1
|
Fukuoka M, Kang W, Horiike S, Yamada M, Miyado K. Calcium oscillations and mitochondrial enzymes in stem cells. Regen Ther 2024; 26:811-818. [PMID: 39315118 PMCID: PMC11419779 DOI: 10.1016/j.reth.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Calcium oscillations are rhythmic fluctuations of the intracellular concentration of calcium ions (Ca2+). As Ca2+ evokes various cellular processes, its intracellular concentration is tightly regulated. Ca2+ oscillations control biological events, including neuronal differentiation and proliferation of mesenchymal stem cells. The frequency and pattern of Ca2+ oscillations depend on cell type. Researchers have studied Ca2+ oscillations to better understand how cells communicate and regulate physiological processes. Dysregulation of Ca2+ oscillations causes health problems, such as neurodegenerative disorders. This review discusses the potential functions of Ca2+ oscillations in stem cells.
Collapse
Affiliation(s)
- Mio Fukuoka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Woojin Kang
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Sae Horiike
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Department of Bioscience, Graduate School of Life Science, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Mitsutoshi Yamada
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
2
|
The Pleiotropy of PAX5 Gene Products and Function. Int J Mol Sci 2022; 23:ijms231710095. [PMID: 36077495 PMCID: PMC9456430 DOI: 10.3390/ijms231710095] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
PAX5, a member of the Paired Box (PAX) transcription factor family, is an essential factor for B-lineage identity during lymphoid differentiation. Mechanistically, PAX5 controls gene expression profiles, which are pivotal to cellular processes such as viability, proliferation, and differentiation. Given its crucial function in B-cell development, PAX5 aberrant expression also correlates with hallmark cancer processes leading to hematological and other types of cancer lesions. Despite the well-established association of PAX5 in the development, maintenance, and progression of cancer disease, the use of PAX5 as a cancer biomarker or therapeutic target has yet to be implemented. This may be partly due to the assortment of PAX5 expressed products, which layers the complexity of their function and role in various regulatory networks and biological processes. In this review, we provide an overview of the reported data describing PAX5 products, their regulation, and function in cellular processes, cellular biology, and neoplasm.
Collapse
|
3
|
Abstract
Introduction: Fatty liver disease, defined by the presence of liver fat infiltration, is part of a cluster of disorders that occur in the context of metabolic syndrome. Epigenetic factors - defined as stable and heritable changes in gene expression without changes in the DNA sequence - may not only play an important role in the disease development in adulthood, but they may start exerting their influence in the prenatal stage.Areas covered: By using systems biology approaches, we review the main epigenetic modifications and highlight their likely roles in the pathogenesis of nonalcoholic fatty liver disease.Expert opinion: Knowledge of the mechanisms by which epigenetic modifications participate in complex disorders would not only help scientists find novel therapeutic strategies but could also aid in implementing preventive care measures at gestation.
Collapse
Affiliation(s)
- Carlos Jose Pirola
- School of Medicine, Institute of Medical Research A Lanari, University of Buenos Aires, Buenos Aires, Argentina.,Department of Molecular Genetics and Biology of Complex Diseases, National Scientific and Technical Research Council (Conicet)-university of Buenos Aires. Institute of Medical Research (IDIM)
| | - Silvia Sookoian
- School of Medicine, Institute of Medical Research A Lanari, University of Buenos Aires, Buenos Aires, Argentina.,Department of Clinical and Molecular Hepatology, National Scientific and Technical Research Council (CONICET)-University of Buenos Aires. Institute of Medical Research (IDIM), Buenos Aires, Argentina
| |
Collapse
|
4
|
Feng C, Huang X, Li X, Mao J. The Roles of Base Modifications in Kidney Cancer. Front Oncol 2020; 10:580018. [PMID: 33282735 PMCID: PMC7691527 DOI: 10.3389/fonc.2020.580018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/19/2020] [Indexed: 11/26/2022] Open
Abstract
Epigenetic modifications including histone modifications and DNA and RNA modifications are involved in multiple biological processes and human diseases. One disease, kidney cancer, includes a common type of tumor, accounts for about 2% of all cancers, and usually has poor prognosis. The molecular mechanisms and therapeutic strategy of kidney cancer are still under intensive study. Understanding the roles of epigenetic modifications and underlying mechanisms in kidney cancer is critical to its diagnosis and clinical therapy. Recently, the function of DNA and RNA modifications has been uncovered in kidney tumor. In the present review, we summarize recent findings about the roles of epigenetic modifications (particularly DNA and RNA modifications) in the incidence, progression, and metastasis of kidney cancer, especially the renal cell carcinomas.
Collapse
Affiliation(s)
- Chunyue Feng
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaoli Huang
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Xuekun Li
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China.,Institute of Translational Medicine of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
5
|
Zhu H, Zhu H, Tian M, Wang D, He J, Xu T. DNA Methylation and Hydroxymethylation in Cervical Cancer: Diagnosis, Prognosis and Treatment. Front Genet 2020; 11:347. [PMID: 32328088 PMCID: PMC7160865 DOI: 10.3389/fgene.2020.00347] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
Recent discoveries have led to the development of novel ideas and techniques that have helped elucidate the correlation between epigenetics and tumor biology. Nowadays, the field of tumor genetics has evolved to include a new type of regulation by epigenetics. An increasing number of studies have demonstrated the importance of DNA methylation and hydroxymethylation in specific genes in the progression of cervical cancer. Determining the methylation and hydroxymethylation profiles of these genes will help in the early prevention and diagnosis, monitoring recurrence, prognosis, and treatment of patients with cervical cancer. In this review, we focus on the significance of aberrant DNA methylation and hydroxymethylation in cervical cancer and the use of these epigenetic signatures in clinical settings.
Collapse
Affiliation(s)
- Hongming Zhu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Miao Tian
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Dongying Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Jiaxing He
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Tianmin Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Wang J, He N, Wang R, Tian T, Han F, Zhong C, Zhang C, Hua M, Ji C, Ma D. Analysis of TET2 and EZH2 gene functions in chromosome instability in acute myeloid leukemia. Sci Rep 2020; 10:2706. [PMID: 32066746 PMCID: PMC7026035 DOI: 10.1038/s41598-020-59365-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/23/2020] [Indexed: 11/09/2022] Open
Abstract
TET2 and EZH2 play important roles in the epigenetic regulation in many cancers. However, their specific roles in acute myeloid leukemia (AML) pathogenesis remain unknown. Here, the expression, methylation or mutation of EZH2 and TET2 was determined and further correlated with the levels of the chromosome instability (CIN) genes MAD2 and CDC20. We down-regulated EZH2 and TET2 in AML cell lines and assessed the effect on CIN using fluorescence in situ hybridization (FISH). Our results showed that TET2, EZH2, MAD2 and CDC20 were aberrantly expressed in AML patients. The expression level of MAD2 or CDC20 was positively correlated with that of TET2 or EZH2. Hypermethylation of the TET2 gene down-regulated its transcription. Down-regulation of EZH2 or TET2 expression inhibited apoptosis, affected MAD2 and CDC20 expression, and promoted CIN in AML cells. Decitabine treatment restored TET2 methylation and EZH2 transcription and ameliorated CIN in AML. Therefore, TET2 and EZH2 play a tumor-inhibiting role in AML that affects CIN via MAD2 and CDC20.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China.,Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, P.R. China
| | - Na He
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Tian Tian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Fengjiao Han
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Chaoqin Zhong
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Chen Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Mingqiang Hua
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China.
| |
Collapse
|
7
|
The Prognostic Significance of TET2 Single Nucleotide Polymorphism in Egyptian Chronic Myeloid Leukemia. Mediterr J Hematol Infect Dis 2020; 12:e2020004. [PMID: 31934314 PMCID: PMC6951353 DOI: 10.4084/mjhid.2020.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022] Open
Abstract
Background Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm where pathogenesis is based on the oncoprotein termed BCR-ABL1.1 TET2 initiates DNA demethylation and is frequently mutated in hematological malignancies, including CML. The relation between TET2 acquisition and CML transformation and/or imatinib resistance is needed to be investigated.2 Aim To evaluate Ten Eleven Translocation 2 gene (TET2) single nucleotide polymorphism (SNP) (rs2454206, rs34402524, rs61744960) in chronic myeloid leukemia (CML) in relation to the disease prognostic criteria. Materials & Method The study included 84 subjects; 54 CML in chronic phase and 30 healthy subjects as control group matched for age and sex. Routine investigations, including CBC, bone marrow aspiration, biochemical investigations, and molecular study, were performed in CML patients to identify the disease stage. DNA extraction and SNP assay for TET2 gene polymorphism were done using (Thermo-Fisher predesigned SNP, USA) PCR prism 7500. Results The mean age was 45.98±15.7 yrs in CML patients and 39.3±6.587 yrs in the control group (p>0.05). TET2 SNP rs 34402524 was either heterozygous or homozygous in CML (48%, 46.2% respectively) but was mainly homozygous among control (80%) group (p=0.012). TET2 SNP rs 2454206 wild type within CML was detected in 65.4% of patients and in controls was 63.3% (p=0.046). TET2 SNP rs 61744960 showed a homozygous pattern among all groups (CML and control) (p=0.528). TET2 SNP in CML cases did not alter the prognostic criteria as no statistical significance was noted (p>0.05) yet, it was significantly related to spleen size in rs 34402524 where the homozygous group had larger spleen size and higher BCR-ABL1 levels six months after starting TKIs (p<0.05). Conclusions/Recommendation TET2 SNP is common among Egyptian chronic myeloid leukemia. TET2 SNP rs 3442524 was associated with larger spleen size and higher BCR-ABL1 levels after six months of starting TKIs suggesting disease progression.
Collapse
|
8
|
Xu Y, Niu Y, Deng K, Pan H, Feng F, Gong F, Tong WM, Chen S, Lu L, Wang R, You H, Yao Y, Zhu H. Changes in DNA 5-Hydroxymethylcytosine Levels and the Underlying Mechanism in Non-functioning Pituitary Adenomas. Front Endocrinol (Lausanne) 2020; 11:361. [PMID: 32774324 PMCID: PMC7381329 DOI: 10.3389/fendo.2020.00361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/07/2020] [Indexed: 11/24/2022] Open
Abstract
Epigenetic factors have been proven to contribute to pituitary adenoma formation. 5-hydroxymethylcytosine (5hmC), which is catalyzed by ten-eleven translocation 2 (TET2), is related to DNA demethylation. In order to explore the pathogenesis of non-functioning pituitary adenomas (NFPAs), we detected genomic 5hmC levels in 57 NFPAs and 5 normal pituitary glands, and TET2 expression, distribution and TET2 alteration. Genomic 5hmC levels in NFPAs were significantly lower than those in normal pituitary glands (0.38‰ (0.24‰, 0.61‰) vs. 2.47‰ (1.56‰, 2.83‰), P < 0.0001). There was positive correlation of 5hmC levels with TET2 total and nuclear expression in NFPAs (r = 0.461, P = 0.018; r = 0.458, P = 0.019). Genomic 5hmC levels in NFPAs with TET2 p.P29R were significantly lower than those in wild type NFPAs (0.33 ± 0.18‰ vs. 0.51 ± 0.25‰, P = 0.021). We found genomic 5hmC loss in human NFPAs for the first time. Genomic 5hmC levels may be affected by TET2 expression, subcellular localization and TET2 mutation.
Collapse
Affiliation(s)
- Yiwen Xu
- Department of Pediatrics, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences and Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Kan Deng
- Department of Neurosurgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences and Peking Union Medical College; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Shi Chen
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Lin Lu
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Hui You
- Department of Radiology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yong Yao
- Department of Neurosurgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- *Correspondence: Yong Yao
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Huijuan Zhu
| |
Collapse
|
9
|
Mahmood AM, Dunwell JM. Evidence for novel epigenetic marks within plants. AIMS GENETICS 2019; 6:70-87. [PMID: 31922011 PMCID: PMC6949463 DOI: 10.3934/genet.2019.4.70] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/07/2019] [Indexed: 12/21/2022]
Abstract
Variation in patterns of gene expression can result from modifications in the genome that occur without a change in the sequence of the DNA; such modifications include methylation of cytosine to generate 5-methylcytosine (5mC) resulting in the generation of heritable epimutation and novel epialleles. This type of non-sequence variation is called epigenetics. The enzymes responsible for generation of such DNA modifications in mammals are named DNA methyltransferases (DNMT) including DNMT1, DNMT2 and DNMT3. The later stages of oxidations to these modifications are catalyzed by Ten Eleven Translocation (TET) proteins, which contain catalytic domains belonging to the 2-oxoglutarate dependent dioxygenase family. In various mammalian cells/tissues including embryonic stem cells, cancer cells and brain tissues, it has been confirmed that these proteins are able to induce the stepwise oxidization of 5-methyl cytosine to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and finally 5-carboxylcytosine (5caC). Each stage from initial methylation until the end of the DNA demethylation process is considered as a specific epigenetic mark that may regulate gene expression. This review discusses controversial evidence for the presence of such oxidative products, particularly 5hmC, in various plant species. Whereas some reports suggest no evidence for enzymatic DNA demethylation, other reports suggest that the presence of oxidative products is followed by the active demethylation and indicate the contribution of possible TET-like proteins in the regulation of gene expression in plants. The review also summarizes the results obtained by expressing the human TET conserved catalytic domain in transgenic plants.
Collapse
Affiliation(s)
- Asaad M Mahmood
- Department of Biology, College of Education, University of Garmian, Kalar, KRG/Iraq
| | - Jim M Dunwell
- School of School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, UK
| |
Collapse
|
10
|
Gandolfi F, Arcuri S, Pennarossa G, Brevini TAL. New tools for cell reprogramming and conversion: Possible applications to livestock. Anim Reprod 2019; 16:475-484. [PMID: 32435291 PMCID: PMC7234139 DOI: 10.21451/1984-3143-ar2019-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Somatic cell nuclear transfer and iPS are both forms of radical cell reprogramming able to transform a fully differentiated cell type into a totipotent or pluripotent cell. Both processes, however, are hampered by low efficiency and, in the case of iPS, the application to livestock species is uncertain. Epigenetic manipulation has recently emerged as an efficient and robust alternative method for cell reprogramming. It is based upon the use of small molecules that are able to modify the levels of DNA methylation with 5-azacitidyne as one of the most widely used. Among a number of advantages, it includes the fact that it can be applied to domestic species including pig, dog and cat. Treated cells undergo a widespread demethylation which is followed by a renewed methylation pattern induced by specific chemical stimuli that lead to the desired phenotype. A detailed study of the mechanisms of epigenetic manipulation revealed that cell plasticity is achieved through the combined action of a reduced DNA methyl transferase activity with an active demethylation driven by the TET protein family. Surprisingly the same combination of molecular processes leads to the transformation of fibroblasts into iPS and regulate the epigenetic changes that take place during early development and, hence, during reprogramming following SCNT. Finally, it has recently emerged that mechanic stimuli in the form of a 3D cell rearrangement can significantly enhance the efficiency of epigenetic reprogramming as well as of maintenance of pluripotency. Interestingly these mechanic stimuli act on the same mechanisms both in epigenetic cell conversion with 5-Aza-CR and in iPS. We suggest that the balanced combination of epigenetic erasing, 3D cell rearrangement and chemical induction can go a long way to obtain ad hoc cell types that can fully exploit the current exiting development brought by gene editing and animal cloning in livestock production.
Collapse
Affiliation(s)
- Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Italy
| | - Sharon Arcuri
- Department of Health, Animal Science and Food Safety, University of Milan, Italy
| | - Georgia Pennarossa
- Department of Health, Animal Science and Food Safety, University of Milan, Italy
| | - Tiziana A L Brevini
- Department of Health, Animal Science and Food Safety, University of Milan, Italy
| |
Collapse
|
11
|
Dammag EA, Hamed NAM, Elhalawani NA, Kassem HS, Ayad MW. TET2 Single Nucleotide Polymorphism in Myeloid Neoplasms Among Egyptian Patients. Indian J Hematol Blood Transfus 2019; 36:91-96. [PMID: 32158090 DOI: 10.1007/s12288-019-01172-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/13/2019] [Indexed: 11/25/2022] Open
Abstract
Acute myelogenous leukemia (AML) is a heterogeneous disease characterized by myeloid progenitor cells uncontrolled proliferation gradually replacing normal hematopoiesis. To evaluate Ten Eleven Translocation 2 gene (TET2) single nucleotide polymorphism (SNP) (rs2454206, rs34402524, rs61744960) in AML, and chronic myeloid leukemia (CML) in relation to their disease prognostic criteria. The study included 136 subjects; 52 AML, 54 CML and 30 subjects as control group matched for age and sex. Routine investigations including CBC, bone marrow aspiration, flow cytometry biochemical investigations and cytogenetics and molecular study were performed accordingly. DNA extraction and SNP assay for TET2 gene polymorphism was done using (Thermo-Fisher predesigned SNP, USA) PCR prism 7500. The mean age was 43.4 ± 14.0 years in AML patients, 45.98 ± 15.7 years in CML patients and 39.3 ± 6.587 years in control group (p > 0.05). The frequency of TET2 SNP rs 34402524 ranged from heterozygous to homozygous in both AML (46%, 54%) and CML (48%, 46.2%) groups but was mainly homozygous among the control (80%) group (p = 0.012). TET2 SNP rs 2454206 was mainly wild in CML (65.4%) and control (63.3%) groups compared to AML as wild was only in (46%) and heterozygous in (44%) with only 10% being homozygous (p = 0.046). TET2 SNP rs 61744960 showed a homozygous pattern among all three group (AML CML and control) showing no statistical significance (p = 0.528). Eventhough, higher non responders to treatment were among homozygous and heterozygous groups yet, response to therapy as respect to specific TET2 SNP showed no significant variation (p > 0.05). TET2 SNP in CML cases did not alter the prognostic criteria as no statistical significance was noted (p > 0.05) except for TET2 SNP rs 34402524 where homozygous cases had larger spleen size (p = 0.019). TET2 SNP is common in Egyptian myeloid neoplasm. This is the first study in this field and further studies are recommended to investigate TET2 and relation to other hematological malignancies and leukemogenesis transformation.
Collapse
Affiliation(s)
- Enas A Dammag
- 1Hematology Department, Internal Medicine, Faculty of Medicine, Taiz University, Taiz, Yemen
| | - Nahla A M Hamed
- 2Hematology Department, Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nabil A Elhalawani
- 2Hematology Department, Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Heba S Kassem
- 3Medical Genetics Center, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mona W Ayad
- 4Clinical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Feng Y, Li X, Cassady K, Zou Z, Zhang X. TET2 Function in Hematopoietic Malignancies, Immune Regulation, and DNA Repair. Front Oncol 2019; 9:210. [PMID: 31001476 PMCID: PMC6454012 DOI: 10.3389/fonc.2019.00210] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Over the last decade, investigation of Ten-Eleven Translocation 2 (TET2) gene function and TET2 mutation have become of increasing interest in the field of hematology. This heightened interest was sparked by the seminal discoveries that (1) TET2 mutation is associated with development of hematological malignancies and that (2) the TET family of proteins is critical in promoting DNA demethylation and immune homeostasis. Since then, additional studies have begun to unravel the question “Does TET2 have additional biological functions in the regulation of hematopoiesis?” Here, we present a mini-review focused on the current understanding of TET2 in hematopoiesis, hematological malignancies, and immune regulation. Importantly, we highlight the critical function that TET2 facilitates in maintaining the stability of the genome. Based on our review of the literature, we provide a new hypothesis that loss of TET2 may lead to dysregulation of the DNA repair response, augment genome instability, and subsequently sensitize myeloid leukemia cells to PARP inhibitor treatment.
Collapse
Affiliation(s)
- Yimei Feng
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Xiaoping Li
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Kaniel Cassady
- Irell and Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, United States.,Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, United States
| | - Zhongmin Zou
- Department of Chemical Defense, School of Preventive Medicine, Army Medical University, Chongqing, China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| |
Collapse
|
13
|
Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges. Nat Rev Drug Discov 2019; 18:447-462. [DOI: 10.1038/s41573-019-0020-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Lamadema N, Burr S, Brewer AC. Dynamic regulation of epigenetic demethylation by oxygen availability and cellular redox. Free Radic Biol Med 2019; 131:282-298. [PMID: 30572012 DOI: 10.1016/j.freeradbiomed.2018.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
The chromatin structure of the mammalian genome must facilitate both precisely-controlled DNA replication together with tightly-regulated gene transcription. This necessarily involves complex mechanisms and processes which remain poorly understood. It has long been recognised that the epigenetic landscape becomes established during embryonic development and acts to specify and determine cell fate. In addition, the chromatin structure is highly dynamic and allows for both cellular reprogramming and homeostatic modulation of cell function. In this respect, the functions of epigenetic "erasers", which act to remove covalently-linked epigenetic modifications from DNA and histones are critical. The enzymatic activities of the TET and JmjC protein families have been identified as demethylases which act to remove methyl groups from DNA and histones, respectively. Further, they are characterised as members of the Fe(II)- and 2-oxoglutarate-dependent dioxygenase superfamily. This provides the intriguing possibility that their enzymatic activities may be modulated by cellular metabolism, oxygen availability and redox-based mechanisms, all of which are likely to display dynamic cell- and tissue-specific patterns of flux. Here we discuss the current evidence for such [O2]- and redox-dependent regulation of the TET and Jmjc demethylases and the potential physiological and pathophysiological functional consequences of such regulation.
Collapse
Affiliation(s)
- Nermina Lamadema
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Simon Burr
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Alison C Brewer
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom.
| |
Collapse
|
15
|
Torabifard H, Cisneros GA. Insight into wild-type and T1372E TET2-mediated 5hmC oxidation using ab initio QM/MM calculations. Chem Sci 2018; 9:8433-8445. [PMID: 30542593 PMCID: PMC6244454 DOI: 10.1039/c8sc02961j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022] Open
Abstract
Ten-eleven translocation 2 (TET2) is an Fe/α-ketoglutarate (α-KG) dependent enzyme that dealkylates 5-methylcytosine (5mC). The reaction mechanism involves a series of three sequential oxidations that convert 5mC to 5-hydroxy-methylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Our previous biochemical and computational studies uncovered an active site scaffold that is required for wild-type (WT) stepwise oxidation (Nat. Chem. Bio., 13, 181). We showed that the mutation of a single residue, T1372 to some amino acids, such as Glu, can impact the iterative oxidation steps and stop the oxidation of 5hmC to 5fC/caC. However, the source of the stalling at the first oxidation step by some mutant TET proteins still remains unclear. Here, we studied the catalytic mechanism of oxidation of 5hmC to 5fC by WT and T1372E TET2 using an ab initio quantum mechanical/molecular mechanical (QM/MM) approach. Our results suggest that the rate limiting step for WT TET2 involves a hydrogen atom abstraction from the hydroxyl group of 5hmC by the ferryl moiety in the WT. By contrast, our calculations for the T1372E mutant indicate that the rate limiting step for this variant corresponds to a second proton abstraction and the calculated barrier is almost twice as large as for WT TET2. Our results suggest that the large barrier for the 5hmC to 5fC oxidation in this mutant is due (at least in part) to the unfavorable orientation of the substrate in the active site. Combined electron localization function (ELF) and non-covalent interaction (NCI) analyses provide a qualitative description of the evolution of the electronic structure of the active site along the reaction path. Energy decomposition analysis (EDA) has been performed on the WT to investigate the impact of each MM residue on catalytic activity.
Collapse
Affiliation(s)
- Hedieh Torabifard
- Department of Chemistry , Wayne State University , Detroit , MI 48202 , USA
| | - G Andrés Cisneros
- Department of Chemistry , University of North Texas , Denton , TX 76203 , USA .
| |
Collapse
|
16
|
Li X, Xie F, Jin J, Wu Y, Luo Z, Zhang F, Zhang S, Chen D, Liu A. TET2-Mediated Spatiotemporal Changes of 5-Hydroxymethylcytosine During Organogenesis in the Late Mouse Fetus. Anat Rec (Hoboken) 2018; 302:954-963. [PMID: 30369084 DOI: 10.1002/ar.24009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 07/02/2018] [Accepted: 07/17/2018] [Indexed: 12/31/2022]
Abstract
Genomic DNA demethylation is important for mammalian embryonic development and organ function. 5-Hydroxymethylcytosine (5hmC) is considered a novel epigenetic marker. Ten-eleven translocation (TET) enzymes convert 5-methylcytosine (5mC) to 5hmC. To explore the dynamic changes of epigenetic modifications during organogenesis in the late mouse fetus, the regional distribution and histological localization of 5hmC and TET enzymes was investigated by immunohistochemical method. The liver of mouse fetus gradually matured from embryonic day (E) 12.5 to E18.5.5mC was positive in developing liver at E16.5 and E18.5. 5hmC, TET2 and TET3 were strongly positive in hepatocytes and oval cells at E18.5. The small intestinal villi were formed at E16.5. The striate border and goblet cells appeared at E18.5. 5mC was detectable from E12.5 to E18.5. 5hmC and TET2 were positive in small intestine at E12.5, E14.5, and E18.5. The alveolar was formed at E18.5. 5mC and 5hmC were detectable from E12.5 to E18.5. Only TET2 was positive in the lung of the late Kunming mouse fetus. For vertebra, mesenchymal cells formed hyaline cartilage at E15.5 and then ossify at E16.5 and E18.8. 5mC, 5hmC, and TET2 were detectable in chondrocytes and osteocytes during the late Kunming mouse fetal; TET1 expressed from E14.5 to E16.5 and TET3 expressed in bone matrix at E18.5. In summary, TET2 was strongly expressed in liver, small intestinal, lung, and vertebra in the late Kunming mouse fetus. These findings suggested that TET2 may play a more critical role than TET1 and TET3 during organogenesis in the late stage of Kunming mouse embryo. Anat Rec, 302:954-963, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiangjun Li
- Department of Anatomy, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Panyu, Guangzhou, 510006, China
| | - Fangfang Xie
- Department of Anatomy, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Panyu, Guangzhou, 510006, China
| | - Junfeng Jin
- Department of Pathology, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Yuqiong Wu
- Department of Anatomy, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Panyu, Guangzhou, 510006, China
| | - Ziwei Luo
- Department of Anatomy, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Panyu, Guangzhou, 510006, China
| | - Fengxue Zhang
- The Research Centre of Integrative Medicine, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Panyu, Guangzhou, 510006, China
| | - Saixia Zhang
- Department of experimental teaching, Basic Medical College of Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Panyu, Guangzhou, 510006, China
| | - Dongfeng Chen
- Department of Anatomy, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Panyu, Guangzhou, 510006, China
| | - Aijun Liu
- Department of Anatomy, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Panyu, Guangzhou, 510006, China
| |
Collapse
|
17
|
TRIB2 regulates the differentiation of MLL-TET1 transduced myeloid progenitor cells. J Mol Med (Berl) 2018; 96:1267-1277. [PMID: 30324339 DOI: 10.1007/s00109-018-1700-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/23/2022]
Abstract
The function and mechanism of action of MLL-TET1 (MT1) fusion protein in hematological cells are unclear and require further investigation. In the present study, we found that the MT1 fusion protein attenuated the expression of Cebpa, Csf1r, and Cd11b and inhibited the differentiation of myeloid progenitor cells. Increased binding of the MT1 fusion protein to the Trib2 promoter upregulated Trib2 mRNA and protein expression and downregulated Cebpa expression. Trib2 knockdown relieved the inhibition of myeloid cell differentiation induced by the MT1 fusion protein. Thus, TRIB2 is important for the survival of leukemia cells during MT1-related leukemogenesis and is important in maintaining differentiation blockade of leukemic cells. KEY MESSAGES: • MLL-TET1 fusion decreases the 5-hmC levels in the myeloid progenitor cells. • MLL-TET1 fusion inhibits myeloid differentiation through decreased expression of Cebpa. • MLL-TET1 fusion blocks the differentiation of the myeloid progenitor cells by overexpressing Trib2. • Knockdown of Trib2 in MLL-TET1 transduced cells induces myeloid differentiation.
Collapse
|
18
|
Fan J, Zhang Y, Mu J, He X, Shao B, Zhou D, Peng W, Tang J, Jiang Y, Ren G, Xiang T. TET1 exerts its anti-tumor functions via demethylating DACT2 and SFRP2 to antagonize Wnt/β-catenin signaling pathway in nasopharyngeal carcinoma cells. Clin Epigenetics 2018; 10:103. [PMID: 30075814 PMCID: PMC6091063 DOI: 10.1186/s13148-018-0535-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TET1 is a tumor suppressor gene (TSG) that codes for ten-eleven translocation methyl cytosine dioxygenase1 (TET1) catalyzing the conversion of 5-methylcytosine to 5-hydroxy methyl cytosine as a first step of TSG demethylation. Its hypermethylation has been associated with cancer pathogenesis. However, whether TET1 plays any role in nasopharyngeal carcinoma (NPC) remains unclear. This study investigated the expression and methylation of TET1 in NPC and confirmed its role and mechanism as a TSG. RESULTS TET1 expression was downregulated in NPC tissues compared with nasal septum deviation tissues. Demethylation of TET1 in HONE1 and HNE1 cells restored its expression with downregulated methylation, implying that TET1 was silenced by promoter hypermethylation. Ectopic expression of TET1 suppressed the growth of NPC cells, induced apoptosis, arrested cell division in G0/G1 phase, and inhibited cell migration and invasion, confirming TET1 TSG activity. TET1 decreased the expression of nuclear β-catenin and downstream target genes. Furthermore, TET1 could cause Wnt antagonists (DACT2, SFRP2) promoter demethylation and restore its expression in NPC cells. CONCLUSIONS Collectively, we conclude that TET1 exerts its anti-tumor functions in NPC cells by suppressing Wnt/β-catenin signaling via demethylation of Wnt antagonists (DACT2 and SFRP2).
Collapse
Affiliation(s)
- Jiangxia Fan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junhao Mu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqian He
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bianfei Shao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dishu Zhou
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Tang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Jiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
19
|
Misawa K, Imai A, Mochizuki D, Mima M, Endo S, Misawa Y, Kanazawa T, Mineta H. Association of TET3 epigenetic inactivation with head and neck cancer. Oncotarget 2018; 9:24480-24493. [PMID: 29849955 PMCID: PMC5966249 DOI: 10.18632/oncotarget.25333] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/21/2018] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to clarify the epigenetic regulation of ten eleven translocation protein (TET) family genes, which can provide insights into the mechanisms of tumorigenesis and the risk of disease recurrence in head and neck squamous cell carcinoma (HNSCC). We generated methylation profiles of TET1, TET2 and TET3 genes in tumor samples obtained from 233 patients with HNSCC; these included 57 hypopharynx, 44 larynx, 69 oral cavity, and 63 oropharynx tumor samples. The mRNA expression and promoter DNA methylation of TET family genes were examined via quantitative RT-PCR and methylation-specific PCR, respectively. Promoter methylation was compared with various clinical characteristics and the TET methylation index (TE-MI). The TE-MI, representing the number of methylation events in TET family genes, was positively correlated with alcohol consumption (P = 0.004), high-risk human papilloma virus (HPV) status (P = 0.004) and disease recurrence (P = 0.002). The simultaneous methylation analysis of TET family genes was correlated with reduced disease-free survival in unfavorable event groups (log-rank test, P = 0.026). In the multivariate Cox proportional hazards analysis, TET3 methylation in T1 and T2 tumor stages, oropharyngeal cancer, and oral cancer patients exhibited high association with poor survival (hazard ratio: 2.64, P = 0.014; 3.55, P = 0.048; 2.63, P = 0.028, respectively). A joint analysis of the tumor suppressor gene methylation index showed a significant trend toward a higher TE-MI. The methylation status of TET3 was independently associated with aggressive tumor behavior and a global effect on DNA methylation status in HNSCC.
Collapse
Affiliation(s)
- Kiyoshi Misawa
- Department of Otolaryngology, Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Atsushi Imai
- Department of Otolaryngology, Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Daiki Mochizuki
- Department of Otolaryngology, Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masato Mima
- Department of Otolaryngology, Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Shiori Endo
- Department of Otolaryngology, Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yuki Misawa
- Department of Otolaryngology, Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takeharu Kanazawa
- Department of Otolaryngology, Head and Neck Surgery, Jichi Medical University, Tochigi, Japan
| | - Hiroyuki Mineta
- Department of Otolaryngology, Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
20
|
Kunchala P, Kuravi S, Jensen R, McGuirk J, Balusu R. When the good go bad: Mutant NPM1 in acute myeloid leukemia. Blood Rev 2018; 32:167-183. [DOI: 10.1016/j.blre.2017.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 12/26/2022]
|
21
|
Szuber N, Tefferi A. Chronic neutrophilic leukemia: new science and new diagnostic criteria. Blood Cancer J 2018; 8:19. [PMID: 29440636 PMCID: PMC5811432 DOI: 10.1038/s41408-018-0049-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/01/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic neutrophilic leukemia (CNL) is a distinct myeloproliferative neoplasm defined by persistent, predominantly mature neutrophil proliferation, marrow granulocyte hyperplasia, and frequent splenomegaly. The seminal discovery of oncogenic driver mutations in CSF3R in the majority of patients with CNL in 2013 generated a new scientific framework for this disease as it deepened our understanding of its molecular pathogenesis, provided a biomarker for diagnosis, and rationalized management using novel targeted therapies. Consequently, in 2016, the World Health Organization (WHO) revised the diagnostic criteria for CNL to reflect such changes in its genomic landscape, now including the presence of disease-defining activating CSF3R mutations as a key diagnostic component of CNL. In this communication, we provide a background on the history of CNL, its clinical and hemopathologic features, and its molecular anatomy, including relevant additional genetic lesions and their significance. We also outline the recently updated WHO diagnostic criteria for CNL. Further, the natural history of the disease is reviewed as well as potential prognostic variables. Finally, we summarize and discuss current treatment options as well as prospective novel therapeutic targets in hopes that they will yield meaningful improvements in patient management and outcomes.
Collapse
Affiliation(s)
- Natasha Szuber
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ayalew Tefferi
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
22
|
Abstract
Epigenetic modes of gene regulation are important for physiological conditions and its aberrant changes can lead to disease like cancer. 5-hydroxymethylcytosine (5hmC) is an oxidized form of 5-methylcytosine (5mC) catalyzed by Ten Eleven Translocation (TET) enzymes. 5hmC is considered to be a demethylation intermediate and is emerging as a stable and functional base modification. The global loss of 5hmC level is commonly observed in cancers and tumorigenic germline mutations in IDH, SDH and FH are found to be inhibiting TET activity. Although a global loss of 5hmC is characteristic in cancers, locus-specific 5hmC gain implicates selective gene expression control. The definitive role of 5hmC as a tumor suppressing or promoting modification can be deduced by identifying locus-specific 5hmC modification in different types of cancer. Determining the genes carrying 5hmC modifications and its selective variation will open up new therapeutic targets. This review outlines the role of global and locus-specific changes of 5hmC in cancers and the possible mechanisms underlying such changes. We have described major cellular factors that influence 5hmC levels and highlighted the significance of 5hmC in tumor micro environmental condition like hypoxia.
Collapse
|
23
|
Seki Y, Suzuki M, Guo X, Glenn AS, Vuguin PM, Fiallo A, Du Q, Ko YA, Yu Y, Susztak K, Zheng D, Greally JM, Katz EB, Charron MJ. In Utero Exposure to a High-Fat Diet Programs Hepatic Hypermethylation and Gene Dysregulation and Development of Metabolic Syndrome in Male Mice. Endocrinology 2017; 158:2860-2872. [PMID: 28911167 PMCID: PMC5659663 DOI: 10.1210/en.2017-00334] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/16/2017] [Indexed: 12/12/2022]
Abstract
Exposure to a high-fat (HF) diet in utero is associated with increased incidence of cardiovascular disease, diabetes, and metabolic syndrome later in life. However, the molecular basis of this enhanced susceptibility for metabolic disease is poorly understood. Gene expression microarray and genome-wide DNA methylation analyses of mouse liver revealed that exposure to a maternal HF milieu activated genes of immune response, inflammation, and hepatic dysfunction. DNA methylation analysis revealed 3360 differentially methylated loci, most of which (76%) were hypermethylated and distributed preferentially to hotspots on chromosomes 4 [atherosclerosis susceptibility quantitative trait loci (QTLs) 1] and 18 (insulin-dependent susceptibility QTLs 21). Interestingly, we found six differentially methylated genes within these hotspot QTLs associated with metabolic disease that maintain altered gene expression into adulthood (Arhgef19, Epha2, Zbtb17/Miz-1, Camta1 downregulated; and Ccdc11 and Txnl4a upregulated). Most of the hypermethylated genes in these hotspots are associated with cardiovascular system development and function. There were 140 differentially methylated genes that showed a 1.5-fold increase or decrease in messenger RNA levels. Many of these genes play a role in cell signaling pathways associated with metabolic disease. Of these, metalloproteinase 9, whose dysregulation plays a key role in diabetes, obesity, and cardiovascular disease, was upregulated 1.75-fold and hypermethylated in the gene body. In summary, exposure to a maternal HF diet causes DNA hypermethylation, which is associated with long-term gene expression changes in the liver of exposed offspring, potentially contributing to programmed development of metabolic disease later in life.
Collapse
Affiliation(s)
- Yoshinori Seki
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Xingyi Guo
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Alan Scott Glenn
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Patricia M. Vuguin
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Ariana Fiallo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Quan Du
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Yi-An Ko
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Yiting Yu
- Department of Oncology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - John M. Greally
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Ellen B. Katz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Maureen J. Charron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
- Departments of Obstetrics and Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
24
|
Abstract
The epigenetic phenomena refer to heritable changes in gene expression other than those in the DNA sequence, such as DNA methylation and histone modifications. Major research progress in the last few years has provided further proof that environmental factors, including diet and nutrition, can influence physiologic and pathologic processes through epigenetic alterations, which in turn influence gene expression. This influence is termed nutritional epigenetics, and one prominent example is the regulation of gene transcription by vitamin A through interaction to its nuclear receptor. Vitamin A is critical throughout life. Together with its derivatives, it regulates diverse processes including reproduction, embryogenesis, vision, growth, cellular differentiation and proliferation, maintenance of epithelial cellular integrity and immune function. Here we review the epigenetic role of vitamin A in cancer, stem cells differentiation, proliferation, and immunity. The data presented here show that retinoic acid is a potent agent capable of inducing alterations in epigenetic modifications that produce various effects on the phenotype. Medical benefits of vitamin A as an epigenetic modulator, especially with respect to its chronic use as nutritional supplement, should rely on our further understanding of its epigenetic effects during health and disease, as well as through different generations.
Collapse
Affiliation(s)
- Shimrit Bar-El Dadon
- a The Robert H. Smith Faculty of Agricultural, Food, and Nutritional Sciences, The Hebrew University of Jerusalem , Rehovot , Israel
| | - Ram Reifen
- a The Robert H. Smith Faculty of Agricultural, Food, and Nutritional Sciences, The Hebrew University of Jerusalem , Rehovot , Israel
| |
Collapse
|
25
|
Menezo Y, Dale B, Elder K. Time to re-evaluate ART protocols in the light of advances in knowledge about methylation and epigenetics: an opinion paper. HUM FERTIL 2017; 21:156-162. [PMID: 28438071 DOI: 10.1080/14647273.2017.1317846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
DNA methylation is a biochemical process that modifies gene expression without changing the underlying DNA sequence, and this represents the molecular basis for imprinting and epigenetics. Recent reports have revealed alterations in DNA methylation profiles in the placenta of babies born from assisted reproductive technologies (ART). This supports several previous observations that suggested an increase in the prevalence of imprinting diseases following ART treatment, and also fits our observations regarding the metabolism and requirements of early human embryos. Human embryo culture media (HECM) are currently formulated according to requirements based on the mouse embryo model, and in fact need to pass the Mouse Embryo Assay test in order to be accepted by the relevant authorities, despite the fact that physiological (especially the time necessary to reach genomic activation) and biochemical requirements of mouse and human embryos are quite different. This commentary aims to explain some of the discrepancies, and emphasize why human embryo metabolism tells us that the composition of HECM, as well as the role of the MEA as a unique model, should be re-evaluated.
Collapse
Affiliation(s)
| | - Brian Dale
- b Centre for Assisted Fertilization , Naples , Italy
| | - Kay Elder
- c Bourn Hall Clinic , Bourn, Cambridge , UK
| |
Collapse
|
26
|
Teymouri M, Barati N, Pirro M, Sahebkar A. Biological and pharmacological evaluation of dimethoxycurcumin: A metabolically stable curcumin analogue with a promising therapeutic potential. J Cell Physiol 2017; 233:124-140. [PMID: 27996095 DOI: 10.1002/jcp.25749] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 12/16/2022]
Abstract
Dimethoxycurcumin (DiMC) is a synthetic analog of curcumin with superior inter-related pro-oxidant and anti-cancer activity, and metabolic stability. Numerous studies have shown that DiMC reserves the biologically beneficial features, including anti-inflammatory, anti-carcinogenic, and cytoprotective properties, almost to the same extent as curcumin exhibits. DiMC lacks the phenolic-OH groups as opposed to curcumin, dimethoxycurcumin, and bis-demethoxycurcumin that all vary in the number of methoxy groups per molecule, and has drawn the attentions of researchers who attempted to discover the structure-activity relationship (SAR) of curcumin. In this regard, tetrahydrocurcumin (THC), the reduced and biologically inert metabolite of curcumin, denotes the significance of the conjugated α,β diketone moiety for the curcumin activity. DiMC exerts unique molecular activities compared to curcumin, including induction of androgen receptor (AR) degradation and suppression of the transcription factor activator protein-1 (AP-1). The enhanced AR degradation on DiMC treatment suggests it as a novel anticancer agent against resistant tumors with androgenic etiology. Further, DiMC might be a potential treatment for acne vulgaris. DiMC induces epigenetic alteration more effectively than curcumin, although both showed no direct DNA hypomethylating activity. Given the metabolic stability, nanoparticulation of DiMC is more promising for in vivo effectiveness. However, studies in this regard are still in its infancy. In the current review, we portray the various molecular and biological functions of DiMC reported so far. Whenever possible, the efficiency is compared with curcumin and the reasons for DiMC being more metabolically stable are elaborated. We also provide future perspective investigations with respect to varying DiMC-nanoparticles.
Collapse
Affiliation(s)
- Manouchehr Teymouri
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nastaran Barati
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matteo Pirro
- Department of Medicine, Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, University of Perugia, Perugia, Italy
| | - Amirhosein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Fráguas MS, Eggenschwiler R, Hoepfner J, Schiavinato JLDS, Haddad R, Oliveira LHB, Araújo AG, Zago MA, Panepucci RA, Cantz T. MicroRNA-29 impairs the early phase of reprogramming process by targeting active DNA demethylation enzymes and Wnt signaling. Stem Cell Res 2016; 19:21-30. [PMID: 28038351 DOI: 10.1016/j.scr.2016.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/29/2016] [Accepted: 12/15/2016] [Indexed: 12/25/2022] Open
Abstract
Somatic cell reprogramming by transcription factors and other modifiers such as microRNAs has opened broad avenues for the study of developmental processes, cell fate determination, and interplay of molecular mechanisms in signaling pathways. However, many of the mechanisms that drive nuclear reprogramming itself remain yet to be elucidated. Here, we analyzed the role of miR-29 during reprogramming in more detail. Therefore, we evaluated miR-29 expression during reprogramming of fibroblasts transduced with lentiviral OKS and OKSM vectors and we show that addition of c-MYC to the reprogramming factor cocktail decreases miR-29 expression levels. Moreover, we found that transfection of pre-miR-29a strongly decreased OKS-induced formation of GFP+-colonies in MEF-cells from Oct4-eGFP reporter mouse, whereas anti-miR-29a showed the opposite effect. Furthermore, we studied components of two pathways which are important for reprogramming and which involve miR-29 targets: active DNA-demethylation and Wnt-signaling. We show that inhibition of Tet1, Tet2 and Tet3 as well as activation of Wnt-signaling leads to decreased reprogramming efficiency. Moreover, transfection of pre-miR-29 resulted in elevated expression of β-Catenin transcriptional target sFRP2 and increased TCF/LEF-promoter activity. Finally, we report that Gsk3-β is a direct target of miR-29 in MEF-cells. Together, our findings contribute to the understanding of the molecular mechanisms by which miR-29 influences reprogramming.
Collapse
Affiliation(s)
- Mariane Serra Fráguas
- Department of Clinical Medicine, Faculty of Medicine, University of São Paulo (FMRP-USP), Brazil; National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC), Center for Cell Therapy (CTC), Regional Blood Center, Ribeirão Preto, Brazil; Translational Hepatology and Stem Cell Biology, REBIRTH Cluster of Excellence and Dept. of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany.
| | - Reto Eggenschwiler
- Translational Hepatology and Stem Cell Biology, REBIRTH Cluster of Excellence and Dept. of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany.
| | - Jeannine Hoepfner
- Translational Hepatology and Stem Cell Biology, REBIRTH Cluster of Excellence and Dept. of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany.
| | - Josiane Lilian Dos Santos Schiavinato
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC), Center for Cell Therapy (CTC), Regional Blood Center, Ribeirão Preto, Brazil.
| | | | - Lucila Habib Bourguignon Oliveira
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC), Center for Cell Therapy (CTC), Regional Blood Center, Ribeirão Preto, Brazil.
| | - Amélia Góes Araújo
- Department of Clinical Medicine, Faculty of Medicine, University of São Paulo (FMRP-USP), Brazil; National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC), Center for Cell Therapy (CTC), Regional Blood Center, Ribeirão Preto, Brazil.
| | - Marco Antônio Zago
- Department of Clinical Medicine, Faculty of Medicine, University of São Paulo (FMRP-USP), Brazil; National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC), Center for Cell Therapy (CTC), Regional Blood Center, Ribeirão Preto, Brazil.
| | - Rodrigo Alexandre Panepucci
- Department of Clinical Medicine, Faculty of Medicine, University of São Paulo (FMRP-USP), Brazil; National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC), Center for Cell Therapy (CTC), Regional Blood Center, Ribeirão Preto, Brazil.
| | - Tobias Cantz
- Translational Hepatology and Stem Cell Biology, REBIRTH Cluster of Excellence and Dept. of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
28
|
Menezo YJ, Silvestris E, Dale B, Elder K. Oxidative stress and alterations in DNA methylation: two sides of the same coin in reproduction. Reprod Biomed Online 2016; 33:668-683. [DOI: 10.1016/j.rbmo.2016.09.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/27/2016] [Accepted: 09/15/2016] [Indexed: 12/31/2022]
|
29
|
Lu J, Hu L, Cheng J, Fang D, Wang C, Yu K, Jiang H, Cui Q, Xu Y, Luo C. A computational investigation on the substrate preference of ten-eleven-translocation 2 (TET2). Phys Chem Chem Phys 2016; 18:4728-38. [PMID: 26799843 DOI: 10.1039/c5cp07266b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
TET proteins iteratively convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) in a Fe(ii)/α-ketoglutarate-dependent manner. Our previous biochemical studies revealed that TET proteins are more active on 5mC than on 5hmC and 5fC. However, the source of the substrate preference of TET proteins still remains largely elusive. Here, we investigated the substrate binding and catalytic mechanisms of oxidation reactions mediated by TET2 on different substrates through computational approaches. In accordance with previous experimental reports, our computational results suggest that TET2 can bind to different substrates with comparable binding affinities and the hydrogen abstraction step in the catalytic cycle acts as the rate-limiting step. Further structural characterization of the intermediate structures revealed that the 5-substitution groups on 5hmC and 5fC adopt an unfavorable orientation for hydrogen abstraction, which leads to a higher energy barrier for 5hmC and 5fC (compared to 5mC) and thus a lower catalytic efficiency. In summary, our mechanical insights demonstrate that substrate preference is the intrinsic property of TET proteins and our theoretical calculation results can guide further dry-lab or wet-lab studies on the catalytic mechanism of TET proteins as well as other Fe(ii)/α-ketoglutarate (KG)-dependent dioxygenases.
Collapse
Affiliation(s)
- Junyan Lu
- Drug Discovery and Design Centre, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Lulu Hu
- Fudan University Shanghai Cancer Centre, Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China. and State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jingdong Cheng
- Fudan University Shanghai Cancer Centre, Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China.
| | - Dong Fang
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Chen Wang
- Drug Discovery and Design Centre, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Kunqian Yu
- Drug Discovery and Design Centre, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Hualiang Jiang
- Drug Discovery and Design Centre, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Yanhui Xu
- Fudan University Shanghai Cancer Centre, Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China. and State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Cheng Luo
- Drug Discovery and Design Centre, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
30
|
Shimoda K, Shide K, Kameda T, Hidaka T, Kubuki Y, Kamiunten A, Sekine M, Akizuki K, Shimoda H, Yamaji T, Nakamura K, Abe H, Miike T, Iwakiri H, Tahara Y, Sueta M, Yamamoto S, Hasuike S, Nagata K, Kitanaka A. TET2 Mutation in Adult T-Cell Leukemia/Lymphoma. J Clin Exp Hematop 2016; 55:145-9. [PMID: 26763362 DOI: 10.3960/jslrt.55.145] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Loss-of-function of ten-eleven translocation-2 (TET2) is a common event in myeloid malignancies, and plays pleiotropic roles, including augmenting stem cell self-renewal and skewing hematopoietic cells to the myeloid lineage. TET2 mutation has also been reported in lymphoid malignancies; 5.7~12% of diffuse large B-cell lymphomas and 18~83% of angioimmunoblastic T-cell lymphomas had TET2 mutations. We investigated TET2 mutations in 22 adult T-cell leukemia/lymphoma (ATLL) patients and identified a missense mutation in 3 cases (14%). TET2 mutation occurred in a number of ATLL patients and was likely involved in their leukemogenesis.
Collapse
|
31
|
Li MJ, Yang YL, Lee NC, Jou ST, Lu MY, Chang HH, Lin KH, Peng CT, Lin DT. Tet oncogene family member 2 gene alterations in childhood acute myeloid leukemia. J Formos Med Assoc 2016; 115:801-6. [DOI: 10.1016/j.jfma.2015.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 01/09/2023] Open
|
32
|
5-hydroxymethylation of the EBV genome regulates the latent to lytic switch. Proc Natl Acad Sci U S A 2015; 112:E7257-65. [PMID: 26663912 DOI: 10.1073/pnas.1513432112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Latent Epstein-Barr virus (EBV) infection and cellular hypermethylation are hallmarks of undifferentiated nasopharyngeal carcinoma (NPC). However, EBV infection of normal oral epithelial cells is confined to differentiated cells and is lytic. Here we demonstrate that the EBV genome can become 5-hydroxymethylated and that this DNA modification affects EBV lytic reactivation. We show that global 5-hydroxymethylcytosine (5hmC)-modified DNA accumulates during normal epithelial-cell differentiation, whereas EBV+ NPCs have little if any 5hmC-modified DNA. Furthermore, we find that increasing cellular ten-eleven translocation (TET) activity [which converts methylated cytosine (5mC) to 5hmC] decreases methylation, and increases 5hmC modification, of lytic EBV promoters in EBV-infected cell lines containing highly methylated viral genomes. Conversely, inhibition of endogenous TET activity increases lytic EBV promoter methylation in an EBV-infected telomerase-immortalized normal oral keratinocyte (NOKs) cell line where lytic viral promoters are largely unmethylated. We demonstrate that these cytosine modifications differentially affect the ability of the two EBV immediate-early proteins, BZLF1 (Z) and BRLF1 (R), to induce the lytic form of viral infection. Although methylation of lytic EBV promoters increases Z-mediated and inhibits R-mediated lytic reactivation, 5hmC modification of lytic EBV promoters has the opposite effect. We also identify a specific CpG-containing Z-binding site on the BRLF1 promoter that must be methylated for Z-mediated viral reactivation and show that TET-mediated 5hmC modification of this site in NOKs prevents Z-mediated viral reactivation. Decreased 5-hydroxymethylation of cellular and viral genes may contribute to NPC formation.
Collapse
|
33
|
TET proteins in cancer: Current 'state of the art'. Crit Rev Oncol Hematol 2015; 96:425-36. [PMID: 26276226 DOI: 10.1016/j.critrevonc.2015.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 05/26/2015] [Accepted: 07/16/2015] [Indexed: 12/31/2022] Open
Abstract
Aberrations in DNA methylation patterns are observed from the early stages of carcinogenesis. However, the mechanisms that drive these changes remain elusive. The recent characterization of ten-eleven translocation (TET) enzymes as a source of newly modified cytosines (5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine) has shed new light on the DNA demethylation process. These cytosines are intermediates of an active DNA demethylation process and are epigenetic markers per se. In this review, we discuss the mechanism and function of TET proteins in biological processes as well as current knowledge regarding their expression and regulation in cancer.
Collapse
|
34
|
Neri F, Incarnato D, Krepelova A, Dettori D, Rapelli S, Maldotti M, Parlato C, Anselmi F, Galvagni F, Oliviero S. TET1 is controlled by pluripotency-associated factors in ESCs and downmodulated by PRC2 in differentiated cells and tissues. Nucleic Acids Res 2015; 43:6814-26. [PMID: 25925565 PMCID: PMC4538807 DOI: 10.1093/nar/gkv392] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/14/2015] [Indexed: 12/22/2022] Open
Abstract
Ten-eleven translocation (Tet) genes encode for a family of hydroxymethylase enzymes involved in regulating DNA methylation dynamics. Tet1 is highly expressed in mouse embryonic stem cells (ESCs) where it plays a critical role the pluripotency maintenance. Tet1 is also involved in cell reprogramming events and in cancer progression. Although the functional role of Tet1 has been largely studied, its regulation is poorly understood. Here we show that Tet1 gene is regulated, both in mouse and human ESCs, by the stemness specific factors Oct3/4, Nanog and by Myc. Thus Tet1 is integrated in the pluripotency transcriptional network of ESCs. We found that Tet1 is switched off by cell proliferation in adult cells and tissues with a consequent genome-wide reduction of 5hmC, which is more evident in hypermethylated regions and promoters. Tet1 downmodulation is mediated by the Polycomb repressive complex 2 (PRC2) through H3K27me3 histone mark deposition. This study expands the knowledge about Tet1 involvement in stemness circuits in ESCs and provides evidence for a transcriptional relationship between Tet1 and PRC2 in adult proliferating cells improving our understanding of the crosstalk between the epigenetic events mediated by these factors.
Collapse
Affiliation(s)
- Francesco Neri
- Human Genetics Foundation (HuGeF), via Nizza 52, Torino, 10126, Italy
| | - Danny Incarnato
- Human Genetics Foundation (HuGeF), via Nizza 52, Torino, 10126, Italy Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Anna Krepelova
- Human Genetics Foundation (HuGeF), via Nizza 52, Torino, 10126, Italy
| | - Daniela Dettori
- Human Genetics Foundation (HuGeF), via Nizza 52, Torino, 10126, Italy
| | - Stefania Rapelli
- Human Genetics Foundation (HuGeF), via Nizza 52, Torino, 10126, Italy Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Mara Maldotti
- Human Genetics Foundation (HuGeF), via Nizza 52, Torino, 10126, Italy
| | - Caterina Parlato
- Human Genetics Foundation (HuGeF), via Nizza 52, Torino, 10126, Italy
| | - Francesca Anselmi
- Human Genetics Foundation (HuGeF), via Nizza 52, Torino, 10126, Italy
| | - Federico Galvagni
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Salvatore Oliviero
- Human Genetics Foundation (HuGeF), via Nizza 52, Torino, 10126, Italy Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
35
|
Pérez LM, Bernal A, de Lucas B, San Martin N, Mastrangelo A, García A, Barbas C, Gálvez BG. Altered metabolic and stemness capacity of adipose tissue-derived stem cells from obese mouse and human. PLoS One 2015; 10:e0123397. [PMID: 25875023 PMCID: PMC4395137 DOI: 10.1371/journal.pone.0123397] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/18/2015] [Indexed: 12/21/2022] Open
Abstract
Adipose stem cells (ASCs) are an appealing source of cells for therapeutic intervention; however, the environment from which ASCs are isolated may impact their usefulness. Using a range of functional assays, we have evaluated whether ASCs isolated from an obese environment are comparable to cells from non-obese adipose tissue. Results showed that ASCs isolated from obese tissue have a reduced proliferative ability and a loss of viability together with changes in telomerase activity and DNA telomere length, suggesting a decreased self-renewal capacity. Metabolic analysis demonstrated that mitochondrial content and function was impaired in obese-derived ASCs resulting in changes in favored oxidative substrates. These findings highlight the impact of obesity on adult stem properties. Hence, caution should be exercised when considering the source of ASCs for cellular therapies since their therapeutic potential may be impaired.
Collapse
Affiliation(s)
- Laura M. Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Aurora Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Beatriz de Lucas
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Nuria San Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | | | | | - Beatriz G. Gálvez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Europea de Madrid (UEM), Madrid, Spain
- * E-mail:
| |
Collapse
|
36
|
Hassan HE, Carlson S, Abdallah I, Buttolph T, Glass KC, Fandy TE. Curcumin and dimethoxycurcumin induced epigenetic changes in leukemia cells. Pharm Res 2015; 32:863-75. [PMID: 25186441 PMCID: PMC11173366 DOI: 10.1007/s11095-014-1502-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/21/2014] [Indexed: 01/09/2023]
Abstract
PURPOSE Curcumin is an ideal chemopreventive and antitumor agent characterized by poor bioavailability and low stability. The development of synthetic structural analogues like dimethoxycurcumin (DMC) could overcome these drawbacks. In this study we compared the cytotoxicity, metabolism and the epigenetic changes induced by both drugs in leukemia cells. METHODS Apoptosis and cell cycle analysis were analyzed by flow cytometry. Real-time PCR was used for gene expression analysis. DNA methylation was analyzed by DNA pyrosequencing. The metabolic stability was determined using human pooled liver microsomes. Chromatin Immunoprecipitation was used to quantify histone methylation. RESULTS Clinically relevant concentration of curcumin and DMC were not cytotoxic to leukemia cells and induced G2/M cell cycle arrest. DMC was more metabolically stable than curcumin. Curcumin and DMC were devoid of DNA hypomethylating activity. DMC induced the expression of promoter methylated genes without reversing DNA methylation and increased H3K36me3 mark near the promoter region of hypermethylated genes. CONCLUSION DMC is a more stable analogue of curcumin that can induce epigenetic changes not induced by curcumin. DMC induced the expression of promoter methylated genes. The combination of DMC with DNA methyltransferase inhibitors could harness their combined induced epigenetic changes for optimal re-expression of epigenetically silenced genes.
Collapse
Affiliation(s)
- Hazem E. Hassan
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD
| | - Samuel Carlson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy (Vermont Campus), Colchester, VT
| | - Inas Abdallah
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD
| | - Thomm Buttolph
- Department of Neurological Sciences, University of Vermont, Burlington, VT
| | - Karen C. Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy (Vermont Campus), Colchester, VT
| | - Tamer E. Fandy
- Department of Pharmaceutical Sciences, Albany College of Pharmacy (Vermont Campus), Colchester, VT
| |
Collapse
|
37
|
Ortmann CA, Kent DG, Nangalia J, Silber Y, Wedge DC, Grinfeld J, Baxter EJ, Massie CE, Papaemmanuil E, Menon S, Godfrey AL, Dimitropoulou D, Guglielmelli P, Bellosillo B, Besses C, Döhner K, Harrison CN, Vassiliou GS, Vannucchi A, Campbell PJ, Green AR. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med 2015; 372:601-612. [PMID: 25671252 PMCID: PMC4660033 DOI: 10.1056/nejmoa1412098] [Citation(s) in RCA: 407] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cancers result from the accumulation of somatic mutations, and their properties are thought to reflect the sum of these mutations. However, little is known about the effect of the order in which mutations are acquired. METHODS We determined mutation order in patients with myeloproliferative neoplasms by genotyping hematopoietic colonies or by means of next-generation sequencing. Stem cells and progenitor cells were isolated to study the effect of mutation order on mature and immature hematopoietic cells. RESULTS The age at which a patient presented with a myeloproliferative neoplasm, acquisition of JAK2 V617F homozygosity, and the balance of immature progenitors were all influenced by mutation order. As compared with patients in whom the TET2 mutation was acquired first (hereafter referred to as "TET2-first patients"), patients in whom the Janus kinase 2 (JAK2) mutation was acquired first ("JAK2-first patients") had a greater likelihood of presenting with polycythemia vera than with essential thrombocythemia, an increased risk of thrombosis, and an increased sensitivity of JAK2-mutant progenitors to ruxolitinib in vitro. Mutation order influenced the proliferative response to JAK2 V617F and the capacity of double-mutant hematopoietic cells and progenitor cells to generate colony-forming cells. Moreover, the hematopoietic stem-and-progenitor-cell compartment was dominated by TET2 single-mutant cells in TET2-first patients but by JAK2-TET2 double-mutant cells in JAK2-first patients. Prior mutation of TET2 altered the transcriptional consequences of JAK2 V617F in a cell-intrinsic manner and prevented JAK2 V617F from up-regulating genes associated with proliferation. CONCLUSIONS The order in which JAK2 and TET2 mutations were acquired influenced clinical features, the response to targeted therapy, the biology of stem and progenitor cells, and clonal evolution in patients with myeloproliferative neoplasms. (Funded by Leukemia and Lymphoma Research and others.).
Collapse
Affiliation(s)
- Christina A Ortmann
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Stem Cell Institute (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., A.R.G.) and Department of Hematology (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., G.S.V., P.J.C., A.R.G.), University of Cambridge, Department of Haematology, Addenbrooke's Hospital (C.A.O., J.N., J.G., E.J.B., A.L.G., G.S.V., P.J.C., A.R.G.), Wellcome Trust Sanger Institute (D.C.W., E.P., G.S.V., P.J.C.), and Cancer Research U.K. Cambridge Institute, Li Ka Shing Centre (S.M.), Cambridge, and Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London (C.N.H.) - all in the United Kingdom; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy (P.G., A.V.); Departments of Pathology (B.B.) and Hematology (C.B.), Hospital del Mar, Barcelona; and the Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany (K.D.)
| | - David G Kent
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Stem Cell Institute (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., A.R.G.) and Department of Hematology (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., G.S.V., P.J.C., A.R.G.), University of Cambridge, Department of Haematology, Addenbrooke's Hospital (C.A.O., J.N., J.G., E.J.B., A.L.G., G.S.V., P.J.C., A.R.G.), Wellcome Trust Sanger Institute (D.C.W., E.P., G.S.V., P.J.C.), and Cancer Research U.K. Cambridge Institute, Li Ka Shing Centre (S.M.), Cambridge, and Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London (C.N.H.) - all in the United Kingdom; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy (P.G., A.V.); Departments of Pathology (B.B.) and Hematology (C.B.), Hospital del Mar, Barcelona; and the Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany (K.D.)
| | - Jyoti Nangalia
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Stem Cell Institute (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., A.R.G.) and Department of Hematology (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., G.S.V., P.J.C., A.R.G.), University of Cambridge, Department of Haematology, Addenbrooke's Hospital (C.A.O., J.N., J.G., E.J.B., A.L.G., G.S.V., P.J.C., A.R.G.), Wellcome Trust Sanger Institute (D.C.W., E.P., G.S.V., P.J.C.), and Cancer Research U.K. Cambridge Institute, Li Ka Shing Centre (S.M.), Cambridge, and Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London (C.N.H.) - all in the United Kingdom; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy (P.G., A.V.); Departments of Pathology (B.B.) and Hematology (C.B.), Hospital del Mar, Barcelona; and the Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany (K.D.)
| | - Yvonne Silber
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Stem Cell Institute (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., A.R.G.) and Department of Hematology (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., G.S.V., P.J.C., A.R.G.), University of Cambridge, Department of Haematology, Addenbrooke's Hospital (C.A.O., J.N., J.G., E.J.B., A.L.G., G.S.V., P.J.C., A.R.G.), Wellcome Trust Sanger Institute (D.C.W., E.P., G.S.V., P.J.C.), and Cancer Research U.K. Cambridge Institute, Li Ka Shing Centre (S.M.), Cambridge, and Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London (C.N.H.) - all in the United Kingdom; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy (P.G., A.V.); Departments of Pathology (B.B.) and Hematology (C.B.), Hospital del Mar, Barcelona; and the Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany (K.D.)
| | - David C Wedge
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Stem Cell Institute (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., A.R.G.) and Department of Hematology (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., G.S.V., P.J.C., A.R.G.), University of Cambridge, Department of Haematology, Addenbrooke's Hospital (C.A.O., J.N., J.G., E.J.B., A.L.G., G.S.V., P.J.C., A.R.G.), Wellcome Trust Sanger Institute (D.C.W., E.P., G.S.V., P.J.C.), and Cancer Research U.K. Cambridge Institute, Li Ka Shing Centre (S.M.), Cambridge, and Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London (C.N.H.) - all in the United Kingdom; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy (P.G., A.V.); Departments of Pathology (B.B.) and Hematology (C.B.), Hospital del Mar, Barcelona; and the Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany (K.D.)
| | - Jacob Grinfeld
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Stem Cell Institute (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., A.R.G.) and Department of Hematology (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., G.S.V., P.J.C., A.R.G.), University of Cambridge, Department of Haematology, Addenbrooke's Hospital (C.A.O., J.N., J.G., E.J.B., A.L.G., G.S.V., P.J.C., A.R.G.), Wellcome Trust Sanger Institute (D.C.W., E.P., G.S.V., P.J.C.), and Cancer Research U.K. Cambridge Institute, Li Ka Shing Centre (S.M.), Cambridge, and Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London (C.N.H.) - all in the United Kingdom; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy (P.G., A.V.); Departments of Pathology (B.B.) and Hematology (C.B.), Hospital del Mar, Barcelona; and the Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany (K.D.)
| | - E Joanna Baxter
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Stem Cell Institute (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., A.R.G.) and Department of Hematology (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., G.S.V., P.J.C., A.R.G.), University of Cambridge, Department of Haematology, Addenbrooke's Hospital (C.A.O., J.N., J.G., E.J.B., A.L.G., G.S.V., P.J.C., A.R.G.), Wellcome Trust Sanger Institute (D.C.W., E.P., G.S.V., P.J.C.), and Cancer Research U.K. Cambridge Institute, Li Ka Shing Centre (S.M.), Cambridge, and Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London (C.N.H.) - all in the United Kingdom; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy (P.G., A.V.); Departments of Pathology (B.B.) and Hematology (C.B.), Hospital del Mar, Barcelona; and the Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany (K.D.)
| | - Charles E Massie
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Stem Cell Institute (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., A.R.G.) and Department of Hematology (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., G.S.V., P.J.C., A.R.G.), University of Cambridge, Department of Haematology, Addenbrooke's Hospital (C.A.O., J.N., J.G., E.J.B., A.L.G., G.S.V., P.J.C., A.R.G.), Wellcome Trust Sanger Institute (D.C.W., E.P., G.S.V., P.J.C.), and Cancer Research U.K. Cambridge Institute, Li Ka Shing Centre (S.M.), Cambridge, and Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London (C.N.H.) - all in the United Kingdom; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy (P.G., A.V.); Departments of Pathology (B.B.) and Hematology (C.B.), Hospital del Mar, Barcelona; and the Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany (K.D.)
| | - Elli Papaemmanuil
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Stem Cell Institute (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., A.R.G.) and Department of Hematology (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., G.S.V., P.J.C., A.R.G.), University of Cambridge, Department of Haematology, Addenbrooke's Hospital (C.A.O., J.N., J.G., E.J.B., A.L.G., G.S.V., P.J.C., A.R.G.), Wellcome Trust Sanger Institute (D.C.W., E.P., G.S.V., P.J.C.), and Cancer Research U.K. Cambridge Institute, Li Ka Shing Centre (S.M.), Cambridge, and Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London (C.N.H.) - all in the United Kingdom; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy (P.G., A.V.); Departments of Pathology (B.B.) and Hematology (C.B.), Hospital del Mar, Barcelona; and the Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany (K.D.)
| | - Suraj Menon
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Stem Cell Institute (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., A.R.G.) and Department of Hematology (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., G.S.V., P.J.C., A.R.G.), University of Cambridge, Department of Haematology, Addenbrooke's Hospital (C.A.O., J.N., J.G., E.J.B., A.L.G., G.S.V., P.J.C., A.R.G.), Wellcome Trust Sanger Institute (D.C.W., E.P., G.S.V., P.J.C.), and Cancer Research U.K. Cambridge Institute, Li Ka Shing Centre (S.M.), Cambridge, and Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London (C.N.H.) - all in the United Kingdom; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy (P.G., A.V.); Departments of Pathology (B.B.) and Hematology (C.B.), Hospital del Mar, Barcelona; and the Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany (K.D.)
| | - Anna L Godfrey
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Stem Cell Institute (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., A.R.G.) and Department of Hematology (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., G.S.V., P.J.C., A.R.G.), University of Cambridge, Department of Haematology, Addenbrooke's Hospital (C.A.O., J.N., J.G., E.J.B., A.L.G., G.S.V., P.J.C., A.R.G.), Wellcome Trust Sanger Institute (D.C.W., E.P., G.S.V., P.J.C.), and Cancer Research U.K. Cambridge Institute, Li Ka Shing Centre (S.M.), Cambridge, and Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London (C.N.H.) - all in the United Kingdom; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy (P.G., A.V.); Departments of Pathology (B.B.) and Hematology (C.B.), Hospital del Mar, Barcelona; and the Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany (K.D.)
| | - Danai Dimitropoulou
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Stem Cell Institute (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., A.R.G.) and Department of Hematology (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., G.S.V., P.J.C., A.R.G.), University of Cambridge, Department of Haematology, Addenbrooke's Hospital (C.A.O., J.N., J.G., E.J.B., A.L.G., G.S.V., P.J.C., A.R.G.), Wellcome Trust Sanger Institute (D.C.W., E.P., G.S.V., P.J.C.), and Cancer Research U.K. Cambridge Institute, Li Ka Shing Centre (S.M.), Cambridge, and Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London (C.N.H.) - all in the United Kingdom; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy (P.G., A.V.); Departments of Pathology (B.B.) and Hematology (C.B.), Hospital del Mar, Barcelona; and the Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany (K.D.)
| | - Paola Guglielmelli
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Stem Cell Institute (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., A.R.G.) and Department of Hematology (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., G.S.V., P.J.C., A.R.G.), University of Cambridge, Department of Haematology, Addenbrooke's Hospital (C.A.O., J.N., J.G., E.J.B., A.L.G., G.S.V., P.J.C., A.R.G.), Wellcome Trust Sanger Institute (D.C.W., E.P., G.S.V., P.J.C.), and Cancer Research U.K. Cambridge Institute, Li Ka Shing Centre (S.M.), Cambridge, and Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London (C.N.H.) - all in the United Kingdom; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy (P.G., A.V.); Departments of Pathology (B.B.) and Hematology (C.B.), Hospital del Mar, Barcelona; and the Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany (K.D.)
| | - Beatriz Bellosillo
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Stem Cell Institute (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., A.R.G.) and Department of Hematology (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., G.S.V., P.J.C., A.R.G.), University of Cambridge, Department of Haematology, Addenbrooke's Hospital (C.A.O., J.N., J.G., E.J.B., A.L.G., G.S.V., P.J.C., A.R.G.), Wellcome Trust Sanger Institute (D.C.W., E.P., G.S.V., P.J.C.), and Cancer Research U.K. Cambridge Institute, Li Ka Shing Centre (S.M.), Cambridge, and Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London (C.N.H.) - all in the United Kingdom; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy (P.G., A.V.); Departments of Pathology (B.B.) and Hematology (C.B.), Hospital del Mar, Barcelona; and the Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany (K.D.)
| | - Carles Besses
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Stem Cell Institute (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., A.R.G.) and Department of Hematology (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., G.S.V., P.J.C., A.R.G.), University of Cambridge, Department of Haematology, Addenbrooke's Hospital (C.A.O., J.N., J.G., E.J.B., A.L.G., G.S.V., P.J.C., A.R.G.), Wellcome Trust Sanger Institute (D.C.W., E.P., G.S.V., P.J.C.), and Cancer Research U.K. Cambridge Institute, Li Ka Shing Centre (S.M.), Cambridge, and Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London (C.N.H.) - all in the United Kingdom; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy (P.G., A.V.); Departments of Pathology (B.B.) and Hematology (C.B.), Hospital del Mar, Barcelona; and the Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany (K.D.)
| | - Konstanze Döhner
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Stem Cell Institute (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., A.R.G.) and Department of Hematology (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., G.S.V., P.J.C., A.R.G.), University of Cambridge, Department of Haematology, Addenbrooke's Hospital (C.A.O., J.N., J.G., E.J.B., A.L.G., G.S.V., P.J.C., A.R.G.), Wellcome Trust Sanger Institute (D.C.W., E.P., G.S.V., P.J.C.), and Cancer Research U.K. Cambridge Institute, Li Ka Shing Centre (S.M.), Cambridge, and Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London (C.N.H.) - all in the United Kingdom; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy (P.G., A.V.); Departments of Pathology (B.B.) and Hematology (C.B.), Hospital del Mar, Barcelona; and the Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany (K.D.)
| | - Claire N Harrison
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Stem Cell Institute (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., A.R.G.) and Department of Hematology (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., G.S.V., P.J.C., A.R.G.), University of Cambridge, Department of Haematology, Addenbrooke's Hospital (C.A.O., J.N., J.G., E.J.B., A.L.G., G.S.V., P.J.C., A.R.G.), Wellcome Trust Sanger Institute (D.C.W., E.P., G.S.V., P.J.C.), and Cancer Research U.K. Cambridge Institute, Li Ka Shing Centre (S.M.), Cambridge, and Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London (C.N.H.) - all in the United Kingdom; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy (P.G., A.V.); Departments of Pathology (B.B.) and Hematology (C.B.), Hospital del Mar, Barcelona; and the Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany (K.D.)
| | - George S Vassiliou
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Stem Cell Institute (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., A.R.G.) and Department of Hematology (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., G.S.V., P.J.C., A.R.G.), University of Cambridge, Department of Haematology, Addenbrooke's Hospital (C.A.O., J.N., J.G., E.J.B., A.L.G., G.S.V., P.J.C., A.R.G.), Wellcome Trust Sanger Institute (D.C.W., E.P., G.S.V., P.J.C.), and Cancer Research U.K. Cambridge Institute, Li Ka Shing Centre (S.M.), Cambridge, and Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London (C.N.H.) - all in the United Kingdom; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy (P.G., A.V.); Departments of Pathology (B.B.) and Hematology (C.B.), Hospital del Mar, Barcelona; and the Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany (K.D.)
| | - Alessandro Vannucchi
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Stem Cell Institute (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., A.R.G.) and Department of Hematology (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., G.S.V., P.J.C., A.R.G.), University of Cambridge, Department of Haematology, Addenbrooke's Hospital (C.A.O., J.N., J.G., E.J.B., A.L.G., G.S.V., P.J.C., A.R.G.), Wellcome Trust Sanger Institute (D.C.W., E.P., G.S.V., P.J.C.), and Cancer Research U.K. Cambridge Institute, Li Ka Shing Centre (S.M.), Cambridge, and Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London (C.N.H.) - all in the United Kingdom; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy (P.G., A.V.); Departments of Pathology (B.B.) and Hematology (C.B.), Hospital del Mar, Barcelona; and the Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany (K.D.)
| | - Peter J Campbell
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Stem Cell Institute (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., A.R.G.) and Department of Hematology (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., G.S.V., P.J.C., A.R.G.), University of Cambridge, Department of Haematology, Addenbrooke's Hospital (C.A.O., J.N., J.G., E.J.B., A.L.G., G.S.V., P.J.C., A.R.G.), Wellcome Trust Sanger Institute (D.C.W., E.P., G.S.V., P.J.C.), and Cancer Research U.K. Cambridge Institute, Li Ka Shing Centre (S.M.), Cambridge, and Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London (C.N.H.) - all in the United Kingdom; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy (P.G., A.V.); Departments of Pathology (B.B.) and Hematology (C.B.), Hospital del Mar, Barcelona; and the Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany (K.D.)
| | - Anthony R Green
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Stem Cell Institute (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., A.R.G.) and Department of Hematology (C.A.O., D.G.K., J.N., Y.S., J.G., E.J.B., C.E.M., A.L.G., D.D., G.S.V., P.J.C., A.R.G.), University of Cambridge, Department of Haematology, Addenbrooke's Hospital (C.A.O., J.N., J.G., E.J.B., A.L.G., G.S.V., P.J.C., A.R.G.), Wellcome Trust Sanger Institute (D.C.W., E.P., G.S.V., P.J.C.), and Cancer Research U.K. Cambridge Institute, Li Ka Shing Centre (S.M.), Cambridge, and Guy's and St. Thomas' National Health Service Foundation Trust, Guy's Hospital, London (C.N.H.) - all in the United Kingdom; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy (P.G., A.V.); Departments of Pathology (B.B.) and Hematology (C.B.), Hospital del Mar, Barcelona; and the Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany (K.D.)
| |
Collapse
|
38
|
Dong C, Zhang H, Xu C, Arrowsmith CH, Min J. Structure and function of dioxygenases in histone demethylation and DNA/RNA demethylation. IUCRJ 2014; 1:540-9. [PMID: 25485134 PMCID: PMC4224472 DOI: 10.1107/s2052252514020922] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/18/2014] [Indexed: 05/18/2023]
Abstract
Iron(II) and 2-oxoglutarate (2OG)-dependent dioxygenases involved in histone and DNA/RNA demethylation convert the cosubstrate 2OG and oxygen to succinate and carbon dioxide, resulting in hydroxylation of the methyl group of the substrates and subsequent demethylation. Recent evidence has shown that these 2OG dioxygenases play vital roles in a variety of biological processes, including transcriptional regulation and gene expression. In this review, the structure and function of these dioxygenases in histone and nucleic acid demethylation will be discussed. Given the important roles of these 2OG dioxygenases, detailed analysis and comparison of the 2OG dioxygenases will guide the design of target-specific small-molecule chemical probes and inhibitors.
Collapse
Affiliation(s)
- Cheng Dong
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Heng Zhang
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Chao Xu
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
39
|
Keil KP, Abler LL, Laporta J, Altmann HM, Yang B, Jarrard DF, Hernandez LL, Vezina CM. Androgen receptor DNA methylation regulates the timing and androgen sensitivity of mouse prostate ductal development. Dev Biol 2014; 396:237-45. [PMID: 25446526 DOI: 10.1016/j.ydbio.2014.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/11/2014] [Accepted: 10/13/2014] [Indexed: 12/27/2022]
Abstract
Androgen receptor (AR) signaling initiates mouse prostate development by stimulating prostate ductal bud formation and specifying bud patterns. Curiously, however, prostatic bud initiation lags behind the onset of gonadal testosterone synthesis by about three days. This study's objective was to test the hypothesis that DNA methylation controls the timing and scope of prostate ductal development by regulating Ar expression in the urogenital sinus (UGS) from which the prostate derives. We determined that Ar DNA methylation decreases in UGS mesenchyme during prostate bud formation in vivo and that this change correlates with decreased DNA methyltransferase expression in the same cell population during the same time period. To examine the role of DNA methylation in prostate development, fetal UGSs were grown in serum-free medium and 5 alpha dihydrotestosterone (DHT) and the DNA methylation inhibitor 5'-aza-2'-deoxycytidine (5AzadC) were introduced into the medium at specific times. As a measure of prostate development, in situ hybridization was used to visualize and count Nkx3-1 mRNA positive prostatic buds. We determined that inhibiting DNA methylation when prostatic buds are being specified, accelerates the onset of prostatic bud development, increases bud number, and sensitizes the budding response to androgens. Inhibition of DNA methylation also reduces Ar DNA methylation in UGS explants and increases Ar mRNA and protein in UGS mesenchyme and epithelium. Together, these results support a novel mechanism whereby Ar DNA methylation regulates UGS androgen sensitivity to control the rate and number of prostatic buds formed, thereby establishing a developmental checkpoint.
Collapse
Affiliation(s)
- Kimberly P Keil
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Lisa L Abler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jimena Laporta
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Helene M Altmann
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Bing Yang
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - David F Jarrard
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI, USA; Environmental and Molecular Toxicology, University of Wisconsin, Madison, WI, USA
| | - Laura L Hernandez
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
40
|
Ma Q, Xiong F, Zhang L. Gestational hypoxia and epigenetic programming of brain development disorders. Drug Discov Today 2014; 19:1883-96. [PMID: 25256780 DOI: 10.1016/j.drudis.2014.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/23/2014] [Accepted: 09/16/2014] [Indexed: 01/04/2023]
Abstract
Adverse environmental conditions faced by an individual early during its life, such as gestational hypoxia, can have a profound influence on the risk of diseases, such as neurological disorders, in later life. Clinical and preclinical studies suggest that epigenetic programming of gene expression patterns in response to maternal stress have a crucial role in the fetal origins of neurological diseases. Herein, we summarize recent studies regarding the role of epigenetic mechanisms in the developmental programming of neurological diseases in offspring, primarily focusing on DNA methylation/demethylation and miRNAs. Such information could increase our understanding of the fetal origins of adult diseases and help develop effective prevention and intervention against neurological diseases.
Collapse
Affiliation(s)
- Qingyi Ma
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Fuxia Xiong
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
41
|
TET2 Inhibits Differentiation of Embryonic Stem Cells but Does Not Overcome Methylation-Induced Gene Silencing. BONE MARROW RESEARCH 2014; 2014:986571. [PMID: 25276435 PMCID: PMC4158571 DOI: 10.1155/2014/986571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/18/2014] [Indexed: 01/22/2023]
Abstract
TET2 is a methylcytosine dioxygenase that is frequently mutated in myeloid malignancies, notably myelodysplasia and acute myeloid leukemia. TET2 catalyses the conversion of 5'-methylcytosine to 5'-hydroxymethylcytosine within DNA and has been implicated in the process of genomic demethylation. However, the mechanism by which TET2 loss of function results in hematopoietic dysplasia and leukemogenesis is poorly understood. Here, we show that TET2 is expressed in undifferentiated embryonic stem cells and that its knockdown results in reduction of 5'-hydroxymethylcytosine in genomic DNA. We also present DNA methylation data from bone marrow samples obtained from patients with TET2-mutated myelodysplasia. Based on these findings, we sought to identify the role of TET2 in regulating pluripotency and differentiation. We show that overexpression of TET2 in a stably integrated transgene leads to increased alkaline phosphatase expression in differentiating ES cells and impaired differentiation in methylcellulose culture. We speculate that this effect is due to TET2-mediated expression of stem cell genes in ES cells via hydroxylation of 5'-methylcytosines at key promoter sequences within genomic DNA. This leads to relative hypomethylation of gene promoters as 5'-hydroxymethylcytosine is not a substrate for DNMT1-mediated maintenance methylation. We sought to test this hypothesis by cotransfecting the TET2 gene with methylated reporter genes. The results of these experiments are presented.
Collapse
|
42
|
Zaina S, Lund G. Atherosclerosis: cell biology and lipoproteins - epigenetics and oxidation in atherosclerosis. Curr Opin Lipidol 2014; 25:235-6. [PMID: 24806894 DOI: 10.1097/mol.0000000000000075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Silvio Zaina
- aDepartment of Medical Sciences, University of Guanajuato, León bDepartment of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Guanajuato, Mexico
| | | |
Collapse
|
43
|
Efficient reprogramming of naïve-like induced pluripotent stem cells from porcine adipose-derived stem cells with a feeder-independent and serum-free system. PLoS One 2014; 9:e85089. [PMID: 24465482 PMCID: PMC3896366 DOI: 10.1371/journal.pone.0085089] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/22/2013] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are somatic cells reprogrammed by ectopic expression of transcription factors or small molecule treatment, which resemble embryonic stem cells (ESCs). They hold great promise for improving the generation of genetically modified large animals. However, few porcine iPSCs (piPSCs) lines obtained currently can support development of cloned embryos. Here, we generated iPSCs from porcine adipose-derived stem cells (pADSCs), using drug-inducible expression of defined human factors (Oct4, Sox2, c-Myc and Klf4). Reprogramming of iPSCs from pADSCs was more efficient than from fibroblasts, regardless of using feeder-independent or feeder-dependent manners. By addition of Lif-2i medium containing mouse Lif, CHIR99021 and PD0325901 (Lif-2i), naïve-like piPSCs were obtained under feeder-independent and serum-free conditions. These successfully reprogrammed piPSCs were characterized by short cell cycle intervals, alkaline phosphatase (AP) staining, expression of Oct4, Sox2, Nanog, SSEA3 and SSEA4, and normal karyotypes. The resemblance of piPSCs to naïve ESCs was confirmed by their packed dome morphology, growth after single-cell dissociation, Lif-dependency, up-regulation of Stella and Eras, low expression levels of TRA-1-60, TRA-1-81 and MHC I and activation of both X chromosomes. Full reprogramming of naïve-like piPSCs was evaluated by the significant up-regulation of Lin28, Esrrb, Utf1 and Dppa5, differentiating into cell types of all three germ layers in vitro and in vivo. Furthermore, nuclear transfer embryos from naïve-like piPSCs could develop to blastocysts with improved quality. Thus, we provided an efficient protocol for generating naïve-like piPSCs from pADSCs in a feeder-independent and serum-free system with controlled regulation of exogenous genes, which may facilitate optimization of culture media and the production of transgenic pigs.
Collapse
|
44
|
Sowers JL, Johnson KM, Conrad C, Patterson JT, Sowers LC. The role of inflammation in brain cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:75-105. [PMID: 24818720 DOI: 10.1007/978-3-0348-0837-8_4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Malignant brain tumors are among the most lethal of human tumors, with limited treatment options currently available. A complex array of recurrent genetic and epigenetic changes has been observed in gliomas that collectively result in derangements of common cell signaling pathways controlling cell survival, proliferation, and invasion. One important determinant of gene expression is DNA methylation status, and emerging studies have revealed the importance of a recently identified demethylation pathway involving 5-hydroxymethylcytosine (5hmC). Diminished levels of the modified base 5hmC is a uniform finding in glioma cell lines and patient samples, suggesting a common defect in epigenetic reprogramming. Within the tumor microenvironment, infiltrating immune cells increase oxidative DNA damage, likely promoting both genetic and epigenetic changes that occur during glioma evolution. In this environment, glioma cells are selected that utilize multiple metabolic changes, including changes in the metabolism of the amino acids glutamate, tryptophan, and arginine. Whereas altered metabolism can promote the destruction of normal tissues, glioma cells exploit these changes to promote tumor cell survival and to suppress adaptive immune responses. Further understanding of these metabolic changes could reveal new strategies that would selectively disadvantage tumor cells and redirect host antitumor responses toward eradication of these lethal tumors.
Collapse
Affiliation(s)
- James L Sowers
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | | | | | | | | |
Collapse
|
45
|
Ito R, Katsura S, Shimada H, Tsuchiya H, Hada M, Okumura T, Sugawara A, Yokoyama A. TET3-OGT interaction increases the stability and the presence of OGT in chromatin. Genes Cells 2013; 19:52-65. [PMID: 24304661 DOI: 10.1111/gtc.12107] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 10/11/2013] [Indexed: 01/11/2023]
Abstract
Gene expression is controlled by alterations in the epigenome, including DNA methylation and histone modification. Recently, it was reported that 5-methylcytosine (5mC) is converted to 5-hydroxymethylcytosine (5hmC) by proteins in the ten-eleven translocation (TET) family. This conversion is believed to be part of the mechanism by which methylated DNA is demethylated. Moreover, histones undergo modifications such as phosphorylation and acetylation. In addition, modification with O-linked-N-acetylglucosamine (O-GlcNAc) by O-GlcNAc transferase (OGT) was recently identified as a novel histone modification. Herein, we focused on TET3, the regulation of which is still unclear. We attempted to elucidate the mechanism of its regulation by biochemical approaches. First, we conducted mass spectrometric analysis in combination with affinity purification of FLAG-TET3, which identified OGT as an important partner of TET3. Co-immunoprecipitation assays using a series of deletion mutants showed that the C-terminal H domain of TET3 was required for its interaction with OGT. Furthermore, we showed that TET3 is GlcNAcylated by OGT, although the GlcNAcylation did not affect the global hydroxylation of methylcytosine by TET3. Moreover, we showed that TET3 enhanced its localization to chromatin through the stabilization of OGT protein. Taken together, we showed a novel function of TET3 that likely supports the function of OGT.
Collapse
Affiliation(s)
- Ryo Ito
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Alvarado S, Wyglinski J, Suderman M, Andrews SA, Szyf M. Methylated DNA binding domain protein 2 (MBD2) coordinately silences gene expression through activation of the microRNA hsa-mir-496 promoter in breast cancer cell line. PLoS One 2013; 8:e74009. [PMID: 24204564 PMCID: PMC3812180 DOI: 10.1371/journal.pone.0074009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/25/2013] [Indexed: 12/31/2022] Open
Abstract
Methylated DNA binding protein 2 (MBD2) binds methylated promoters and suppresses transcription in cis through recruitment of a chromatin modification repressor complex. We show here a new mechanism of action for MBD2: suppression of gene expression indirectly through activation of microRNA hsa-mir-496. Overexpression of MBD2 in breast epithelial cell line MCF-10A results in induced expression and demethylation of hsa-mir-496 while depletion of MBD2 in a human breast cancer cell lines MCF-7 and MDA-MB231 results in suppression of hsa-mir-496. Activation of hsa-mir-496 by MBD2 is associated with silencing of several of its target genes while depletion of MBD2 leads to induction of hsa-mir-496 target genes. Depletion of hsa-mir-496 by locked nucleic acid (LNA) antisense oligonucleotide leads to activation of these target genes in MBD2 overexpressing cells supporting that hsa-mir-496 is mediating in part the effects of MBD2 on gene expression. We demonstrate that MBD2 binds the promoter of hsa-mir-496 in MCF-10A, MCF-7 and MDA-MB-231 cells and that it activates an in vitro methylated hsa-mir-496 promoter driving a CG-less luciferase reporter in a transient transfection assay. The activation of hsa-mir-496 is associated with reduced methylation of the promoter. Taken together these results describe a novel cascade for gene regulation by DNA methylation whereby activation of a methylated microRNA by MBD2 that is associated with loss of methylation triggers repression of downstream targets.
Collapse
Affiliation(s)
- Sebastian Alvarado
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Joanne Wyglinski
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Matthew Suderman
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Stephen A. Andrews
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Sackler Program for Epigenetics and Developmental Psychobiology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
47
|
Cadet J, Wagner JR. TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 764-765:18-35. [PMID: 24045206 DOI: 10.1016/j.mrgentox.2013.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022]
Abstract
5-Methylcytosine and methylated histones have been considered for a long time as stable epigenetic marks of chromatin involved in gene regulation. This concept has been recently revisited with the detection of large amounts of 5-hydroxymethylcytosine, now considered as the sixth DNA base, in mouse embryonic stem cells, Purkinje neurons and brain tissues. The dioxygenases that belong to the ten eleven translocation (TET) oxygenase family have been shown to initiate the formation of this methyl oxidation product of 5-methylcytosine that is also generated although far less efficiently by radical reactions involving hydroxyl radical and one-electron oxidants. It was found as additional striking data that iterative TET-mediated oxidation of 5-hydroxymethylcytosine gives rise to 5-formylcytosine and 5-carboxylcytosine. This survey focuses on chemical and biochemical aspects of the enzymatic oxidation reactions of 5-methylcytosine that are likely to be involved in active demethylation pathways through the implication of enzymatic deamination of 5-methylcytosine oxidation products and/or several base excision repair enzymes. The high biological relevance of the latter modified bases explains why major efforts have been devoted to the design of a broad range of assays aimed at measuring globally or at the single base resolution, 5-hydroxymethylcytosine and the two other oxidation products in the DNA of cells and tissues. Another critical issue that is addressed in this review article deals with the assessment of the possible role of 5-methylcytosine oxidation products, when present in elevated amounts in cellular DNA, in terms of mutagenesis and interference with key cellular enzymes including DNA and RNA polymerases.
Collapse
Affiliation(s)
- Jean Cadet
- Direction des Sciences de la Matière, Institut Nanosciences et Cryogénie, CEA/Grenoble, 38054 Grenoble, France; Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec JIH 5N4, Canada.
| | - J Richard Wagner
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec JIH 5N4, Canada.
| |
Collapse
|
48
|
Jackson FLC, Niculescu MD, Jackson RT. Conceptual shifts needed to understand the dynamic interactions of genes, environment, epigenetics, social processes, and behavioral choices. Am J Public Health 2013; 103 Suppl 1:S33-42. [PMID: 23927503 DOI: 10.2105/ajph.2013.301221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Social and behavioral research in public health is often intimately tied to profound, but frequently neglected, biological influences from underlying genetic, environmental, and epigenetic events. The dynamic interplay between the life, social, and behavioral sciences often remains underappreciated and underutilized in addressing complex diseases and disorders and in developing effective remediation strategies. Using a case-study format, we present examples as to how the inclusion of genetic, environmental, and epigenetic data can augment social and behavioral health research by expanding the parameters of such studies, adding specificity to phenotypic assessments, and providing additional internal control in comparative studies. We highlight the important roles of gene-environment interactions and epigenetics as sources of phenotypic change and as a bridge between the life and social and behavioral sciences in the development of robust interdisciplinary analyses.
Collapse
Affiliation(s)
- Fatimah L C Jackson
- Fatimah L. C. Jackson, and Mihai D. Niculescu are with the University of North Carolina at Chapel Hill. Robert T. Jackson is with the University of Maryland at College Park
| | | | | |
Collapse
|
49
|
Zhang W, Shao ZH, Fu R, Wang HQ, Li LJ, Wang J, Qu W, Liang Y, Wang GJ, Wang XM, Wu Y, Liu H, Song J, Guan J, Xing LM. TET2 Expression in Bone Marrow Mononuclear Cells of Patients with Myelodysplastic Syndromes and Its Clinical Significances. Cancer Biol Med 2013; 9:34-7. [PMID: 23691452 PMCID: PMC3643638 DOI: 10.3969/j.issn.2095-3941.2012.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/02/2012] [Indexed: 12/20/2022] Open
Abstract
Objective To investigate the expression of TET2 mRNA and protein in the bone marrow mononuclear cells (BMMNC) of patients with myelodysplastic syndrome (MDS) and its clinical significance. Methods The expression of TET2 mRNA and protein in bone marrow mononuclear cells (BMMNC) of 32 patients with MDS and 20 healthy donors was examined by qPCR and Western blot. Results The expression of TET2 mRNA in BMMNC was down-regulated in MDS patients compared with the donor group [(0.41±0.28)% vs. (1.07±0.56)%] (P<0.001). Compared with lower expression group (TET2<0.4) [(6.53±6.17)%], patients with higher expression of TET2 (≥0.4) presented significantly lower proportion of bone marrow blasts [(1.21±1.56)%] (P<0.05). The expression of TET2 mRNA in BMMNC of MDS patients was inversely correlated with malignant clone burden (r=-0.398, P<0.05) and IPSS (r=-0.412, P<0.05). The expression of TET2 protein was down-regulated in MDS patients compared with that in the donor group. Conclusions The mRNA and protein expression of TET2 in BMMNC of MDS patients is decreased, which might be useful as an important parameter for the evaluation of MDS clone burden.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Liu X, Zhang G, Yi Y, Xiao L, Pei M, Liu S, Luo Y, Zhong H, Xu Y, Zheng W, Shen J. Decreased 5-hydroxymethylcytosine levels are associated withTET2mutation and unfavorable overall survival in myelodysplastic syndromes. Leuk Lymphoma 2013; 54:2466-73. [PMID: 23432690 DOI: 10.3109/10428194.2013.778408] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Xiaoliu Liu
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, P. R. of China
| | - Guangsen Zhang
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, P. R. of China
| | - Yan Yi
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, P. R. of China
| | - Le Xiao
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, P. R. of China
| | - Minfei Pei
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, P. R. of China
| | - Sufang Liu
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, P. R. of China
| | - Yunya Luo
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, P. R. of China
| | - Haiying Zhong
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, P. R. of China
| | - Yunxiao Xu
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, P. R. of China
| | - Wenli Zheng
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, P. R. of China
| | - Jiankai Shen
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, P. R. of China
| |
Collapse
|