1
|
Song D, Yang Q, Ge J, Chen K, Tong J, Shen Y. Color vision-associated environmental and biological factors in the development of myopia. Exp Eye Res 2025; 254:110324. [PMID: 40058723 DOI: 10.1016/j.exer.2025.110324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 04/08/2025]
Abstract
As a global public health problem, myopia has attracted more and more attention for its high prevalence and severe visual impairment. Although extensive research on the risk factors for myopia has been conducted, the underlying pathogenesis is still unclear. Color vision, mediated by retinal cone cells, is a fundamental and important component of human visual functions. Indeed, numerous studies implicate color vision-associated environmental and biological factors in myopia pathogenesis, indicating that related interventions may delay myopia progression. Studies have shown that color vision can induce different accommodation responses under near work conditions and exert opposite effects in different light environments to influence myopia advancement. Besides, color vision-related genes and metabolites are proven to be correlated with myopia. This review aims to make detailed elaborations on the role of color vision in myopia and its potential interaction mechanism, hoping to provide new ideas for myopia prevention.
Collapse
Affiliation(s)
- Dongjie Song
- Department of Ophthalmology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Qianjie Yang
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, Zhejiang, China
| | - Jiayun Ge
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Jinan, Shandong, China; School of Ophthalmology, Shandong First Medical University, Jinan, Shandong, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Cao J, Xie X, Li J, Zhang L, Chen Q, Ma J, Zhao H, Li J, Jia L. The Prevalence of Myopia and Its Association with Sleep Duration, Physical Activity, and Eye Exercises. Semin Ophthalmol 2025:1-8. [PMID: 40249389 DOI: 10.1080/08820538.2025.2492256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025]
Abstract
PURPOSE Myopia is the most common visual impairment among Chinese children and adolescents. The purpose of this study is to explore key interventions for myopia prevalence, especially for early-onset myopia. METHODS Univariate and multivariate analyses were conducted to evaluate potential associations between risk factor exposure and myopia. Lasso regression was performed to prioritize the risk features, and the selected leading influencing factors were used to establish the assembled simulation model. Finally, the rms package of R was used to construct a nomogram forecasting model to predict the risk of myopia. RESULTS The prevalence of myopia among children and adolescents in Ningxia has shown a rapid upward trend in the past 25 years, from 50.3% in 1995 to 61.4% in 2019, with a growth rate of 10%. Children and adolescents with high grades had a high risk of myopia, which was 3.783 times higher in college school students than that of primary school students. Getting enough sleep time during school days per day (OR = 0.722, 95% CI: 0.620-0.840), be active in physical activity (OR = 0.823, 95% CI: 0.709-0.953), and do eye exercises (OR = 0.725, 95% CI: 0.570-0.919) were the top three protective factors. The AUCs of integrated simulation model for myopia was 0.707. CONCLUSIONS The prevalence of myopia among children and adolescents were high in Ningxia Hui Autonomous Region of Northwest China, and the findings illustrate that reaching the recommended sleep time during school days, being active in physical exercise, and doing eye exercises among different ages are the leading three protective factors for myopia. Such data are critical and valuable for public health agencies to formulate intervention strategies for preventing high myopia and subsequent myopic maculopathy, cataract, retinal detachment, and glaucoma, including promotion of eye exercise, physical activity, enough sleep duration, and health education.
Collapse
Affiliation(s)
- Juan Cao
- Department of Childhood Health and Health Education, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Xiaolian Xie
- Department of Childhood Health and Health Education, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui, China
- Disinfection Supply Room, General Hospital of Ningxia Hui Autonomous Region, Chinese People's Armed Police Force, Yinchuan, Ningxia Hui, China
| | - Jing Li
- Department of Childhood Health and Health Education, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Ling Zhang
- Department of Childhood Health and Health Education, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qi Chen
- Department of Childhood Health and Health Education, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui, China
| | - Juan Ma
- Department of Childhood Health and Health Education, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui, China
| | - Haiping Zhao
- Department of Childhood Health and Health Education, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jiangping Li
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Hui Autonomous Region, Yinchuan, China
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui, China
| | - Leina Jia
- Department of Childhood Health and Health Education, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Hui Autonomous Region, Yinchuan, China
| |
Collapse
|
3
|
Guo YM, Wei J, Wang J, Zhang G, Bi J, Ye L. Advances in the study of ARR3 in myopia. Front Cell Dev Biol 2025; 13:1551135. [PMID: 40134578 PMCID: PMC11933016 DOI: 10.3389/fcell.2025.1551135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
The ARR3 gene (cone arrestin, OMIM: 301770) has gained significant attention as a pivotal factor in the etiology of myopia, particularly early-onset high myopia (eoHM). As a member of the arrestin gene family, ARR3 is predominantly expressed in cone photoreceptors, playing a crucial role in visual processing. Recent studies have identified specific mutations in ARR3 that correlate with an elevated risk of myopia development, highlighting its potential involvement in the disease's pathogenesis. This review summarizes current advancements in elucidating the relationship between ARR3 and myopia, emphasizing genetic variations associated with refractive errors and their implications for myopia research and clinical management. We emphasize the necessity for further studies to elucidate the role of ARR3 in myopia, particularly regarding its impact on visual development and the genetic predisposition observed in specific populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Lu Ye
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| |
Collapse
|
4
|
D'Esposito F, Gagliano C, Avitabile A, Gagliano G, Musa M, Capobianco M, Visalli F, Dammino E, Zeppieri M, Cordeiro MF. Exploring Molecular Pathways in Refractive Errors Associated with Inherited Retinal Dystrophies. FRONT BIOSCI-LANDMRK 2025; 30:25584. [PMID: 40018922 DOI: 10.31083/fbl25584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 03/01/2025]
Abstract
The term inherited retinal dystrophies (IRDs) refers to a diverse range of conditions characterized by retinal dysfunction, and mostly deterioration, leading to a gradual decay of the visual function and eventually to total vision loss. IRDs have a global impact on about 1 in every 3000 to 4000 individuals. However, the prevalence statistics might differ significantly depending on the exact type of dystrophy and the demographic being examined. The cellular pathophysiology and genetic foundation of IRDs have been extensively studied, however, knowledge regarding associated refractive errors remain limited. This review aims to clarify the cellular and molecular processes that underlie refractive errors in IRDs. We did a thorough search of the current literature (Pubmed, accession Feb 2024), selecting works describing phenotypic differences among genes-related to IRDs, particularly in relation to refractive errors. First, we summarize the wide range of IRDs and their genetic causes, describing the genes and biological pathways connected to the etiology of the disease. We then explore the complex relationship between refractive errors and retinal dysfunction, including how the impairment of the vision-related mechanisms in the retina can affect ocular biometry and optical characteristics. New data about the involvement of aberrant signaling pathways, photoreceptor degeneration, and dysfunctional retinal pigment epithelium (RPE) in the development of refractive errors in IRDs have been examined. We also discuss the therapeutic implications of refractive defects in individuals with IRD, including possible approaches to treating visual impairments. In addition, we address the value of using cutting-edge imaging methods and animal models to examine refractive errors linked to IRDs and suggest future lines of inquiry for identifying new targets for treatment. In summary, this study presents an integrated understanding of the cellular and molecular mechanisms underlying refractive errors in IRDs. It illuminates the intricacies of ocular phenotypes in these conditions and offers a tool for understanding mechanisms underlying isolated refractive errors, besides the IRD-related forms.
Collapse
Affiliation(s)
- Fabiana D'Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, NW15QH London, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Napoli, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore", Piazza dell'Università, 94100 Enna, Italy
- Mediterranean Foundation "G.B. Morgagni", 95125 Catania, Italy
| | | | | | - Mutali Musa
- Department of Optometry, University of Benin, 300238 Benin City, Edo State, Nigeria
| | | | | | - Edoardo Dammino
- Mediterranean Foundation "G.B. Morgagni", 95125 Catania, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | | |
Collapse
|
5
|
Kai JY, Dong XX, Miao YF, Li DL, Grzybowski A, Lanca C, Ruan ZL, Pan CW. Impact of Ambient Air Pollution on Reduced Visual Acuity Among Children and Adolescents. Ophthalmic Epidemiol 2025:1-8. [PMID: 39903915 DOI: 10.1080/09286586.2025.2457623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE Previous studies have assessed the impact of air pollution on myopia from the individual level, while none of them have explored the role of air pollution in visual health disparities between different regions from the area level. This ecological study aimed to investigate the impact of ambient air pollution on reduced visual acuity (VA). METHODS The data were derived from the Chinese National Survey on Students' Constitution and Health (CNSSCH) conducted in 2014 and 2019, which involved 261,833 and 267,106 students respectively. The participants were 7-22 years old randomly selected from 30 mainland provinces in China. Locally weighted scatterplot smoothing (LOESS) regression models and fixed-effects panel regression models were used to explore the associations of provincial-level prevalence of reduced VA with air quality index (AQI), fine particulate matter ;(PM2.5), PM10, sulfur dioxide (SO2), carbon monoxide (CO), nitrogen dioxide (NO2) and ozone (O3) concentrations. RESULTS There were nearly linear positive dose-response relationships between AQI, air pollutant concentrations and the prevalence of reduced VA. After adjusting for covariates, an interquartile range increase in PM2.5 exposure was significantly associated with a 5.0% (95% confidence interval, 0.7%-9.3%) increase in the prevalence of reduced VA, whereas no significant associations were observed between AQI, the other five pollutants and the prevalence of reduced VA. CONCLUSION Regions with more polluted air tend to have a higher prevalence of reduced VA. Exposure to PM2.5 might be an important risk factor for myopia among children and adolescents.
Collapse
Affiliation(s)
- Jia-Yan Kai
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xing-Xuan Dong
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yi-Fan Miao
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Dan-Lin Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Andrzej Grzybowski
- Foundation for Ophthalmology Development, Institute for Research in Ophthalmology, Poznan, Poland
| | - Carla Lanca
- Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
- Comprehensive Health Research Center (CHRC), Escola Nacional de Saúde Pública, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Zeng-Liang Ruan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Epidemiology & Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Chen-Wei Pan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Gagrani M, Heston J, Godts D, Granet D, Bremond-Gignac D, Kekunnaya R, Hertle RW, Leo SW, Nischal KK. Assessing Educational Impact of Worldwide Webinar on Management of Myopia Progression in Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1661. [PMID: 39767500 PMCID: PMC11675377 DOI: 10.3390/ijerph21121661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVE To assess the educational impact of a worldwide webinar approach to myopia progression management in children <8 years and 8-12 years old. DESIGN Cross-sectional study. METHODS A self-administered survey was conducted for attendees of a 3 h worldwide webinar held in two parts on consecutive days on the management of myopia progression in children. The survey was administered before, immediately after completion of the webinar, and 8 weeks later; responses were recorded on a Likert scale. Questions were posed to assess (a) the confidence of attendees in managing myopia in children <12 years old, (b) attendees' understanding of latest treatment options, (c) any improvement in attendees' knowledge after the webinar, and (d) any changes made to practice 8 weeks after the webinar. Pre- and post-responses were analyzed using an unpaired two-tailed t-test. RESULTS The webinar had 701 and 606 global attendees on the first and second days, respectively. Based on a comparison of contact information, 372 attendees participated on days 1 and 2, meaning 288 and 233 participants attended only day 1 and day 2, respectively. There was a significant increase in the percentage of attendees who were "very confident" in managing myopia after the webinar (p < 0.05). Ninety-nine attendees completed the survey at 8 weeks. Of these, 76% believed that the webinar had "very significantly" or "significantly" improved their ability to manage pediatric myopia and 91% had implemented or intended to implement a change in their practice. The respondents who did not implement a change identified cost and patient compliance as the common barriers. CONCLUSION There is a tsunami of research and management options in the field of myopia management at present. We demonstrate that an effective way of disseminating information and education about myopia management is a pre-designed comprehensive webinar held over two consecutive days. There is evidence that such a webinar may also influence a change in clinical practice.
Collapse
Affiliation(s)
- Meghal Gagrani
- Division of Pediatric Ophthalmology and Strabismus, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| | | | - Daisy Godts
- Department of Ophthalmology, Antwerp University Hospital, 2650 Antwerp, Belgium;
| | - David Granet
- Viterbi Family Department of Ophthalmology, Ratner Children’s Eye Center of the Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA;
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, 75015 Paris, France;
| | - Ramesh Kekunnaya
- Child Sight Institute, Infor Myopia Center & Center for Tech Innovation, L V Prasad Eye Institute, Hyderabad 500034, India;
| | - Richard W. Hertle
- Department of Pediatric Ophthalmology, Akron Children’s Hospital, Akron, OH 44308, USA;
| | - Seo Wei Leo
- Dr Leo Adult & Paediatric Eye Specialist Ltd., Singapore 228510, Singapore;
| | - Ken K. Nischal
- Division of Pediatric Ophthalmology and Strabismus, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| |
Collapse
|
7
|
Hao J, Xie Y, Wei H, Yang Z, Zhang R, Ma Z, Zhang M, Du X, Yin X, Liu J, Bao B, Bi H, Guo D. Electroacupuncture Slows Experimental Myopia Progression by Improving Retinal Mitochondrial Function: A Study Based on Single-Cell RNA Sequencing. Adv Biol (Weinh) 2024; 8:e2400269. [PMID: 39404059 DOI: 10.1002/adbi.202400269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/22/2024] [Indexed: 12/14/2024]
Abstract
This study aimed to establish a complete atlas of retinal cells in lens-induced myopia (LIM) and electroacupuncture (EA) intervention by single-cell RNA sequencing (scRNA-seq) and to explore the potential mechanism of EA in improving experimental myopia progression in guinea pigs. scRNA-seq is used to assess changes in individual cellular gene levels in the retina of LIM- and EA-treated guinea pigs. In addition, the role of EA in slowing myopia progression by improving retinal mitochondrial function is further investigated. scRNA-seq identified ten cell clusters in the retina of LIM and EA guinea pigs and mitochondrial respiratory chain-related genes in Cones and Muller-glia cells-Cytochrome oxidase subunit III (COX3), NADH dehydrogenase subunit 4 (ND4), and NADH dehydrogenase subunit 2 (ND2) are closely related to lens-induced myopia. A comprehensive atlas in the retina of LIM and EA guinea pigs at a single-cell level is established, and the positive role of EA in improving retinal mitochondrial function to slow the experimental myopia progression in guinea pigs is revealed.
Collapse
Affiliation(s)
- Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Yunxiao Xie
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, 250002, China
| | - Huixia Wei
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Zhaohui Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Ruixue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Zhongyu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Miao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Xiaoshi Du
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Xuewei Yin
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jinpeng Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Bo Bao
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, 250002, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, 250002, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| |
Collapse
|
8
|
Surico PL, Parmar UPS, Singh RB, Farsi Y, Musa M, Maniaci A, Lavalle S, D’Esposito F, Gagliano C, Zeppieri M. Myopia in Children: Epidemiology, Genetics, and Emerging Therapies for Treatment and Prevention. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1446. [PMID: 39767875 PMCID: PMC11674392 DOI: 10.3390/children11121446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Refractive errors, particularly myopia, are among the most prevalent visual impairments globally, with rising incidence in children and adolescents. This review explores the epidemiology and risk factors associated with the development of refractive errors, focusing on the environmental and lifestyle factors contributing to the current surge in myopia. We provide an overview of key genetic factors and molecular pathways driving the pathogenesis of myopia and other refractive errors, emphasizing the complex interplay between genetic predisposition and environmental triggers. Understanding the underlying mechanisms is crucial for identifying new strategies for intervention. We discuss current approaches to slow myopia progression in pediatric populations, including pharmacological treatment regimens (low-dose atropine), optical interventions, and lifestyle modifications. In addition to established therapies, we highlight emerging innovations, including new pharmacological agents and advanced optical devices, and insights into potential future treatments. Cutting-edge research into gene therapy, molecular inhibitors, and neuroprotective strategies may yield novel therapeutic targets that address the root causes of refractive errors. This comprehensive review underscores the importance of early intervention and highlights promising avenues for future research, aiming to provide pediatricians with guidance to ultimately improve clinical outcomes in managing and preventing myopia progression in children and young adults.
Collapse
Affiliation(s)
- Pier Luigi Surico
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA or (P.L.S.)
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
| | - Uday Pratap Singh Parmar
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA or (P.L.S.)
- Department of Ophthalmology, Government Medical College and Hospital, Chandigarh 160030, India
| | - Rohan Bir Singh
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA or (P.L.S.)
| | - Yeganeh Farsi
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA or (P.L.S.)
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
- Africa Eye Laser Centre, Km 7, Benin City 300105, Nigeria
| | - Antonino Maniaci
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
| | - Salvatore Lavalle
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
| | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, 153-173 Marylebone Rd, London NW15QH, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Mediterranean Foundation “G.B. Morgagni”, 95125 Catania, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
9
|
Qin M, Shi WX, Gao SX, Niu Y, Zheng JW. A generalized additive model analysis of school classroom environment and students' refractive state progression. BMC Public Health 2024; 24:3271. [PMID: 39587510 PMCID: PMC11590402 DOI: 10.1186/s12889-024-20839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The study, undertaken in Fengxian District, Shanghai, seeks to investigate the correlation between the sanitary conditions of high school classrooms and the changes in students' uncorrected visual acuity and refractive status, given their predominantly classroom-centric lifestyle and the considerable academic pressures they encounter. METHODS Utilizing a cluster random sampling approach, we randomly selected 48 classrooms for monitoring from 8 high schools within the jurisdiction, taking into account factors such as classroom orientation and floor level. A cohort comprising 1087 students was enrolled and followed for a year, with their refractive data being collected. A generalized additive model was employed to examine the associations between classroom environmental factors and students' visual acuity as well as refractive status. RESULTS Significant increases were observed in the spherical equivalent, cylinder, and corneal astigmatism for both the right and left eyes from 2022 to 2023 (P < 0.001). However, no significant change was noted in uncorrected visual acuity (P > 0.05). The compliance rate for blackboard size (height) was 100%, with an average of (1.16 ± 0.06) m and a minimum of 1.06 m. None of the classrooms met the standards for the distance between the multimedia display and the front seat, with an average of (177.26 ± 17.78) m. Classroom per capita area, blackboard size (height), and the distance between the multimedia display and the front seat influenced changes in uncorrected visual acuity. Additionally, classroom per capita area affected changes in the spherical equivalent. The window-to-ground area ratio and blackboard reflectance ratio impacted changes in astigmatism values at 90°-180° (J180) and 45°-135° (J45). Blackboard size (width) and the window-to-ground area ratio influenced changes in students' corneal astigmatism. The classroom with the least impact on refractive status had a per capita area of 1.6 m2, a blackboard size (width) of approximately 4.2 m, and a window-to-floor area ratio of around 0.27. CONCLUSIONS Schools should adhere to national standards to enhance the classroom visual environment and further improve the compliance rate.
Collapse
Affiliation(s)
- Meng Qin
- Fengxian District Center for Disease Control and Prevention, Fengxian District, Shanghai, 201499, China
| | - Wei-Xing Shi
- Fengxian District Center for Disease Control and Prevention, Fengxian District, Shanghai, 201499, China
| | - Shan-Xi Gao
- Fengxian District Center for Disease Control and Prevention, Fengxian District, Shanghai, 201499, China
| | - Yue Niu
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Jing-Wei Zheng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
10
|
Zhang M, Zhang R, Hao J, Zhao X, Ma Z, Peng Y, Bao B, Xin J, Yin X, Bi H, Guo D. Quercetin Alleviates Scleral Remodeling Through Inhibiting the PERK-EIF2α Axis in Experiment Myopia. Invest Ophthalmol Vis Sci 2024; 65:11. [PMID: 39504054 PMCID: PMC11549929 DOI: 10.1167/iovs.65.13.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/17/2024] [Indexed: 11/10/2024] Open
Abstract
Purpose This study aims to investigate the effect of quercetin (QUE) on scleral remodeling by inhibiting the PERK-EIF2α signaling pathway and to evaluate its potential role in slowing myopia. Methods Lens-induced myopia (LIM) guinea pigs were obtained and treated with QUE. After 4 and 6 weeks of treatments, ocular biological measurements were conducted. Hematoxylin and eosin (H&E) staining was used to observe the changes in scleral morphology and thickness, and Masson staining was used to examine scleral collagen fiber arrangement. Quantitative PCR (qPCR) and Western bolt were utilized to detect the mRNA and protein expression of PERK, EIF2α, MMP-2, TIMP-2, and collagen I in the scleral tissues. Calcium ion flow in each group was measured using noninvasive micro-test technology, and reactive oxygen species levels were detected by flow cytometry. Results Compared with the LIM group, the ocular measurements showed that the refractive errors and axial length of the eyes were significantly reduced in the LIM + QUE group (P < 0.01). H&E and Masson staining showed that sclera in the LIM + QUE group was thickened, collagen was dense, and the fiber gap was reduced. In the LIM + QUE group, the expression levels of PERK, EIF2α, and MMP-2 were decreased, whereas the expression levels of TIMP-2 and collagen I were increased. Calcium release and reactive oxygen species (ROS) in the LIM + QUE group were decreased. Conclusions Quercetin ameliorates scleral remodeling in myopic guinea pigs by inhibiting the PERK-EIF2α signaling pathway, thereby alleviating the progression of myopia. These findings provide new experimental evidence for the potential application of quercetin in myopia prevention and treatment.
Collapse
Affiliation(s)
- Miao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruixue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyue Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhongyu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bo Bao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jizhao Xin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuewei Yin
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dadong Guo
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, China
- Shandong Academy of Eye Disease Prevention and Therapy, Jinan, China
| |
Collapse
|
11
|
Šenk U, Čižman B, Writzl K, Tekavčič Pompe M. Genetic background of high myopia in children. PLoS One 2024; 19:e0313121. [PMID: 39495751 PMCID: PMC11534203 DOI: 10.1371/journal.pone.0313121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/19/2024] [Indexed: 11/06/2024] Open
Abstract
OBJECTIVE High myopia is a significant risk factor for irreversible vision loss and can occur in isolation or as a component of various syndromes. However, the genetic basis of early-onset high myopia remains poorly understood. We aimed to identify the causative genetic variants for high myopia in a cohort of Slovenian children. METHODS The study included children referred to a tertiary paediatric ophthalmology centre at the University Eye Clinic in Ljubljana between 2010 and 2022. The participants met the following inclusion criteria: age ≤ 15 years and high myopia ≤-5.0 D before the age of 10 years. Genetic analysis included exome sequencing and/or molecular karyotyping. Participants were categorized based on clinical presentation: high myopia with systemic involvement, high myopia with ocular involvement, and isolated high myopia. RESULTS Genetic analysis of 36 probands revealed a genetic cause of high myopia in 22 (61.1%) children. Among those with systemic involvement (50.0%), genetic causes were identified in 13 out of 18 children, with Stickler's and Pitt-Hopkins being the most common syndromes. Among cases of high myopia with ocular involvement (38.9%), a genetic cause was found in 8 out of 14 probands, including (likely) pathogenic variants in genes related to retinal dystrophies (CACNA1F, RPGR, RP2, NDP). The non-syndromic ARR3- associated high myopia was identified in the isolated high myopia group. CONCLUSIONS A genetic cause of high myopia was identified in 61.1% of children tested, demonstrating the value of genetic testing in this population for diagnosis and proactive counseling.
Collapse
Affiliation(s)
- Urh Šenk
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Bernard Čižman
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Karin Writzl
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Clinical Institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Manca Tekavčič Pompe
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Eye Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
12
|
Fernandes AG, Vianna RG, Gabriel DC, Ferreira BG, Barbosa EP, Salomão SR, Campos M. Refractive error and ocular alignment in school-aged children from low-income areas of São Paulo, Brazil. BMC Ophthalmol 2024; 24:452. [PMID: 39407165 PMCID: PMC11479561 DOI: 10.1186/s12886-024-03710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Uncorrected refractive errors and amblyopia are reported as the two main causes of childhood visual impairment and blindness worldwide. Our purpose was to evaluate refractive status, ocular alignment and effective refractive error coverage (eREC) of school-aged children from low-income areas of Sao Paulo city, Brazil. METHODS Data from the "Ver na Escola" Project were used for the current study. Children enrolled in the selected schools had an ophthalmic exam including eye alignment assessed by cover test, automatized and subjective dynamic and static refraction. The associations of demographic variables with occurrence and magnitude of refractive errors and eREC were investigated by multiple logistic regressions and multilevel mixed effect models. RESULTS A total of 17,973 children (51.12% females) with mean ± sd age 8.24 ± 3.54 years old examined from July 2018 to July 2019, were included in the study. Most of the participants (73%) showed orthoposition of the visual axis for both distance and near. Heterophoria was found in about 25% of participants (N = 4,498), with 71.7% of them (N= 3,222) classified as exophoria. Less than 2% (N = 232) showed strabismus, most of them (N = 160) esotropia. Overall, 1,370 (7.70%) of participants had myopia and 577 (3.24%) had hyperopia. Age was found to be significantly associated with increasing static subjective refraction spherical equivalent (Coefficient: -0.18; 95% Confidence Interval (CI): -0.21 to -0.16; p < 0.001). Female sex (Odds Ratio (OR) = 1.13; 95%CI: 1.01-1.27; p = 0.027) and older age (OR = 1.17; 95%CI: 1.16-1.19; p < 0,001) were significantly associated with myopia diagnosis. Older age decreased the odds of hyperopia (OR = 0.95; 95%CI: 0.93-0.98; p < 0.001). The overall effective refractive coverage was 51.76% and was significantly associated with age group, ranging from 32.25% in children aged 3 to 7 years to 61.35% in children aged 8 to 12 years. CONCLUSIONS Most children have shown eye alignment for both distance and near assessments and no refractive error. Myopia was observed in 7.70% of the population and it was associated with older age and female sex. Hyperopia was observed in 3.24% and was associated with younger age. The overall eREC was 51.76%, significantly associated with age.
Collapse
Affiliation(s)
- Arthur Gustavo Fernandes
- Departamento de Oftalmologia e Ciências Visuais - Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), Rua Botucatu, 816, Sao Paulo, SP, 04023-062, Brazil.
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada.
| | - Rodrigo Galvão Vianna
- Hospital de Olhos Paulista - H Olhos, São Paulo, SP, Brazil
- Instituto Verter, São Paulo, SP, Brazil
| | | | | | - Eduardo Parente Barbosa
- Hospital de Olhos Paulista - H Olhos, São Paulo, SP, Brazil
- Instituto Verter, São Paulo, SP, Brazil
| | - Solange Rios Salomão
- Departamento de Oftalmologia e Ciências Visuais - Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), Rua Botucatu, 816, Sao Paulo, SP, 04023-062, Brazil
| | - Mauro Campos
- Departamento de Oftalmologia e Ciências Visuais - Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), Rua Botucatu, 816, Sao Paulo, SP, 04023-062, Brazil
- Hospital de Olhos Paulista - H Olhos, São Paulo, SP, Brazil
- Instituto Verter, São Paulo, SP, Brazil
| |
Collapse
|
13
|
Ezinne NE, Kwarteng MA, Tagoh S, Jagroo A, Martin D. Self-reported Myopia in Trinidad and Tobago: A Cross-sectional Study. Niger Postgrad Med J 2024; 31:311-317. [PMID: 39628332 DOI: 10.4103/npmj.npmj_201_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/15/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE The objective of this study was to determine the prevalence of self-reported myopia in Trinidad and Tobago. MATERIALS AND METHODS This study was a cross-sectional design, and data were collected using a validated structured questionnaire from January to April 2024. Systematic random sampling was used to select participants aged 15 and above to participate. Descriptive statistics were used to summarise the variables and the Chi-square test was used to assess for associations (P < 0.05). RESULTS A total of 350 participated in the study giving a response rate of 91.15%. Majority of the participants were female (n = 197, 56.3%), mixed race (n = 126, 36%), resided in urban areas (n = 172, 49.4%) and aged 18-35 years (n = 168, 48.3%). The prevalence of myopia was 40.9% and the prevalence was significantly associated with age group, ethnicity, level of education and religion (P < 0.05). Myopia was associated with family history, lifestyle, use of spectacles, daily use of computers, near work, outdoor activities, sleeping and having a father or mother with myopia (All P < 0.05). In addition, ocular diseases such as cataracts and glaucoma were among the most frequent reported conditions. CONCLUSION The myopia prevalence observed in our study validates age-related trends, offers estimates across diverse age groups, and reveals a significant association between myopia rates and family history, with a self-reported myopia rate higher than clinical testing surveys but in line with global prevalence reports.
Collapse
Affiliation(s)
- Ngozika Esther Ezinne
- Department of Clinical Surgical Sciences, Optometry Unit, University of the West Indies, Saint Augustine Campus, Trinidad and Tobago
- School of Medicine, Bathurst Rural Clinical School, Western Sydney University, Australia
| | - Michael Agyemang Kwarteng
- Department of Clinical Surgical Sciences, Optometry Unit, University of the West Indies, Saint Augustine Campus, Trinidad and Tobago
| | - Selassie Tagoh
- Department of Optometry and Vision Science, University of Auckland, New Zealand
| | - Arian Jagroo
- Department of Clinical Surgical Sciences, Optometry Unit, University of the West Indies, Saint Augustine Campus, Trinidad and Tobago
| | - Darnell Martin
- Department of Clinical Surgical Sciences, Optometry Unit, University of the West Indies, Saint Augustine Campus, Trinidad and Tobago
| |
Collapse
|
14
|
Mei Z, Zhang Y, Jiang W, Lam C, Luo S, Cai C, Luo S. Efficacy of outdoor interventions for myopia in children and adolescents: a systematic review and meta-analysis of randomized controlled trials. Front Public Health 2024; 12:1452567. [PMID: 39193200 PMCID: PMC11347293 DOI: 10.3389/fpubh.2024.1452567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Objectives The objective of this systematic review and meta-analysis was to evaluate the overall efficacy of outdoor interventions for myopia in children and adolescents, and to provide evidence for the prevention and control of myopia. Methods Randomized controlled trials of outdoor interventions for myopia in children and adolescents were identified using electronic databases and manual searches. The Revised Cochrane risk-of-bias tool for randomized trials (RoB 2) was used to assess risk of bias in randomized controlled trials. A mean difference (MD) and a risk ratio (RR) with a 95% confidence interval (CI) were used to combine effect sizes. A sensitivity analysis was performed for each outcome using a stepwise elimination method to assess whether the pooled results were significantly affected by individual studies. Results The analysis included seven randomized controlled trials involving a total of 9,437 subjects. The meta-analysis showed marked and statistically significant improvements in spherical equivalent refraction (MD = 0.19; 95% CI 0.14 to 0.25; p < 0.01), axial length (MD = -0.09; 95% CI -0.13 to -0.05; p < 0.01), and myopia incidence (RR = 0.84; 95% CI 0.78 to 0.91; p < 0.01) following outdoor interventions. Conclusion Outdoor interventions effectively contributed to the prevention and control of myopia in children and adolescents, positively impacting spherical equivalent refraction, axial length, and myopia incidence. Outdoor interventions were characterized by low risk and high therapeutic benefits and could serve as alternative or adjuvant approaches to medication for the treatment of myopia. Considering the advantages in terms of safety and efficacy, outdoor interventions may be considered as a preferred intervention for the treatment of myopia in children and adolescents, while susceptibility to diseases associated with sunlight, particularly UV exposure, must be taken into account. Systematic review registration https://www.crd.york.ac.uk/prospero/, Identifier CRD42024538695.
Collapse
Affiliation(s)
- Zhengyang Mei
- School of Physical Education, Southwest University, Chongqing, China
| | - Yuanzhuo Zhang
- School of Physical Education, Southwest University, Chongqing, China
| | - Wenfeng Jiang
- School of Physical Education, Southwest University, Chongqing, China
| | - Chifong Lam
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, China
| | - Shulai Luo
- School of Physical Education, Southwest University, Chongqing, China
| | - Chenyi Cai
- School of Physical Education, Southwest University, Chongqing, China
| | - Shi Luo
- School of Physical Education, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Wang J, Li S, He S, Feng Y, Li P. Regional disparities in the prevalence and correlated factors of myopia in children and adolescents in Gansu, China. Front Med (Lausanne) 2024; 11:1375080. [PMID: 39149607 PMCID: PMC11324564 DOI: 10.3389/fmed.2024.1375080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Background Myopia is a significant public health problem across the globe. This study aimed to examine the regional disparity in prevalence and correlated factors of myopia in children and adolescents in two typical regions, Gannan Tibetan Autonomous Prefecture (Gannan Prefecture for short, a Tibetan residential area) and Wuwei City (a Han residential area) in Gansu Province, China, and to provide a reference for the prevention and control of regional myopia. Methods The study was a cross-sectional study of children and adolescents in Gansu Province, China. A total of 6,187 (Wuwei City: 3,266, Gannan Tibetan Autonomous Prefecture: 2,921) students were selected by stratified cluster sampling. Eye examinations and questionnaires were administered to the participants. Myopia is defined as a condition in which the spherical equivalent refractive error of an eye is less than or equal to -0.50 D when ocular accommodation is relaxed. The χ2 test and multivariate logistic regression analysis were used to analyze the correlated factors of myopia. Results The myopia rate of 6,187 students was 71.4%, and students had a higher rate of myopia (77.5%) in Wuwei City compared to Gannan Prefecture (64.6%) (p < 0.001). The results of multivariate analysis in Wuwei City showed that girls (odds ratio (OR) = 1.325), junior students (OR = 2.542), senior students(OR = 4.605), distance between eyes and book less than one foot (OR = 1.291), and parents with myopia (one, OR = 2.437; two, OR = 4.453) had higher risks of myopia (all, p < 0.05). For Gannan Prefecture, girls (OR = 1.477), senior students (OR = 1.537), daily time spent doing homework ≥2 h (OR = 1.420), the distance between eyes and book less than one foot (OR = 1.205), mean time continuous eye use (0.25-<0.5 h, OR = 1.345, 0.5-<1 h, OR = 1.317, ≥1 h, OR = 1.313), average daily sleep duration <8 h (OR = 1.399), and parents with myopia (one, OR = 1.852; two, OR = 2.913) had higher risks of myopia (all, p < 0.05). Conclusion The prevalence of myopia is at a relatively high level in Gansu Province. The prevalence and risk factors for myopia vary by region.
Collapse
Affiliation(s)
- Jinyu Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- Department of Public Health, Lanzhou Second People’s Hospital, Lanzhou, China
| | - Shiqi He
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yali Feng
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Pu Li
- Department of Ophthalmology, Baiyin Second People's Hospital, Baiyin, China
| |
Collapse
|
16
|
Wang N, You H, Li X, Li H, Yang X. Knowledge, attitude, and practice of non-ophthalmic medical staff toward myopia-related fundus lesions. Sci Rep 2024; 14:16877. [PMID: 39043836 PMCID: PMC11266350 DOI: 10.1038/s41598-024-67939-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
This study assessed the knowledge, attitude, and practice (KAP) of non-ophthalmic medical staff towards myopia-related fundus lesions. This multicenter, cross-sectional study enrolled non-ophthalmic medical staff of Suining City between January and May 2023 using a self-designed questionnaire. A total of 505 (93.19%) valid questionnaires were included. Their mean KAP scores were 8.10 ± 2.32 (range: 0-12), 20.27 ± 2.68 (range: 0-24), and 17.77 ± 5.04 (range: 0-28), respectively. Structural equation modeling indicated that knowledge has a positive effect on attitude (β = 0.307, P < 0.001), and attitude has a positive effect on practice (β = 0.604, P < 0.001). Moreover, a higher degree of myopia exhibited a positive effect on knowledge (β = 0.510, P < 0.001). Nurses and other medical staff showed a negative effect on knowledge (β = - 0.706, P < 0.001) compared to doctors. Working in secondary and tertiary public hospitals, as well as private hospitals, demonstrated a negative effect on practice (β = - 1.963, P < 0.001) compared to those working in primary hospitals. Non-ophthalmic medical staff exhibited moderate knowledge, positive attitudes, and moderate practices toward myopia-related fundus lesions. The degree of myopia, doctors vs. other medical staff, and the hospital level influence the KAP of non-ophthalmic medical staff.
Collapse
Affiliation(s)
- Ning Wang
- Department of Ophthalmology, Suining Central Hospital, Suining, 629000, China.
| | - Hui You
- Department of Ophthalmology, Suining Central Hospital, Suining, 629000, China
| | - Xin Li
- Department of Ophthalmology, Suining Central Hospital, Suining, 629000, China
| | - Heng Li
- Department of Ophthalmology, Suining Central Hospital, Suining, 629000, China
| | - Xu Yang
- Department of Ophthalmology, Suining Central Hospital, Suining, 629000, China
| |
Collapse
|
17
|
Wolf AT, Klawe J, Liu B, Ahmad S. Association Between Serum Vitamin D Levels and Myopia in the National Health and Nutrition Examination Survey (2001-2006). Ophthalmic Epidemiol 2024; 31:229-239. [PMID: 37415384 DOI: 10.1080/09286586.2023.2232460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 06/25/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE To assess the relationship between serum vitamin D levels and myopia in people aged 12-50 years using the National Health and Nutrition Examination Survey (NHANES) database. METHODS Demographics, vision, and serum vitamin D levels from NHANES (2001-2006) were analyzed. Multivariate analyses were performed to examine the relationship between serum vitamin D levels and myopia while controlling for sex, age, ethnicity, education level, serum vitamin A, and poverty status. The main outcome was presence or absence of myopia, defined as a spherical equivalent of -1 diopters or more. RESULTS Of the 11669 participants, 5,310 (45.5%) had myopia. The average serum vitamin D concentration was 61.6 ± 0.9 nmol/L for the myopic group and 63.1 ± 0.8 nmol/L for the non-myopic group (p = .01). After adjusting for all covariates, having higher serum vitamin D was associated with lower odds of having myopia (odds ratio 0.82 [0.74-0.92], p = .0007). In linear regression modeling that excluded hyperopes (spherical equivalent > +1 diopters), there was a positive relationship between spherical equivalent and serum vitamin D levels. Specifically, as serum vitamin D doubled, spherical equivalent increased by 0.17 (p = .02) indicating a positive dose-response relationship between vitamin D and myopia. CONCLUSIONS Participants with myopia, on average, had lower serum concentrations of vitamin D compared to those without myopia. While further studies are needed to determine the mechanism, this study suggests that higher vitamin D levels are associated with lower incidence of myopia.
Collapse
Affiliation(s)
- Amber T Wolf
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Janek Klawe
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bian Liu
- Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sumayya Ahmad
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
18
|
Machluf Y, Israeli A, Cohen E, Chaiter Y, Mezer E. Dissecting the complex sex-based associations of myopia with height and weight. Eye (Lond) 2024; 38:1485-1495. [PMID: 38242948 PMCID: PMC11126622 DOI: 10.1038/s41433-024-02931-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
OBJECTIVES To assess height and weight as possible sex-specific risk factors for bilateral myopia among young adults. METHODS We conducted a cross-sectional study including 101,438 pre-enlisted young adult males and females, aged 17.4 ± 0.6 and 17.3 ± 0.5 years, respectively, and born during 1971-1994. Categories of BMI (body mass index) were defined according to sex-related percentiles for 17-year-olds following U.S. Centers for Disease Control and Prevention growth charts, and subjects were divided into five height and weight categories according to sex-adjusted percentiles. Data included best-corrected visual acuity, diverse socio-demographic variables, anthropometric indices, and refractive errors, namely bilateral myopes and emmetropes. RESULTS The prevalence of bilateral myopia in males and females was 19.1% and 26.0%, respectively. Bilateral myopia displayed a J-shaped associated with BMI, achieving statistical significance only among males (p < 0.0001). Weight displayed a U-shaped association with bilateral myopia among both young males (p < 0.0001) and females (p < 0.005). A higher prevalence of bilateral myopia was observed only among males of the lower height category (p < 0.0001), even when controlling for BMI (from normal to obesity). In a multivariable regression model, obesity was associated with higher prevalence of bilateral myopia (OR: 1.21; 95% CI: 1.07-1.38, p = 0.002), only among males. There were no interactions of BMI with height or weight. Bilateral myopia was also associated with prehypertension among males (OR: 1.10, 95% CI: 1.04-1.15, p < 0.001). CONCLUSIONS A higher risk for bilateral myopia was associated with either BMI solely or height and weight, as well as pre-hypertension, in males. The possible association with low height requires further research.
Collapse
Affiliation(s)
- Yossy Machluf
- Israel Defense Forces, Medical Corps, Tel Hashomer, Israel.
- Unit of Agrigenomics, Shamir Research Institute, Haifa University, Kazerin, Israel.
| | - Asaf Israeli
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Tel Aviv Medical Center, Tel Aviv, Israel
| | - Eduardo Cohen
- Israel Defense Forces, Medical Corps, Tel Hashomer, Israel
| | - Yoram Chaiter
- Israel Defense Forces, Medical Corps, Tel Hashomer, Israel
- The Israeli Center for Emerging Technologies in Hospitals and Hospital-based Health Technology Assessment, Shamir (Assaf Harofeh) Medical Center, Be'er Ya'akov, Israel
| | - Eedy Mezer
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Ophthalmology, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
19
|
Foo LL, Tan CS, Noel B, Htoon HM, Najjar RP, Kathrani B, Sabanayagam C, Saw SM. Factors influencing myopia stabilisation in young myopic adult Singaporeans. Br J Ophthalmol 2024; 108:884-888. [PMID: 37640399 DOI: 10.1136/bjo-2023-323680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/23/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE To evaluate factors influencing stabilisation of myopia in the Singapore Cohort of Risk factors for Myopia. METHODS We evaluated the longitudinal natural history of 424 myopic participants from 1999 to 2022. The outcome was the change in myopia from the adolescence follow-up visit (aged 12-19 years) to the adulthood follow-up visit (aged 26-33 years). Association of predictive factors, including baseline spherical error, gender, ethnicity, parental myopia, time outdoor, near work and age at adolescence, was examined with the dichotomous outcome of adult myopia progression (≤ -1.00 dioptres (D) over 10 years) using multiple logistic regression and progression in linear regression models. RESULTS For the primary outcome, the mean rate of progression of the outcome was found to be -0.04±0.09 D per year from the adolescent to the adulthood follow-up visits. 82.3% (95% CI 78.3% to 85.8%) had myopia stabilisation, with progression of less than 1.00 D over 10 years while 61.3% (95% CI 56.5% to 66.0%) of the subjects had progression of less than 0.50 D. In logistic regression models, both male gender (p=0.035) and non-Chinese ethnicity (p=0.032) were more likely to achieve myopia stabilisation while in linear multivariate regression models, males had a significantly slower degree of myopia progression (p=0.021). CONCLUSION 5 in 6 Singaporean young adults had myopia stabilisation. Male gender is 2 times and non-Chinese ethnicities are 2.5 times more likely to achieve myopia stabilisation. However, a proportion of myopes continue to exhibit a clinically significant degree of progression in adulthood.
Collapse
Affiliation(s)
- Li Lian Foo
- Singapore National Eye Centre, Singapore
- Singapore Eye Research Institute, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Chuen-Seng Tan
- National University Singapore Saw Swee Hock School of Public Health, Singapore
| | - Brennan Noel
- Johnson & Johnson Vision, Jacksonville, Florida, USA
| | | | - Raymond P Najjar
- Singapore Eye Research Institute, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Seang-Mei Saw
- Singapore Eye Research Institute, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore
- National University Singapore Saw Swee Hock School of Public Health, Singapore
| |
Collapse
|
20
|
Hao J, Yang Z, Zhang R, Ma Z, Liu J, Bi H, Guo D. Crosstalk between heredity and environment in myopia: An overview. Heliyon 2024; 10:e29715. [PMID: 38660258 PMCID: PMC11040123 DOI: 10.1016/j.heliyon.2024.e29715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 03/04/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024] Open
Abstract
In recent years, the prevalence of myopia has gradually increased, and it has become a significant global public health problem in the 21st century, posing a serious challenge to human eye health. Currently, it is confirmed that the development of myopia is attributed to the combined action of genes and environmental factors. Thus, elucidating the risk factors and pathogenesis of myopia is of great significance for the prevention and control of myopia. To elucidate the impact of gene-environment interaction on myopia, we used the Pubmed database to search for literature related to myopia. Search terms are as follows: myopia, genes, environmental factors, gene-environment interaction, and treatment. This paper reviews the effects of gene and environmental interaction on myopia.
Collapse
Affiliation(s)
- Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Zhaohui Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Ruixue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Zhongyu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jinpeng Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, 250002, China
- Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China
- Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Jinan, 250002, China
- Shandong Engineering Technology Research Center of Visual Intelligence, Jinan, 250002, China
- Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, 250002, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, 250002, China
- Shandong Academy of Eye Disease Prevention and Therapy, Jinan, 250002, China
- Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Jinan, 250002, China
- Shandong Engineering Technology Research Center of Visual Intelligence, Jinan, 250002, China
- Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, 250002, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| |
Collapse
|
21
|
Mérida S, Návea A, Desco C, Celda B, Pardo-Tendero M, Morales-Tatay JM, Bosch-Morell F. Glutathione and a Pool of Metabolites Partly Related to Oxidative Stress Are Associated with Low and High Myopia in an Altered Bioenergetic Environment. Antioxidants (Basel) 2024; 13:539. [PMID: 38790644 PMCID: PMC11117864 DOI: 10.3390/antiox13050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress forms part of the molecular basis contributing to the development and manifestation of myopia, a refractive error with associated pathology that is increasingly prevalent worldwide and that subsequently leads to an upsurge in degenerative visual impairment due to conditions that are especially associated with high myopia. The purpose of our study was to examine the interrelation of potential oxidative-stress-related metabolites found in the aqueous humor of high-myopic, low-myopic, and non-myopic patients within a clinical study. We conducted a cross-sectional study, selecting two sets of patients undergoing cataract surgery. The first set, which was used to analyze metabolites through an NMR assay, comprised 116 patients. A total of 59 metabolites were assigned and quantified. The PLS-DA score plot clearly showed a separation with minimal overlap between the HM and control samples. The PLS-DA model allowed us to determine 31 major metabolite differences in the aqueous humor of the study groups. Complementary statistical analysis of the data allowed us to determine six metabolites that presented significant differences among the experimental groups (p < 005). A significant number of these metabolites were discovered to have a direct or indirect connection to oxidative stress linked with conditions of myopic eyes. Notably, we identified metabolites associated with bioenergetic pathways and metabolites that have undergone methylation, along with choline and its derivatives. The second set consisted of 73 patients who underwent a glutathione assay. Here, we showed significant variations in both reduced and oxidized glutathione in aqueous humor among all patient groups (p < 0.01) for the first time. Axial length, refractive status, and complete ophthalmologic examination were also recorded, and interrelations among metabolic and clinical parameters were evaluated.
Collapse
Affiliation(s)
- Salvador Mérida
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (C.D.)
| | - Amparo Návea
- Instituto de la Retina y Enfermedades Oculares, 46005 Valencia, Spain;
| | - Carmen Desco
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (C.D.)
- Instituto de la Retina y Enfermedades Oculares, 46005 Valencia, Spain;
- FOM, Fundación de Oftalmología Médica de la Comunidad Valenciana, 46015 Valencia, Spain
| | - Bernardo Celda
- Physical Chemistry Department, University of Valencia, 46100 Valencia, Spain;
| | - Mercedes Pardo-Tendero
- Department of Pathology, Medicine and Odontology Faculty, University of Valencia, 46010 Valencia, Spain;
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - José Manuel Morales-Tatay
- Department of Pathology, Medicine and Odontology Faculty, University of Valencia, 46010 Valencia, Spain;
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Francisco Bosch-Morell
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (C.D.)
| |
Collapse
|
22
|
Seliniotaki AK, Ververi A, Koukoula S, Efstathiou G, Gerou S, Ziakas N, Mataftsi A. Female carrier of RPGR mutation presenting with high myopia. Ophthalmic Genet 2024; 45:159-163. [PMID: 37489109 DOI: 10.1080/13816810.2023.2237571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Inherited retinopathies can initially present with high refractive error in the first decade of life, before accompanying signs or symptoms are evident. CASE PRESENTATION A 4-year-old girl with high myopia (S-12.00 C-4.00 × 20 in the right and S-14.50 C-2.75 × 160 in the left eye), moderate visual acuity (0.3 logMAR in the right and 0.4 logMAR in the left eye), and left esotropia, presented with unremarkable past medical history and no family history of high refractive error or low vision. In optical coherence tomography imaging, macular thinning was evident, while morphology was normal. Full-field electroretinogram revealed normal implicit time recordings with reduced amplitudes in scotopic and photopic conditions. Fundus autofluorescence showed a radial pattern in both eyes. During a 5-year follow-up, significant myopia progression ensued (S-17.25 C-3.00 × 20 in the right and S-17.25 C-2.00 × 160 in the left eye), with a corresponding increase in axial length and an unchanged visual acuity. Whole-exome sequencing revealed a heterozygous termination codon variant c.212C>G (p.Ser71Ter) in RPGR, considered to be pathogenic. Segregation analysis precluded the variation in the mother and sister. A random pattern of X-chromosome inactivation was detected in the proband, without X-chromosome inactivation deviation. CONCLUSION This is the second report associating this specific RPGR mutation with high myopia and the first report to identify it in a female proband. This case provides additional evidence on the genotypic-phenotypic correlation between RPGR c.212C>G mutation and high myopia.
Collapse
Affiliation(s)
- Aikaterini K Seliniotaki
- 2nd Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athina Ververi
- Genetic Unit, 1st Gynecological & Obstetrics Department, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Georgios Efstathiou
- Analysi Biopathological Diagnostic Research Laboratories, Thessaloniki, Greece
| | - Spyridon Gerou
- Analysi Biopathological Diagnostic Research Laboratories, Thessaloniki, Greece
| | - Nikolaos Ziakas
- 2nd Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Asimina Mataftsi
- 2nd Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
23
|
Zhang XB, Jiang HH, Zhang LL, Li CJ, Chen C, Xing MZ, Ma YN, Ma YX. Potential causal associations between leisure sedentary behaviors, physical activity, sleep traits, and myopia: a Mendelian randomization study. BMC Ophthalmol 2024; 24:104. [PMID: 38443833 PMCID: PMC10913247 DOI: 10.1186/s12886-024-03367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Myopia is the most prevalent refractive error and a growing global health concern that significantly affects visual function. Researchers have recently emphasized considerably on the influence of lifestyle on myopia incidence and development. This study investigates the relationship between leisure sedentary behaviors (LSB)/physical activity (PA)/sleep traits and myopia. METHODS LSB, PA, and sleep trait-associated genetic variants were used as instrument variables in a Mendelian randomization (MR) study to examine their causal effects on myopia. Summary genome-wide association studies (GWASs) statistical data for LSB and PA were obtained from UK Biobank, and the data of sleep traits was obtained from UK Biobank, UK Biobank and 23andMe, and FinnGen. We used summary statistics data for myopia from MRC IEU. The MR analyses was performed using the inverse variance-weighted (IVW), MR-Egger, weighted median, and MR Pleiotropy RESidual Sum and Outlier methods. RESULTS Computer use was genetically predicted to increase the myopia risk [IVW odds ratio (OR) = 1.057; 95% confidence interval (CI), 1.038-1.078; P = 7.04 × 10- 9]. The self-reported moderate-to-vigorous physical activity (MVPA) (IVW OR = 0.962; 95% CI, 0.932-0.993; P = 1.57 × 10- 2) and television watching (IVW OR = 0.973; 95% CI, 0.961-0.985, P = 1.93 × 10- 5) were significantly associated with a lower myopia risk. However, genetically predicted sleep traits or accelerometer-measured physical activity had no significant associations with myopia. CONCLUSION Our results indicated that computer use is a risk factor for myopia, whereas television watching and MVPA may protect against myopia. These findings shed new light on possible strategies for reducing the prevalence of myopia.
Collapse
Affiliation(s)
- Xiao-Bin Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - He-He Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lin-Lin Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chun-Jing Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chen Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Meng-Zhen Xing
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu-Ning Ma
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| | - Yu-Xia Ma
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
24
|
Jing S, Yi X. Exome sequencing reveals PPEF2 variant associated with high myopia. Gene 2024; 897:148091. [PMID: 38110044 DOI: 10.1016/j.gene.2023.148091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
High myopia (HM) is a serious blinding eye disease, and genetic factors play an important role in the development of HM. In this study, whole exome sequencing (WES) was used to identify a novel variant c.A875G of the PPEF2 for a large Uyghur family with nonsyndromic HM. The variant was verified to cosegregate with HM in the family using Sanger sequencing. Another novel variant c.1959C > G in PPEF2 was identified in one of 100 sporadic cases of HM by multiplex PCR targeted amplicon sequencing (MTA-seq). The Ppef2 was verified that mainly expressed in the retinal pigment epithelium (RPE), choroid and retina tissues. Immunofluorescence (IF) and immunohistochemistry (IHC) assays showed that the PPEF2 was strongly expressed in the inner segment layer formed by photoreceptor protrusions, as well as in the outer nuclear layer. Compared with the wild-type, the c.A875G resulted in reduced protein levels but had no effect on protein subcellular localization in cells. In addition, the c.A875G variant resulted in a decreased migratory and proliferative capacity but promoted apoptosis in cells. In summary, PPEF2 was identified as a novel HM-causing gene, and this variant in PPEF2 might cause HM by regulating the migration, proliferation and apoptosis of myopia-related cells.
Collapse
Affiliation(s)
- Sili Jing
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xian, 710004, China; Ophthalmology, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China
| | - Xianglong Yi
- Ophthalmology, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China.
| |
Collapse
|
25
|
Chen X, Tong P, Jiang Y, Cheng Z, Zang L, Yang Z, Lan W, Xia K, Hu Z, Tian Q. CCDC66 mutations are associated with high myopia through affected cell mitosis. J Med Genet 2024; 61:262-269. [PMID: 37852749 DOI: 10.1136/jmg-2023-109434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND High myopia (HM) refers to an eye refractive error exceeding -5.00 D, significantly elevating blindness risk. The underlying mechanism of HM remains elusive. Given the extensive genetic heterogeneity and vast genetic base opacity, it is imperative to identify more causative genes and explore their pathogenic roles in HM. METHODS We employed exome sequencing to pinpoint the causal gene in an HM family. Sanger sequencing was used to confirm and analyse the gene mutations in this family and 200 sporadic HM cases. Single-cell RNA sequencing was conducted to evaluate the gene's expression patterns in developing human and mouse retinas. The CRISPR/Cas9 system facilitated the gene knockout cells, aiding in the exploration of the gene's function and its mutations. Immunofluorescent staining and immunoblot techniques were applied to monitor the functional shifts of the gene mutations at the cellular level. RESULTS A suspected nonsense mutation (c.C172T, p.Q58X) in CCDC66 was found to be co-segregated with the HM phenotype in the family. Additionally, six other rare variants were identified among the 200 sporadic patients. CCDC66 was consistently expressed in the embryonic retinas of both humans and mice. Notably, in CCDC66-deficient HEK293 cells, there was a decline in cell proliferation, microtube polymerisation rate and ace-tubulin level. Furthermore, the mutated CCDC66 failed to synchronise with the tubulin system during Hela cell mitosis, unlike its wild type counterpart. CONCLUSIONS Our research indicates that the CCDC66 variant c.C172T is associated with HM. A deficiency in CCDC66 might disrupt cell proliferation by influencing the mitotic process during retinal growth, leading to HM.
Collapse
Affiliation(s)
- Xiaozhen Chen
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Key Laboratory of Animal Models for Human Disease, Central South University, Changsha, Hunan, People's Republic of China
- Furong Laboratory, Central South University, Changsha, Hunan, People's Republic of China
| | - Ping Tong
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Ying Jiang
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Key Laboratory of Animal Models for Human Disease, Central South University, Changsha, Hunan, People's Republic of China
- Furong Laboratory, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhe Cheng
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Key Laboratory of Animal Models for Human Disease, Central South University, Changsha, Hunan, People's Republic of China
- Furong Laboratory, Central South University, Changsha, Hunan, People's Republic of China
| | - Liyu Zang
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Key Laboratory of Animal Models for Human Disease, Central South University, Changsha, Hunan, People's Republic of China
- Furong Laboratory, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhikuan Yang
- Aier Eye Hospital (Hunan), Aier Eye Hospital Group, Changsha, Hunan, People's Republic of China
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, People's Republic of China
| | - Weizhong Lan
- Aier Eye Hospital (Hunan), Aier Eye Hospital Group, Changsha, Hunan, People's Republic of China
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, People's Republic of China
| | - Kun Xia
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Key Laboratory of Animal Models for Human Disease, Central South University, Changsha, Hunan, People's Republic of China
- Furong Laboratory, Central South University, Changsha, Hunan, People's Republic of China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Zhengmao Hu
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Key Laboratory of Animal Models for Human Disease, Central South University, Changsha, Hunan, People's Republic of China
- Furong Laboratory, Central South University, Changsha, Hunan, People's Republic of China
| | - Qi Tian
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Key Laboratory of Animal Models for Human Disease, Central South University, Changsha, Hunan, People's Republic of China
- Furong Laboratory, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
26
|
Zhang J, Li Z, Cheng Z, Wang T, Shi W. Comparison of the clinical efficacy of orthokeratology and 0.01% atropine for retardation of myopia progression in myopic children. Cont Lens Anterior Eye 2024; 47:102094. [PMID: 37985346 DOI: 10.1016/j.clae.2023.102094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVE To compare the clinical efficacy of orthokeratology (ortho-k) and 0.01% atropine for retardation of myopia progression in myopic children. METHODS This was a retrospective cohort study. A total of 282 patients, aged 8-17 years, were enrolled, including 100 children treated with ortho-k, 84 with 0.01% atropine, and 98 with single-vision spectacles. During the follow-up of 1 year, ortho-k wearers were examined at 1 day, 1 week, 1 month, 3 months after treatment, and thereafter every 3 months, while the others were examined every 3 months by measurements of uncorrected vision, intraocular pressure, refractive power, slit-lamp microscopy, corneal topography, and the lens fitting when necessary. The axial length was measured every 6 months. RESULTS Patients with ortho-k had stable uncorrected vision after 1 month of lens wear, all reaching 0 logMAR. The annual axial elongation was 0.23 ± 0.19 mm, 0.22 ± 0.20 mm, and 0.39 ± 0.27 mm in the ortho-k, atropine, and spectacle groups, respectively, with significant difference (F = 23.251, P = 0.000). The axial length was delayed to increase by 41.03% and 43.59% within a year in patients with ortho-k and atropine, respectively, as compared to patients with spectacles (F = 0.006, P = 0.936). The elongation was ≤ 0.3 mm in 69.0% and 66.7% of patients in the two groups, respectively, versus 38.8% in the spectacle group (χ2 = 17.251, P = 0.000). During the follow-up, the rate of corneal staining was 11.0% and 2.0% in the ortho-k and spectacle groups, respectively (χ2 = 8.076, P = 0.003). The use of atropine did not increase corneal staining, but the incidence of related photophobia was 4.8%. No other serious complications were observed. CONCLUSION Ortho-k lenses and 0.01% atropine can achieve similar efficacy of myopia retardation, which was significantly better than that obtained with single-vision spectacles, in myopic children. The risk of corneal staining after ortho-k wear may be slightly higher than that with spectacles, but could be well controlled.
Collapse
Affiliation(s)
- Ju Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Jinan, Shandong, China; School of Ophthalmology, Shandong First Medical University, Jinan, Shandong, China
| | - Zhenzhen Li
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Jinan, Shandong, China
| | - Zhiwei Cheng
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Jinan, Shandong, China
| | - Ting Wang
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Jinan, Shandong, China; School of Ophthalmology, Shandong First Medical University, Jinan, Shandong, China.
| | - Weiyun Shi
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Jinan, Shandong, China; School of Ophthalmology, Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
27
|
Peng S, Guo M, Wu C, Liu J, Zou B, Chen Y, Su Y, Shi L, Zhu S, Xu S, Guo D, Ju R, Wei L, Wei Y, Liu C. Age and light damage influence Fzd5 regulation of ocular growth-related genes. Exp Eye Res 2024; 239:109769. [PMID: 38154732 DOI: 10.1016/j.exer.2023.109769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Genetic and environmental factors can independently or coordinatively drive ocular axis growth. Mutations in FRIZZLED5 (FZD5) have been associated with microphthalmia, coloboma, and, more recently, high myopia. The molecular mechanism of how Fzd5 participates in ocular growth remains unknown. In this study, we compiled a list of human genes associated with ocular growth abnormalities based on public databases and a literature search. We identified a set of ocular growth-related genes from the list that was altered in the Fzd5 mutant mice by RNAseq analysis at different time points. The Fzd5 regulation of this set of genes appeared to be impacted by age and light damage. Further bioinformatical analysis indicated that these genes are extracellular matrix (ECM)-related; and meanwhile an altered Wnt signaling was detected. Altogether, the data suggest that Fzd5 may regulate ocular growth through regulating ECM remodeling, hinting at a genetic-environmental interaction in gene regulation of ocular axis control.
Collapse
Affiliation(s)
- Shanzhen Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Mingzhu Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Cheng Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jinsong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Bin Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yuanyuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yingchun Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Lei Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shiyong Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shujuan Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Dianlei Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Chunqiao Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
28
|
Lee SH, Tsai PC, Chiu YC, Wang JH, Chiu CJ. Myopia progression after cessation of atropine in children: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1343698. [PMID: 38318144 PMCID: PMC10838978 DOI: 10.3389/fphar.2024.1343698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose: To comprehensively assess rebound effects by comparing myopia progression during atropine treatment and after discontinuation. Methods: A systematic search of PubMed, EMBASE, Cochrane CENTRAL, and ClinicalTrials.gov was conducted up to 20 September 2023, using the keywords "myopia," "rebound," and "discontinue." Language restrictions were not applied, and reference lists were scrutinized for relevant studies. Our study selection criteria focused on randomized control trials and interventional studies involving children with myopia, specifically those treated with atropine or combination therapies for a minimum of 6 months, followed by a cessation period of at least 1 month. The analysis centered on reporting annual rates of myopia progression, considering changes in spherical equivalent (SE) or axial length (AL). Data extraction was performed by three independent reviewers, and heterogeneity was assessed using I2 statistics. A random-effects model was applied, and effect sizes were determined through weighted mean differences with 95% confidence intervals Our primary outcome was the evaluation of rebound effects on spherical equivalent or axial length. Subgroup analyses were conducted based on cessation and treatment durations, dosage levels, age, and baseline SE to provide a nuanced understanding of the data. Results: The analysis included 13 studies involving 2060 children. Rebound effects on SE were significantly higher at 6 months (WMD, 0.926 D/y; 95%CI, 0.288-1.563 D/y; p = .004) compared to 12 months (WMD, 0.268 D/y; 95%CI, 0.077-0.460 D/y; p = .006) after discontinuation of atropine. AL showed similar trends, with higher rebound effects at 6 months (WMD, 0.328 mm/y; 95%CI, 0.165-0.492 mm/y; p < .001) compared to 12 months (WMD, 0.121 mm/y; 95%CI, 0.02-0.217 mm/y; p = .014). Sensitivity analyses confirmed consistent results. Shorter treatment durations, younger age, and higher baseline SE levels were associated with more pronounced rebound effects. Transitioning or stepwise cessation still caused rebound effects but combining optical therapy with atropine seemed to prevent the rebound effects. Conclusion: Our meta-analysis highlights the temporal and dose-dependent rebound effects after discontinuing atropine. Individuals with shorter treatment durations, younger age, and higher baseline SE tend to experience more significant rebound effects. Further research on the rebound effect is warranted. Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=463093], identifier [registration number].
Collapse
Affiliation(s)
- Ssu-Hsien Lee
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | | | - Yu-Chieh Chiu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jen-Hung Wang
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Cheng-Jen Chiu
- Department of Ophthalmology and Visual Science, Tzu Chi University, Hualien, Taiwan
- Department of Ophthalmology, Hualien Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
29
|
Ehongo A. Understanding Posterior Staphyloma in Pathologic Myopia: Current Overview, New Input, and Perspectives. Clin Ophthalmol 2023; 17:3825-3853. [PMID: 38105912 PMCID: PMC10725704 DOI: 10.2147/opth.s405202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
Posterior staphyloma (PS) is considered the hallmark of pathologic myopia and is defined as an outpouching of a circumscribed portion of the eyeball with a radius of curvature smaller than that of the adjacent zone. Although more common in eyes with high myopia, it can affect those without it. The presence of PS is associated with a structurally and functionally worse course of high myopia that can lead to visual disability. Unfortunately, the pathogenesis of PS is unclear so far. Thus, due to the increasing prevalence of myopia which has been further exacerbated by the advent of COVID-19 lockdown, researchers are eager to elucidate the pathogenesis of pathologic myopia and that of its complications, especially PS, which will allow the development of preventive strategies. The aim of this work was to review the morphological characteristics of PS with emphasis on similarities with peripapillary staphyloma and to discuss the pathogenesis of PS considering recent suggestions about that of peripapillary staphyloma.
Collapse
Affiliation(s)
- Adèle Ehongo
- Ophthalmology Department, Erasmus Hospital, Brussels, Belgium
| |
Collapse
|
30
|
Wu W, Xu Y, Zhang F. Comparisons of the protein expressions between high myopia and moderate myopia on the anterior corneal stroma in human. Graefes Arch Clin Exp Ophthalmol 2023; 261:3549-3558. [PMID: 37389637 DOI: 10.1007/s00417-023-06158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/14/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023] Open
Abstract
PURPOSE To investigate the differentially expressed proteins (DEP) between high myopia and moderate myopia on the anterior corneal stroma. METHODS Tandem mass tag (TMT) quantitative proteomics was utilized to reveal proteins. DEPs were screened by the multiple change of more than 1.2 times or less than 0.83 and the P value < 0.05. The DEPs were functional annotated by Gene Ontology (GO) terms. Proteins and protein interaction (PPI) networks were conducted with String online tool. Parallel reaction monitoring (PRM) data processing was used to verify the TMT proteomics results. RESULTS There are 36 DEPs between high myopia and moderate myopia on the anterior corneal stroma, of which 11 proteins are upregulated, 25 proteins are downregulated. The GO analysis demonstrated keratinocyte migration and structural constituent of cytoskeleton that are significantly changed with most of the proteins decreased in high myopic corneas. Keratin 16 (KRT16) and erythrocyte membrane protein band 4.1-like protein 4B are the only two proteins involved in both functions. The PPI analysis showed keratin type II cytoskeletal 6A (KRT6A) and KRT16 that have strong connections. Immunoglobulin lambda variable 8-61(IGLV8-61) and nicotinamide phosphoribosyl transferase (NAMPT) have consistent results with the TMT. CONCLUSIONS The high myopic corneas have 36 DEPs compared to the moderate myopic corneas on the anterior corneal stroma. Keratinocyte migrations and structural constituent of cytoskeleton are weakened in high myopic corneas, which may partly account for the lower corneal biomechanics in high myopic eyes. The lower expressed KRT16 plays important roles in high myopic corneas.
Collapse
Affiliation(s)
- Wenjing Wu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China
| | - Yushan Xu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China
| | - Fengju Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
31
|
Xia T, Nakayama K. Signatures of adaptation in myopia-related genes on the sunlight exposure hypothesis. J Physiol Anthropol 2023; 42:25. [PMID: 37919796 PMCID: PMC10621121 DOI: 10.1186/s40101-023-00341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Myopia is a common eye disorder that results from gene-environment interactions. The prevalence of myopia varies across populations, and exposure to bright sunlight may prevent its development. We hypothesize that local adaptation to light environments during human migration played a role in shaping the genetic basis of myopia, and we aim to investigate how the environment influences the genetic basis of myopia. METHOD We utilized the whole-genome variant data of the 1000 Genomes Project for analysis. We searched myopia-associated loci that were under selection in Europeans using population branch statistics and the number of segregating sites by length statistics. The outliers of these statistics were enriched in the Kyoto Encyclopedia of Genes and Genomes pathways and the gene ontology biological process terms in searching for pathways that were under selection. We applied Bayesian inference to estimate the correlation between environmental factors and allele frequencies of the selected loci and performed causal inference of myopia using two-sample Mendelian randomization analysis. RESULTS We detected signatures of adaptation in vision and light perception pathways, supporting our hypothesis of sunlight adaptation. We discovered a strong correlation between latitude and allele frequencies in genes that are under significant selection, and we found pleiotropic effects of pigmentation or circadian rhythm genes on myopia, indicating that sunlight exposure influences the genetic diversity of myopia. CONCLUSIONS Myopia genes involved in light perception showed signs of selection. Local adaptation during human migration shaped the genetic basis of myopia and may have influenced its global prevalence distribution.
Collapse
Affiliation(s)
- Tian Xia
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Kazuhiro Nakayama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan.
| |
Collapse
|
32
|
He X, Li SM. Gene-environment interaction in myopia. Ophthalmic Physiol Opt 2023; 43:1438-1448. [PMID: 37486033 DOI: 10.1111/opo.13206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
Myopia is a health issue that has attracted global attention due to its high prevalence and vision-threatening complications. It is well known that the onset and progression of myopia are related to both genetic and environmental factors: more than 450 common genetic loci have been found to be associated with myopia, while near work and outdoor time are the main environmental risk factors. As for many complex traits, gene-environment interactions are implicated in myopia development. To date, several genetic loci have been found to interact with near work or educational level. Gene-environment interaction research on myopia could yield models that provide more accurate risk predictions, thus improving targeted treatments and preventive strategies. Additionally, such investigations might have the potential to reveal novel genetic information. In this review, we summarised the findings in this field and proposed some topics for future investigations.
Collapse
Affiliation(s)
- Xi He
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Shi-Ming Li
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| |
Collapse
|
33
|
Wang F, Peng W, Jiang Z. Repeated Low-Level Red Light Therapy for the Control of Myopia in Children: A Meta-Analysis of Randomized Controlled Trials. Eye Contact Lens 2023; 49:438-446. [PMID: 37565498 DOI: 10.1097/icl.0000000000001020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Repeated low-level red light (RLRL) therapy has been suggested to be effective in children with myopia. However, evidence from randomized controlled trials (RCTs) is still limited. We performed a meta-analysis of RCTs to systematically evaluate the efficacy of RLRL on changes of axial length (AL) and cycloplegic spherical equivalent refraction (SER) in children with myopia. METHODS Relevant RCTs were obtained through a search of electronic databases including PubMed, Embase, Cochrane Library, Wanfang, and China National Knowledge Infrastructure from inception to September 15, 2022. A random-effects model was used to pool the results after incorporating the influence of potential heterogeneity. Subgroup analyses were performed according to the control treatment and follow-up duration. RESULTS A total of seven RCTs involving 1,031 children with myopia, aged 6 to 16 years, were included in the meta-analysis. Compared with control treatment without RLRL, treatment with RLRL was associated with a significantly reduced AL (mean difference [MD]: -0.25 mm, 95% confidence interval [CI]: -0.32 to -0.17, P <0.001; I 2 =13%) and a significantly increased cycloplegic SER (MD: 0.60 D, 95% CI: 0.44-0.76, P <0.001; I 2 =20%). Further subgroup analyses showed consistent results in studies comparing children wearing single vision lenses and those receiving active treatment including orthokeratology or low-dose atropine eye drops, as well as studies of treatment duration of 6 and 12 months. CONCLUSIONS Results of the meta-analysis suggested that RLRL treatment is effective for slowing down the progression of myopia in children aged 6 to 16 years.
Collapse
Affiliation(s)
- Fei Wang
- Department of Ophthalmology (F.W., Z.J.), The Second Hospital of Anhui Medical University, Hefei, China; and Hefei Institutes of Physical Science (W.P.), Chinese Academy of Sciences, Hefei, China
| | | | | |
Collapse
|
34
|
Zhang S, Wang T, Wang H, Gao B, Sun C. Identification of potential biomarkers of myopia based on machine learning algorithms. BMC Ophthalmol 2023; 23:388. [PMID: 37740201 PMCID: PMC10517464 DOI: 10.1186/s12886-023-03119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023] Open
Abstract
PURPOSE This study aims to identify potential myopia biomarkers using machine learning algorithms, enhancing myopia diagnosis and prognosis prediction. METHODS GSE112155 and GSE15163 datasets from the GEO database were analyzed. We used "limma" for differential expression analysis and "GO plot" and "clusterProfiler" for functional and pathway enrichment analyses. The LASSO and SVM-RFE algorithms were employed to screen myopia-related biomarkers, followed by ROC curve analysis for diagnostic performance evaluation. Single-gene GSEA enrichment analysis was executed using GSEA 4.1.0. RESULTS The functional analysis of differentially expressed genes indicated their role in carbohydrate generation and polysaccharide synthesis. We identified 23 differentially expressed genes associated with myopia, four of which were highly effective diagnostic biomarkers. Single gene GSEA results showed these genes control the ubiquitin-mediated protein hydrolysis pathway. CONCLUSION Our study identifies four key myopia biomarkers, providing a foundation for future clinical and experimental validation studies.
Collapse
Affiliation(s)
- Shengnan Zhang
- Department of Ophthalmology, Zibo Central Hospital, No.54, Gongqingtuan West Road, Zhangdian District, Zibo, 255000 Shandong Province PR China
| | - Tao Wang
- Sanitary Inspection Center, Zibo Center for Disease Control and Prevention, Zibo, 255000 PR China
| | - Huaihua Wang
- Department of Ophthalmology, Zibo Central Hospital, No.54, Gongqingtuan West Road, Zhangdian District, Zibo, 255000 Shandong Province PR China
| | - Bingfang Gao
- Department of Pathology, Zibo Hospital of Integrated Traditional Chinese and Western Medicine Zibo, Zibo, 255000 PR China
| | - Chao Sun
- Department of Ophthalmology, Zibo Central Hospital, No.54, Gongqingtuan West Road, Zhangdian District, Zibo, 255000 Shandong Province PR China
| |
Collapse
|
35
|
Chen J, Lian P, Zhao X, Li J, Yu X, Huang X, Chen S, Lu L. PSMD3 gene mutations cause pathological myopia. J Med Genet 2023; 60:918-924. [PMID: 36948574 DOI: 10.1136/jmg-2022-108978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/08/2023] [Indexed: 03/24/2023]
Abstract
PURPOSE Genetic factors play a prominent role in the pathogenesis of pathological myopia (PM). However, the exact genetic mechanism of PM remains unclear. This study aimed to determine the candidate mutation of PM in a Chinese family and explore the potential mechanism. METHODS We performed exome sequencing and Sanger sequencing in a Chinese family and 179 sporadic PM cases. The gene expression in human tissue was investigated by RT-quantitative real-time PCR (RT-qPCR) and immunofluorescence. Cell apoptotic rates were tested by annexin V-APC/7AAD and flow cytometry. Psmd3 knock-in mice with point mutation were generated for measuring myopia-related parameters. RESULTS We screened a novel PSMD3 variant (c.689T>C; p.F230S) in a Chinese family with PM, and another rare mutation (c.1015C>A; p.L339M) was identified in 179 unrelated cases with PM. RT-qPCR and immunofluorescence confirmed the expression of PSMD3 in human eye tissue. Mutation of PSMD3 decreased the mRNA and protein expression, causing apoptosis of human retinal pigment epithelial cells. In in vivo experiments, the axial length (AL) of mutant mice increased significantly compared with that of wild-type mice (p<0.001). CONCLUSIONS A new potential pathogenic gene, PSMD3, in a PM family was identified, and it may be involved in the elongation of AL and the development of PM.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Ping Lian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Xiujuan Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Jun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Xiling Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Xia Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Shida Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| |
Collapse
|
36
|
Gisbert S, Wahl S, Schaeffel F. L-opsin expression in chickens is similarly reduced with diffusers and negative lenses. Vision Res 2023; 210:108272. [PMID: 37269575 DOI: 10.1016/j.visres.2023.108272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Previous studies have shown that the expression of L- and M-opsins was reduced in chicken retina when eyes were covered with diffusers. The purpose of the current study was to find out whether this is a result of altered spatial processing during development of deprivation myopia or merely a consequence of light attenuation by the diffusers. Therefore, retinal luminances were matched by neutral density filters in fellow eyes that served as controls for diffuser-treated eyes. Furthermore, the effects of negative lenses on opsins expression were studied. Chickens wore diffusers or -7D lenses for a period of 7 days and refractive state and ocular biometry were measured at the beginning and at the end of the experiment. Retinal tissue was extracted from both eyes to quantify L-, M- and S-opsins expression by qRT-PCR. It was found that L-opsin expression was significantly lower in eyes wearing diffusers, compared to fellow eyes covered with neutral density filters. Interestingly, L-opsin was also reduced in eyes wearing negative lenses. In summary, this study shows that L-opsin expression is reduced due to the loss of high spatial frequencies and general contrast reduction in the retinal image, rather than by a decline in retinal luminance. Moreover, the fact that L-opsin was similarly reduced in eyes treated with negative lenses and diffusers suggests the existence of a common pathway for emmetropization, but it could also be just a consequence of reduced high spatial frequencies and lower contrast.
Collapse
Affiliation(s)
- Sandra Gisbert
- Carl Zeiss Vision International GmbH, Technology, and Innovation, Turnstrasse 27, 73430 Aalen, Germany; Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Elfriede-Aulhorn-Strasse 7, 72076 Tuebingen, Germany.
| | - Siegfried Wahl
- Carl Zeiss Vision International GmbH, Technology, and Innovation, Turnstrasse 27, 73430 Aalen, Germany; Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Elfriede-Aulhorn-Strasse 7, 72076 Tuebingen, Germany
| | - Frank Schaeffel
- Carl Zeiss Vision International GmbH, Technology, and Innovation, Turnstrasse 27, 73430 Aalen, Germany; Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Elfriede-Aulhorn-Strasse 7, 72076 Tuebingen, Germany; Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Strasse 91, CH-4031 Basel, Switzerland
| |
Collapse
|
37
|
Jackson D, Moosajee M. The Genetic Determinants of Axial Length: From Microphthalmia to High Myopia in Childhood. Annu Rev Genomics Hum Genet 2023; 24:177-202. [PMID: 37624667 DOI: 10.1146/annurev-genom-102722-090617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
The axial length of the eye is critical for normal visual function by enabling light to precisely focus on the retina. The mean axial length of the adult human eye is 23.5 mm, but the molecular mechanisms regulating ocular axial length remain poorly understood. Underdevelopment can lead to microphthalmia (defined as a small eye with an axial length of less than 19 mm at 1 year of age or less than 21 mm in adulthood) within the first trimester of pregnancy. However, continued overgrowth can lead to axial high myopia (an enlarged eye with an axial length of 26.5 mm or more) at any age. Both conditions show high genetic and phenotypic heterogeneity associated with significant visual morbidity worldwide. More than 90 genes can contribute to microphthalmia, and several hundred genes are associated with myopia, yet diagnostic yields are low. Crucially, the genetic pathways underpinning the specification of eye size are only now being discovered, with evidence suggesting that shared molecular pathways regulate under- or overgrowth of the eye. Improving our mechanistic understanding of axial length determination will help better inform us of genotype-phenotype correlations in both microphthalmia and myopia, dissect gene-environment interactions in myopia, and develop postnatal therapies that may influence overall eye growth.
Collapse
Affiliation(s)
- Daniel Jackson
- Institute of Ophthalmology, University College London, London, United Kingdom;
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, United Kingdom;
- The Francis Crick Institute, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
38
|
Zhang SY, Gan X, Shen B, Jiang J, Shen H, Lei Y, Liang Q, Bai C, Huang C, Wu W, Guo Y, Song Y, Chen J. 6PPD and its metabolite 6PPDQ induce different developmental toxicities and phenotypes in embryonic zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131601. [PMID: 37182464 DOI: 10.1016/j.jhazmat.2023.131601] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
The automobile tire antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its quinone metabolite 6PPDQ have recently received much attention for their acute aquatic toxicity. The present study investigated the mechanistic developmental toxicity of 6PPD and 6PPDQ in embryonic zebrafish. Neither compound induced significant mortality but significantly decreased spontaneous embryo movement and heart rate. Both compounds induced malformations with different phenotypes; the 6PPD-exposed larvae manifested a myopia-like phenotype with a convex eyeball and fusion vessels, while the 6PPDQ-exposed embryonic zebrafish manifested enlarged intestine and blood-coagulated gut, activated neutrophils, and overexpressed enteric neurons. mRNA-Seq and quantitative real-time PCR assays showed that 6PPD- and 6PPDQ-induced distinct differential gene expression aligned with their toxic phenotype. 6PPD activated the retinoic acid metabolic gene cyp26a, but 6PPDQ activated adaptive cellular response to xenobiotics gene cyp1a. 6PPD suppressed the gene expression of the eye involved in retinoic acid metabolism, phototransduction, photoreceptor function and visual perception. In contrast, 6PPDQ perturbed genes involved in inward rectifier K+ and voltage-gated ion channels activities, K+ import across the plasma membrane, iron ion binding, and intestinal immune network for IgA production. The current study advances the present understanding the reason of why many fish species are so adversely impacted by 6PPD and 6PPDQ.
Collapse
Affiliation(s)
- Shu-Yun Zhang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China; School of Medicine, Taizhou University, Taizhou, 318000, PR China
| | - Xiufeng Gan
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Baoguo Shen
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Jian Jiang
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Huimin Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, PR China
| | - Yuhang Lei
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Qiuju Liang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Chenglian Bai
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Changjiang Huang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Wencan Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, PR China.
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Jiangfei Chen
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
39
|
Gesteira TF, Verma S, Coulson-Thomas VJ. Small leucine rich proteoglycans: Biology, function and their therapeutic potential in the ocular surface. Ocul Surf 2023; 29:521-536. [PMID: 37355022 PMCID: PMC11092928 DOI: 10.1016/j.jtos.2023.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Small leucine rich proteoglycans (SLRPs) are the largest family of proteoglycans, with 18 members that are subdivided into five classes. SLRPs are small in size and can be present in tissues as glycosylated and non-glycosylated proteins, and the most studied SLRPs include decorin, biglycan, lumican, keratocan and fibromodulin. SLRPs specifically bind to collagen fibrils, regulating collagen fibrillogenesis and the biomechanical properties of tissues, and are expressed at particularly high levels in fibrous tissues, such as the cornea. However, SLRPs are also very active components of the ECM, interacting with numerous growth factors, cytokines and cell surface receptors. Therefore, SLRPs regulate major cellular processes and have a central role in major fundamental biological processes, such as maintaining corneal homeostasis and transparency and regulating corneal wound healing. Over the years, mutations and/or altered expression of SLRPs have been associated with various corneal diseases, such as congenital stromal corneal dystrophy and cornea plana. Recently, there has been great interest in harnessing the various functions of SLRPs for therapeutic purposes. In this comprehensive review, we describe the structural features and the related functions of SLRPs, and how these affect the therapeutic potential of SLRPs, with special emphasis on the use of SLRPs for treating ocular surface pathologies.
Collapse
Affiliation(s)
| | - Sudhir Verma
- College of Optometry, University of Houston, USA; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | | |
Collapse
|
40
|
Gu L, Cong P, Ning Q, Jiang B, Wang J, Cui H. The causal mutation in ARR3 gene for high myopia and progressive color vision defect. Sci Rep 2023; 13:8986. [PMID: 37268727 DOI: 10.1038/s41598-023-36141-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
The ARR3 gene, also known as cone arrestin, belongs to the arrestin family and is expressed in cone cells, inactivating phosphorylated-opsins and preventing cone signals. Variants of ARR3 reportedly cause X-linked dominant female-limited early-onset (age < 7 years old) high myopia (< - 6D). Here, we reveal a new mutation (c.228T>A, p.Tyr76*) in ARR3 gene that can cause early-onset high myopia (eoHM) limited to female carriers. Protan/deutan color vision defects were also found in family members, affecting both genders. Using ten years of clinical follow-up data, we identified gradually worsening cone dysfunction/color vision as a key feature among affected individuals. We present a hypothesis that higher visual contrast due to the mosaic of mutated ARR3 expression in cones contributes to the development of myopia in female carriers.
Collapse
Affiliation(s)
- Lei Gu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peikuan Cong
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Qingyao Ning
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Jiang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianyong Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongguang Cui
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
41
|
Lu Q, Du Y, Zhang Y, Chen Y, Li H, He W, Tang Y, Zhao Z, Zhang Y, Wu J, Zhu X, Lu Y. A Genome-Wide Association Study for Susceptibility to Axial Length in Highly Myopic Eyes. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:255-267. [PMID: 37325711 PMCID: PMC10260730 DOI: 10.1007/s43657-022-00082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
High myopia has long been highly prevalent worldwide with a largely yet unexplained genetic contribution. To identify novel susceptibility genes for axial length (AL) in highly myopic eyes, a genome-wide association study (GWAS) was performed using the genomic dataset of 350 deep whole-genome sequencing data from highly myopic patients. Top single nucleotide polymorphisms (SNPs) were functionally annotated. Immunofluorescence staining, quantitative polymerase chain reaction, and western blot were performed using neural retina of form-deprived myopic mice. Enrichment analyses were further performed. We identified the four top SNPs and found that ADAM Metallopeptidase With Thrombospondin Type 1 Motif 16 (ADAMTS16) and Phosphatidylinositol Glycan Anchor Biosynthesis Class Z (PIGZ) had the potential of clinical significance. Animal experiments confirmed that PIGZ expression could be observed and showed higher expression level in form-deprived mice, especially in the ganglion cell layer. The messenger RNA (mRNA) levels of both ADAMTS16 and PIGZ were significantly higher in the neural retina of form-deprived eyes (p = 0.005 and 0.007 respectively), and both proteins showed significantly upregulated expression in the neural retina of deprived eyes (p = 0.004 and 0.042, respectively). Enrichment analysis revealed a significant role of cellular adhesion and signal transduction in AL, and also several AL-related pathways including circadian entrainment and inflammatory mediator regulation of transient receptor potential channels were proposed. In conclusion, the current study identified four novel SNPs associated with AL in highly myopic eyes and confirmed that the expression of ADAMTS16 and PIGZ was significantly upregulated in neural retina of deprived eyes. Enrichment analyses provided novel insight into the etiology of high myopia and opened avenues for future research interest. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00082-x.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Yu Du
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Ye Zhang
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Yuxi Chen
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Hao Li
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Wenwen He
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Yating Tang
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Zhennan Zhao
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Yinglei Zhang
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Jihong Wu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Xiangjia Zhu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032 China
| | - Yi Lu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| |
Collapse
|
42
|
Clark R, Lee SSY, Du R, Wang Y, Kneepkens SCM, Charng J, Huang Y, Hunter ML, Jiang C, Tideman JWL, Melles RB, Klaver CCW, Mackey DA, Williams C, Choquet H, Ohno-Matsui K, Guggenheim JA. A new polygenic score for refractive error improves detection of children at risk of high myopia but not the prediction of those at risk of myopic macular degeneration. EBioMedicine 2023; 91:104551. [PMID: 37055258 PMCID: PMC10203044 DOI: 10.1016/j.ebiom.2023.104551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND High myopia (HM), defined as a spherical equivalent refractive error (SER) ≤ -6.00 diopters (D), is a leading cause of sight impairment, through myopic macular degeneration (MMD). We aimed to derive an improved polygenic score (PGS) for predicting children at risk of HM and to test if a PGS is predictive of MMD after accounting for SER. METHODS The PGS was derived from genome-wide association studies in participants of UK Biobank, CREAM Consortium, and Genetic Epidemiology Research on Adult Health and Aging. MMD severity was quantified by a deep learning algorithm. Prediction of HM was quantified as the area under the receiver operating curve (AUROC). Prediction of severe MMD was assessed by logistic regression. FINDINGS In independent samples of European, African, South Asian and East Asian ancestry, the PGS explained 19% (95% confidence interval 17-21%), 2% (1-3%), 8% (7-10%) and 6% (3-9%) of the variation in SER, respectively. The AUROC for HM in these samples was 0.78 (0.75-0.81), 0.58 (0.53-0.64), 0.71 (0.69-0.74) and 0.67 (0.62-0.72), respectively. The PGS was not associated with the risk of MMD after accounting for SER: OR = 1.07 (0.92-1.24). INTERPRETATION Performance of the PGS approached the level required for clinical utility in Europeans but not in other ancestries. A PGS for refractive error was not predictive of MMD risk once SER was accounted for. FUNDING Supported by the Welsh Government and Fight for Sight (24WG201).
Collapse
Affiliation(s)
- Rosie Clark
- School of Optometry & Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Samantha Sze-Yee Lee
- University of Western Australia, Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), Perth, Western Australia, Australia
| | - Ran Du
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 1138510, Japan; Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yining Wang
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 1138510, Japan
| | - Sander C M Kneepkens
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands; Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jason Charng
- University of Western Australia, Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), Perth, Western Australia, Australia; Department of Optometry, School of Allied Health, University of Western Australia, Perth, Australia
| | - Yu Huang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Michael L Hunter
- Busselton Health Study Centre, Busselton Population Medical Research Institute, Busselton, Western Australia; School of Population and Global Health, University of Western Australia, Perth, Western Australia
| | - Chen Jiang
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - J Willem L Tideman
- Department of Ophthalmology, Martini Hospital, Groningen, the Netherlands; Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ronald B Melles
- Department of Ophthalmology Kaiser Permanente Northern California, Redwood City, CA, USA
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands; Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - David A Mackey
- University of Western Australia, Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), Perth, Western Australia, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, East Melbourne, Victoria, Australia; School of Medicine, Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | - Cathy Williams
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS81NU, UK
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 1138510, Japan
| | - Jeremy A Guggenheim
- School of Optometry & Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
43
|
Ye M, Ma Y, Qin YX, Cai B, Ma LM, Ma Z, Liu Y, Jin ZB, Zhuang WJ. Mutational investigation of 17 causative genes in a cohort of 113 families with nonsyndromic early-onset high myopia in northwestern China. Mol Genet Genomics 2023; 298:669-682. [PMID: 36964802 DOI: 10.1007/s00438-023-02003-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/24/2023] [Indexed: 03/26/2023]
Abstract
High myopia (HM) is a leading cause of visual impairment in the world. To expand the genotypic and phenotypic spectra of HM in the Chinese population, we investigated genetic variations in a cohort of 113 families with nonsyndromic early-onset high myopia from northwestern China by whole-exome sequencing, with focus on 17 known genes. Sixteen potentially pathogenic variants predicted to affect protein function in eight of seventeen causative genes for HM in fifteen (13.3%) families were revealed, including seven novel variants, c.767 + 1G > A in ARR3, c.3214C > A/p.H1072N, and c.2195C > T/p.A732V in ZNF644, c.1270G > T/p.V424L in CPSF1, c.1918G > C/p.G640R and c.2786T > G/p.V929G in XYLT1, c.601G > C/p.E201Q in P4HA2; six rare variants, c.799G > A/p.E267K in NDUFAF7, c.1144C > T/p.R382W in TNFRSF21, c.1100C > T/p.P367L in ZNF644, c.3980C > T/p.S1327L in CPSF1, c.145G > A/p.E49K and c.325G > T/p.G109W in SLC39A5; and three known variants, c.2014A > G/p.S672G and c.3261A > C/p.E1087D in ZNF644, c.605C > T/p.P202L in TNFRSF21. Ten of them were co-segregated with HM. The mean (± SD) examination age of these 15 probands was 14.7 (± 11.61) years. The median spherical equivalent was - 9.50 D (IQ - 8.75 ~ - 12.00) for the right eye and - 11.25 D (IQ - 9.25 ~ - 14.13) for the left eye. The median axial length was 26.67 mm (IQ 25.83 ~ 27.13) for the right eye and 26.25 mm (IQ 25.97 ~ 27.32) for the left eye. These newly identified genetic variations not only broaden the genetic and clinical spectra, but also offer convincing evidence that the genes ARR3, NDUFAF7, TNFRSF21, and ZNF644 contribute to hereditable HM. This work improves further understanding of molecular mechanism of HM.
Collapse
Affiliation(s)
- Min Ye
- Third Clinical Medical College, Ningxia Medical University, Yinchuan, China
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Ya Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Yi-Xuan Qin
- Third Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Bo Cai
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Li-Mei Ma
- North Minzu University, Yinchuan, China
| | - Zhen Ma
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Yang Liu
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China.
| | - Wen-Juan Zhuang
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
44
|
Tian Q, Tong P, Chen G, Deng M, Cai T, Tian R, Zhang Z, Xia K, Hu Z. GLRA2 gene mutations cause high myopia in humans and mice. J Med Genet 2023; 60:193-203. [PMID: 35396272 PMCID: PMC9887403 DOI: 10.1136/jmedgenet-2022-108425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/16/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND High myopia (HM) is a leading cause of blindness that has a strong genetic predisposition. However, its genetic and pathogenic mechanisms remain largely unknown. Thus, this study aims to determine the genetic profile of individuals from two large Chinese families with HM and 200 patients with familial/sporadic HM. We also explored the pathogenic mechanism of HM using HEK293 cells and a mouse model. METHODS The participants underwent genome-wide linkage analysis and exome sequencing. Visual acuity, electroretinogram response, refractive error, optical parameters and retinal rod cell genesis were measured in knockout mice. Immunofluorescent staining, biotin-labelled membrane protein isolation and electrophysiological characterisation were conducted in cells transfected with overexpression plasmids. RESULTS A novel HM locus on Xp22.2-p11.4 was identified. Variant c.539C>T (p.Pro180Leu) in GLRA2 gene was co-segregated with HM in the two families. Another variant, c.458G>A (p.Arg153Gln), was identified in a sporadic sample. The Glra2 knockout mice showed myopia-related phenotypes, decreased electroretinogram responses and impaired retinal rod cell genesis. Variants c.458G>A and c.539C>T altered the localisation of GlyRα2 on the cell membrane and decreased agonist sensitivity. CONCLUSION GLRA2 was identified as a novel HM-causing gene. Its variants would cause HM through altered visual experience by impairing photoperception and visual transmission.
Collapse
Affiliation(s)
- Qi Tian
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China,Hunan Key Laboratory of Animal Models for Human Disease, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Ping Tong
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Gong Chen
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China,Hunan Key Laboratory of Animal Models for Human Disease, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China,Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China,Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Meichun Deng
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China,Hunan Key Laboratory of Animal Models for Human Disease, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China,Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China,Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Tian'e Cai
- Reproductive Center, Sanya Central Hospital, Sanya, Hainan, People's Republic of China
| | - Runyi Tian
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China,Hunan Key Laboratory of Animal Models for Human Disease, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Zimin Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China,Hunan Key Laboratory of Animal Models for Human Disease, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China .,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China.,Hunan Key Laboratory of Animal Models for Human Disease, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhengmao Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China .,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China.,Hunan Key Laboratory of Animal Models for Human Disease, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
45
|
Xiao X, Yang J, Li Y, Yang H, Zhu Y, Li L, Zhou Q, Lu D, Chen T, Tian Y. Identification of a Novel Frameshift Variant of ARR3 Related to X-Linked Female-Limited Early-Onset High Myopia and Study on the Effect of X Chromosome Inactivation on the Myopia Severity. J Clin Med 2023; 12:jcm12030835. [PMID: 36769483 PMCID: PMC9917903 DOI: 10.3390/jcm12030835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
X-linked myopia 26 (Myopia 26, MIM #301010), which is caused by the variants of ARR3 (MIM *301770), is characterized by female-limited early-onset high myopia (eo-HM). Clinical characteristics include a tigroid appearance in the fundus and a temporal crescent of the optic nerve head. At present, the limited literature on eo-HM caused by ARR3 mutations shows that its inheritance mode is complex, which brings certain difficulties to pre-pregnancy genetic counseling, pre-implantation genetic diagnosis, and prenatal diagnosis. Here, we investigated the genetic underpinning of a Chinese family with eo-HM. Whole exome sequencing of the proband revealed a novel frameshift mutation in ARR3 (NM_004312, exon10, c.666delC, p. Asn222LysfsTer22). Although the mode of inheritance of the eo-HM family fits the X-linked pattern of ARR3, the phenotypes of three patients deviate from the typical early-onset high myopia. Through X-chromosome inactivation experiments, the patient's different phenotypes can be precisely explained. In addition, this study not only enhanced the correlation between ARR3 and early-onset high myopia but also provided explanations for different phenotypes, which may inspire follow-up studies. Our results enrich the knowledge of the variant spectrum in ARR3 and provide critical information for preimplantation and prenatal genetic testing, diagnosis, and counseling.
Collapse
Affiliation(s)
- Xuan Xiao
- Department of Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingmin Yang
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai WeHealth BioMedical Technology Co., Ltd., Shanghai 201210, China
| | - Ying Li
- Department of Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hongxia Yang
- Department of Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yijian Zhu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, China
| | - Lianbing Li
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, China
| | - Qinlinglan Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Daru Lu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ting Chen
- Department of Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Correspondence: (T.C.); (Y.T.)
| | - Yafei Tian
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Correspondence: (T.C.); (Y.T.)
| |
Collapse
|
46
|
Cheng Y, Ren T, Wang N. Biomechanical homeostasis in ocular diseases: A mini-review. Front Public Health 2023; 11:1106728. [PMID: 36733902 PMCID: PMC9886686 DOI: 10.3389/fpubh.2023.1106728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Diabetes mellitus-induced hyperglycemia is responsible for multiple pathological ocular alternations from vasculopathy to biomechanical dyshomeostasis. Biomechanical homeostasis is crucial to maintain the normal physiological condition of the eyes. Biomechanical features vary in eye tissues regarding different anatomical positions, tissue components, and cellular functions. The disturbance in biomechanical homeostasis may result in different ocular diseases. In this review, we provide a preliminary sketch of the latest evidence on the mechano-environment of the eyeball and its possible influencing factors, thereby underscoring the relationship between the dyshomeostasis of ocular biomechanics and common eye diseases (e.g., diabetic retinopathy, keratoconus, glaucoma, spaceflight-associated neuro-ocular syndrome, retinal vein occlusion and myopia, etc.). Together with the reported evidence, we further discuss and postulate the potential role of biomechanical homeostasis in ophthalmic pathology. Some latest strategies to investigate the biomechanical properties in ocular diseases help unveil the pathological changes at multiple scales, offering references for making new diagnostic and treatment strategies targeting mechanobiology.
Collapse
Affiliation(s)
- Ying Cheng
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Tianmin Ren
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China,Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China,*Correspondence: Ningli Wang ✉
| |
Collapse
|
47
|
Swierkowska J, Vishweswaraiah S, Mrugacz M, Radhakrishna U, Gajecka M. Differential methylation of microRNA encoding genes may contribute to high myopia. Front Genet 2023; 13:1089784. [PMID: 36685896 PMCID: PMC9847511 DOI: 10.3389/fgene.2022.1089784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: High myopia (HM), an eye disorder with a refractive error ≤-6.0 diopters, has multifactorial etiology with environmental and genetic factors involved. Recent studies confirm the impact of alterations in DNA methylation and microRNAs (miRNAs) on myopia. Here, we studied the combined aspects evaluating to the role of methylation of miRNA encoding genes in HM. Materials and Methods: From the genome-wide DNA methylation data of 18 Polish children with HM and 18 matched controls, we retrieved differentially methylated CG dinucleotides localized in miRNA encoding genes. Putative target genes of the highest-ranked miRNAs were obtained from the miRDB and included in overrepresentation analyses in the ConsensusPathDB. Expression of target genes was assessed using the RNA sequencing data of retinal ARPE-19 cell line. Results: We identified differential methylation of CG dinucleotides in promoter regions of MIR3621, MIR34C, MIR423 (increased methylation level), and MIR1178, MIRLET7A2, MIR885, MIR548I3, MIR6854, MIR675, MIRLET7C, MIR99A (decreased methylation level) genes. Several targets of these miRNAs, e.g. GNAS, TRAM1, CTNNB1, EIF4B, TENM3 and RUNX were previously associated with myopia/HM/refractive error in Europeans in genome-wide association studies. Overrepresentation analyses of miRNAs' targets revealed enrichment in pathways/processes related to eye structure/function, such as axon guidance, transcription, focal adhesion, and signaling pathways of TGF-β, insulin, MAPK and EGF-EGFR. Conclusion: Differential methylation of indicated miRNA encoding genes might influence their expression and contribute to HM pathogenesis via disrupted regulation of transcription of miRNAs' target genes. Methylation of genes encoding miRNAs may be a new direction in research on both the mechanisms determining HM and non-invasive indicators in diagnostics.
Collapse
Affiliation(s)
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, United States
| | - Malgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, Bialystok, Poland
| | - Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, United States
| | - Marzena Gajecka
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland,Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland,*Correspondence: Marzena Gajecka,
| |
Collapse
|
48
|
Stingl JV, Ban SA, Nagler M, Schmidtmann I, Wild PS, Lackner KJ, Münzel T, Beutel ME, Pfeiffer N, Schuster AK. Five-year change in refractive error and its risk factors: results from the Gutenberg Health Study. Br J Ophthalmol 2023; 107:140-146. [PMID: 34362774 PMCID: PMC9763219 DOI: 10.1136/bjophthalmol-2021-318828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/23/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND/AIMS To examine the 5-year change in refractive error in phakic eyes and its risk factors in the general population. METHODS The Gutenberg Health Study (GHS) is a population-based cohort study including 15 010 participants from Germany aged 35-74 years at baseline examination (2007-2012). After 5 years, a follow-up examination was carried out (83% participation). 5-year change of spherical equivalent (SE) was computed as difference between follow-up and baseline objective refraction. Linear and logistic regression analysis were conducted analysing potential risk factors. Only phakic eyes at follow-up examination were included. RESULTS Right eyes of 10 175 subjects were included. An age-related shift of refractive error was identified, namely -0.12 D for age 35-44 years, 0.25 D for age 45-54 years, 0.25 D for age 55-64 years and 0.12 D for age 65-74 years during the 5-year follow-up. Smokers had a hyperopic shift (OR=1.31; p<0.001), while baseline SE (OR=0.89 per dioptre; p<0.001) and female sex (OR=1.49; p<0.001) were linked with a myopic shift. Education, occupation and other cardiovascular parameters were not associated with change in refractive error. CONCLUSIONS The GHS demonstrates a parabolic shift in refractive error with a myopic shift at age 35-44 years, followed by a hyperopic shift at age 45-64 years which decreases at higher age. Smoking is associated with a hyperopic shift whereas female sex and myopic baseline SE is associated with a myopic shift. Educational level and occupation were not linked to a change in refractive error at age 35-74 years.
Collapse
Affiliation(s)
- Julia V. Stingl
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sol A Ban
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Nagler
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Irene Schmidtmann
- Institute for Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Philipp S. Wild
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany,Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany,German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| | - Karl J. Lackner
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Münzel
- Center for Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Manfred E. Beutel
- Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexander K. Schuster
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
49
|
Ye L, Yang YQ, Zhang GY, Wang WJ, Ren MX, Ge P, Zhang J, Zhang N, Liu XZ, Zhang ML, Tong YJ, Lu LC, Lv MQ, Zhou DX, Pei C. Increasing prevalence of myopia and the impact of education in primary-school students in Xi'an, north-western of China. Front Public Health 2022; 10:1070984. [PMID: 36600934 PMCID: PMC9806175 DOI: 10.3389/fpubh.2022.1070984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose The present study was performed to detect the prevalence of myopia among primary-school students in Xi'an, north-western of China. Methods The present study was a school-based study with students aged from 6 to 13 years old. All the individuals underwent ophthalmological examination and spherical equivalent (SE) of refractive error were measured with non-cycloplegic refraction. Myopia was defined as a SE of ≤ -0.5 diopters (D), and further divided into three stratified groups based on SE: low myopia (≤ -0.5 to >-3.0 D), moderate myopia (≤ -3.0 to >-6.0 D), and high myopia (≤ -6.0 D). Relative risk factors, including age, sex, grade and ethnicity were investigated using questionnaire. Results A total of 4,680 individuals were eligible for this survey and 4,654 (99.4% participation rate) were finally included (51.2% boys). The mean age of participants was 8.756 ± 1.727 years. The whole city-level prevalence of total myopia was 57.1% (95% CI: 55.7-58.6%). Additionally, the prevalence of low, moderate, and high myopia was 45.0% (95% CI: 43.5-46.4%), 11.1% (95% CI: 10.2-12.0%), and 1.0% (95% CI: 0.7-1.3%), respectively. Moreover, grade (education level) instead of age, sex and ethnicity was the most essential risk factor for prevalence of overall myopia (OR = 1.844, 95% CI: 1.605-2.119), and an increase of prevalence by 84.4% per grade was seen. Furthermore, similar associations of grade were significant with low myopia (OR = 1.613, 95% CI: 1.385-1.877) and moderate myopia (OR = 2.186, 95% CI: 1.693-2.823), meanwhile, prevalence of low myopia and moderate myopia demonstrated an increase of prevalence by 61.3 and 118.6% per grade, respectively. None of the factors included in the present study was significant risk factor for high myopia. Conclusions The present study investigated a non-negligible high prevalence of myopia among primary-school students in Xi'an, north-western of China, and a gradual increasing in proportion with education level.
Collapse
Affiliation(s)
- Lu Ye
- Health Science Center, Xi'an Jiaotong University, Xi'an, China,Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Yan-qi Yang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Guo-yun Zhang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Wen-jun Wang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Mei-xia Ren
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Pan Ge
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jian Zhang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Nan Zhang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xing-zhou Liu
- Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Ming-lei Zhang
- Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yu-jiao Tong
- Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Liang-cai Lu
- Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Mo-qi Lv
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China,*Correspondence: Mo-qi Lv
| | - Dang-xia Zhou
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China,Dang-xia Zhou
| | - Cheng Pei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China,Cheng Pei
| |
Collapse
|
50
|
Weighted Zernike defocus coefficient of treatment zone is a meaningful indicator for myopia control efficacy of Ortho-K lenses. EYE AND VISION 2022; 9:24. [PMID: 35773712 PMCID: PMC9248179 DOI: 10.1186/s40662-022-00296-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/06/2022] [Indexed: 12/04/2022]
Abstract
Background The goal of this study was to reproduce a three-dimensional representation of corneal defocus characteristics after orthokeratology (Ortho-K) treatment via an indicator defined as the weighted Zernike defocus coefficient of the treatment zone (Cweighted defocus). This could be used to predict the effectiveness of Ortho-K treatment quantitatively in a timely manner after the one-month visit. Methods Seventy myopic children with axial length (AL) elongation after Ortho-K treatment (group A) and 63 myopic children with AL shortening after Ortho-K treatment (group B) were included in this one-year retrospective study. The proposed indicator was calculated by a customized MATLAB program. Multivariate binomial logistic regression and multivariate linear regression analyses were used to explore the association between AL change and the Cweighted defocus, age, sex, and other ocular biometric parameters. Results The 12-month AL change, age, pupil diameter, and vertical decentration of the Ortho-K lens were significantly different between the two groups. Multivariate logistic regression analysis showed that a larger Cweighted defocus (≥ 0.35 D/mm2) (OR: 0.224; 95% CI: 0.078–0.646; P = 0.006) was correlated with the emergence of AL shortening after orthokeratology treatment. A multivariate linear regression model showed that a greater Cweighted defocus was associated with slower 12-month AL elongation (β = − 0.51, P = 0.001). Conclusions The Cweighted defocus is an effective predictive indicator of myopia control, and a larger Cweighted defocus may lead to slower elongation of AL. This meaningful indicator may help in the evaluation and adjustment of Ortho-K lens parameters in a timely manner and minimize the cost of clinical trial and error.
Collapse
|