1
|
Fu R, Xu Y, Lu G, Zhang F, Liang P, Wang D. Identification and Immunological Characterization of Annexin B8 and Annexin E1 from Spirometra Erinaceieuropaei Spargana. Parasitol Res 2024; 123:398. [PMID: 39601902 DOI: 10.1007/s00436-024-08407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Sparganosis is a parasitic zoonotic disease that poses a serious threat to public hygiene and human health. Annexin is a phospholipid-binding protein with calcium ion binding activity, serving various important functions, including interaction with the parasite and regulation of the host's immune response. In this study, two annexin (ANX) family genes, Spirometra erinaceieuropaei (S. erinaceieuropaei) Annexin B8 (SeANXB8) and E1 (SeANXE1), isolated from spargana, were cloned and immunologically characterized. Both recombinant S. erinaceieuropaei Annexin B8 (rSeANXB8) and E1 (rSeANXE1) were specifically recognized by serum from rats immunized with the recombinant proteins, displaying strong immunoreactivity. They are also among the major components of sparganum excretion/secretion products (ESPs). SeANXE1 was identified in the parasite's tegument, testis, genital pore, ovary, and eggs, while SeANXB8 was found in the parasite's tegument and eggs. Plasminogen (PLG)-binding assays revealed that the two annexins could bind to human PLG in a concentration-dependent manner, which was blocked by the corresponding antibodies. These findings suggest that SeANXB8 and SeANXE1 may be involved in host-parasite interaction and may influence the host's immune response during sparganosis. They could be potential diagnosis and vaccination targets for sparganosis.
Collapse
Affiliation(s)
- Ruijia Fu
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, Key Laboratory of Tropical Bioresources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education of China, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Yanquan Xu
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 40038, China
| | - Gang Lu
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education of China, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Fan Zhang
- Department of General Surgery, Hainan General Hospital, Hainan Medical University, Haikou, 570311, Hainan, China
| | - Pei Liang
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, Key Laboratory of Tropical Bioresources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China.
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education of China, Hainan Medical University, Haikou, 571199, Hainan, China.
| | - Dayong Wang
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, Key Laboratory of Tropical Bioresources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China.
- One Health Cooperative Innovation Center, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
2
|
Brann T, Beltramini A, Chaparro C, Berriman M, Doyle SR, Protasio AV. Subtelomeric plasticity contributes to gene family expansion in the human parasitic flatworm Schistosoma mansoni. BMC Genomics 2024; 25:217. [PMID: 38413905 PMCID: PMC10900676 DOI: 10.1186/s12864-024-10032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND The genomic region that lies between the telomere and chromosome body, termed the subtelomere, is heterochromatic, repeat-rich, and frequently undergoes rearrangement. Within this region, large-scale structural changes enable gene diversification, and, as such, large multicopy gene families are often found at the subtelomere. In some parasites, genes associated with proliferation, invasion, and survival are often found in these regions, where they benefit from the subtelomere's highly plastic, rapidly changing nature. The increasing availability of complete (or near complete) parasite genomes provides an opportunity to investigate these typically poorly defined and overlooked genomic regions and potentially reveal relevant gene families necessary for the parasite's lifestyle. RESULTS Using the latest chromosome-scale genome assembly and hallmark repeat richness observed at chromosome termini, we have identified and characterised the subtelomeres of Schistosoma mansoni, a metazoan parasitic flatworm that infects over 250 million people worldwide. Approximately 12% of the S. mansoni genome is classified as subtelomeric, and, in line with other organisms, we find these regions to be gene-poor but rich in transposable elements. We find that S. mansoni subtelomeres have undergone extensive interchromosomal recombination and that these sites disproportionately contribute to the 2.3% of the genome derived from segmental duplications. This recombination has led to the expansion of subtelomeric gene clusters containing 103 genes, including the immunomodulatory annexins and other gene families with unknown roles. The largest of these is a 49-copy plexin domain-containing protein cluster, exclusively expressed in the tegument-the tissue located at the host-parasite physical interface-of intramolluscan life stages. CONCLUSIONS We propose that subtelomeric regions act as a genomic playground for trial-and-error of gene duplication and subsequent divergence. Owing to the importance of subtelomeric genes in other parasites, gene families implicated in this subtelomeric expansion within S. mansoni warrant further characterisation for a potential role in parasitism.
Collapse
Affiliation(s)
- T Brann
- Department of Pathology, University of Cambridge, Cambridge, CB1 2PQ, UK
| | - A Beltramini
- Department of Pathology, University of Cambridge, Cambridge, CB1 2PQ, UK
| | - C Chaparro
- IHPE, CNRS, IFREMER, UPVD, University Montpellier, Perpignan, F-66860, France
| | - M Berriman
- School of Infection and Immunity, University of Glasgow, Glasgow, G12 8TA, UK
| | - S R Doyle
- Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - A V Protasio
- Department of Pathology, University of Cambridge, Cambridge, CB1 2PQ, UK.
- Christ's College, Cambridge, CB2 3BU, UK.
| |
Collapse
|
3
|
He X, Shao G, Du X, Hua R, Song H, Chen Y, Zhu X, Yang G. Molecular characterization and functional implications on mouse peripheral blood mononuclear cells of annexin proteins from Echinococcus granulosus sensu lato. Parasit Vectors 2023; 16:350. [PMID: 37803469 PMCID: PMC10559496 DOI: 10.1186/s13071-023-05967-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/09/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Cystic echinococcosis (CE) is a life-threatening zoonotic disease caused by the larval stage of Echinococcus granulosus sensu lato, which employs various strategies to evade the host immune system for survival. Recent advances have revealed the role of annexins as excretory/secretory products, providing new insights into the immune regulation by these proteins in the pathogenesis of CE. METHODS Echinococcus granulosus annexin B proteins EgANXB2, EgANXB18, EgANXB20, and EgANXB23 were cloned, expressed, and analyzed using bioinformatic tools. Membrane binding analysis was used to assess their bioactivity, while their immunoreactivity and tissue distribution characteristics were determined experimentally using western blotting and immunofluorescence staining, respectively. Furthermore, quantitative real-time reverse transcription PCR (qRT-PCR) was used to analyze the mRNA expression profiles of EgANXBs in different developmental stages of E. granulosus. Finally, immunofluorescence staining, cell counting kit 8 assays, flow cytometry, transwell migration assays, and qRT-PCR were used to evaluate the functional effects of rEgANXB18 and rEgANXB20 on mouse peripheral blood mononuclear cells (PBMCs). RESULTS In this study, we identified four EgANXBs with conserved protein structures and calcium-dependent phospholipid binding activities. rEgANXBs were recognized by serum from sheep infected with E. granulosus and distributed in the germinal layer of fertile cysts. Interestingly, transcription levels of the four EgANXBs were significantly higher in protoscoleces than in 28-day strobilated worms. Moreover, we demonstrated that rEgANXB18 and rEgANXB20 were secretory proteins that could bind to PBMCs and regulate their function. Specifically, rEgANXB18 inhibited cell proliferation and migration while promoting cell apoptosis, NO production, and cytokine profile shifting. In contrast, rEgANXB20 showed limited effects on apoptosis but inhibited NO production. CONCLUSIONS Our findings suggested that among the four identified EgANXBs, EgANXB2 and EgANXB23 might play a pivotal role for the development of protoscoleces, while EgANXB18 and EgANXB20, as secretory proteins, appeared to participate in the host-parasite interaction by regulating the function of immune cells.
Collapse
Affiliation(s)
- Xue He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Guoqing Shao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Xiaodi Du
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Hongyu Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Yanxin Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Xiaowei Zhu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China.
| |
Collapse
|
4
|
Rashidi S, Mansouri R, Ali-Hassanzadeh M, Muro A, Nguewa P, Manzano-Román R. The most prominent modulated annexins during parasitic infections. Acta Trop 2023; 243:106942. [PMID: 37172709 DOI: 10.1016/j.actatropica.2023.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Annexins (ANXs) exert different functions in cell biological and pathological processes and are thus known as double or multi-faceted proteins. These sophisticated proteins might express on both parasite structure and secretion and in parasite-infected host cells. In addition to the characterization of these pivotal proteins, describing their mechanism of action can be also fruitful in recognizing their roles in the pathogenesis of parasitic infections. Accordingly, this study presents the most prominent ANXs thus far identified and their relevant functions in parasites and infected host cells during pathogenesis, especially in the most important intracellular protozoan parasitic infections including leishmaniasis, toxoplasmosis, malaria and trypanosomiasis. The data provided in this study demonstrate that the helminth parasites most probably express and secret ANXs to develop pathogenesis while the modulation of the host-ANXs could be employed as a crucial strategy by intracellular protozoan parasites. Moreover, such data highlight that the use of analogs of both parasite and host ANX peptides (which mimic or regulate ANXs physiological functions through various strategies) might suggest novel therapeutic insights into the treatment of parasitic infections. Furthermore, due to the prominent immunoregulatory activities of ANXs during most parasitic infections and the expression levels of these proteins in some parasitic infected tissues, such multifunctional proteins might be also potentially relevant as vaccine and diagnostic biomarkers. We also suggest some prospects and insights that could be useful and applicable to form the basis of future experimental studies.
Collapse
Affiliation(s)
- Sajad Rashidi
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran; Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Antonio Muro
- Infectious and Tropical Diseases Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| | - Paul Nguewa
- University of Navarra, ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology. IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea 1, 31008 Pamplona, Spain.
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain.
| |
Collapse
|
5
|
Fifty years of the schistosome tegument: discoveries, controversies, and outstanding questions. Int J Parasitol 2021; 51:1213-1232. [PMID: 34767805 DOI: 10.1016/j.ijpara.2021.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022]
Abstract
The unique multilaminate appearance of the tegument surface of schistosomes was first described in 1973, in one of the earliest volumes of the International Journal for Parasitology. The present review, published almost 50 years later, traces the development of our knowledge of the tegument, starting with those earliest cytological advances, particularly the surface plasma membrane-membranocalyx complex, through an era of protein discovery to the modern age of protein characterization, aided by proteomics. More recently, analysis of single cell transcriptomes of schistosomes is providing insight into the organisation of the cell bodies that support the surface syncytium. Our understanding of the tegument, notably the nature of the proteins present within the plasma membrane and membranocalyx, has provided insights into how the schistosomes interact with their hosts but many aspects of how the tegument functions remain unanswered. Among the unresolved aspects are those concerned with maintenance and renewal of the surface membrane complex, and whether surface proteins and membrane components are recycled. Current controversies arising from investigations about whether the tegument is a source of extracellular vesicles during parasitism, and if it is covered with glycolytic enzymes, are evaluated in the light of cytological and proteomic knowledge of the layer.
Collapse
|
6
|
Kochneva A, Borvinskaya E, Smirnov L. Zone of Interaction Between the Parasite and the Host: Protein Profile of the Body Cavity Fluid of Gasterosteus aculeatus L. Infected with the Cestode Schistocephalus solidus (Muller, 1776). Acta Parasitol 2021; 66:569-583. [PMID: 33387269 DOI: 10.1007/s11686-020-00318-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE During infection, the host and the parasite "communicate" with each other through various molecules, including proteins. The aim of this study was to describe the excretory-secretory proteins from the helminth Schistocephalus solidus and its intermediate host, the three-spined stickleback Gasterosteus aculeatus L., which are likely to be involved in interactions between them. METHODS Combined samples of washes from the G. aculeatus sticklebacks cavity infected with the S. solidus, and washes from the parasite surface were used as experimental samples, while washes from the uninfected fish body cavity were used as control. The obtained samples were analyzed using mass-spectrometry nLC-MS/MS. RESULTS As a result of mass-spectrometry analysis 215 proteins were identified. Comparative quantitative analysis revealed significant differences in LFQ intensity between experimental and control samples for 20 stickleback proteins. In the experimental samples, we found an increase in the content of serpins, plasminogen, angiotensin 1-10, complement component C9, and a decrease in the content of triosephosphate isomerase, creatine kinase, fructose-biphosphate aldolase, superoxide dismutase, peroxidoxin-1, homocysteine-binding and fatty acid-binding proteins, compared to uninfected fish samples. In the experimental group washes, 30 S. solidus proteins were found, including malate dehydrogenase, annexin family proteins, serpins, peptidyl-prolyl cis-trans isomerase and fatty acid-binding protein. CONCLUSIONS Thus, the protein composition of washes from the helminth S. solidus surface and the body cavity of infected and uninfected stickleback G. aculeatus were studied. As a result, it was shown that various components of the immune defense system predominated in the washes of infected fish and helminths.
Collapse
|
7
|
Vorel J, Cwiklinski K, Roudnický P, Ilgová J, Jedličková L, Dalton JP, Mikeš L, Gelnar M, Kašný M. Eudiplozoon nipponicum (Monogenea, Diplozoidae) and its adaptation to haematophagy as revealed by transcriptome and secretome profiling. BMC Genomics 2021; 22:274. [PMID: 33858339 PMCID: PMC8050918 DOI: 10.1186/s12864-021-07589-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background Ectoparasites from the family Diplozoidae (Platyhelminthes, Monogenea) belong to obligate haematophagous helminths of cyprinid fish. Current knowledge of these worms is for the most part limited to their morphological, phylogenetic, and population features. Information concerning the biochemical and molecular nature of physiological processes involved in host–parasite interaction, such as evasion of the immune system and its regulation, digestion of macromolecules, suppression of blood coagulation and inflammation, and effect on host tissue and physiology, is lacking. In this study, we report for the first time a comprehensive transcriptomic/secretome description of expressed genes and proteins secreted by the adult stage of Eudiplozoon nipponicum (Goto, 1891) Khotenovsky, 1985, an obligate sanguivorous monogenean which parasitises the gills of the common carp (Cyprinus carpio). Results RNA-seq raw reads (324,941 Roche 454 and 149,697,864 Illumina) were generated, de novo assembled, and filtered into 37,062 protein-coding transcripts. For 19,644 (53.0%) of them, we determined their sequential homologues. In silico functional analysis of E. nipponicum RNA-seq data revealed numerous transcripts, pathways, and GO terms responsible for immunomodulation (inhibitors of proteolytic enzymes, CD59-like proteins, fatty acid binding proteins), feeding (proteolytic enzymes cathepsins B, D, L1, and L3), and development (fructose 1,6-bisphosphatase, ferritin, and annexin). LC-MS/MS spectrometry analysis identified 721 proteins secreted by E. nipponicum with predominantly immunomodulatory and anti-inflammatory functions (peptidyl-prolyl cis-trans isomerase, homolog to SmKK7, tetraspanin) and ability to digest host macromolecules (cathepsins B, D, L1). Conclusions In this study, we integrated two high-throughput sequencing techniques, mass spectrometry analysis, and comprehensive bioinformatics approach in order to arrive at the first comprehensive description of monogenean transcriptome and secretome. Exploration of E. nipponicum transcriptome-related nucleotide sequences and translated and secreted proteins offer a better understanding of molecular biology and biochemistry of these, often neglected, organisms. It enabled us to report the essential physiological pathways and protein molecules involved in their interactions with the fish hosts. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07589-z.
Collapse
Affiliation(s)
- Jiří Vorel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Pavel Roudnický
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jana Ilgová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Lucie Jedličková
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic.,Department of Zoology and Fisheries, Centre of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - John P Dalton
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Martin Kašný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| |
Collapse
|
8
|
Song H, He X, Du X, Hua R, Xu J, He R, Xie Y, Gu X, Peng X, Yang G. Molecular characterization and expression analysis of annexin B3 and B38 as secretory proteins in Echinococcus granulosus. Parasit Vectors 2021; 14:103. [PMID: 33557917 PMCID: PMC7869467 DOI: 10.1186/s13071-021-04596-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/13/2021] [Indexed: 11/18/2022] Open
Abstract
Background Cystic echinococcosis is a parasitic zoonotic disease, which poses a threat to public health and animal husbandry, and causes significant economic losses. Annexins are a family of phospholipid-binding proteins with calcium ion-binding activity, which have many functions. Methods Two annexin protein family genes [Echinococcus granulosus annexin B3 (EgAnxB3) and EgAnxB38] were cloned and molecularly characterized using bioinformatic analysis. The immunoreactivity of recombinant EgAnxB3 (rEgAnxB3) and rEgAnxB38 was investigated using western blotting. The distribution of EgAnxB3 and EgAnxB38 in protoscoleces (PSCs), the germinal layer, 18-day strobilated worms and 45-day adult worms was analyzed by immunofluorescence localization, and their secretory characteristics were analyzed preliminarily; in addition, quantitative real-time reverse transcription polymerase chain reaction was used to analyze their transcript levels in PSCs and 28-day strobilated worms stages. The phospholipid-binding activities of rEgAnxB3 and rEgAnxB38 were also analyzed. Results EgAnxB3 and EgAnxB38 are conserved and contain calcium-binding sites. Both rEgAnxB3 and rEgAnxB38 could be specifically recognized by the serum samples from E. granulosus-infected sheep, indicating that they had strong immunoreactivity. EgAnxB3 and EgAnxB38 were distributed in all stages of E. granulosus, and their transcript levels were high in the 28-day strobilated worms. They were found in liver tissues near the cysts. In addition, rEgAnxB3 has Ca2+-dependent phospholipid-binding properties. Conclusions EgAnxB3 and EgAnxB38 contain calcium-binding sites, and rEgAnxB3 has Ca2+-dependent phospholipid-binding properties. EgAnxB3 and EgAnxB38 were transcribed in PSCs and 28-day strobilated worms. They were expressed in all stages of E. granulosus, and distributed in the liver tissues near the hydatid cyst, indicating that they are secreted proteins that play a crucial role in the development of E. granulosus. ![]()
Collapse
Affiliation(s)
- Hongyu Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xue He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xiaodi Du
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.
| |
Collapse
|
9
|
Diaz Soria CL, Lee J, Chong T, Coghlan A, Tracey A, Young MD, Andrews T, Hall C, Ng BL, Rawlinson K, Doyle SR, Leonard S, Lu Z, Bennett HM, Rinaldi G, Newmark PA, Berriman M. Single-cell atlas of the first intra-mammalian developmental stage of the human parasite Schistosoma mansoni. Nat Commun 2020; 11:6411. [PMID: 33339816 PMCID: PMC7749135 DOI: 10.1038/s41467-020-20092-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
Over 250 million people suffer from schistosomiasis, a tropical disease caused by parasitic flatworms known as schistosomes. Humans become infected by free-swimming, water-borne larvae, which penetrate the skin. The earliest intra-mammalian stage, called the schistosomulum, undergoes a series of developmental transitions. These changes are critical for the parasite to adapt to its new environment as it navigates through host tissues to reach its niche, where it will grow to reproductive maturity. Unravelling the mechanisms that drive intra-mammalian development requires knowledge of the spatial organisation and transcriptional dynamics of different cell types that comprise the schistomulum body. To fill these important knowledge gaps, we perform single-cell RNA sequencing on two-day old schistosomula of Schistosoma mansoni. We identify likely gene expression profiles for muscle, nervous system, tegument, oesophageal gland, parenchymal/primordial gut cells, and stem cells. In addition, we validate cell markers for all these clusters by in situ hybridisation in schistosomula and adult parasites. Taken together, this study provides a comprehensive cell-type atlas for the early intra-mammalian stage of this devastating metazoan parasite.
Collapse
Affiliation(s)
| | - Jayhun Lee
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Tracy Chong
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Avril Coghlan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Alan Tracey
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Matthew D Young
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Tallulah Andrews
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Christopher Hall
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Bee Ling Ng
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Kate Rawlinson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Stephen R Doyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Steven Leonard
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Zhigang Lu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Hayley M Bennett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
| | - Phillip A Newmark
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA.
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
| |
Collapse
|
10
|
Shi Y, Yu K, Liang A, Huang Y, Ou F, Wei H, Wan X, Yang Y, Zhang W, Jiang Z. Identification and Analysis of the Tegument Protein and Excretory-Secretory Products of the Carcinogenic Liver Fluke Clonorchis sinensis. Front Microbiol 2020; 11:555730. [PMID: 33072014 PMCID: PMC7538622 DOI: 10.3389/fmicb.2020.555730] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Liver fluke proteins, including excretory-secretory products (ESPs) and tegument proteins, are critical for the pathogenesis, nutrient metabolism, etiology and immune response of liver cancer. To understand the functions of various proteins in Clonorchis sinensis physiology and human clonorchiasis, the ESPs and tegument proteins of C. sinensis were identified. Supernatants containing ESPs from adult C. sinensis after culture for 6 h were harvested and concentrated. The tegument was detached using a freeze/thaw method and successively extracted using various extraction buffers. The outer surface proteins of C. sinensis were labeled with biotin, and the biotinylated proteins were purified. The ESP, tegument and labeled outer surface proteins were identified and analyzed by high-resolution LC-MS/MS. The identified proteins were compared with those of other flukes, and the protein functions associated with pathogenesis, carcinogenesis and potential vaccine antigens and drug targets were predicted and analyzed. A total of 175 proteins were identified after the 6-h culture of C. sinensis ESPs. A total of 352 tegument proteins were identified through sequential solubilization of the isolated teguments, and a subset of these proteins were localized to the surface membrane of the tegument by labeling with biotin. Thirty identified proteins, including annexins, actin and tetraspanins, were identified as potential immunomodulators and promising vaccine antigens. Interestingly, among the 352 tegument proteins, as many as 155 were enzymes, and most were oxidoreductases, hydrolases or transferases. A comparison of the outer surface proteins of C. sinensis with those of other flukes indicated that flukes have some common outer surface proteins, such as actin, tetraspanin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and annexin. Granulin, thioredoxin peroxiredoxin, carbonyl reductase 1 and cystatin were identified in the C. sinensis proteome and predicted to be related to liver disease and cancer. The analysis of the C. sinensis proteome could contribute to a more in-depth understanding of complex parasite-host relationships, improve the diagnosis of clonorchiasis and benefit research on the pathogenesis and development of novel interventions, drugs and vaccines to control C. sinensis infection.
Collapse
Affiliation(s)
- Yunliang Shi
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
- Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Kai Yu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Anli Liang
- Xiangsihu College of Guangxi University for Nationalities, Nanning, China
| | - Yan Huang
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Fangqi Ou
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Haiyan Wei
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Xiaoling Wan
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Yichao Yang
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Weiyu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhihua Jiang
- Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| |
Collapse
|
11
|
Leow CY, Willis C, Chuah C, Leow CH, Jones M. Immunogenicity, antibody responses and vaccine efficacy of recombinant annexin B30 against Schistosoma mansoni. Parasite Immunol 2020; 42:e12693. [PMID: 31880816 DOI: 10.1111/pim.12693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 01/04/2023]
Abstract
AIMS Schistosomes infect approximately 250 million people worldwide. To date, there is no effective vaccine available for the prevention of schistosome infection in endemic regions. There remains a need to develop means to confer long-term protection of individuals against reinfection. In this study, an annexin, namely annexin B30, which is highly expressed in the tegument of Schistosoma mansoni was selected to evaluate its immunogenicity and protective efficacy in a mouse model. METHODS AND RESULTS Bioinformatics analysis showed that there were three potential linear B-cell epitopes and four conformational B-cell epitopes predicted from annexin B30, respectively. Full-length annexin B30 was cloned and expressed in Escherichia coli BL21(DE3). In the presence of adjuvants, the soluble recombinant protein was evaluated for its protective efficacy in two independent vaccine trials. Immunization of CBA mice with recombinant annexin B30 formulated either in alum only or alum/CpG induced a mixed Th1/Th2 cytokine profile but no significant protection against schistosome infection was detected. CONCLUSION Recombinant annexin B30 did not confer significant protection against the parasite. The molecule may not be suitable for vaccine development. However, it could be an ideal biomarker recommended for immunodiagnostics development.
Collapse
Affiliation(s)
- Chiuan Yee Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Charlene Willis
- School of Environment and Science, Griffith University, Nathan, Qld, Australia
| | - Candy Chuah
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Malaysia
| | - Malcolm Jones
- School of Veterinary Science, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
12
|
Leow CY, Willis C, Leow CH, Hofmann A, Jones M. Molecular characterization of Schistosoma mansoni tegument annexins and comparative analysis of antibody responses following parasite infection. Mol Biochem Parasitol 2019; 234:111231. [PMID: 31628972 DOI: 10.1016/j.molbiopara.2019.111231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 01/05/2023]
Abstract
Schistosomes are parasitic blood flukes that infect approximately 250 million people worldwide. The disease known as schistosomiasis, is the second most significant tropical parasitic disease after malaria. Praziquantel is the only effective drug currently licensed for schistosomiasis and there are concerns about resistance to the drug. There has been much effort to develop vaccines against schistosomiasis to produce long-term protection in endemic regions. Surface-associated proteins, and in particular, those expressed in the body wall, or tegument, have been proposed as potential vaccine targets. Of these, annexins are thought to be of integral importance for the stability of this apical membrane system. Here, we present the structural and immunobiochemical characterization of four homologous annexins namely annexin B30, annexin B5a, annexin B7a and annexin B5b from S. mansoni. Bioinformatics analysis showed that there was no signal peptide predicted for any annexin in this study. Further analysis showed that each of all four annexin protein possesses a primary structure consisting of a short but variable N-terminal region and a long C-terminal core containing four homologous annexin repeats (I-IV), which contain five alpha-helices. The life cycle expression profile of each annexin was assessed using quantitative PCR. The results showed that the overall transcript levels of the each of four homologous annexins were relatively low in the egg stage, but increased gradually after the transition of cercariae (the invasive schistosome larvae) to schistosomula (the post-invasive larvae). Circular dichroism (CD) demonstrated that rAnnexin B30, rAnnexin B5a and rAnnexin 7a were folded, showing a secondary structure content rich in alpha-helices. The membrane binding affinity was enhanced when rAnnexin B30, rAnnexin B5a and rAnnexin 7a was incubated in the presence of Ca2+. All annexin members evaluated in this study were immunolocalized to the tegument, with immunoreactivity also occurring in cells and in muscle of adult parasites. All four recombinant annexins were immunoreactive and they were recognized by the sera of mice infected with S. mansoni. In conclusion, the overall results present the molecular characterization of annexin B30, annexin B5a, annexin B7a and annexin B5b from S. mansoni in host-parasite interactions and strongly suggest that the molecules could be useful candidates for vaccine or diagnostic development.
Collapse
Affiliation(s)
- Chiuan Yee Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kelantan, Malaysia.
| | - Charlene Willis
- School of Environment and Science, Griffith University, Brisbane, Australia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Australia
| | - Malcolm Jones
- School of Veterinary Science, University of Queensland, Gatton, Australia
| |
Collapse
|
13
|
Molecular Characterization of Annexin B2, B3 and B12 in Taenia multiceps. Genes (Basel) 2018; 9:genes9110559. [PMID: 30463204 PMCID: PMC6267623 DOI: 10.3390/genes9110559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/27/2022] Open
Abstract
Coenurus cerebralis, the metacestode of Taenia multiceps, causes coenurosis, a disease severely affecting goat, sheep, cattle and yak farming and resulting in huge economic losses annually. Annexins bind calcium ions and play an important role in flatworm parasite development. To explore potential functions of annexins in T. multiceps, three homologous genes, namely, TmAnxB2, TmAnxB3 and TmAnxB12, were screened from the transcriptome dataset, amplified from C. cerebralis cDNA and subjected to bioinformatics analysis. Then, polyclonal antibodies recognizing the recombinant TmAnxB2 (rTmAnxB2) and rTmAnxB3 were prepared for localization of TmAnxB2 and TmAnxB3 in different tissues and developmental stages by immunofluorescence. The transcription of all three genes was also measured by relative fluorescent quantitative PCR. The sizes of rTmAnxB2, rTmAnxB3 and rTmAnxB12 were 58.00, 53.06 and 53.51 kDa, respectively, and rTmAnxB12 was unstable. Both rTmAnxB2 and rTmAnxB3 were recognized by goat-positive T. multiceps sera in Western blots. Immunofluorescence revealed that TmAnxB2 and TmAnxB3 were localized in the protoscolex and cyst wall and TmAnxB3 was also detected in adult cortex. TmAnxB2 and TmAnxB12 mRNA levels were determined to be highest in oncospheres and protoscolex, whereas transcription of TmAnxB3 was highest in scolex and immature segments. Taken together, these findings indicate that TmAnxB2 and TmAnxB12 may play critical roles in T. multiceps larvae, while TmAnxB3 may have important functions in adults. These results will lay the foundation for functional research of annexins in T. multiceps.
Collapse
|
14
|
Schistosome vaccines: problems, pitfalls and prospects. Emerg Top Life Sci 2017; 1:641-650. [PMID: 33525844 DOI: 10.1042/etls20170094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022]
Abstract
Human schistosomiasis caused by parasitic flatworms of the genus Schistosoma remains an important public health problem in spite of concerted efforts at control. An effective vaccine would be a useful addition to control strategies that currently rely on chemotherapy, but such a product is not imminent. In this review, likely causes for the lack of progress are first considered. These include the strategies used by worms to evade the immune response, concepts that have misdirected the field, an emphasis on internal antigens, and the use of the laboratory mouse for vaccine testing. On a positive note, recent investigations on self-cure by the rhesus macaque offer the most promising context for vaccine development. The identification of proteins at the parasite-host interface, especially those of the esophageal glands involved in blood processing, has provided an entirely new category of vaccine candidates that merit evaluation.
Collapse
|
15
|
Cai P, Liu S, Piao X, Hou N, You H, McManus DP, Chen Q. A next-generation microarray further reveals stage-enriched gene expression pattern in the blood fluke Schistosoma japonicum. Parasit Vectors 2017; 10:19. [PMID: 28069074 PMCID: PMC5223471 DOI: 10.1186/s13071-016-1947-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/21/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Schistosomiasis is caused by infection with blood flukes of the genus Schistosoma, and ranks, in terms of disability-adjusted life years (DALYs), as the third most important neglected tropical disease. Schistosomes have several discrete life stages involving dramatic morphological changes during their development, which require subtle gene expression modulations to complete the complex life-cycle. RESULTS In the current study, we employed a second generation schistosome DNA chip printed with the most comprehensive probe array for studying the Schistosoma japonicum transcriptome, to explore stage-associated gene expression in different developmental phases of S. japonicum. A total of 328, 95, 268 and 532 mRNA transcripts were enriched in cercariae, hepatic schistosomula, adult worms and eggs, respectively. In general, genes associated with transcriptional regulation, cell signalling and motor activity were readily expressed in cercariae; the expression of genes involved in neuronal activities, apoptosis and renewal was modestly upregulated in hepatic schistosomula; transcripts involved in egg production, nutrition metabolism and glycosylation were enriched in adult worms; while genes involved in cell division, microtubule-associated mobility, and host-parasite interplay were relatively highly expressed in eggs. CONCLUSIONS The study further highlights the expressional features of stage-associated genes in schistosomes with high accuracy. The results provide a better perspective of the biological characteristics among different developmental stages, which may open new avenues for identification of novel vaccine candidates and the development of novel control interventions against schistosomiasis.
Collapse
Affiliation(s)
- Pengfei Cai
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China. .,Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| | - Shuai Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xianyu Piao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Nan Hou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| | - Qijun Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China. .,Key Laboratory of Zoonosis, Shenyang Agriculture University, Shenyang, People's Republic of China.
| |
Collapse
|
16
|
de la Torre-Escudero E, Pérez-Sánchez R, Manzano-Román R, Oleaga A. Schistosoma bovis-host interplay: Proteomics for knowing and acting. Mol Biochem Parasitol 2016; 215:30-39. [PMID: 27485556 DOI: 10.1016/j.molbiopara.2016.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 01/25/2023]
Abstract
Schistosoma bovis is a parasite of ruminants that causes significant economic losses to farmers throughout Africa, Southwestern Asia and the Mediterranean. Additionally, recent studies have reported its zoonotic potential through the formation of S. bovis×Schistosoma haematobium hybrids. As observed in the Schistosoma species infecting humans, it is assumed that S. bovis has also evolved host regulatory molecules that ensure its long-term survival in the bloodstream of its host. Since these molecules could be potential targets for the development of new drugs and anti-schistosome vaccines, their identification and functional characterization were undertaken. With this aim in mind, the molecular interface between S. bovis and its vertebrate host was subjected to a series of proteomic studies, which started with the analysis of the proteomes of the S. bovis moieties exposed to the host, namely, the excretory/secretory products and the tegument surface. Thus, a wealth of novel molecular information of S. bovis was obtained, which in turn allowed the identification of several parasite proteins with fibrinolytic and anticoagulant activities that could be used by S. bovis to regulate the host defensive systems. Following on, the host interface was investigated by studying the proteome of the host vascular endothelium surface at two points along the infection: in the lung vessels during the schistosomula migration and in the portal vein after the parasites have reached adulthood and sexual maturity. These studies have provided original data regarding the proteomes of the endothelial cell surface of pulmonary vasculature and portal vein in S. bovis-infected animals, and have shown significant changes in these proteomes associated with infection. This review compiles current information and the analyses of all the proteomic data from S. bovis and the S. bovis-host interface, including the molecular and functional characterization of S. bovis proteins that were found to participate in the regulation of the host coagulation and fibrinolysis systems.
Collapse
Affiliation(s)
- Eduardo de la Torre-Escudero
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | - Ricardo Pérez-Sánchez
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | - Raúl Manzano-Román
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | - Ana Oleaga
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
17
|
Song X, Hu D, Zhong X, Wang N, Gu X, Wang T, Peng X, Yang G. Characterization of a Secretory Annexin in Echinococcus granulosus. Am J Trop Med Hyg 2016; 94:626-33. [PMID: 26787154 DOI: 10.4269/ajtmh.15-0452] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/01/2015] [Indexed: 01/22/2023] Open
Abstract
Cystic echinococcosis, caused by Echinococcus granulosus, is a widespread parasitic zoonosis causing economic loss and public health problems. Annexins are important proteins usually present in the plasma membrane, but previous studies have shown that an annexin B33 protein of E. granulosus (Eg-ANX) could be detected in the excretory/secretory products and cyst fluid. In this study, we cloned and characterized Eg-ANX. In silico analysis showed that the amino acid sequence of Eg-ANX was conserved and lacked any signal peptides. The phospholipid-binding activity of recombinant Eg-ANX (rEg-ANX) was tested; liposomes could bind to rEg-ANX only in the presence of Ca(2+). In addition, we performed western blotting and immunohistochemical analyses to further validate the secretory properties of Eg-ANX. The protein could be detected in the cyst fluid of E. granulosus and was also present in the intermediate host tissues, which suggested that Eg-ANX might play an important role in parasite-host interaction.
Collapse
Affiliation(s)
- Xingju Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Ya'an, China
| | - Dandan Hu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Ya'an, China
| | - Xiuqin Zhong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Ya'an, China
| | - Ning Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Ya'an, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Ya'an, China
| | - Tao Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Ya'an, China
| | - Xuerong Peng
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Ya'an, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
18
|
Non-immune immunoglobulins shield Schistosoma japonicum from host immunorecognition. Sci Rep 2015; 5:13434. [PMID: 26299686 PMCID: PMC4547136 DOI: 10.1038/srep13434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022] Open
Abstract
Schistosomiasis is a major human parasitic disease with a global impact. Schistosoma japonicum, the most difficult to control, can survive within host veins for decades. Mechanisms of immune evasion by the parasite, including antigenic variation and surface masking, have been implicated but not well defined. In this study, we defined the immunoglobulin-binding proteomes of S. japonicum using human IgG, IgM, and IgE as the molecular bait for affinity purification, followed by protein identification by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Several proteins situated at the tegument of S. japonicum were able to nonselectively bind to the Fc domain of host immunoglobulins, indicating a mechanism for the avoidance of host immune attachment and recognition. The profile of the immunoglobulin-binding proteomes provides further clues for immune evasion mechanisms adopted by S. japonicum.
Collapse
|
19
|
Liu S, Zhou X, Piao X, Wu C, Hou N, Chen Q. Comparative Analysis of Transcriptional Profiles of Adult Schistosoma japonicum from Different Laboratory Animals and the Natural Host, Water Buffalo. PLoS Negl Trop Dis 2015; 9:e0003993. [PMID: 26285138 PMCID: PMC4540470 DOI: 10.1371/journal.pntd.0003993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/16/2015] [Indexed: 01/22/2023] Open
Abstract
Background Schistosomiasis is one of the most widely distributed parasitic diseases in the world. Schistosoma japonicum, a zoonotic parasite with a wide range of mammalian hosts, is one of the major pathogens of this disease. Although numerous studies on schistosomiasis japonica have been performed using laboratory animal models, systematic comparative analysis of whole-genome expression profiles in parasites from different laboratory animals and nature mammalian hosts is lacking to date. Methodology/Principal Findings Adult schistosomes were obtained from laboratory animals BALB/c mice, C57BL/6 mice, New Zealand white rabbits and the natural host, water buffaloes. The gene expression profiles of schistosomes from these animals were obtained and compared by genome-wide oligonucleotide microarray analysis. The results revealed that the gene expression profiles of schistosomes from different laboratory animals and buffaloes were highly consistent (r>0.98) genome-wide. Meanwhile, a total of 450 genes were identified to be differentially expressed in schistosomes which can be clustered into six groups. Pathway analysis revealed that these genes were mainly involved in multiple signal transduction pathways, amino acid, energy, nucleotide and lipid metabolism. We also identified a group of 1,540 abundantly and stably expressed gene products in adult worms, including a panel of 179 Schistosoma- or Platyhelminthes-specific genes that may be essential for parasitism and may be regarded as novel potential anti-parasite intervention targets for future research. Conclusions/Significance This study provides a comprehensive database of gene expression profiles of schistosomes derived from different laboratory animals and water buffaloes. An expanded number of genes potentially affecting the development of schistosomes in different animals were identified. These findings lay the foundation for schistosomiasis research in different laboratory animals and natural hosts at the transcriptional level and provide a valuable resource for screening anti-schistosomal intervention targets. The zoonotic parasite Schistosoma japonicum is one of the major pathogens of schistosomiasis and can parasitize a wide range of mammals. Although numerous schistosome transcriptional profiling studies have been performed using laboratory animal models, the differences in the global gene expression profiles of worms from different laboratory animals and natural mammalian hosts have not been characterized. Therefore, we studied the gene expression profiles of adult worms from BALB/c mice, C57BL/6 mice, rabbits and buffaloes using a transcriptomics approach. Our results indicate that, although the expression profiles of adult worms from different mammals are generally similar, hundreds of genes are differentially expressed, which were mainly involved in various signal transduction pathways, amino acid, energy, nucleotide and lipid metabolism. Numerous abundantly and stably expressed genes in adults were identified, including some genes that are only found in blood flukes or expanded within the phylum Platyhelminthes and may be important for parasitism. Our data provide a basis for schistosomiasis research in different mammalian hosts at the transcriptional level as well as a valuable resource for the screening of anti-schistosomal intervention targets.
Collapse
Affiliation(s)
- Shuai Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaosu Zhou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianyu Piao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuang Wu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Hou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qijun Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Zoonosis, Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
20
|
Leow CY, Willis C, Hofmann A, Jones MK. Structure-function analysis of apical membrane-associated molecules of the tegument of schistosome parasites of humans: prospects for identification of novel targets for parasite control. Br J Pharmacol 2015; 172:1653-63. [PMID: 25176442 PMCID: PMC4376446 DOI: 10.1111/bph.12898] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 06/12/2014] [Accepted: 08/26/2014] [Indexed: 02/02/2023] Open
Abstract
Neglected tropical diseases are a group of some 17 diseases that afflict poor and predominantly rural people in developing nations. One significant disease that contributes to substantial morbidity in endemic areas is schistosomiasis, caused by infection with one of five species of blood fluke belonging to the trematode genus Schistosoma. Although there is one drug available for treatment of affected individuals in clinics, or for mass administration in endemic regions, there is a need for new therapies. A prominent target organ of schistosomes, either for drug or vaccine development, is the peculiar epithelial syncytium that forms the body wall (tegument) of this parasite. This dynamic layer is maintained and organized by concerted activity of a range of proteins, among which are the abundant tegumentary annexins. In this review, we will outline advances in structure-function analyses of these annexins, as a means to understanding tegument cell biology in host-parasite interaction and their potential exploitation as targets for anti-schistosomiasis therapies.
Collapse
Affiliation(s)
- Chiuan Yee Leow
- School of Veterinary Science, The University of QueenslandGatton, Queensland, Australia
- Infectious Diseases, QIMR Berghofer Medical Research InstituteHerston, Queensland, Australia
- Institute for Research in Molecular Medicine, Universiti Sains MalaysiaPenang, Malaysia
| | - Charlene Willis
- Infectious Diseases, QIMR Berghofer Medical Research InstituteHerston, Queensland, Australia
- Structural Chemistry Program, Eskitis Institute, Griffith UniversityBrisbane, Queensland, Australia
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute, Griffith UniversityBrisbane, Queensland, Australia
- Faculty of Veterinary Science, The University of MelbourneParkville, Victoria, Australia
| | - Malcolm K Jones
- School of Veterinary Science, The University of QueenslandGatton, Queensland, Australia
| |
Collapse
|
21
|
He L, Ren M, Chen X, Wang X, Li S, Lin J, Liang C, Liang P, Hu Y, Lei H, Bian M, Huang Y, Wu Z, Li X, Yu X. Biochemical and immunological characterization of annexin B30 from Clonorchis sinensis excretory/secretory products. Parasitol Res 2014; 113:2743-55. [PMID: 24861011 DOI: 10.1007/s00436-014-3935-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/30/2014] [Indexed: 12/30/2022]
Abstract
Clonorchis sinensis has been classified as group I biological carcinogen for cholangiocarcinoma by the World Health Organization. Biological studies on excretory/secretory products (ESPs) enabled us to understand the pathogenesis mechanism of C. sinensis and develop new strategies for the prevention of clonorchiasis. In this study, sequence analysis showed that annexin B30 from C. sinensis (CsANXB30) is composed of four annexin repeats which were characterized by type II and III Ca(2+)-binding sites or KGD motif with the capability of Ca(2+)-binding. In addition, immunoblot assay revealed that recombinant CsANXB30 (rCsANXB30) could be recognized by the sera from rats infected with C. sinensis and the sera from rats immunized by CsESPs. Real-time PCR showed that its transcriptional level was the highest at the stage of metacercaria. Immunofluorescence assay was employed to confirm that CsANXB30 was distributed in the tegument, intestine, and egg of adult worms, as well as the tegument and vitellarium of metacercaria. rCsANXB30 was able to bind phospholipid in a Ca(2+)-dependent manner and human plasminogen in a dose-dependent manner. Moreover, cytokine and antibody measurements indicated that rats subcutaneously immunized with rCsANXB30 developed a strong IL-10 production in spleen cells and a high level of IgG1 isotype, indicating that rCsANXB30 could trigger specific humoral and cellular immune response in rats. The present results implied that CsANXB30 might be involved in a host-parasite interaction and affected the immune response of the host during C. sinensis infection.
Collapse
Affiliation(s)
- Lei He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Silva-Moraes V, Ferreira JMS, Coelho PMZ, Grenfell RFQ. Biomarkers for schistosomiasis: towards an integrative view of the search for an effective diagnosis. Acta Trop 2014; 132:75-9. [PMID: 24412728 DOI: 10.1016/j.actatropica.2013.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/23/2013] [Accepted: 12/27/2013] [Indexed: 01/08/2023]
Abstract
Human schistosomiasis, caused mainly by Schistosoma mansoni, S. japonicum, and S. hematobium, remains a prevalent and serious parasitic disease worldwide. Although it is a debilitating disease, a lack of sensitive methods for the precise diagnosis of active infection cases is important to prevent morbidity. The optimization of new diagnostic approaches may be accomplished by the selection of specific markers. In that manner, markers can be satisfactorily used for detection of different phases of infection, as acute and chronic phases, pre-patent and post-patent phases and after chemotherapy, improving the efficiency of methods. For that purpose, proteomics and glycomics analyses have been performed in schistosomes, in particular S. mansoni, using powerful high-throughput methodologies. These investigations have not only chartered protein, o-glycan and n-glycan profiles across developmental stages within mammalian host, but are also leading to the characterization of features of the surface tegument, the eggshell and excretory-secretory proteomes of schistosomes.
Collapse
Affiliation(s)
- Vanessa Silva-Moraes
- Laboratory of Schistosomiasis, Monoclonal Antibody Facility, Research Center Rene Rachou, Fundação Oswaldo Cruz (Fiocruz), Avenida Augusto de Lima, 1715/201, Belo Horizonte, Minas Gerais 30190-002, Brazil; Laboratory of Microbiology, Universidade Federal de São João Del-Rei, Campus Centro Oeste Dona Lindu, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais 35501-296, Brazil
| | - Jaqueline Maria Siqueira Ferreira
- Laboratory of Microbiology, Universidade Federal de São João Del-Rei, Campus Centro Oeste Dona Lindu, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais 35501-296, Brazil
| | - Paulo Marcos Zech Coelho
- Laboratory of Schistosomiasis, Monoclonal Antibody Facility, Research Center Rene Rachou, Fundação Oswaldo Cruz (Fiocruz), Avenida Augusto de Lima, 1715/201, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Rafaella Fortini Queiroz Grenfell
- Laboratory of Schistosomiasis, Monoclonal Antibody Facility, Research Center Rene Rachou, Fundação Oswaldo Cruz (Fiocruz), Avenida Augusto de Lima, 1715/201, Belo Horizonte, Minas Gerais 30190-002, Brazil.
| |
Collapse
|
23
|
Ludolf F, Patrocínio PR, Corrêa-Oliveira R, Gazzinelli A, Falcone FH, Teixeira-Ferreira A, Perales J, Oliveira GC, Silva-Pereira RA. Serological screening of the Schistosoma mansoni adult worm proteome. PLoS Negl Trop Dis 2014; 8:e2745. [PMID: 24651847 PMCID: PMC3961189 DOI: 10.1371/journal.pntd.0002745] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/01/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND New interventions tools are a priority for schistosomiasis control and elimination, as the disease is still highly prevalent. The identification of proteins associated with active infection and protective immune response may constitute the basis for the development of a successful vaccine and could also indicate new diagnostic candidates. In this context, post-genomic technologies have been progressing, resulting in a more rational discovery of new biomarkers of resistance and antigens for diagnosis. METHODOLOGY/PRINCIPAL FINDINGS Two-dimensional electrophoresed Schistosoma mansoni adult worm protein extracts were probed with pooled sera of infected and non-infected (naturally resistant) individuals from a S. mansoni endemic area. A total of 47 different immunoreactive proteins were identified by mass spectrometry. Although the different pooled sera shared most of the immunoreactive protein spots, nine protein spots reacted exclusively with the serum pool of infected individuals, which correspond to annexin, major egg antigen, troponin T, filamin, disulphide-isomerase ER-60 precursor, actin and reticulocalbin. One protein spot, corresponding to eukaryotic translation elongation factor, reacted exclusively with the pooled sera of non-infected individuals living in the endemic area. Western blotting of two selected recombinant proteins, major egg antigen and hemoglobinase, showed a similar recognition pattern of that of the native protein. CONCLUDING/SIGNIFICANCE Using a serological proteome analysis, a group of antigens related to the different infection status of the endemic area residents was identified and may be related to susceptibility or resistance to infection.
Collapse
Affiliation(s)
- Fernanda Ludolf
- Centro de Pesquisas René Rachou-Fiocruz/MG, Genomics and Computational Biology Group, Belo Horizonte, Minas Gerais, Brazil
- National Institute of Science and Technology in Tropical Diseases – INCT-DT, Brazil
| | - Paola R. Patrocínio
- Centro de Pesquisas René Rachou-Fiocruz/MG, Genomics and Computational Biology Group, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Corrêa-Oliveira
- National Institute of Science and Technology in Tropical Diseases – INCT-DT, Brazil
- Centro de Pesquisas René Rachou-Fiocruz/MG, Cellular and Molecular Immunology Laboratory, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Gazzinelli
- National Institute of Science and Technology in Tropical Diseases – INCT-DT, Brazil
- Universidade Federal de Minas Gerais, Nursing School, Belo Horizonte, Minas Gerais, Brazil
| | - Franco H. Falcone
- The University of Nottingham, School of Pharmacy, Division of Molecular and Cellular Science, Nottingham, East Midlands, United Kingdom
| | - André Teixeira-Ferreira
- Fiocruz/RJ, Department of Physiology and Pharmacodynamics, Toxicology Laboratory, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonas Perales
- Fiocruz/RJ, Department of Physiology and Pharmacodynamics, Toxicology Laboratory, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme C. Oliveira
- Centro de Pesquisas René Rachou-Fiocruz/MG, Genomics and Computational Biology Group, Belo Horizonte, Minas Gerais, Brazil
- National Institute of Science and Technology in Tropical Diseases – INCT-DT, Brazil
| | - Rosiane A. Silva-Pereira
- Centro de Pesquisas René Rachou-Fiocruz/MG, Genomics and Computational Biology Group, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
24
|
Cantacessi C, Seddon JM, Miller TL, Leow CY, Thomas L, Mason L, Willis C, Walker G, Loukas A, Gasser RB, Jones MK, Hofmann A. A genome-wide analysis of annexins from parasitic organisms and their vectors. Sci Rep 2013; 3:2893. [PMID: 24113121 PMCID: PMC3795353 DOI: 10.1038/srep02893] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/20/2013] [Indexed: 11/14/2022] Open
Abstract
In this study, we conduct an in-depth analysis of annexin proteins from a diverse range of invertebrate taxa, including the major groups that contain the parasites and vector organisms that are harmful to humans and domestic animals. Using structure-based amino acid sequence alignments and phylogenetic analyses, we present a classification for this protein group and assign names to sequences with ambiguous annotations in public databases. Our analyses reveal six distinct annexin clades, and the mapping of genes encoding annexins to the genome of the human blood fluke Schistosoma mansoni supports the hypothesis of gene duplication as a major evolutionary event in annexin genesis. This study illuminates annexin diversity from a novel perspective using contemporary phylogenetic hypotheses of eukaryote evolution, and will aid the consolidation of annexin protein identities in public databases and provide a foundation for future functional analysis and characterisation of these proteins in parasites of socioeconomic importance.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- 1] Centre for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, James Cook University, Cairns, Queensland, Australia [2]
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Grenfell RFQ, Silva-Moraes V, Taboada D, de Mattos ACA, de Castro AKS, Coelho PMZ. Immunodiagnostic methods: what is their role in areas of low endemicity? ScientificWorldJournal 2012; 2012:593947. [PMID: 23319886 PMCID: PMC3539347 DOI: 10.1100/2012/593947] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/28/2012] [Indexed: 01/10/2023] Open
Abstract
Worldwide Schistosomiasis mansoni continues to be a serious public health problem. Over the past decades, control programmes have made remarkable progress in reducing S. mansoni infections to a relatively low level in Brazil and African countries. Endemic regions are currently circumscribed in certain core areas where reinfection and repeated chemotherapy are frequent and, consequently, are related to residents with low parasite load. At present, diagnosis is predominately a key step for final disease control although low endemicity area residents are hardly detected by most of the available assays. In this paper, we review the current status and efforts made aiming at the improvement of diagnostic tools for S. mansoni in low endemicity infections. The establishment of diagnostic assays—simple, affordable, sensitive, and specific for field diagnosis of S. mansoni—is essential and should be given high priority.
Collapse
Affiliation(s)
- Rafaella Fortini Queiroz Grenfell
- Schistosomiasis Laboratory, Rene Rachou Research Center, Oswaldo Cruz Foundation (Fiocruz), Avenida Augusto de Lima, 1715/201 Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Silva LL, Marcet-Houben M, Nahum LA, Zerlotini A, Gabaldón T, Oliveira G. The Schistosoma mansoni phylome: using evolutionary genomics to gain insight into a parasite's biology. BMC Genomics 2012; 13:617. [PMID: 23148687 PMCID: PMC3534613 DOI: 10.1186/1471-2164-13-617] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 10/22/2012] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Schistosoma mansoni is one of the causative agents of schistosomiasis, a neglected tropical disease that affects about 237 million people worldwide. Despite recent efforts, we still lack a general understanding of the relevant host-parasite interactions, and the possible treatments are limited by the emergence of resistant strains and the absence of a vaccine. The S. mansoni genome was completely sequenced and still under continuous annotation. Nevertheless, more than 45% of the encoded proteins remain without experimental characterization or even functional prediction. To improve our knowledge regarding the biology of this parasite, we conducted a proteome-wide evolutionary analysis to provide a broad view of the S. mansoni's proteome evolution and to improve its functional annotation. RESULTS Using a phylogenomic approach, we reconstructed the S. mansoni phylome, which comprises the evolutionary histories of all parasite proteins and their homologs across 12 other organisms. The analysis of a total of 7,964 phylogenies allowed a deeper understanding of genomic complexity and evolutionary adaptations to a parasitic lifestyle. In particular, the identification of lineage-specific gene duplications pointed to the diversification of several protein families that are relevant for host-parasite interaction, including proteases, tetraspanins, fucosyltransferases, venom allergen-like proteins, and tegumental-allergen-like proteins. In addition to the evolutionary knowledge, the phylome data enabled us to automatically re-annotate 3,451 proteins through a phylogenetic-based approach rather than solely sequence similarity searches. To allow further exploitation of this valuable data, all information has been made available at PhylomeDB (http://www.phylomedb.org). CONCLUSIONS In this study, we used an evolutionary approach to assess S. mansoni parasite biology, improve genome/proteome functional annotation, and provide insights into host-parasite interactions. Taking advantage of a proteome-wide perspective rather than focusing on individual proteins, we identified that this parasite has experienced specific gene duplication events, particularly affecting genes that are potentially related to the parasitic lifestyle. These innovations may be related to the mechanisms that protect S. mansoni against host immune responses being important adaptations for the parasite survival in a potentially hostile environment. Continuing this work, a comparative analysis involving genomic, transcriptomic, and proteomic data from other helminth parasites, other parasites, and vectors will supply more information regarding parasite's biology as well as host-parasite interactions.
Collapse
Affiliation(s)
- Larissa Lopes Silva
- Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou. Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais. Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG, 30190-002, Brazil
- Centro de Excelência em Bioinformática, Fundação Oswaldo Cruz – FIOCRUZ, Belo Horizonte, MG, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais – UFMG, Belo Horizonte, MG, Brazil
| | - Marina Marcet-Houben
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader, 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Laila Alves Nahum
- Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou. Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais. Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG, 30190-002, Brazil
- Centro de Excelência em Bioinformática, Fundação Oswaldo Cruz – FIOCRUZ, Belo Horizonte, MG, Brazil
- Faculdade Infórium de Tecnologia, Belo Horizonte, MG, 30130-180, Brazil
| | - Adhemar Zerlotini
- Centro de Excelência em Bioinformática, Fundação Oswaldo Cruz – FIOCRUZ, Belo Horizonte, MG, Brazil
- Laboratório Multiusuário de Bioinformática, Embrapa Informática Agropecuária, Campinas, São Paulo, Brazil
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader, 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Guilherme Oliveira
- Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou. Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais. Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG, 30190-002, Brazil
- Centro de Excelência em Bioinformática, Fundação Oswaldo Cruz – FIOCRUZ, Belo Horizonte, MG, Brazil
| |
Collapse
|
27
|
Wilson RA. The cell biology of schistosomes: a window on the evolution of the early metazoa. PROTOPLASMA 2012; 249:503-518. [PMID: 21976269 DOI: 10.1007/s00709-011-0326-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/26/2011] [Indexed: 05/31/2023]
Abstract
This review of schistosome cell biology has a dual purpose; its intent is to alert two separate research communities to the activities of the other. Schistosomes are by far and away the best-characterised platyhelminths, due to their medical and economic importance, but seem to be almost totally ignored by researchers on the free-living lower metazoans. Equally, in their enthusiasm for the parasitic way of life, schistosome researchers seldom pay attention to the work on free-living animals that could inform their molecular investigations. The publication of transcriptomes and/or genomes for Schistosoma mansoni and Schistosoma japonicum, the sponge Archimedon, the cnidarians Nematostella and Hydra and the planarian Schmidtea provide the raw material for comparisons. Apart from interrogation of the databases for molecular similarities, there have been differences in technical approach to these lower metazoans; widespread application of whole mount in situ hybridisation to Schmidtea contrasts with the application of targeted proteomics to schistosomes. Using schistosome cell biology as the template, the key topics of cell adhesion, development, signalling pathways, nerve and muscle, and epithelia, are reviewed, where possible interspersing comparisons with the sponge, cnidarian and planarian data. The biggest jump in the evolution of cellular capabilities appears to be in the transition from a diploblast to triploblast level of organisation associated with development of a mobile and plastic body form.
Collapse
Affiliation(s)
- R Alan Wilson
- Centre for Immunology and Infection, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
28
|
Proteomics at the schistosome-mammalian host interface: any prospects for diagnostics or vaccines? Parasitology 2012; 139:1178-94. [PMID: 22717150 DOI: 10.1017/s0031182012000339] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Since 2004 there has been a remarkable increment in our knowledge of the proteins and glycans that reside at, or are released from the surfaces of schistosomes in the mammalian host. Initial characterization of the soluble proteome permits distinctions to be made between the parasite secretome and its necrotome. The principal proteins secreted by the cercaria to gain access to the skin have been described as well as those released by migrating schistosomula. An inventory of transporters, enzymes and structural proteins has been shown to reside the tegument surface, but also immunoglobulins, complement factors and host CD44. The secreted membranocalyx that overlies the plasma membrane may contain a small number of proteins, not simply acting as physical barrier, but its lipid composition remains elusive. Analysis of worm vomitus has provided insights into blood feeding, increasing the number of known lysosomal hydrolases, and identifying a series of carrier proteins potentially involved in uptake of lipids and inorganic ions by the gut epithelium. The egg secretions that aid escape from the tissues include a mixture of MEG-2 and MEG-3 family variant proteins. The utility of identified proteins for the development of new diagnostics, and their potential as vaccines candidates is evaluated.
Collapse
|
29
|
Computational vaccinology: an important strategy to discover new potential S. mansoni vaccine candidates. J Biomed Biotechnol 2011; 2011:503068. [PMID: 22013383 PMCID: PMC3196198 DOI: 10.1155/2011/503068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 08/12/2011] [Indexed: 11/17/2022] Open
Abstract
The flatworm Schistosoma mansoni is a blood fluke parasite that causes schistosomiasis, a debilitating disease that occurs throughout the developing world. Current schistosomiasis control strategies are mainly based on chemotherapy, but many researchers believe that the best long-term strategy to control schistosomiasis is through immunization with an antischistosomiasis vaccine combined with drug treatment. Several papers on Schistosoma mansoni vaccine and drug development have been published in the past few years, representing an important field of study. The advent of technologies that allow large-scale studies of genes and proteins had a remarkable impact on the screening of new and potential vaccine candidates in schistosomiasis. In this postgenomic scenario, bioinformatic technologies have emerged as important tools to mine transcriptomic, genomic, and proteomic databases. These new perspectives are leading to a new round of rational vaccine development. Herein, we discuss different strategies to identify potential S. mansoni vaccine candidates using computational vaccinology.
Collapse
|
30
|
Wilson RA, Wright JM, de Castro-Borges W, Parker-Manuel SJ, Dowle AA, Ashton PD, Young ND, Gasser RB, Spithill TW. Exploring the Fasciola hepatica tegument proteome. Int J Parasitol 2011; 41:1347-59. [PMID: 22019596 DOI: 10.1016/j.ijpara.2011.08.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
The surface tegument of the liver fluke Fasciola hepatica is a syncytial cytoplasmic layer bounded externally by a plasma membrane and covered by a glycocalyx, which constitutes the interface between the parasite and its ruminant host. The tegument's interaction with the immune system during the fluke's protracted migration from the gut lumen through the peritoneal cavity and liver parenchyma to the lumen of the bile duct, plays a key role in the fluke's establishment or elimination. However, little is known about proteins of the tegument surface or its secretions. We applied techniques developed for the blood fluke, Schistosoma mansoni, to enrich a tegument surface membrane preparation and analyse its composition by tandem mass spectrometry using new transcript databases for F. hepatica. We increased the membrane and secretory pathway components of the final preparation to ∼30%, whilst eliminating contaminating proteases. We identified a series of proteins or transcripts shared with the schistosome tegument including annexins, a tetraspanin, carbonic anhydrase and an orthologue of a host protein (CD59) that inhibits complement fixation. Unique to F. hepatica, we also found proteins with lectin, cubulin and von Willebrand factor domains plus 10 proteins with leader sequences or transmembrane helices. Many of these surface proteins are potential vaccine candidates. We were hampered in collecting tegument secretions by the propensity of liver flukes, unlike blood flukes, to vomit their gut contents. We analysed both the 'vomitus' and a second supernatant released from haematin-depleted flukes. We identified many proteases, some novel, as well as a second protein with a von Willebrand factor domain. This study demonstrates that components of the tegumental surface of F. hepatica can be defined using proteomic approaches, but also indicates the need to prevent vomiting if tegument secretions are to be characterised.
Collapse
Affiliation(s)
- R Alan Wilson
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
de la Torre-Escudero E, Manzano-Román R, Siles-Lucas M, Pérez-Sánchez R, Moyano JC, Barrera I, Oleaga A. Molecular and functional characterization of a Schistosoma bovis annexin: fibrinolytic and anticoagulant activity. Vet Parasitol 2011; 184:25-36. [PMID: 21889851 DOI: 10.1016/j.vetpar.2011.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/26/2011] [Accepted: 08/08/2011] [Indexed: 02/04/2023]
Abstract
Annexins belong to an evolutionarily conserved multigene family of proteins expressed throughout the animal and plant kingdoms. Although they are soluble cytosolic proteins that lack signal sequences, they have also been detected in extracellular fluids and have been associated with cell surface membranes, where they could be involved in anti-haemostatic and anti-inflammatory functions. Schistosome annexins have been identified on the parasite's tegument surface and excretory/secretory products, but their functions are still unknown. Here we report the cloning, sequencing, in silico analysis, and functional characterization of a Schistosoma bovis annexin. The predicted protein has typical annexin secondary and tertiary structures. Bioassays with the recombinant protein revealed that the protein is biologically active in vitro, showing fibrinolytic and anticoagulant properties. Finally, the expression of the native protein on the tegument surface of S. bovis schistosomula and adult worms is demonstrated, revealing the possibility of exposure to the host's immune system and thus offering a potential vaccine target for the control of schistosomiasis in ruminants.
Collapse
Affiliation(s)
- Eduardo de la Torre-Escudero
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca, Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Castro-Borges W, Simpson DM, Dowle A, Curwen RS, Thomas-Oates J, Beynon RJ, Wilson RA. Abundance of tegument surface proteins in the human blood fluke Schistosoma mansoni determined by QconCAT proteomics. J Proteomics 2011; 74:1519-33. [PMID: 21704203 DOI: 10.1016/j.jprot.2011.06.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/06/2011] [Accepted: 06/12/2011] [Indexed: 12/20/2022]
Abstract
The schistosome tegument provides a major interface with the host blood stream in which it resides. Our recent proteomic studies have identified a range of proteins present in the complex tegument structure, and two models of protective immunity have implicated surface proteins as mediating antigens. We have used the QconCAT technique to evaluate the relative and absolute amounts of tegument proteins identified previously. A concatamer comprising R- or K-terminated peptides was generated with [(13)C(6)] lysine/arginine amino acids. Two tegument surface preparations were each spiked with the purified SmQconCAT as a standard, trypsin digested, and subjected to MALDI ToF-MS. The absolute amounts of protein in the biological samples were determined by comparing the areas under the pairs of peaks, separated by 6m/z units, representing the light and heavy peptides derived from the biological sample and SmQconCAT, respectively. We report that aquaporin is the most abundant transmembrane protein, followed by two phosphohydrolases. Tetraspanin Tsp-2 and Annexin-2 are also abundant but transporters are scarce. Sm200 surface protein comprised the bulk of the GPI-anchored fraction and likely resides in the secreted membranocalyx. Two host IgGs were identified but in amounts much lower than their targets. The findings are interpreted in relation to the models of protective immunity.
Collapse
Affiliation(s)
- William Castro-Borges
- Centre for Immunology & Infection, Department of Biology, University of York, Heslington, York, YO10 5DD, UK.
| | | | | | | | | | | | | |
Collapse
|
33
|
RNA interference in Schistosoma mansoni schistosomula: selectivity, sensitivity and operation for larger-scale screening. PLoS Negl Trop Dis 2010; 4:e850. [PMID: 20976050 PMCID: PMC2957409 DOI: 10.1371/journal.pntd.0000850] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 09/16/2010] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The possible emergence of resistance to the only available drug for schistosomiasis spurs drug discovery that has been recently incentivized by the availability of improved transcriptome and genome sequence information. Transient RNAi has emerged as a straightforward and important technique to interrogate that information through decreased or loss of gene function and identify potential drug targets. To date, RNAi studies in schistosome stages infecting humans have focused on single (or up to 3) genes of interest. Therefore, in the context of standardizing larger RNAi screens, data are limited on the extent of possible off-targeting effects, gene-to-gene variability in RNAi efficiency and the operational capabilities and limits of RNAi. METHODOLOGY/PRINCIPAL FINDINGS We investigated in vitro the sensitivity and selectivity of RNAi using double-stranded (ds)RNA (approximately 500 bp) designed to target 11 Schistosoma mansoni genes that are expressed in different tissues; the gut, tegument and otherwise. Among the genes investigated were 5 that had been previously predicted to be essential for parasite survival. We employed mechanically transformed schistosomula that are relevant to parasitism in humans, amenable to screen automation and easier to obtain in greater numbers than adult parasites. The operational parameters investigated included defined culture media for optimal parasite maintenance, transfection strategy, time- and dose-dependency of RNAi, and dosing limits. Of 7 defined culture media tested, Basch Medium 169 was optimal for parasite maintenance. RNAi was best achieved by co-incubating parasites and dsRNA (standardized to 30 µg/ml for 6 days); electroporation provided no added benefit. RNAi, including interference of more than one transcript, was selective to the gene target(s) within the pools of transcripts representative of each tissue. Concentrations of dsRNA above 90 µg/ml were directly toxic. RNAi efficiency was transcript-dependent (from 40 to >75% knockdown relative to controls) and this may have contributed to the lack of obvious phenotypes observed, even after prolonged incubations of 3 weeks. Within minutes of their mechanical preparation from cercariae, schistosomula accumulated fluorescent macromolecules in the gut indicating that the gut is an important route through which RNAi is expedited in the developing parasite. CONCLUSIONS Transient RNAi operates gene-selectively in S. mansoni newly transformed schistosomula yet the sensitivity of individual gene targets varies. These findings and the operational parameters defined will facilitate larger RNAi screens.
Collapse
|