1
|
Miller JL, Niewiesk S. Review of impaired immune parameters in RSV infections in the elderly. Virology 2025; 603:110395. [PMID: 39827596 DOI: 10.1016/j.virol.2025.110395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Respiratory syncytial virus (RSV) infections in elderly individuals are associated with increased rates of severe clinical disease and mortality compared to younger adults. Age-associated declines in numerous innate and adaptive immune parameters during RSV infection contribute to infection susceptibility, impaired viral clearance, and distorted cytokine profiles in the elderly. Impaired immune responses in this age group also adversely affect longevity of RSV immunity following vaccination in experimental settings. This review summarizes the effects of aging on cellular immune responses to RSV in humans and animal models, molecular mechanisms for these impaired responses where they have been elucidated, and the clinical consequences of impaired immunity in the elderly.
Collapse
Affiliation(s)
- Jonathan L Miller
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Jong HC, Zheng JQ, Zheng CM, Lin CH, Chiu CC, Hsu MH, Fang YA, Hao WR, Chen CC, Yang TY, Lee KY, Liu JC. Effect of Annual Influenza Vaccination on the Risk of Lung Cancer Among Patients With Hypertension: A Population-Based Cohort Study in Taiwan. Int J Public Health 2023; 68:1605370. [PMID: 37849687 PMCID: PMC10577198 DOI: 10.3389/ijph.2023.1605370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
Objectives: Lung cancer is a main contributor to all newly diagnosed cancers worldwide. The chemoprotective effect of the influenza vaccine among patients with hypertension remains unclear. Methods: A total of 37,022 patients with hypertension were retrospectively enrolled from the Taiwan National Health Insurance Research Database. These patients were further divided into a vaccinated group (n = 15,697) and an unvaccinated group (n = 21,325). Results: After adjusting for sex, age, comorbidities, medications, level of urbanization and monthly income, vaccinated patients had a significantly lower risk of lung cancer occurrence than unvaccinated patients (adjusted hazard ratio [aHR]: 0.56, 95% confidence interval [CI]: 0.47-0.67). A potential protective effect was observed for both sexes and in the elderly age group. With a greater total number of vaccinations, a potentially greater protective effect was observed (aHR: 0.75, 95% CI 0.60-0.95; aHR: 0.66, 95% CI: 0.53-0.82; aHR: 0.26, 95% CI: 0.19-0.36, after receiving 1, 2-3 and ≥4 vaccinations, respectively). Conclusion: Influenza vaccination was associated with a lower risk of lung cancer among patients with hypertension. The potentially chemoprotective effect appeared to be dose dependent.
Collapse
Affiliation(s)
- Hung-Chang Jong
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Jing-Quan Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cai-Mei Zheng
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Hsin Lin
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chih Chiu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Min-Huei Hsu
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ann Fang
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Rui Hao
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chao Chen
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung Yeh Yang
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kang-Yun Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ju-Chi Liu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Bindu S, Dandapat S, Manikandan R, Dinesh M, Subbaiyan A, Mani P, Dhawan M, Tiwari R, Bilal M, Emran TB, Mitra S, Rabaan AA, Mutair AA, Alawi ZA, Alhumaid S, Dhama K. Prophylactic and therapeutic insights into trained immunity: A renewed concept of innate immune memory. Hum Vaccin Immunother 2022; 18:2040238. [PMID: 35240935 PMCID: PMC9009931 DOI: 10.1080/21645515.2022.2040238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/18/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
Trained immunity is a renewed concept of innate immune memory that facilitates the innate immune system to have the capacity to remember and train cells via metabolic and transcriptional events to enable them to provide nonspecific defense against the subsequent encounters with a range of pathogens and acquire a quicker and more robust immune response, but different from the adaptive immune memory. Reversing the epigenetic changes or targeting the immunological pathways may be considered potential therapeutic approaches to counteract the hyper-responsive or hypo-responsive state of trained immunity. The efficient regulation of immune homeostasis and promotion or inhibition of immune responses is required for a balanced response. Trained immunity-based vaccines can serve as potent immune stimuli and help in the clearance of pathogens in the body through multiple or heterologous effects and confer protection against nonspecific and specific pathogens. This review highlights various features of trained immunity and its applications in developing novel therapeutics and vaccines, along with certain detrimental effects, challenges as well as future perspectives.
Collapse
Affiliation(s)
- Suresh Bindu
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Satyabrata Dandapat
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Rajendran Manikandan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Anbazhagan Subbaiyan
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Pashupathi Mani
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- Indian Council of Agricultural Research, The Trafford Group of Colleges, Manchester, UK
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangldesh
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, Australia
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
4
|
Meyyazhagan A, Pushparaj K, Balasubramanian B, Kuchi Bhotla H, Pappusamy M, Arumugam VA, Easwaran M, Pottail L, Mani P, Tsibizova V, Di Renzo GC. COVID-19 in pregnant women and children: Insights on clinical manifestations, complexities, and pathogenesis. Int J Gynaecol Obstet 2022; 156:216-224. [PMID: 34735717 PMCID: PMC9087615 DOI: 10.1002/ijgo.14007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022]
Abstract
Pregnancy changes the body's immune system to counteract the spectrum of infections, including COVID-19, which can pose complications. Pregnant women are less likely to contract COVID-19 infections than the general public. However, pregnant women are at slightly increased risk of becoming severely unwell if they do catch COVID-19, and congenital conditions in pregnant women may worsen the state of infection and lead to critical stages and even mortality. The possibility of vertical transmission has been reported in only a few cases of COVID-19; however, it was not noted in cases of SARS and MERS. Vaccination coverage in pregnant women remains a challenge. Children are the next suspected and vulnerable population to acquire infection after the first and second waves. Children are disproportionately infected compared with older populations, but the severity of infection is less compared to adults. This review highlights the complexities of COVID-19 in pregnant women and the underlying reasons why children tend to be comparatively less severely affected. Ethnicity, nutrition, lifestyle, and therapeutics influence the severity of infection in children. Low expression of angiotensin-converting enzyme 2 receptors, indigenous virus competence, and maternal immunity is the first-line defense for children against COVID-19. Habituating herbal medicines from childhood may help support a robust and defensive immune system to counteract novel antigens and encourage healthy generations.
Collapse
Affiliation(s)
- Arun Meyyazhagan
- Department of Obstetrics and Gynecology and Centre for Perinatal and Reproductive MedicineUniversity of PerugiaPerugiaItaly
- Department of Life SciencesCHRIST (Deemed to be University)BengaluruKarnatakaIndia
| | - Karthika Pushparaj
- Department of ZoologyAvinashilingam Institute for Home Science and Higher Education for WomenCoimbatoreTamil NaduIndia
| | | | | | - Manikantan Pappusamy
- Department of Life SciencesCHRIST (Deemed to be University)BengaluruKarnatakaIndia
| | - Vijaya Anand Arumugam
- Medical Genetics and Epigenetics LaboratoryDepartment of Human Genetics and Molecular BiologyBharathiar UniversityCoimbatoreTamil NaduIndia
| | - Murugesh Easwaran
- Nutritional Improvement of CropsInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Lalitha Pottail
- Department of ChemistrySchool of Physical and Computational SciencesAvinashilingam Institute for Home Science and Higher Education for WomenCoimbatoreTamil NaduIndia
| | - Poonkothai Mani
- Department of ZoologyAvinashilingam Institute for Home Science and Higher Education for WomenCoimbatoreTamil NaduIndia
| | - Valentina Tsibizova
- Institute of Perinatology and PediatricsAlmazov National Medical Research CentreSaint PetersburgRussian Federation
| | - Gian Carlo Di Renzo
- Department of Obstetrics and Gynecology and Centre for Perinatal and Reproductive MedicineUniversity of PerugiaPerugiaItaly
| |
Collapse
|
5
|
Weinberger B. Vaccination of older adults: Influenza, pneumococcal disease, herpes zoster, COVID-19 and beyond. Immun Ageing 2021; 18:38. [PMID: 34627326 PMCID: PMC8501352 DOI: 10.1186/s12979-021-00249-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
Preserving good health in old age is of utmost importance to alleviate societal, economic and health care-related challenges caused by an aging society. The prevalence and severity of many infectious diseases is higher in older adults, and in addition to the acute disease, long-term sequelae, such as exacerbation of underlying chronic disease, onset of frailty or increased long-term care dependency, are frequent. Prevention of infections e.g. by vaccination is therefore an important measure to ensure healthy aging and preserve quality of life. Several vaccines are specifically recommended for older adults in many countries, and in the current SARS-CoV-2 pandemic older adults were among the first target groups for vaccination due to their high risk for severe disease. This review highlights clinical data on the influenza, Streptococcus pneumoniae and herpes zoster vaccines, summarizes recent developments to improve vaccine efficacy, such as the use of adjuvants or higher antigen dose for influenza, and gives an overview of SARS-CoV-2 vaccine development for older adults. Substantial research is ongoing to further improve vaccines, e.g. by developing universal influenza and pneumococcal vaccines to overcome the limitations of the current strain-specific vaccines, and to develop novel vaccines against pathogens, which cause considerable morbidity and mortality in older adults, but for which no vaccines are currently available. In addition, we need to improve uptake of the existing vaccines and increase awareness for life-long vaccination in order to provide optimal protection for the vulnerable older age group.
Collapse
Affiliation(s)
- Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Rennweg 10, 6020, Innsbruck, Austria.
| |
Collapse
|
6
|
Rees-Spear C, McCoy LE. Vaccine responses in ageing and chronic viral infection. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab007. [PMID: 36845567 PMCID: PMC9914503 DOI: 10.1093/oxfimm/iqab007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last few decades, changing population demographics have shown that there are a growing number of individuals living past the age of 60. With this expanding older population comes an increase in individuals that are more susceptible to chronic illness and disease. An important part of maintaining health in this population is through prophylactic vaccination, however, there is growing evidence that vaccines may be less effective in the elderly. Furthermore, with the success of anti-viral therapies, chronic infections such as HIV are becoming increasingly prevalent in older populations and present a relatively unstudied population with respect to the efficacy of vaccination. Here we will examine the evidence for age-associated reduction in antibody and cellular responsiveness to a variety of common vaccines and investigate the underlying causes attributed to this phenomenon, such as inflammation and senescence. We will also discuss the impact of chronic viral infections on immune responses in both young and elderly patients, particularly those living with HIV, and how this affects vaccinations in these populations.
Collapse
Affiliation(s)
- Chloe Rees-Spear
- Division of Infection and Immunity, University College London, London, UK
| | - Laura E McCoy
- Division of Infection and Immunity, University College London, London, UK,Correspondence address. Division of Infection and Immunity, University College London, London, UK. E-mail:
| |
Collapse
|
7
|
Smail SW, Saeed M, Twana Alkasalias, Khudhur ZO, Younus DA, Rajab MF, Abdulahad WH, Hussain HI, Niaz K, Safdar M. Inflammation, immunity and potential target therapy of SARS-COV-2: A total scale analysis review. Food Chem Toxicol 2021; 150:112087. [PMID: 33640537 PMCID: PMC7905385 DOI: 10.1016/j.fct.2021.112087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Coronavirus disease-19 (COVID-19) is a complex disease that causes illness ranging from mild to severe respiratory problems. It is caused by a novel coronavirus SARS-CoV-2 (Severe acute respiratory syndrome coronavirus-2) that is an enveloped positive-sense single-stranded RNA (+ssRNA) virus belongs to coronavirus CoV family. It has a fast-spreading potential worldwide, which leads to high mortality regardless of lows death rates. Now some vaccines or a specific drug are approved but not available for every country for disease prevention and/or treatment. Therefore, it is a high demand to identify the known drugs and test them as a possible therapeutic approach. In this critical situation, one or more of these drugs may represent the only option to treat or reduce the severity of the disease, until some specific drugs or vaccines will be developed and/or approved for everyone in this pandemic. In this updated review, the available repurpose immunotherapeutic treatment strategies are highlighted, elucidating the crosstalk between the immune system and SARS-CoV-2. Despite the reasonable data availability, the effectiveness and safety of these drugs against SARS-CoV-2 needs further studies and validations aiming for a better clinical outcome.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- Department of Biology, College of Science, Salahaddin University-Erbil, Iraq; Department of Biology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Muhammad Saeed
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences-63100, Bahawalpur, Pakistan
| | - Twana Alkasalias
- Department of Pathological Analysis, College of Science, Knowledge University, Erbil, Kurdistan Region, Iraq; General Directorate for Scientific Research Center, Salahaddin University- Erbil, Erbil, Kurdistan Region, Iraq; Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Science, Tishk International University - Erbil, Kurdistan Region, Iraq
| | - Delan Ameen Younus
- General Directorate for Scientific Research Center, Salahaddin University- Erbil, Erbil, Kurdistan Region, Iraq
| | - Mustafa Fahmi Rajab
- Department of Biology, College of Science, Salahaddin University-Erbil, Iraq
| | - Wayel Habib Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands; Department of Pathology and Medical Biology, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Hafiz Iftikhar Hussain
- Department of Pathology, Faculty of Veterinary Sciences, Cholistan University of Veterinary and Animal Sciences-63100, Bahawalpur, Pakistan
| | - Kamal Niaz
- Department of Pharmacology & Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences-63100, Bahawalpur, Pakistan
| | - Muhammad Safdar
- Department of Breeding and Genetics, Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences-63100, Bahawalpur, Pakistan.
| |
Collapse
|
8
|
Sinaei R, Pezeshki S, Parvaresh S, Sinaei R. Why COVID-19 is less frequent and severe in children: a narrative review. World J Pediatr 2021; 17:10-20. [PMID: 32978651 PMCID: PMC7518650 DOI: 10.1007/s12519-020-00392-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Despite the streaks of severity, severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection is, in general, less frequent and severe in children than in adults. We searched for causal evidence of this mystery. DATA SOURCES An extensive search strategy was designed to identify papers on coronavirus disease 2019 (COVID-19). We searched Ovid MEDLINE, PubMed, EMBASE databases, and Cochrane library and carried out a review on the causes of this dilemma. RESULTS Our searches produced 81 relevant articles. The review showed that children accounted for a lower percentage of reported cases, and they also experienced less severe illness courses. Some potential explanations, including the tendency to engage the upper airway, the different expression in both receptors of angiotensin-converting enzyme and renin-angiotensin system, a less vigorous immune response, the lower levels of interleukin (IL)-6, IL-10, myeloperoxidase, and P-selectin and a higher intracellular adhesion molecule-1, a potential protective role of lymphocytes, and also lung infiltrations might have protective roles in the immune system-respiratory tract interactions. Finally, what have shed light on this under representation comes from two studies that revealed high-titer immunoglobulin-G antibodies against respiratory syncytial virus and mycoplasma pneumonia, may carry out cross-protection against SARS-CoV-2 infection, just like what suggested about the vaccines. CONCLUSIONS These results require an in-depth look. Properties of the immune system including a less vigorous adaptive system beside a preliminary potent innate response and a trained immunity alongside a healthier respiratory system, and their interactions, might protect children against SARS-CoV-2 infection. However, further studies are needed to explore other possible causes of this enigma.
Collapse
Affiliation(s)
- Reza Sinaei
- Department of Pediatrics, School of Medicine, Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Pezeshki
- Department of Internal Medicine, School of Medicine, Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Saeedeh Parvaresh
- Department of Pediatrics, School of Medicine, Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Roya Sinaei
- Department of Pediatrics, School of Medicine, Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Tajbakhsh A, Jaberi KR, Hayat SMG, Sharifi M, Johnston TP, Guest PC, Jafari M, Sahebkar A. Age-Specific Differences in the Severity of COVID-19 Between Children and Adults: Reality and Reasons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1327:63-78. [PMID: 34279829 DOI: 10.1007/978-3-030-71697-4_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, children experience mild symptoms compared to adults. However, the precise explanations for this disparity are not clear. Thus, we attempted to identify rational explanations about age-related differences as reported in different studies. Given the incomplete data on SARS-CoV-2, some information has been gathered from other studies of earlier coronavirus or influenza outbreaks. Age-related differences in disease severity are important with regard to diagnosis, prognosis, and treatment of SARS-CoV-2 infections. In addition, these differences impact social distancing needs, since pediatric patients with mild or asymptomatic are likely to play a significant role in disease transmission.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyed Mohammad Gheibi Hayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehrdad Sharifi
- Department of Emergency Medicine, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mohammad Jafari
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
10
|
Bulut O, Kilic G, Domínguez-Andrés J, Netea MG. Overcoming immune dysfunction in the elderly: trained immunity as a novel approach. Int Immunol 2020; 32:741-753. [PMID: 32766848 PMCID: PMC7680842 DOI: 10.1093/intimm/dxaa052] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
People with advanced age have a higher susceptibility to infections and exhibit increased mortality and morbidity as the ability of the immune system to combat infections decreases with age. While innate immune cells display functional defects such as decreased phagocytosis, chemotaxis and cytokine production, adaptive immune cells exhibit reduced receptor diversity, defective antibody production and a sharp decline in naive cell populations. Successful responses to vaccination in the elderly are critical to prevent common infections such as influenza and pneumonia, but vaccine efficacy decreases in older individuals compared with young adults. Trained immunity is a newly emerging concept that showed that innate immune cells possess non-specific immunological memory established through epigenetic and metabolic reprogramming upon encountering certain pathogenic stimuli. Clinical studies suggest that trained immunity can be utilized to enhance immune responses against infections and improve the efficiency of vaccinations in adults; however, how trained immunity responses are shaped with advanced age is still an open question. In this review, we provide an overview of the age-related changes in the immune system with a focus on innate immunity, discuss current vaccination strategies for the elderly, present the concept of trained immunity and propose it as a novel approach to enhance responses against infections and vaccinations in the elderly population.
Collapse
Affiliation(s)
- Ozlem Bulut
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
| | - Gizem Kilic
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Yu Y. Herd immunization with childhood vaccination may provide protection against COVID-19. Acta Microbiol Immunol Hung 2020; 67:198-200. [PMID: 32986604 DOI: 10.1556/030.2020.01207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/21/2020] [Indexed: 12/22/2022]
Abstract
It may take time to obtain a vaccine for the current COVID-19, and the virus genome may keep an evolution and mutations, so a universal and effective vaccine for the coronavirus may not be possible. Epidemiological studies reveal the infection of SARS and COVID-19 in children is less frequent and less severe than in adults. Childhood vaccine-mediated cross cellular immunity and immunomodulation might provide protection against the infections of COVID-19. These data suggest that herd immunization with children vaccines in adults may improve the adult cross cellular immunity and immunomodulation and improve their clinical presentation and prognosis. This can be also useful to cope with future pandemics.
Collapse
Affiliation(s)
- Yongqiang Yu
- 1Mindong Hospital, Fuan, Ningde, China
- 2The Affiliated Mindong Hospital of Fujian Medical University, Fuan, Ningde, China
| |
Collapse
|
12
|
Kloc M, Ghobrial RM, Kuchar E, Lewicki S, Kubiak JZ. Development of child immunity in the context of COVID-19 pandemic. Clin Immunol 2020; 217:108510. [PMID: 32544611 PMCID: PMC7293525 DOI: 10.1016/j.clim.2020.108510] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
Children, because of having an immature immune system, are usually more prone than the adults to the microbial infections and have more severe symptoms, which is especially true for the newborns, and very young children. However, the review of clinical data from the current COVID-19 pandemic indicates otherwise. We discuss here what are the main features and components of children's immune system, the role of maternal transmission of immunity, and what are the possible explanations for the seemingly lower infection rate and severity of COVI-19 in children.
Collapse
Affiliation(s)
- Małgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA; The Houston Methodist Hospital, Department of Surgery, Houston, TX, USA; The University of Texas, M.D. Anderson Cancer Center, Department of Genetics, Houston, TX, USA.
| | - Rafik M Ghobrial
- The Houston Methodist Research Institute, Houston, TX, USA; The Houston Methodist Hospital, Department of Surgery, Houston, TX, USA
| | - Ernest Kuchar
- Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Poland
| | - Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
| | - Jacek Z Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland; UnivRennes, UMR 6290, CNRS, Institute of Genetics and Development of Rennes, Cell Cycle Group, Faculty of Medicine, Rennes, France.
| |
Collapse
|
13
|
Effects of Porphyra tenera Supplementation on the Immune System: A Randomized, Double-Blind, and Placebo-Controlled Clinical Trial. Nutrients 2020; 12:nu12061642. [PMID: 32498269 PMCID: PMC7352330 DOI: 10.3390/nu12061642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022] Open
Abstract
Objective: The purpose of this study was to determine if Porphyra tenera extract (PTE) has immune-enhancing effects and is safe in healthy adults. Methods: Subjects who met the inclusion criteria (3 × 103 ≤ peripheral blood leukocyte level ≥ 8 × 103 cells/µL) were recruited for this study. Enrolled subjects (n = 120) were randomly assigned to either the PTE group (n = 60) and were given 2.5 g/day of PTE (as PTE) in capsule form or the placebo group (n = 60) and were given crystal cellulose capsules with the identical appearance, weight, and flavor as the PTE capsules for 8 weeks. Outcomes were assessed based on measuring natural killer (NK) cell activity, cytokines level, and upper respiratory infection (URI), and safety parameters were assessed at baseline and 8 weeks. Results: Compared with baseline, NK cell activity (%) increased for all effector cell-to-target cell ratios in the PTE group after 8 weeks; however, changes were not observed in the placebo group (p < 0.10). Subgroup analysis of 101 subjects without URI showed that NK cell activity in the PTE group tended to increase for all effector cell/target cell (E:T) ratios (E:T = 12.5:1 p = 0.068; E:T = 25:1 p = 0.036; E:T = 50:1 p = 0.081) compared with the placebo group. A significant difference between the two groups was observed for the E:T = 25:1 ratio, which increased from 20.3 ± 12.0% at baseline to 23.2 ± 12.4% after 8 weeks in the PTE group (p = 0.036). A significant difference was not observed in cytokine between the two groups. Conclusion: PTE supplementation appears to enhance immune function by improving NK cell activity without adverse effects in healthy adults.
Collapse
|
14
|
Cristiani L, Mancino E, Matera L, Nenna R, Pierangeli A, Scagnolari C, Midulla F. Will children reveal their secret? The coronavirus dilemma. Eur Respir J 2020. [DOI: 10.1183/13993003.00749-2020 [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Cristiani L, Mancino E, Matera L, Nenna R, Pierangeli A, Scagnolari C, Midulla F. Will children reveal their secret? The coronavirus dilemma. Eur Respir J 2020; 55:2000749. [PMID: 32241833 PMCID: PMC7113798 DOI: 10.1183/13993003.00749-2020] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
Abstract
On March 11, 2020, a novel human coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become pandemic [1]. By March 24, 372.757 SARS-CoV-2 confirmed cases and 16.231 related deaths have been reported worldwide [2]. In Italy, 62.844 cases and 5.542 deaths have been reported, mostly in northern regions. Detailed data are updated by the Italian National Institute of Health [3]. Epidemiological evidences show that SARS-CoV-2 infection in children is less frequent and severe than adults. Age-related ACE2 receptor expression, lymphocyte count and trained immunity might be the keystone to reveal children's secret.
Collapse
Affiliation(s)
- Luca Cristiani
- Department of Maternal Science, Sapienza University of Rome, Rome, Italy
| | - Enrica Mancino
- Department of Maternal Science, Sapienza University of Rome, Rome, Italy
| | - Luigi Matera
- Department of Maternal Science, Sapienza University of Rome, Rome, Italy
| | - Raffaella Nenna
- Department of Maternal Science, Sapienza University of Rome, Rome, Italy
| | - Alessandra Pierangeli
- Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia – Cenci Bolognetti Foundation, Sapienza University, Rome, Italy
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia – Cenci Bolognetti Foundation, Sapienza University, Rome, Italy
| | - Fabio Midulla
- Department of Maternal Science, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Quadrivalent Influenza Vaccine-Induced Antibody Response and Influencing Determinants in Patients ≥ 55 Years of Age in the 2018/2019 Season. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16224489. [PMID: 31739554 PMCID: PMC6887788 DOI: 10.3390/ijerph16224489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
Abstract
The effects of immunization with subunit inactivated quadrivalent influenza vaccine (QIV) are not generally well assessed in the elderly Polish population. Therefore, this study evaluated vaccine-induced antibody response and its determinants. Methods: Consecutive patients ≥ 55 years old, attending a Primary Care Clinic in Gryfino, Poland, received QIV (A/Michigan/ 45/2015(H1N1)pdm09, A/Singapore/INFIMH-16-0019/2016 (H3N2), B/Colorado/06/2017, B/Phuket/ 3073/2013) between October-December 2018. Hemagglutination inhibition assays measured antibody response to vaccine strains from pre/postvaccination serum samples. Geometric mean titer ratio (GMTR), protection rate (PR) and seroconversion rate (SR) were also calculated. Results: For 108 patients (54.6% males, mean age: 66.7 years) the highest GMTR (61.5-fold) was observed for A/H3N2/, then B/Colorado/06/2017 (10.3-fold), A/H1N1/pdm09 (8.4-fold) and B/Phuket/ 3073/2013 (3.0-fold). Most patients had post-vaccination protection for A/H3N2/ and B/Phuket/3073/ 2013 (64.8% and 70.4%, respectively); lower PRs were observed for A/H1N1/pdm09 (41.8%) and B/Colorado/06/ 2017 (57.4%). The SRs for A/H3N2/, A/H1N1/pdm09, B Victoria and B Yamagata were 64.8%, 38.0%, 46.8%, and 48.2%, respectively. Patients who received QIV vaccination in the previous season presented lower (p < 0.001 and p = 0.03, respectively) response to B Victoria and B Yamagata. Conclusions: QIV was immunogenic against the additional B lineage strain (B Victoria) without significantly compromising the immunogenicity of the other three vaccine strains, therefore, adding a second B lineage strain in QIV could broaden protection against influenza B infection in this age group. As the QIV immunogenicity differed regarding the four antigens, formulation adjustments to increase the antigen concentration of the serotypes that have lower immunogenicity could increase effectiveness. Prior season vaccination was associated with lower antibody response to a new vaccine, although not consistent through the vaccine strains.
Collapse
|
17
|
Self-reported diabetes and herpes zoster are associated with a weak humoral response to the seasonal influenza A H1N1 vaccine antigen among the elderly. BMC Infect Dis 2019; 19:656. [PMID: 31337344 PMCID: PMC6651912 DOI: 10.1186/s12879-019-4214-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/23/2019] [Indexed: 12/29/2022] Open
Abstract
Background The immune response to seasonal influenza vaccines decreases with advancing age. Therefore, an adjuvanted inactivated trivalent influenza vaccine (Fluad®) exists for elderly individuals. Fluad® is more immunogenic and efficacious than conventional influenza vaccines. However, the immune response varies and may still result in high frequencies of poor responders. Therefore, we aimed to a) examine the prevalence of a weak response to Fluad® and b) identify potential risk factors. Methods A prospective population-based study among individuals 65–80 years old was conducted in 2015/2016 in Hannover, Germany (n = 200). Hemagglutination-inhibition titers 21 days after vaccination with Fluad® served as indicator of vaccine responsiveness. Results The percentage of vaccinees with an inadequate vaccine response varied depending on the influenza strain: it was lowest for H3N2 (13.5%; 95% CI, 9.4–18.9%), intermediate for B strain (37.0%; 30.6–43.9%), and highest for H1N1 (49.0%; 42.2–55.9%). The risk of a weak response to the influenza A H1N1 strain was independently associated with self-reported diabetes (AOR, 4.64; 95% CI, 1.16–18.54), a history of herpes zoster (2.27; 1.01–5.10) and, to a much lesser extent, increasing age (change per year, 1.08; 0.99–1.16). In addition, herpes zoster was the only risk factor for a weak response to the H3N2 antigen (AOR, 3.12; 1.18–8.23). We found no significant association between sex, Body Mass Index, cancer, hypertension, heart attack and CMV seropositivity and a weak response to these two influenza A antigens. Despite its occurence in over one third of vaccinees, none of the variables examined proved to be risk factors for a weak response to the B antigen. Conclusions A considerable proportion of elderly individuals displayed a weak vaccine response to this adjuvanted seasonal influenza vaccine and further efforts are thus needed to improve immune responses to influenza vaccination among the elderly. Diabetes and herpes zoster were identified as potentially modifiable risk factors for a poor vaccine response against influenza A antigens, but the results also reveal the need for broader investigations to identify risk factors for inadequate responses to influenza B antigens. Trial registration No. NCT02362919 (ClinicalTrials.gov, date of registration: 09.02.2015). Electronic supplementary material The online version of this article (10.1186/s12879-019-4214-x) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Hwang JT, Cho JM, Jeong IH, Lee JY, Ha KC, Baek HI, Yang HJ, Kim MJ, Lee JH. The effect of silk peptide on immune system, A randomized, double-blind, placebo-controlled clinical trial. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
19
|
Hodgins B, Pillet S, Landry N, Ward BJ. A plant-derived VLP influenza vaccine elicits a balanced immune response even in very old mice with co-morbidities. PLoS One 2019; 14:e0210009. [PMID: 30629622 PMCID: PMC6328122 DOI: 10.1371/journal.pone.0210009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The elderly are at high risk from influenza, in part because immunity wanes with age and through the accumulation of comorbidities. A novel plant-derived virus-like-particle (VLP) vaccine bearing influenza hemagglutinin can induce a balanced humoral and cellular response in old mice (16-18 months) while split virion vaccines elicit mostly antibodies. Because mice also collect comorbidities and lose immune competence as they age, we wished to determine how the plant-derived VLP vaccine would perform in animals approaching the end of their life-span. MATERIALS AND METHODS Old (24-26 months) female BALB/c mice received two intramuscular doses of H1-VLP vaccine, an inactivated H1N1 vaccine (IIV) (both based on A/H1N1/California/07/09) (3μg each) or PBS. Serum was collected on day 42 and humoral responses were measured by enzyme-linked immunosorbent assay (ELISA), microneutralization (MN) and hemagglutination inhibition (HI) assays. Influenza-specific splenocyte CD4+ & CD8+ T cell responses were measured by flow cytometry. Full body computed tomography (CT) and structured necropsies were performed on day 42. Comorbidities including reduced lung volume (kyphosis), masses, abscesses, etc. were assessed using a standard scoring system (1-21) and mice with scores ≥5 were considered to have important comorbidities. RESULTS Overall, 53.3% of the animals had significant comorbidities. Three weeks post-boost, HI and MN titres were mostly undetectable but ELISA titres were significantly higher in the H1-VLP animals compared to the IIV group (GMT (95% CI): 961 (427, 2163) vs 425 (200, 903): p = 0.03). Both CD4+(TNFα, IFNγ) and CD8+ (IFNγ) T cell responses were also greater in the H1-VLP group than the IIV. CONCLUSIONS Even in very old mice with comorbidities, the plant-made H1-VLP vaccine elicited a stronger and more balanced immune response than IIV. Animals with fewer comorbidities tended to have the better composite (humoral and cellular) responses. These novel vaccines have the potential to address some of the limitations of current vaccines in the elderly.
Collapse
Affiliation(s)
- Breanna Hodgins
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Stephane Pillet
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- Medicago Inc., Quebec, Quebec, Canada
| | | | - Brian James Ward
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- Medicago Inc., Quebec, Quebec, Canada
| |
Collapse
|
20
|
Bufan B. Application of prophylactic vaccines in the elderly. ARHIV ZA FARMACIJU 2019. [DOI: 10.5937/arhfarm1906469b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
21
|
Przemska-Kosicka A, Childs CE, Maidens C, Dong H, Todd S, Gosney MA, Tuohy KM, Yaqoob P. Age-Related Changes in the Natural Killer Cell Response to Seasonal Influenza Vaccination Are Not Influenced by a Synbiotic: a Randomised Controlled Trial. Front Immunol 2018; 9:591. [PMID: 29662493 PMCID: PMC5890114 DOI: 10.3389/fimmu.2018.00591] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/09/2018] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are an important component of the immune response to influenza infection, but are subject to alteration during aging, which may play a role in impaired response to infection and vaccination in older people. Enhancement of NK cell activity could, therefore, present a means to improve the immune response to vaccination in older subjects, and pre- and probiotics offer an opportunity to modulate antiviral defenses via alteration of the gut microbiota. This study investigated the effect of a novel probiotic, Bifidobacterium longum bv. infantis CCUG 52486, combined with a prebiotic, gluco-oligosaccharide (B. longum + Gl-OS), on the NK cell response to seasonal influenza vaccination in young and older subjects in a double-blind, randomized controlled trial. There were significant effects of aging on NK cell phenotype, the most notable of which were an increase in CD56dim cells, mainly reflected in the CD16+ subset, a decrease in CD56bright cells, mainly reflected in the CD16- subset, and greater expression of the immunosenescence marker, CD57, on NK cell subsets. However, these changes only partially translated to differences in NK cell activity, observed as trends toward reduced NK cell activity in older subjects when analyzed on a per cell basis. Influenza vaccination increased the proportion of CD56bright cells and decreased the proportion of CD56dim cells, in young, but not older subjects. Although NK cell activity in response to vaccination was not significantly different between the young and older subjects, low post-vaccination NK cell activity was associated with poor seroconversion in only the older subjects. There was no influence of the synbiotic on NK cell phenotype or activity, either before or after influenza vaccination. In conclusion, aging is associated with marked alteration of the phenotype of the NK cell population and there was evidence of an impaired NK cell response to influenza vaccination in older subjects. The effects of aging on NK cell phenotype and activity could not be offset by B. longum + Gl-OS. Clinical Trial Registration www.ClinicalTrials.gov, identifier NCT01066377.
Collapse
Affiliation(s)
| | - Caroline E Childs
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Catherine Maidens
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Honglin Dong
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Susan Todd
- Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom
| | - Margot A Gosney
- School of Psychology and Clinical Language Sciences (MAG), University of Reading, Reading, United Kingdom
| | | | - Parveen Yaqoob
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
22
|
Montomoli E, Torelli A, Manini I, Gianchecchi E. Immunogenicity and Safety of the New Inactivated Quadrivalent Influenza Vaccine Vaxigrip Tetra: Preliminary Results in Children ≥6 Months and Older Adults. Vaccines (Basel) 2018; 6:E14. [PMID: 29518013 PMCID: PMC5874655 DOI: 10.3390/vaccines6010014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/26/2018] [Accepted: 03/05/2018] [Indexed: 12/31/2022] Open
Abstract
Since the mid-1980s, two lineages of influenza B viruses have been distinguished. These can co-circulate, limiting the protection provided by inactivated trivalent influenza vaccines (TIVs). This has prompted efforts to formulate quadrivalent influenza vaccines (QIVs), to enhance protection against circulating influenza B viruses. This review describes the results obtained from seven phase III clinical trials evaluating the immunogenicity, safety, and lot-to-lot consistency of a new quadrivalent split-virion influenza vaccine (Vaxigrip Tetra®) formulated by adding a second B strain to the already licensed TIV. Since Vaxigrip Tetra was developed by means of a manufacturing process strictly related to that used for TIV, the data on the safety profile of TIV are considered supportive of that of Vaxigrip Tetra. The safety and immunogenicity of Vaxigrip Tetra were similar to those of the corresponding licensed TIV. Moreover, the new vaccine elicits a superior immune response towards the additional strain, without affecting immunogenicity towards the other three strains. Vaxigrip Tetra is well tolerated, has aroused no safety concerns, and is recommended for the active immunization of individuals aged ≥6 months. In addition, preliminary data confirm its immunogenicity and safety even in children aged 6-35 months and its immunogenicity in older subjects (aged 66-80 years).
Collapse
Affiliation(s)
- Emanuele Montomoli
- VisMederi srl, Strada del Petriccio e Belriguardo, 35, 53100 Siena, Italy.
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy.
| | - Alessandro Torelli
- VisMederi srl, Strada del Petriccio e Belriguardo, 35, 53100 Siena, Italy.
- Department of Life Sciences, University of Siena, 53100 Siena, Italy.
| | - Ilaria Manini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy.
| | - Elena Gianchecchi
- VisMederi srl, Strada del Petriccio e Belriguardo, 35, 53100 Siena, Italy.
| |
Collapse
|
23
|
Weinberger B. Vaccines for the elderly: current use and future challenges. IMMUNITY & AGEING 2018; 15:3. [PMID: 29387135 PMCID: PMC5778733 DOI: 10.1186/s12979-017-0107-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/28/2017] [Indexed: 12/30/2022]
Abstract
Age-related changes of the immune system contribute to increased incidence and severity of infections in the elderly. Vaccination is the most effective measure to prevent infections and vaccination recommendations in most countries include specific guidelines for the elderly. Vaccination against influenza and Streptococcus pneumoniae is usually recommended for persons with underlying diseases and for the elderly with heterogeneous age limits between ≥ 50 years and ≥ 65 years. Some countries also recommend vaccination against herpes zoster. Several vaccines are recommended for all adults, such as regular booster shots against tetanus/diphtheria/pertussis/polio, or for specific groups, e.g. vaccination against tick-borne encephalitis in endemic areas or travel vaccines. These are also relevant for the elderly. Most currently used vaccines are less immunogenic and effective in the elderly compared to younger adults. Potential strategies to improve their immunogenicity include higher antigen dose, alternative routes of administration, and the use of adjuvants, which were all implemented for influenza vaccines, and induce moderately higher antibody concentrations. Research on universal vaccines against influenza and S. pneumoniae is ongoing in order to overcome the limitations of the current strain-specific vaccines. Respiratory syncytial virus causes significant morbidity in the elderly. Novel vaccines against this and other pathogens, for instance bacterial nosocomial infections, have tremendous potential impact on health in old age and are intensively studied by many academic and commercial organizations. In addition to novel vaccine developments, it is crucial to increase awareness for the importance of vaccination beyond the pediatric setting, as vaccination coverage is still far from optimal for the older population.
Collapse
Affiliation(s)
- Birgit Weinberger
- Universität Innsbruck, Institute for Biomedical Aging Research, Rennweg 10, 6020 Innsbruck, Austria
| |
Collapse
|
24
|
Di Lorenzo G, Di Bona D, Belluzzo F, Macchia L. Immunological and non-immunological mechanisms of allergic diseases in the elderly: biological and clinical characteristics. IMMUNITY & AGEING 2017; 14:23. [PMID: 29296117 PMCID: PMC5738884 DOI: 10.1186/s12979-017-0105-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/07/2017] [Indexed: 02/08/2023]
Abstract
A better hygiene, a Westernized diet, air pollution, climate changes, and other factors that influence host microbiota, a key player in the induction and maintenance of immunoregulatory circuits and tolerance, are thought to be responsible for the increase of allergic diseases observed in the last years. The increase of allergic diseases in elderly is related to the presence of other factors as several comorbidities that should interfere with the development and the type of allergic reactions. A central role is played by immunosenescence responsible for modifying response to microbiota and triggering inflamm-ageing. In addition, in elderly there is a shift from Th1 responses vs. Th2, hence favouring allergic responses. Better understanding of the mechanisms of immunosenescence and its effects on allergic inflammation will most certainly lead to improved therapy.
Collapse
Affiliation(s)
- Gabriele Di Lorenzo
- Dipartimento BioMedico di Medicina Interna e Specialistica (Di.Bi.M.I.S.), Università di Palermo, Palermo, Italy.,Dipartimento BioMedico di Medicina Interna e Specialistica (Di.Bi.M.I.S), Via del Vespro, 141, 90127 Palermo, Italy
| | - Danilo Di Bona
- Department of Allergy, Clinical Immunology, Emergency Medicine, and Transplants, University of Bari, Bari, Italy
| | - Federica Belluzzo
- Dipartimento BioMedico di Medicina Interna e Specialistica (Di.Bi.M.I.S.), Università di Palermo, Palermo, Italy
| | - Luigi Macchia
- Department of Allergy, Clinical Immunology, Emergency Medicine, and Transplants, University of Bari, Bari, Italy
| |
Collapse
|
25
|
Abstract
Annual administration of the seasonal influenza vaccine is strongly recommended to reduce the burden of disease, particularly for persons at the highest risk for the viral infection. Even during years when there is a good match between the vaccine and circulating strains, host-related factors such as age, preexisting immunity, genetic polymorphisms, and the presence of chronic underlying conditions may compromise influenza vaccine responsiveness. The application of new methodologies and large-scale profiling technologies are improving the ability to measure vaccine immunogenicity and our understanding of the immune mechanisms by which vaccines induce protective immunity. This review attempts to summarize the general concepts of how host factors can contribute to the heterogeneity of immune responses induced by influenza vaccines.
Collapse
Affiliation(s)
- Maria R Castrucci
- a Department of Infectious Diseases , Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
26
|
Pae M, Wu D. Nutritional modulation of age-related changes in the immune system and risk of infection. Nutr Res 2017; 41:14-35. [PMID: 28577789 DOI: 10.1016/j.nutres.2017.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/18/2017] [Accepted: 02/01/2017] [Indexed: 01/20/2023]
Abstract
The immune system undergoes some adverse alterations during aging, many of which have been implicated in the increased morbidity and mortality associated with infection in the elderly. In addition to intrinsic changes to the immune system with aging, the elderly are more likely to have poor nutritional status, which further impacts the already impaired immune function. Although the elderly often have low zinc serum levels, several manifestations commonly observed during zinc deficiency are similar to the changes in immune function with aging. In the case of vitamin E, although its deficiency is rare, the intake above recommended levels is shown to enhance immune functions in the elderly and to reduce the risk of acquiring upper respiratory infections in nursing home residents. Vitamin D is a critical vitamin in bone metabolism, and its deficiency is far more common, which has been linked to increased risk of infection as demonstrated in a number of observational studies including those in the elderly. In this review, we focus on zinc, vitamin E, and vitamin D, the 3 nutrients which are relatively well documented for their roles in impacting immune function and infection in the elderly, to discuss the findings in this context reported in both the observational studies and interventional clinical trials. A perspective will be provided based on the analysis of information under review.
Collapse
Affiliation(s)
- Munkyong Pae
- Department of Food and Nutrition, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Republic of Korea.
| | - Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St, Boston, MA 02111, USA.
| |
Collapse
|
27
|
Bahadoran A, Lee SH, Wang SM, Manikam R, Rajarajeswaran J, Raju CS, Sekaran SD. Immune Responses to Influenza Virus and Its Correlation to Age and Inherited Factors. Front Microbiol 2016; 7:1841. [PMID: 27920759 PMCID: PMC5118461 DOI: 10.3389/fmicb.2016.01841] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/01/2016] [Indexed: 12/28/2022] Open
Abstract
Influenza viruses belong to the family Orthomyxoviridae of enveloped viruses and are an important cause of respiratory infections worldwide. The influenza virus is able to infect a wide variety species as diverse as poultry, marine, pigs, horses, and humans. Upon infection with influenza virus the innate immunity plays a critical role in efficient and rapid control of viral infections as well as in adaptive immunity initiation. The humoral immune system produces antibodies against different influenza antigens, of which the HA-specific antibody is the most important for neutralization of the virus and thus prevention of illness. Cell mediated immunity including CD4+ helper T cells and CD8+ cytotoxic T cells are the other arms of adaptive immunity induced upon influenza virus infection. The complex inherited factors and age related changes are associated with the host immune responses. Here, we review the different components of immune responses against influenza virus. Additionally, the correlation of the immune response to age and inherited factors has been discussed. These determinations lead to a better understanding of the limitations of immune responses for developing improved vaccines to control influenza virus infection.
Collapse
Affiliation(s)
- Azadeh Bahadoran
- Department of Medical Microbiology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| | - Sau H. Lee
- Department of Medical Microbiology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| | - Seok M. Wang
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, MARA University of TechnologySelangor, Malaysia
| | - Rishya Manikam
- Department of Trauma and Emergency Medicine, University Malaya Medical CentreKuala Lumpur, Malaysia
| | - Jayakumar Rajarajeswaran
- Department of Molecular Medicine, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| | - Chandramathi S. Raju
- Department of Medical Microbiology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| | - Shamala D. Sekaran
- Department of Medical Microbiology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| |
Collapse
|
28
|
Talbot HK, Coleman LA, Zhu Y, Spencer S, Thompson M, Cheng PY, Sundaram ME, Belongia EA, Griffin MR. Factors associated with maintenance of antibody responses to influenza vaccine in older, community-dwelling adults. BMC Infect Dis 2015; 15:195. [PMID: 25903659 PMCID: PMC4415221 DOI: 10.1186/s12879-015-0926-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/08/2015] [Indexed: 11/17/2022] Open
Abstract
Background Little is known about factors associated with maintenance of hemagglutinin inhibition (HAI) antibodies after influenza vaccination in older adults. Methods Adults ≥50 years of age were vaccinated prior to the 2009–10 influenza season. Serum was drawn pre-vaccination (S1), 21–28 days post-vaccination (S2), and after the influenza season (S3) for HAI assays. Seroconversion was defined as ≥ 4-fold increase S1 to S2 (or if S1 < 10, by an S2 ≥ 40) and seroprotection was defined as S2 ≥ 40. Maintenance of antibody response was measured in participants with an S2 ≥ 40, and defined as an S3 ≥ 40. Results We enrolled 510 participants during Fall 2009 at Vanderbilt University Medical Center and Marshfield Clinic Research Foundation. Participants’ mean age was 64 years with 62% female and 96% white. Seroconversion and seroprotection rates were lowest for influenza A H1N1 (12% and 26%, respectively), highest for influenza A H3N2 (45% and 82%), and intermediate for influenza B (28% and 72%). Of the participants with an S2 ≥ 40, 36% (46/126), 71% (289/407), and 74% (263/354) maintained an S3 ≥ 40 for H1N1, H3N2, and B influenza vaccine strains, respectively. S1 HAI titer was strongly associated with both post-vaccination seroprotection and maintaining seroprotection at S3 for all three influenza antigens. Age, sex, body mass index, self-reported stress, and vaccination site were not consistently associated with vaccine response or maintenance of response. Conclusions Pre-vaccination antibody titer was the only study variable consistently and positively associated with both serologic response to vaccination and maintenance of response. Antibody responses were lowest for the H1N1 vaccine strain. ClinicalTrials gov Identifier: NCT02401893 Electronic supplementary material The online version of this article (doi:10.1186/s12879-015-0926-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- H Keipp Talbot
- Vanderbilt University Medical Center, A2200 MCN 1161 21st Ave, Nashville, TN, 37232, USA.
| | - Laura A Coleman
- Abbott Nutrition, 3300 Stelzer Avenue, Columbus, OH, 43219, USA.
| | - Yuwei Zhu
- Vanderbilt University Medical Center, A2200 MCN 1161 21st Ave, Nashville, TN, 37232, USA.
| | - Sarah Spencer
- Centers for Disease Control and Prevention, 1600 Clifton Rd MS A32, Atlanta, GA, 30333, USA.
| | - Mark Thompson
- Centers for Disease Control and Prevention, 1600 Clifton Rd MS A32, Atlanta, GA, 30333, USA.
| | - Po-Yung Cheng
- Centers for Disease Control and Prevention, 1600 Clifton Rd MS A32, Atlanta, GA, 30333, USA.
| | | | - Edward A Belongia
- Marshfield Clinic Research Foundation, 1000 N. Oak Avenue, Marshfield, WI, 54449, USA.
| | - Marie R Griffin
- Vanderbilt University Medical Center, A2200 MCN 1161 21st Ave, Nashville, TN, 37232, USA.
| |
Collapse
|
29
|
Hazeldine J, Lord JM. Innate immunesenescence: underlying mechanisms and clinical relevance. Biogerontology 2014; 16:187-201. [PMID: 25009085 DOI: 10.1007/s10522-014-9514-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 06/25/2014] [Indexed: 12/27/2022]
Abstract
A well-established feature of physiological ageing is altered immune function, a phenomenon termed immunesenescence. Thought to be responsible in part for the increased incidence and severity of infection reported by older adults, as well as the age-related decline in vaccine efficacy and autoimmunity, immunesenescence affects both the innate and adaptive arms of the immune system. Whilst much is known regarding the impact of age on adaptive immunity, innate immunity has received far less attention from immune gerontologists. However, over the last decade it has become increasingly apparent that this non-specific arm of the immune response undergoes considerable functional and phenotypical alterations with age. Here, we provide a detailed overview of innate immunesenescence and its underlying molecular mechanisms, and highlight those studies whose results indicate that changes in innate immunity with age have a significant impact upon the health and well-being of older adults.
Collapse
Affiliation(s)
- Jon Hazeldine
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Immunity and Infection, University of Birmingham, Birmingham, B15 2TT, UK,
| | | |
Collapse
|
30
|
Hayney MS, Coe CL, Muller D, Obasi CN, Backonja U, Ewers T, Barrett B. Age and psychological influences on immune responses to trivalent inactivated influenza vaccine in the meditation or exercise for preventing acute respiratory infection (MEPARI) trial. Hum Vaccin Immunother 2013; 10:83-91. [PMID: 24096366 PMCID: PMC4181033 DOI: 10.4161/hv.26661] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Strategies to improve influenza vaccine protection among elderly individuals are an important research priority. Mindfulness-based stress reduction (MBSR) and exercise have been shown to affect aspects of immune function in some populations. We hypothesized that influenza vaccine responses may be enhanced with meditation or exercise training as compared with controls. RESULTS No differences in vaccine responses were found comparing control to MBSR or exercise. Individuals achieving seroprotective levels of influenza antibody ≥160 units had higher optimism, less anxiety, and lower perceived stress than the nonresponders. Age correlated with influenza antibody responses, but not with IFNγ or IL-10 production. CONCLUSION The MBSR and exercise training evaluated in this study failed to enhance immune responses to influenza vaccine. However, optimism, perceived stress, and anxiety were correlated in the expected directions with antibody responses to influenza vaccine. METHODS Healthy individuals≥50 y were randomly assigned to exercise (n=47) or MBSR (n=51) training or a waitlist control condition (n=51). Each participant received trivalent inactivated influenza vaccine after 6 weeks, and had blood draws prior to and 3 and 12 weeks after immunization. Serum influenza antibody, nasal immunoglobulin A, and peripheral blood mononuclear cell interferon-γ (IFNγ) and interleukin-10 (IL-10) concentrations were measured. Measures of optimism, perceived stress, and anxiety were obtained over the course of the study. Seroprotection was defined as an influenza antibody concentration≥160 units. Vaccine responses were compared using ANOVA, t tests, and Kruskal-Wallis tests. The correlation between vaccine responses and age was examined with the Pearson test.
Collapse
Affiliation(s)
- Mary S Hayney
- School of Pharmacy; University of Wisconsin-Madison; Madison, WI USA
| | - Christopher L Coe
- Harlow Center for Biological Psychology; University of Wisconsin-Madison; Madison, WI USA
| | - Daniel Muller
- Department of Medicine-Rheumatology Division; University of Wisconsin-Madison; School of Medicine and Public Health; Madison, WI USA
| | - Chidi N Obasi
- Department of Family Medicine; University of Wisconsin-Madison; School of Medicine and Public Health; Madison, WI USA
| | - Uba Backonja
- School of Nursing; University of Wisconsin-Madison; Madison, WI USA
| | - Tola Ewers
- Department of Family Medicine; University of Wisconsin-Madison; School of Medicine and Public Health; Madison, WI USA
| | - Bruce Barrett
- Department of Family Medicine; University of Wisconsin-Madison; School of Medicine and Public Health; Madison, WI USA
| |
Collapse
|
31
|
Hazeldine J, Lord JM. The impact of ageing on natural killer cell function and potential consequences for health in older adults. Ageing Res Rev 2013; 12:1069-78. [PMID: 23660515 PMCID: PMC4147963 DOI: 10.1016/j.arr.2013.04.003] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/20/2013] [Accepted: 04/25/2013] [Indexed: 01/07/2023]
Abstract
Roles are emerging for natural killer (NK) cells beyond removing transformed cells. These include immune regulation and the elimination of senescent cells. Human ageing is associated with a decline in NK cell function. We propose some aspects of human ageing are due in part to reduced NK cell function. These include reduced vaccination efficacy and delayed resolution of inflammation.
Forming the first line of defence against virally infected and malignant cells, natural killer (NK) cells are critical effector cells of the innate immune system. With age, significant impairments have been reported in the two main mechanisms by which NK cells confer host protection: direct cytotoxicity and the secretion of immunoregulatory cytokines and chemokines. In elderly subjects, decreased NK cell activity has been shown to be associated with an increased incidence and severity of viral infection, highlighting the clinical implications that age-associated changes in NK cell biology have on the health of older adults. However, is an increased susceptibility to viral infection the only consequence of these age-related changes in NK cell function? Recently, evidence has emerged that has shown that in addition to eliminating transformed cells, NK cells are involved in many other biological processes such as immune regulation, anti-microbial immune responses and the recognition and elimination of senescent cells, novel functions that involve NK-mediated cytotoxicity and/or cytokine production. Thus, the decrease in NK cell function that accompanies physiological ageing is likely to have wider implications for the health of older adults than originally thought. Here, we give a detailed description of the changes in NK cell biology that accompany human ageing and propose that certain features of the ageing process such as: (i) the increased reactivation rates of latent Mycobacterium tuberculosis, (ii) the slower resolution of inflammatory responses and (iii) the increased incidence of bacterial and fungal infection are attributable in part to an age-associated decline in NK cell function.
Collapse
|
32
|
A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br J Nutr 2013; 109 Suppl 1:S1-34. [PMID: 23343744 DOI: 10.1017/s0007114512005119] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To monitor inflammation in a meaningful way, the markers used must be valid: they must reflect the inflammatory process under study and they must be predictive of future health status. In 2009, the Nutrition and Immunity Task Force of the International Life Sciences Institute, European Branch, organized an expert group to attempt to identify robust and predictive markers, or patterns or clusters of markers, which can be used to assess inflammation in human nutrition studies in the general population. Inflammation is a normal process and there are a number of cells and mediators involved. These markers are involved in, or are produced as a result of, the inflammatory process irrespective of its trigger and its location and are common to all inflammatory situations. Currently, there is no consensus as to which markers of inflammation best represent low-grade inflammation or differentiate between acute and chronic inflammation or between the various phases of inflammatory responses. There are a number of modifying factors that affect the concentration of an inflammatory marker at a given time, including age, diet and body fatness, among others. Measuring the concentration of inflammatory markers in the bloodstream under basal conditions is probably less informative compared with data related to the concentration change in response to a challenge. A number of inflammatory challenges have been described. However, many of these challenges are poorly standardised. Patterns and clusters may be important as robust biomarkers of inflammation. Therefore, it is likely that a combination of multiple inflammatory markers and integrated readouts based upon kinetic analysis following defined challenges will be the most informative biomarker of inflammation.
Collapse
|
33
|
Lambert ND, Ovsyannikova IG, Pankratz VS, Jacobson RM, Poland GA. Understanding the immune response to seasonal influenza vaccination in older adults: a systems biology approach. Expert Rev Vaccines 2013; 11:985-94. [PMID: 23002979 DOI: 10.1586/erv.12.61] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Annual vaccination against seasonal influenza is recommended to decrease disease-related mortality and morbidity. However, one population that responds suboptimally to influenza vaccine is adults over the age of 65 years. The natural aging process is associated with a complex deterioration of multiple components of the host immune system. Research into this phenomenon, known as immunosenescence, has shown that aging alters both the innate and adaptive branches of the immune system. The intricate mechanisms involved in immune response to influenza vaccine, and how these responses are altered with age, have led us to adopt a more encompassing systems biology approach to understand exactly why the response to vaccination diminishes with age. Here, the authors review what changes occur with immunosenescence, and some immunogenetic factors that influence response, and outline the systems biology approach to understand the immune response to seasonal influenza vaccination in older adults.
Collapse
Affiliation(s)
- Nathaniel D Lambert
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 1st Street SW, Rochester, MI 55905, USA
| | | | | | | | | |
Collapse
|
34
|
Brenu EW, van Driel M, Staines DR, Kreijkamp-Kaspers S, Hardcastle SL, Marshall-Gradisnik SM. The Effects of Influenza Vaccination on Immune Function in Patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ijcm.2012.36098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
The cost-effectiveness and value of information of three influenza vaccination dosing strategies for individuals with human immunodeficiency virus. PLoS One 2011; 6:e27059. [PMID: 22162988 PMCID: PMC3232195 DOI: 10.1371/journal.pone.0027059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 10/10/2011] [Indexed: 11/18/2022] Open
Abstract
Background Influenza vaccine immunogenicity is diminished in patients living with HIV/AIDS. We evaluated the cost-effectiveness and expected value of perfect information (EVPI) of three alternative influenza vaccine dosing strategies intended to increase immunogenicity in those patients. Methods A randomized, multi-centered, controlled, vaccine trial was conducted at 12 CIHR Canadian HIV Trials Network sites. Three dosing strategies with seasonal, inactivated trivalent, non-adjuvanted intramuscular vaccine were used in HIV infected adults: two standard doses over 28 days (Strategy A), two double doses over 28 days (Strategy B) and a single standard dose of influenza vaccine (Strategy C), administered prior to the 2008 influenza season. The comparator in our analysis was practice in the previous year, in which 82.8% of HIV/AIDS received standard-dose vaccination (Strategy D). A Markov cohort model was developed to estimate the monthly probability of Influenza-like Illness (ILI) over one influenza season. Costs and quality-adjusted life years, extrapolated to the lifetime of the hypothetical study cohorts, were estimated in calculating incremental cost-effectiveness ratios (ICER) and EVPI in conducting further research. Results 298 patients with median CD4 of 470 cells/µl and 76% with viral load suppression were randomized. Strategy C was the most cost-effective strategy for the overall trial population and for suppressed and unsuppressed individuals. Mean ICERs for Strategy A for unsuppressed patients could also be considered cost-effective. The level of uncertainty regarding the decision to implement strategy A versus C for unsuppressed individuals was high. The maximum acceptable cost of reducing decision uncertainty in implementing strategy A for individuals with unsuppressed pVL was $418,000 - below the cost of conducting a larger-scale trial. Conclusion Our results do not support a policy to implement increased antigen dose or booster dosing strategies with seasonal, inactivated trivalent, non-adjuvanted intramuscular vaccine for individuals with HIV in Canada. Trial Registration ClinicalTrials.gov NCT00764998.
Collapse
|
36
|
Lang PO, Govind S, Mitchell WA, Siegrist CA, Aspinall R. Vaccine effectiveness in older individuals: what has been learned from the influenza-vaccine experience. Ageing Res Rev 2011; 10:389-95. [PMID: 20888439 DOI: 10.1016/j.arr.2010.09.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 09/10/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
Vaccination policies in most high-income countries attempt to reduce the adverse impact of influenza targeting people aged at least 60 years. However, while it is widely believed that the current immunization strategy saves many lives, influenza infection still remains a severe burden in aged individuals leading to a wide debate on the exact magnitude of the benefit of vaccination in this population. The first aim of the present review is to examine how effective current influenza-vaccine strategies are in aged adults, by analysing which are the most important factors modulating the interpretation of study results in this population. Furthermore, consideration will be given to how immune factors influence the measurement of vaccine efficacy/effectiveness, where advancing age leads to deleterious changes in the adaptive immune system, resulting in less than optimal responses to infectious agents and vaccination. Finally this review concludes with possible strategies to improve the ability of the senescent immune system to respond to vaccination.
Collapse
|
37
|
Gayoso I, Sanchez-Correa B, Campos C, Alonso C, Pera A, Casado JG, Morgado S, Tarazona R, Solana R. Immunosenescence of Human Natural Killer Cells. J Innate Immun 2011; 3:337-43. [DOI: 10.1159/000328005] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 03/31/2011] [Indexed: 11/19/2022] Open
|
38
|
Lang P, Govind S, Mitchell W, Kenny N, Lapenna A, Pitts D, Aspinall R. Influenza vaccine effectiveness in aged individuals: The role played by cell-mediated immunity. Eur Geriatr Med 2010. [DOI: 10.1016/j.eurger.2010.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Listì F, Caruso C, Colonna-Romano G, Lio D, Nuzzo D, Candore G. HLA and KIR frequencies in Sicilian Centenarians. Rejuvenation Res 2010; 13:314-8. [PMID: 20426625 DOI: 10.1089/rej.2009.0984] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Several studies suggest that human longevity appears to be linked inextricably with optimal functioning of the immune system, suggesting that specific genetic determinants may reside in loci that regulate the immune response, as human leukocyte antigen (HLA) and killer cell immunoglobulin-like receptor (KIR) genes. It has been suggested that longevity is associated with positive selection of alleles (i.e., HLA-DR11) or haplotypes (i.e., HLA-B8,DR3) that confer resistance to infectious disease(s). On the other hand, the cytolytic activity of natural killer (NK) cells is controlled by activating and inhibitory cell-surface receptors, including KIR. The genetic diversity of the KIR loci with respect to successful aging has been analyzed only in one study performed in the Irish population. Although two KIR genes (2DS3, 2DL5) displayed an initial increased frequency in the aged group, the significance of this association was lost when repeated in a second cohort. We have evaluated by polymerase chain reaction-sequence-specific primers (PCR-SSP) HLA-DRB1 and KIR receptors/HLA ligands frequencies in centenarians and controls from Sicily. Our results demonstrate an increase of the HLA DRB1*18 allele in male centenarians (p = 0.0266, after Bonferroni correction). Concerning KIR, no significant difference was observed after Bonferroni correction. However, our findings suggest that HLA/KIR/longevity associations are population specific, being heavily affected by the population-specific genetic and environmental history. This kind of study is important to better understand aging and longevity, hence enhancing the planning of antiaging strategies.
Collapse
Affiliation(s)
- Florinda Listì
- Immunosenescence Unit, Department of Pathobiology and Biomedical Methodologies, University of Palermo, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Ongrádi J, Kövesdi V. Factors that may impact on immunosenescence: an appraisal. Immun Ageing 2010; 7:7. [PMID: 20546588 PMCID: PMC2895578 DOI: 10.1186/1742-4933-7-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/14/2010] [Indexed: 12/12/2022]
Abstract
The increasing ratio of ageing population poses new challenges to healthcare systems. The elderly frequently suffer from severe infections. Vaccination could protect them against several infectious diseases, but it can be effective only if cells that are capable of responding are still present in the repertoire. Recent vaccination strategies in the elderly might achieve low effectiveness due to age-related immune impairment. Immunosenescence affects both the innate and adaptive immunity.Beside individual variations of genetic predisposition, epigenetic changes over the full course of human life exert immunomodulating effects. Disturbances in macrophage-derived cytokine release and reduction of the natural killer cell mediated cytotoxicity lead to increased frequency of infections. Ageing dampens the ability of B cells to produce antibodies against novel antigens. Exhausted memory B lymphocyte subsets replace naïve cells. Decline of cell-mediated immunity is the consequence of multiple changes, including thymic atrophy, reduced output of new T lymphocytes, accumulation of anergic memory cells, and deficiencies in cytokines production. Persistent viral and parasitic infections contribute to the loss of immunosurveillance and premature exhaustion of T cells. Reduced telomerase activity and Toll-like receptor expression can be improved by chemotherapy. Reversion of thymic atrophy could be achieved by thymus transplantation, depletion of accumulated dysfunctional naive T cells and herpesvirus-specific exhausted memory cells. Administration of interleukin (IL)-2, IL-7, IL-10, keratinocyte growth factor, thymic stromal lymphopoietin, as well as leptin and growth hormone boost thymopoiesis. In animals, several strategies have been explored to produce superior vaccines. Among them, virosomal vaccines containing polypeptide antigens or DNA plasmids as well as new adjuvanted vaccine formulations elicit higher dendritic cell activity and more effective serologic than conventional vaccines responses in the elderly. Hopefully, at least some of these approaches can be translated to human medicine in a not too far future.
Collapse
Affiliation(s)
- Joseph Ongrádi
- Institute of Public Health, Semmelweis University, Budapest, Hungary
| | - Valéria Kövesdi
- Institute of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
41
|
Tummala MK, Taub DD, Ershler WB. Clinical Immunology. BROCKLEHURST'S TEXTBOOK OF GERIATRIC MEDICINE AND GERONTOLOGY 2010. [PMCID: PMC7152192 DOI: 10.1016/b978-1-4160-6231-8.10013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Ongrádi J, Stercz B, Kövesdi V, Vértes L. Immunosenescence and vaccination of the elderly II. New strategies to restore age-related immune impairment. Acta Microbiol Immunol Hung 2009; 56:301-12. [PMID: 20038483 DOI: 10.1556/amicr.56.2009.4.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
One of the greatest health-care challenges in the elderly is to ensure that vaccination against infections are optimally effective, but vaccination can only be effective if cells that are capable of responding are still present in the repertoire. The reversing of immunosenescence could be achieved by improving immune responses or altering vaccine formulation. Recent vaccination strategies in the elderly exert low effectiveness. Nutritional interventions and moderate exercise delay T cell senescence. Telomerase activity and expression of toll-like receptors can be improved by chemotherapy. Reversion of thymic atrophy could be achieved by thymus transplantation, depletion of accumulated dysfunctional naive T cells and herpesvirus-specific exhausted memory cells. Administration of immunostimulatory and anti-inflammatory cytokines show the best practical approach. Reduced dendritic cell activity and co-receptor expression might be increased by interleukin (IL)-2 administration. IL-7 protects both B and T lymphocytes, but IL-2, IL-10, keratinocyte growth factor, thymic stromal lymphopoietin, as well as leptin and growth hormone also have a stimulatory effect on thymopoiesis. In animals, several strategies have been explored to produce more efficacious vaccines including high dose vaccines, DNA vaccines with immunostimulatory patch, virosomal vaccines and vaccines containing new adjuvants. Hopefully, one of these approaches will be translated into human therapy in a short time.
Collapse
Affiliation(s)
- J Ongrádi
- Institute of Public Health, Semmelweis University, Budapest, Hungary.
| | | | | | | |
Collapse
|
43
|
Chen WH, Kozlovsky BF, Effros RB, Grubeck-Loebenstein B, Edelman R, Sztein MB. Vaccination in the elderly: an immunological perspective. Trends Immunol 2009; 30:351-9. [PMID: 19540808 PMCID: PMC3739436 DOI: 10.1016/j.it.2009.05.002] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 05/07/2009] [Accepted: 05/08/2009] [Indexed: 11/23/2022]
Abstract
Successful vaccination of the elderly against important infectious pathogens that cause high morbidity and mortality represents a growing public health priority. Building on the theme of aging and immunosenescence, we review mechanisms of human immunosenescence and the immune response to currently licensed vaccines. We discuss the difficulties in identifying the risk factors that, in addition to aging, cause immunosenescence and address the relative paucity of vaccine studies in the elderly. We conclude that vaccine responses are blunted in the elderly compared with that of healthy young adults. However, it is also clear that our understanding of the mechanisms underlying immunosenescence is limited and much remains to be learned to improve the effectiveness of next generation vaccines.
Collapse
Affiliation(s)
- Wilbur H. Chen
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD
| | - Bernard F. Kozlovsky
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, MD
| | | | | | - Robert Edelman
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD
| | - Marcelo B. Sztein
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
44
|
Abstract
An age-related decline in immune responses in the elderly results in greater susceptibility to infection and reduced responses to vaccination. This decline in immune function affects both innate and adaptive immune systems. A meeting of experts in immunology and gerontology in Paris, France, in April 2008, considered current understanding of immunosenescence and its clinical consequences. Essential features of immunosenescence include: reduced natural killer cell cytotoxicity on a per cell basis; reduced number and function of dendritic cells in blood; decreased pools of naive T and B cells; and increases in the number of memory and effector T and B cells. In particular, an accumulation of late differentiated effector T cells, commonly associated with cytomegalovirus infection, contributes to a decline in the capacity of the adaptive immune system to respond to novel antigens. Consequently, vaccine responsiveness is compromised in the elderly, especially frail patients. Strategies to address the effects of immunosenescence include ensuring that seroprotective antibody levels against preventable infectious diseases are maintained throughout adulthood, and improving diet and exercise to address the effects of frailty. New vaccines are being developed, such as intradermal and high-dose vaccines for influenza, to improve the efficacy of immunization in the elderly. In the future, the development and use of markers of immunosenescence to identify patients who may have impaired responses to vaccination, as well as the use of end-points other than antibody titers to assess vaccine efficacy, may help to reduce morbidity and mortality due to infections in the elderly.
Collapse
|
45
|
Derhovanessian E, Solana R, Larbi A, Pawelec G. Immunity, ageing and cancer. IMMUNITY & AGEING 2008; 5:11. [PMID: 18816370 PMCID: PMC2564902 DOI: 10.1186/1742-4933-5-11] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/24/2008] [Indexed: 11/22/2022]
Abstract
Compromised immunity contributes to the decreased ability of the elderly to control infectious disease and to their generally poor response to vaccination. It is controversial as to how far this phenomenon contributes to the well-known age-associated increase in the occurrence of many cancers in the elderly. However, should the immune system be important in controlling cancer, for which there is a great deal of evidence, it is logical to propose that dysfunctional immunity in the elderly would contribute to compromised immunosurveillance and increased cancer occurrence. The chronological age at which immunosenescence becomes clinically important is known to be influenced by many factors, including the pathogen load to which individuals are exposed throughout life. It is proposed here that the cancer antigen load may have a similar effect on "immune exhaustion" and that pathogen load and tumor load may act additively to accelerate immunosenescence. Understanding how and why immune responsiveness changes in humans as they age is essential for developing strategies to prevent or restore dysregulated immunity and assure healthy longevity, clearly possible only if cancer is avoided. Here, we provide an overview of the impact of age on human immune competence, emphasizing T-cell-dependent adaptive immunity, which is the most sensitive to ageing. This knowledge will pave the way for rational interventions to maintain or restore appropriate immune function not only in the elderly but also in the cancer patient.
Collapse
|
46
|
Baseline levels of influenza-specific CD4 memory T-cells affect T-cell responses to influenza vaccines. PLoS One 2008; 3:e2574. [PMID: 18596908 PMCID: PMC2440350 DOI: 10.1371/journal.pone.0002574] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 06/04/2008] [Indexed: 11/25/2022] Open
Abstract
Background Factors affecting immune responses to influenza vaccines have not been studied systematically. We hypothesized that T-cell and antibody responses to the vaccines are functions of pre-existing host immunity against influenza antigens. Methodology/Principal Findings During the 2004 and 2005 influenza seasons, we have collected data on cellular and humoral immune reactivity to influenza virus in blood samples collected before and after immunization with inactivated or live attenuated influenza vaccines in healthy children and adults. We first used cross-validated lasso regression on the 2004 dataset to identify a group of candidate baseline correlates with T-cell and antibody responses to vaccines, defined as fold-increase in influenza-specific T-cells and serum HAI titer after vaccination. The following baseline parameters were examined: percentages of influenza-reactive IFN-γ+ cells in T and NK cell subsets, percentages of influenza-specific memory B-cells, HAI titer, age, and type of vaccine. The candidate baseline correlates were then tested with the independent 2005 dataset. Baseline percentage of influenza-specific IFN-γ+ CD4 T-cells was identified as a significant correlate of CD4 and CD8 T-cell responses, with lower baseline levels associated with larger T-cell responses. Baseline HAI titer and vaccine type were identified as significant correlates for HAI response, with lower baseline levels and the inactivated vaccine associated with larger HAI responses. Previously we reported that baseline levels of CD56dim NK reactivity against influenza virus inversely correlated with the immediate T-cell response to vaccination, and that NK reactivity induced by influenza virus depended on IL-2 produced by influenza-specific memory T-cells. Taken together these results suggest a novel mechanism for the homeostasis of virus-specific T-cells, which involves interaction between memory helper T-cells, CD56dim NK and DC. Significance These results demonstrate that assessment of baseline biomarkers may predict immunologic outcome of influenza vaccination and may reveal some of the mechanisms responsible for variable immune responses following vaccination and natural infection.
Collapse
|
47
|
From bench to bedside and back: the SENIEUR Protocol and the efficacy of influenza vaccination in the elderly. Biogerontology 2008; 10:83-94. [DOI: 10.1007/s10522-008-9155-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 06/02/2008] [Indexed: 01/08/2023]
|
48
|
Larbi A, Franceschi C, Mazzatti D, Solana R, Wikby A, Pawelec G. Aging of the immune system as a prognostic factor for human longevity. Physiology (Bethesda) 2008; 23:64-74. [PMID: 18400689 DOI: 10.1152/physiol.00040.2007] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Accumulating data are documenting an inverse relationship between immune status, response to vaccination, health, and longevity, suggesting that the immune system becomes less effective with advancing age and that this is clinically relevant. The mechanisms and consequences of age-associated immune alterations, designated immunosenescence, are briefly reviewed here.
Collapse
Affiliation(s)
- Anis Larbi
- University of Tübingen, Center for Medical Research,Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Ageing is a process involving morphological and physiological modifications that gradually appear with time and lead to death. Given the heterogeneous nature of the process among individuals and among the different organs, tissues, and systems in the same individual, the concept of <<biological age>> has been developed. The search for parameters that enable us to evaluate biological age--and therefore longevity--and the analysis of the efficacy of strategies to retard the ageing process are the objectives of gerontology. At present, one of the most important theories of ageing is the <<oxidative-inflammatory>> theory. Given that immune cell function is an excellent marker of health, we review the concepts that enable different functional and oxidative stress parameters in immune cells to be identified as markers of biological age and longevity. None of these parameters is universally accepted as a biomarker of ageing, although they are becoming increasingly important.
Collapse
|
50
|
Skowronski DM, Tweed SA, De Serres G. Rapid decline of influenza vaccine-induced antibody in the elderly: is it real, or is it relevant? J Infect Dis 2008; 197:490-502. [PMID: 18275271 DOI: 10.1086/524146] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Advisory committees have cautioned that influenza vaccine-induced antibody declines more rapidly in the elderly, falling below seroprotective levels within 4 months. We conducted a literature review to assess this assertion. The articles that were included in this review reported antibody levels > or =4 months after influenza immunization in persons > or =60 years old, interpretable in the context of annual influenza vaccine-approval criteria (seroprotection/seroconversion) specified by the Committee for Proprietary Medicinal Products (CPMP) for the elderly. The final review included 14 studies; 8 of which reported seroprotection rates. Seroprotection exceeding CPMP criteria was maintained > or =4 months after influenza immunization in all 8 of the studies reporting this for the H3N2 component and in 5 of the 7 studies reporting this for the H1N1 and B components. In determining whether CPMP criteria were met at season's end, primary antibody response appeared to be more relevant than secondary antibody decline. Both studies reporting seroprotection rates that failed CPMP criteria > or =4 months after influenza immunization for each of the H1N1 and B components had also reported failed seroprotection at 1 month after immunization. If initially achieved after immunization, seroprotection rates of 70%-100% were maintained not just at 4 months (2 studies) but also at 5 months (2 studies) and even at >6 months (4 studies), for the H3N2 and H1N1 vaccine components. Seroprotection rates appeared less consistent for the B vaccine component, throughout the postimmunization period. Seroconversion appears to vary substantially and inversely with preimmunization titers but not with age. In 2 of 6 studies reporting seroconversion alone, CPMP criteria were still met at 4 months. In the other 4 studies, the main reason for failure at 4 months was primary failure at 1 month. A total of 6 studies compared antibody persistence by age, and no consistent differences were found on that basis. The historic concern that the influenza vaccine-induced antibody response in the elderly declines more rapidly and below seroprotective levels within 4 months of immunization should be reconsidered.
Collapse
Affiliation(s)
- Danuta M Skowronski
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|