 (I-2959)) on the physical properties of CMA hydrogels, printability and mesenchymal stem cell (MSC) response. Human collagen showed the highest MD. LAP was more cytocompatible than I-2959. The compressive modulus and cell viability of rat CMA were significantly higher (p < 0.05) than bovine CMA. Human CMA yielded constructs with superior print fidelity. Together, these results suggest that careful selection of collagen source and cross-linking conditions is essential for biomimetic design of CMA hydrogels for tissue engineering applications.
Collapse
Affiliation(s)
- Sarah M Ali
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida32901, United States
| | - Nashaita Y Patrawalla
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida32901, United States
| | - Nilabh S Kajave
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida32901, United States
| | - Alan B Brown
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida32901, United States
| | - Vipuil Kishore
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida32901, United States
| |
Collapse
|
15
|
Kim SI, Jeon GY, Kim SE, Choe SH, Kim SJ, Seo JS, Kang TW, Song JE, Khang G. Injectable Hydrogel Based on Gellan Gum/Silk Sericin for Application as a Retinal Pigment Epithelium Cell Carrier. ACS OMEGA 2022; 7:41331-41340. [PMID: 36406493 PMCID: PMC9670284 DOI: 10.1021/acsomega.2c05113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The damage to retinal pigment epithelium (RPE) cells can lead to vision loss and permanent blindness. Therefore, an effective therapeutic strategy has emerged to replace damaged cells through RPE cell delivery. In this study, we fabricated injectable gellan gum (GG)/silk sericin (SS) hydrogels as a cell carrier by blending GG and SS. To determine the appropriate concentration of SS for human RPE ARPE-19, 0, 0.05, 0.1, and 0.5% (w/v) of SS solution were blended in 1% (w/v) GG solution (GG/SS 0%, GG/SS 0.05%, GG/SS 0.1%, and GG/SS 0.5%, respectively). The physical and chemical properties were measured through Fourier-transform infrared spectroscopy, scanning electron microscopy, mass swelling, and weight loss. Also, viscosity, injection force, and compressive tests were used to evaluate mechanical characteristics. Cell proliferation and differentiation of ARPE-19 were evaluated using quantitative dsDNA analysis and real-time polymerase chain reaction, respectively. The addition of SS gave GG/SS hydrogels a compressive strength similar to that of natural RPE tissue, which may well support the growth of RPE and enhance cell proliferation and differentiation. In particular, the GG/SS 0.5% hydrogel showed the most similar compressive strength (about 10 kPa) and exhibited the highest gene expression related to ARPE-19 cell proliferation. These results indicate that GG/SS 0.5% hydrogels can be a promising biomaterial for cell delivery in retina tissue engineering.
Collapse
Affiliation(s)
- Soo in Kim
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Ga Yeong Jeon
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Se Eun Kim
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Seung Ho Choe
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Seung Jae Kim
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Jin Sol Seo
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Tae Woong Kang
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Jeong Eun Song
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Gilson Khang
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
- Department
of PolymerNano Science & Technology and Polymer Materials Fusion
Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
- Department
of Orthopaedic & Traumatology, Airlangga
University, Jl. Airlangga
No. 4−6, Airlangga, Kec. Gubeng, Kota
SBY, Jawa Timur60115, Indonesia
| |
Collapse
|
16
|
Lee DH, Lee JH, Pyun YC, Shin ME, Shin EY, Been S, Song JE, Migliaresi C, Motta A, Khang G. Impact of Agarose Hydrogels as Cell Vehicles for Neo Retinal Pigment Epithelium Formation: In Vitro Study. Macromol Res 2022. [DOI: 10.1007/s13233-022-0091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Kwok S, Pan M, Hazen N, Pan X, Liu J. Mechanical Deformation of Peripapillary Retina in Response to Acute Intraocular Pressure Elevation. J Biomech Eng 2022; 144:1131131. [PMID: 35001106 DOI: 10.1115/1.4053450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 11/08/2022]
Abstract
Elevated intraocular pressure (IOP) may cause mechanical injuries to the optic nerve head (ONH) and the peripapillary tissues in glaucoma. Previous studies have reported the mechanical deformation of the ONH and the peripapillary sclera (PPS) at elevated IOP. The deformation of the peripapillary retina (PPR) has not been well-characterized. Here we applied high-frequency ultrasound elastography to map and quantify PPR deformation, and compared PPR, PPS and ONH deformation in the same eye. Whole globe inflation was performed in ten human donor eyes. High-frequency ultrasound scans of the posterior eye were acquired while IOP was raised from 5 to 30 mmHg. A correlation-based ultrasound speckle tracking algorithm was used to compute pressure-induced displacements within the scanned tissue cross-sections. Radial, tangential, and shear strains were calculated for the PPR, PPS, and ONH regions. In PPR, shear was significantly larger in magnitude than radial and tangential strains. Strain maps showed localized high shear and high tangential strains in PPR. In comparison to PPS and ONH, PPR had greater shear and a similar level of tangential strain. Surprisingly, PPR radial compression was minimal and significantly smaller than that in PPS. These results provide new insights into PPR deformation in response of IOP elevation, suggesting that shear rather than compression was likely the primary mode of IOP-induced mechanical insult in PPR. High shear, especially localized high shear, may contribute to the mechanical damage of this tissue in glaucoma.
Collapse
Affiliation(s)
- Sunny Kwok
- Department of Biomedical Engineering, Ohio State University, 140 W 19th Ave, Columbus, OH 43210
| | - Manqi Pan
- Department of Biomedical Engineering, Ohio State University, 140 W 19th Ave, Columbus, OH 43210
| | - Nicholas Hazen
- Biophysics Interdisciplinary Group, Ohio State University, 140 W 19th Ave, Columbus, OH 43210
| | - Xueliang Pan
- Department of Biomedical Informatics, Ohio State University, 1800 Cannon Drive, Columbus, OH 43210
| | - Jun Liu
- Department of Biomedical Engineering, Ohio State University, 140 W 19th Ave, Columbus, OH 43210
| |
Collapse
|
18
|
李 周, 杨 晓. [Mechanism of Bruch's Membrane in the Occurrence and Development of Myopia]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:913-916. [PMID: 34841753 PMCID: PMC10408825 DOI: 10.12182/20211160101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 11/23/2022]
Abstract
Myopia is a process of ocular wall remodeling along with axial elongation after emmetropia decompensation, but the causal relationship among the changes taking place in ocular fundus structures during this process is not clear. The choroid, which lies between the retina and the sclera, plays an important role in the transmission of information related to myopia. The role of choroid in myopia is a hot research topic at present. Findings from animal experiments showed that form deprivation-induced changes in choroidal thickness may be related to the vascular perfusion, but the triggering mechanism of choroidal perfusion changes during the process of myopia still needs to to be further explored. Bruch's membrane is an elastic membrane located in the front of the choroid with good contractile properties. In the process of myopia, regional changes of the synthesis or biomechanics of Bruch's membrane may have formed the earliest structural basis of changes in choroidal thickness and blood flow. Taking choroidal thickness as a starting point, this paper focuses on the role and mechanism of Bruch's membrane in the occurrence and development of myopia, which may further deepen our understanding of the mechanism of changes in choroidal thickness, and provide a theoretical basis for the development of new therapeutic targets for myopia.
Collapse
Affiliation(s)
- 周越 李
- 眼科学国家重点实验室 中山大学中山眼科中心 (广州 510060)State Key Laboratory of Ophthalmology and Zhongshan Opthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - 晓 杨
- 眼科学国家重点实验室 中山大学中山眼科中心 (广州 510060)State Key Laboratory of Ophthalmology and Zhongshan Opthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| |
Collapse
|
19
|
The effect of retinal scaffold modulus on performance during surgical handling. Exp Eye Res 2021; 207:108566. [PMID: 33838142 DOI: 10.1016/j.exer.2021.108566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023]
Abstract
Emerging treatment strategies for retinal degeneration involve replacing lost photoreceptors using supportive scaffolds to ensure cells survive the implantation process. While many design aspects of these scaffolds, including material chemistry and microstructural cues, have been studied in depth, a full set of design constraints has yet to be established. For example, while known to be important in other tissues and systems, the influence of mechanical properties on surgical handling has not been quantified. In this study, photocrosslinked poly(ethylene glycol) dimethacrylate (PEGDMA) was used as a model polymer to study the effects of scaffold modulus (stiffness) on surgical handling, independent of material chemistry. This was achieved by modulating the molecular weight and concentrations of the PEGDMA in various prepolymer solutions. Scaffold modulus of each formulation was measured using photo-rheology, which enabled the collection of real-time polymerization data. In addition to measuring scaffold mechanical properties, this approach gave insight on polymerization kinetics, which were used to determine the polymerization time required for each sample. Scaffold handling characteristics were qualitatively evaluated using both in vitro and ex vivo trials that mimicked the surgical procedure. In these trials, scaffolds with shear moduli above 35 kPa performed satisfactorily, while those below this limit performed poorly. In other words, scaffolds below this modulus were too fragile for reliable transplantation. To better compare these results with literature values, the compressive modulus was measured for select samples, with the lower shear modulus limit corresponding to roughly 115 kPa compressive modulus. While an upper mechanical property limit was not readily apparent from these results, there was increased variability in surgical handling performance in samples with shear moduli above 800 kPa. Overall, the knowledge presented here provides important groundwork for future studies designed to examine additional retinal scaffold considerations, including the effect of scaffold mechanical properties on retinal progenitor cell fate.
Collapse
|
20
|
Ferrara M, Lugano G, Sandinha MT, Kearns VR, Geraghty B, Steel DHW. Biomechanical properties of retina and choroid: a comprehensive review of techniques and translational relevance. Eye (Lond) 2021; 35:1818-1832. [PMID: 33649576 PMCID: PMC8225810 DOI: 10.1038/s41433-021-01437-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/06/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Studying the biomechanical properties of biological tissue is crucial to improve our understanding of disease pathogenesis. The biomechanical characteristics of the cornea, sclera and the optic nerve head have been well addressed with an extensive literature and an in-depth understanding of their significance whilst, in comparison, knowledge of the retina and choroid is relatively limited. Knowledge of these tissues is important not only to clarify the underlying pathogenesis of a wide variety of retinal and vitreoretinal diseases, including age-related macular degeneration, hereditary retinal dystrophies and vitreoretinal interface diseases but also to optimise the surgical handling of retinal tissues and, potentially, the design and properties of implantable retinal prostheses and subretinal therapies. Our aim with this article is to comprehensively review existing knowledge of the biomechanical properties of retina, internal limiting membrane (ILM) and the Bruch’s membrane–choroidal complex (BMCC), highlighting the potential implications for clinical and surgical practice. Prior to this we review the testing methodologies that have been used both in vitro, and those starting to be used in vivo to aid understanding of their results and significance.
Collapse
Affiliation(s)
| | - Gaia Lugano
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | | | - Victoria R Kearns
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Brendan Geraghty
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
| | - David H W Steel
- Sunderland Eye Infirmary, Sunderland, UK. .,Bioscience Institute, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
21
|
Ruiz-Alonso S, Villate-Beitia I, Gallego I, Lafuente-Merchan M, Puras G, Saenz-del-Burgo L, Pedraz JL. Current Insights Into 3D Bioprinting: An Advanced Approach for Eye Tissue Regeneration. Pharmaceutics 2021; 13:pharmaceutics13030308. [PMID: 33653003 PMCID: PMC7996883 DOI: 10.3390/pharmaceutics13030308] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional (3D) printing is a game changer technology that holds great promise for a wide variety of biomedical applications, including ophthalmology. Through this emerging technique, specific eye tissues can be custom-fabricated in a flexible and automated way, incorporating different cell types and biomaterials in precise anatomical 3D geometries. However, and despite the great progress and possibilities generated in recent years, there are still challenges to overcome that jeopardize its clinical application in regular practice. The main goal of this review is to provide an in-depth understanding of the current status and implementation of 3D bioprinting technology in the ophthalmology field in order to manufacture relevant tissues such as cornea, retina and conjunctiva. Special attention is paid to the description of the most commonly employed bioprinting methods, and the most relevant eye tissue engineering studies performed by 3D bioprinting technology at preclinical level. In addition, other relevant issues related to use of 3D bioprinting for ocular drug delivery, as well as both ethical and regulatory aspects, are analyzed. Through this review, we aim to raise awareness among the research community and report recent advances and future directions in order to apply this advanced therapy in the eye tissue regeneration field.
Collapse
Affiliation(s)
- Sandra Ruiz-Alonso
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (I.V.-B.); (I.G.); (M.L.-M.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Ilia Villate-Beitia
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (I.V.-B.); (I.G.); (M.L.-M.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (I.V.-B.); (I.G.); (M.L.-M.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Markel Lafuente-Merchan
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (I.V.-B.); (I.G.); (M.L.-M.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (I.V.-B.); (I.G.); (M.L.-M.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Laura Saenz-del-Burgo
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (I.V.-B.); (I.G.); (M.L.-M.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Correspondence: (L.S.-d.-B.); (J.L.P.); Tel.: +(34)-945014542 (L.S.-d.-B.); +(34)-945013091 (J.L.P.)
| | - José Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (I.V.-B.); (I.G.); (M.L.-M.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Correspondence: (L.S.-d.-B.); (J.L.P.); Tel.: +(34)-945014542 (L.S.-d.-B.); +(34)-945013091 (J.L.P.)
| |
Collapse
|
22
|
Lee W, Choi JH, Lee J, Youn J, Kim W, Jeon G, Lee SW, Song JE, Khang G. Dopamine-Functionalized Gellan Gum Hydrogel as a Candidate Biomaterial for a Retinal Pigment Epithelium Cell Delivery System. ACS APPLIED BIO MATERIALS 2021; 4:1771-1782. [PMID: 35014523 DOI: 10.1021/acsabm.0c01516] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, dopamine-functionalized gellan gum (DFG) hydrogel was prepared as a carrier for retinal pigment epithelium (RPE) cell delivery via a carbodiimide reaction. The carboxylic acid of gellan gum (GG) was replaced with catechol in a 21.3% yield, which was confirmed by NMR. Sol fraction and weight loss measurements revealed that dopamine improved degradability in the GG hydrogel. Measurements of the viscosity, injection force, and compressibility also showed that dopamine-functionalized GG hydrogels had more desirable rheological/mechanical properties for improving injectability. These characteristics were confirmed to arise from the GG's helix structure loosened by the dopamine's bulky nature. Moreover, dopamine's hydrophilic characteristics were confirmed to create a more favorable microenvironment for cell growth by promoting swelling capability and cell attachment. This improved biocompatibility became more pronounced when the hydrophilicity of dopamine was combined with a larger specific surface area stemming from the less porous structure of the dopamine-grafted hydrogels. This effect was apparent from the live/dead staining images of the as-prepared hydrogels. Meanwhile, the nonionic cross-linked DFG (DG) hydrogel showed the lowest protein expression in the immunofluorescence staining images obtained after 28 days of culture, supporting that it had the highest degradability and associated cell-releasing ability. That tendency was also observed in the gene expression data acquired by real-time polymerase chain reaction (RT-PCR) analysis. RT-PCR analysis also revealed that the DG hydrogel carrier could upregulate the visual function-related gene of RPE. Overall, the DG hydrogel system demonstrated its feasibility as a carrier of RPE cells and its potential as a means of improving visual function.
Collapse
Affiliation(s)
- Wonchan Lee
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Joo Hee Choi
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jaewoo Lee
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.,Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jina Youn
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Wooyoup Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Gayeong Jeon
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Sung Won Lee
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jeong Eun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.,Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| |
Collapse
|
23
|
Knaus KR, Hipsley A, Blemker SS. The action of ciliary muscle contraction on accommodation of the lens explored with a 3D model. Biomech Model Mechanobiol 2021; 20:879-894. [PMID: 33491156 DOI: 10.1007/s10237-021-01417-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 01/04/2021] [Indexed: 11/24/2022]
Abstract
The eye's accommodative mechanism changes optical power for near vision. In accommodation, ciliary muscle excursion relieves lens tension, allowing it to return to its more convex shape. Lens deformation alters its refractive properties, but the mechanics of ciliary muscle actions are difficult to intuit due to the complex architecture of the tissues involved. The muscle itself comprises three sections of dissimilarly oriented cells. These cells contract, transmitting forces through the zonule fibers and extralenticular structures. This study aims to create a finite element model (FEM) to predict how the action of the ciliary muscle sections leads to lens displacement. The FEM incorporates initialization of the disaccommodated lens state and ciliary muscle contraction, with three muscle sections capable of independent activation, to drive accommodative movement. Model inputs were calibrated to replicate experimentally measured disaccommodated lens and accommodated ciliary muscle shape changes. Additional imaging studies were used to validate model predictions of accommodative lens deformation. Models were analyzed to quantify mechanical actions of ciliary muscle sections in lens deformation and position modulation. Analyses revealed that ciliary muscle sections act synergistically: the circular section contributes most to increasing lens thickness, while longitudinal and radial sections can oppose this action. Conversely, longitudinal and radial sections act to translate the lens anteriorly with opposition from the circular section. This FEM demonstrates the complex interplay of the three sections of ciliary muscle in deforming and translating the lens during accommodation, providing a useful framework for future investigations of accommodative dysfunction that occurs with age in presbyopia.
Collapse
Affiliation(s)
- Katherine R Knaus
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | | | - Silvia S Blemker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA. .,Department of Mechanical Engineering, University of Virginia, Charlottesville, VA, USA. .,Department of Orthopedic Surgery, University of Virginia, Charlottesville, VA, USA. .,Department of Ophthalmology, University of Virginia, 415 Lane Road, Box 800759, Charlottesville, VA, 22903, USA.
| |
Collapse
|
24
|
Hancock SE, Wan CR, Fisher NE, Andino RV, Ciulla TA. Biomechanics of suprachoroidal drug delivery: From benchtop to clinical investigation in ocular therapies. Expert Opin Drug Deliv 2021; 18:777-788. [PMID: 33393391 DOI: 10.1080/17425247.2021.1867532] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION As research in suprachoroidal drug delivery advances, and therapeutic candidates, ranging from small molecule suspensions to gene therapy, progress through clinical trials, an understanding of suprachoroidal space (SCS) biomechanics assumes increasing importance.Areas covered:Numerous anatomic features play an important role in therapeutic access to the SCS. Methods of access include a catheter, a standard hypodermic needle, and a microinjector with microneedle. Physical and fluidic properties of injectates into the SCS, such as volume, viscosity, particle size, osmotic pressure, and ionic charge of formulation can impact the spread and extent of opening of the SCS. Pharmacokinetic data of several small molecule suspensions yielded favorable ocular distribution and pharmacokinetic profiles. Phase 2 and 3 clinical trials have been completed with a suprachoroidally injected corticosteroid; results and information on procedural details with the microinjector are discussed. EXPERT OPINION Suprachoroidal drug delivery has been demonstrated to be a reliable and consistent drug delivery method for targeted treatment of retinal and choroidal disorders to potentially maximize efficacy, while compartmentalizing therapies away from the unaffected tissues to potentially enhance safety. These delivery attributes, along with fluid transport properties and formula customization for pharmacological agents, may allow for more tailored treatment of diseases affecting chorio-retinal tissues.
Collapse
|
25
|
Brown DM, Pardue MT, Ethier CR. A biphasic approach for characterizing tensile, compressive and hydraulic properties of the sclera. J R Soc Interface 2021; 18:20200634. [PMID: 33468024 PMCID: PMC7879763 DOI: 10.1098/rsif.2020.0634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/15/2020] [Indexed: 11/12/2022] Open
Abstract
Measuring the biomechanical properties of the mouse sclera is of great interest: altered scleral properties are features of many common ocular pathologies, and the mouse is a powerful tool for studying genetic factors in disease, yet the small size of the mouse eye and its thin sclera make experimental measurements in the mouse difficult. Here, a poroelastic material model is used to analyse data from unconfined compression testing of both pig and mouse sclera, and the tensile modulus, compressive modulus and permeability of the sclera are obtained at three levels of compressive strain. Values for all three properties were comparable to previously reported values measured by tests specific for each property. The repeatability of the approach was evaluated using a test-retest experimental paradigm on pig sclera, and tensile stiffness and permeability measurements were found to be reasonably repeatable. The intrinsic material properties of the mouse sclera were measured for the first time. Tensile stiffness and permeability of the sclera in both species were seen to be dependent on the state of compressive strain. We conclude that unconfined compression testing of sclera, when analysed with poroelastic theory, is a powerful tool to phenotype mouse scleral changes in future genotype-phenotype association studies.
Collapse
Affiliation(s)
- Dillon M. Brown
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
- Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Machelle T. Pardue
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
- Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - C. Ross Ethier
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| |
Collapse
|
26
|
Eggshell Membrane/Gellan Gum Composite Hydrogels with Increased Degradability, Biocompatibility, and Anti-Swelling Properties for Effective Regeneration of Retinal Pigment Epithelium. Polymers (Basel) 2020; 12:polym12122941. [PMID: 33317040 PMCID: PMC7764595 DOI: 10.3390/polym12122941] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022] Open
Abstract
A gellan gum (GG) hydrogel must demonstrate a number of critical qualities—low viscosity, degradability, desirable mechanical properties, anti-swelling properties, and biocompatibility—in order to be regarded as suitable for retinal pigment epithelium (RPE) regeneration. In this study, we investigated whether the application of an eggshell membrane (ESM) to a GG hydrogel improved these critical attributes. The crosslinking of the ESM/GG hydrogels was most effectively reduced, when a 4 w/v% ESM was used, leading to a 40% less viscosity and a 30% higher degradation efficiency than a pure GG hydrogel. The compressive moduli of the ESM/GG hydrogels were maintained, as the smaller pores formed by the addition of the ESM compensated for the slightly weakened mechanical properties of the ESM/GG hydrogels. Meanwhile, due to the relatively low hydrophilicity of ESM, a 4 w/v% ESM enabled an ESM/GG hydrogel to swell 30% less than a pure GG hydrogel. Finally, the similarity in components between the ESM and RPE cells facilitated the proliferation of the latter without any significant cytotoxicity.
Collapse
|
27
|
Rincón Montes V, Gehlen J, Ingebrandt S, Mokwa W, Walter P, Müller F, Offenhäusser A. Development and in vitro validation of flexible intraretinal probes. Sci Rep 2020; 10:19836. [PMID: 33199768 PMCID: PMC7669900 DOI: 10.1038/s41598-020-76582-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/28/2020] [Indexed: 12/01/2022] Open
Abstract
The efforts to improve the treatment efficacy in blind patients with retinal degenerative diseases would greatly benefit from retinal activity feedback, which is lacking in current retinal implants. While the door for a bidirectional communication device that stimulates and records intraretinally has been opened by the recent use of silicon-based penetrating probes, the biological impact induced by the insertion of such rigid devices is still unknown. Here, we developed for the first time, flexible intraretinal probes and validated in vitro the acute biological insertion impact in mouse retinae compared to standard silicon-based probes. Our results show that probes based on flexible materials, such as polyimide and parylene-C, in combination with a narrow shank design 50 µm wide and 7 µm thick, and the use of insertion speeds as high as 187.5 µm/s will successfully penetrate the retina, reduce the footprint of the insertion to roughly 2 times the cross-section of the probe, and induce low dead cell counts, while keeping the vitality of the tissue and recording the neural activity at different depths.
Collapse
Affiliation(s)
- V Rincón Montes
- Bioelectronics, Institute of Biological Information Processing-3, Forschungszentrum Jülich, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - J Gehlen
- Molecular and Cellular Physiology, Institute of Biological Information Processing-1, Forschungszentrum Jülich, Jülich, Germany
| | - S Ingebrandt
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Aachen, Germany
| | - W Mokwa
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Aachen, Germany
| | - P Walter
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - F Müller
- Molecular and Cellular Physiology, Institute of Biological Information Processing-1, Forschungszentrum Jülich, Jülich, Germany
| | - A Offenhäusser
- Bioelectronics, Institute of Biological Information Processing-3, Forschungszentrum Jülich, Jülich, Germany.
- RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
28
|
Kajave NS, Schmitt T, Nguyen TU, Gaharwar AK, Kishore V. Bioglass incorporated methacrylated collagen bioactive ink for 3D printing of bone tissue. Biomed Mater 2020; 16. [PMID: 33142268 DOI: 10.1088/1748-605x/abc744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022]
Abstract
Bioactive 3D printed scaffolds are promising candidates for bone tissue engineering (BTE) applications. Here, we introduce a bioactive ink composed of Bioglass 45S5 (BG) and methacrylated collagen (CMA) for 3D printing of biomimetic constructs that resemble the organic and inorganic composition of native bone tissue. A uniform dispersion of BG particles within the collagen network improved stability and reduced swelling of collagen hydrogels. Rheological testing showed significant improvement in the yield stress and percent recovery of 3D printed constructs upon BG incorporation. Further, addition of BG improved the bone bioactivity of 3D printed constructs in stimulated body fluid. BG incorporated CMA (BG-CMA) constructs maintained high cell viability and enhanced alkaline phosphatase activity of human mesenchymal stem cells. In addition, cell-mediated calcium deposition was significantly higher on BG-CMA constructs, compared to CMA alone. In conclusion, 3D printed BG-CMA constructs have significant potential for use in BTE applications.
Collapse
Affiliation(s)
- Nilabh S Kajave
- Florida Institute of Technology, Melbourne, Florida, UNITED STATES
| | - Trevor Schmitt
- Florida Institute of Technology, Melbourne, Florida, UNITED STATES
| | - Thuy-Uyen Nguyen
- Chemical Engineering, Florida Institute of Technology, Melbourne, Florida, UNITED STATES
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, UNITED STATES
| | - Vipuil Kishore
- Florida Institute of Technology, Melbourne, Florida, UNITED STATES
| |
Collapse
|
29
|
Rim MA, Choi JH, Park A, Youn J, Lee S, Kim NE, Song JE, Khang G. Characterization of Gelatin/Gellan Gum/Glycol Chitosan Ternary Hydrogel for Retinal Pigment Epithelial Tissue Reconstruction Materials. ACS APPLIED BIO MATERIALS 2020; 3:6079-6087. [PMID: 35021836 DOI: 10.1021/acsabm.0c00672] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cellular transplantation approach to treat damaged or diseased retina is limited because of poor survival, distribution, and integration of cells after implantation to the sub-retinal space. To overcome this, it is important to develop a cell delivery system. In this study, a ternary hydrogel of gelatin (Ge)/gellan gum (GG)/glycol chitosan (CS) is suggested as a cell carrier for retinal tissue engineering (TE). Physicochemical properties such as porosity, swelling, sol fraction, and weight loss were measured. The mechanical study was performed with compressive strength and viscosity to confirm applicability in retinal TE. An in vitro experiment was carried out by encapsulating ARPE-19 in the designed hydrogel to measure viability and expression of retinal pigment epithelium-specific proteins and genes. The results showed that the ternary hydrogel system improves the mechanical properties and stability of the composite. Cell growth, survival, adhesion, and migration were enhanced as the CS was incorporated into the matrix. In particular, real-time polymerase chain reaction analysis showed a markedly improved specific gene expression rate in the Ge/GG/CS. Therefore, it is expected that the ternary system suggested in this study can be used as a promising material for retinal TE.
Collapse
Affiliation(s)
- Min A Rim
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Joo Hee Choi
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Ain Park
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jina Youn
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Sumi Lee
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Na Eun Kim
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jeong Eun Song
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| |
Collapse
|
30
|
Juncheed K, Kohlstrunk B, Friebe S, Dallacasagrande V, Maurer P, Reichenbach A, Mayr SG, Zink M. Employing Nanostructured Scaffolds to Investigate the Mechanical Properties of Adult Mammalian Retinae Under Tension. Int J Mol Sci 2020; 21:ijms21113889. [PMID: 32485972 PMCID: PMC7313470 DOI: 10.3390/ijms21113889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/01/2022] Open
Abstract
Numerous eye diseases are linked to biomechanical dysfunction of the retina. However, the underlying forces are almost impossible to quantify experimentally. Here, we show how biomechanical properties of adult neuronal tissues such as porcine retinae can be investigated under tension in a home-built tissue stretcher composed of nanostructured TiO2 scaffolds coupled to a self-designed force sensor. The employed TiO2 nanotube scaffolds allow for organotypic long-term preservation of adult tissues ex vivo and support strong tissue adhesion without the application of glues, a prerequisite for tissue investigations under tension. In combination with finite element calculations we found that the deformation behavior is highly dependent on the displacement rate which results in Young’s moduli of (760–1270) Pa. Image analysis revealed that the elastic regime is characterized by a reversible shear deformation of retinal layers. For larger deformations, tissue destruction and sliding of retinal layers occurred with an equilibration between slip and stick at the interface of ruptured layers, resulting in a constant force during stretching. Since our study demonstrates how porcine eyes collected from slaughterhouses can be employed for ex vivo experiments, our study also offers new perspectives to investigate tissue biomechanics without excessive animal experiments.
Collapse
Affiliation(s)
- Kantida Juncheed
- Soft Matter Physics Division and Biotechnology & Biomedical Group, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany; (K.J.); (B.K.); (V.D.)
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstr. 19, 04103 Leipzig, Germany;
| | - Bernd Kohlstrunk
- Soft Matter Physics Division and Biotechnology & Biomedical Group, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany; (K.J.); (B.K.); (V.D.)
| | - Sabrina Friebe
- Division of Surface Physics, Department of Physics and Earth Sciences, Leipzig University and Leibniz Institute of Surface Engineering (IOM), Permoser Str. 15, 04318 Leipzig, Germany; (S.F.); (S.G.M.)
| | - Valentina Dallacasagrande
- Soft Matter Physics Division and Biotechnology & Biomedical Group, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany; (K.J.); (B.K.); (V.D.)
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstr. 19, 04103 Leipzig, Germany;
| | - Patric Maurer
- Institute of Food Hygiene, Faculty of Veterinary Medicine, Leipzig University, Augustusplatz 10, 04109 Leipzig, Germany;
| | - Andreas Reichenbach
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstr. 19, 04103 Leipzig, Germany;
| | - Stefan G. Mayr
- Division of Surface Physics, Department of Physics and Earth Sciences, Leipzig University and Leibniz Institute of Surface Engineering (IOM), Permoser Str. 15, 04318 Leipzig, Germany; (S.F.); (S.G.M.)
| | - Mareike Zink
- Soft Matter Physics Division and Biotechnology & Biomedical Group, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany; (K.J.); (B.K.); (V.D.)
- Correspondence: ; Tel.: +49-(341)-9732573; Fax: +49-(341)-9732479
| |
Collapse
|
31
|
Zhang L, Beotra MR, Baskaran M, Tun TA, Wang X, Perera SA, Strouthidis NG, Aung T, Boote C, Girard MJA. In Vivo Measurements of Prelamina and Lamina Cribrosa Biomechanical Properties in Humans. Invest Ophthalmol Vis Sci 2020; 61:27. [PMID: 32186670 PMCID: PMC7401475 DOI: 10.1167/iovs.61.3.27] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To develop and use a custom virtual fields method (VFM) to assess the biomechanical properties of human prelamina and lamina cribrosa (LC) in vivo. Methods Clinical data of 20 healthy, 20 ocular hypertensive (OHT), 20 primary open-angle glaucoma, and 16 primary angle-closure glaucoma eyes were analyzed. For each eye, the intraocular pressure (IOP) and optical coherence tomography (OCT) images of the optic nerve head (ONH) were acquired at the normal state and after acute IOP elevation. The IOP-induced deformation of the ONH was obtained from the OCT volumes using a three-dimensional tracking algorithm and fed into the VFM to extract the biomechanical properties of the prelamina and the LC in vivo. Statistical measurements and P values from the Mann-Whitney-Wilcoxon tests were reported. Results The average shear moduli of the prelamina and the LC were 64.2 ± 36.1 kPa and 73.1 ± 46.9 kPa, respectively. The shear moduli of the prelamina of healthy subjects were significantly lower than those of the OHT subjects. Comparisons between healthy and glaucoma subjects could not be made robustly due to a small sample size. Conclusions We have developed a methodology to assess the biomechanical properties of human ONH tissues in vivo and provide preliminary comparisons in healthy and OHT subjects. Our proposed methodology may be of interest for glaucoma management.
Collapse
|
32
|
Kajave NS, Schmitt T, Nguyen TU, Kishore V. Dual crosslinking strategy to generate mechanically viable cell-laden printable constructs using methacrylated collagen bioinks. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110290. [PMID: 31761199 PMCID: PMC6880877 DOI: 10.1016/j.msec.2019.110290] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/11/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022]
Abstract
Photopolymerization of methacrylated collagen (CMA) allows for 3D bioprinting of tissue scaffolds with high resolution and print fidelity. However, photochemically crosslinked CMA constructs are mechanically weak and susceptible to expedited enzymatic degradation in vivo. The goal of the current study was to develop a dual crosslinking scheme for the generation of mechanically viable cell-laden printable constructs for tissue engineering applications. Dual crosslinking was performed by first photochemical crosslinking of CMA hydrogels using VA-086 photoinitiator and UV exposure followed by chemical crosslinking with two different concentrations of genipin (i.e., 0.5 mM (low dual) or 1 mM (high dual)). The effect of dual crosslinking conditions on gel morphology, compressive modulus, stability and print fidelity was evaluated. Additionally, human MSCs were encapsulated within CMA hydrogels and the effect of dual crosslinking conditions on viability and metabolic activity was assessed. Uncrosslinked, photochemically crosslinked, and genipin crosslinked CMA hydrogels were used as controls. SEM results showed that gel morphology was maintained upon dual crosslinking. Further, dual crosslinking significantly improved the compressive modulus and degradation time of cell-laden and acellular CMA hydrogels. Cell viability results showed that high cell viability (i.e., >80%) and metabolic activity in low dual crosslinked CMA hydrogels. On the other hand, cell viability and metabolic activity decreased significantly (p < 0.05) in high dual crosslinked CMA hydrogels. Quantitative fidelity measurements showed the measured parameters (i.e., line widths, pore size) were comparable between photochemically crosslinked and dual crosslinked constructs, suggesting that print fidelity is maintained upon dual crosslinking. In conclusion, application of low dual crosslinking is a viable strategy to yield mechanically superior, cell compatible and printable CMA hydrogels.
Collapse
Affiliation(s)
- Nilabh S Kajave
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Trevor Schmitt
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Thuy-Uyen Nguyen
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Vipuil Kishore
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA.
| |
Collapse
|
33
|
Tyeb S, Shiekh PA, Verma V, Kumar A. Adipose-Derived Stem Cells (ADSCs) Loaded Gelatin-Sericin-Laminin Cryogels for Tissue Regeneration in Diabetic Wounds. Biomacromolecules 2019; 21:294-304. [PMID: 31771325 DOI: 10.1021/acs.biomac.9b01355] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Healing in wounds like pressure ulcers, diabetic ulcers, venous ulcers, and arterial insufficiency ulcers is immensely hampered and causes both an economic burden and morbidity to patients. These wounds face a plethora of hostile conditions like elevated reactive oxygen species (ROS), impaired angiogenesis, senescent fibroblasts, and deficient stem cells that significantly diminish the probability of self-healing in these wounds. Adipose-derived stem cell therapy (ADSC) presents a promising approach to achieve efficient healing in such cases. To address the complex scenario of chronic wounds, we propose a combinatorial approach of delivering ADSCs on antioxidant gelatin-sericin (GS) scaffolds coated with laminin (GSL), an endothelial basement protein to improve angiogenesis. The synthesized GS scaffolds showed values of compression modulus, pore size, porosity, and the swelling ratio in the range of 65 kPa, 158 ± 48.8 μm, 91.1% ± 1.25, and 28 ± 2.5, respectively. A DPPH assay revealed GS scaffolds exhibit around 20% more scavenging as against gelatin (G) scaffolds and better protection against free radical assault, thus enhancing cell viability and the metabolic index of fibroblast cells. Different cells, namely, fibroblasts, keratinocytes, and ADSCs, cultured on GS scaffolds had better metabolic activity as compared with G scaffolds. Laminin coating onto the scaffolds leads to improved attachment and tube formation of endothelial cells as depicted in scanning electron microscopy images. Finally, we validated the applicability of the ADSCs loaded laminin-coated GS scaffolds in a diabetic ulcer rat model. Hematoxylin and eosin, Masson's trichrome, and picrosirius red staining showed better regeneration and collagen remodeling in ADSCs loaded GSL scaffolds. Immunostaining of CD31 staining demonstrates enhanced angiogenesis in GSL-ADSC as compared with other groups.
Collapse
|
34
|
Santos‐Ferreira T, Herbig M, Otto O, Carido M, Karl MO, Michalakis S, Guck J, Ader M. Morpho-Rheological Fingerprinting of Rod Photoreceptors Using Real-Time Deformability Cytometry. Cytometry A 2019; 95:1145-1157. [PMID: 31107590 PMCID: PMC6900160 DOI: 10.1002/cyto.a.23798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 01/09/2023]
Abstract
Distinct cell-types within the retina are mainly specified by morphological and molecular parameters, however, physical properties are increasingly recognized as a valuable tool to characterize and distinguish cells in diverse tissues. High-throughput analysis of morpho-rheological features has recently been introduced using real-time deformability cytometry (RT-DC) providing new insights into the properties of different cell-types. Rod photoreceptors represent the main light sensing cells in the mouse retina that during development forms apically the densely packed outer nuclear layer. Currently, enrichment and isolation of photoreceptors from retinal primary tissue or pluripotent stem cell-derived organoids for analysis, molecular profiling, or transplantation is achieved using flow cytometry or magnetic activated cell sorting approaches. However, such purification methods require genetic modification or identification of cell surface binding antibody panels. Using primary retina and embryonic stem cell-derived retinal organoids, we characterized the inherent morpho-mechanical properties of mouse rod photoreceptors during development based on RT-DC. We demonstrate that rods become smaller and more compliant throughout development and that these features are suitable to distinguish rods within heterogenous retinal tissues. Hence, physical properties should be considered as additional factors that might affect photoreceptor differentiation and retinal development besides representing potential parameters for label-free sorting of photoreceptors. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Tiago Santos‐Ferreira
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Maik Herbig
- Biotechnology Center, Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Oliver Otto
- Biotechnology Center, Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
- Centre for Innovation Competence: Humoral Immune Reactions in Cardiovascular Diseases (HIKE)University of GreifswaldGreifswaldGermany
| | - Madalena Carido
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Mike O. Karl
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
- German Center for Neurodegenerative Diseases (DZNE)DresdenGermany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich (CiPSM), Department of Pharmacy—Center for Drug ResearchLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Marius Ader
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| |
Collapse
|
35
|
Shrestha A, Allen BN, Wiley LA, Tucker BA, Worthington KS. Development of High-Resolution Three-Dimensional-Printed Extracellular Matrix Scaffolds and Their Compatibility with Pluripotent Stem Cells and Early Retinal Cells. J Ocul Pharmacol Ther 2019; 36:42-55. [PMID: 31414943 DOI: 10.1089/jop.2018.0146] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose: Widely used approaches for retinal disease modeling and in vitro therapeutic testing can be augmented by using tissue-engineered scaffolds with a precise 3-dimensional structure. However, the materials currently used for these scaffolds are poorly matched to the biochemical and mechanical properties of the in vivo retina. Here, we create biopolymer-based scaffolds with a structure that is amenable to retinal tissue engineering and modeling. Methods: Optimal two-photon polymerization (TPP) settings, including laser power and scanning speed, are identified for 4 methacrylated biopolymer formulations: collagen, gelatin, hyaluronic acid (HA), and a 50/50 mixture of gelatin/HA, each with methylene blue as a photoinitiator. For select formulations, fabrication accuracy and swelling are determined and biocompatibility is evaluated by using human induced pluripotent stem cells and rat postnatal retinal cells. Results: TPP is feasible for each biopolymer formulation, but it is the most reliable for mixtures containing gelatin and the least reliable for HA alone. The mean size of microscaffold pores is within several microns of the intended value but the overall structure size is several times greater than the modeled volume. The addition of HA to gelatin scaffolds increases cell viability and promotes neuronal phenotype, including Tuj-1 expression and characteristic morphology. Conclusion: We successfully determined a useful range of TPP settings for 4 methacrylated biopolymer formulations. When crosslinked, these extracellular matrix-derived molecules support the growth and attachment of retinal cells. We anticipate that when combined with existing patient-specific approaches, this technique will enable more efficient and accurate retinal disease modeling and therapeutic testing in vitro than current techniques allow.
Collapse
Affiliation(s)
- Arwin Shrestha
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa.,Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Roy J. Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Brittany N Allen
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa
| | - Luke A Wiley
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Roy J. Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Budd A Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Roy J. Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Kristan S Worthington
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa.,Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Roy J. Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
36
|
Thompson JR, Worthington KS, Green BJ, Mullin NK, Jiao C, Kaalberg EE, Wiley LA, Han IC, Russell SR, Sohn EH, Guymon CA, Mullins RF, Stone EM, Tucker BA. Two-photon polymerized poly(caprolactone) retinal cell delivery scaffolds and their systemic and retinal biocompatibility. Acta Biomater 2019; 94:204-218. [PMID: 31055121 DOI: 10.1016/j.actbio.2019.04.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023]
Abstract
Cell replacement therapies are often enhanced by utilizing polymer scaffolds to improve retention or direct cell orientation and migration. Obstacles to refinement of such polymer scaffolds often include challenges in controlling the microstructure of biocompatible molecules in three dimensions at cellular scales. Two-photon polymerization of acrylated poly(caprolactone) (PCL) could offer a means of achieving precise microstructural control of a material in a biocompatible platform. In this work, we studied the effect of various formulation and two-photon polymerization parameters on minimum laser power needed to achieve polymerization, resolution, and fidelity to a target 3D model designed to be used for retinal cell replacement. Overall, we found that increasing the concentration of crosslink-able groups decreased polymerization threshold and the size of resolvable features while increasing fidelity of the scaffold to the 3D model. In general, this improvement was achieved by increasing the number of acrylate groups per prepolymer molecule, increasing the acrylated PCL concentration, or decreasing its molecular weight. Resulting two-photon polymerized PCL scaffolds successfully supported human iPSC derived retinal progenitor cells in vitro. Sub-retinal implantation of cell free scaffolds in a porcine model of retinitis pigmentosa did not cause inflammation, infection or local or systemic toxicity after one month. In addition, comprehensive ISO 10993 testing of photopolymerized scaffolds revealed a favorable biocompatibility profile. These results represent an important step towards understanding how two-photon polymerization can be applied to a wide range of biologically compatible chemistries for various biomedical applications. STATEMENT OF SIGNIFICANCE: Inherited retinal degenerative blindness results from the death of light sensing photoreceptor cells. To restore high-acuity vision a photoreceptor cell replacement strategy will likely be necessary. Unfortunately, single cell injection typically results in poor cell survival and integration post-transplantation. Polymeric biomaterial cell delivery scaffolds can be used to promote donor cell viability, control cellular polarity and increase packing density. A challenge faced in this endeavor has been developing methods suitable for generating scaffolds that can be used to deliver stem cell derived photoreceptors in an ordered columnar orientation (i.e., similar to that of the native retina). In this study we combined the biomaterial poly(caprolactone) with two-photon lithography to generate a biocompatible, clinically relevant scaffold suitable for retina cell delivery.
Collapse
Affiliation(s)
- Jessica R Thompson
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA; Roy J. Carver Department of Biomedical Engineering, The University of Iowa, 5601 Seamans Center, Iowa City, IA 52242, USA
| | - Kristan S Worthington
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA; Roy J. Carver Department of Biomedical Engineering, The University of Iowa, 5601 Seamans Center, Iowa City, IA 52242, USA
| | - Brian J Green
- Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center, Iowa City, IA 52242, USA
| | - Nathaniel K Mullin
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Chunhua Jiao
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Emily E Kaalberg
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Luke A Wiley
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Ian C Han
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Stephen R Russell
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Elliott H Sohn
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - C Allan Guymon
- Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center, Iowa City, IA 52242, USA
| | - Robert F Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Edwin M Stone
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Budd A Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA.
| |
Collapse
|
37
|
Harris TI, Paterson CA, Farjood F, Wadsworth ID, Caldwell L, Lewis RV, Jones JA, Vargis E. Utilizing Recombinant Spider Silk Proteins To Develop a Synthetic Bruch's Membrane for Modeling the Retinal Pigment Epithelium. ACS Biomater Sci Eng 2019; 5:4023-4036. [PMID: 33448804 DOI: 10.1021/acsbiomaterials.9b00183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spider silks are intriguing biomaterials that have a high potential as innovative biomedical processes and devices. The intent of this study was to evaluate the capacity of recombinant spider silk proteins (rSSps) as a synthetic Bruch's membrane. Nonporous silk membranes were prepared with comparable thicknesses (<10 μm) to that of native Bruch's membrane. Biomechanical characterization was performed prior to seeding cells. The ability of RPE cells (ARPE-19) to attach and grow on the membranes was then evaluated with bright-field and electron microscopy, intracellular DNA quantification, and immunocytochemical staining (ZO-1 and F-actin). Controls were cultured on permeable Transwell support membranes and characterized with the same methods. A size-dependent permeability assay, using FITC-dextran, was used to determine cell-membrane barrier function. Compared to Transwell controls, RPE cells cultured on rSSps membranes developed more native-like "cobblestone" morphologies, exhibited higher intracellular DNA content, and expressed key organizational proteins more consistently. Comparisons of the membranes to native structures revealed that the silk membranes exhibited equivalent thicknesses, biomechanical properties, and barrier functions. These findings support the use of recombinant spider silk proteins to model Bruch's membrane and develop more biomimetic retinal models.
Collapse
|
38
|
Nguyen TU, Watkins KE, Kishore V. Photochemically crosslinked cell-laden methacrylated collagen hydrogels with high cell viability and functionality. J Biomed Mater Res A 2019; 107:1541-1550. [PMID: 30882990 PMCID: PMC6527486 DOI: 10.1002/jbm.a.36668] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022]
Abstract
Irgacure 2959 (I2959) is widely used as a photoinitiator for photochemical crosslinking of hydrogels. However, the free radicals generated from I2959 have been reported to be highly cytotoxic. In this study, methacrylated collagen (CMA) hydrogels were photochemically crosslinked using two different photoinitiators (i.e., I2959 and VA086) and the effect of photoinitiator type, photoinitiator concentration (i.e., 0.02 and 0.1%) and crosslinking time (1 and 10 min) on gel morphology, compressive modulus, and stability were investigated. In addition, Saos-2 cells were encapsulated within the hydrogels and the effect of photochemical crosslinking conditions on cell viability, metabolic activity, and osteoblast functionality was assessed. Scanning electron microscopy imaging showed that photochemical crosslinking decreased the porosity of the hydrogels resulting in decrease in water retention ability compared to uncrosslinked hydrogels. On the other hand, photochemical crosslinking improved the stability of CMA hydrogels (p < 0.05). Uniaxial compression tests showed that increasing the photoinitiator concentration significantly improved the compressive modulus of CMA hydrogels (p < 0.05). Results from the live-dead assay showed that VA086 crosslinked hydrogels exhibited higher cell viability compared to I2959 (p < 0.05) crosslinked hydrogels indicating that VA086 is more cytocompatible compared to I2959. Furthermore, Alizarin Red S staining revealed a significantly more pronounced cell-mediated mineralization on VA086 crosslinked hydrogels (p < 0.05) indicating that Saos-2 cells retain their normal functionality in the presence of VA086. In summary, these results indicate that VA086 is a more biocompatible photoinitiator compared to I2959 for the generation of photochemically crosslinked CMA hydrogels for tissue engineering applications. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2019.
Collapse
Affiliation(s)
- Thuy-Uyen Nguyen
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901
| | - Kori E. Watkins
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901
| | - Vipuil Kishore
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901
| |
Collapse
|
39
|
Injectable taurine-loaded alginate hydrogels for retinal pigment epithelium (RPE) regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109787. [PMID: 31349479 DOI: 10.1016/j.msec.2019.109787] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 01/07/2023]
Abstract
The purpose of this study is to produce injectable taurine (Tr)-loaded alginate (Agn) hydrogel for age-related macular degeneration (AMD) treatment by inducing the regeneration of RPE (retinal pigment epithelium) cells. Porosity and swelling ratio were measured to evaluate the mechanical properties of the hydrogels, and Fourier transform infrared spectroscopy (FTIR) was used to evaluate the physical and chemical properties. RPE cells extracted from the pigmented epithelium of rabbits were encapsulated in the Tr/Agn hydrogels. Cells proliferation and migration were improved in Tr/Agn hydrogels with an enhanced expression of RPE-specific genes including RPE65, CRALBP, NPR-A, MITF and collagen type I and II. In vivo tests demonstrated the excellent biocompatibility and biodegradability without inflammatory response by the host when implanted with the hydrogel. Moreover, when the Tr/Agn hydrogels were injected into the sub-retinal space, high adhesion of RPE cells and retinal regeneration were confirmed. These results demonstrated a potential role of injectable Tr/Agn hydrogels as potential therapeutic tools for the treatment of retinal diseases, including AMD.
Collapse
|
40
|
Wang X, Teoh CKG, Chan ASY, Thangarajoo S, Jonas JB, Girard MJA. Biomechanical Properties of Bruch's Membrane-Choroid Complex and Their Influence on Optic Nerve Head Biomechanics. Invest Ophthalmol Vis Sci 2019; 59:2808-2817. [PMID: 30029276 DOI: 10.1167/iovs.17-22069] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to measure the rupture pressure and the biomechanical properties of porcine Bruch's membrane (BM)-choroid complex (BMCC) and the influences of BM on optic nerve head (ONH) tissues. Methods The biomechanical properties of BMCC were extracted through uniaxial tensile tests of 10 BMCC specimens from 10 porcine eyes; the rupture pressures of BMCC were measured through burst tests of 20 porcine eyes; and the influence of BM on IOP-induced ONH deformations were investigated using finite element (FE) analysis. Results Uniaxial experimental results showed that the average elastic (tangent) moduli of BMCC samples at 0% and 5% strain were 1.60 ± 0.81 and 2.44 ± 1.02 MPa, respectively. Burst tests showed that, on average, BMCC could sustain an IOP of 82 mm Hg before rupture. FE simulation results predicted that, under elevated IOP, prelamina tissue strains increased with increasing BM stiffness. On the contrary, lamina cribrosa strains showed an opposite trend but the effects were small. Conclusions BMCC stiffness is comparable or higher than those of other ocular tissues and can sustain a relatively high pressure before rupture. Additionally, BM may have a nonnegligible influence on IOP-induced ONH deformations.
Collapse
Affiliation(s)
- Xiaofei Wang
- Ophthalmic Engineering & Innovation Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Clarence Ken Guan Teoh
- Ophthalmic Engineering & Innovation Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Anita S Y Chan
- Translational Ophthalmic Pathology, Singapore Eye Research Institute, Ophthalmic Pathology Service, Singapore National Eye Centre, Singapore.,Duke-National University of Singapore Medical School, Singapore
| | - Sathiyan Thangarajoo
- Ophthalmic Engineering & Innovation Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University, Heidelberg, Germany.,Beijing Institute of Ophthalmology, Beijing Tongren Eye Centre, Beijing Tongren Hospital, Capital Medical University, and Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Michaël J A Girard
- Ophthalmic Engineering & Innovation Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore.,Translational Ophthalmic Pathology, Singapore Eye Research Institute, Ophthalmic Pathology Service, Singapore National Eye Centre, Singapore
| |
Collapse
|
41
|
Murali A, Ramlogan-Steel CA, Andrzejewski S, Steel JC, Layton CJ. Retinal explant culture: A platform to investigate human neuro-retina. Clin Exp Ophthalmol 2018; 47:274-285. [PMID: 30378239 DOI: 10.1111/ceo.13434] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/01/2018] [Accepted: 10/22/2018] [Indexed: 01/09/2023]
Abstract
The retina is the tissue responsible for light detection, in which retinal neurons convert light energy into electrical signals to be transported towards the visual cortex. Damage of retinal neurons leads to neuronal cell death and retinal pathologies, compromising visual acuity and eventually leading to irreversible blindness. Models of retinal neurodegeneration include 2D systems like cell lines, disassociated cultures and co-cultures, and 3D models like organoids, organotypic retinal cultures and animal models. Of these, ex vivo human retinal cultures are arguably the most suitable models for translational research as they retain complex inter-cellular interactions of the retina and precisely mimic in-situ responses. In this review, we summarize the distinguishing features of the human retina which are important to preserve in experimental culture, the historical development of human retinal culture systems, the factors affecting ex vivo human retinal culture and the applications and challenges associated with current methods of human retinal explant culture.
Collapse
Affiliation(s)
- Aparna Murali
- LVF Ophthalmology Research Centre, Translational Research Institute, Woolloongabba, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Charmaine A Ramlogan-Steel
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia.,School of Health, Medical and Applied Sciences, CQUniversity, North Rockhampton, Queensland, Australia
| | - Slawomir Andrzejewski
- LVF Ophthalmology Research Centre, Translational Research Institute, Woolloongabba, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Jason C Steel
- School of Health, Medical and Applied Sciences, CQUniversity, North Rockhampton, Queensland, Australia
| | - Christopher J Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Woolloongabba, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Greenslopes Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
42
|
Wang P, Li X, Zhu W, Zhong Z, Moran A, Wang W, Zhang K. 3D bioprinting of hydrogels for retina cell culturing. ACTA ACUST UNITED AC 2018; 11. [PMID: 31903439 DOI: 10.1016/j.bprint.2018.e00029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recapitulating native retina environment is crucial in isolation and culturing of retina photoreceptors (PRs). To date, maturation of PRs remains incomprehensible in vitro. Here we present a strategy of integrating the physical and chemical signals through 3D-bioprinting of hyaluronic acid (HA) hydrogels and co-differentiation of retinal progenitor cells (RPCs) into PRs with the support of retinal-pigment epithelium (RPEs). To mimic the native environment during retinal development, we chemically altered the functionalization of HA hydrogels to match the compressive modulus of HA hydrogels with native retina. RPEs were incorporated in the culturing system to support the differentiation due to their regeneration capabilities. We found that HA with a specific functionalization can yield hydrogels with compressive modulus similar to native retina. This hydrogel is also suitable for 3D bioprinting of retina structure. The results from cell study indicated that derivation of PRs from RPCs was improved in the presence of RPEs.
Collapse
Affiliation(s)
- Pengrui Wang
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Xin Li
- Shiley Eye Institute and Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA
| | - Wei Zhu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Zheng Zhong
- Shiley Eye Institute and Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA
| | - Amy Moran
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Wenqiu Wang
- Shiley Eye Institute and Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA
| | - Kang Zhang
- Shiley Eye Institute and Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
43
|
Green BJ, Worthington KS, Thompson JR, Bunn SJ, Rethwisch M, Kaalberg EE, Jiao C, Wiley LA, Mullins RF, Stone EM, Sohn EH, Tucker BA, Guymon CA. Effect of Molecular Weight and Functionality on Acrylated Poly(caprolactone) for Stereolithography and Biomedical Applications. Biomacromolecules 2018; 19:3682-3692. [PMID: 30044915 DOI: 10.1021/acs.biomac.8b00784] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Degradable polymers are integral components in many biomedical polymer applications. The ability of these materials to decompose in situ has become a critical component for tissue engineering, allowing scaffolds to guide cell and tissue growth while facilitating gradual regeneration of native tissue. The objective of this work is to understand the role of prepolymer molecular weight and functionality of photocurable poly(caprolactone) (PCL) in determining reaction kinetics, mechanical properties, polymer degradation, biocompatibility, and suitability for stereolithography. PCL, a degradable polymer used in a number of biomedical applications, was functionalized with acrylate groups to enable photopolymerization and three-dimensional printing via stereolithography. PCL prepolymers with different molecular weights and functionalities were studied to understand the role of molecular structure in reaction kinetics, mechanical properties, and degradation rates. The mechanical properties of photocured PCL were dependent on cross-link density and directly related to the molecular weight and functionality of the prepolymers. High-molecular weight, low-functionality PCLDA prepolymers exhibited a lower modulus and a higher strain at break, while low-molecular weight, high-functionality PCLTA prepolymers exhibited a lower strain at break and a higher modulus. Additionally, degradation profiles of cross-linked PCL followed a similar trend, with low cross-link density leading to degradation times up to 2.5 times shorter than those of more highly cross-linked polymers. Furthermore, photopolymerized PCL showed biocompatibility both in vitro and in vivo, causing no observed detrimental effects on seeded murine-induced pluripotent stem cells or when implanted into pig retinas. Finally, the ability to create three-dimensional PCL structures is shown by fabrication of simple structures using digital light projection stereolithography. Low-molecular weight, high-functionality PCLTA prepolymers printed objects with feature sizes near the hardware resolution limit of 50 μm. This work lays the foundation for future work in fabricating microscale PCL structures for a wide range of tissue regeneration applications.
Collapse
Affiliation(s)
- Brian J Green
- Department of Chemical and Biochemical Engineering , The University of Iowa , 4133 Seamans Center , Iowa City , Iowa 52242 , United States
| | - Kristan S Worthington
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States.,Department of Biomedical Engineering , The University of Iowa , 5602 Seamans Center , Iowa City , Iowa 52242 , United States
| | - Jessica R Thompson
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States.,Department of Biomedical Engineering , The University of Iowa , 5602 Seamans Center , Iowa City , Iowa 52242 , United States
| | - Spencer J Bunn
- Department of Chemical and Biochemical Engineering , The University of Iowa , 4133 Seamans Center , Iowa City , Iowa 52242 , United States
| | - Mary Rethwisch
- Department of Chemical and Biochemical Engineering , The University of Iowa , 4133 Seamans Center , Iowa City , Iowa 52242 , United States
| | - Emily E Kaalberg
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States
| | - Chunhua Jiao
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States
| | - Luke A Wiley
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States
| | - Robert F Mullins
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States
| | - Edwin M Stone
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States
| | - Elliott H Sohn
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States
| | - Budd A Tucker
- Institute of Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine , The University of Iowa , 4111 Medical Education and Research Facility , Iowa City , Iowa 52242 , United States
| | - C Allan Guymon
- Department of Chemical and Biochemical Engineering , The University of Iowa , 4133 Seamans Center , Iowa City , Iowa 52242 , United States
| |
Collapse
|
44
|
Burnight ER, Giacalone JC, Cooke JA, Thompson JR, Bohrer LR, Chirco KR, Drack AV, Fingert JH, Worthington KS, Wiley LA, Mullins RF, Stone EM, Tucker BA. CRISPR-Cas9 genome engineering: Treating inherited retinal degeneration. Prog Retin Eye Res 2018; 65:28-49. [PMID: 29578069 PMCID: PMC8210531 DOI: 10.1016/j.preteyeres.2018.03.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 12/18/2022]
Abstract
Gene correction is a valuable strategy for treating inherited retinal degenerative diseases, a major cause of irreversible blindness worldwide. Single gene defects cause the majority of these retinal dystrophies. Gene augmentation holds great promise if delivered early in the course of the disease, however, many patients carry mutations in genes too large to be packaged into adeno-associated viral vectors and some, when overexpressed via heterologous promoters, induce retinal toxicity. In addition to the aforementioned challenges, some patients have sustained significant photoreceptor cell loss at the time of diagnosis, rendering gene replacement therapy insufficient to treat the disease. These patients will require cell replacement to restore useful vision. Fortunately, the advent of induced pluripotent stem cell and CRISPR-Cas9 gene editing technologies affords researchers and clinicians a powerful means by which to develop strategies to treat patients with inherited retinal dystrophies. In this review we will discuss the current developments in CRISPR-Cas9 gene editing in vivo in animal models and in vitro in patient-derived cells to study and treat inherited retinal degenerative diseases.
Collapse
Affiliation(s)
- Erin R Burnight
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Joseph C Giacalone
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Jessica A Cooke
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Jessica R Thompson
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Laura R Bohrer
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Kathleen R Chirco
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Arlene V Drack
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - John H Fingert
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Kristan S Worthington
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States; Department of Biochemical Engineering, University of Iowa, Iowa City, IA, United States
| | - Luke A Wiley
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Robert F Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Edwin M Stone
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Budd A Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
45
|
Hunt NC, Hallam D, Karimi A, Mellough CB, Chen J, Steel DHW, Lako M. 3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development. Acta Biomater 2017; 49:329-343. [PMID: 27826002 DOI: 10.1016/j.actbio.2016.11.016] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 12/22/2022]
Abstract
No treatments exist to effectively treat many retinal diseases. Retinal pigmented epithelium (RPE) and neural retina can be generated from human embryonic stem cells/induced pluripotent stem cells (hESCs/hiPSCs). The efficacy of current protocols is, however, limited. It was hypothesised that generation of laminated neural retina and/or RPE from hiPSCs/hESCs could be enhanced by three dimensional (3D) culture in hydrogels. hiPSC- and hESC-derived embryoid bodies (EBs) were encapsulated in 0.5% RGD-alginate; 1% RGD-alginate; hyaluronic acid (HA) or HA/gelatin hydrogels and maintained until day 45. Compared with controls (no gel), 0.5% RGD-alginate increased: the percentage of EBs with pigmented RPE foci; the percentage EBs with optic vesicles (OVs) and pigmented RPE simultaneously; the area covered by RPE; frequency of RPE cells (CRALBP+); expression of RPE markers (TYR and RPE65) and the retinal ganglion cell marker, MATH5. Furthermore, 0.5% RGD-alginate hydrogel encapsulation did not adversely affect the expression of other neural retina markers (PROX1, CRX, RCVRN, AP2α or VSX2) as determined by qRT-PCR, or the percentage of VSX2 positive cells as determined by flow cytometry. 1% RGD-alginate increased the percentage of EBs with OVs and/or RPE, but did not significantly influence any other measures of retinal differentiation. HA-based hydrogels had no significant effect on retinal tissue development. The results indicated that derivation of retinal tissue from hESCs/hiPSCs can be enhanced by culture in 0.5% RGD-alginate hydrogel. This RGD-alginate scaffold may be useful for derivation, transport and transplantation of neural retina and RPE, and may also enhance formation of other pigmented, neural or epithelial tissue. STATEMENT OF SIGNIFICANCE The burden of retinal disease is ever growing with the increasing age of the world-wide population. Transplantation of retinal tissue derived from human pluripotent stem cells (PSCs) is considered a promising treatment. However, derivation of retinal tissue from PSCs using defined media is a lengthy process and often variable between different cell lines. This study indicated that alginate hydrogels enhanced retinal tissue development from PSCs, whereas hyaluronic acid-based hydrogels did not. This is the first study to show that 3D culture with a biomaterial scaffold can improve retinal tissue derivation from PSCs. These findings indicate potential for the clinical application of alginate hydrogels for the derivation and subsequent transplantation retinal tissue. This work may also have implications for the derivation of other pigmented, neural or epithelial tissue.
Collapse
Affiliation(s)
- Nicola C Hunt
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, UK.
| | - Dean Hallam
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, UK.
| | - Ayesha Karimi
- Cumberland Infirmary, North Cumbria University Hospitals NHS Trust, Carlisle CA2 7HY, UK
| | - Carla B Mellough
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, UK.
| | - Jinju Chen
- School of Mechanical & Systems Engineering, Stephenson Building, Newcastle University, Newcastle upon Tyne, UK.
| | - David H W Steel
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, UK; Sunderland Eye Infirmary, Queen Alexandra Road, Sunderland SR2 9HP, UK.
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, UK.
| |
Collapse
|
46
|
QIAN XIUQING, ZHANG KUNYA, LIU ZHICHENG. EFFECT OF MECHANICAL PROPERTIES OF THE SUBSTRATE TISSUES ON THE DETERMINATION OF ELASTIC MODULUS OF THE SCLERA USING INDENTATION TEST. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519416500858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The sclera is an important connective tissue that protects the sensitive layers within the eyeball. Identifying the mechanical properties of the sclera near the posterior pole is necessary to analyze the deformation of the sclera and stresses changing in the optic nerve head tissues. We propose a method to determine the mechanical properties of the sclera using dimensional analysis, finite element method and the indentation test. The elastic moduli of the sclera for different indentation depths and positions were identified. We found that the elastic moduli of the sclera varied with indentation depth. This was due to the effect of the mechanical properties of the substrate tissues inside the sclera. The elastic modulus of the choroid had the biggest effect on the determination of elastic modulus of the sclera, whereas that of the vitreous body could be ignored when the ratio of the indentation depth to the thickness of the sclera was less than 0.5. The effects of mechanical properties of the substrate tissues become more pronounced at greater indentation depths.
Collapse
Affiliation(s)
- XIUQING QIAN
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, P. R. China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, P. R. China
| | - KUNYA ZHANG
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, P. R. China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, P. R. China
| | - ZHICHENG LIU
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, P. R. China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, P. R. China
| |
Collapse
|
47
|
Ali M, Raghunathan V, Li JY, Murphy CJ, Thomasy SM. Biomechanical relationships between the corneal endothelium and Descemet's membrane. Exp Eye Res 2016; 152:57-70. [PMID: 27639516 DOI: 10.1016/j.exer.2016.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/13/2016] [Indexed: 12/28/2022]
Abstract
The posterior face of the cornea consists of the corneal endothelium, a monolayer of cuboidal cells that secrete and attach to Descemet's membrane, an exaggerated basement membrane. Dysfunction of the endothelium compromises the barrier and pump functions of this layer that maintain corneal deturgesence. A large number of corneal endothelial dystrophies feature irregularities in Descemet's membrane, suggesting that cells create and respond to the biophysical signals offered by their underlying matrix. This review provides an overview of the bidirectional relationship between Descemet's membrane and the corneal endothelium. Several experimental methods have characterized a richly topographic and compliant biophysical microenvironment presented by the posterior surface of Descemet's membrane, as well as the ultrastructure and composition of the membrane as it builds during a lifetime. We highlight the signaling pathways involved in the mechanotransduction of biophysical cues that influence cell behavior. We present the specific example of Fuchs' corneal endothelial dystrophy as a condition in which a dysregulated Descemet's membrane may influence the progression of disease. Finally, we discuss some disease models and regenerative strategies that may facilitate improved treatments for corneal dystrophies.
Collapse
Affiliation(s)
- Maryam Ali
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| | - VijayKrishna Raghunathan
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, 77204, USA.
| | - Jennifer Y Li
- Department of Ophthalmology & Vision Science, School of Medicine, UC Davis Medical Center, Sacramento, CA, 95817, USA.
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Department of Ophthalmology & Vision Science, School of Medicine, UC Davis Medical Center, Sacramento, CA, 95817, USA.
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
48
|
Shareef FJ, Sun S, Kotecha M, Kassem I, Azar D, Cho M. Engineering a Light-Attenuating Artificial Iris. Invest Ophthalmol Vis Sci 2016; 57:2195-202. [PMID: 27116547 PMCID: PMC4849870 DOI: 10.1167/iovs.15-17310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Discomfort from light exposure leads to photophobia, glare, and poor vision in patients with congenital or trauma-induced iris damage. Commercial artificial iris lenses are static in nature to provide aesthetics without restoring the natural iris's dynamic response to light. A new photo-responsive artificial iris was therefore developed using a photochromic material with self-adaptive light transmission properties and encased in a transparent biocompatible polymer matrix. Methods The implantable artificial iris was designed and engineered using Photopia, a class of photo-responsive materials (termed naphthopyrans) embedded in polyethylene. Photopia was reshaped into annular disks that were spin-coated with polydimethylsiloxane (PDMS) to form our artificial iris lens of controlled thickness. Results Activated by UV and blue light in approximately 5 seconds with complete reversal in less than 1 minute, the artificial iris demonstrates graded attenuation of up to 40% of visible and 60% of UV light. There optical characteristics are suitable to reversibly regulate the incident light intensity. In vitro cell culture experiments showed up to 60% cell death within 10 days of exposure to Photopia, but no significant cell death observed when cultured with the artificial iris with protective encapsulation. Nuclear magnetic resonance spectroscopy confirmed these results as there was no apparent leakage of potentially toxic photochromic material from the ophthalmic device. Conclusions Our artificial iris lens mimics the functionality of the natural iris by attenuating light intensity entering the eye with its rapid reversible change in opacity and thus potentially providing an improved treatment option for patients with iris damage.
Collapse
Affiliation(s)
- Farah J Shareef
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Shan Sun
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Mrignayani Kotecha
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Iris Kassem
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States 3Medical College of Wisconsin Eye Institute, Milwaukee, Wisconsin, United States
| | - Dimitri Azar
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States 2Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Michael Cho
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States 2Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States 3Medical College of Wisconsin Eye Insti
| |
Collapse
|
49
|
Worthington KS, Green BJ, Rethwisch M, Wiley LA, Tucker BA, Guymon CA, Salem AK. Neuronal Differentiation of Induced Pluripotent Stem Cells on Surfactant Templated Chitosan Hydrogels. Biomacromolecules 2016; 17:1684-95. [PMID: 27008004 DOI: 10.1021/acs.biomac.6b00098] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of effective tissue engineering materials requires careful consideration of several properties beyond biocompatibility, including permeability and mechanical stiffness. While surfactant templating has been used for over a decade to control the physical properties of photopolymer materials, the potential benefit of this technique with regard to biomaterials has yet to be fully explored. Herein we demonstrate that surfactant templating can be used to tune the water uptake and compressive modulus of photo-cross-linked chitosan hydrogels. Interestingly, templating with quaternary ammonium surfactants also hedges against property fluctuations that occur with changing pH. Further, we demonstrate that, after adequate surfactant removal, these materials are nontoxic, support the attachment of induced pluripotent stem cells and facilitate stem cell differentiation to neuronal phenotypes. These results demonstrate the utility of surfactant templating for optimizing the properties of biomaterials intended for a variety of applications, including retinal regeneration.
Collapse
Affiliation(s)
- Kristan S Worthington
- Department of Chemical and Biochemical Engineering, ‡Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, and §Division of Pharmaceutics and Translational Therapeutics, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa , Iowa City, Iowa 52242, United States
| | - Brian J Green
- Department of Chemical and Biochemical Engineering, ‡Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, and §Division of Pharmaceutics and Translational Therapeutics, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa , Iowa City, Iowa 52242, United States
| | - Mary Rethwisch
- Department of Chemical and Biochemical Engineering, ‡Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, and §Division of Pharmaceutics and Translational Therapeutics, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa , Iowa City, Iowa 52242, United States
| | - Luke A Wiley
- Department of Chemical and Biochemical Engineering, ‡Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, and §Division of Pharmaceutics and Translational Therapeutics, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa , Iowa City, Iowa 52242, United States
| | - Budd A Tucker
- Department of Chemical and Biochemical Engineering, ‡Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, and §Division of Pharmaceutics and Translational Therapeutics, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa , Iowa City, Iowa 52242, United States
| | - C Allan Guymon
- Department of Chemical and Biochemical Engineering, ‡Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, and §Division of Pharmaceutics and Translational Therapeutics, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa , Iowa City, Iowa 52242, United States
| | - Aliasger K Salem
- Department of Chemical and Biochemical Engineering, ‡Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, and §Division of Pharmaceutics and Translational Therapeutics, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
50
|
Wang R, Raykin J, Gleason RL, Ethier CR. Residual deformations in ocular tissues. J R Soc Interface 2015; 12:rsif.2014.1101. [PMID: 25740853 DOI: 10.1098/rsif.2014.1101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Residual deformations strongly influence the local biomechanical environment in a number of connective tissues. The sclera is known to be biomechanically important in healthy and diseased eyes, such as in glaucoma. Here, we study the residual deformations of the sclera, as well as the adjacent choroid and retina. Using freshly harvested porcine eyes, we developed two approaches of quantifying residual deformations in the spherically shaped tissues of interest. The first consisted of punching discs from the posterior wall of the eye and quantifying the changes in the area and eccentricity of these samples. The second consisted of cutting a ring from the equatorial sclera and making stress-relieving cuts in it. Measurements of curvature were made before and after the stress-relieving cuts. Using the first approach, we observed a 42% areal contraction of the choroid, but only modest contractions of the sclera and retina. The observed contractions were asymmetric. In the second approach, we observed an opening of the scleral rings (approx. 10% decrease in curvature). We conclude that residual bending deformations are present in the sclera, which we speculate may be due to radially heterogeneous growth and remodelling of the tissue during normal development. Further, residual areal deformations present in the choroid may be due to the network of elastic fibres in this tissue and residual deformations in the constituent vascular bed. Future studies of ocular biomechanics should attempt to include effects of these residual deformations into mechanical models in order to gain a better understanding of the biomechanics of the ocular wall.
Collapse
Affiliation(s)
- Ruoya Wang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| | - Julia Raykin
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| | - Rudolph L Gleason
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| | - C Ross Ethier
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| |
Collapse
|