1
|
Chen Z, Wan L, Wu M, Zhao Y, Huang H, He Q, Wang Y, Luo Q. Oxidative stress regulates the catalytic activity and mitochondrial localization of HK2 in trophoblast by regulating K346 lactylation. FASEB J 2025; 39:e70429. [PMID: 40019223 DOI: 10.1096/fj.202402430rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Preeclampsia (PE) is one of the most dangerous complications of pregnancy. The pathogenic mechanisms of this condition are not yet clear. Lysine lactylation (Kla) is a novel post-translational modification (PTM) reported recently. It remains to be determined whether Kla plays a role in the development of PE. Here, western blotting revealed that the placental Kla profile of PE was different from that of normal pregnancies, and hydrogen peroxide (H2O2) weakened the Kla level of trophoblast cells. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) indicated that 333 Kla sites of 232 proteins were changed by Kla in BeWo cells (a trophoblast cell line) treated with H2O2, among which only HK2 showed a unique Kla site (K346) with down-regulated lactylation. Additionally, the inactive mutant HK2-K346 was associated with decreased hexokinase activity, lower affinity to voltage-dependent anion channel 1 (VDAC1), and impaired cell proliferation. These findings demonstrate that lactylation is involved in the pathogenesis of PE and that lactylation of HK2-K346 could serve as a new connection between oxidative stress, energy metabolism, and the development of PE.
Collapse
Affiliation(s)
- Zhirui Chen
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Wan
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mengying Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun Zhao
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haixia Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Reproductive Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qiuyi He
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ying Wang
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Luo
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Elblová P, Andělová H, Lunova M, Anthi J, Henry SJW, Tu X, Dejneka A, Jirsa M, Stephanopoulos N, Lunov O. Geometrically constrained cytoskeletal reorganisation modulates DNA nanostructures uptake. J Mater Chem B 2025; 13:2335-2351. [PMID: 39835937 PMCID: PMC11749194 DOI: 10.1039/d5tb00074b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
DNA nanostructures (DNs) have gained popularity in various biomedical applications due to their unique properties, including structural programmability, ease of synthesis and functionalization, and low cytotoxicity. Effective utilization of DNs in biomedical applications requires a fundamental understanding of their interactions with living cells and the mechanics of cellular uptake. Current knowledge primarily focuses on how the physicochemical properties of DNs, such as mass, shape, size, and surface functionalization, affect uptake efficacy. However, the role of cellular mechanics and morphology in DN uptake remains largely unexplored. In this work, we show that cells subjected to geometric constraints remodel their actin cytoskeleton, resulting in differential mechanical force generation that facilitates DN uptake. The length, number, and orientation of F-actin fibers are influenced by these constraints, leading to distinct mechanophenotypes. Overall, DN uptake is governed by F-actin forces arising from filament reorganisation under geometric constraints. These results underscore the importance of actin dynamics in the cellular uptake of DNs and suggest that leveraging geometric constraints to induce specific cell morphology adaptations could enhance the uptake of therapeutically designed DNs.
Collapse
Affiliation(s)
- Petra Elblová
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-121 16 Prague 2, Czech Republic
| | - Hana Andělová
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Judita Anthi
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| | - Skylar J W Henry
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, USA
| | - Xinyi Tu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, USA
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA.
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, USA
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| |
Collapse
|
3
|
Li X, Yu Q, Hua X, He J, Liu J, Peng L, Wang J, Li X, Yang Y. Phosphorylation of ADF7-Mediated by AGC1.7 Regulates Pollen Germination in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2025; 48:1149-1161. [PMID: 39412187 DOI: 10.1111/pce.15192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 01/04/2025]
Abstract
Actin depolymerizing factors (ADFs), like other actin-binding proteins (ABPs), are modified by phosphorylation to regulate the dynamics of the actin filaments, thereby functioning in various processes throughout the plant lifecycle. In this study, we found that the Arabidopsis thaliana cytoplasmic kinase AGC1.7 interacts with ADF7 in vitro and in vivo. AGC1.7 phosphorylates ADF7 at its Ser-6, Ser-103 and Ser-104 residues in vitro, while replacing these residues with alanine promotes ADF7-mediated actin depolymerization in vitro. Expression of the phosphorylation-mimetic mutant protein ADF7S6/103/104D driven by the pollen-specific LAT52 promoter fully rescues the defects in germination rate, silique length and seeds per silique in both adf7-2 and agc1.5 agc1.7 (agcdm) mutants. Our data establish a model whereby AGC1.7-mediated ADF7 phosphorylation plays an important role in pollen germination and pollen tube growth.
Collapse
Affiliation(s)
- Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qin Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinyue Hua
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Juan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiajia Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xufeng Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Xu E, Huang Z, Zhu K, Hu J, Ma X, Wang Y, Zhu J, Zhang C. PDGFRB promotes dedifferentiation and pulmonary metastasis through rearrangement of cytoskeleton under hypoxic microenvironment in osteosarcoma. Cell Signal 2024; 125:111501. [PMID: 39505287 DOI: 10.1016/j.cellsig.2024.111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Osteosarcoma (OS) cells commonly suffer from hypoxia and dedifferentiation, resulting in poor prognosis. We plan to identify the role of hypoxia on dedifferentiation and the associated cellular signaling. METHODS We performed sphere formation assays and determined spheroid cells as dedifferentiated cells by detecting stem cell-like markers. RNAi assay was used to explore the relationship between hypoxia inducible factor 1 subunit alpha (HIF1A) and platelet derived growth factor receptor beta (PDGFRB). We obtained PDGFRB knockdown and overexpression cells through lentiviral infection experiments and detected the expression of PDGFRB, p-PDGFRB, focal adhesion kinase (FAK), p-FAK, phosphorylated myosin light chain 2 (p-MLC2), and ras homolog family member A (RhoA) in each group. The effects of PDGFRB on cytoskeleton rearrangement and cell adhesion were explored by immunocytochemistry. Wound-healing experiments, transwell assays, and animal trials were employed to investigate the effect of PDGFRB on OS cell metastasis both in vitro and in vivo. RESULTS Dedifferentiated OS cells were found to exhibit high expression of HIF1A and PDGFRB, and HIF1A upregulated PDGFRB, subsequently activated RhoA, and increased the phosphorylation of MLC2. PDGFRB also enhanced the phosphorylation of FAK. The OS cell morphology and vinculin distribution were altered by PDGFRB. PDGFRB promoted cell dedifferentiation and had a significant impact on the migration and invasion abilities of OS cells in vitro. In addition, PDGFRB increased pulmonary metastasis of OS cells in vivo. CONCLUSION Our results demonstrated that HIF1A up-regulated PDGFRB under hypoxic conditions, and PDGFRB regulated the actin cytoskeleton, a process likely linked to the activation of RhoA and the phosphorylation of, thereby promoting OS dedifferentiation and pulmonary metastasis.
Collapse
Affiliation(s)
- Enjie Xu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Zhen Huang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Kunpeng Zhu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Jianping Hu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Xiaolong Ma
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Yongjie Wang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Jiazhuang Zhu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Chunlin Zhang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China.
| |
Collapse
|
5
|
Wu F, Zhang K, Song Z, Zhou Q, Sun H, Tan Z, Huang Z, Wang F, Wang Z, Yang R, Huang Y. Reduced Proline-Rich Tyrosine Kinase 2 Promotes Tumor Metastasis by Activating Epithelial-Mesenchymal Transition in Colorectal Cancer. Dig Dis Sci 2024; 69:4098-4107. [PMID: 39414740 DOI: 10.1007/s10620-024-08643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/05/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Proline-rich tyrosine kinase 2 (PYK2) is involved in the occurrence, proliferation, migration, and invasion of various tumors. However, few studies have reported the role of PYK2 in colorectal cancer (CRC). AIM To explore the effects of PYK2 on CRC metastasis and elucidate the detailed molecular mechanisms involved. METHODS The expression and prognosis value of PYK2 in CRC prognosis were analyzed using data from The Cancer Genome Atlas (TCGA). PYK2 was knocked down or overexpressed in human CRC cell line, HCT116. Cell proliferation, migration, invasion, and cycle changes were analyzed using CCK-8, Transwell, and flow cytometry assays. Western blotting and quantitative real-time PCR were performed to detect the mRNA and protein levels of cell proliferation and epithelial-mesenchymal transition (EMT) indicators. Fluorescence staining was performed to examine the cytoskeleton. RESULTS Lower expression of PYK2 was observed in CRC tissues and associated with poor prognosis and metastasis in patients with CRC in TCGA database. PYK2 knockdown significantly induced the migration and invasion of CRC cells but did not affect cell proliferation or cycle. Immunofluorescence staining of phalloidin showed that the downregulation of PYK2 increased the cytoskeleton in CRC cells. Moreover, low expression of PYK2 induced the downregulation of E-cadherin and upregulation of snail and vimentin by activating Wnt/β-catenin signaling, thus promoting EMT in CRC cells. CONCLUSIONS Low PYK2 expression was found in tumor tissues, especially metastases, and significantly correlated with patient prognosis. Moreover, decreased PYK2 induces EMT by activating Wnt/β-catenin signaling, which is the potential mechanism of CRC metastasis. Regulating the expression of PYK2 to suppress tumor cell metastasis may represent a promising therapeutic strategy for metastatic CRC.
Collapse
Affiliation(s)
- Fangquan Wu
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ke Zhang
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhengyang Song
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Qishuo Zhou
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hongxia Sun
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zenglin Tan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhenxuan Huang
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Fangyan Wang
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhonglin Wang
- Department of Anorectal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Riwei Yang
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yingpeng Huang
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
6
|
Das B, Prusty A, Dutta S, Maulik A, Dahat Y, Kumar D, Tripathy S. Exploring the uncharted seas: Metabolite profiling unleashes the anticancer properties of Oscillatoria salina. Heliyon 2024; 10:e36048. [PMID: 39224332 PMCID: PMC11367535 DOI: 10.1016/j.heliyon.2024.e36048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Marine cyanobacteria offer a rich source of varied natural products with both chemical and biological diversity. Oscillatoria salina (O. salina) is a filamentous non-heterocystous marine cyanobacterium from Oscillatoriaceae family. In this investigation, we have unveiled bioactive extracts from O. salina using two distinct solvent systems, revealing significant anticancer properties. Our assessment of the organic and aqueous extracts (MCE and AE) of O. salina demonstrated pronounced antiproliferative and antimetastatic effects. Notably, this study is the first to elucidate the anticancer and anti-metastatic potential of O. salina extracts in both 2D and 3D cell culture models. Both MCE and AE induced apoptosis, hindered cell proliferation, invasion, and migration in A549 non-small cell lung cancer cells, accompanied by alterations in cell morphology and cytoskeleton collapse. Moreover, MCE and AE induced spheroid disintegration in A549 cells. Transcriptomics analysis highlighted the significant involvement of Rap1 and p53 signaling pathways in mediating the observed antitumor effects. Mass spectroscopy characterization of these extracts identified 11 compounds, some known for their anticancer potential. HPLC analysis of AE revealed six peaks with UV absorption spectra resembling phycocyanin, a cyanobacterial pigment with well-known anticancer activity. Collectively, these findings underscore the anticancer potential of MCE and AE, containing bioactive metabolites with anticancer and antimetastatic properties.
Collapse
Affiliation(s)
- Bornita Das
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Asharani Prusty
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Subhajeet Dutta
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aditi Maulik
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Yogita Dahat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Organic and Medicinal Chemistry Division, CSIR Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Deepak Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Organic and Medicinal Chemistry Division, CSIR Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Sucheta Tripathy
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
7
|
Ge K, Du X, Liu H, Meng R, Wu C, Zhang Z, Liang X, Yang J, Zhang H. The cytotoxicity of microcystin-LR: ultrastructural and functional damage of cells. Arch Toxicol 2024; 98:663-687. [PMID: 38252150 DOI: 10.1007/s00204-023-03676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Microcystin-LR (MC-LR) is a toxin produced by cyanobacteria, which is widely distributed in eutrophic water bodies and has multi-organ toxicity. Previous cytotoxicity studies have mostly elucidated the effects of MC-LR on intracellular-related factors, proteins, and DNA at the molecular level. However, there have been few studies on the adverse effects of MC-LR on cell ultrastructure and function. Therefore, research on the cytotoxicity of MC-LR in recent years was collected and summarized. It was found that MC-LR can induce a series of cytotoxic effects, including decreased cell viability, induced autophagy, apoptosis and necrosis, altered cell cycle, altered cell morphology, abnormal cell migration and invasion as well as leading to genetic damage. The above cytotoxic effects were related to the damage of various ultrastructure and functions such as cell membranes and mitochondria. Furthermore, MC-LR can disrupt cell ultrastructure and function by inducing oxidative stress and inhibiting protein phosphatase activity. In addition, the combined toxic effects of MC-LR and other environmental pollutants were investigated. This review explored the toxic targets of MC-LR at the subcellular level, which will provide new ideas for the prevention and treatment of multi-organ toxicity caused by MC-LR.
Collapse
Affiliation(s)
- Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Haohao Liu
- Department of Public Health, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
8
|
Alkahtani S, Alkahtane AA, Stournaras C, Alarifi S. Chorein sensitive microtubule organization in tumor cells. PeerJ 2023; 11:e16074. [PMID: 37744224 PMCID: PMC10517657 DOI: 10.7717/peerj.16074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/20/2023] [Indexed: 09/26/2023] Open
Abstract
Background The purpose of this study is to analyzed the involvement of chorein in microtubules organization of three types of malignant; rhabdomyosarcoma tumor cells (ZF), rhabdomyosarcoma cells (RH30), and rhabdomyosarcoma cells (RD). ZF are expressing high chorein levels. Previous studies revealed that chorein protein silencing in ZF tumor cells persuaded apoptotic response followed by cell death. In addition, in numerous malignant and non-malignant cells this protein regulates actin cytoskeleton structure and cellular signaling. However, the function of chorein protein in microtubular organization is yet to be established. Methods In a current research study, we analyzed the involvement of chorein in microtubules organization by using three types of malignant rhabdomyosarcoma cells. We have applied confocal laser-scanning microscopy to analyze microtubules structure and RT-PCR to examine cytoskeletal gene transcription. Results We report here that in rhabdomyosarcoma cells (RH30), chorein silencing induced disarrangement of microtubular network. This was documented by laser scanning microscopy and further quantified by FACS analysis. Interestingly and in agreement with previous reports, tubulin gene transcription in RH cells was unchanged upon silencing of chorein protein. Equally, confocal analysis showed minor disordered microtubules organization with evidently weakened staining in rhabdomyosarcoma cells (RD and ZF) after silencing of chorein protein. Conclusion These results disclose that chorein silencing induces considerable structural disorganization of tubulin network in RH30 human rhabdomyosarcoma tumor cells. Additional studies are now needed to establish the role of chorein in regulating cytoskeleton architecture in tumor cells.
Collapse
Affiliation(s)
- Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A. Alkahtane
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Shutova MS, Borowczyk J, Russo B, Sellami S, Drukala J, Wolnicki M, Brembilla NC, Kaya G, Ivanov AI, Boehncke WH. Inflammation modulates intercellular adhesion and mechanotransduction in human epidermis via ROCK2. iScience 2023; 26:106195. [PMID: 36890793 PMCID: PMC9986521 DOI: 10.1016/j.isci.2023.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/05/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Aberrant mechanotransduction and compromised epithelial barrier function are associated with numerous human pathologies including inflammatory skin disorders. However, the cytoskeletal mechanisms regulating inflammatory responses in the epidermis are not well understood. Here we addressed this question by inducing a psoriatic phenotype in human keratinocytes and reconstructed human epidermis using a cytokine stimulation model. We show that the inflammation upregulates the Rho-myosin II pathway and destabilizes adherens junctions (AJs) promoting YAP nuclear entry. The integrity of cell-cell adhesion but not the myosin II contractility per se is the determinative factor for the YAP regulation in epidermal keratinocytes. The inflammation-induced disruption of AJs, increased paracellular permeability, and YAP nuclear translocation are regulated by ROCK2, independently from myosin II activation. Using a specific inhibitor KD025, we show that ROCK2 executes its effects via cytoskeletal and transcription-dependent mechanisms to shape the inflammatory response in the epidermis.
Collapse
Affiliation(s)
- Maria S. Shutova
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
- University Hospitals of Geneva, Division of Dermatology and Venereology, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julia Borowczyk
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
| | - Barbara Russo
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
- University Hospitals of Geneva, Division of Dermatology and Venereology, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sihem Sellami
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
| | - Justyna Drukala
- Jagiellonian University, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Cracow, Poland
| | - Michal Wolnicki
- Department of Pediatric Urology, Jagiellonian University Medical College, Cracow, Poland
| | - Nicolo C. Brembilla
- University Hospitals of Geneva, Division of Dermatology and Venereology, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gurkan Kaya
- University Hospitals of Geneva, Division of Dermatology and Venereology, Geneva, Switzerland
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Wolf-Henning Boehncke
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
- University Hospitals of Geneva, Division of Dermatology and Venereology, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Pathak S, Gupta R, Parkar H, Joshi N, Nagotu S, Kale A. The role of Colchicine on actin polymerization dynamics: as a potent anti-angiogenic factor. J Biomol Struct Dyn 2022; 40:11729-11743. [PMID: 34424806 DOI: 10.1080/07391102.2021.1965911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the years, cancer research has focused on different strategies to discover drugs and therapies to treat the metastatic stage of cancer. This stage depends upon the type, and the cause of cancer. One of the central facts about any cancer invasion is the formation of new blood vessels that provide nutrients to these uncontrollably dividing cells. This phenomenon is called angiogenesis and is responsible for tumor progression and metastasis. Tumor angiogenesis is a sequential process wherein various angiogenic factors produced by tumor cells bind to receptors of endothelial cells. This stimulates the cytoskeletal protein, especially actin to reorganize themselves and undergo the process of canalization. The driving force for such membrane transformation is spatially and temporally-regulated by polymerization of submembrane actin filaments. So far, Colchicine has been studied for its effectiveness in controlling microtubule reorganization during cell division, but its role is far from understood on actin polymerization. In our current study, we report the effect of Colchicine on actin polymerization dynamics using biophysical analysis like Right light scattering (RLS), Dynamic light scattering (DLS), Circular dichroism (CD) analysis, Scanning electron microscopy (SEM) study. Isothermal titration calorimetry (ITC) and kinetic measurements. Isothermal titration calorimetry (ITC) indicates multiple site binding for colchicine with actin aggregates. We have checked the in vivo effect of colchicine using end3 cells of Saccharomyces cerevisiae. We also report the anti-angiogenesis activity of colchicine via ex-ovo chicken chorioallantoic membrane (CAM) assay. We predict the target site of binding for the drug by docking studies. Based on our findings, we suggest the 'drug-repurposed' function for colchicine as a potential anti-angiogenic candidate.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samridhi Pathak
- School of Chemical Sciences, UM-DAE Center for excellence in basic sciences, University of Mumbai, Mumbai, Maharashtra, India
| | - Rahul Gupta
- School of Chemical Sciences, UM-DAE Center for excellence in basic sciences, University of Mumbai, Mumbai, Maharashtra, India
| | - Haifa Parkar
- School of Chemical Sciences, UM-DAE Center for excellence in basic sciences, University of Mumbai, Mumbai, Maharashtra, India
| | - Neha Joshi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Shirisha Nagotu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Avinash Kale
- School of Chemical Sciences, UM-DAE Center for excellence in basic sciences, University of Mumbai, Mumbai, Maharashtra, India
| |
Collapse
|
11
|
Zieliński T, Pabijan J, Zapotoczny B, Zemła J, Wesołowska J, Pera J, Lekka M. Changes in nanomechanical properties of single neuroblastoma cells as a model for oxygen and glucose deprivation (OGD). Sci Rep 2022; 12:16276. [PMID: 36175469 PMCID: PMC9523022 DOI: 10.1038/s41598-022-20623-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Although complex, the biological processes underlying ischemic stroke are better known than those related to biomechanical alterations of single cells. Mechanisms of biomechanical changes and their relations to the molecular processes are crucial for understanding the function and dysfunction of the brain. In our study, we applied atomic force microscopy (AFM) to quantify the alterations in biomechanical properties in neuroblastoma SH-SY5Y cells subjected to oxygen and glucose deprivation (OGD) and reoxygenation (RO). Obtained results reveal several characteristics. Cell viability remained at the same level, regardless of the OGD and RO conditions, but, in parallel, the metabolic activity of cells decreased with OGD duration. 24 h RO did not recover the metabolic activity fully. Cells subjected to OGD appeared softer than control cells. Cell softening was strongly present in cells after 1 h of OGD and with longer OGD duration, and in RO conditions, cells recovered their mechanical properties. Changes in the nanomechanical properties of cells were attributed to the remodelling of actin filaments, which was related to cofilin-based regulation and impaired metabolic activity of cells. The presented study shows the importance of nanomechanics in research on ischemic-related pathological processes such as stroke.
Collapse
Affiliation(s)
- Tomasz Zieliński
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Joanna Pabijan
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Bartłomiej Zapotoczny
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Joanna Zemła
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Julita Wesołowska
- Laboratory of in Vivo and in Vitro Imaging, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31343, Kraków, Poland
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Botaniczna 3, 31503, Kraków, Poland
| | - Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland.
| |
Collapse
|
12
|
Kim YJ, Cho MJ, Yu WD, Kim MJ, Kim SY, Lee JH. Links of Cytoskeletal Integrity with Disease and Aging. Cells 2022; 11:cells11182896. [PMID: 36139471 DOI: 10.3390/cells11182896] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Aging is a complex feature and involves loss of multiple functions and nonreversible phenotypes. However, several studies suggest it is possible to protect against aging and promote rejuvenation. Aging is associated with many factors, such as telomere shortening, DNA damage, mitochondrial dysfunction, and loss of homeostasis. The integrity of the cytoskeleton is associated with several cellular functions, such as migration, proliferation, degeneration, and mitochondrial bioenergy production, and chronic disorders, including neuronal degeneration and premature aging. Cytoskeletal integrity is closely related with several functional activities of cells, such as aging, proliferation, degeneration, and mitochondrial bioenergy production. Therefore, regulation of cytoskeletal integrity may be useful to elicit antiaging effects and to treat degenerative diseases, such as dementia. The actin cytoskeleton is dynamic because its assembly and disassembly change depending on the cellular status. Aged cells exhibit loss of cytoskeletal stability and decline in functional activities linked to longevity. Several studies reported that improvement of cytoskeletal stability can recover functional activities. In particular, microtubule stabilizers can be used to treat dementia. Furthermore, studies of the quality of aged oocytes and embryos revealed a relationship between cytoskeletal integrity and mitochondrial activity. This review summarizes the links of cytoskeletal properties with aging and degenerative diseases and how cytoskeletal integrity can be modulated to elicit antiaging and therapeutic effects.
Collapse
Affiliation(s)
- Yu Jin Kim
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
| | - Min Jeong Cho
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
| | - Won Dong Yu
- Department of Biomedical Sciences, College of Life Science, CHA University, Pochen 11160, Korea
| | - Myung Joo Kim
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
| | - Sally Yunsun Kim
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Jae Ho Lee
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
- Department of Biomedical Sciences, College of Life Science, CHA University, Pochen 11160, Korea
| |
Collapse
|
13
|
Hong Y, Liu J, Kong W, Li H, Cui Y, Liu Y, Deng Z, Ma D, Zhang K, Li J, Li M. WASH regulates the oxidative stress Nrf2/ARE pathway to inhibit proliferation and promote apoptosis of HeLa cells under the action of Jolkinolide B. PeerJ 2022; 10:e13499. [PMID: 35855902 PMCID: PMC9288166 DOI: 10.7717/peerj.13499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/05/2022] [Indexed: 01/25/2023] Open
Abstract
Jolkinolide B (JB), a diterpenoid compound isolated from the roots of Euphorbia fischeriana, has gained research attention for its antitumor effects. In recent years, JB reportedly displayed anti-tumor activity in solid tumors, such as breast, ovarian, and prostate cancer, and leukemia. In this study, we evaluated the effect of JB on HeLa cells with a focus on cell growth inhibition and related mechanisms. HeLa cells were cultured in vitro and divided into a blank control group, HeLa-Scramble (0, 0.25, 0.5 mM), and Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) protein silenced group, HeLa-shWASH (0, 0.25, 0.5 mM). Morphological changes were observed using an inverted microscope. The inhibition rate of cell proliferation was detected using the WST-1 method. Flow cytometry Brdu+PI double standard method was used to detect cell replication ability and FITC+PI double standard method was used to detect cell apoptosis rate. Western blot was used to verify the expression of Nrf2, HO-1, WASH, Bax, Bcl-2, and PCNA. The mRNA expression of cytokines (IL-1α, IL-6, and IL-8) was detected using RT-qPCR. The results showed that JB induced cell apoptosis and arrested cells at the G2/M phase in HeLa-shWASH cells compared with HeLa-Scramble cells (P < 0.05, P < 0.01, respectively). In addition, JB upregulated IL-1α, IL-6, and IL-8 in HeLa-shWASH cells. We conclude that WASH protein participates in JB-induced regulation of the Nrf2/ARE pathway, aggravates inflammatory responses, and promotes cancer cell apoptosis, thus inhibiting the proliferation and invasion abilities of HeLa cells. JB may have anti-tumor effects and potential clinical value for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Yu Hong
- Qiqihaer Medical University, Qiqihaer, China
| | - Jicheng Liu
- Qiqihaer Medical University, Qiqihaer, China
| | | | - Hui Li
- Qiqihaer Medical University, Qiqihaer, China
| | - Ying Cui
- Qiqihaer Medical University, Qiqihaer, China
| | - Yuchao Liu
- Qiqihaer Medical University, Qiqihaer, China,Baotou Medical College, Baotou, China
| | - Zhihui Deng
- Qiqihaer Medical University, Qiqihaer, China
| | - Dezhi Ma
- Qiqihaer Medical University, Qiqihaer, China
| | | | - Jinghui Li
- Qiqihaer Medical University, Qiqihaer, China
| | - Minhui Li
- Qiqihaer Medical University, Qiqihaer, China,Baotou Medical College, Baotou, China,Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
| |
Collapse
|
14
|
Rabies virus glycoprotein- and transferrin-functionalized liposomes to elevate epigallocatechin gallate and FK506 activity and mediate MAPK against neuronal apoptosis in Parkinson's disease. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Li T, Li X, Mao R, Pan L, Que Y, Zhu C, Jin L, Li S. NLRP2 inhibits cell proliferation and migration by regulating EMT in lung adenocarcinoma cells. Cell Biol Int 2021; 46:588-598. [PMID: 34957627 DOI: 10.1002/cbin.11755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022]
Abstract
Nucleotide-binding oligomerization domain-like receptors (NLRs) are crucial types of innate immune sensors and well known for their critical roles in the immune system. However, how NLRP2 functions in the progression of cancer is largely unknown. Here, we identified NLRP2 as an antioncogene in lung adenocarcinoma (LUAD) cells. Gain- and loss-of-function studies revealed that NLRP2 silencing promoted cell proliferation and migration by stimulating NF-kB signaling in the microenvironment, which induced epithelial-to-mesenchymal transition (EMT) phenotype and cytoskeleton reorganization in LUAD cells. The addition of the NF-kB inhibitor rescued the function of NLRP2 on EMT. Moreover, NLRP2 increased the level of cofilin phosphorylation and repressed subsequent F-actin reorganization. Consistently, the in vivo study showed that NLRP2 played an inhibitory role in forming metastasis foci. Taken together, NLRP2 inhibited cell proliferation and migration by regulating EMT in LUAD cells, demonstrating the essential function of NLRP2 in the development of LUAD.
Collapse
Affiliation(s)
- Tiantian Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rongchen Mao
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lihua Pan
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuhui Que
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lai Jin
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengnan Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Srivastava I, Moitra P, Fayyaz M, Pandit S, Kampert TL, Fathi P, Alanagh HR, Dighe K, Alafeef M, Vuong K, Jabeen M, Nie S, Irudayaraj J, Pan D. Rational Design of Surface-State Controlled Multicolor Cross-Linked Carbon Dots with Distinct Photoluminescence and Cellular Uptake Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59747-59760. [PMID: 34878252 DOI: 10.1021/acsami.1c19995] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We disclose for the first time a facile synthetic methodology for the preparation of multicolor carbon dots (CDs) from a single source barring any chromatographic separations. This was achieved via sequential intraparticle cross-linking of surface abundant carboxylic acid groups on the CDs synthesized from a precursor to control their photoluminescence (PL) spectra as well as affect their degree of cellular internalization in cancer cells. The change in PL spectra with sequential cross-linking was projected by theoretical density functional theory (DFT) studies and validated by multiple characterization tools such as X-ray photoelectron spectroscopy (XPS), PL spectroscopy, ninhydrin assay, etc. The variation in cellular internalization of these cross-linked CDs was demonstrated using inhibitor assays, confocal microscopy, and flow cytometry. We supplemented our findings with high-resolution dark-field imaging to visualize and confirm the colocalization of these CDs into distinct intracellular compartments. Finally, to prove the surface-state controlled PL mechanisms of these cross-linked CDs, we fabricated a triple-channel sensor array for the identification of different analytes including metal ions and biologically relevant proteins.
Collapse
Affiliation(s)
- Indrajit Srivastava
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
| | - Parikshit Moitra
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, University of Maryland Baltimore, Health Sciences Facility III, 670W Baltimore Street, Baltimore, Maryland21201, United States
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland21250, United States
| | - Muhammad Fayyaz
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
| | - Subhendu Pandit
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
| | - Taylor L Kampert
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
| | - Parinaz Fathi
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
| | - Hamideh Rezvani Alanagh
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
| | - Ketan Dighe
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland21250, United States
| | - Maha Alafeef
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, University of Maryland Baltimore, Health Sciences Facility III, 670W Baltimore Street, Baltimore, Maryland21201, United States
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland21250, United States
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid22110, Jordan
| | - Katherine Vuong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
| | - Musarrat Jabeen
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois61801, United States
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, University of Maryland Baltimore, Health Sciences Facility III, 670W Baltimore Street, Baltimore, Maryland21201, United States
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland21250, United States
| |
Collapse
|
17
|
Kuo YC, Chen IY, Rajesh R. Astragaloside IV- and nesfatin-1-encapsulated phosphatidylserine liposomes conjugated with wheat germ agglutinin and leptin to activate anti-apoptotic pathway and block phosphorylated tau protein expression for Parkinson's disease treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112361. [PMID: 34579880 DOI: 10.1016/j.msec.2021.112361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Heap-up of α-synuclein (α-Syn) and its association with tau protein are esteemed to trigger the onset of Parkinson's disease (PD). The purpose of this study was to develop multi-functional liposomes incorporated with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, 1,2-dimyristoyl-sn-glycero-3-phosphocholine and phosphatidylserine (PS) to load astragaloside IV (AS-IV) and nestifin-1 (NF-1), followed by grafting with wheat germ agglutinin (WGA) and leptin (Lep) (WGA-Lep-AS-IV-NF-1-PS-liposomes) to protect dopaminergic neurons from apoptosis. Experimental results showed that increasing the mole percentage of DSPC and PS enhanced the particle size, particle stability and entrapment efficiency of AS-IV and NF-1, and reduced the drug releasing rate. Strong affinity of NF-1 to PS was evidenced by nuclear magnetic resonance spectroscopy. WGA-Lep-AS-IV-NF-1-PS-liposomes diminished transendothelial electrical resistance and improved the capacity of propidium iodide, AS-IV and NF-1 to penetrate the blood-brain barrier (BBB). Immunocytochemical staining exhibited the ability of functionalized liposomes to target Lep receptor and α-Syn in MPP+-insulted SH-SY5Y cells. Western blots revealed a substantial reduction of α-Syn and phosphorylated tau protein in the anti-oxidative pathway through interaction with PS. During the course of treatment with WGA-Lep-AS-IV-NF-1-PS-liposomes, the combined activity of AS-IV and NF-1 and recognition capability simultaneously decreased the expression of Bax, and increased the expressions of Bcl-2, tyrosine hydroxylase and dopamine transporter. The liposomes carrying AS-IV and NF-1 can rescue degenerated neurons and are a promising formulation to achieve better PD management.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC; Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC.
| | - I-Yin Chen
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| |
Collapse
|
18
|
Jiang X, Qin Y, Kun L, Zhou Y. The Significant Role of the Microfilament System in Tumors. Front Oncol 2021; 11:620390. [PMID: 33816252 PMCID: PMC8010179 DOI: 10.3389/fonc.2021.620390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Actin is the structural protein of microfilaments, and it usually exists in two forms: monomer and polymer. Among them, monomer actin is a spherical molecule composed of a polypeptide chain, also known as spherical actin. The function of actin polymers is to produce actin filaments, so it is also called fibroactin. The actin cytoskeleton is considered to be an important subcellular filament system. It interacts with numerous relevant proteins and regulatory cells, regulating basic functions, from cell division and muscle contraction to cell movement and ensuring tissue integrity. The dynamic reorganization of the actin cytoskeleton has immense influence on the progression and metastasis of cancer as well. This paper explores the significance of the microfilament network, the dynamic changes of its structure and function in the presence of a tumor, the formation process around the actin system, and the relevant proteins that may be target molecules for anticancer drugs so as to provide support and reference for interlinked cancer treatment research in the future.
Collapse
Affiliation(s)
- Xin Jiang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Yiming Qin
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Liu Kun
- Department of Neurosurgery, Brain Hospital of Hunan Province, Clinical Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| |
Collapse
|
19
|
MIYAZAWA T. Lipid hydroperoxides in nutrition, health, and diseases. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:161-196. [PMID: 33840675 PMCID: PMC8062262 DOI: 10.2183/pjab.97.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/08/2021] [Indexed: 05/08/2023]
Abstract
Research on lipid peroxidation in food degradation, oil and fat nutrition, and age-related diseases has gained significant international attention for the view of improvement of societal health and longevity. In order to promote basic studies on these topics, a chemiluminescence detection-high performance liquid chromatography instrument using a high-sensitivity single photon counter as a detector was developed. This instrument enabled us to selectively detect and quantify lipid hydroperoxides, a primary product of lipid peroxidation reactions, as hydroperoxide groups at the lipid class level. Furthermore, an analytical method using liquid chromatography-tandem mass spectrometry has been established to discriminate the position and stereoisomerization of hydroperoxide groups in lipid hydroperoxides. Using these two methods, the reaction mechanisms of lipid peroxidation in food and in the body have been confirmed.
Collapse
Affiliation(s)
- Teruo MIYAZAWA
- Food Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
20
|
Geib T, Iacob C, Jribi R, Fernandes J, Benderdour M, Sleno L. Identification of 4-hydroxynonenal-modified proteins in human osteoarthritic chondrocytes. J Proteomics 2020; 232:104024. [PMID: 33122130 DOI: 10.1016/j.jprot.2020.104024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 10/06/2020] [Accepted: 10/22/2020] [Indexed: 11/19/2022]
Abstract
The α,β-unsaturated aldehyde 4-hydroxynonenal (HNE) is formed through lipid peroxidation during oxidative stress. As a highly reactive electrophile, it is able to form adducts with various biomolecules, including proteins. These protein modifications could modulate many signaling pathways, as well as cell differentiation and proliferation, and thus could be highly important in the context of the extracellular matrix and degradation of articular cartilage. This study specifically investigated the role of HNE as a bioactive molecule in chondrocytes of osteoarthritis (OA) patients. Chondrocyte extracts of OA and non-OA patients were analyzed for HNE binding using Western blot and bottom-up LC-MS/MS analyses. HNE-modified histones, H2A and H2B, and histone deacetylase were identified using anti-HNE antibodies. Furthermore, peptide sequencing and database searching revealed 95 distinct HNE-modified proteins and their exact modification sites, with 88 protein adducts being unique to OA chondrocytes. HNE-proteins of specific interest included histone H2A, H2B and H4, collagen alpha-3(VI) chain, eukaryotic initiation factor 4A-I, and nucleolar RNA helicase 2. Comparing their MS/MS spectra to those of HNE-modified standard peptides further validated the six HNE-proteins. SIGNIFICANCE: HNE binding to proteins has been shown to result in multiple abnormalities of chondrocyte phenotype and function, suggesting its contribution in OA development. Considering the increased levels of HNE in OA cartilage, this reactive aldehyde could play a role in OA. This work represents a clinically-relevant in vivo study to demonstrate the pathophysiological role of HNE in human OA. Since HNE binding can alter protein conformation and function, it remains highly relevant to study the effects of this modification in OA.
Collapse
Affiliation(s)
- Timon Geib
- Chemistry Department, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Cristiana Iacob
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur, University of Montréal, Montréal, Québec, Canada
| | - Rihab Jribi
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur, University of Montréal, Montréal, Québec, Canada
| | - Julio Fernandes
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur, University of Montréal, Montréal, Québec, Canada
| | - Mohamed Benderdour
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur, University of Montréal, Montréal, Québec, Canada.
| | - Lekha Sleno
- Chemistry Department, Université du Québec à Montréal, Montréal, Québec, Canada.
| |
Collapse
|
21
|
Traverso S. Anxiety and depression: A matter of stiffness? Med Hypotheses 2020; 145:110344. [PMID: 33075584 DOI: 10.1016/j.mehy.2020.110344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/06/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
Cells react to stress by the universal responses of "fluidization" or "reinforcement" (stiffening) of the cytoplasm, through dramatic re-arrangements of the cytoskeleton. Here it is suggested that, at a supracellular level, the brain exhibits such a fundamental behavior as part of its complex response to stress: it is hypothesized that the soft gel formed by brain cell cytoskeletons and the surrounding extracellular matrix (the "cytoskeletons-matrix system") undergoes transitions either to sol (fluidization) or stiff gel (reinforcement) as a very fundamental and evolutionarily conserved brain response to stress, alongside more sophisticated neural pathways. Sol state corresponds to increased cell activity (a sort of "fight or flight" response), whereas stiff gel state corresponds to inactivity (an "immobility" strategy). Psychological stress, through simple stress signals such as pH changes, would lead to an initial tissue fluidization in key regions of the brain, followed, if the stress stimuli persist, by reinforcement (slow formation of actomyosin stress fibers and matrix stiffening). It is also hypothesized that the cytoskeletons-matrix system is one of the biological correlates of so-called "background feelings", i.e conscious feelings built on inner chemical-physical states of the body. Optimal dynamics of the cytoskeletons-matrix system would contribute to a core feeling of well-being, while shifts towards fluidization (activation) or stiffening (inactivation) would contribute to background feelings at the basis of anxiety and stress-induced depression, respectively. It is suggested that the cytoskeletons-matrix system behaves as a "self-organized critical system", anxiety and depression arising whenever the system is driven too far from the optimal critical point. Finally, some application hints from the proposed ideas are given.
Collapse
|
22
|
Gao H, Zhang L, Wang L, Liu X, Hou X, Zhao F, Yan H, Wang L. Liver transcriptome profiling and functional analysis of intrauterine growth restriction (IUGR) piglets reveals a genetic correction and sexual-dimorphic gene expression during postnatal development. BMC Genomics 2020; 21:701. [PMID: 33032518 PMCID: PMC7545842 DOI: 10.1186/s12864-020-07094-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) remains a major problem associated with swine production. Thus, understanding the physiological changes of postnatal IUGR piglets would aid in improving growth performance. Moreover, liver metabolism plays an important role in the growth and survival of neonatal piglets. RESULTS By profiling the transcriptome of liver samples on postnatal Days 1, 7, and 28, our study focused on characterizing the growth, function, and metabolism in the liver of IUGR neonatal piglets. Our study demonstrates that the livers of IUGR piglets were associated with a series of complications, including inflammatory stress and immune dysregulation; cytoskeleton and membrane structure disorganization; dysregulated transcription events; and abnormal glucocorticoid metabolism. In addition, the abnormal liver function index in the serum [alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total protein (TP)], coupled with hepatic pathological and ultrastructural morphological changes are indicative of liver damage and dysfunction in IUGR piglets. Moreover, these results reveal the sex-biased developmental dynamics between male and female IUGR piglets, and that male IUGR piglets may be more sensitive to disrupted metabolic homeostasis. CONCLUSIONS These observations provide a detailed reference for understanding the mechanisms and characterizations of IUGR liver functions, and suggest that the potential strategies for improving the survival and growth performance of IUGR offspring should consider the balance between postnatal catch-up growth and adverse metabolic consequences. In particular, sex-specific intervention strategies should be considered for both female and male IUGR piglets.
Collapse
Affiliation(s)
- Hongmei Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Longchao Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Ligang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Xin Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Xinhua Hou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Fuping Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Hua Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
| |
Collapse
|
23
|
Alafeef M, Srivastava I, Pan D. Machine Learning for Precision Breast Cancer Diagnosis and Prediction of the Nanoparticle Cellular Internalization. ACS Sens 2020; 5:1689-1698. [PMID: 32466640 DOI: 10.1021/acssensors.0c00329] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the field of theranostics, diagnostic nanoparticles are designed to collect highly patient-selective disease profiles, which is then leveraged by a set of nanotherapeutics to improve the therapeutic results. Despite their early promise, high interpatient and intratumoral heterogeneities make any rational design and analysis of these theranostics platforms extremely problematic. Recent advances in deep-learning-based tools may help bridge this gap, using pattern recognition algorithms for better diagnostic precision and therapeutic outcome. Triple-negative breast cancer (TNBC) is a conundrum because of the complex molecular diversity, making its diagnosis and therapy challenging. To address these challenges, we propose a method to predict the cellular internalization of nanoparticles (NPs) against different cancer stages using artificial intelligence. Here, we demonstrate for the first time that a combination of machine-learning (ML) algorithm and characteristic cellular uptake responses for individual cancer cell types can be successfully used to classify various cancer cell types. Utilizing this approach, we can optimize the nanomaterials to get an optimum structure-internalization response for a given particle. This methodology predicted the structure-internalization response of the evaluated nanoparticles with remarkable accuracy (Q2 = 0.9). We anticipate that it can reduce the effort by minimizing the number of nanoparticles that need to be tested and could be utilized as a screening tool for designing nanotherapeutics. Following this, we have proposed a diagnostic nanomaterial-based platform used to assemble a patient-specific cancer profile with the assistance of machine learning (ML). The platform is composed of eight carbon nanoparticles (CNPs) with multifarious surface chemistries that can differentiate healthy breast cells from cancerous cells and then subclassify TNBC cells vs non-TNBC cells, within the TNBC group. The artificial neural network (ANN) algorithm has been successfully used in identifying the type of cancer cells from 36 unknown cancer samples with an overall accuracy of >98%, providing potential applications in cancer diagnostics.
Collapse
Affiliation(s)
- Maha Alafeef
- Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Indrajit Srivastava
- Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Dipanjan Pan
- Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics and Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore, Maryland 21250, United States
- University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
24
|
Zacharopoulou N, Kallergi G, Alkahtani S, Tsapara A, Alarifi S, Schmid E, Sukkar B, Kampranis S, Lang F, Stournaras C. The histone demethylase KDM2B activates FAK and PI3K that control tumor cell motility. Cancer Biol Ther 2020; 21:533-540. [PMID: 32175798 DOI: 10.1080/15384047.2020.1736481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Recent studies revealed that the histone demethylase KDM2B regulates the epithelial markers E-Cadherin and ZO-1, the RhoA/B/C-small-GTPases and actin cytoskeleton organization, in DU-145 prostate- and HCT-116 colon-tumor cells. Here we addressed the role of KDM2B in the activation of Focal Adhesion Kinase (FAK)-signaling and its involvement in regulating tumor cell motility. We used RT-PCR for gene transcriptional analysis, Western blotting for the assessment of protein expression and activity and wound-healing assay for the study of cell migration. KDM2B overexpression or silencing controls the activity of FAK in DU-145 prostate- and HCT-116 colon-tumor cells without affecting gene transcription and protein expression of this kinase. Upon KDM2B overexpression in DU-145 cells, significantly enhanced migration was observed, which was abolished in cells pretreated by the specific phosphoinositide-3 kinase (PI3 K) inhibitor LY294002, implying involvement of FAK/PI3 K signaling in the migration process. In line with this, the p85-PI3 K-subunit was downregulated upon knockdown of KDM2B in DU-145 cells, while the opposite effect became evident in KDM2B-overexpressing cells. These results revealed a novel functional role of KDM2B in regulating the activation of the FAK/PI3 K signaling in prostate cancer cells that participates in the control of cell motility.
Collapse
Affiliation(s)
- Nefeli Zacharopoulou
- Department of Biochemistry, University of Crete Medical School, Voutes, Greece.,Department of Vegetative and Clinical Physiology, University of Tübingen, Tübingen, Germany
| | - Galatea Kallergi
- Department of Biochemistry, University of Crete Medical School, Voutes, Greece
| | - Saad Alkahtani
- Department of Biochemistry, University of Crete Medical School, Voutes, Greece.,Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Anna Tsapara
- Department of Biochemistry, University of Crete Medical School, Voutes, Greece
| | - Saud Alarifi
- Department of Biochemistry, University of Crete Medical School, Voutes, Greece.,Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Evi Schmid
- Department of Pediatric Surgery & Pediatric Urology, Children's Hospital, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Basma Sukkar
- Department of Vegetative and Clinical Physiology, University of Tübingen, Tübingen, Germany
| | - Sotirios Kampranis
- Department of Biochemistry, University of Crete Medical School, Voutes, Greece
| | - Florian Lang
- Department of Vegetative and Clinical Physiology, University of Tübingen, Tübingen, Germany
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Voutes, Greece
| |
Collapse
|
25
|
Schoentgen F, Jonic S. PEBP1/RKIP behavior: a mirror of actin-membrane organization. Cell Mol Life Sci 2020; 77:859-874. [PMID: 31960115 PMCID: PMC11105014 DOI: 10.1007/s00018-020-03455-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/14/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
Phosphatidylethanolamine-binding protein 1 (PEBP1), a small 21 kDa protein, is implicated in several key processes of the living cell. The deregulation of PEBP1, especially its downregulation, leads to major diseases such as cancer and Alzheimer's disease. PEBP1 was found to interact with numerous proteins, especially kinases and GTPases, generally inhibiting their activity. To understand the basic functionality of this amazing small protein, we have considered several known processes that it modulates and we have discussed the role of each molecular target in these processes. Here, we propose that cortical actin organization, associated with membrane changes, is involved in the majority of the processes modulated by PEBP1. Furthermore, based on recent data, we summarize some key PEBP1-interacting proteins, and we report their respective functions and focus on their relationships with actin organization. We suggest that, depending on the cell status and environment, PEBP1 is an organizer of the actin-membrane composite material.
Collapse
Affiliation(s)
- Françoise Schoentgen
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, 75005, Paris, France.
| | - Slavica Jonic
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, 75005, Paris, France
| |
Collapse
|
26
|
Helal-Neto E, de Barros AODS, Saldanha-Gama R, Brandão-Costa R, Alencar LMR, dos Santos CC, Martínez-Máñez R, Ricci-Junior E, Alexis F, Morandi V, Barja-Fidalgo C, Santos-Oliveira R. Molecular and Cellular Risk Assessment of Healthy Human Cells and Cancer Human Cells Exposed to Nanoparticles. Int J Mol Sci 2019; 21:ijms21010230. [PMID: 31905708 PMCID: PMC6981945 DOI: 10.3390/ijms21010230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
Nanodrugs have in recent years been a subject of great debate. In 2017 alone, almost 50 nanodrugs were approved for clinical use worldwide. Despite the advantages related to nanodrugs/nanomedicine, there is still a lack of information regarding the biological safety, as the real behavior of these nanodrugs in the body. In order to better understand these aspects, in this study, we evaluated the effect of polylactic acid (PLA) nanoparticles (NPs) and magnetic core mesoporous silica nanoparticles (MMSN), of 1000 nm and 50 nm, respectively, on human cells. In this direction we evaluated the cell cycle, cytochemistry, proliferation and tubulogenesis on tumor cells lines: from melanoma (MV3), breast cancer (MCF-7, MDA-MB-213), glioma (U373MG), prostate (PC3), gastric (AGS) and colon adenocarcinoma (HT-29) and non-tumor cell lines: from human melanocyte (NGM), fibroblast (FGH) and endothelial (HUVEC), respectively. The data showed that an acute exposure to both, polymeric nanoparticles or MMSN, did not show any relevant toxic effects on neither tumor cells nor non-tumor cells, suggesting that although nanodrugs may present unrevealed aspects, under acute exposition to human cells they are harmless.
Collapse
Affiliation(s)
- Edward Helal-Neto
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil; (E.H.-N.); (A.O.d.S.d.B.)
| | | | - Roberta Saldanha-Gama
- Laboratory of Cellular and Molecular Pharmacology, Department of Cell Biology, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro-RJ 21040900, Brazil; (R.S.-G.); (R.B.-C.); (C.B.-F.)
| | - Renata Brandão-Costa
- Laboratory of Cellular and Molecular Pharmacology, Department of Cell Biology, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro-RJ 21040900, Brazil; (R.S.-G.); (R.B.-C.); (C.B.-F.)
| | | | - Clenilton Costa dos Santos
- Department of Physics, Federal University of Maranhão, São Luis do Maranhão 65080-805, Brazil; (L.M.R.A.); (C.C.d.S.)
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València. Camino de Vera s/n, 46022 Valencia, Spain;
- Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, ES 08034 Barcelona, Spain
| | - Eduardo Ricci-Junior
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-901, Brazil;
| | - Frank Alexis
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA;
| | - Verônica Morandi
- Laboratory of Biology of Endothelial Cells and Angiogenesis (LabAngio), Department of Cell Biology, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro-RJ 20550-900, Brazil;
| | - Christina Barja-Fidalgo
- Laboratory of Cellular and Molecular Pharmacology, Department of Cell Biology, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro-RJ 21040900, Brazil; (R.S.-G.); (R.B.-C.); (C.B.-F.)
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil; (E.H.-N.); (A.O.d.S.d.B.)
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Zona Oeste State University, Rio de Janeiro-RJ 23070-200, Brazil
- Correspondence: or
| |
Collapse
|
27
|
Robak P, Ożgo M, Lepczyński A, Herosimczyk A, Barszcz M, Taciak M, Skomiał J. Proteome changes in renal cortex and medulla induced by dietary supplementation with inulin-type fructans in growing pigs. J Anim Physiol Anim Nutr (Berl) 2019; 103:1837-1847. [PMID: 31368153 DOI: 10.1111/jpn.13170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/29/2019] [Accepted: 06/30/2019] [Indexed: 12/15/2022]
Abstract
The aim of the study was to evaluate the influence of dietary supplementation with inulin extract from chicory root and dried chicory root on the protein profile of the renal cortex and medulla of growing pigs. The experiment was carried out on renal cortex and medulla tissue collected from 24 50-day-old PIC x Penarlan P76 crossbred piglets (males). Animals were divided into three dietary groups (n = 8) and fed with a control diet, diet supplemented with 2% inulin extract from chicory root and a diet supplemented with 4% dried chicory root. Kidney samples were collected after 40 days of feeding, and renal cortex and medulla proteins were separated by two-dimensional electrophoresis. Protein identification was performed using MALDI-TOF mass spectrometry. The diet supplemented with 2% chicory inulin induced significant expression changes of 20 and 26 protein spots in the renal cortex and medulla respectively. Supplementation with 4% dried chicory root triggered changes in the expression of 44 and 24 proteins in the renal cortex and medulla respectively. Both forms of chicory inulin-type fructans effectively affected the expression of proteins involved in energy metabolism, heat shock proteins and other chaperones, cytoskeletal and cytoskeleton-related proteins, as well as other proteins. Additionally, changes in transferrin abundance in both experimental groups suggested the significance of chicory fructan supplementation for iron absorption and bioavailability. In conclusion, 2% inulin extract from chicory root and 4% dried chicory root exerted a similar effect on changes in renal protein expression; however, more pronounced alterations were induced by dried chicory root. Nevertheless, further studies are needed for better understanding the mechanism underlying the effect of chicory inulin-type fructans and their fermentation end products on the kidneys of growing pigs.
Collapse
Affiliation(s)
- Paulina Robak
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Szczecin, Poland
| | - Małgorzata Ożgo
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Szczecin, Poland
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Szczecin, Poland
| | - Agnieszka Herosimczyk
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Szczecin, Poland
| | - Marcin Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Marcin Taciak
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Jacek Skomiał
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| |
Collapse
|
28
|
Ghatak S, Misra S, Moreno-Rodrigue RA, Hascall VC, Leone GW, Markwald RR. Periostin/β1integrin interaction regulates p21-activated kinases in valvular interstitial cell survival and in actin cytoskeleton reorganization. Biochim Biophys Acta Gen Subj 2019; 1863:813-829. [PMID: 30742951 DOI: 10.1016/j.bbagen.2018.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/24/2022]
Abstract
The matricellular protein periostin (PN) promotes postnatal valve remodeling and maturation. Incomplete remodeling of the valve can trigger degenerative processes that lead to a myxomatous phenotype that includes loss of PN. However, signaling pathways involved that link valvular-interstitial-fibroblast cells (VICs) to proliferation, migration and actin remodeling functions are unclear. The p21-activated kinases (Paks) have been shown to regulate cytoskeleton rearrangements and cell proliferation/adhesion/migration functions in a variety of cellular contexts, including normal cells and cancer cells. This study shows that Pak1, but not Pak2 and Pak4, is a critical mediator of VIC survival and actin organization, and that the molecular signaling regulating actin-remodeling is initiated upon PN/beta-integrin-induced phosphorylation of the focal-adhesion-kinase (Fak) (Y397). Molecular and pharmacological inhibition of key components of PN/Fak/Akt1 signaling abolished the PN-induced actin polymerization and the activation of mTOR, p70S6K and Pak1. Similarly, blocking mTOR inhibited p70S6K, Pak1 phosphorylation and consequently actin-polymerization. Accordingly, inhibiting p70S6K blocked Pak1 phosphorylation and actin polymerization, and subsequently inhibited adhesion and growth of VICs. Periostin-induced Akt1 activation of Pak1 is independent of Cdc42 and Rac1 GTPases, and Akt1 is both downstream and upstream of Pak1. Further, the PN-Pak1-induced Akt1 protects cells from apoptosis through suppression of transcriptional activation of Forkhead-Transcription-Factor (FKHR). In contrast, kinase deficient Pak1 increases apoptosis by increasing FKHR-mediated transcriptional activation. These studies define new functional significance of PN-Fak-Akt1-Pak1 signaling that at least partly regulates Akt1-induced actin polymerization and FKHR-mediated transcriptional activation, which may eventually regulate the mature-valve-leaflet remodeling function, and also FKHR-mediated transcriptional activation for pro-survival of VICs.
Collapse
Affiliation(s)
- Shibnath Ghatak
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.; Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St, Charleston, SC 29425, USA
| | - Suniti Misra
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.; Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St, Charleston, SC 29425, USA.
| | - Ricardo A Moreno-Rodrigue
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering/ND20, Cleveland Clinic, Cleveland, OH, USA
| | - Gustavo W Leone
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St, Charleston, SC 29425, USA
| | - Roger R Markwald
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA..
| |
Collapse
|
29
|
Taylor J, Bebawy M. Proteins Regulating Microvesicle Biogenesis and Multidrug Resistance in Cancer. Proteomics 2019; 19:e1800165. [PMID: 30520565 DOI: 10.1002/pmic.201800165] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/02/2018] [Indexed: 01/01/2023]
Abstract
Microvesicles (MV) are emerging as important mediators of intercellular communication. While MVs are important signaling vectors for many physiological processes, they are also implicated in cancer pathology and progression. Cellular activation is perhaps the most widely reported initiator of MV biogenesis, however, the precise mechanism remains undefined. Uncovering the proteins involved in regulating MV biogenesis is of interest given their role in the dissemination of deleterious cancer traits. MVs shed from drug-resistant cancer cells transfer multidrug resistance (MDR) proteins to drug-sensitive cells and confer the MDR phenotype in a matter of hours. MDR is attributed to the overexpression of ABC transporters, primarily P-glycoprotein and MRP1. Their expression and functionality is dependent on a number of proteins. In particular, FERM domain proteins have been implicated in supporting the functionality of efflux transporters in drug-resistant cells and in recipient cells during intercellular transfer by vesicles. Herein, the most recent research on the proteins involved in MV biogenesis and in the dissemination of MV-mediated MDR are discussed. Attention is drawn to unanswered questions in the literature that may prove to be of benefit in ongoing efforts to improve clinical response to chemotherapy and circumventing MDR.
Collapse
Affiliation(s)
- Jack Taylor
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Sydney, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Sydney, Australia
| |
Collapse
|
30
|
Yang F, Wen C, Zheng S, Yang S, Chen J, Feng X. Involvement of MAPK/ERK1/2 pathway in microcystin-induced microfilament reorganization in HL7702 hepatocytes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:1135-1141. [PMID: 30422063 DOI: 10.1080/15287394.2018.1532715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 09/25/2018] [Accepted: 10/06/2018] [Indexed: 06/09/2023]
Abstract
Several studies previously demonstrated that microcystin (MC)-LR produced cytoskeletal damage, especially to actin filaments. However, the underlying mechanisms of MC-induced cytoskeletal reorganization remain to be determined. The aim of this study was to examine the effects of 5 or 10 µM MC-LR on microfilament depolarization and expression of microRNA-451a (miR-451a) which plays a crucial role in cellular processes including cell proliferation, apoptosis and tumorigenesis in HL7702 liver cells after 24 hr treatment. Data demonstrated that MC-LR increased microfilament depolarization, elevated phosphorylation levels of mitogen-activated protein kinase (MAPK/ERK1/2) and vasodilator-stimulated phosphoprotein (VASP) but lowered miR-451a RNA expression levels. These molecular processes were associated with no marked changes in total protein ERK1/2. Data demonstrate that transfection with miR-451a may not be effective in the presence of MC-LR as evidenced by the inability of excess microRNA to prevent toxin-induced inhibition of threonine protein phosphatases1 (PP1) and 2A (PP2A) and microfilament reorganization in HL7702 cells.
Collapse
Affiliation(s)
- Fei Yang
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , China
- b Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health Southeast University , Nanjing , China
- c Key laboratory of Hunan Province for Water Environment and Agriculture Product Safety , Central South University , Changsha , China
| | - Cong Wen
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , China
| | - Shuilin Zheng
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , China
| | - Shu Yang
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , China
| | - Jihua Chen
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , China
| | - Xiangling Feng
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , China
| |
Collapse
|
31
|
Jünger F, Rohrbach A. Strong cytoskeleton activity on millisecond timescales upon particle binding revealed by ROCS microscopy. Cytoskeleton (Hoboken) 2018; 75:410-424. [PMID: 30019494 DOI: 10.1002/cm.21478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 01/09/2023]
Abstract
Cells change their shape within seconds, cellular protrusions even on subsecond timescales enabling various responses to stimuli of approaching bacteria, viruses or pharmaceutical drugs. Typical response patterns are governed by a complex reorganization of the actin cortex, where single filaments and molecules act on even faster timescales. These dynamics have remained mostly invisible due to a superposition of slow and fast motions, but also due to a lack of adequate imaging technology. Whereas fluorescence techniques require too long integration times, novel coherent techniques such as ROCS microscopy can achieve sufficiently high spatiotemporal resolution. ROCS uses rotating back-scattered laser light from cellular structures and generates a consistently high image contrast at 150 nm resolution and frame rates of 100 Hz-without fluorescence or bleaching. Here, we present an extension of ROCS microscopy that exploits the principles of dynamic light scattering for precise localization, visualization and quantification of the cytoskeleton activity of mouse macrophages. The locally observed structural reorganization processes, encoded by dynamic speckle patterns, occur upon distinct mechanical stimuli, such as soft contacts with optically trapped beads. We find that a substantial amount of the near-membrane cytoskeleton activity takes place on millisecond timescales, which is much faster than reported ever before.
Collapse
Affiliation(s)
- Felix Jünger
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Alexander Rohrbach
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| |
Collapse
|
32
|
Campion CG, Zaoui K, Verissimo T, Cossette S, Matsuda H, Solban N, Hamet P, Tremblay J. COMMD5/HCaRG Hooks Endosomes on Cytoskeleton and Coordinates EGFR Trafficking. Cell Rep 2018; 24:670-684.e7. [DOI: 10.1016/j.celrep.2018.06.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/16/2018] [Accepted: 06/13/2018] [Indexed: 12/25/2022] Open
|
33
|
Peng JM, Bera R, Chiou CY, Yu MC, Chen TC, Chen CW, Wang TR, Chiang WL, Chai SP, Wei Y, Wang H, Hung MC, Hsieh SY. Actin cytoskeleton remodeling drives epithelial-mesenchymal transition for hepatoma invasion and metastasis in mice. Hepatology 2018; 67:2226-2243. [PMID: 29171033 DOI: 10.1002/hep.29678] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 11/10/2017] [Accepted: 11/19/2017] [Indexed: 01/11/2023]
Abstract
UNLABELLED High invasiveness is a hallmark of human hepatocellular carcinoma (HCC). Large tumors predict invasion and metastasis. Epithelial-mesenchymal transition (EMT) is crucial for cancer invasion and metastasis. However, the mechanisms whereby large tumors tend to undergo EMT remain unclear. We conducted a subgenome-wide screen and identified KLHL23 as an HCC invasion suppressor by inhibiting EMT. KLHL23 binds to actin and suppresses actin polymerization. KLHL23 silencing induced filopodium and lamellipodium formation. Moreover, EMT was suppressed by KLHL23 through its action on actin dynamics. Traditionally, actin cytoskeleton remodeling is downstream of EMT reprogramming. It is therefore intriguing to ask why and how KLHL23 inversely regulates EMT. Activation of actin cytoskeleton remodeling by either KLHL23 silencing or treatment with actin cytoskeleton modulators augmented cellular hypoxic responses in a cell-density-dependent manner, resulting in hypoxia-inducible factor (HIF) and Notch signals and subsequent EMT. Environmental hypoxia did not induce EMT unless actin cytoskeleton remodeling was simultaneously activated and only when cells were at high density. The resulting EMT was reversed by either adenosine 5'-triphosphate supplementation or actin polymerization inhibitors. Down-regulation of KLHL23 was associated with invasion, metastasis, and poor prognosis of HCC and pancreatic cancer. Correlations of tumor size with EMT and inverse association of expression of KLHL23 with HIF/Notch signals were further validated in patient-derived xenograft HCCs in mice. CONCLUSION Simultaneously activation of actin cytoskeleton remodeling by intrinsic (such as KLHL23 down-regulation) or microenvironment cues is crucial for cell-density-dependent and hypoxia-mediated EMT, providing a mechanistic link between large tumor size and invasion/metastasis. Our findings provide a means of developing the prevention and treatment strategies for tumor invasion and metastasis. (Hepatology 2018;67:2226-2243).
Collapse
Affiliation(s)
- Jei-Ming Peng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Rabindranath Bera
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chih-Yung Chiou
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Tse-Chin Chen
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chia-Wei Chen
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Tsung-Rui Wang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Wan-Ling Chiang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Shin-Pei Chai
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mien-Chie Hung
- Center for Molecular Medicine and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
34
|
Biswas S, Haleyurgirisetty M, Ragupathy V, Wang X, Lee S, Hewlett I, Devadas K. Differentially expressed host long intergenic noncoding RNA and mRNA in HIV-1 and HIV-2 infection. Sci Rep 2018; 8:2546. [PMID: 29416066 PMCID: PMC5803214 DOI: 10.1038/s41598-018-20791-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs and mRNAs have been implicated in replication, pathogenesis and host response in HIV infection. However, the impact of long intergenic non-coding RNAs (lincRNAs) on HIV-1 and HIV-2 infection is not known. In this study, we have analyzed expression profiles of lincRNAs and mRNAs in monocyte derived macrophages (MDMs) infected with HIV-1/HIV-2 using microarrays. Our study identified many differentially expressed lincRNAs and mRNAs in MDMs infected with HIV-1/HIV-2 compared to uninfected MDMs. Genes involved in glutathione metabolism and lysine degradation were differentially regulated only in HIV-1 infected MDMs. In HIV-2 infected MDMs, CUL 2, SFRS9, and RBBP4 genes were differentially expressed. Furthermore, we found that plasma levels of lincRNA: chr2: 165509129-165519404 and lincRNA: chr12: 57761837-57762303 were better indicators of HIV-1 infection while lincRNA: chr10:128586385-128592960, XLOC_001148 and lincRNA: chr5:87580664-87583451, were better indicators of HIV-2 infection. In summary, our study has demonstrated that there is substantial alteration in lincRNA and mRNA expression in response to HIV-1/HIV-2 infection. These differentially expressed lincRNAs and mRNAs could serve as prognostic and diagnostic biomarkers of HIV infection and help in the identification of new targets for therapy.
Collapse
Affiliation(s)
- Santanu Biswas
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993-0002, USA
| | - Mohan Haleyurgirisetty
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993-0002, USA
| | - Viswanath Ragupathy
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993-0002, USA
| | - Xue Wang
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993-0002, USA
| | - Sherwin Lee
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993-0002, USA
| | - Indira Hewlett
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993-0002, USA.
| | - Krishnakumar Devadas
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993-0002, USA.
| |
Collapse
|
35
|
The epigenetic factor KDM2B regulates cell adhesion, small rho GTPases, actin cytoskeleton and migration in prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:587-597. [PMID: 29408056 DOI: 10.1016/j.bbamcr.2018.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 12/19/2022]
Abstract
The histone demethylase KDM2B is an epigenetic factor with oncogenic properties that is regulated by the basic fibroblasts growth factor (FGF-2). It has recently been shown that KDM2B co-operates with Polycomb Group proteins to promote cell migration and angiogenesis in tumors. In the present study we addressed the role of KDM2B in regulating actin cytoskeleton signaling, cell-cell adhesion and migration of prostate tumor cells. We report here that KDM2B is functionally expressed in DU-145 prostate cancer cells, activated by FGF-2 and regulates EZH2. KDM2B knockdown induced potent up-regulation of gene transcription and protein expression of the epithelial markers E-cadherin and ZO-1, while KDM2B overexpression down-regulated the levels of both markers, suggesting control of cell adhesion by KDM2B. RhoA and RhoB protein expression and activity were diminished upon KDM2B-knockdown and upregulated in KDM2B-overexpressing cell clones. In accordance, actin reorganization with formation of stress fibers became evident in KDM2B-overexpressing cells and abolished in the presence of the Rho inhibitor C3 transferase. DU-145 cell migration was significantly enhanced in KDM2B overexpressing cells and abolished in C3-pretreated cells. Conversely, the retardation of cell migration observed in KDM2B knockdown cells was enhanced in C3-pretreated cells. These results establish a clear functional link between the epigenetic factor KDM2B and the regulation of cell adhesion and Rho-GTPases signaling that controls actin reorganization and cell migration.
Collapse
|
36
|
Hao R, Hui L, Li C, Cao C, Yang Y, Zhang J, Liu T, Zhang Y. <i>In Vitro</i> Study of the Nephrotoxicity of Tripterygium Tablet Extract and Triptolide in Monolayer HK-2 Cells Cultured in a Transwell Chamber. Chin Med 2018. [DOI: 10.4236/cm.2018.91003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Kampert T, Misra SK, Srivastava I, Tripathi I, Pan D. Phenotypically Screened Carbon Nanoparticles for Enhanced Combinatorial Therapy in Triple Negative Breast Cancer. Cell Mol Bioeng 2017; 10:371-386. [PMID: 31719869 PMCID: PMC6816755 DOI: 10.1007/s12195-017-0490-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/12/2017] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Triple negative breast cancer (TNBC) is a highly aggressive type of breast cancer with high resistance to current standard therapies. We demonstrate that phenotypically stratified carbon nanoparticle is highly effective in delivering a novel combinatorial triple drug formulation for synergistic regression of TNBC in vitro and in vivo. METHOD The combinatorial formulation is comprised of repurposed inhibitors of STAT3 (nifuroxazide), topoisomerase-II-activation-pathway (amonafide) and NFκb (pentoxifylline). Synergistic effect of drug combination was established in a panel of TNBC-lines comprising mesenchymal-stem-like, mesenchymal and basal-like cells along with non-TNBC-cells. The delivery of combinatorial drug formulation was achieved using a phenotypically screened carbon nanoparticles for TNBC cell lines. RESULTS Results indicated a remarkable five-fold improvement (IC50-6.75 µM) from the parent drugs with a combinatorial index <1 in majority of the TNBC cells. Multi-compartmental carbon nanoparticles were then parametrically assessed based on size, charge (positive/negative/neutral) and chemistry (functionalities) to study their likelihood of crossing endocytic barriers from phenotypical standpoint in TNBC lines. Interestingly, a combination of clathrin mediated, energy and dynamin dependent pathways were predominant for sulfonated nanoparticles, whereas pristine and phospholipid particles followed all the investigated endocytic pathways. CONCLUSIONS An exactitude 'omics' approach helps to predict that phospholipid encapsulated-particles will predominantly accumulate in TNBC comprising the drug-'cocktail'. We investigated the protein expression effects inducing synergistic effect and simultaneously suppressing drug resistance through distinct mechanisms of action.
Collapse
Affiliation(s)
- Taylor Kampert
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Carle Foundation Hospital, 611 West Park Street, Urbana, IL USA
- Institute for Sustainability in Energy and Environment, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Santosh K. Misra
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Carle Foundation Hospital, 611 West Park Street, Urbana, IL USA
- Institute for Sustainability in Energy and Environment, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Indrajit Srivastava
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Carle Foundation Hospital, 611 West Park Street, Urbana, IL USA
- Institute for Sustainability in Energy and Environment, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Indu Tripathi
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Carle Foundation Hospital, 611 West Park Street, Urbana, IL USA
- Institute for Sustainability in Energy and Environment, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Carle Foundation Hospital, 611 West Park Street, Urbana, IL USA
- Institute for Sustainability in Energy and Environment, University of Illinois at Urbana-Champaign, Urbana, IL USA
| |
Collapse
|
38
|
Sun J, Luo Q, Liu L, Yang X, Zhu S, Song G. Salinomycin attenuates liver cancer stem cell motility by enhancing cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signalling pathway. Toxicology 2017; 384:1-10. [PMID: 28395993 DOI: 10.1016/j.tox.2017.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023]
Abstract
Salinomycin has recently been identified as an antitumour drug for several types of cancer stem cell (CSC) treatments. However, the effects of salinomycin on the migratory and invasive properties of liver cancer stem cells (LCSCs) are unclear. In present study, we investigated the effect of salinomycin on the migration and invasion of LCSCs, and examined the molecular mechanisms underlying the anticancer effects of salinomycin. Here we showed that the migration and invasion of LCSCs were significantly suppressed in a salinomycin dose-dependent manner. Moreover, western blot analysis showed that salinomycin repressed the phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK1/2). Taken together, these findings provide new evidence that salinomycin suppresses the migration and invasion of LCSCs by inhibiting the expression of the FAK-ERK1/2 signalling pathway. In addition, the analysis of the mechanical properties showed that salinomycin increased cell stiffness in LCSCs via the FAK, and ERK1/2 pathways, suggesting that the inhibition of LCSC migration might partially contribute to the increase in cell stiffness stimulated by salinomycin. To further examine the role of salinomycin on cell motility and stiffness, the actin cytoskeleton of LCSCs was detected. The increased F-actin filaments in LCSCs induced by salinomycin reflected the increase in cell stiffness and the decrease in cell migration. Overall, these results showed that salinomycin inhibits the migration and invasion of LCSCs through the dephosphorylated FAK and ERK1/2 pathways, reflecting the changes in cell stiffness resulting from the increased actin cytoskeleton.
Collapse
Affiliation(s)
- Jinghui Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, People's Republic of China; School of Medical Laboratory Science, Chengdu Medical College, Chengdu 610500, People's Republic of China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Lingling Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Xianjiong Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, People's Republic of China; Department of Chemistry, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 500025, People's Republic of China
| | - Shunqin Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, People's Republic of China; School of Life Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, People's Republic of China.
| |
Collapse
|
39
|
Muenzner JK, Biersack B, Albrecht A, Rehm T, Lacher U, Milius W, Casini A, Zhang JJ, Ott I, Brabec V, Stuchlikova O, Andronache IC, Kaps L, Schuppan D, Schobert R. Ferrocenyl-Coupled N-Heterocyclic Carbene Complexes of Gold(I): A Successful Approach to Multinuclear Anticancer Drugs. Chemistry 2016; 22:18953-18962. [PMID: 27761940 DOI: 10.1002/chem.201604246] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Indexed: 11/11/2022]
Abstract
Four gold(I) carbene complexes featuring 4-ferrocenyl-substituted imidazol-2-ylidene ligands were investigated for antiproliferative and antivascular properties. They were active against a panel of seven cancer cell lines, including multidrug-resistant ones, with low micromolar or nanomolar IC50 (72 h) values, according to their lipophilicity and cellular uptake. The delocalized lipophilic cationic complexes 8 and 10 acted by increasing the reactive oxygen species in two ways: through a genuine ferrocene effect and by inhibiting the thioredoxin reductase. Both complexes gave rise to a reorganization of the F-actin cytoskeleton in endothelial and melanoma cells, associated with a G1 phase cell cycle arrest and a retarded cell migration. They proved antiangiogenic in tube formation assays with endothelial cells and vascular-disruptive on real blood vessels in the chorioallantoic membrane of chicken eggs. Biscarbene complex 10 was also tolerated well by mice where it led to a volume reduction of xenograft tumors by up to 80 %.
Collapse
Affiliation(s)
- Julienne K Muenzner
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Alexander Albrecht
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Tobias Rehm
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Ulrike Lacher
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Wolfgang Milius
- Lehrstuhl für Anorganische Chemie I, Universität Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Angela Casini
- Department of Pharmacokinetics, Toxicology, and Targeting, University of Groningen, Antonius Deusinglaan 1, 9713, Groningen, The Netherlands
- School of Chemistry, Cardiff University, Main Building, CF10 3AT, Cardiff, UK
| | - Jing-Jing Zhang
- Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106, Braunschweig, Germany
| | - Ingo Ott
- Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106, Braunschweig, Germany
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265, Brno, Czech Republic
- Department of Biophysics, Faculty of Science, Palacky University, Listopadu 12, 77146, Olomouc, Czech Republic
| | - Olga Stuchlikova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265, Brno, Czech Republic
- Department of Biophysics, Faculty of Science, Palacky University, Listopadu 12, 77146, Olomouc, Czech Republic
| | - Ion C Andronache
- Research Centre for Integrated Analysis and Territorial Management, University of Bucharest, 1 Nicolae Balcescu bvd., District 1, 010055, Bucharest, Romania
| | - Leonard Kaps
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Rainer Schobert
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| |
Collapse
|
40
|
Kourtidis A, Anastasiadis PZ. PLEKHA7 defines an apical junctional complex with cytoskeletal associations and miRNA-mediated growth implications. Cell Cycle 2016; 15:498-505. [PMID: 26822694 DOI: 10.1080/15384101.2016.1141840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
E-cadherin-p120 catenin complexes are essential for adherens junction (AJ) formation and for the maintenance of the normal epithelial phenotype. PLEKHA7 was originally identified as a member of this complex that tethers microtubules to the AJs and supports their overall integrity. Recently, we revealed that PLEKHA7 regulates cellular behavior via miRNAs by associating with the microprocessor complex at the apical zonula adherens (ZA). We have also identified a new set of PLEKHA7 interacting partners at the apical ZA, via proteomics. Our analysis shows that the main groups of proteins associating with PLEKHA7 are cytoskeletal-related and RNA-binding proteins. Here, we provide extended evidence for association of PLEKHA7 with several of these proteins. We also show that PLEKHA7 loss activates the actin regulator cofilin in a p120-dependent manner, providing an explanation for the effects of PLEKHA7 on the cortical actin ring. Interestingly, PLEKHA7 regulates the levels and associates with PP1α, a phosphatase responsible for cofilin activation. Finally, we clarify the mode of regulation of the oncogenic miR-19a by PLEKHA7. Overall, our findings support a multi-layered role of PLEKHA7 in converging cytoskeletal dynamics and miRNA-mediated growth regulation at the ZA, with potentially critical implications in cancer that warrant further investigation.
Collapse
Affiliation(s)
- Antonis Kourtidis
- a Department of Cancer Biology , Mayo Clinic Comprehensive Cancer, Center, Mayo Clinic , Jacksonville , FL , USA
| | - Panos Z Anastasiadis
- a Department of Cancer Biology , Mayo Clinic Comprehensive Cancer, Center, Mayo Clinic , Jacksonville , FL , USA
| |
Collapse
|
41
|
Lee KC, Kuo HC, Shen CH, Lu CC, Huang WS, Hsieh MC, Huang CY, Kuo YH, Hsieh YY, Teng CC, Lee LY, Tung SY. A proteomics approach to identifying novel protein targets involved in erinacine A-mediated inhibition of colorectal cancer cells' aggressiveness. J Cell Mol Med 2016; 21:588-599. [PMID: 27709782 PMCID: PMC5323879 DOI: 10.1111/jcmm.13004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/31/2016] [Indexed: 12/20/2022] Open
Abstract
Erinacine A, a major active component of a diterpenoid derivative isolated from Hericium erinaceus mycelium, has been demonstrated to exert anticancer effects. Herein, we present an investigation of the molecular mechanism of erinacine A induction associated with cancer cells’ aggressive status and death. A proteomic approach was used to purify and identify the differentially expressed proteins following erinacine A treatment and the mechanism of its action in apoptotic and the targets of erinacine A. Our results demonstrate that erinacine A treatment of HCT‐116 and DLD‐1 cells increased cell cytotoxicity and reactive oxygen species (ROS) production as well as decreased cell proliferation and invasiveness. Ten differentially displayed proteins were determined and validated in vitro and in vivo between the erinacine A‐treated and untreated groups. In addition, erinacine A time‐dependent induction of cell death and inhibitory invasiveness was associated with sustained phosphorylation of the PI3K/mTOR/p70S6K and ROCK1/LIMK2/Cofilin pathways. Furthermore, we demonstrated that erinacine A–induced HCT‐116 and DLD‐1 cells viability and anti‐invasion properties by up‐regulating the activation of PI3K/mTOR/p70S6K and production of ROS. Experiments involving specific inhibitors demonstrated that the differential expression of cofilin‐1 (COFL1) and profilin‐1 (PROF1) during erinacine A treatment could be involved in the mechanisms of HCT‐116 and DLD‐1 cells death and decreased aggressiveness, which occurred via ROCK1/LIMK2/Cofilin expression, with activation of the PI3K/mTOR/p70S6K signalling pathway. These findings elucidate the mechanism of erinacine A inhibiting the aggressive status of cells by activating PI3K/mTOR/p70S6K downstream signalling and the novel protein targets COF1 and PROF1; this could be a good molecular strategy to limit the aggressiveness of CRC cells.
Collapse
Affiliation(s)
- Ko-Chao Lee
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsing-Chun Kuo
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan.,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Chronic Diseases and Health Promotion Research Center, CGUST, Chiayi, Taiwan
| | - Chien-Heng Shen
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Chang Lu
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Shih Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital Chiayi, Chiayi, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Meng-Chiao Hsieh
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital Chiayi, Chiayi, Taiwan
| | - Cheng-Yi Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital Chiayi, Chiayi, Taiwan
| | - Yi-Hung Kuo
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital Chiayi, Chiayi, Taiwan
| | - Yung-Yu Hsieh
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chih-Chuan Teng
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Li-Ya Lee
- Grape King Biotechnology Inc (Grape King Bio Ltd.), Zhong-Li, Taiwan
| | - Shui-Yi Tung
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
42
|
LeftyA decreases Actin Polymerization and Stiffness in Human Endometrial Cancer Cells. Sci Rep 2016; 6:29370. [PMID: 27404958 PMCID: PMC4941646 DOI: 10.1038/srep29370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 06/16/2016] [Indexed: 12/27/2022] Open
Abstract
LeftyA, a cytokine regulating stemness and embryonic differentiation, down-regulates cell proliferation and migration. Cell proliferation and motility require actin reorganization, which is under control of ras-related C3 botulinum toxin substrate 1 (Rac1) and p21 protein-activated kinase 1 (PAK1). The present study explored whether LeftyA modifies actin cytoskeleton, shape and stiffness of Ishikawa cells, a well differentiated endometrial carcinoma cell line. The effect of LeftyA on globular over filamentous actin ratio was determined utilizing Western blotting and flow cytometry. Rac1 and PAK1 transcript levels were measured by qRT-PCR as well as active Rac1 and PAK1 by immunoblotting. Cell stiffness (quantified by the elastic modulus), cell surface area and cell volume were studied by atomic force microscopy (AFM). As a result, 2 hours treatment with LeftyA (25 ng/ml) significantly decreased Rac1 and PAK1 transcript levels and activity, depolymerized actin, and decreased cell stiffness, surface area and volume. The effect of LeftyA on actin polymerization was mimicked by pharmacological inhibition of Rac1 and PAK1. In the presence of the Rac1 or PAK1 inhibitor LeftyA did not lead to significant further actin depolymerization. In conclusion, LeftyA leads to disruption of Rac1 and Pak1 activity with subsequent actin depolymerization, cell softening and cell shrinkage.
Collapse
|
43
|
Goulidaki N, Alarifi S, Alkahtani SH, Al-Qahtani A, Spandidos DA, Stournaras C, Sourvinos G. RhoB is a component of the human cytomegalovirus assembly complex and is required for efficient viral production. Cell Cycle 2016; 14:2748-63. [PMID: 26114383 DOI: 10.1080/15384101.2015.1066535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human Cytomegalovirus (HCMV), an ubiquitous β-herpesvirus, is a significant pathogen that causes medically severe diseases in immunocompromised individuals and in congenitally infected neonates. RhoB belongs to the family of Rho GTPases, which regulates diverse cellular processes. Rho proteins are implicated in the entry and egress from the host cell of mainly α- and γ-herpesviruses, whereas β-herpesviruses are the least studied in this regard. Here, we studied the role of RhoB GTPase during HCMV lytic infection. Microscopy analysis, both in fixed and live infected cells showed that RhoB was translocated to the assembly complex/compartment (AC) of HCMV, a cytoplasmic zone in infected cells where many viral structural proteins are known to accumulate and assembly of new virions takes place. Furthermore, RhoB was localized at the AC even when the expression of the late HCMV AC proteins was inhibited. At the very late stages of infection, cellular projections were formed containing RhoB and HCMV virions, potentially contributing to the successful viral spread. Interestingly, the knockdown of RhoB in HCMV-infected cells resulted in a significant reduction of the virus titer and could also affect the accumulation of AC viral proteins at this subcellular compartment. RhoB knockdown also affected actin fibers' structure. Actin reorganization was observed at late stages of infection originating from the viral AC and surrounding the cellular projections, implying a potential interplay between RhoB and actin during HCMV assembly and egress. In conclusion, our results demonstrate for the first time that RhoB is a constituent of the viral AC and is required for HCMV productive infection.
Collapse
Affiliation(s)
- Nektaria Goulidaki
- a Laboratory of Virology ; Medical School ; University of Crete ; Heraklion, Crete , Greece
| | | | | | | | | | | | | |
Collapse
|
44
|
Effect of Porphyrin Sensitizer MgTPPS4 on Cytoskeletal System of HeLa Cell Line-Microscopic Study. Cell Biochem Biophys 2016; 74:419-25. [PMID: 27324041 DOI: 10.1007/s12013-016-0746-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
Abstract
Metalloporphyrins are an important group of sensitizers with a porphyrin skeleton. Their photophysical properties are significantly affected by the nature of the central ion. In this work, we focus on the mechanical properties of a cervix carcinoma cell line which underwent photodynamic treatment (PDT) with MgTPPS4 photosensitzer. Atomic force microscopy alongside confocal microscopy was used to quantify and qualify the structural characteristics before and after PDT. Cells before PDT showed a fine actin network and higher elasticity with the median of Young modulus 12.2 kPa. After PDT, the median of Young modulus was 13.4 kPa and a large redistribution in the actin network was observed.
Collapse
|
45
|
Shen Y, Xia R, Jiang H, Chen Y, Hong L, Yu Y, Xu Z, Zeng Q. Exposure to 50Hz-sinusoidal electromagnetic field induces DNA damage-independent autophagy. Int J Biochem Cell Biol 2016; 77:72-79. [PMID: 27177844 DOI: 10.1016/j.biocel.2016.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 04/21/2016] [Accepted: 05/08/2016] [Indexed: 01/22/2023]
Abstract
As electromagnetic field (EMF) is commonly encountered within our daily lives, the biological effects of EMF are of great concern. Autophagy is a key process for maintaining cellular homeostasis, and it can also reveal cellular responses to environmental stimuli. In this study, we aim to investigate the biological effects of a 50Hz-sinusoidal electromagnetic field on autophagy and we identified its mechanism of action in Chinese Hamster Lung (CHL) cells. CHL cells were exposed to a 50Hz sinusoidal EMF at 0.4mT for 30min or 24h. In this study, we found that a 0.4mT EMF resulted in: (i) an increase in LC3-II expression and increased autophagosome formation; (ii) no significant difference in the incidence of γH2AX foci between the sham and exposure groups; (iii) reorganized actin filaments and increased pseudopodial extensions without promoting cell migration; and (iv) enhanced cell apoptosis when autophagy was blocked by Bafilomycin A1. These results implied that DNA damage was not directly involved in the autophagy induced by a 0.4mT 50Hz EMF. In addition, an EMF induced autophagy balanced the cellular homeostasis to protect the cells from severe adverse biological consequences.
Collapse
Affiliation(s)
- Yunyun Shen
- Bioelectromagnetics Laboratory, Department of Occupational and Environmental Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Ruohong Xia
- Physics Department, East China Normal University, Shanghai 200241, PR China
| | - Hengjun Jiang
- Bioelectromagnetics Laboratory, Department of Occupational and Environmental Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Yanfeng Chen
- Bioelectromagnetics Laboratory, Department of Occupational and Environmental Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Ling Hong
- Bioelectromagnetics Laboratory, Department of Occupational and Environmental Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Yunxian Yu
- Department of Epidemiology and Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Zhengping Xu
- Bioelectromagnetics Laboratory, Department of Occupational and Environmental Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, PR China.
| | - Qunli Zeng
- Bioelectromagnetics Laboratory, Department of Occupational and Environmental Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
46
|
Honisch S, Yu W, Liu G, Alesutan I, Towhid ST, Tsapara A, Schleicher S, Handgretinger R, Stournaras C, Lang F. Chorein addiction in VPS13A overexpressing rhabdomyosarcoma cells. Oncotarget 2016; 6:10309-19. [PMID: 25871399 PMCID: PMC4496357 DOI: 10.18632/oncotarget.3582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/13/2015] [Indexed: 12/12/2022] Open
Abstract
Chorein encoded by VPS13A (vacuolar protein sorting-associated protein 13A) is defective in chorea-acanthocytosis. Chorein fosters neuronal cell survival, cortical actin polymerization and cell stiffness. In view of its anti-apoptotic effect in neurons, we explored whether chorein is expressed in cancer cells and influences cancer cell survival. RT-PCR was employed to determine transcript levels, specific siRNA to silence chorein, FACS analysis to follow apoptosis and Western blotting to quantify protein abundance. Chorein transcripts were detected in various cancer cell types. The mRNA coding for chorein and chorein protein were most abundant in drug resistant, poorly differentiated human rhabdomyosarcoma cells. Chorein silencing significantly reduced the ratio of phosphorylated (and thus activated) to total phosphoinositide 3 kinase (PI-3K), pointing to inactivation of this crucial pro-survival signaling molecule. Moreover, chorein silencing diminished transcript levels and protein expression of anti-apoptotic BCL-2 and enhanced transcript levels of pro-apoptotic Bax. Silencing of chorein in rhabdomyosarcoma cells was followed by mitochondrial depolarization, caspase 3 activation and stimulation of early and late apoptosis. In conclusion, chorein is expressed in various cancer cells. In cells with high chorein expression levels chorein silencing promotes apoptotic cell death, an effect paralleled by down-regulation of PI-3K activity and BCL-2/Bax expression ratio.
Collapse
Affiliation(s)
- Sabina Honisch
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Willi Yu
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Guilai Liu
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Ioana Alesutan
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Syeda T Towhid
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Anna Tsapara
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Sabine Schleicher
- Department of Hematology and Oncology, Children's Hospital, University Hospital of Tuebingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of Hematology and Oncology, Children's Hospital, University Hospital of Tuebingen, Tübingen, Germany
| | - Christos Stournaras
- Department of Physiology, University of Tübingen, Tübingen, Germany.,Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
47
|
Fajol A, Honisch S, Zhang B, Schmidt S, Alkahtani S, Alarifi S, Lang F, Stournaras C, Föller M. Fibroblast growth factor (Fgf) 23 gene transcription depends on actin cytoskeleton reorganization. FEBS Lett 2016; 590:705-15. [DOI: 10.1002/1873-3468.12096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/27/2016] [Accepted: 02/11/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Abul Fajol
- Department of Physiology; University of Tübingen; Germany
| | - Sabina Honisch
- Department of Physiology; University of Tübingen; Germany
| | - Bingbing Zhang
- Department of Physiology; University of Tübingen; Germany
| | | | - Saad Alkahtani
- Department of Zoology; Science College; King Saud University; Riyadh Saudi Arabia
- Department of Biochemistry; University of Crete Medical School; Heraklion Greece
| | - Saud Alarifi
- Department of Zoology; Science College; King Saud University; Riyadh Saudi Arabia
- Department of Biochemistry; University of Crete Medical School; Heraklion Greece
| | - Florian Lang
- Department of Physiology; University of Tübingen; Germany
| | - Christos Stournaras
- Department of Physiology; University of Tübingen; Germany
- Department of Biochemistry; University of Crete Medical School; Heraklion Greece
| | - Michael Föller
- Institute of Agricultural and Nutritional Sciences; Martin-Luther University Halle-Wittenberg; Halle (Saale) Germany
| |
Collapse
|
48
|
Spadavecchia J, Movia D, Moore C, Maguire CM, Moustaoui H, Casale S, Volkov Y, Prina-Mello A. Targeted polyethylene glycol gold nanoparticles for the treatment of pancreatic cancer: from synthesis to proof-of-concept in vitro studies. Int J Nanomedicine 2016; 11:791-822. [PMID: 27013874 PMCID: PMC4777276 DOI: 10.2147/ijn.s97476] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The main objective of this study was to optimize and characterize a drug delivery carrier for doxorubicin, intended to be intravenously administered, capable of improving the therapeutic index of the chemotherapeutic agent itself, and aimed at the treatment of pancreatic cancer. In light of this goal, we report a robust one-step method for the synthesis of dicarboxylic acid-terminated polyethylene glycol (PEG)-gold nanoparticles (AuNPs) and doxorubicin-loaded PEG-AuNPs, and their further antibody targeting (anti-Kv11.1 polyclonal antibody [pAb]). In in vitro proof-of-concept studies, we evaluated the influence of the nanocarrier and of the active targeting functionality on the anti-tumor efficacy of doxorubicin, with respect to its half-maximal effective concentration (EC50) and drug-triggered changes in the cell cycle. Our results demonstrated that the therapeutic efficacy of doxorubicin was positively influenced not only by the active targeting exploited through anti-Kv11.1-pAb but also by the drug coupling with a nanometer-sized delivery system, which indeed resulted in a 30-fold decrease of doxorubicin EC50, cell cycle blockage, and drug localization in the cell nuclei. The cell internalization pathway was strongly influenced by the active targeting of the Kv11.1 subunit of the human Ether-à-go-go related gene 1 (hERG1) channel aberrantly expressed on the membrane of pancreatic cancer cells. Targeted PEG-AuNPs were translocated into the lysosomes and were associated to an increased lysosomal function in PANC-1 cells. Additionally, doxorubicin release into an aqueous environment was almost negligible after 7 days, suggesting that drug release from PEG-AuNPs was triggered by enzymatic activity. Although preliminary, data gathered from this study have considerable potential in the application of safe-by-design nano-enabled drug-delivery systems (ie, nanomedicines) for the treatment of pancreatic cancer, a disease with a poor prognosis and one of the main current burdens of today's health care bill of industrialized countries.
Collapse
Affiliation(s)
- Jolanda Spadavecchia
- Laboratoire de Réactivité de Surface, Sorbonne Universités, UPMC Univ Paris VI, Paris
- Centre National de la recherche française, UMR 7244, CSPBAT, Laboratory of Chemistry, Structures, and Properties of Biomaterials and Therapeutic Agents, Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - Dania Movia
- AMBER Centre, CRANN Institute, Dublin, Ireland
| | - Caroline Moore
- AMBER Centre, CRANN Institute, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College, Dublin, Ireland
| | - Ciaran Manus Maguire
- AMBER Centre, CRANN Institute, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College, Dublin, Ireland
| | - Hanane Moustaoui
- Centre National de la recherche française, UMR 7244, CSPBAT, Laboratory of Chemistry, Structures, and Properties of Biomaterials and Therapeutic Agents, Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - Sandra Casale
- Laboratoire de Réactivité de Surface, Sorbonne Universités, UPMC Univ Paris VI, Paris
| | - Yuri Volkov
- AMBER Centre, CRANN Institute, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College, Dublin, Ireland
| | - Adriele Prina-Mello
- AMBER Centre, CRANN Institute, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College, Dublin, Ireland
| |
Collapse
|
49
|
Abstract
A multitude of physiological processes regulated by G protein-coupled receptors (GPCRs) signaling are accomplished by the participation of active rearrangements of the cytoskeleton. In general, it is common that a cross talk occurs among networks of microfilaments, microtubules, and intermediate filaments in order to reach specific cell responses. In particular, actin-cytoskeleton dynamics regulate processes such as cell shape, cell division, cell motility, and cell polarization, among others. This chapter describes the current knowledge about the regulation of actin-cytoskeleton dynamic by diverse GPCR signaling pathways, and also includes some protocols combining immunofluorescence and confocal microscopy for the visualization of the different rearrangements of the actin-cytoskeleton. We report how both the S1P-GPCR/G12/13/Rho/ROCK and glucagon-GPCR/Gs/cAMP axes induce differential actin-cytoskeleton rearrangements in epithelial cells. We also show that specific actin-binding molecules, like phalloidin and LifeAct, are very useful to analyze F-actin reorganization by confocal microscopy, and also that both molecules show similar results in fixed cells, whereas the anti-actin antibody is useful to detect both the G- and F-actin, as well as their compartmentalization. Thus, it is highly recommended to utilize different approaches to investigate the regulation of actin dynamics by GPCR signaling, with the aim to get a better picture of the phenomenon under study.
Collapse
|
50
|
Bao Z, Qiu X, Wang D, Ban N, Fan S, Chen W, Sun J, Xing W, Wang Y, Cui G. High expression of adenylate cyclase-associated protein 1 accelerates the proliferation, migration and invasion of neural glioma cells. Pathol Res Pract 2016; 212:264-73. [PMID: 26810579 DOI: 10.1016/j.prp.2015.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/26/2015] [Accepted: 12/31/2015] [Indexed: 11/26/2022]
Abstract
Adenylate cyclase-associated protein 1 (CAP1), a conserved member of cyclase-associated proteins was reported to be associated with the proliferation, migration or invasion of the tumors of pancreas, breast and liver, and was involved in astrocyte proliferation after acute Traumatic Brain Injury (TBI). In this study, we sought to investigate the character of CAP1 in the pathological process of human glioma by detecting human glioma specimens and cell lines. 43 of 100 specimens showed high expression of CAP1 via immunohistochemistry. With statistics analysis, we found out the expression level of CAP1 was correlated with the WHO grades of human glioma and was great positively related to Ki-67 (p<0.01). In vitro, silencing CAP1 in U251 and U87MG, the glioma cell lines with the relatively higher expression of CAP1, induced the proliferation of the cells significantly retarded, migration and invasion as well. Obviously, our results indicated that CAP1 participated in the molecular pathological process of glioma indeed, and in a certain sense, CAP1 might be a potential and promising molecular target for glioma diagnosis and therapies in the future.
Collapse
Affiliation(s)
- Zhen Bao
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Xiaojun Qiu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Donglin Wang
- Department of Pathology, Medical College of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Na Ban
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Shaochen Fan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Wenjuan Chen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Jie Sun
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Weikang Xing
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Yunfeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Gang Cui
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China.
| |
Collapse
|