1
|
Sone B, Ambe LA, Ampama MN, Ajohkoh C, Che D, Nguinkal JA, Taubert A, Hermosilla C, Kamena F. Prevalence and Molecular Characterization of Cryptosporidium Species in Diarrheic Children in Cameroon. Pathogens 2025; 14:287. [PMID: 40137772 PMCID: PMC11945035 DOI: 10.3390/pathogens14030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Cryptosporidiosis remains a major cause of diarrhea-related childhood death, particularly in developing countries. Although effective anti-retroviral therapy has significantly reduced the cryptosporidiosis burden in western nations, the situation in developing countries remains alarming due to limited therapeutic options and a lack of preventive measures. To better control disease transmission and develop effective prevention strategies, a thorough understanding of the genetic diversity of circulating species is crucial. While cryptosporidiosis has previously been reported in Cameroon, information on the genetic diversity of parasite strains is lacking. In a large cross-sectional study conducted between March 2020 and March 2021 in four regions of Cameroon, Southwest, Littoral, Center and West, a total of 1119 fecal samples of children (n = 1119) were collected and genetically analyzed. This study aimed to assess the genetic diversity of Cryptosporidium strains circulating in this patient cohort in Cameroon. Using modified Ziehl-Neelsen fecal smear staining, an overall prevalence of 8.5% (96/1119) was recorded. PCR analysis revealed a prevalence of 15.4% in the Center, 7.2% in the Littoral, 10.5% in the West, and 13.1% in the Southwest regions. Molecular analysis identified Cryptosporidium. hominis and Cryptosporidium parvum as circulating species, with all subtype families suggesting anthroponotic transmission. No zoonotic subtypes of C. parvum were detected. These findings confirm that cryptosporidiosis transmission in Cameroon is primarily anthroponotic. Nonetheless, much larger epidemiological surveys, including other patient cohorts, are necessary for final confirmation of this statement.
Collapse
Affiliation(s)
- Bertrand Sone
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (B.S.); (L.A.A.); (C.A.); (D.C.)
| | - Lum Abienwi Ambe
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (B.S.); (L.A.A.); (C.A.); (D.C.)
- Centre for Research on Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, P.O. Box 13033, Cameroon
| | - Mireille Nguele Ampama
- Institute of Parasitology, Biomedical Research Center Seltersberg (B.F.S.), Justus Liebig University Giessen, 35392 Giessen, Germany; (A.T.); (C.H.)
| | - Constance Ajohkoh
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (B.S.); (L.A.A.); (C.A.); (D.C.)
| | - Desmond Che
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (B.S.); (L.A.A.); (C.A.); (D.C.)
| | - Julien Alban Nguinkal
- Department of Infectious Disease Epidemiology, Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg (B.F.S.), Justus Liebig University Giessen, 35392 Giessen, Germany; (A.T.); (C.H.)
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg (B.F.S.), Justus Liebig University Giessen, 35392 Giessen, Germany; (A.T.); (C.H.)
| | - Faustin Kamena
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon; (B.S.); (L.A.A.); (C.A.); (D.C.)
| |
Collapse
|
2
|
Barbosa AD, Egan S, Feng Y, Xiao L, Ryan U. How significant are bats as potential carriers of zoonotic Cryptosporidium and Giardia? CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 4:100155. [PMID: 38149267 PMCID: PMC10750029 DOI: 10.1016/j.crpvbd.2023.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023]
Abstract
Bats are known to harbour various pathogens and are increasingly recognised as potential reservoirs for zoonotic diseases. This paper reviews the genetic diversity and zoonotic potential of Cryptosporidium and Giardia in bats. The risk of zoonotic transmission of Cryptosporidium from bats to humans appears low, with bat-specific Cryptosporidium genotypes accounting for 91.5% of Cryptosporidium-positive samples genotyped from bats worldwide, and C. parvum and C. hominis accounting for 3.4% each of typed positives, respectively. To date, there have only been sporadic detections of Giardia in bats, with no genetic characterisation of the parasite to species or assemblage level. Therefore, the role bats play as reservoirs of zoonotic Giardia spp. is unknown. To mitigate potential risks of zoonotic transmission and their public health implications, comprehensive research on Cryptosporidium and Giardia in bats is imperative. Future studies should encompass additional locations across the globe and a broader spectrum of bat species, with a focus on those adapted to urban environments.
Collapse
Affiliation(s)
- Amanda D. Barbosa
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
- CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF 70040-020, Brazil
| | - Siobhon Egan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
3
|
Bacchetti R, Connelly L, Browning L, Alexander CL. Changing Molecular Profiles of Human Cryptosporidiosis Cases in Scotland as a Result of the Coronavirus Disease, COVID-19 Pandemic. Br J Biomed Sci 2023; 80:11462. [PMID: 37701073 PMCID: PMC10493326 DOI: 10.3389/bjbs.2023.11462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/02/2023] [Indexed: 09/14/2023]
Abstract
Cryptosporidium, the most frequently reported parasite in Scotland, causes gastrointestinal illness resulting in diarrhoea, nausea and cramps. Two species are responsible for most cases: Cryptosporidium hominis (C. hominis) and Cryptosporidium parvum (C. parvum). Transmission occurs faecal-orally, through ingestion of contaminated food and water, or direct contact with faeces. In 2020, the COVID-19 pandemic led to global restrictions, including national lockdowns to limit viral transmission. Such interventions led to decreased social mixing, and reduced/no local and international travel, which are factors associated with transmission of multiple communicable diseases, including cryptosporidiosis. This report assessed the impact of the pandemic on Scottish cryptosporidiosis cases, and identified changes in circulating molecular variants of Cryptosporidium species. Molecular data generated using real time PCR and GP60 nested-PCR assays on laboratory-confirmed cryptosporidiosis cases reported during 2018-22 were analysed. The Scottish Microbiology Reference Laboratories (SMiRL), Glasgow, received 774 Cryptosporidium-positive faeces during 2018-22, of which 486 samples were successfully subtyped. During this time period, C. hominis (n = 155; 21%) and C. parvum (n = 572; 77%) were the most commonly detected species. The total number of cases during 2020, which was greatly affected by the pandemic, was markedly lower in comparison to case numbers in the 2 years before and after 2020. The most predominant C. hominis family detected prior to 2020 was the Ib family which shifted to the Ie family during 2022. The most common C. parvum variant during 2018-22 was the IIa family, however a rise in the IId family was observed (n = 6 in 2018 to n = 25 in 2022). The dominant C. hominis subtype IbA10G2, which accounted for 71% of C. hominis subtypes in 2018-19 was superseded by three rare subtypes: IeA11G3T3 (n = 15), IdA16 (n = 8) and IbA9G3 (n = 3) by 2022. Frequently reported C. parvum subtypes in 2018-19 were IIaA15G2R1 and IIaA17G1R1, accounting for 59% of total C. parvum subtypes. By 2022, IIaA15G2R1 remained the most common (n = 28), however three unusual subtypes in Scotland emerged: IIdA24G1 (n = 7), IIaA16G3R1 (n = 7) and IIaA15G1R2 (n = 7). Continuous monitoring of Cryptosporidium variants following the pandemic will be essential to explore further changes and emergence of strains with altered virulence.
Collapse
Affiliation(s)
- Ross Bacchetti
- Scottish Microbiology Reference Laboratories (Glasgow), Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Lisa Connelly
- Scottish Microbiology Reference Laboratories (Glasgow), Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Lynda Browning
- Clinical and Protecting Health Directorate, Public Health Scotland, Glasgow, United Kingdom
| | - Claire L. Alexander
- Scottish Microbiology Reference Laboratories (Glasgow), Glasgow Royal Infirmary, Glasgow, United Kingdom
| |
Collapse
|
4
|
Hoque S, Pinto P, Ribeiro CA, Canniere E, Daandels Y, Dellevoet M, Bourgeois A, Hammouma O, Hunter P, Gentekaki E, Kváč M, Follet J, Tsaousis AD. Follow-up investigation into Cryptosporidium prevalence and transmission in Western European dairy farms. Vet Parasitol 2023; 318:109920. [PMID: 37030025 DOI: 10.1016/j.vetpar.2023.109920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Cryptosporidium parvum is an enteric parasite and a major contributor to acute enteritis in calves worldwide, causing an important economic burden for farmers. This parasite poses a major public health threat through transmission between livestock and humans. Our previous pilot study in Western Europe revealed a high prevalence of Cryptosporidium in calves of dairy farms. In the sequel study herein, 936 faecal samples were collected from the same 51 dairy farms across Belgium, France, and the Netherlands. Following DNA extraction, Cryptosporidium screening was carried out using nested-PCR amplification targeting the SSU rRNA gene. All positive samples were sequenced, and phylogenetic analyses were used to identify the Cryptosporidium spp. present. The 60 kDa glycoprotein (gp60) gene was also sequenced to determine the C. parvum subtypes present. Prevalence of Cryptosporidium ranged from 23.3% to 25%, across the three countries surveyed. The parasite was found in most of the farms sampled, with 90.2% testing positive. Cryptosporidium parvum, C. bovis, C. ryanae and C. andersoni were all identified, with the former being the most predominant, representing 71.4% of all infections. Cryptosporidium parvum was associated with pre-weaned calves, while other species were associated with older animals. Subtyping of gp60 gene revealed nine subtypes, eight of which have previously been reported to cause clinical disease in humans. Similarly to the first study, vertical transmission was not a major contributor to Cryptosporidium spread. Our study highlights the need for further investigation into cryptosporidiosis transmission, and future studies will require a One Health approach to reduce the impact of this disease.
Collapse
|
5
|
Pane S, Putignani L. Cryptosporidium: Still Open Scenarios. Pathogens 2022; 11:pathogens11050515. [PMID: 35631036 PMCID: PMC9143492 DOI: 10.3390/pathogens11050515] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 01/27/2023] Open
Abstract
Cryptosporidiosis is increasingly identified as a leading cause of childhood diarrhea and malnutrition in both low-income and high-income countries. The strong impact on public health in epidemic scenarios makes it increasingly essential to identify the sources of infection and understand the transmission routes in order to apply the right prevention or treatment protocols. The objective of this literature review was to present an overview of the current state of human cryptosporidiosis, reviewing risk factors, discussing advances in the drug treatment and epidemiology, and emphasizing the need to identify a government system for reporting diagnosed cases, hitherto undervalued.
Collapse
Affiliation(s)
- Stefania Pane
- Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics, 00146 Rome, Italy;
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
6
|
Jang DH, Cho HC, Shin SU, Kim EM, Park YJ, Hwang S, Park J, Choi KS. Prevalence and distribution pattern of Cryptosporidium spp. among pre-weaned diarrheic calves in the Republic of Korea. PLoS One 2021; 16:e0259824. [PMID: 34780521 PMCID: PMC8592421 DOI: 10.1371/journal.pone.0259824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/23/2021] [Indexed: 11/19/2022] Open
Abstract
Cryptosporidium spp. are protozoan parasites that belong to subphylum apicomplexa and cause diarrhea in humans and animals worldwide. Data on the prevalence of Cryptosporidium spp. and its subtypes among calves in the Republic of Korea (KOR) are sparse. Hence, our study aimed to investigate the prevalence and association between the age of calf and the identified Cryptosporidium spp. and to determine the genotypes/subtypes of Cryptosporidium spp. in pre-weaned calves with diarrhea in the KOR. A total of 460 diarrheic fecal samples were collected from calves aged 1−60 days and screened for Cryptosporidium spp. by the 18S rRNA gene. Species identification was determined using the sequencing analysis of the 18S rRNA gene, and C. parvum-positive samples were subtyped via the sequence analysis of the 60-kDa glycoprotein (gp60) gene. Sequence analysis based on the 18S rRNA gene revealed the presence of three Cryptosporidium spp., namely, C. parvum (n = 72), C. ryanae (n = 12), and C. bovis (n = 2). Co-infection by these species was not observed. The infection rate was the highest in calves aged 11−20 days (26.1%, 95% CI 17.1−35.1), whereas the lowest rate was observed in calves aged 21−30 days (7.7%, 95% CI 0.0−16.1). The prevalence of C. parvum was detected exclusively in calves aged ≤20 days, and the highest infection rate of C. ryanae was seen in calves ≥31 days of age. The occurrence of C. parvum (χ2 = 25.300, P = 0.000) and C. ryanae (χ2 = 18.020, P = 0.001) was significantly associated with the age of the calves. Eleven different subtypes of the IIa family that belonging to C. parvum were recognized via the sequence analyses of the gp60 gene. Except for two (IIaA18G3R1 and IIaA15G2R1) subtypes, nine subtypes were first identified in calves with diarrhea in the KOR. IIaA18G3R1 was the most frequently detected subtype (72.2% of calves), followed by IIaA17G3R1 (5.6%), IIaA15G2R1 (4.2%), IIaA19G4R1 (4.2%), IIaA16G4R1 (2.8%), IIaA17G4R1 (2.8%), IIaA19G3R (2.8%), IIaA14G1R1 (1.4%), IIaA14G3R1 (1.4%), IIaA15G1R1 (1.4%), and IIaA19G1R1 (1.4%) These results suggest that the prevalence of Cryptosporidium spp. is significantly associated with calf age. Furthermore, the findings demonstrate the high genetic diversity of C. parvum and the widespread occurrence of zoonotic C. parvum in pre-weaned calves. Hence, calves are a potential source of zoonotic transmission with considerable public health implications.
Collapse
Affiliation(s)
- Dong-Hun Jang
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Hyung-Chul Cho
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Seung-Uk Shin
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Eun-Mi Kim
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Yu-Jin Park
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Sunwoo Hwang
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Jinho Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Kyoung-Seong Choi
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
- * E-mail:
| |
Collapse
|
7
|
Absence of Cryptosporidium hominis and dominance of zoonotic Cryptosporidium species in patients after Covid-19 restrictions in Auckland, New Zealand. Parasitology 2021; 148:1288-1292. [PMID: 34120663 PMCID: PMC8383192 DOI: 10.1017/s0031182021000974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Coronavirus disease-2019 (Covid-19) nonpharmaceutical interventions have proven effective control measures for a range of respiratory illnesses throughout the world. These measures, which include isolation, stringent border controls, physical distancing and improved hygiene also have effects on other human pathogens, including parasitic enteric diseases such as cryptosporidiosis. Cryptosporidium infections in humans are almost entirely caused by two species: C. hominis, which is primarily transmitted from human to human, and Cryptosporidium parvum, which is mainly zoonotic. By monitoring Cryptosporidium species and subtype families in human cases of cryptosporidiosis before and after the introduction of Covid-19 control measures in New Zealand, we found C. hominis was completely absent after the first months of 2020 and has remained so until the beginning of 2021. Nevertheless, C. parvum has followed its typical transmission pattern and continues to be widely reported. We conclude that ~7 weeks of isolation during level 3 and 4 lockdown period interrupted the human to human transmission of C. hominis leaving only the primarily zoonotic transmission pathway used by C. parvum. Secondary anthroponotic transmission of C. parvum remains possible among close contacts of zoonotic cases. Ongoing 14-day quarantine measures for new arrivals to New Zealand have likely suppressed new incursions of C. hominis from overseas. Our findings suggest that C. hominis may be controlled or even eradicated through nonpharmaceutical interventions.
Collapse
|
8
|
Mirdha BR. Evolving Patterns of Cryptosporidiosis: Issues and Implications in the Context of Public Health in India. ANNALS OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES (INDIA) 2021. [DOI: 10.1055/s-0041-1726149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractCryptosporidiosis is one of the major causes of diarrhea in immune-compromised individuals and children besides causing sporadic water-borne, food-borne, and zoonotic outbreaks. In 2016, Cryptosporidium species infection was the fifth leading cause of diarrhea and acute infection causing more than 4.2 million disability-adjusted life years lost besides a decrease in childhood growth. Human cryptosporidiosis is primarily caused by two species/genotype: Cryptosporidium hominis (anthroponotic) and Cryptosporidium parvum (zoonotic) besides other six rare species/genotypes. Transmission intensity, genetic diversity, and occurrence of genetic recombination have shaped the genus Cryptosporidium population structures into palmitic, clonal, and epidemic. Genetic recombination is more in C. parvum compared with C. hominis. Furthermore, parasite–host co-evolution, host adaptation, and geographic segregation have led to the formation of “subtype- families.” Host-adapted subtype-families have distinct geographical distribution and host preferences. Genetic exchanges between subtypes played an important role throughout the evolution of the genus leading to “adaptation introgression” that led to emergence of virulent and hyper-transmissible subtypes. The population structure of C. hominis in India appears to be more complex where both transmission intensity and genetic diversity are much higher. Further, study based on “molecular strain surveillance” has resulted newer insights into the epidemiology and transmission of cryptosporidiosis in India. The identification at the species and genotype levels is essential for the assessment of infection sources in humans and the public health potential of the parasite at large. The results of the study over three decades on cryptosporidiosis in India, in the absence of a national surveillance data, were analyzed highlighting current situation on epidemiology, genetic diversity, and distribution particularly among vulnerable population. Despite creditable efforts, there are still many areas need to be explored; therefore, the intent of this article is to facilitate future research approaches for mitigating the burden associated with this disease.
Collapse
Affiliation(s)
- Bijay Ranjan Mirdha
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Small ruminants and zoonotic cryptosporidiosis. Parasitol Res 2021; 120:4189-4198. [PMID: 33712929 DOI: 10.1007/s00436-021-07116-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
Sheep and goats are commonly infected with three Cryptosporidium species, including Cryptosporidium parvum, Cryptosporidium ubiquitum, and Cryptosporidium xiaoi, which differ from each in prevalence, geographic distribution, and public health importance. While C. parvum appears to be a dominant species in small ruminants in European countries, its occurrence in most African, Asian, and American countries appear to be limited. As a result, zoonotic infections due to contact with lambs and goat kids are common in European countries, leading to frequent reports of outbreaks of cryptosporidiosis on petting farms. In contrast, C. xiaoi is the dominant species elsewhere, and mostly does not infect humans. While C. ubiquitum is another zoonotic species, it occurs in sheep and goats at much lower frequency. Host adaptation appears to be present in both C. parvum and C. ubiquitum, consisting of several subtype families with different host preference. The host-adapted nature of C. parvum and C. ubiquitum has allowed the use of subtyping tools in tracking infection sources. This has led to the identification of geographic differences in the importance of small ruminants in epidemiology of human cryptosporidiosis. These tools have also been used effectively in linking zoonotic transmission of C. parvum between outbreak cases and the suspected animals. Further studies should be directly elucidating the reasons for differences in the distribution and public health importance of major Cryptosporidium species in sheep and goats.
Collapse
|
10
|
Bordes L, Houert P, Costa D, Favennec L, Vial-Novella C, Fidelle F, Grisez C, Prévot F, Jacquiet P, Razakandrainibe R. Asymptomatic Cryptosporidium infections in ewes and lambs are a source of environmental contamination with zoonotic genotypes of Cryptosporidium parvum. ACTA ACUST UNITED AC 2020; 27:57. [PMID: 33141660 PMCID: PMC7608980 DOI: 10.1051/parasite/2020054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/19/2020] [Indexed: 01/06/2023]
Abstract
Protozoan parasites of the Cryptosporidium genus cause severe cryptosporidiosis in newborn lambs. However, asymptomatic infections also occur frequently in lambs and ewes. In sheep, the most commonly detected Cryptosporidium species are C. ubiquitum, C. xiaoi and C. parvum. Due to a lack of relevant information about such infections in France, we investigated the situation on five dairy sheep farms in the Pyrénées-Atlantiques Department in south-western France in December 2017. Individual fecal samples were collected from 79 female lambs (5–17 days old) and their mothers (72 ewes). Oocysts were screened using Heine staining before and after Bailenger concentrations. Cryptosporidium species identification and genotyping were performed using real-time PCR and gp60 gene sequencing. No cases of clinical cryptosporidiosis were observed in the 79 lambs. Microscopically, Cryptosporidium spp. oocysts were observed in only one lamb on one farm (prevalence 1.3%) and one ewe on another farm (prevalence 1.4%). By contrast, Cryptosporidium spp. DNA was detected in 17 ewes (prevalence ranging from 10.5% to 50% depending on the farm) and in 36 lambs (prevalence ranging from 0% to 77.8% depending on the farm). Only zoonotic Cryptosporidium parvum IId and IIa genotypes were identified when genotyping was possible. Cryptosporidium ubiquitum and C. xiaoi were detected on one and three farms, respectively. We conclude that healthy young lambs and their mothers during the peripartum period could be a source of environmental contamination with oocysts.
Collapse
Affiliation(s)
- Léa Bordes
- IHAP, UMT Pilotage de la Santé des Ruminants, Université de Toulouse, INRAE, ENVT, 31076 Toulouse, France
| | - Pauline Houert
- IHAP, UMT Pilotage de la Santé des Ruminants, Université de Toulouse, INRAE, ENVT, 31076 Toulouse, France
| | - Damien Costa
- Centre Hospitalier Universitaire, Centre National de Référence - Laboratoire Expert des Cryptosporidioses, 76031 Rouen, France
| | - Loïc Favennec
- Centre Hospitalier Universitaire, Centre National de Référence - Laboratoire Expert des Cryptosporidioses, 76031 Rouen, France
| | - Corinne Vial-Novella
- Centre Départemental pour l'Elevage Ovin, Quartier Ahetzia, 64130 Ordiarp, France
| | - Francis Fidelle
- Centre Départemental pour l'Elevage Ovin, Quartier Ahetzia, 64130 Ordiarp, France
| | - Christelle Grisez
- IHAP, UMT Pilotage de la Santé des Ruminants, Université de Toulouse, INRAE, ENVT, 31076 Toulouse, France
| | - Françoise Prévot
- IHAP, UMT Pilotage de la Santé des Ruminants, Université de Toulouse, INRAE, ENVT, 31076 Toulouse, France
| | - Philippe Jacquiet
- IHAP, UMT Pilotage de la Santé des Ruminants, Université de Toulouse, INRAE, ENVT, 31076 Toulouse, France
| | - Romy Razakandrainibe
- Centre Hospitalier Universitaire, Centre National de Référence - Laboratoire Expert des Cryptosporidioses, 76031 Rouen, France
| |
Collapse
|
11
|
Garcia-R JC, Pita AB, Velathanthiri N, French NP, Hayman DTS. Species and genotypes causing human cryptosporidiosis in New Zealand. Parasitol Res 2020; 119:2317-2326. [PMID: 32494897 DOI: 10.1007/s00436-020-06729-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/25/2020] [Indexed: 01/03/2023]
Abstract
Cryptosporidium is one of the most common causes of diarrhoea around the world. Successful management and prevention of this infectious disease requires knowledge of the diversity of species and subtypes causing human disease. We use sequence data from 2598 human faecal samples collected during an 11-year period (2009-2019) to better understand the impact of different species and subtypes on public health and to gain insights into the variation of human cryptosporidiosis in New Zealand. Human cryptosporidiosis in New Zealand is caused by a high diversity of species and subtypes. Six species cause human disease in New Zealand: C. hominis, C. parvum, C. cuniculus, C. erinacei, C. meleagridis and C. tyzzeri. Sequence analysis of the gp60 gene identified 16 subtype families and 101 subtypes. Cryptosporidium hominis IbA10G2 and C. parvum IIaA18G3R1 were the most frequent causes of human cryptosporidiosis with 27% and 29% of infections, respectively. Cryptosporidium hominis presented a peak of notified human cases during autumn (March-May) whereas most cases of human cryptosporidiosis caused by C. parvum are found during the calving and lambing season in spring (September-November). We also reported some subtypes that have been rarely detected in other countries such as IbA20G2 and IIoA13G1 and a low prevalence of the hypertransmissible and virulent IIaA15G2R1. This study provides insight into the variability of cryptosporidiosis in New Zealand essential for disease management and surveillance to prevent the introduction or spread of new species and subtypes in the country.
Collapse
Affiliation(s)
- Juan C Garcia-R
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, New Zealand.
| | - Anthony B Pita
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Niluka Velathanthiri
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Nigel P French
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - David T S Hayman
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| |
Collapse
|
12
|
Widmer G, Köster PC, Carmena D. Cryptosporidium hominis infections in non-human animal species: revisiting the concept of host specificity. Int J Parasitol 2020; 50:253-262. [PMID: 32205089 DOI: 10.1016/j.ijpara.2020.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
Abstract
Parasites in the genus Cryptosporidium, phylum Apicomplexa, are found worldwide in the intestinal tract of many vertebrate species and in the environment. Driven by sensitive PCR methods, and the availability of abundant sequence data and reference genomes, the taxonomic complexity of the genus has steadily increased; 38 species have been named to date. Due to its public health importance, Cryptosporidium hominis has long attracted the interest of the research community. This species was initially described as infectious to humans only. This perception has persisted in spite of an increasing number of observations of natural and experimental infections of animals with this species. Here we summarize and discuss this literature published since 2000 and conclude that the host range of C. hominis is broader than originally described. The evolving definition of the C. hominis host range raises interesting questions about host specificity and the evolution of Cryptosporidium parasites.
Collapse
Affiliation(s)
- Giovanni Widmer
- Department of Infectious Disease & Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, United States
| | - Pamela C Köster
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Ctra. Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Ctra. Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain.
| |
Collapse
|
13
|
Braima K, Zahedi A, Oskam C, Reid S, Pingault N, Xiao L, Ryan U. Retrospective analysis of Cryptosporidium species in Western Australian human populations (2015-2018), and emergence of the C. hominis IfA12G1R5 subtype. INFECTION GENETICS AND EVOLUTION 2019; 73:306-313. [PMID: 31146044 DOI: 10.1016/j.meegid.2019.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 05/25/2019] [Indexed: 11/29/2022]
Abstract
Cryptosporidium species are a major cause of diarrhoea worldwide. In the present study, a retrospective analysis of 109 microscopically Cryptosporidium-positive faecal specimens from Western Australian patients, collected between 2015 and 2018 was conducted. Sequence analysis of the 18S rRNA and the 60 kDa glycoprotein (gp60) gene loci identified four Cryptosporidium species: C. hominis (86.2%, 94/109), C. parvum (11.0%, 12/109), C. meleagridis (1.8%, 2/109) and C. viatorum (0.9%, 1/109). Subtyping at the gp60 locus identified a total of 11 subtypes including the emergence of the previously rare C. hominis IfA12G1R5 subtype in 2017 as the dominant subtype (46.7%, 21/45). This subtype has also recently emerged as the dominant subtype in the United States but the reasons for its emergence are unknown. This is also the first report of C. viatorum in humans in Australia and a novel subtype (XVaA3g) was identified in the one positive patient.
Collapse
Affiliation(s)
- Kamil Braima
- Vector and Waterborne Pathogens Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Alireza Zahedi
- Vector and Waterborne Pathogens Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Charlotte Oskam
- Vector and Waterborne Pathogens Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Simon Reid
- School of Public Health, The University of Queensland, Herston, Queensland 4006, Australia
| | - Nevada Pingault
- OzFoodNet Communicable Disease Control Directorate, Perth, Western Australia, Australia
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una Ryan
- Vector and Waterborne Pathogens Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia.
| |
Collapse
|
14
|
Feng Y, Gong X, Zhu K, Li N, Yu Z, Guo Y, Weng Y, Kváč M, Feng Y, Xiao L. Prevalence and genotypic identification of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in pre-weaned dairy calves in Guangdong, China. Parasit Vectors 2019; 12:41. [PMID: 30654832 PMCID: PMC6337774 DOI: 10.1186/s13071-019-3310-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi are common enteric pathogens in humans and animals. Data on the transmission of these pathogens are scarce from Guangdong, China, which has a subtropical monsoon climate and is the epicenter for many emerging infectious diseases. This study was conducted to better understand the prevalence and identity of the three pathogens in pre-weaned dairy calves in Guangdong. Methods The occurrence and genetic identity of three pathogens were analyzed by polymerase chain reaction. PCR-positive products were sequenced to determine the species and genotypes. A Chi-square test was used to compare the prevalence of pathogens among sampling dates, age groups, or clinical signs. Results The detection rates of Cryptosporidium spp., G. duodenalis and E. bieneusi were 24.0% (93/388), 74.2% (288/388) and 15.7% (61/388), respectively. Three Cryptosporidium species were detected, including C. bovis (n = 73), C. parvum (n = 12) and C. ryanae (n = 7); one animal had concurrence of C. bovis and C. parvum. C. parvum was the dominant species during the first two weeks of life, whereas C. bovis and C. ryanae were mostly seen at 3–9 weeks of age. Sequence analysis identified the C. parvum as subtype IIdA19G1. Assemblage E (n = 282), assemblage A (n = 1), and concurrence of A and E (n = 5) were identified among G. duodenalis-positive animals using multilocus genotyping (MLG). Altogether, 15, 10 and 17 subtypes of assemblage E were observed at the bg, gdh and tpi loci, respectively, forming 49 assemblage E MLGs. The highest detection rate of G. duodenalis was found in winter. Sequence analysis identified genotypes J (n = 57), D (n = 3) and one concurrence of J and D among E. bieneusi-positive animals. The detection rate of E. bieneusi was significantly higher in spring (38.0%; 41/108) than in summer (7.2%; 8/111) and winter (7.1%; 12/169). Conclusions These results indicate a common occurrence of C. parvum subtype IIdA19G1, G. duodenalis assemblage E, and E. bieneusi genotype J in pre-weaned dairy calves in Guangdong. More studies are needed to understand the unique genetic characteristics and zoonotic potential of the three enteric pathogens in the province.
Collapse
Affiliation(s)
- Yuanyuan Feng
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoqing Gong
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Kexin Zhu
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Na Li
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhengjie Yu
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yaqiong Guo
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yabiao Weng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, 200237, China. .,Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
15
|
King P, Tyler KM, Hunter PR. Anthroponotic transmission of Cryptosporidium parvum predominates in countries with poorer sanitation: a systematic review and meta-analysis. Parasit Vectors 2019; 12:16. [PMID: 30621759 PMCID: PMC6323761 DOI: 10.1186/s13071-018-3263-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Background Globally cryptosporidiosis is one of the commonest causes of mortality in children under 24 months old and may be associated with important longterm health effects. Whilst most strains of Cryptosporidium parvum are zoonotic, C. parvum IIc is almost certainly anthroponotic. The global distribution of this potentially important emerging infection is not clear. Methods We conducted a systematic review of papers identifying the subtype distribution of C. parvum infections globally. We searched PubMed and Scopus using the following key terms Cryptospor* AND parvum AND (genotyp* OR subtyp* OR gp60). Studies were eligible for inclusion if they had found C. parvum within their human study population and had subtyped some or all of these samples using standard gp60 subtyping. Pooled analyses of the proportion of strains being of the IIc subtype were determined using StatsDirect. Meta-regression analyses were run to determine any association between the relative prevalence of IIc and Gross Domestic Product, proportion of the population with access to improved drinking water and improved sanitation. Results From an initial 843 studies, 85 were included in further analysis. Cryptosporidium parvum IIc was found in 43 of these 85 studies. Across all studies the pooled estimate of relative prevalence of IIc was 19.0% (95% CI: 12.9–25.9%), but there was substantial heterogeneity. In a meta-regression analysis, the relative proportion of all C. parvum infections being IIc decreased as the percentage of the population with access to improved sanitation increased and was some 3.4 times higher in those studies focussing on HIV-positive indivduals. Conclusions The anthroponotic C. parvum IIc predominates primarily in lower-income countries with poor sanitation and in HIV-positive individuals. Given the apparent enhanced post-infectious virulence of the other main anthroponotic species of Cryptosporidium (C. hominis), it is important to learn about the impact of this subtype on human health. Electronic supplementary material The online version of this article (10.1186/s13071-018-3263-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philippa King
- The Norwich Medical School, University of East Anglia, Norwich, UK
| | - Kevin M Tyler
- The Norwich Medical School, University of East Anglia, Norwich, UK.
| | - Paul R Hunter
- The Norwich Medical School, University of East Anglia, Norwich, UK. .,Department of Environmental Health, Tshwane University of Technology, Pretoria, South Africa.
| |
Collapse
|
16
|
Tan TK, Low VL, Ng WH, Ibrahim J, Wang D, Tan CH, Chellappan S, Lim YAL. Occurrence of zoonotic Cryptosporidium and Giardia duodenalis species/genotypes in urban rodents. Parasitol Int 2018; 69:110-113. [PMID: 30590124 DOI: 10.1016/j.parint.2018.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 11/28/2022]
Abstract
This report describes the detection of zoonotic Cryptosporidium muris, C. parvum subgenotype IIa and Giardia duodenalis genotype B in urban rodents in Malaysia. A rare occurrence of C. meleagridis was also reported suggesting a role of rodents in mechanical transmission of this pathogen. Utilization of DNA sequencing and subtyping analysis confirmed the presence of zoonotic C. parvum subtypes IIaA17G2R1 and IIaA16G3R1 for the first time in rodents.
Collapse
Affiliation(s)
- Tiong Kai Tan
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| | - Van Lun Low
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Wern Hann Ng
- Department of Bioscience and Sport Science, Faculty of Applied Science and Computing, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia; School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Jamaiah Ibrahim
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Malaysia
| | - Daryi Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun Hoong Tan
- Department of Bioscience and Sport Science, Faculty of Applied Science and Computing, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
| | - Selvi Chellappan
- Department of Bioscience and Sport Science, Faculty of Applied Science and Computing, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
| | - Yvonne Ai Lian Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
17
|
Genetic uniqueness of Cryptosporidium parvum from dairy calves in Colombia. Parasitol Res 2018; 117:1317-1323. [DOI: 10.1007/s00436-018-5818-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/16/2018] [Indexed: 01/12/2023]
|
18
|
Essid R, Menotti J, Hanen C, Aoun K, Bouratbine A. Genetic diversity of Cryptosporidium isolates from human populations in an urban area of Northern Tunisia. INFECTION GENETICS AND EVOLUTION 2018; 58:237-242. [PMID: 29320719 DOI: 10.1016/j.meegid.2018.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
Cryptosporidium is an enteric parasite infecting a wide range of hosts. It has emerged as an important cause of chronic life-threatening diarrhea in humans worldwide. Several subtypes of Cryptosporidium sp. have been described to be responsible for several large outbreaks related to water contamination in developed countries. However, there is a lack of information in the genetic diversity of Cryptosporidium among human population especially in developing countries. The present study aimed to update and report the genetic diversity of human Cryptosporidium spp. at the subtype level in an urban area of Tunisia using the 18S rRNA and gp60 gene. Genotyping of 42 Cryptosporidium positive isolates from different human populations at the 18S rRNA locus has identified three Cryptosporidium species: C. hominis (n = 20), C. parvum (n = 19), C. meleagridis (n = 2) and a co-infection C. hominis/C. meleagridis (n = 1). The sub-genotyping of these isolates at the 60-kda glycoprotein (gp60) locus was possible in 40 cases. It showed the presence of three subtype families (IIa, IIb and IIc) within C. parvum, a single subtype family within C. hominis and C. meleagridis isolates (Ia and IIIb respectively). Several subtypes were implicated in different human populations with the dominance of IaA26G1R1, IIaA15G2R1, IIdA16G1R1, IIdA22G2R1 and IIIbA26G1R1 variant respectively for C. hominis, C. parvum and C. meleagridis. The distribution of Cryptosporidium isolates in urban area of Northern Tunisia was dominated by the anthroponotic transmission via C. hominis species and the IIc subtype of C. parvum. However, zoonotic transmission is still possible in this region via zoonotic subtypes of C. parvum (IIa and IId) and C. meleagridis (IIIb). Subtype diversity was higher in this area.
Collapse
Affiliation(s)
- Rym Essid
- Laboratoire de Parasitologie-Mycologie, LR, 11-IPT-06, Institut Pasteur de Tunis, 13 place Pasteur, 1002, Tunis, Tunisia.
| | - Jean Menotti
- Laboratoire de Parasitologie-Mycologie, Institut des Agents Infectieux, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard - Lyon 1, EA 7426, Lyon, France
| | - Chelbi Hanen
- Laboratoire de Parasitologie-Mycologie, LR, 11-IPT-06, Institut Pasteur de Tunis, 13 place Pasteur, 1002, Tunis, Tunisia
| | - Karim Aoun
- Laboratoire de Parasitologie-Mycologie, LR, 11-IPT-06, Institut Pasteur de Tunis, 13 place Pasteur, 1002, Tunis, Tunisia
| | - Aïda Bouratbine
- Laboratoire de Parasitologie-Mycologie, LR, 11-IPT-06, Institut Pasteur de Tunis, 13 place Pasteur, 1002, Tunis, Tunisia
| |
Collapse
|
19
|
Ng-Hublin JSY, Combs B, Reid S, Ryan U. Differences in the occurrence and epidemiology of cryptosporidiosis in Aboriginal and non-Aboriginal people in Western Australia (2002-2012). INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2017; 53:100-106. [PMID: 28536073 DOI: 10.1016/j.meegid.2017.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/20/2017] [Indexed: 01/08/2023]
Abstract
Cryptosporidiosis is a diarrhoeal illness caused by the protozoan parasite Cryptosporidium. In Australia, very little is known about the epidemiology of cryptosporidiosis in Aboriginal peoples. The present study analysed long-term cryptosporidiosis patterns across Western Australia (WA) (2001-2012), combined with genotyping and subtyping data at the 18S and glycoprotein 60 (gp60) loci respectively. Comparison of cryptosporidiosis notifications between Aboriginal and non-Aboriginal people in WA, revealed that notification rates among Aboriginal people were up to 50 times higher compared to non-Aboriginal people, highlighting the burden of the disease in this population. More than 90% of notifications were in Aboriginal children aged 00-04years, who had a notification rate 20.5 times higher than non-Aboriginal children in the same age group. Cryptosporidium hominis was the predominant species infecting both Aboriginal and non-Aboriginal people. However, Aboriginal people were mainly infected with the C. hominis IdA15G1 subtype, whereas non-Aboriginal people were predominantly infected with the IbA10G2 subtype. To control cryptosporidiosis in Aboriginal populations in Australia, effective health interventions/promotions need to be a priority for public health research and action.
Collapse
Affiliation(s)
| | - Barry Combs
- OzFoodNet Communicable Disease Control Directorate, Perth, Western Australia, Australia
| | - Simon Reid
- The University of Queensland, School of Public Health, Herston, Queensland 4006, Australia
| | - Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.
| |
Collapse
|
20
|
Local and global genetic diversity of protozoan parasites: Spatial distribution of Cryptosporidium and Giardia genotypes. PLoS Negl Trop Dis 2017; 11:e0005736. [PMID: 28704362 PMCID: PMC5526614 DOI: 10.1371/journal.pntd.0005736] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/25/2017] [Accepted: 06/21/2017] [Indexed: 01/09/2023] Open
Abstract
Cryptosporidiosis and giardiasis are recognized as significant enteric diseases due to their long-term health effects in humans and their economic impact in agriculture and medical care. Molecular analysis is essential to identify species and genotypes causing these infectious diseases and provides a potential tool for monitoring. This study uses information on species and genetic variants to gain insights into the geographical distribution and spatial patterns of Cryptosporidium and Giardia parasites. Here, we describe the population heterogeneity of genotypic groups within Cryptosporidium and Giardia present in New Zealand using gp60 and gdh markers to compare the observed variation with other countries around the globe. Four species of Cryptosporidium (C. hominis, C. parvum, C. cuniculus and C. erinacei) and one species of Giardia (G. intestinalis) were identified. These species have been reported worldwide and there are not unique Cryptosporidium gp60 subtype families and Giardiagdh assemblages in New Zealand, most likely due to high gene flow of historical and current human activity (travel and trade) and persistence of large host population sizes. The global analysis revealed that genetic variants of these pathogens are widely distributed. However, genetic variation is underestimated by data biases (e.g. neglected submission of sequences to genetic databases) and low sampling. New genotypes are likely to be discovered as sampling efforts increase according to accumulation prediction analyses, especially for C. parvum. Our study highlights the need for greater sampling and archiving of genotypes globally to allow comparative analyses that help understand the population dynamics of these protozoan parasites. Overall our study represents a comprehensive overview for exploring local and global protozoan genotype diversity and advances our understanding of the importance for surveillance and potential risk associated with these infectious diseases. Infectious diseases threaten the health and well-being of wildlife, livestock and human populations and contribute to significant economic impact in agriculture and medical care. Cryptosporidium and Giardia are enteric protozoan pathogens that cause diarrhea and nutritional disorders on a global level. Using molecular analysis and a review framework we showed that species and genetic variants within genera Cryptosporidium and Giardia (including two species recently infecting humans) found in an island system are not different from other parts of the world. This similarity is likely due to high gene flow of historical and current human activity (travel and trade) and persistence of large host population sizes, such as cattle and people. We also show that, although species and genotypes are widely distributed, new variants will arise when sampling effort increase and their dispersal will be facilitated by human activity. These findings suggest that geographical distribution of species and genotypes within Cryptosporidium and Giardia parasites may yield important clues for designing effective surveillance strategies and identification of factors driving within and cross species transmission.
Collapse
|
21
|
Essid R, Chelbi H, Siala E, Bensghair I, Menotti J, Bouratbine A. Polymorphism study of Cryptosporidium hominis gp60 subtypes circulating in Tunisia. Microb Pathog 2017. [PMID: 28625824 DOI: 10.1016/j.micpath.2017.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cryptosporidium spp. are a major cause of gastrointestinal diseases in humans worldwide. While a single subtype of Cryptosporidium hominis has been shown to be responsible for several large outbreaks related to water contamination in developed countries, little is known about the epidemiology of C. hominis in developing countries. This study reports the first genetic characterization of C. hominis at the subtype level in several human populations in Tunisia using the gp60 gene. Eighteen isolates were identified as C. hominis by a restriction fragment length polymorphism (RFLP) analysis. The prevalence of this species in different human populations ranges from 1.53% to 13.04% with a high prevalence being reported in immunocompromised children (13.04%) followed by patients with malignent myeloma (5.5%) and HIV-infected patients (4.59%). The gp60 analysis on C. hominis isolates, performed in 14 cases, showed the presence of a single subtype family: "Ia". Different subtypes were identified within this family (A11G1R1, A12R3, A23G1R1, A26G1R1, A27G1R1, A28G1R1). The IaA26G1R1 subtype was the most dominant subtype described in this area (50%). Despite the high genetic diversity of Cryptosporidium spp, a low heterogeneity at the subtype level was observed within C. hominis circulating in Tunisia. This distribution is an indicator for intensive and stable anthroponotic cryptosporidiosis in this region. Besides, the presence of a unique genotype in 5 HIV-infected patients attending the same hospital ward suggests the possible occurrence of hospital-acquired infection and underlines the need to implement preventive measures to avoid nosocomial transmission.
Collapse
Affiliation(s)
- Rym Essid
- Laboratoire de Parasitologie-Mycologie, LR 11-IPT-06, Institut Pasteur de Tunis, 13 Place Pasteur, 1002 Tunis, Tunisia.
| | - Hanen Chelbi
- Laboratoire de Parasitologie-Mycologie, LR 11-IPT-06, Institut Pasteur de Tunis, 13 Place Pasteur, 1002 Tunis, Tunisia
| | - Emna Siala
- Laboratoire de Parasitologie-Mycologie, LR 11-IPT-06, Institut Pasteur de Tunis, 13 Place Pasteur, 1002 Tunis, Tunisia
| | - Ines Bensghair
- Laboratoire de Parasitologie-Mycologie, LR 11-IPT-06, Institut Pasteur de Tunis, 13 Place Pasteur, 1002 Tunis, Tunisia
| | - Jean Menotti
- Laboratoire de Parasitologie-Mycologie, Hôpital Saint-Louis, AP-HP / Université Paris Diderot, Sorbonne, Paris Cité, 75010 Paris, France
| | - Aïda Bouratbine
- Laboratoire de Parasitologie-Mycologie, LR 11-IPT-06, Institut Pasteur de Tunis, 13 Place Pasteur, 1002 Tunis, Tunisia
| |
Collapse
|
22
|
Evolutionary processes in populations of Cryptosporidium inferred from gp60 sequence data. Parasitol Res 2017; 116:1855-1861. [PMID: 28502018 DOI: 10.1007/s00436-017-5459-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
Abstract
Cryptosporidiosis is one of the most common human infectious diseases globally. The gp60 gene has been adopted as a key marker for molecular epidemiological investigations into this protozoan disease because of the capability to characterize genotypes and detect variants within Cryptosporidium species infecting humans. However, we know relatively little about the potential spatial and temporal variation in population demography that can be inferred from this gene beyond that it is recognized to be under selective pressure. Here, we analyzed the genetic variation in time and space within two putative populations of Cryptosporidium in New Zealand to infer the processes behind the patterns of sequence polymorphism. Analyses using Tajima's D, Fu, and Li's D* and F* tests show significant departures from neutrality in some populations and indicate the selective maintenance of alleles within some populations. Demographic analyses showed distortions in the pattern of the genetic variability caused by high recombination rates and population expansion, which was observed in case notification data. Our results showed that processes acting on populations that have similar effects can be distinguished from one another and multiple processes can be detected acting at the same time. These results are significant for prediction of the parasite dynamics and potential mechanisms of long-term changes in the risk of cryptosporidiosis in humans.
Collapse
|
23
|
Baroudi D, Khelef D, Hakem A, Abdelaziz A, Chen X, Lysen C, Roellig D, Xiao L. Molecular characterization of zoonotic pathogens Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in calves in Algeria. Vet Parasitol Reg Stud Reports 2017; 8:66-69. [PMID: 31014640 DOI: 10.1016/j.vprsr.2017.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 02/03/2017] [Accepted: 02/11/2017] [Indexed: 11/17/2022]
Abstract
Little is known on the identity and public health potential of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in farm animals in Algeria. In this study, 102 fecal specimens from pre-weaned dairy calves with or without diarrhea were collected from 19 dairy farms located in 6 provinces. PCR-restriction fragment length polymorphism analysis of the small subunit rRNA gene was used to detect and differentiate Cryptosporidium spp., whereas PCR-sequence analysis of the triosephosphate isomerase gene and ribosomal internal transcribed spacer were used to detect and genotype G. duodenalis and E. bieneusi, respectively. Cryptosporidium was found in 14 specimens, among which 7 had C. parvum, 4 had C. bovis, and 3 had mixed infection of C. parvum and C. bovis or C. bovis and C. andersoni. Subtyping of C. parvum by PCR-sequence analysis of the 60kDa glycoprotein gene identified two zoonotic subtypes IIaA16G2R1 and IIaA17G3R1. G. duodenalis was found in 28 specimens, with 6 having the host-specific assemblage E, 14 having the zoonotic assemblage A (all belonging to A2 subtype), and 8 having mixed assemblages. Six known genotypes of E. bieneusi belonging to Group 2, including I, J, BEB3, BEB4, BEB6 and PtEb XI, were identified in 11 specimens. Diarrhea was mostly associated with the occurrence of C. parvum. Data from this study suggest that human-pathogenic C. parvum subtypes and G. duodenalis and E. bieneusi genotypes are common on dairy farms in Algeria.
Collapse
Affiliation(s)
- Djamel Baroudi
- École Nationale Supérieure Vétérinaire, Rue Issaad Abbes, El Alia, Alger, Algeria; Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Djamel Khelef
- École Nationale Supérieure Vétérinaire, Rue Issaad Abbes, El Alia, Alger, Algeria
| | - Ahcene Hakem
- Department of Biology, Université Ziane Achor, Djelfa, Algeria
| | | | - Xiaohua Chen
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Colleen Lysen
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Dawn Roellig
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Lihua Xiao
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA.
| |
Collapse
|
24
|
Zoonotic Cryptosporidium Species in Animals Inhabiting Sydney Water Catchments. PLoS One 2016; 11:e0168169. [PMID: 27973572 PMCID: PMC5156390 DOI: 10.1371/journal.pone.0168169] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/25/2016] [Indexed: 11/19/2022] Open
Abstract
Cryptosporidium is one of the most common zoonotic waterborne parasitic diseases worldwide and represents a major public health concern of water utilities in developed nations. As animals in catchments can shed human-infectious Cryptosporidium oocysts, determining the potential role of animals in dissemination of zoonotic Cryptosporidium to drinking water sources is crucial. In the present study, a total of 952 animal faecal samples from four dominant species (kangaroos, rabbits, cattle and sheep) inhabiting Sydney's drinking water catchments were screened for the presence of Cryptosporidium using a quantitative PCR (qPCR) and positives sequenced at multiple loci. Cryptosporidium species were detected in 3.6% (21/576) of kangaroos, 7.0% (10/142) of cattle, 2.3% (3/128) of sheep and 13.2% (14/106) of rabbit samples screened. Sequence analysis of a region of the 18S rRNA locus identified C. macropodum and C. hominis in 4 and 17 isolates from kangaroos respectively, C. hominis and C. parvum in 6 and 4 isolates respectively each from cattle, C. ubiquitum in 3 isolates from sheep and C. cuniculus in 14 isolates from rabbits. All the Cryptosporidium species identified were zoonotic species with the exception of C. macropodum. Subtyping using the 5' half of gp60 identified C. hominis IbA10G2 (n = 12) and IdA15G1 (n = 2) in kangaroo faecal samples; C. hominis IbA10G2 (n = 4) and C. parvum IIaA18G3R1 (n = 4) in cattle faecal samples, C. ubiquitum subtype XIIa (n = 1) in sheep and C. cuniculus VbA23 (n = 9) in rabbits. Additional analysis of a subset of samples using primers targeting conserved regions of the MIC1 gene and the 3' end of gp60 suggests that the C. hominis detected in these animals represent substantial variants that failed to amplify as expected. The significance of this finding requires further investigation but might be reflective of the ability of this C. hominis variant to infect animals. The finding of zoonotic Cryptosporidium species in these animals may have important implications for the management of drinking water catchments to minimize risk to public health.
Collapse
|
25
|
Schiller SE, Webster KN, Power M. Detection of Cryptosporidium hominis and novel Cryptosporidium bat genotypes in wild and captive Pteropus hosts in Australia. INFECTION GENETICS AND EVOLUTION 2016; 44:254-260. [DOI: 10.1016/j.meegid.2016.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 07/01/2016] [Accepted: 07/03/2016] [Indexed: 11/17/2022]
|
26
|
Genetic characterization of Cryptosporidium in animal and human isolates from Jordan. Vet Parasitol 2016; 228:116-120. [DOI: 10.1016/j.vetpar.2016.08.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/15/2016] [Accepted: 08/20/2016] [Indexed: 11/20/2022]
|
27
|
Sangster L, Blake DP, Robinson G, Hopkins TC, Sa RCC, Cunningham AA, Chalmers RM, Lawson B. Detection and molecular characterisation of Cryptosporidium parvum in British European hedgehogs (Erinaceus europaeus). Vet Parasitol 2015; 217:39-44. [PMID: 26827859 DOI: 10.1016/j.vetpar.2015.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 11/28/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Surveillance was conducted for the occurrence of protozoan parasites of the genus Cryptosporidium in European hedgehogs (Erinaceus europaeus) in Great Britain. In total, 108 voided faecal samples were collected from hedgehogs newly admitted to eight wildlife casualty treatment and rehabilitation centres. Terminal large intestinal (LI) contents from three hedgehog carcasses were also analysed. Information on host and location variables, including faecal appearance, body weight, and apparent health status, was compiled. Polymerase Chain Reaction (PCR) targeting the 18S ribosomal RNA gene, confirmed by sequencing, revealed an 8% (9/111) occurrence of Cryptosporidium parvum in faeces or LI contents, with no significant association between the host or location variables and infection. Archived small intestinal (SI) tissue from a hedgehog with histological evidence of cryptosporidiosis was also positive for C. parvum by PCR and sequence analysis of the 18S rRNA gene. No other Cryptosporidium species were detected. PCR and sequencing of the glycoprotein 60 gene identified three known zoonotic C. parvum subtypes not previously found in hedgehogs: IIdA17G1 (n=4), IIdA19G1 (n=1) and IIdA24G1 (n=1). These subtypes are also known to infect livestock. Another faecal sample contained C. parvum IIcA5G3j which has been found previously in hedgehogs, and for which there is one published report in a human, but is not known to affect livestock. The presence of zoonotic subtypes of C. parvum in British hedgehogs highlights a potential public health concern. Further research is needed to better understand the epidemiology and potential impacts of Cryptosporidium infection in hedgehogs.
Collapse
Affiliation(s)
- Lucy Sangster
- Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, United Kingdom; The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| | - Damer P Blake
- The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| | - Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology ABM, Singleton Hospital, Sgeti, Swansea SA2 8QA, United Kingdom
| | - Timothy C Hopkins
- Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, United Kingdom
| | - Ricardo C C Sa
- Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, United Kingdom
| | - Andrew A Cunningham
- Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, United Kingdom
| | - Rachel M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales Microbiology ABM, Singleton Hospital, Sgeti, Swansea SA2 8QA, United Kingdom
| | - Becki Lawson
- Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, United Kingdom.
| |
Collapse
|
28
|
Kaupke A, Rzeżutka A. Emergence of novel subtypes of Cryptosporidium parvum in calves in Poland. Parasitol Res 2015; 114:4709-16. [DOI: 10.1007/s00436-015-4719-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
|
29
|
Yang R, Gardner GE, Ryan U, Jacobson C. Prevalence and pathogen load of Cryptosporidium and Giardia in sheep faeces collected from saleyards and in abattoir effluent in Western Australia. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2015.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Biotin- and Glycoprotein-Coated Microspheres as Surrogates for Studying Filtration Removal of Cryptosporidium parvum in a Granular Limestone Aquifer Medium. Appl Environ Microbiol 2015; 81:4277-83. [PMID: 25888174 DOI: 10.1128/aem.00885-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/10/2015] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Cryptosporidium are waterborne protozoa of great health concern. Many studies have attempted to find appropriate surrogates for assessing Cryptosporidium filtration removal in porous media. In this study, we evaluated the filtration of Cryptosporidium parvum in granular limestone medium by the use of biotin- and glycoprotein-coated carboxylated polystyrene microspheres (CPMs) as surrogates. Column experiments were carried out with core material taken from a managed aquifer recharge site in Adelaide, Australia. For the experiments with injection of a single type of particle, we observed the total removal of the oocysts and glycoprotein-coated CPMs, a 4.6- to 6.3-log10 reduction of biotin-coated CPMs, and a 2.6-log10 reduction of unmodified CPMs. When two different types of particles were simultaneously injected, glycoprotein-coated CPMs showed a 5.3-log10 reduction, while the uncoated CPMs displayed a 3.7-log10 reduction, probably due to particle-particle interactions. Our results confirm that glycoprotein-coated CPMs are the most accurate surrogates for C. parvum; biotin-coated CPMs are slightly more conservative, while unmodified CPMs are markedly overly conservative for predicting C. parvum removal in granular limestone medium. The total removal of C. parvum observed in our study suggests that granular limestone medium is very effective for the filtration removal of C. parvum and could potentially be used for the pretreatment of drinking water and aquifer storage recovery of recycled water.
Collapse
|
31
|
Abeywardena H, Jex AR, Gasser RB. A perspective on Cryptosporidium and Giardia, with an emphasis on bovines and recent epidemiological findings. ADVANCES IN PARASITOLOGY 2015; 88:243-301. [PMID: 25911369 PMCID: PMC7103119 DOI: 10.1016/bs.apar.2015.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cryptosporidium and Giardia are two common aetiological agents of infectious enteritis in humans and animals worldwide. These parasitic protists are usually transmitted by the faecal-oral route, following the ingestion of infective stages (oocysts or cysts). An essential component of the control of these parasitic infections, from a public health perspective, is an understanding of the sources and routes of transmission in different geographical regions. Bovines are considered potential sources of infection for humans, because species and genotypes of Cryptosporidium and Giardia infecting humans have also been isolated from cattle in molecular parasitological studies. However, species and genotypes of Cryptosporidium and Giardia of bovids, and the extent of zoonotic transmission in different geographical regions in the world, are still relatively poorly understood. The purpose of this article is to (1) provide a brief background on Cryptosporidium and Giardia, (2) review some key aspects of the molecular epidemiology of cryptosporidiosis and giardiasis in animals, with an emphasis on bovines, (3) summarize research of Cryptosporidium and Giardia from cattle and water buffaloes in parts of Australasia and Sri Lanka, considering public health aspects and (4) provide a perspective on future avenues of study. Recent studies reinforce that bovines harbour Cryptosporidium and Giardia that likely pose a human health risk and highlight the need for future investigations of the biology, population genetics and transmission dynamics of Cryptosporidium and Giardia in cattle, water buffaloes and other ruminants in different geographical regions, the fate and transport of infective stages following their release into the environment, as well as for improved strategies for the control and prevention of cryptosporidiosis and giardiasis, guided by molecular epidemiological studies.
Collapse
Affiliation(s)
- Harshanie Abeywardena
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Aaron R. Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
32
|
Vermeulen ET, Ashworth DL, Eldridge MD, Power ML. Diversity of Cryptosporidium in brush-tailed rock-wallabies (Petrogale penicillata) managed within a species recovery programme. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 4:190-6. [PMID: 25834789 PMCID: PMC4372656 DOI: 10.1016/j.ijppaw.2015.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 11/19/2022]
Abstract
Cryptosporidium diversity was investigated in a BTRW as part of a recovery programme. Faecal samples from captive bred, supplemented and wild wallabies were screened. Cryptosporidium isolates were identified at three gene loci using PCR. Diverse species of Cryptosporidium were identified across populations. Both specific, C. fayeri, and broad host species, C. meleagridis, were identified.
Host–parasite relationships are likely to be impacted by conservation management practices, potentially increasing the susceptibility of wildlife to emerging disease. Cryptosporidium, a parasitic protozoan genus comprising host-adapted and host-specific species, was used as an indicator of parasite movement between populations of a threatened marsupial, the brush-tailed rock-wallaby (Petrogale penicillata). PCR screening of faecal samples (n = 324) from seven wallaby populations across New South Wales, identified Cryptosporidium in 7.1% of samples. The sampled populations were characterised as captive, supplemented and wild populations. No significant difference was found in Cryptosporidium detection between each of the three population categories. The positive samples, detected using 18S rRNA screening, were amplified using the actin and gp60 loci. Multi-locus sequence analysis revealed the presence of Cryptosporidium fayeri, a marsupial-specific species, and C. meleagridis, which has a broad host range, in samples from the three population categories. Cryptosporidium meleagridis has not been previously reported in marsupials and hence the pathogenicity of this species to brush-tailed rock-wallabies is unknown. Based on these findings, we recommend further study into Cryptosporidium in animals undergoing conservation management, as well as surveying wild animals in release areas, to further understand the diversity and epidemiology of this parasite in threatened wildlife.
Collapse
Affiliation(s)
- Elke T. Vermeulen
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Corresponding author. Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia. Tel.: +61 2 9850 9259; fax: +61 2 9850 8245.
| | - Deborah L. Ashworth
- Office of Environment and Heritage, PO Box 1967, Hurstville, NSW 2220, Australia
| | - Mark D.B. Eldridge
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Australian Museum Research Institute, Australian Museum, 6 College Street, Sydney, NSW 2010, Australia
| | - Michelle L. Power
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
33
|
Mi R, Wang X, Huang Y, Zhou P, Liu Y, Chen Y, Chen J, Zhu W, Chen Z. Prevalence and molecular characterization of Cryptosporidium in goats across four provincial level areas in China. PLoS One 2014; 9:e111164. [PMID: 25343501 PMCID: PMC4208816 DOI: 10.1371/journal.pone.0111164] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/24/2014] [Indexed: 12/28/2022] Open
Abstract
This study assessed the prevalence, species and subtypes of Cryptosporidium in goats from Guangdong Province, Hubei Province, Shandong Province, and Shanghai City of China. Six hundred and four fecal samples were collected from twelve goat farms, and the overall infection rate was 11.4% (69/604). Goats infected with Cryptosporidium were found in eleven farms across four provincial areas, and the infection rate ranged from 2.9% (1/35) to 25.0% (9/36). Three Cryptosporidium species were identified. Cryptosporidium xiaoi (45/69, 65.2%) was the dominant species, followed by C. parvum (14/69, 20.3%) and C.ubiquitum (10/69, 14.5%). The infection rate of Cryptosporidium spp. was varied with host age and goat kids were more susceptible to be infected than adult goats. Subtyping C.parvum and C.ubiquitum positive samples revealed C. parvum subtype IIdA19G1 and C. ubiquitum subtype XIIa were the most common subtypes. Other C. parvum subtypes were detected as well, such as IIaA14G2R1, IIaA15G1R1, IIaA15G2R1 and IIaA17G2R1. All of these subtypes have also been detected in humans, suggesting goats may be a potential source of zoonotic cryptosporidiosis. This was the first report of C. parvum subtypes IIaA14G2R1, IIaA15G1R1 and IIaA17G2R1 infecting in goats and the first molecular identification of C.parvum and its subtypes in Chinese goats.
Collapse
Affiliation(s)
- Rongsheng Mi
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Animal-borne Food Safety Research Center of Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xiaojuan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Animal-borne Food Safety Research Center of Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yan Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Animal-borne Food Safety Research Center of Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Peng Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Animal-borne Food Safety Research Center of Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuxuan Liu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Animal-borne Food Safety Research Center of Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yongjun Chen
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Animal-borne Food Safety Research Center of Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jun Chen
- Lvxiang Town Agricultural Technology Extension Station of Jinshan District, Shanghai, China
| | - Wei Zhu
- Tengzhou Animal Husbandry and Veterinary Technology Service Center, Tengzhou, China
| | - Zhaoguo Chen
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Animal-borne Food Safety Research Center of Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail:
| |
Collapse
|
34
|
Abstract
SUMMARYCryptosporidium hominis is one of the most prevalent protozoan parasites to infect humans where transmission is via the consumption of infective oocysts. This study describes sporadic cases in addition to the molecular diversity of outbreak cases in Scotland using the glycoprotein-60 subtyping tool. From a total of 187 C. hominis isolates, 65 were subjected to further molecular analysis and 46 were found to be the common IbA10G2 subtype. Unusual subtypes included four isolates belonging to the Ia family (IaA14R3, n = 12; IaA14R2, n = 1; IaA9G3, n = 1; IaA25R3, n = 2), two from the Id family (IdA24, n = 1; IdA17, n = 1) and one belonging to the Ie family, namely IeA11G3T3. These data contribute significantly to our knowledge and understanding of the molecular diversity of C. hominis isolates from outbreak investigations involving Scottish residents which will be beneficial for the management of future outbreaks.
Collapse
|
35
|
Koehler AV, Whipp M, Hogg G, Haydon SR, Stevens MA, Jex AR, Gasser RB. First genetic analysis of Cryptosporidium from humans from Tasmania, and identification of a new genotype from a traveller to Bali. Electrophoresis 2014; 35:2600-7. [PMID: 24916177 DOI: 10.1002/elps.201400225] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 11/08/2022]
Abstract
Little is known about the molecular composition of Cryptosporidium species from humans living in the insular state of Tasmania, Australia. In the present study, we genetically characterized 82 samples of Cryptosporidium from humans following conventional coproscopic testing in a routine, diagnostic laboratory. Using a PCR-coupled single-strand conformation polymorphism (SSCP) technique, targeting portions of the small subunit rRNA (SSU), and 60 kDa glycoprotein (gp60) loci, we identified two species of Cryptosporidium, including C. hominis (subgenotypes IbA10G2, IdA16, IeA12G3T3, and IfA19G1) and C. parvum (IIaA16G1R1 and IIaA18G3), and a new operational taxonomic unit (OTU) that genetically closely resembled C. wrairi. This OTU was further characterized using markers in the actin, Cryptosporidium oocyst wall protein (COWP), and 70 kDa heat shock protein (hsp70) genes. This study provides the first characterization of species and genotypes of Cryptosporidium from Tasmania, and presents clear genetic evidence, using five independent genetic loci, for a new genotype or species of Cryptosporidium in a Tasmanian person with a recent history of travelling to Bali, Indonesia. It would be interesting to undertake detailed molecular-based studies of Cryptosporidium in Indonesia and neighbouring countries, in conjunction with morphological and experimental investigations of new genotypes.
Collapse
Affiliation(s)
- Anson V Koehler
- Faculty of Veterinary Science, University of Melbourne, Werribee, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
36
|
Valenzuela O, González-Díaz M, Garibay-Escobar A, Burgara-Estrella A, Cano M, Durazo M, Bernal RM, Hernandez J, Xiao L. Molecular characterization of Cryptosporidium spp. in children from Mexico. PLoS One 2014; 9:e96128. [PMID: 24755606 PMCID: PMC3996000 DOI: 10.1371/journal.pone.0096128] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/02/2014] [Indexed: 11/19/2022] Open
Abstract
Cryptosporidiosis is a parasitic disease caused by Cryptosporidium spp. In immunocompetent individuals, it usually causes an acute and self-limited diarrhea; in infants, infection with Cryptosporidium spp. can cause malnutrition and growth retardation, and declined cognitive ability. In this study, we described for the first time the distribution of C. parvum and C. hominis subtypes in 12 children in Mexico by sequence characterization of the 60-kDa glycoprotein (GP60) gene of Cryptosporidium. Altogether, 7 subtypes belonging to 4 subtype families of C. hominis (Ia, Ib, Id and Ie) and 1 subtype family of C. parvum (IIa) were detected, including IaA14R3, IaA15R3, IbA10G2, IdA17, IeA11G3T3, IIaA15G2R1 and IIaA16G1R1. The frequency of the subtype families and subtypes in the samples analyzed in this study differed from what was observed in other countries.
Collapse
Affiliation(s)
- Olivia Valenzuela
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México
- * E-mail:
| | - Mariana González-Díaz
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México
| | - Adriana Garibay-Escobar
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México
| | - Alexel Burgara-Estrella
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México
| | - Manuel Cano
- Servicio de Infectología, Hospital Infantil del Estado de Sonora, Hermosillo, Sonora, México
| | - María Durazo
- Servicio de Infectología, Hospital Infantil del Estado de Sonora, Hermosillo, Sonora, México
| | - Rosa M. Bernal
- Laboratorio de Parasitología y Micología, Hospital Infantil de México Federico Gómez, México Distrito Federal, México
| | - Jesús Hernandez
- Laboratorio de Inmunologia, Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Sonora, México
| | - Lihua Xiao
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
37
|
Longitudinal prevalence, oocyst shedding and molecular characterisation of Cryptosporidium species in sheep across four states in Australia. Vet Parasitol 2014; 200:50-8. [DOI: 10.1016/j.vetpar.2013.11.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 11/21/2022]
|
38
|
Nolan MJ, Jex AR, Koehler AV, Haydon SR, Stevens MA, Gasser RB. Molecular-based investigation of Cryptosporidium and Giardia from animals in water catchments in southeastern Australia. WATER RESEARCH 2013; 47:1726-1740. [PMID: 23357792 DOI: 10.1016/j.watres.2012.12.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 06/01/2023]
Abstract
There has been no large-scale systematic molecular epidemiological investigation of the waterborne protozoans, Cryptosporidium or Giardia, in southeastern Australia. Here, we explored, for the first time, the genetic composition of these genera in faecal samples from animals in nine Melbourne Water reservoir areas, collected over a period of two-years. We employed PCR-based single-strand conformation polymorphism (SSCP) and phylogenetic analyses of loci (pSSU and pgp60) in the small subunit (SSU) of ribosomal RNA and 60-kDa glycoprotein (gp60) genes to detect and characterise Cryptosporidium, and another locus (ptpi) in the triose-phosphate isomerase (tpi) gene to identify and characterise Giardia. Cryptosporidium was detected in 2.8% of the 2009 samples examined; the analysis of all amplicons defined 14 distinct sequence types for each of pSSU and pgp60, representing Cryptosporidium hominis (genotype Ib - subgenotype IbA10G2R2), Cryptosporidium parvum (genotype IIa - subgenotypes IIaA15G2R1, IIaA19G2R1, IIaA19G3R1, IIaA19G4R1, IIaA20G3R1, IIaA20G4R1, IIaA20G3R2 and IIaA21G3R1), Cryptosporidium cuniculus (genotype Vb - subgenotypes VbA22R4, VbA23R3, VbA24R3, VbA25R4 and VbA26R4), and Cryptosporidium canis, Cryptosporidium fayeri, Cryptosporidium macropodum and Cryptosporidium ubiquitum as well as six new pSSU sequence types. In addition, Giardia was identified in 3.4% of the samples; all 28 distinct ptpi sequence types defined were linked to assemblage A of Giardia duodenalis. Of all 56 sequence types characterised, eight and one have been recorded previously in Cryptosporidium and Giardia, respectively, from humans. In contrast, nothing is known about the zoonotic potential of 35 new genotypes of Cryptosporidium and Giardia recorded here for the first time. Future work aims to focus on estimating the prevalence of Cryptosporidium and Giardia genotypes in humans and a wide range of animals in Victoria and elsewhere in Australia. (Nucleotide sequences reported in this paper are available in the GenBank database under accession nos. KC282952-KC283005).
Collapse
Affiliation(s)
- Matthew J Nolan
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | |
Collapse
|
39
|
Zhang W, Wang R, Yang F, Zhang L, Cao J, Zhang X, Ling H, Liu A, Shen Y. Distribution and genetic characterizations of Cryptosporidium spp. in pre-weaned dairy calves in Northeastern China's Heilongjiang Province. PLoS One 2013; 8:e54857. [PMID: 23372782 PMCID: PMC3556070 DOI: 10.1371/journal.pone.0054857] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/17/2012] [Indexed: 12/01/2022] Open
Abstract
Background Cryptosporidium spp. are common parasites of humans and animals. Farm animals, especially pre-weaned calves, are considered to be one of main animal reservoir hosts of Cryptosporidium in the transmission of human cryptosporidiosis. The aim of this study was to determine the distribution and genotypes of Cryptosporidium spp. in pre-weaned calves using molecular tools and to assess zoonotic transmission and elucidate the public health significance in northeastern China. Methodology/Principal Findings A total of 151 fecal specimens from pre-weaned calves were collected in Heilongjiang Province and were screened for Cryptosporidium by PCR. The average prevalence of Cryptosporidium was 47.68% (72/151). Cryptosporidium spp. were characterized by DNA sequencing of the small subunit (SSU) rRNA gene and the 60-kDa glycoprotein (gp60) gene. Based on the SSU rRNA gene, five Cryptosporidium spp. were identified, including C. bovis (n = 34), C. andersoni (n = 26), C. ryanae (n = 5), C. meleagridis (n = 5) and C. parvum (n = 2). The SSU rRNA nucleotide sequences were identical to each other, respectively, within C. ryanae, C. parvum, C. meleagridis and C. andersoni. Four types of C. bovis were found in the SSU rRNA gene, with two novel types. The gp60 gene was successfully sequenced in one C. parvum isolate and three C. meleagridis isolates, with IIdA19G1 for C. parvum and IIIeA22G2R1 for C. meleagridis. Conclusion/Significance Molecular analysis indicates that Cryptosporidium spp. are endemic in pre-weaned calves in Heilongjiang Province. The findings of C. parvum and C. meleagridis suggested the possibility of zoonotic transmission and public health significance. The transmission dynamics of C. parvum and C. meleagridis needed to be clarified by further molecular epidemiologic studies from humans and animals. Whether calves could act as the natural reservoirs of C. meleagridis needed to be confirmed by more systematic experimental infection studies.
Collapse
Affiliation(s)
- Weizhe Zhang
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Rongjun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fengkun Yang
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, China
| | - Xiaoli Zhang
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hong Ling
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Aiqin Liu
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
- * E-mail: (AL); (YS)
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, China
- * E-mail: (AL); (YS)
| |
Collapse
|
40
|
Pang L, Nowostawska U, Weaver L, Hoffman G, Karmacharya A, Skinner A, Karki N. Biotin- and glycoprotein-coated microspheres: potential surrogates for studying filtration of cryptosporidium parvum in porous media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11779-11787. [PMID: 22978441 DOI: 10.1021/es302555n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cryptosporidium parvum is a waterborne pathogen, yet no suitable surrogate has been established for quantifying its filtration removal in porous media. Carboxyl polystyrene microspheres with size, density, and shape similar to C. parvum were coated with biotin (free and containing amine, NH(2)) and glycoprotein. These biomolecules have isoelectric points similar to C. parvum (pH ≈ 2), and glycoprotein is a major type of surface protein that oocysts possess. Zeta potential (ζ) and filtration removal of particles in sand of two different grain sizes were examined. Compared to unmodified microspheres, modified microspheres achieved a superior match to the oocysts in ζ, concentration, mass recovery, and collision coefficient. They showed the same log reduction in concentration as oocysts, whereas results from unmodified microspheres deviated by 1 order of magnitude. Of the three types of modified microspheres, glycoprotein-coated microspheres best resembled oocyst concentration, despite having ζ similar to NH(2)-biotin-coated microspheres, suggesting that surface protein also played an important role in particle attachment on solid surfaces. With further validation in environmental conditions, the surrogates developed here could be a cost-effective new tool for assessing oocyst filtration in porous media, for example, to evaluate the performance of sand filters in water and wastewater treatment, water recycling through riverbank filtration, and aquifer recharge.
Collapse
Affiliation(s)
- Liping Pang
- Institute of Environmental Science and Research Ltd., PO Box 29181, Christchurch, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
41
|
Abeywardena H, Jex AR, Nolan MJ, Haydon SR, Stevens MA, McAnulty RW, Gasser RB. Genetic characterisation of Cryptosporidium and Giardia from dairy calves: discovery of species/genotypes consistent with those found in humans. INFECTION GENETICS AND EVOLUTION 2012; 12:1984-93. [PMID: 22981927 DOI: 10.1016/j.meegid.2012.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/31/2012] [Accepted: 08/01/2012] [Indexed: 10/27/2022]
Abstract
Cryptosporidium and Giardia are important genera of parasitic protists that can cause significant diarrhoeal diseases in humans and other animals. Depending on the species/genotype of parasite, human infection may be acquired via anthroponotic or zoonotic transmission routes. Here, we undertook a molecular epidemiological investigation of these two genera of parasites in pre- and post-weaned calves from eight locations in Canterbury, New Zealand, by PCR-coupled sequencing and phylogenetic analysis of sequence data for regions in the 60 kDa glycoprotein (pgp60) gene of Cryptosporidium and/or the triose-phosphate isomerase (ptpi) gene of Giardia. The pgp60 and ptpi regions were specifically amplified from 15 (8.3%) and 11 (6.1%) of the 180 individual faecal samples, respectively. The sequences derived from all of the amplicons were aligned with homologous reference sequences and subjected to phylogenetic analysis by Bayesian inference. For Cryptosporidium, three samples contained Cryptosporidium parvum genotype IIa, subgenotypes IIaA15G3R1, IIaA19G3R1 and IIaA23G4. Twelve samples contained Cryptosporidium hominis genotype Ib, subgenotype IbA10G2R2. While subgenotypes IIaA15G3R1 and IIaA23G4 are new records, IIaA19G3R1 and IbA10G2R2 are commonly found in humans in various countries. For Giardia, two samples contained Giardia duodenalis assemblage A, also common in humans. In contrast, nine samples contained G. duodenalis assemblage E, which is the first report of this assemblage in cattle in New Zealand. Therefore, the present results indicate that dairy calves on the South Island of New Zealand harbour 'zoonotic' genotypes of Cryptosporidium and Giardia, which is likely to have significant public health implications.
Collapse
Affiliation(s)
- Harshanie Abeywardena
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Cryptosporidium is an important enteric parasite that is transmitted via the fecal-oral route, water and food. Humans, wildlife and domestic livestock all potentially contribute Cryptosporidium to surface waters. Most species of Cryptosporidium are morphologically indistinguishable and can only be identified using molecular tools. Over 24 species have been identified and of these, 7 Cryptosporidium species/genotypes are responsible for most human cryptosporidiosis cases. In Australia, relatively few genotyping studies have been conducted. Six Cryptosporidium species (C. hominis, C. parvum, C. meleagridis, C. fayeri, C. andersoni and C. bovis) have been identified in humans in Australia. However, little is known about the contribution of animal hosts to human pathogenic strains of Cryptosporidium in drinking water catchments. In this review, we focus on the available genotyping data for native, feral and domestic animals inhabiting drinking water catchments in Australia to provide an improved understanding of the public health implications and to identify key research gaps.
Collapse
|
43
|
Loganthan S, Yang R, Bath A, Gordon C, Ryan U. Prevalence of Cryptosporidium species in recreational versus non-recreational water sources. Exp Parasitol 2012; 131:399-403. [PMID: 22609970 DOI: 10.1016/j.exppara.2012.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/12/2012] [Accepted: 04/30/2012] [Indexed: 11/25/2022]
Abstract
Cryptosporidiosis, caused by the protozoan parasite Cryptosporidium, represents the major public health concern of water utilities in developed nations due to its small size, resistance to disinfection and ability to be shed in large numbers in faeces. In Australia, recreational access is not allowed on direct supply sources, however, in Western Australia, limited recreational access to drinking water catchments has been allowed, although only in the outer catchment. Recreational activities within 2 km of the drinking water body is prohibited. The present study compared the amount, prevalence and species of Cryptosporidium in recreational versus non-recreational water catchments in the south west of Western Australia (WA). Recreational water catchments, which allowed swimming and camping had a higher prevalence of Cryptosporidium and the majority of samples were the human-associated C. hominis. Non-recreational catchments had a lower prevalence and all the samples genotyped were C. parvum. Risk analysis identified increasing population as strongly correlated with an increase in the prevalence of Cryptosporidium in recreational catchments. This suggests that recreational access to drinking water catchments is a serious public health risk and government policy limiting activities to the outer catchment should be supported.
Collapse
Affiliation(s)
- Sasdekumar Loganthan
- Division of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | | | | | | | | |
Collapse
|
44
|
Ng JSY, Eastwood K, Walker B, Durrheim DN, Massey PD, Porigneaux P, Kemp R, McKinnon B, Laurie K, Miller D, Bramley E, Ryan U. Evidence of Cryptosporidium transmission between cattle and humans in northern New South Wales. Exp Parasitol 2012; 130:437-41. [PMID: 22333036 DOI: 10.1016/j.exppara.2012.01.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 01/10/2012] [Accepted: 01/18/2012] [Indexed: 11/16/2022]
Abstract
Cryptosporidium is an enteric parasite of public health significance that causes diarrhoeal illness through faecal oral contamination and via water. Zoonotic transmission is difficult to determine as most species of Cryptosporidium are morphologically identical and can only be differentiated by molecular means. Transmission dynamics of Cryptosporidium in rural populations were investigated through the collection of 196 faecal samples from diarrheic (scouring) calves on 20 farms and 63 faecal samples from humans on 14 of these farms. The overall prevalence of Cryptosporidium in cattle and humans by PCR and sequence analysis of the 18S rRNA was 73.5% (144/196) and 23.8% (15/63), respectively. Three species were identified in cattle; Cryptosporidium parvum, Cryptosporidium bovis and Cryptosporidium ryanae, and from humans, C. parvum and C. bovis. This is only the second report of C. bovis in humans. Subtype analysis at the gp60 locus identified C. parvum subtype IIaA18G3R1 as the most common subtype in calves. Of the seven human C. parvum isolates successfully subtyped, five were IIaA18G3R1, one was IIdA18G2 and one isolate had a mix of IIaA18G3R1 and IIdA19G2. These findings suggest that zoonotic transmission may have occurred but more studies involving extensive sampling of both calves and farm workers are needed for a better understanding of the sources of Cryptosporidium infections in humans from rural areas of Australia.
Collapse
Affiliation(s)
- Josephine Su Yin Ng
- School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
A community outbreak of cryptosporidiosis in sydney associated with a public swimming facility: a case-control study. Interdiscip Perspect Infect Dis 2011; 2011:341065. [PMID: 22194741 PMCID: PMC3238377 DOI: 10.1155/2011/341065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/29/2011] [Indexed: 11/17/2022] Open
Abstract
In February, 2008, the South Eastern Sydney Illawarra Public Health Unit investigated an outbreak of cryptosporidiosis within the south east region of Sydney, Australia. Thirty-one cases with laboratory-confirmed cryptosporidiosis and 97 age- and geographically matched controls selected by random digit dialling were recruited into a case-control study and interviewed for infection risk factors. Cryptosporidiosis was associated with swimming at Facility A (matched odds ratio = 19.4, 95% confidence interval: 3.7–100.8) and exposure to household contacts with diarrhoea (matched odds ratio = 7.7, 95% confidence interval: 1.9–31.4) in multivariable conditional logistic regression models. A protective effect for any animal contact was also found (matched odds ratio = 0.2, 95% confidence interval: 0.1–0.7). Cryptosporidium hominis subtype IbA10G2 was identified in 8 of 11 diagnostic stool samples available for cases. This investigation reaffirms the importance of public swimming pools as potential sources of Cryptosporidium infection and ensuring their compliance with water-quality guidelines. The protective effect of animal contact may be suggestive of past exposure leading to immunity.
Collapse
|
46
|
Molecular epidemiology and spatial distribution of a waterborne cryptosporidiosis outbreak in Australia. Appl Environ Microbiol 2011; 77:7766-71. [PMID: 21908623 DOI: 10.1128/aem.00616-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidiosis is one of the most common waterborne diseases reported worldwide. Outbreaks of this gastrointestinal disease, which is caused by the Cryptosporidium parasite, are often attributed to public swimming pools and municipal water supplies. Between the months of January and April in 2009, New South Wales, Australia, experienced the largest waterborne cryptosporidiosis outbreak reported in Australia to date. Through the course of the contamination event, 1,141 individuals became infected with Cryptosporidium. Health authorities in New South Wales indicated that public swimming pool use was a contributing factor in the outbreak. To identify the Cryptosporidium species responsible for the outbreak, fecal samples from infected patients were collected from hospitals and pathology companies throughout New South Wales for genetic analyses. Genetic characterization of Cryptosporidium oocysts from the fecal samples identified the anthroponotic Cryptosporidium hominis IbA10G2 subtype as the causative parasite. Equal proportions of infections were found in males and females, and an increased susceptibility was observed in the 0- to 4-year age group. Spatiotemporal analysis indicated that the outbreak was primarily confined to the densely populated coastal cities of Sydney and Newcastle.
Collapse
|
47
|
Molecular epidemiology, spatiotemporal analysis, and ecology of sporadic human cryptosporidiosis in Australia. Appl Environ Microbiol 2011; 77:7757-65. [PMID: 21908628 DOI: 10.1128/aem.00615-11] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parasites from the Cryptosporidium genus are the most common cause of waterborne disease around the world. Successful management and prevention of this emerging disease requires knowledge of the diversity of species causing human disease and their zoonotic sources. This study employed a spatiotemporal approach to investigate sporadic human cryptosporidiosis in New South Wales, Australia, between January 2008 and December 2010. Analysis of 261 human fecal samples showed that sporadic human cryptosporidiosis is caused by four species; C. hominis, C. parvum, C. andersoni, and C. fayeri. Sequence analysis of the gp60 gene identified 5 subtype families and 31 subtypes. Cryptosporidium hominis IbA10G2 and C. parvum IIaA18G3R1 were the most frequent causes of human cryptosporidiosis in New South Wales, with 59% and 16% of infections, respectively, attributed to them. The results showed that infections were most prevalent in 0- to 4-year-olds. No gender bias or regional segregation was observed between the distribution of C. hominis and C. parvum infections. To determine the role of cattle in sporadic human infections in New South Wales, 205 cattle fecal samples were analyzed. Four Cryptosporidium species were identified, C. hominis, C. parvum, C. bovis, and C. ryanae. C. parvum subtype IIaA18G3R1 was the most common cause of cryptosporidiosis in cattle, with 47% of infections attributed to it. C. hominis subtype IbA10G2 was also identified in cattle isolates.
Collapse
|
48
|
Waldron L, Power M. Fluorescence analysis detects gp60 subtype diversity in Cryptosporidium infections. INFECTION GENETICS AND EVOLUTION 2011; 11:1388-95. [DOI: 10.1016/j.meegid.2011.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 10/18/2022]
|
49
|
DEL CHIERICO F, ONORI M, DI BELLA S, BORDI E, PETROSILLO N, MENICHELLA D, CACCIÒ SM, CALLEA F, PUTIGNANI L. Cases of cryptosporidiosis co-infections in AIDS patients: a correlation between clinical presentation and GP60 subgenotype lineages from aged formalin-fixed stool samples. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2011; 105:339-349. [PMID: 21929875 PMCID: PMC3176465 DOI: 10.1179/1364859411y.0000000025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/06/2011] [Accepted: 06/13/2011] [Indexed: 12/28/2022]
Abstract
Nine cases of cryptosporidiosis co-infections in AIDS patients were clinically categorised into severe (patients 1, 3, 8 and 9), moderate (patients 4 and 5) and mild (patients 2, 6 and 7). Formalin-fixed faecal specimens from these patients were treated to obtain high quality DNA competent for amplification and sequencing of the 60-kDa glycoprotein (GP60) gene. Sequence analysis revealed that one patient was infected with Cryptosporidium hominis whereas the remaining eight patients were infected with C. parvum. Interestingly, the patients showing severe cryptosporidiosis harboured two subtypes within the C. parvum allelic family IIc (IIcA5G3 and IIcA5G3R2), whereas patients with moderate or mild infections showed various subtypes of the C. parvum allelic family IIa (IIaA14G2R1, IIaA15G2R1, IIaA17G3R1 and IIaA18G3R1). DNA extraction and genotyping of Cryptosporidium spp. is a challenging task on formalin-fixed stool samples, whose diagnostic outcome is age-dependent. The method herein reported represents a step forward routine diagnosis and improves epidemiology of HIV-related clinical cases. Due to the need to elucidate genetic richness of Cryptosporidium human isolates, this approach represents a useful tool to correlate individual differences in symptoms to subgenotyping lineages.
Collapse
Affiliation(s)
- F DEL CHIERICO
- Microbiology Unit, Children’s Hospital and Research Institute ‘Bambino Gesù’, Piazza Sant’Onofrio 4, 00165 Rome, Italy
| | - M ONORI
- Microbiology Unit, Children’s Hospital and Research Institute ‘Bambino Gesù’, Piazza Sant’Onofrio 4, 00165 Rome, Italy
| | - S DI BELLA
- 2nd Infectious Diseases Division, National Institute for Infectious Diseases, ‘Lazzaro Spallanzani’, Via Portuense 292, 00149 Rome, Italy
| | - E BORDI
- Microbiology Unit, National Institute for Infectious Diseases, ‘Lazzaro Spallanzani’, Via Portuense 292, 00149 Rome, Italy
| | - N PETROSILLO
- 2nd Infectious Diseases Division, National Institute for Infectious Diseases, ‘Lazzaro Spallanzani’, Via Portuense 292, 00149 Rome, Italy
| | - D MENICHELLA
- Microbiology Unit, Children’s Hospital and Research Institute ‘Bambino Gesù’, Piazza Sant’Onofrio 4, 00165 Rome, Italy
| | - S M CACCIÒ
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - F CALLEA
- Department of Pathology, Children’s Hospital and Research Institute ‘Bambino Gesù’, Piazza Sant’Onofrio 4, 00165 Rome, Italy
| | - L PUTIGNANI
- Microbiology Unit, Children’s Hospital and Research Institute ‘Bambino Gesù’, Piazza Sant’Onofrio 4, 00165 Rome, Italy
| |
Collapse
|
50
|
Waldron LS, Cheung-Kwok-Sang C, Power ML. Wildlife-associated Cryptosporidium fayeri in human, Australia. Emerg Infect Dis 2011; 16:2006-7. [PMID: 21122247 PMCID: PMC3294593 DOI: 10.3201/eid1612.100715] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|