1
|
Morales-Navas M, Perez-Fernandez C, Castaño-Castaño S, Sánchez-Gil A, Colomina MT, Leinekugel X, Sánchez-Santed F. Sociability: Comparing the Effect of Chlorpyrifos with Valproic Acid. J Autism Dev Disord 2025; 55:1101-1111. [PMID: 38466473 PMCID: PMC11828833 DOI: 10.1007/s10803-024-06263-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/13/2024]
Abstract
In recent years, exposures to organophosphate pesticide have been highlighted as a possible cause or aggravating factor of autism spectrum disorder (ASD). The present study examined if Wistar rats prenatally exposed to chlorpyrifos (CPF) at a dose of 1 mg/kg in GD 12.5-15.5 could express similar behaviors to those exposed to valproic acid (VPA, 400 mg/kg) during the same administration window, which is an accepted animal model of autism. The 3-chambered test was employed to evaluate sociability and reaction to social novelty in two experiments, the first in adolescence and the second in adulthood. The results obtained in this study show that animals prenatally treated with CPF or VPA show a similar behavioral phenotype compared to the control group (CNT). In adolescence, the CPF animals showed a negative index in the reaction to social novelty, followed closely by the VPA, while both experimental groups showed a recovery in this aspect during adulthood. This study therefore provides evidence to suggest that prenatal exposure to CPF in rats could have similar effects on certain components of sociability to those seen in autistic models.
Collapse
Affiliation(s)
- Miguel Morales-Navas
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Cristian Perez-Fernandez
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Sergio Castaño-Castaño
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
- Departamento de Psicobiología, Facultad de Psicología, Universidad de Oviedo, Plaza de Feijoo, 33003, Oviedo, Asturias, Spain
| | - Ainhoa Sánchez-Gil
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - María Teresa Colomina
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, C/Carretera de Valls, s/n, 43007, Tarragona, Spain
| | - Xavier Leinekugel
- Institut de Neurobiologie de la Mediterranée (INMED), INSERM UMR1249, Aix-Marseille University, Parc Scientifique de Luminy BP.13, CEDEX 09, 13273, Marseille, France
| | - Fernando Sánchez-Santed
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| |
Collapse
|
2
|
Koppula S, Wankhede N, Kyada A, Ballal S, Arya R, Singh AK, Gulati M, Sute A, Sarode S, Polshettiwar S, Marde V, Taksande B, Upaganlawar A, Fareed M, Umekar M, Kopalli SR, Kale M. The gut-brain axis: Unveiling the impact of xenobiotics on neurological health and disorders. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111237. [PMID: 39732317 DOI: 10.1016/j.pnpbp.2024.111237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/12/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The Gut-Brain Axis (GBA) is a crucial link between the gut microbiota and the central nervous system. Xenobiotics, originating from diverse sources, play a significant role in shaping this interaction. This review examines how these compounds influence neurotransmitter dynamics within the GBA. Environmental pollutants can disrupt microbial populations, impacting neurotransmitter synthesis-especially serotonin, gamma-aminobutyric acid (GABA), and dopamine pathways. Such disruptions affect mood regulation, cognition, and overall neurological function. Xenobiotics also contribute to the pathophysiology of neurological disorders, with changes in serotonin levels linked to mood disorders and imbalances in GABA and dopamine associated with anxiety, stress, and reward pathway disorders. These alterations extend beyond the GBA, leading to complications in neurological health, including increased risk of neurodegenerative diseases due to neuroinflammation triggered by neurotransmitter imbalances. This review provides a comprehensive overview of how xenobiotics influence the GBA and their implications for neurological well-being.
Collapse
Affiliation(s)
- Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea
| | - Nitu Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, -360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | | | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Astha Sute
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Sanskruti Sarode
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Shruti Polshettiwar
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Vaibhav Marde
- Indian Institute of Technology (IIT), Hyderabad, Telangana 502284, India
| | - Brijesh Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Aman Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Milind Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Mayur Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
3
|
Abou Diwan M, Djekkoun N, Boucau MC, Corona A, Dehouck L, Biendo M, Gosselet F, Bach V, Candela P, Khorsi-Cauet H. Maternal exposure to pesticides induces perturbations in the gut microbiota and blood-brain barrier of dams and the progeny, prevented by a prebiotic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58957-58972. [PMID: 39325129 PMCID: PMC11513755 DOI: 10.1007/s11356-024-34969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Exposure to pesticide residues during the first 1000 days of life can disrupt body homeostasis and contribute to chronic metabolic diseases. Perinatal chlorpyrifos (CPF) exposure alters gut microbiota (GM) balance, potentially affecting offspring's health. Given the GM influence on brain function, the primary aim is to determine if pesticide-induced dysbiosis (microbial imbalance) affects indirectly other organs, such as the blood-brain barrier (BBB). The secondary objective is to evaluate the prebiotics protective effects, particularly inulin in promoting microbial balance (symbiosis), in both mothers and offspring. A total of 15 or more female rats were divided in 4 groups: control, oral CPF-exposed (1 mg/kg/day), exposed to inulin (10 g/L), and co-exposed to CPF and inulin from pre-gestation until weaning of pups. Samples from intestines, spleen, liver, and brain microvessels underwent microbiological and biomolecular analyses. Bacterial culture assessed GM composition of living bacteria and their translocation to non-intestinal organs. RT qPCR and Western blotting detected gene expression and protein levels of tight junction markers in brain microvessels. CPF exposure caused gut dysbiosis in offspring, with decreased Lactobacillus and Bifidobacterium and increased Escherichia coli (p < 0.01) leading to bacterial translocation to the spleen and liver. CPF also decreased tight junction's gene expression levels (50 to 60% decrease of CLDN3, p < 0.05). In contrast, inulin partially mitigated these adverse effects and restored gene expression to control levels. Our findings demonstrate a causal link between GM alterations and BBB integrity disruptions. The protective effects of inulin suggest potential therapeutic strategies to counteract pesticide-induced dysbiosis.
Collapse
Affiliation(s)
- Maria Abou Diwan
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, 80054, Amiens, France
- Laboratoire de La Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300, Lens, France
| | - Narimane Djekkoun
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, 80054, Amiens, France
| | - Marie-Christine Boucau
- Laboratoire de La Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300, Lens, France
| | - Aurélie Corona
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, 80054, Amiens, France
| | - Lucie Dehouck
- Laboratoire de La Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300, Lens, France
| | - Maurice Biendo
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, 80054, Amiens, France
| | - Fabien Gosselet
- Laboratoire de La Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300, Lens, France
| | - Véronique Bach
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, 80054, Amiens, France
| | - Pietra Candela
- Laboratoire de La Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300, Lens, France
| | - Hafida Khorsi-Cauet
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, 80054, Amiens, France.
| |
Collapse
|
4
|
Dimitrov LV, Kaminski JW, Holbrook JR, Bitsko RH, Yeh M, Courtney JG, O'Masta B, Maher B, Cerles A, McGowan K, Rush M. A Systematic Review and Meta-analysis of Chemical Exposures and Attention-Deficit/Hyperactivity Disorder in Children. PREVENTION SCIENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR PREVENTION RESEARCH 2024; 25:225-248. [PMID: 38108946 PMCID: PMC11132938 DOI: 10.1007/s11121-023-01601-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/19/2023]
Abstract
Exposure to certain chemicals prenatally and in childhood can impact development and may increase risk for attention-deficit/hyperactivity disorder (ADHD). Leveraging a larger set of literature searches conducted to synthesize results from longitudinal studies of potentially modifiable risk factors for childhood ADHD, we present meta-analytic results from 66 studies that examined the associations between early chemical exposures and later ADHD diagnosis or symptoms. Studies were eligible for inclusion if the chemical exposure occurred at least 6 months prior to measurement of ADHD diagnosis or symptomatology. Included papers were published between 1975 and 2019 on exposure to anesthetics (n = 5), cadmium (n = 3), hexachlorobenzene (n = 4), lead (n = 22), mercury (n = 12), organophosphates (n = 7), and polychlorinated biphenyls (n = 13). Analyses are presented for each chemical exposure by type of ADHD outcome reported (categorical vs. continuous), type of ADHD measurement (overall measures of ADHD, ADHD symptoms only, ADHD diagnosis only, inattention only, hyperactivity/impulsivity only), and timing of exposure (prenatal vs. childhood vs. cumulative), whenever at least 3 relevant effect sizes were available. Childhood lead exposure was positively associated with ADHD diagnosis and symptoms in all analyses except for the prenatal analyses (odds ratios (ORs) ranging from 1.60 to 2.62, correlation coefficients (CCs) ranging from 0.14 to 0.16). Other statistically significant associations were limited to organophosphates (CC = 0.11, 95% confidence interval (CI): 0.03-0.19 for continuous measures of ADHD outcomes overall), polychlorinated biphenyls (CC = 0.08, 95% CI: 0.02-0.14 for continuous measures of inattention as the outcome), and both prenatal and childhood mercury exposure (CC = 0.02, 95% CI: 0.00-0.04 for continuous measures of ADHD outcomes overall for either exposure window). Our findings provide further support for negative impacts of prenatal and/or childhood exposure to certain chemicals and raise the possibility that primary prevention and targeted screening could prevent or mitigate ADHD symptomatology. Furthermore, these findings support the need for regular review of regulations as our scientific understanding of the risks posed by these chemicals evolves.
Collapse
Affiliation(s)
- Lina V Dimitrov
- Division of Human Development and Disability, National Center On Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA.
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.
| | - Jennifer W Kaminski
- Division of Human Development and Disability, National Center On Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph R Holbrook
- Division of Human Development and Disability, National Center On Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rebecca H Bitsko
- Division of Human Development and Disability, National Center On Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael Yeh
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph G Courtney
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Brion Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | |
Collapse
|
5
|
Lin H, Gao W, Li J, Zhao N, Zhang H, Wei J, Wei X, Wang B, Lin Y, Zheng Y. Exploring Prenatal Exposure to Halogenated Compounds and Its Relationship with Birth Outcomes Using Nontarget Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6890-6899. [PMID: 38606954 DOI: 10.1021/acs.est.3c09534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Halogenated organic compounds (HOCs) are a class of contaminants showing high toxicity, low biodegradability, and high bioaccumulation potential, especially chlorinated and brominated HOCs (Cl/Br-HOCs). Knowledge gaps exist on whether novel Cl/Br-HOCs could penetrate the placental barrier and cause adverse birth outcomes. Herein, 326 cord blood samples were collected in a hospital in Jinan, Shandong Province from February 2017 to January 2022, and 44 Cl/Br-HOCs were identified with communicating confidence level above 4 based on a nontarget approach, covering veterinary drugs, pesticides, and their transformation products, pharmaceutical and personal care products, disinfection byproducts, and so on. To our knowledge, the presence of closantel, bromoxynil, 4-hydroxy-2,5,6-trichloroisophthalonitrile, 2,6-dibromo-4-nitrophenol, and related components in cord blood samples was reported for the first time. Both multiple linear regression (MLR) and Bayesian kernel machine regression (BKMR) models were applied to evaluate the relationships of newborn birth outcomes (birth weight, length, and ponderal index) with individual Cl/Br-HOC and Cl/Br-HOCs mixture exposure, respectively. A significantly negative association was observed between pentachlorophenol exposure and newborn birth length, but the significance vanished after the false discovery rate correction. The BKMR analysis showed that Cl/Br-HOCs mixture exposure was significantly associated with reduced newborn birth length, indicating higher risks of fetal growth restriction. Our findings offer an overview of Cl/Br-HOCs exposome during the early life stage and enhance the understanding of its exposure risks.
Collapse
Affiliation(s)
- Huan Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wei Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jingjing Li
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Nan Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Hongna Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Juntong Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoran Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Bing Wang
- Biomedical Centre, Qingdao University, Qingdao 266071, China
| | - Yongfeng Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yuxin Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Afshari S, Sarailoo M, Asghariazar V, Safarzadeh E, Dadkhah M. Persistent diazinon induced neurotoxicity: The effect on inhibitory avoidance memory performance, amyloid precursor proteins, and TNF-α levels in the prefrontal cortex of rats. Hum Exp Toxicol 2024; 43:9603271241235408. [PMID: 38472141 DOI: 10.1177/09603271241235408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
INTRODUCTION Organophosphate pesticides (Ops) like diazinon (DZN) have well-known neurotoxic effects and low-level chronic exposure has been linked to detrimental neurobehavioral impairments and memory deficits. However, it's not entirely clear how DZN-induced biological changes, particularly in the prefrontal cortex (PFC) contribute to these effects. The purpose of this study is to investigate the impact of DZN exposure on inhibitory avoidance (IA) memory function, amyloid precursor expression (APP), and proinflammatory tumor necrosis factor-α (TNF-α) levels in the rat cortex. MATERIALS AND METHODS Rats were divided into 4 groups and recived 2 mg/kg DZN for 5-days or 12-weeks and two control groups recived the same volume of vehicle. IA memory was assesed using the shuttle box apparatus. Rats were sacrificed and the prefrontal cortex PFC were removed. Real-time PCR and Western blotting were used to messure TNF-α, and amyloid protein precursors gene expression and protein levels. RESULTS Our findings indicated that DZN caused body weight loss and a notable decline in performance on the IA memory. Additionally, 5-days exposure increased APP and APLP2 protein levels in the PFC, while 12-weeks exposure decreased these levels. Furthermore, expression of APP and APLP2 gens were decreased in PFC. TNF-α levels increased as a result of 5-days exposure to DZN, but these levels dropped to normal after 12-weeks administration, and this observation was significant. CONCLUSION Taken together, exposure to low doses of DZN leads to disturbances in IA memory performance and also alternations in amyloid beta precursors that can be related to increased risk of Alzheimer's disease.
Collapse
Affiliation(s)
- Salva Afshari
- Students Research Committee, Pharmacy School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehdi Sarailoo
- Students Research Committee, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
7
|
Buchenauer L, Haange SB, Bauer M, Rolle-Kampczyk UE, Wagner M, Stucke J, Elter E, Fink B, Vass M, von Bergen M, Schulz A, Zenclussen AC, Junge KM, Stangl GI, Polte T. Maternal exposure of mice to glyphosate induces depression- and anxiety-like behavior in the offspring via alterations of the gut-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167034. [PMID: 37709081 DOI: 10.1016/j.scitotenv.2023.167034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The past decade has been characterized by increased awareness and de-stigmatization of mental health issues, in particular the most common neuropsychiatric disorders depression and anxiety. Further, with growing understanding of neurodevelopmental disorders such as attention deficit and hyperactivity disorder and autism spectrum disorder, the number of diagnosed patients has increased. The pathogenesis of these behavioral disorders is multifactorial and early-life exposure to environmental chemicals has been proposed to be a relevant risk factor that might mediate these effects by disturbances on the gut-brain-axis. However, for glyphosate, the most widely used pesticide worldwide, there are only limited and inconsistent findings that link chronic low-dose exposure in particular during early life to neurobehavioral disorders. Here, we explored the impact of maternal oral glyphosate exposure (0.5 and 50 mg/kg body weight/day) during pregnancy and the lactational period on offspring's behavior, brain gene expression and gut microbiota using a cross-generational mouse model. Behavioral analyses revealed a depression- and anxiety-like behavior as well as social deficits most notably in adult female offspring of glyphosate-exposed dams. Furthermore, the expression of tryptophan hydroxylase 2, an enzyme discussed to be linked to behavioral problems, was reduced in the hippocampus of female offspring and correlated to a glyphosate-induced DNA hypermethylation of the gene. Moreover, maternal glyphosate exposure significantly altered the gut microbiota in the female offspring including a decreased abundance of Akkermansia and increased abundance of Alistipes and Blautia, bacteria involved in tryptophan metabolism and associated with depression- and anxiety-like disorders. Our results suggest that glyphosate might influence the gut-brain axis crosstalk following in-utero and lactational exposure. This study underlines the importance of understanding the impact of exposure to pesticides on the gut-brain axis and further emphasizes the need for microbiome analyses to be compulsorily included in health risk assessments of pesticides.
Collapse
Affiliation(s)
- Lisa Buchenauer
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany
| | - Sven-Bastiaan Haange
- Helmholtz Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Mario Bauer
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| | - Ulrike E Rolle-Kampczyk
- Helmholtz Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Marita Wagner
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany
| | - Johanna Stucke
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany
| | - Elena Elter
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany
| | - Beate Fink
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| | - Maren Vass
- University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Angela Schulz
- University of Leipzig, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig, Germany
| | - Ana C Zenclussen
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, University Leipzig, 04103 Leipzig, Germany
| | - Kristin M Junge
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; AKAD University Stuttgart, School of Health and Social Sciences, Stuttgart, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Tobias Polte
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany.
| |
Collapse
|
8
|
Nohesara S, Abdolmaleky HM, Zhou JR, Thiagalingam S. Microbiota-Induced Epigenetic Alterations in Depressive Disorders Are Targets for Nutritional and Probiotic Therapies. Genes (Basel) 2023; 14:2217. [PMID: 38137038 PMCID: PMC10742434 DOI: 10.3390/genes14122217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Major depressive disorder (MDD) is a complex disorder and a leading cause of disability in 280 million people worldwide. Many environmental factors, such as microbes, drugs, and diet, are involved in the pathogenesis of depressive disorders. However, the underlying mechanisms of depression are complex and include the interaction of genetics with epigenetics and the host immune system. Modifications of the gut microbiome and its metabolites influence stress-related responses and social behavior in patients with depressive disorders by modulating the maturation of immune cells and neurogenesis in the brain mediated by epigenetic modifications. Here, we discuss the potential roles of a leaky gut in the development of depressive disorders via changes in gut microbiota-derived metabolites with epigenetic effects. Next, we will deliberate how altering the gut microbiome composition contributes to the development of depressive disorders via epigenetic alterations. In particular, we focus on how microbiota-derived metabolites such as butyrate as an epigenetic modifier, probiotics, maternal diet, polyphenols, drugs (e.g., antipsychotics, antidepressants, and antibiotics), and fecal microbiota transplantation could positively alleviate depressive-like behaviors by modulating the epigenetic landscape. Finally, we will discuss challenges associated with recent therapeutic approaches for depressive disorders via microbiome-related epigenetic shifts, as well as opportunities to tackle such problems.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Hamid Mostafavi Abdolmaleky
- Nutrition/Metabolism Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA;
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA;
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
9
|
Biosca-Brull J, Basaure P, Guardia-Escote L, Cabré M, Blanco J, Morales-Navas M, Sánchez-Santed F, Colomina MT. Environmental exposure to chlorpyrifos during gestation, APOE polymorphism and the risk on autistic-like behaviors. ENVIRONMENTAL RESEARCH 2023; 237:116969. [PMID: 37659636 DOI: 10.1016/j.envres.2023.116969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Autism spectrum disorder (ASD) encompasses several neurodevelopmental conditions characterized by communication and social impairment, as well as repetitive patterns of behavior. However, it can co-occur with other mental conditions such as anxiety. The massive use of chlorpyrifos (CPF) has been linked to the increased prevalence of developmental disorders. Likewise, ASD has also been closely linked to a wide variety of genetic factors. The aims of the present investigation are to study how gestational CPF exposure and APOE polymorphism affects communication skills, early development and mid-term anxiety-like behaviors, as well as, changes in gene expression related to the cholinergic system. C57BL/6J and humanized apoE3 and apoE4 homozygous mice were exposed to 0 or 1 mg/kg/day of CPF through the diet, from gestational day (GD) 12-18. In addition, a group of C57BL/6J females were injected subcutaneously with 300 mg/kg/day of valproic acid (VPA) on GD 12 and 13. This group was used as a positive control for studying some core and associated autism-like behaviors. Communication skills by means of ultrasonic vocalizations and physical/motor development were assessed during the preweaning period, whereas locomotor activity, anxiety-like behaviors and the gene expression of cholinergic elements were evaluated during adolescence. Our results showed that C57BL/6J mice prenatally exposed to CPF or VPA showed a decrease in body weight and a delay in eye opening. Communication and anxiety behavior were affected differently depending on treatment, while gene expression was altered by sex and treatment. In addition, none of the parameters evaluated in apoE transgenic mice exposed to CPF were affected, but there were differences between genotypes. Therefore, we suggest that prenatal CPF exposure and VPA produce divergent effects on communication and anxiety.
Collapse
Affiliation(s)
- Judit Biosca-Brull
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain.
| | - Pia Basaure
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
| | - Laia Guardia-Escote
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
| | - Maria Cabré
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Tarragona, Spain
| | - Jordi Blanco
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain; Universitat Rovira i Virgili, Department of Basic Medical Sciences, Reus, Spain
| | - Miguel Morales-Navas
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Maria Teresa Colomina
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain.
| |
Collapse
|
10
|
López-Merino E, Cuartero MI, Esteban JA, Briz V. Perinatal exposure to pesticides alters synaptic plasticity signaling and induces behavioral deficits associated with neurodevelopmental disorders. Cell Biol Toxicol 2023; 39:2089-2111. [PMID: 35137321 PMCID: PMC10547633 DOI: 10.1007/s10565-022-09697-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/26/2022] [Indexed: 12/17/2022]
Abstract
Increasing evidence from animal and epidemiological studies indicates that perinatal exposure to pesticides cause developmental neurotoxicity and may increase the risk for psychiatric disorders such as autism and intellectual disability. However, the underlying pathogenic mechanisms remain largely elusive. This work was aimed at testing the hypothesis that developmental exposure to different classes of pesticides hijacks intracellular neuronal signaling contributing to synaptic and behavioral alterations associated with neurodevelopmental disorders (NDD). Low concentrations of organochlorine (dieldrin, endosulfan, and chlordane) and organophosphate (chlorpyrifos and its oxon metabolite) pesticides were chronically dosed ex vivo (organotypic rat hippocampal slices) or in vivo (perinatal exposure in rats), and then biochemical, electrophysiological, behavioral, and proteomic studies were performed. All the pesticides tested caused prolonged activation of MAPK/ERK pathway in a concentration-dependent manner. Additionally, some of them impaired metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD). In the case of the pesticide chlordane, the effect was attributed to chronic modulation of MAPK/ERK signaling. These synaptic alterations were reproduced following developmental in vivo exposure to chlordane and chlorpyrifos-oxon, and were also associated with prototypical behavioral phenotypes of NDD, including impaired motor development, increased anxiety, and social and memory deficits. Lastly, proteomic analysis revealed that these pesticides differentially regulate the expression of proteins in the hippocampus with pivotal roles in brain development and synaptic signaling, some of which are associated with NDD. Based on these results, we propose a novel mechanism of synaptic dysfunction, involving chronic overactivation of MAPK and impaired mGluR-LTD, shared by different pesticides which may have important implications for NDD.
Collapse
Affiliation(s)
| | - María I Cuartero
- Neurovascular Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - José A Esteban
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
| | - Víctor Briz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
11
|
Souza JADCR, Souza T, Quintans ILADCR, Farias D. Network Toxicology and Molecular Docking to Investigate the Non-AChE Mechanisms of Organophosphate-Induced Neurodevelopmental Toxicity. TOXICS 2023; 11:710. [PMID: 37624215 PMCID: PMC10458981 DOI: 10.3390/toxics11080710] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Organophosphate pesticides (OPs) are toxic substances that contaminate aquatic environments, interfere with the development of the nervous system, and induce Neurodevelopmental Toxicity (NDT) in animals and humans. The canonical mechanism of OP neurotoxicity involves the inhibition of acetylcholinesterase (AChE), but other mechanisms non-AChE are also involved and not fully understood. We used network toxicology and molecular docking to identify molecular targets and toxicity mechanisms common to OPs. Targets related to diazinon-oxon, chlorpyrifos oxon, and paraoxon OPs were predicted using the Swiss Target Prediction and PharmMapper databases. Targets related to NDT were compiled from GeneCards and OMIM databases. In order to construct the protein-protein interaction (PPI) network, the common targets between OPs and NDT were imported into the STRING. Network topological analyses identified EGFR, MET, HSP90AA1, and SRC as hub nodes common to the three OPs. Using the Reactome pathway and gene ontology, we found that signal transduction, axon guidance, cellular responses to stress, and glutamatergic signaling activation play key roles in OP-induced NDT.
Collapse
Affiliation(s)
- Juliana Alves da Costa Ribeiro Souza
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-970, Brazil;
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, Brazil;
| | - Terezinha Souza
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, Brazil;
| | | | - Davi Farias
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-970, Brazil;
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, Brazil;
| |
Collapse
|
12
|
Nohesara S, Abdolmaleky HM, Thiagalingam S. Epigenetic Aberrations in Major Psychiatric Diseases Related to Diet and Gut Microbiome Alterations. Genes (Basel) 2023; 14:1506. [PMID: 37510410 PMCID: PMC10379841 DOI: 10.3390/genes14071506] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Nutrition and metabolism modify epigenetic signatures like histone acetylation and DNA methylation. Histone acetylation and DNA methylation in the central nervous system (CNS) can be altered by bioactive nutrients and gut microbiome via the gut-brain axis, which in turn modulate neuronal activity and behavior. Notably, the gut microbiome, with more than 1000 bacterial species, collectively contains almost three million functional genes whose products interact with millions of human epigenetic marks and 30,000 genes in a dynamic manner. However, genetic makeup shapes gut microbiome composition, food/nutrient metabolism, and epigenetic landscape, as well. Here, we first discuss the effect of changes in the microbial structure and composition in shaping specific epigenetic alterations in the brain and their role in the onset and progression of major mental disorders. Afterward, potential interactions among maternal diet/environmental factors, nutrition, and gastrointestinal microbiome, and their roles in accelerating or delaying the onset of severe mental illnesses via epigenetic changes will be discussed. We also provide an overview of the association between the gut microbiome, oxidative stress, and inflammation through epigenetic mechanisms. Finally, we present some underlying mechanisms involved in mediating the influence of the gut microbiome and probiotics on mental health via epigenetic modifications.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02218, USA; (S.N.); (S.T.)
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02218, USA; (S.N.); (S.T.)
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02218, USA; (S.N.); (S.T.)
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA 02218, USA
| |
Collapse
|
13
|
Yang Y, Zhou S, Xing Y, Yang G, You M. Impact of pesticides exposure during neurodevelopmental period on autism spectrum disorders - A focus on gut microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115079. [PMID: 37262968 DOI: 10.1016/j.ecoenv.2023.115079] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Accumulating evidence indicates exposure to pesticides during the crucial neurodevelopmental period increases susceptibility to many diseases, including the neurodevelopmental disorder known as autism spectrum disorder (ASD). In the last few years, it has been hypothesized that gut microbiota dysbiosis is strongly implicated in the aetiopathogenesis of ASD. Recently, new studies have suggested that the gut microbiota may be involved in the neurological and behavioural defects caused by pesticides, including ASD symptoms. This review highlights the available evidence from recent animal and human studies on the relationship between pesticides that have the potential to disturb intestinal microbiota homeostasis, and ASD symptoms. The mechanisms through which gut microbiota dysbiosis may trigger ASD-like behaviours induced by pesticides exposure during the neurodevelopmental period via the altered production of bacterial metabolites (short chain fatty acids, lipids, retinol, and amino acid) are also described. According to recent research, gut microbiota dysbiosis may be a major contributor to the symptoms of ASD associated with pesticides exposure. However, to determine the detailed mechanism of action of gut microbiota on pesticide-induced ASD behaviours, actual population exposure scenarios from epidemiological studies should be used as the basis for the appropriate exposure pattern and dosage to be used in animal studies.
Collapse
Affiliation(s)
- Yongyong Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Shun Zhou
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Ying Xing
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Guanghong Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| | - Mingdan You
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
14
|
Jeanne PV, McLamb F, Feng Z, Griffin L, Gong S, Shea D, Szuch MA, Scott S, Gersberg RM, Bozinovic G. Locomotion and brain gene expression exhibit sex-specific non-monotonic dose-response to HFPO-DA during Drosophila melanogaster lifespan. Neurotoxicology 2023; 96:207-221. [PMID: 37156305 DOI: 10.1016/j.neuro.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Legacy per- and polyfluoroalkyl substances (PFAS), known for their environmental persistence and bio-accumulative properties, have been phased out in the U.S. due to public health concerns. A newer polymerization aid used in the manufacture of some fluoropolymers, hexafluoropropylene oxide-dimer acid (HFPO-DA), has lower reported bioaccumulation and toxicity, but is a potential neurotoxicant implicated in dopaminergic neurodegeneration. OBJECTIVE We investigated HFPO-DA's bio-accumulative potential and sex-specific effects on lifespan, locomotion, and brain gene expression in fruit flies. METHODS We quantified bioaccumulation of HFPO-DA in fruit flies exposed to 8.7×104µg/L of HFPO-DA in the fly media for 14 days via UHPLC-MS. Long-term effect on lifespan was determined by exposing both sexes to 8.7×102 - 8.7×105µg/L of HFPO-DA in media. Locomotion was measured following 3, 7, and 14 days of exposures at 8.7×101 - 8.7×105µg/L of HFPO-DA in media, and high-throughput 3'-end RNA-sequencing was used to quantify gene expression in fly brains across the same time points. RESULTS Bioaccumulation of HFPO-DA in fruit flies was not detected. HFPO-DA-induced effects on lifespan, locomotion, and brain gene expression, and lowest adverse effect level (LOAEL) showed sexually dimorphic patterns. Locomotion scores significantly decreased in at least one dose at all time points for females and only at 3-day exposure for males, while brain gene expression exhibited non-monotonic dose-response. Differentially expressed genes correlated to locomotion scores revealed sex-specific numbers of positively and negatively correlated genes per functional category. CONCLUSION Although HFPO-DA effects on locomotion and survival were significant at doses higher than the US EPA reference dose, the brain transcriptomic profiling reveals sex-specific changes and neurological molecular targets; gene enrichments highlight disproportionately affected categories, including immune response: female-specific co-upregulation suggests potential neuroinflammation. Consistent sex-specific exposure effects necessitate blocking for sex in experimental design during HFPO-DA risk assessment.
Collapse
Affiliation(s)
- P Vu Jeanne
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; San Diego State University, Graduate School of Public Health, San Diego, CA, USA; University of California, San Diego, Division of Extended Studies, La Jolla, CA, USA
| | - Flannery McLamb
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; University of California, San Diego, Division of Extended Studies, La Jolla, CA, USA
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; San Diego State University, Graduate School of Public Health, San Diego, CA, USA
| | - Lindsey Griffin
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; University of California, San Diego, Division of Extended Studies, La Jolla, CA, USA
| | - Sylvia Gong
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; San Diego State University, Graduate School of Public Health, San Diego, CA, USA; University of California, San Diego, Division of Extended Studies, La Jolla, CA, USA
| | | | - Mary A Szuch
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
| | - Savannah Scott
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
| | - Richard M Gersberg
- San Diego State University, Graduate School of Public Health, San Diego, CA, USA
| | - Goran Bozinovic
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; San Diego State University, Graduate School of Public Health, San Diego, CA, USA; University of California, San Diego, School of Biological Sciences, La Jolla, CA, USA.
| |
Collapse
|
15
|
Biosca-Brull J, Guardia-Escote L, Basaure P, Cabré M, Blanco J, Pérez-Fernández C, Sánchez-Santed F, Domingo JL, Colomina MT. Exposure to chlorpyrifos during pregnancy differentially affects social behavior and GABA signaling elements in an APOE- and sex-dependent manner in a transgenic mouse model. ENVIRONMENTAL RESEARCH 2023; 224:115461. [PMID: 36796608 DOI: 10.1016/j.envres.2023.115461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The massive use of chlorpyrifos (CPF) has been associated with an increased prevalence of neurodevelopmental disorders. Some previous studies have shown that prenatal, but not postnatal, CPF exposure causes social behavior deficits in mice depending on sex while others have found that in transgenic mice models carrying the human apolipoprotein E (APOE) ε3 and ε4 allele confer different vulnerabilities to either behavioral or metabolic disorders after CPF exposure. This study aims to evaluate, in both sexes, how prenatal CPF exposure and APOE genotype impact on social behavior and its relation to changes in GABAergic and glutamatergic systems. For this purpose, apoE3 and apoE4 transgenic mice were exposed through the diet to 0 or 1 mg/kg/day of CPF, between gestational day 12 and 18. A three-chamber test was used to assess social behavior on postnatal day (PND) 45. Then, mice were sacrificed, and hippocampal samples were analyzed to study the gene expression of GABAergic and glutamatergic elements. Results showed that prenatal exposure to CPF impaired social novelty preference and increased the expression of GABA-A α1 subunit in females of both genotypes. In addition, the expression of GAD1, the ionic cotransporter KCC2 and the GABA-A α2 and α5 subunits were increased in apoE3 mice, whereas CPF treatment only accentuated the expression of GAD1 and KCC2. Nevertheless, future research is needed to evaluate whether the influences detected in the GABAergic system are present and functionally relevant in adults and old mice.
Collapse
Affiliation(s)
- Judit Biosca-Brull
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Reus, Spain.
| | - Laia Guardia-Escote
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain
| | - Pia Basaure
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
| | - Maria Cabré
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Tarragona, Spain
| | - Jordi Blanco
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Reus, Spain; Universitat Rovira i Virgili, Department of Basic Medical Sciences, Reus, Spain
| | - Cristian Pérez-Fernández
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - José L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Reus, Spain
| | - Maria Teresa Colomina
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Reus, Spain.
| |
Collapse
|
16
|
Tu Y, Yang Y, Wang Y, Wu N, Tao J, Yang G, You M. Developmental exposure to chlorpyrifos causes neuroinflammation via necroptosis in mouse hippocampus and human microglial cell line. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120217. [PMID: 36155221 DOI: 10.1016/j.envpol.2022.120217] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/28/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Neurodevelopmental exposure to chlorpyrifos (CPF) could increase risks for neurological disorders, such as autism spectrum disorder, cognitive impairment, or attention deficit hyperactivity disorder. The potential involvement of microglia reactive to inflammatory stimuli in these neurological disorders has been generally reported. However, the concrete effects and potential mechanisms of microglia dysfunction triggered by developmental CPF exposure remain unclear. Therefore, we established mouse and human embryonic microglial cells (HMC3 cell) models of developmental CPF exposure to evaluate the effects of developmental CPF exposure on neuroinflammation and underlying mechanisms. The results showed that developmental exposure to CPF enhanced the expression of Iba1 in hippocampus. CPF treatment increased inflammatory cytokines levels and TSPO expression in hippocampus and HMC3 cells. The levels of necroptosis and necroptosis-related signaling RIPK/MLKL were increased in hippocampus and HMC3 cells following CPF exposure. Furthermore, the expression of TLR4/TRIF signaling was increased in hippocampus and HMC3 cells subjected to CPF exposure. Notably, the increased levels of TLR4/TRIF signaling, RIPK/MLKL signaling, necroptosis and pro-inflammatory cytokines induced by CPF treatment were remarkably inhibited by TAK-242 (a specific TLR4 inhibitor). Additionally, the necroptosis and pro-inflammatory cytokines production induced by CPF treatment were significantly relieved by Nec-1 (a specific RIPK1 inhibitor). In general, the above results suggested that activated microglia in hippocampus subjected to developmental CPF exposure underwent RIPK1/MLKL-mediated necroptosis regulated by TLR4/TRIF signaling.
Collapse
Affiliation(s)
- Ying Tu
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Yongyong Yang
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Yue Wang
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Nana Wu
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Junyan Tao
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Guanghong Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, PR China
| | - Mingdan You
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China.
| |
Collapse
|
17
|
Biosca-Brull J, Guardia-Escote L, Blanco J, Basaure P, Cabré M, Sánchez-Santed F, Domingo JL, Colomina MT. Prenatal, but not postnatal exposure to chlorpyrifos affects social behavior of mice and the excitatory-inhibitory balance in a sex-dependent manner. Food Chem Toxicol 2022; 169:113423. [PMID: 36113784 DOI: 10.1016/j.fct.2022.113423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
The balance between excitatory and inhibitory neurotransmitters is essential for proper brain development. An imbalance between these two systems has been associated with neurodevelopmental disorders. On the other hand, literature also associates the massive use of pesticides with the increase of these disorders, with a particular focus on chlorpyrifos (CPF) a world-wide used organophosphate pesticide. This study was aimed at assessing social autistic-like behaviors on mice pre or postnatally exposed to CPF (0 or 1 mg/kg/day), in both sexes. In prenatal exposure, C57BL/6J pregnant mice were exposed to CPF through the diet, between gestational days (GD) 12 and 18, while a positive control group for some autistic behaviors was exposed to valproic acid (VPA) on GD 12 and 13. To assess postnatal exposure, C57BL/6J mice were orally exposed to the vehicle (corn oil) or CPF, from postnatal days (PND) 10-15. Social behavior and gene expression analysis were assessed on PND 45. Results showed social alterations only in males prenatally treated. GABA system was upregulated in CPF-treated females, whereas an increase in both systems was observed in both treated males. These findings suggest that males are more sensitive to prenatal CPF exposure, favoring the sex bias observed in ASD.
Collapse
Affiliation(s)
- Judit Biosca-Brull
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health (TECNATOX), Reus, Spain.
| | - Laia Guardia-Escote
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain
| | - Jordi Blanco
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health (TECNATOX), Reus, Spain; Universitat Rovira i Virgili, Department of Basic Medical Sciences, Reus, Spain
| | - Pia Basaure
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
| | - Maria Cabré
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Tarragona, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - José L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health (TECNATOX), Reus, Spain
| | - Maria Teresa Colomina
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health (TECNATOX), Reus, Spain.
| |
Collapse
|
18
|
Gama J, Neves B, Pereira A. Chronic Effects of Dietary Pesticides on the Gut Microbiome and Neurodevelopment. Front Microbiol 2022; 13:931440. [PMID: 35847088 PMCID: PMC9279132 DOI: 10.3389/fmicb.2022.931440] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Many agricultural pesticides include substances that are known to be harmful to human health and while some have been banned from developed countries, they are still being used in developing countries such as Brazil. Recent studies have shown that low-level chronic dietary exposure to pesticides can affect the human gut microbiota. This possible hazardous effect of pesticides on human health has not been specifically recognized by government regulatory agencies. In Brazil, for instance, of the 10 best-selling active ingredients in pesticides in 2019, two are considered extremely toxic, Paraquat and Chlorpyrifos. Even though Paraquat has been banned in Brazil since 2020, the values of maximum residue limits (MRLs) of toxic pesticides allowed in the country are still higher than in other countries. Unfortunately, many developing countries still lack the resources and expertise needed to monitor adequately and systematically the presence of pesticide residues on food. In this work, we raise awareness to the danger the chronic exposure to high dietary levels of pesticides can pose to the public, especially considering their prolonged effects on the gut microbiome.
Collapse
Affiliation(s)
- Jessica Gama
- Graduate Program in Neuroscience and Cell Biology, Federal University of Pará, Belém, Brazil
| | - Bianca Neves
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Pereira
- Graduate Program in Neuroscience and Cell Biology, Federal University of Pará, Belém, Brazil
- Institute of Technology, Federal University of Pará, Belém, Brazil
| |
Collapse
|
19
|
Doroftei B, Ilie OD, Diaconu R, Hutanu D, Stoian I, Ilea C. An Updated Narrative Mini-Review on the Microbiota Changes in Antenatal and Post-Partum Depression. Diagnostics (Basel) 2022; 12:diagnostics12071576. [PMID: 35885482 PMCID: PMC9315700 DOI: 10.3390/diagnostics12071576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Antenatal depression (AND) and post-partum depression (PPD) are long-term debilitating psychiatric disorders that significantly influence the composition of the gut flora of mothers and infants that starts from the intrauterine life. Not only does bacterial ratio shift impact the immune system, but it also increases the risk of potentially life-threatening disorders. Material and Methods: Therefore, we conducted a narrative mini-review aiming to gather all evidence published between 2018–2022 regarding microflora changes in all three stages of pregnancy. Results: We initially identified 47 potentially eligible studies, from which only 7 strictly report translocations; 3 were conducted on rodent models and 4 on human patients. The remaining studies were divided based on their topic, precisely focused on how probiotics, breastfeeding, diet, antidepressants, exogenous stressors, and plant-derived compounds modulate in a bidirectional way upon behavior and microbiota. Almost imperatively, dysbacteriosis cause cognitive impairments, reflected by abnormal temperament and personality traits that last up until 2 years old. Thankfully, a distinct technique that involves fecal matter transfer between individuals has been perfected over the years and was successfully translated into clinical practice. It proved to be a reliable approach in diminishing functional non- and gastrointestinal deficiencies, but a clear link between depressive women’s gastrointestinal/vaginal microbiota and clinical outcomes following reproductive procedures is yet to be established. Another gut-dysbiosis-driving factor is antibiotics, known for their potential to trigger inflammation. Fortunately, the studies conducted on mice that lack microbiota offer, without a shadow of a doubt, insight. Conclusions: It can be concluded that the microbiota is a powerful organ, and its optimum functionality is crucial, likely being the missing puzzle piece in the etiopathogenesis of psychiatric disorders.
Collapse
Affiliation(s)
- Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (B.D.); (I.S.); (C.I.)
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania;
- Origyn Fertility Center, Palace Street, No. 3C, 700032 Iasi, Romania
| | - Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No. 20A, 700505 Iasi, Romania
- Correspondence:
| | - Roxana Diaconu
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania;
- Origyn Fertility Center, Palace Street, No. 3C, 700032 Iasi, Romania
| | - Delia Hutanu
- Department of Biology, Faculty of Chemistry-Biology-Geography, West University of Timisoara, Vasile Pârvan Avenue, No. 4, 300115 Timisoara, Romania;
| | - Irina Stoian
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (B.D.); (I.S.); (C.I.)
| | - Ciprian Ilea
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (B.D.); (I.S.); (C.I.)
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania;
| |
Collapse
|
20
|
Gubert C, Gasparotto J, H. Morais L. Convergent pathways of the gut microbiota-brain axis and neurodegenerative disorders. Gastroenterol Rep (Oxf) 2022; 10:goac017. [PMID: 35582476 PMCID: PMC9109005 DOI: 10.1093/gastro/goac017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/14/2022] Open
Abstract
Recent research has been uncovering the role of the gut microbiota for brain health and disease. These studies highlight the role of gut microbiota on regulating brain function and behavior through immune, metabolic, and neuronal pathways. In this review we provide an overview of the gut microbiota axis pathways to lay the groundwork for upcoming sessions on the links between the gut microbiota and neurogenerative disorders. We also discuss how the gut microbiota may act as an intermediate factor between the host and the environment to mediate disease onset and neuropathology. Based on the current literature, we further examine the potential for different microbiota-based therapeutic strategies to prevent, to modify, or to halt the progress of neurodegeneration.
Collapse
Affiliation(s)
- Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Juciano Gasparotto
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, Alfenas, Minas Gerais, Brasil
| | - Livia H. Morais
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
21
|
Djekkoun N, Depeint F, Guibourdenche M, El Khayat El Sabbouri H, Corona A, Rhazi L, Gay-Queheillard J, Rouabah L, Hamdad F, Bach V, Benkhalifa M, Khorsi-Cauet H. Chronic Perigestational Exposure to Chlorpyrifos Induces Perturbations in Gut Bacteria and Glucose and Lipid Markers in Female Rats and Their Offspring. TOXICS 2022; 10:toxics10030138. [PMID: 35324763 PMCID: PMC8949051 DOI: 10.3390/toxics10030138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
Abstract
An increasing burden of evidence is pointing toward pesticides as risk factors for chronic disorders such as obesity and type 2 diabetes, leading to metabolic syndrome. Our objective was to assess the impact of chlorpyrifos (CPF) on metabolic and bacteriologic markers. Female rats were exposed before and during gestation and during lactation to CPF (1 mg/kg/day). Outcomes such as weight, glucose and lipid profiles, as well as disturbances in selected gut bacterial levels, were measured in both the dams (at the end of the lactation period) and in their female offspring at early adulthood (60 days of age). The results show that the weight of CPF dams were lower compared to the other groups, accompanied by an imbalance in blood glucose and lipid markers, and selected gut bacteria. Intra-uterine growth retardation, as well as metabolic disturbances and perturbation of selected gut bacteria, were also observed in their offspring, indicating both a direct effect on the dams and an indirect effect of CPF on the female offspring. Co-treatment with inulin (a prebiotic) prevented some of the outcomes of the pesticide. Further investigations could help better understand if those perturbations mimic or potentiate nutritional risk factors for metabolic syndrome through high fat diet.
Collapse
Affiliation(s)
- Narimane Djekkoun
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
- Laboratory of Cellular and Molecular Biology, University of the Brothers Mentouri Constantine 1, Constantine 2500, Algeria;
| | - Flore Depeint
- Transformations & Agro-Ressources ULR7519, Institut Polytechnique UniLaSalle—Université d’Artois, 60026 Beauvais, France; (F.D.); (L.R.)
| | - Marion Guibourdenche
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Hiba El Khayat El Sabbouri
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Aurélie Corona
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Larbi Rhazi
- Transformations & Agro-Ressources ULR7519, Institut Polytechnique UniLaSalle—Université d’Artois, 60026 Beauvais, France; (F.D.); (L.R.)
| | - Jerome Gay-Queheillard
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Leila Rouabah
- Laboratory of Cellular and Molecular Biology, University of the Brothers Mentouri Constantine 1, Constantine 2500, Algeria;
| | - Farida Hamdad
- Center for Human Biology, CHU Amiens-Picardie, 80000 Amiens, France;
| | - Véronique Bach
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
| | - Moncef Benkhalifa
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
- Center for Human Biology, CHU Amiens-Picardie, 80000 Amiens, France;
| | - Hafida Khorsi-Cauet
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, CEDEX 1, 80054 Amiens, France; (N.D.); (M.G.); (H.E.K.E.S.); (A.C.); (J.G.-Q.); (V.B.); (M.B.)
- Correspondence: ; Tel.: +33-322-827-896
| |
Collapse
|
22
|
Balaguer-Trias J, Deepika D, Schuhmacher M, Kumar V. Impact of Contaminants on Microbiota: Linking the Gut-Brain Axis with Neurotoxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031368. [PMID: 35162390 PMCID: PMC8835190 DOI: 10.3390/ijerph19031368] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
Over the last years, research has focused on microbiota to establish a missing link between neuronal health and intestine imbalance. Many studies have considered microbiota as critical regulators of the gut–brain axis. The crosstalk between microbiota and the central nervous system is mainly explained through three different pathways: the neural, endocrine, and immune pathways, intricately interconnected with each other. In day-to-day life, human beings are exposed to a wide variety of contaminants that affect our intestinal microbiota and alter the bidirectional communication between the gut and brain, causing neuronal disorders. The interplay between xenobiotics, microbiota and neurotoxicity is still not fully explored, especially for susceptible populations such as pregnant women, neonates, and developing children. Precisely, early exposure to contaminants can trigger neurodevelopmental toxicity and long-term diseases. There is growing but limited research on the specific mechanisms of the microbiota–gut–brain axis (MGBA), making it challenging to understand the effect of environmental pollutants. In this review, we discuss the biological interplay between microbiota–gut–brain and analyse the role of endocrine-disrupting chemicals: Bisphenol A (BPA), Chlorpyrifos (CPF), Diethylhexyl phthalate (DEHP), and Per- and polyfluoroalkyl substances (PFAS) in MGBA perturbations and subsequent neurotoxicity. The complexity of the MGBA and the changing nature of the gut microbiota pose significant challenges for future research. However, emerging in-silico models able to analyse and interpret meta-omics data are a promising option for understanding the processes in this axis and can help prevent neurotoxicity.
Collapse
Affiliation(s)
- Jordina Balaguer-Trias
- Environmental Engineering Laboratory, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-T.); (D.D.); (M.S.)
| | - Deepika Deepika
- Environmental Engineering Laboratory, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-T.); (D.D.); (M.S.)
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-T.); (D.D.); (M.S.)
| | - Vikas Kumar
- Environmental Engineering Laboratory, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-T.); (D.D.); (M.S.)
- IISPV (Pere Virgili Institute for Health Research), Sant Joan University Hospital, Universitat Rovira i Virgili, 43204 Reus, Spain
- Correspondence: ; Tel.: +34977558576
| |
Collapse
|
23
|
Owumi SE, Adedara IA, Oyelere AK. Indole-3-propionic acid mitigates chlorpyrifos-mediated neurotoxicity by modulating cholinergic and redox-regulatory systems, inflammatory stress, apoptotic responses and DNA damage in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103786. [PMID: 34915193 DOI: 10.1016/j.etap.2021.103786] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/13/2021] [Accepted: 12/07/2021] [Indexed: 05/10/2023]
Abstract
This study probed the neuroprotective influence of indole-3-propionic acid (IPA) in rats exposed to chlorpyrifos (CPF) alone at 5 mg/kg body weight or co-administered with IPA at 12.5 and 25 mg/kg for 14 days. Behavioral data indicated that IPA significantly (p < 0.05) abated CPF-mediated anxiogenic-like behaviors with concomitant improvement in the locomotor and exploratory behaviors as substantiated by track plots and heat maps data. Also, IPA mitigated CPF-mediated diminution in cholinergic and antioxidant defense systems whereas it markedly improved thioredoxin level and thioredoxin reductase activity in cerebral and cerebellar tissues of the animals. Co-administration of IPA significantly enhanced anti-inflammatory cytokine, interleukin-10 but suppressed oxidative and inflammatory stress, caspase-9 and caspase-3 activation with concomitant reduction in 8-hydroxy-2'-deoxyguanosine (8-OHdG) level and histological damage. Collectively, IPA-mediated neuroprotection involves modulation of cholinergic and redox-regulatory systems, inflammatory stress, apoptotic responses and DNA damage in cerebrum and cerebellum of rats.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adegboyega K Oyelere
- School of Biochemistry and Chemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Shekel I, Giladi S, Raykin E, Weiner M, Chalifa-Caspi V, Lederman D, Kofman O, Golan HM. Isolation-Induced Ultrasonic Vocalization in Environmental and Genetic Mice Models of Autism. Front Neurosci 2021; 15:769670. [PMID: 34880723 PMCID: PMC8645772 DOI: 10.3389/fnins.2021.769670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 11/20/2022] Open
Abstract
Studies in rodent models suggest that calls emitted by isolated pups serve as an early behavioral manifestation of communication deficits and autistic like behavior. Previous studies in our labs showed that gestational exposure to the pesticide chlorpyrifos (CPF) and the Mthfr-knock-out mice are associated with impaired social preference and restricted or repetitive behavior. To extend these studies, we examine how pup communication via ultrasonic vocalizations is altered in these ASD models. We implemented an unsupervised hierarchical clustering method based on the spectral properties of the syllables in order to exploit syllable classification to homogeneous categories while avoiding over-categorization. Comparative exploration of the spectral and temporal aspects of syllables emitted by pups in two ASD models point to the following: (1) Most clusters showed a significant effect of the ASD factor on the start and end frequencies and bandwidth and (2) The highest percent change due to the ASD factor was on the bandwidth and duration. In addition, we found sex differences in the spectral and temporal properties of the calls in both control groups as well as an interaction between sex and the gene/environment factor. Considering the basal differences in the characteristics of syllables emitted by pups of the C57Bl/6 and Balb/c strains used as a background in the two models, we suggest that the above spectral-temporal parameters start frequency, bandwidth, and duration are the most sensitive USV features that may represent developmental changes in ASD models.
Collapse
Affiliation(s)
- Itay Shekel
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Shaked Giladi
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Eynav Raykin
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Department of Psychology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - May Weiner
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Vered Chalifa-Caspi
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Dror Lederman
- Faculty of Engineering, Holon Institute of Technology, Holon, Israel
| | - Ora Kofman
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Department of Psychology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Hava M Golan
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,National Center for Autism Research, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
25
|
Silva MH. Chlorpyrifos and Δ 9 Tetrahydrocannabinol exposure and effects on parameters associated with the endocannabinoid system and risk factors for obesity. Curr Res Toxicol 2021; 2:296-308. [PMID: 34467221 PMCID: PMC8384771 DOI: 10.1016/j.crtox.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Marilyn Silva. Retired from a career in toxicology and risk assessment. Increased childhood and adult obesity are associated with chlorpyrifos (CPF), an organophosphate pesticide. Cannabis (Δ9Tetrahydrocannabinol: Δ9THC) use has increased globally with legalization. CPF applications on cannabis crops lacks federally regulated tolerances and may pose health risks through exposure during development and in adulthood. Both CPF and Δ9THC affect the endocannabinoid system (eCBS), a regulator of appetite, energy balance, and gut microbiota, which, if disrupted, increases risk for obesity and related diseases. CPF inhibits eCB metabolism and Δ9THC is a partial agonist/antagonist at the cannabinoid receptor (CB1R). Effects of each on obesogenic parameters were examined via literature search. Male rodents with CPF exposure showed increased body weights, dysbiosis, inflammation and oxidative stress, potentially associated with increased eCBs acting through the gut-microbiota-adipose-brain regulatory loop. Δ9THC generally decreased body weights via partial agonism at the CB1R, lowering levels of eCBs. Dysbiosis and/or oxidative stress associated inflammation occurred with CPF, but these parameters were not tested with Δ9THC. Database deficiencies included limited endpoints to compare between chemicals/age-groups, inter-study variables (dose ranges, dosing vehicle, rodent strain, treatment duration, etc.). CPF and Δ9THC were not tested together, but human co-chemical effects would depend on exposure ratio, subject age, exposure duration, and health status, among others. An overriding concern is that both chemicals are well-documented developmental neurotoxins in addition to their low dose effects on energy balance. A co-exposure risk assessment is warranted with increased use and lack of federal CPF regulation on cannabis.
Collapse
Affiliation(s)
- Marilyn H. Silva
- Retired from a career in toxicology and risk assessment 2437, Evenstar Lane, Davis, CA 95616, United States
| |
Collapse
|
26
|
Amendola G, Bocca B, Picardo V, Pelosi P, Battistini B, Ruggieri F, Attard Barbini D, De Vita D, Madia VN, Messore A, Di Santo R, Costi R. Toxicological aspects of cannabinoid, pesticide and metal levels detected in light Cannabis inflorescences grown in Italy. Food Chem Toxicol 2021; 156:112447. [PMID: 34343597 DOI: 10.1016/j.fct.2021.112447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Recently, the cultivation of light Cannabis, with a total THC content less than 0.6%, has been encouraged due to its industrial and therapeutic potential. This has increased the consumption of hemp for both smoking purposes and food preparation. Even so, Cannabis inflorescences are not subject to EU regulations and standards provided for food and tobacco products. A study was carried out on thirty-one inflorescences samples, collected in different Italian regions, in order to determine cannabinoids, pesticides and metals and to evaluate the exposure of consumers to contaminants and ensure a safe consumption. Contents of THC were always below 0.5%, while CBD ranged between 0.3 and 8.64%. The determination of 154 pesticides showed that 87% of the samples contained fungicides and insecticides in the range 0.01-185 μg/g. The most found are spinosad and cyprodinil. The concentration of metals ranged from 1 to more than 100 μg/g and As, Cd, Co, Cr, Hg, Cu, Mo, Ni and V exceeded the regulatory US limits for inhaled Cannabis products, while Pb exceeded them for both oral and inhaled products. These contaminants are intrinsically toxic and may affect public health. Actions are needed to establish regulatory measures and reduce the adverse effects caused by contaminants in Cannabis.
Collapse
Affiliation(s)
- G Amendola
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy.
| | - B Bocca
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - V Picardo
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - P Pelosi
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - B Battistini
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - F Ruggieri
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - D Attard Barbini
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - D De Vita
- Dipartimento di Biologia Ambientale, "Sapienza" Università di Roma, p.le Aldo Moro 5, 00185, Rome, Italy
| | - V N Madia
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, 00185, Rome, Italy
| | - A Messore
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, 00185, Rome, Italy
| | - R Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, 00185, Rome, Italy
| | - R Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
27
|
Luo M, Zhou DD, Shang A, Gan RY, Li HB. Influences of food contaminants and additives on gut microbiota as well as protective effects of dietary bioactive compounds. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Karimani A, Ramezani N, Afkhami Goli A, Nazem Shirazi MH, Nourani H, Jafari AM. Subchronic neurotoxicity of diazinon in albino mice: Impact of oxidative stress, AChE activity, and gene expression disturbances in the cerebral cortex and hippocampus on mood, spatial learning, and memory function. Toxicol Rep 2021; 8:1280-1288. [PMID: 34277358 PMCID: PMC8261896 DOI: 10.1016/j.toxrep.2021.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 02/03/2023] Open
Abstract
Diazinon (DZN) with prominent neurotoxic effects perturbs CNS function via multiple mechanisms. This investigation intends to explore mood, spatial learning, and memory dysfunction, acetylcholine esterase (AChE) activity, and neurodegeneration-related gene expression in the cortex and hippocampus regions of mice exposed to DZN for 63 consecutive days (subchronic exposure). Adult male albino mice were orally given sublethal DZN (DZNL = 0.1 mg/kg, DZNM = 1 mg/kg and DZNH = 10 mg/kg). All mice in the DZNH group died within 3 weeks postexposure. DZNL and DZNM caused body and brain weight loss (p < 0.05). Completing 9 weeks of DZN exposure, a marked decline in AChE activity and oxidative stress level was indicated in both brain regions (p < 0.05). Also, synaptophysin, vesicular acetylcholine transferase, and glutamate decarboxylase gene expressions were affected in both brain regions (p < 0.05). Furthermore, the present study revealed that DZN administration increased anxiety and depressive-like behaviors (p < 0.0001). Spatial learning and short- and long-memory were severely affected by DZNL and DZNM treatments (p < 0.0001). Taken together, subchronic exposure to low and medium doses of DZN can cause AChE inhibition, oxidative damage, and neurotransmitter disturbances in brain cells and induce neurodegeneration. These changes would impair mood, spatial learning, and memory function.
Collapse
Key Words
- AChE, acetylcholine esterase
- AD, Alzheimer’s disease
- Ach, acetylcholine
- COX-2, cyclooxygenase-2
- CX, cerebral cortex
- Cerebral cortex
- DZN, diazinon
- DZO, diazoxon
- Diazinon
- FRAP, ferric reducing antioxidant power
- FST, forced swim test
- GABA, ϒ-aminobutyric acid
- GAD65, glutamate decarboxylase 65
- HP, hippocampus
- Hippocampus
- LD50, lethal dose 50
- MB, marble burying test
- MDA, malondialdehyde
- MWM, Morris water maze test
- Memory
- NOAEL, no-observed-adverse-effect level
- Neurodegenerative diseases
- Ops, organophosphates
- PD, Parkinson’s disease
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SEM, standard error of the mean
- SYP, synaptophysin
- Spatial learning
- VAChT, vesicular acetylcholine transferase
- qRT-PCR, quantitative reverse transcription-polymerase chain reaction
Collapse
Affiliation(s)
- Asieh Karimani
- Department of Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nasrin Ramezani
- Department of Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Afkhami Goli
- Department of Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Hosein Nourani
- Department of Pathology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Moghaddam Jafari
- Department of Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
29
|
Persistent proteomic changes in glutamatergic and GABAergic signaling in the amygdala of adolescent rats exposed to chlorpyrifos as juveniles. Neurotoxicology 2021; 85:234-244. [PMID: 34058248 DOI: 10.1016/j.neuro.2021.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
Chlorpyrifos (CPF) remains one of the most widely used organophosphorus insecticides (OPs) despite the concerns about its developmental neurotoxicity. Developmental exposure to CPF has long-lasting negative impacts, including abnormal emotional behaviors. These negative impacts are observed at exposure levels do not cause inhibition of acetylcholinesterase, the canonical target of OPs. Exposure to CPF at these levels inhibits the endocannabinoid metabolizing enzyme fatty acid amide hydrolase (FAAH) but it is not clear what the persistent effects of this inhibition are. To investigate this, male rat pups were exposed orally to either corn oil, 0.75 mg/kg CPF, or 0.02 mg/kg PF-04457845 (PF; a specific inhibitor of FAAH) daily from postnatal day 10 (PND10) - PND16. This dosage of CPF does not inhibit brain cholinesterase activity but inhibits FAAH activity. On PND38 (adolescence), the protein expression in the amygdala was determined using a label-free shotgun proteomic approach. The analysis of control vs CPF and control vs PF led to the identification of 44 and 142 differentially regulated proteins, respectively. Gene ontology enrichment analysis revealed that most of the proteins with altered expression in both CPF and PF treatment groups were localized in the synapse-related regions, such as presynaptic membrane, postsynaptic density, and synaptic vesicle. The different biological processes affected by both treatment groups included persistent synaptic potentiation, glutamate receptor signaling, protein phosphorylation, and chemical synaptic transmission. These results also indicated disturbances in the balance between glutamatergic (↓ Glutamate AMPA receptor 2, ↓ Excitatory amino acid transporter 2, and ↑ vesicular glutamate transporter 2) and GABAergic signaling (↑ GABA transporter 3 and ↑ glutamate decarboxylase 2). This imbalance could play a role in the abnormal emotional behavior that we have previously reported. These results suggest that there is a similar pattern of expression between CPF and PF, and both these chemicals can persistently alter emotional behavior as a consequence of inhibition of FAAH.
Collapse
|
30
|
Giambò F, Teodoro M, Costa C, Fenga C. Toxicology and Microbiota: How Do Pesticides Influence Gut Microbiota? A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115510. [PMID: 34063879 PMCID: PMC8196593 DOI: 10.3390/ijerph18115510] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
In recent years, new targets have been included between the health outcomes induced by pesticide exposure. The gastrointestinal tract is a key physical and biological barrier and it represents a primary site of exposure to toxic agents. Recently, the intestinal microbiota has emerged as a notable factor regulating pesticides’ toxicity. However, the specific mechanisms related to this interaction are not well known. In this review, we discuss the influence of pesticide exposure on the gut microbiota, discussing the factors influencing gut microbial diversity, and we summarize the updated literature. In conclusion, more studies are needed to clarify the host–microbial relationship concerning pesticide exposure and to define new prevention interventions, such as the identification of biomarkers of mucosal barrier function.
Collapse
Affiliation(s)
- Federica Giambò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (F.G.); (M.T.); (C.F.)
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (F.G.); (M.T.); (C.F.)
| | - Chiara Costa
- Clinical and Experimental Medicine Department, University of Messina, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-090-2212052
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (F.G.); (M.T.); (C.F.)
| |
Collapse
|
31
|
Abreu AC, Navas MM, Fernández CP, Sánchez-Santed F, Fernández I. NMR-Based Metabolomics Approach to Explore Brain Metabolic Changes Induced by Prenatal Exposure to Autism-Inducing Chemicals. ACS Chem Biol 2021; 16:753-765. [PMID: 33728896 DOI: 10.1021/acschembio.1c00053] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
NMR offers the unique potential to holistically screen hundreds of metabolites and has already proved to be a powerful technique able to provide a global picture of a wide range of metabolic processes underlying complex and multifactorial diseases, such as neurodegenerative and neurodevelopmental diseases. The aim of this study was to apply an NMR-based metabolomics approach to explore brain metabolic changes in both male and female rats induced by prenatal exposure to two chemicals associated with autism disorders-the organophosphorus pesticide chlorpyrifos (CPF) and the antiepileptic drug valproic acid (VPA)-at different postnatal ages. Depending on the age and on the brain region (hippocampus and cerebellum), several metabolites were shown to be significantly affected by exposure to both compounds. The evaluation of the spectral profiles revealed that the nervous-system-specific metabolite N-acetylaspartate (NAA), amino acid neurotransmitters (e.g., glutamate, glutamine, GABA, glycine), pyroglutamic acid, unsaturated fatty acids, and choline-based compounds are discriminant biomarkers. Additionally, metabolic changes varied as a function of age, but importantly not of sex.
Collapse
Affiliation(s)
- Ana Cristina Abreu
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Miguel Morales Navas
- Department of Psychology and Health Research Center CEINSAUAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Cristian Perez Fernández
- Department of Psychology and Health Research Center CEINSAUAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology and Health Research Center CEINSAUAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| |
Collapse
|
32
|
Chiu KC, Sisca F, Ying JH, Tsai WJ, Hsieh WS, Chen PC, Liu CY. Prenatal chlorpyrifos exposure in association with PPARγ H3K4me3 and DNA methylation levels and child development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116511. [PMID: 33540251 DOI: 10.1016/j.envpol.2021.116511] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/15/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Chlorpyrifos, one of the most widely used pesticides, can penetrate the placenta and affect fetal growth and neurodevelopment. Epigenetic regulation of peroxisome proliferator-activated receptor gamma (PPARγ), such as DNA methylation and trimethylation of lysine 4 of H3 (H3K4me3), may provide a potential mechanism for how fetal growth and development are impacted by chlorpyrifos exposure. The aims of the study were to investigate whether prenatal chlorpyrifos exposure was associated with H3K4me3 and DNA methylation levels of the PPARγ gene in the placenta and the related effects on birth outcomes and neurodevelopment. METHODS Among 425 mother-infant pairs from the Taiwan Birth Panel Study, chlorpyrifos levels were measured in cord blood by using online SPE-LC/HESI/MS/MS; placental PPARγ H3K4me3 and DNA methylation levels were measured by ChIP-qPCR and pyrosequencing, respectively; the neonates' health outcomes were extracted from the medical records; and childhood neurodevelopment was evaluated by using the Comprehensive Developmental Inventory for Infants and Toddlers in 2-year-old children. Multivariable regression models were used to adjust for potential confounders. RESULTS After controlling for potential confounders, each unit increase in the natural log-transformed prenatal chlorpyrifos exposure level was associated with an increase in the PPARγ DNA methylation level (adjusted β (aβ) = 0.77, p = 0.032) and poorer performance in the cognitive and language domains at 2 years old, especially in boys (aβ = -1.66, p = 0.016, and aβ = -1.79, p = 0.023, respectively). PPARγ H3K4me3 levels were positively associated with gestational age (aβ = 0.16, p = 0.011), birth weight (aβ = 30.52, p = 0.013), birth length (aβ = 0.18, p = 0.003 and aβ = 0.15, p = 0.042), and gross-motor performance (aβ = 1.67, p = 0.036). CONCLUSIONS Our findings suggested that prenatal chlorpyrifos exposure affected PPARγ DNA methylation levels and performance in the cognitive and language domains.
Collapse
Affiliation(s)
- Kuan-Chih Chiu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan
| | - Fran Sisca
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan
| | - Jen-Hao Ying
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan
| | - Wan-Ju Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan
| | - Wu-Shiun Hsieh
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, 100, Taiwan; Department of Pediatrics, Cathay General Hospital, Taipei, 100, Taiwan
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan; Department of Public Health, National Taiwan University College of Public Health, Taipei, 100, Taiwan; Department of Environmental and Occupational Medicine, National,Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Chen-Yu Liu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan; Department of Public Health, National Taiwan University College of Public Health, Taipei, 100, Taiwan.
| |
Collapse
|
33
|
Chetty-Mhlanga S, Fuhrimann S, Basera W, Eeftens M, Röösli M, Dalvie MA. Association of activities related to pesticide exposure on headache severity and neurodevelopment of school-children in the rural agricultural farmlands of the Western Cape of South Africa. ENVIRONMENT INTERNATIONAL 2021; 146:106237. [PMID: 33171379 DOI: 10.1016/j.envint.2020.106237] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/10/2020] [Accepted: 10/22/2020] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Children and adolescents living in agricultural areas are likely to be exposed to mixtures of pesticides during their daily activities, which may impair their neurodevelopment. We investigated various such activities in relation to headache severity and neurodevelopment of school-children living in rural agricultural areas in the Western Cape of South Africa. METHOD We used baseline date from 1001 school-children of the Child Health Agricultural Pesticide Cohort Study in South Africa (CapSA) aged 9-16 from seven schools and three agriculture areas in the Western Cape. Questionnaires were administrated to assess activities related to pesticide exposure and health symptoms addressing four types of activities: 1) child farm activities related to pesticide handling, 2) eating crops directly from the field, 3) contact with surface water around the field, and 4) seen and smelt pesticide spraying activities. Neurocognitive performance across three domains of attention, memory and processing speed were assessed by means of an iPad-based cognitive assessment tool, Cambridge Automated NeuroPsychological Battery (CANTAB). Headache severity was enquired using a standard Headache Impact Test (HIT-6) tool. Cross-sectional regression analysis was performed. RESULTS About 50% of the cohort report to have ever been engaged in activities related to pesticide exposure including farm activities, eating crops directly from the field and leisure activities. Headache severity score was consistently increased in relation to pesticide-related farm activities (score increase of 1.99; 95% CI: 0.86, 3.12), eating crops (1.52; 0.41, 2.67) and leisure activities of playing, swimming or bathing in nearby water (1.25; 0.18, 2.33). For neurocognitive outcomes, an overall negative trend with pesticide exposure-related activities was observed. Among others, involvement in pesticide-related farm activities was associated with a lower multi-tasking accuracy score (-2.74; -5.19, -0.29), while lower strategy in spatial working memory (-0.29; -0.56; -0.03) and lower paired associated learning (-0.88; -1.60, -0.17) was observed for those who pick crops off the field compared to those who do not pick crops off the field. Eating fruits directly from the vineyard or orchard was associated with a lower motor screening speed (-0.06; -0.11, -0.01) and lower rapid visual processing accuracy score (-0.02; -0.03, 0.00). CONCLUSIONS Children who indicate activities related to pesticide exposure may be at higher risk for developing headaches and lower cognitive performance in the domains of attention, memory and processing speed. However, self-reported data and cross-sectional design are a limitation. Future research in CapSA will consider pesticide exposure estimations via urinary biomarkers and longitudinal assessment of cognitive functions.
Collapse
Affiliation(s)
- Shala Chetty-Mhlanga
- Centre for Environment and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, South Africa; Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Switzerland.
| | - Samuel Fuhrimann
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 Utrecht, Netherlands.
| | - Wisdom Basera
- Centre for Environment and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, South Africa
| | - Marloes Eeftens
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Switzerland.
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Switzerland.
| | - Mohamed Aqiel Dalvie
- Centre for Environment and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, South Africa.
| |
Collapse
|
34
|
El Khayat El Sabbouri H, Gay-Quéheillard J, Joumaa WH, Delanaud S, Guibourdenche M, Darwiche W, Djekkoun N, Bach V, Ramadan W. Does the perigestational exposure to chlorpyrifos and/or high-fat diet affect respiratory parameters and diaphragmatic muscle contractility in young rats? Food Chem Toxicol 2020; 140:111322. [PMID: 32289335 DOI: 10.1016/j.fct.2020.111322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 04/03/2020] [Indexed: 02/08/2023]
Abstract
The perinatal period is characterized by developmental stages with high sensitivity to environmental factors. Among the risk factors, maternal High-Fat Diet (HFD) consumption and early-life pesticide exposure can induce metabolic disorders at adulthood. We established the effects of perigestational exposure to Chlorpyrifos (CPF) and/or HFD on respiratory parameters, sleep apnea and diaphragm contractility in adult rats. Four groups of female rats were exposed starting from 4 months before gestation till the end of lactation period to CPF (1 mg/kg/day vs. vehicle) with or without HFD. Sleep apnea and respiratory parameters were measured by whole-body plethysmography in male offspring at postnatal day 60. Then diaphragm strips were dissected for the measurement of contractility, acetylcholinesterase (AChE) activity, and gene expression. The perigestational exposure to CPF and/or HFD increased the sleep apnea index but decreased the respiratory frequency. The twitch tension and the fatigability index were also increased, associated with reduced AChE activity and elevated mRNA expression of AChE, ryanodine receptor, and myosin heavy chain isoforms. Therefore, the perigestational exposure to either CPF and/or HFD could program the risks for altered ventilatory parameters and diaphragm contractility in young adult offspring despite the lack of direct contact to CPF and/or HFD.
Collapse
Affiliation(s)
- Hiba El Khayat El Sabbouri
- PERITOX UMR-I-01 University of Picardie Jules Verne, 80025, Amiens, France; Laboratoire Rammal Hassan Rammal, équipe de Recherche PhyToxE, Faculté des Sciences (section V), Université Libanaise, Nabatieh, Lebanon
| | | | - Wissam H Joumaa
- Laboratoire Rammal Hassan Rammal, équipe de Recherche PhyToxE, Faculté des Sciences (section V), Université Libanaise, Nabatieh, Lebanon
| | - Stephane Delanaud
- PERITOX UMR-I-01 University of Picardie Jules Verne, 80025, Amiens, France
| | | | - Walaa Darwiche
- Hematim Laboratory, EA4666, University of Picardie Jules Verne, 80025, Amiens, France
| | - Narimane Djekkoun
- PERITOX UMR-I-01 University of Picardie Jules Verne, 80025, Amiens, France
| | - Véronique Bach
- PERITOX UMR-I-01 University of Picardie Jules Verne, 80025, Amiens, France
| | - Wiam Ramadan
- Laboratoire Rammal Hassan Rammal, équipe de Recherche PhyToxE, Faculté des Sciences (section V), Université Libanaise, Nabatieh, Lebanon; Lebanese Institute for Biomedical Research and Application (LIBRA), International University of Beirut (BIU) and Lebanese International University (LIU), Beirut, Lebanon
| |
Collapse
|
35
|
Neuropathological Mechanisms Associated with Pesticides in Alzheimer's Disease. TOXICS 2020; 8:toxics8020021. [PMID: 32218337 PMCID: PMC7355712 DOI: 10.3390/toxics8020021] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/14/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022]
Abstract
Environmental toxicants have been implicated in neurodegenerative diseases, and pesticide exposure is a suspected environmental risk factor for Alzheimer’s disease (AD). Several epidemiological analyses have affirmed a link between pesticides and incidence of sporadic AD. Meanwhile, in vitro and animal models of AD have shed light on potential neuropathological mechanisms. In this paper, a perspective on neuropathological mechanisms underlying pesticides’ induction of AD is provided. Proposed mechanisms range from generic oxidative stress induction in neurons to more AD-specific processes involving amyloid-beta (Aβ) and hyperphosphorylated tau (p-tau). Mechanisms that are more speculative or indirect in nature, including somatic mutation, epigenetic modulation, impairment of adult neurogenesis, and microbiota dysbiosis, are also discussed. Chronic toxicity mechanisms of environmental pesticide exposure crosstalks in complex ways and could potentially be mutually enhancing, thus making the deciphering of simplistic causal relationships difficult.
Collapse
|