1
|
King EM, Panfil AR. Dynamic Roles of RNA and RNA Epigenetics in HTLV-1 Biology. Viruses 2025; 17:124. [PMID: 39861913 PMCID: PMC11769288 DOI: 10.3390/v17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Since the discovery of RNA in the early 1900s, scientific understanding of RNA form and function has evolved beyond protein coding. Viruses, particularly retroviruses like human T-cell leukemia virus type 1 (HTLV-1), rely heavily on RNA and RNA post-transcriptional modifications to regulate the viral lifecycle, pathogenesis, and evasion of host immune responses. With the emergence of new sequencing technologies in the last decade, our ability to dissect the intricacies of RNA has flourished. The ability to study RNA epigenetic modifications and splice variants has become more feasible with the recent development of third-generation sequencing technologies, such as Oxford nanopore sequencing. This review will highlight the dynamic roles of known RNA and post-transcriptional RNA epigenetic modifications within HTLV-1 biology, including viral hbz, long noncoding RNAs, microRNAs (miRNAs), transfer RNAs (tRNAs), R-loops, N6-methyladenosine (m6A) modifications, and RNA-based therapeutics and vaccines.
Collapse
Affiliation(s)
- Emily M. King
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Amanda R. Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, Comprehensive Cancer Center, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Zhou R, Bai G, Zhu D, Xu Q, Zhang X, Li T, Qian Y, Bu C. Pump-free SERS microfluidic chip based on an identification-competition strategy for ultrasensitive and efficient simultaneous detection of liver cancer-related microRNAs. BIOMEDICAL OPTICS EXPRESS 2024; 15:6469-6485. [PMID: 39553886 PMCID: PMC11563321 DOI: 10.1364/boe.542523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024]
Abstract
In this study, we present a pump-free SERS microfluidic chip capable of detecting liver cancer-related miR-21 and miR-155 concurrently with ultra-sensitivity and high efficiency. We employed a Fe3O4@cDNA-AuNPs@Raman reporter@H composite structure and a recognition competition strategy. When the target miRNAs (miR-21 and miR-155) are present in the test liquid, they specifically compete with the nucleic acid complementary strand(H) of Fe3O4@cDNA-AuNPs@Raman reporter@H, causing AuNPs to competitively detach from the surface of Fe3O4, resulting in a decrease in the SERS signal. Consequently, this pump-free SERS microfluidic chip enables the detection of the target miRNAs more rapidly and accurately in complex environments. This method offers an approach for the simultaneous and efficient detection of miRNAs and holds promising applications in the early diagnosis of liver cancer.
Collapse
Affiliation(s)
- Ruoyu Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Guangfu Bai
- Affiliated Huishan Hospital of Medical College, Yangzhou University, Wuxi Huishan District People's Hospital, Wuxi 214187, Jiangsu Province, China
| | - Dongxu Zhu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Qiong Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Xudong Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Tianran Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yayun Qian
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Chiwen Bu
- Department of General Surgery, Guanyun County People's Hospital, Lianyungang 222200, China
| |
Collapse
|
3
|
Gruszka R, Zakrzewski J, Nowosławska E, Grajkowska W, Zakrzewska M. Identification and validation of miRNA-target genes network in pediatric brain tumors. Sci Rep 2024; 14:17922. [PMID: 39095557 PMCID: PMC11297236 DOI: 10.1038/s41598-024-68945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Alterations in miRNA levels have been observed in various types of cancer, impacting numerous cellular processes and increasing their potential usefulness in combination therapies also in brain tumors. Recent advances in understanding the genetics and epigenetics of brain tumours point to new aberrations and associations, making it essential to continually update knowledge and classification. Here we conducted molecular analysis of 123 samples of childhood brain tumors (pilocytic astrocytoma, medulloblastoma, ependymoma), focusing on identification of genes that could potentially be regulated by crucial representatives of OncomiR-1: miR-17-5p and miR-20a-5p. On the basis of microarray gene expression analysis and qRTPCR profiling, we selected six (WEE1, CCND1, VEGFA, PTPRO, TP53INP1, BCL2L11) the most promising target genes for further experiments. The WEE1, CCND1, PTPRO, TP53INP1 genes showed increased expression levels in all tested entities with the lowest increase in the pilocytic astrocytoma compared to the ependymoma and medulloblastoma. The obtained results indicate a correlation between gene expression and the WHO grade and subtype. Furthermore, our analysis showed that the integration between genomic and epigenetic pathways should now point the way to further molecular research.
Collapse
Affiliation(s)
- Renata Gruszka
- Faculty of Biology and Environmental Protection, Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Jakub Zakrzewski
- Faculty of Medicine, Medical University of Lodz, ul. Aleja T. Kosciuszki 4, 90-419, Lodz, Poland
| | - Emilia Nowosławska
- Department of Neurosurgery, Polish Mother Memorial Hospital Research Institute in Lodz, Rzgowska 281/289, 93-338, Lodz, Poland
| | - Wiesława Grajkowska
- Department of Pathology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Magdalena Zakrzewska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Pomorska 251, 92-216, Lodz, Poland
| |
Collapse
|
4
|
Gholamzad A, Khakpour N, Khosroshahi EM, Asadi S, Koohpar ZK, Matinahmadi A, Jebali A, Rashidi M, Hashemi M, Sadi FH, Gholamzad M. Cancer stem cells: The important role of CD markers, Signaling pathways, and MicroRNAs. Pathol Res Pract 2024; 256:155227. [PMID: 38490099 DOI: 10.1016/j.prp.2024.155227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
For the first time, a subset of small cancer cells identified in acute myeloid leukemia has been termed Cancer Stem Cells (CSCs). These cells are notorious for their robust proliferation, self-renewal abilities, significant tumor-forming potential, spread, and resistance to treatments. CSCs are a global concern, as it found in numerous types of cancer, posing a real-world challenge today. Our review encompasses research on key CSC markers, signaling pathways, and MicroRNA in three types of cancer: breast, colon, and liver. These factors play a critical role in either promoting or inhibiting cancer cell growth. The reviewed studies have shown that as cells undergo malignant transformation, there can be an increase or decrease in the expression of different Cluster of Differentiation (CD) markers on their surface. Furthermore, alterations in essential signaling pathways, such as Wnt and Notch1, may impact CSC proliferation, survival, and movement, while also providing potential targets for cancer therapies. Additionally, some research has focused on MicroRNAs due to their dual role as potential therapeutic biomarkers and their ability to enhance CSCs' response to anti-cancer drugs. MicroRNAs also regulate a wide array of cellular processes, including the self-renewal and pluripotency of CSCs, and influence gene transcription. Thus, these studies indicate that MicroRNAs play a significant role in the malignancy of various tumors. Although the gathered information suggests that specific CSC markers, signaling pathways, and MicroRNAs are influential in determining the destiny of cancer cells and could be advantageous for therapeutic strategies, their precise roles and impacts remain incompletely defined, necessitating further investigation.
Collapse
Affiliation(s)
- Amir Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences,Tonekabon Branch,Islamic Azad University, Tonekabon, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus,Torun,Poland
| | - Ali Jebali
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Deprtment of Medical Nanotechnology,Faculty of Advanced Sciences and Technology,Tehran Medical Sciences,Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | | | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Alpuche-Lazcano SP, Scarborough RJ, Gatignol A. MicroRNAs and long non-coding RNAs during transcriptional regulation and latency of HIV and HTLV. Retrovirology 2024; 21:5. [PMID: 38424561 PMCID: PMC10905857 DOI: 10.1186/s12977-024-00637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Human immunodeficiency virus (HIV) and human T cell leukemia virus (HTLV) have replicative and latent stages of infection. The status of the viruses is dependent on the cells that harbour them and on different events that change the transcriptional and post-transcriptional events. Non-coding (nc)RNAs are key factors in the regulation of retrovirus replication cycles. Notably, micro (mi)RNAs and long non-coding (lnc)RNAs are important regulators that can induce switches between active transcription-replication and latency of retroviruses and have important impacts on their pathogenesis. Here, we review the functions of miRNAs and lncRNAs in the context of HIV and HTLV. We describe how specific miRNAs and lncRNAs are involved in the regulation of the viruses' transcription, post-transcriptional regulation and latency. We further discuss treatment strategies using ncRNAs for HIV and HTLV long remission, reactivation or possible cure.
Collapse
Affiliation(s)
- Sergio P Alpuche-Lazcano
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, 3999, Côte Ste Catherine St., Montréal, QC, H3T 1E2, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, H4A 3J1, Canada
- National Research Council Canada, Montréal, QC, H4P 2R2, Canada
| | - Robert J Scarborough
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, 3999, Côte Ste Catherine St., Montréal, QC, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Anne Gatignol
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, 3999, Côte Ste Catherine St., Montréal, QC, H3T 1E2, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, H4A 3J1, Canada.
- Department of Medicine, Division of Infectious Diseases, McGill University, Montréal, QC, H4A 3J1, Canada.
- Department of Microbiology and Immunology, McGill University, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
6
|
Wang YY, Shen MM, Gao J. Metadherin promotes stem cell phenotypes and correlated with immune infiltration in hepatocellular carcinoma. World J Gastroenterol 2024; 30:901-918. [PMID: 38516242 PMCID: PMC10950638 DOI: 10.3748/wjg.v30.i8.901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Metadherin (MTDH) is a key oncogene in most cancer types, including hepatocellular carcinoma (HCC). Notably, MTDH does not affect the stemness pheno-type or immune infiltration of HCC. AIM To explore the role of MTDH on stemness and immune infiltration in HCC. METHODS MTDH expression in HCC tissues was detected using TCGA and GEO databases. Immunohistochemistry was used to analyze the tissue samples. MTDH was stably knocked down or overexpressed by lentiviral transfection in the two HCC cell lines. The invasion and migration abilities of HCC cells were evaluated using Matrigel invasion and wound healing assays. Next, we obtained liver cancer stem cells from the spheroids by culturing them in a serum-free medium. Gene expression was determined by western blotting and quantitative reverse transcri-ption PCR. Flow cytometry, immunofluorescence, and tumor sphere formation assays were used to characterize stem-like cells. The effects of MTDH inhibition on tumor growth were evaluated in vivo. The correlation of MTDH with immune cells, immunomodulators, and chemokines was analyzed using ssGSEA and TISIDB databases. RESULTS HCC tissues expressed higher levels of MTDH than normal liver tissues. High MTDH expression was associated with a poor prognosis. HCC cells overexpressing MTDH exhibited stronger invasion and migration abilities, exhibited a stem cell-like phenotype, and formed spheres; however, MTDH inhibition attenuated these effects. MTDH inhibition suppressed HCC progression and CD133 expression in vivo. MTDH was positively correlated with immature dendritic, T helper 2 cells, central memory CD8+ T, memory B, activated dendritic, natural killer (NK) T, NK, activated CD4+ T, and central memory CD4+ T cells. MTDH was negatively correlated with activated CD8+ T cells, eosinophils, activated B cells, monocytes, macrophages, and mast cells. A positive correlation was observed between the MTDH level and CXCL2 expression, whereas a negative correlation was observed between the MTDH level and CX3CL1 and CXCL12 expression. CONCLUSION High levels of MTDH expression in patients with HCC are associated with poor prognosis, promoting tumor stemness, immune infiltration, and HCC progression.
Collapse
Affiliation(s)
- Yi-Ying Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Mei-Mei Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jian Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
7
|
Chen C, Hernandez JC, Uthaya Kumar DB, Machida T, Tahara SM, El‐Khoueiry A, Li M, Punj V, Swaminathan SK, Kirtane A, Chen Y, Panyam J, Machida K. Profiling of Circulating Tumor Cells for Screening of Selective Inhibitors of Tumor-Initiating Stem-Like Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206812. [PMID: 36949364 PMCID: PMC10190641 DOI: 10.1002/advs.202206812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/20/2023] [Indexed: 05/18/2023]
Abstract
A critical barrier to effective cancer therapy is the improvement of drug selectivity, toxicity, and reduced recurrence of tumors expanded from tumor-initiating stem-like cells (TICs). The aim is to identify circulating tumor cell (CTC)-biomarkers and to identify an effective combination of TIC-specific, repurposed federal drug administration (FDA)-approved drugs. Three different types of high-throughput screens targeting the TIC population are employed: these include a CD133 (+) cell viability screen, a NANOG expression screen, and a drug combination screen. When combined in a refined secondary screening approach that targets Nanog expression with the same FDA-approved drug library, histone deacetylase (HDAC) inhibitor(s) combined with all-trans retinoic acid (ATRA) demonstrate the highest efficacy for inhibition of TIC growth in vitro and in vivo. Addition of immune checkpoint inhibitor further decreases recurrence and extends PDX mouse survival. RNA-seq analysis of TICs reveals that combined drug treatment reduces many Toll-like receptors (TLR) and stemness genes through repression of the lncRNA MIR22HG. This downregulation induces PTEN and TET2, leading to loss of the self-renewal property of TICs. Thus, CTC biomarker analysis would predict the prognosis and therapy response to this drug combination. In general, biomarker-guided stratification of HCC patients and TIC-targeted therapy should eradicate TICs to extend HCC patient survival.
Collapse
Affiliation(s)
- Chia‐Lin Chen
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
- Present address:
Department of Life Sciences & Institute of Genome SciencesNational Yang Ming Chiao Tung University110TaipeiTaiwan
| | - Juan Carlos Hernandez
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
- California State UniversityChannel IslandsCamarilloCAUSA
| | - Dinesh Babu Uthaya Kumar
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Tatsuya Machida
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Stanley M. Tahara
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Anthony El‐Khoueiry
- Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaKeck School of MedicineLos AngelesCA90033USA
| | - Meng Li
- Norris Medical Library2003 Zonal AveLos AngelesCA90089USA
| | - Vasu Punj
- Department of MedicineUniversity of Southern California Keck School of Medicine and Norris Comprehensive Cancer CenterLos AngelesCA90089USA
| | | | - Ameya Kirtane
- Department of PharmaceuticsUniversity of MinnesotaMinneapolisMN55455USA
| | - Yibu Chen
- Norris Medical Library2003 Zonal AveLos AngelesCA90089USA
| | - Jayanth Panyam
- Department of PharmaceuticsUniversity of MinnesotaMinneapolisMN55455USA
| | - Keigo Machida
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
- Southern California Research Center for ALPD and CirrhosisLos AngelesCA90033USA
| |
Collapse
|
8
|
Xue X, Wang J, Fu K, Dai S, Wu R, Peng C, Li Y. The role of miR-155 on liver diseases by modulating immunity, inflammation and tumorigenesis. Int Immunopharmacol 2023; 116:109775. [PMID: 36753984 DOI: 10.1016/j.intimp.2023.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023]
Abstract
The liver is a well-known metabolic organ that can be susceptible to external stimuli to affect its normal physiological function. Worldwide, the morbidity and mortality of liver diseases are skyrocketing every year, causing human health crises. Recently, new approaches such as biotechnology have been introduced to achieve optimal treatment and prognostic management of liver diseases. microRNAs (miRNAs), a kind of small non-coding RNA molecule, have the advantages of biodiversity, wide distribution and numerous members. Among these miRNAs, miR-155 is an important regulator of inflammation, immunity and tumorigenesis. In this review, the PubMed and Web of Science databases were searched from 2009 to 2022. After inclusion and exclusion, 64 articles were selected for a systematic review to comprehensively summarize the mechanisms of miR-155 regulating inflammation, immunity and tumorigenesis in liver diseases and liver cancer, covering in vitro, in vivo and clinical studies. Existing preclinical studies and clinical trials have listed that the up-regulation and down-regulation of miR-155 are significant in alcoholic liver injury, viral hepatitis, autoimmune hepatitis, infectious liver injury, liver transplantation and liver cancer. The immune and inflammation effects of miR-155 are manifested by regulating macrophage polarization, NK cell killing, Th17 cell and Th1/Th2 cell differentiation. Additionally, miR-155 is also committed to participating in the cell cycle, invasion and metastasis, immune escape and other processes to promote and intensify the development of liver cancer. In conclusion, miR-155 is not only a biomarker for the diagnosis and prognosis of liver diseases, but also plays a therapeutic role via regulating immunity, inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
9
|
Time-resolved RNA signatures of CD4+ T cells in Parkinson's disease. Cell Death Dis 2023; 9:18. [PMID: 36681665 PMCID: PMC9867723 DOI: 10.1038/s41420-023-01333-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Parkinson's disease (PD) emerges as a complex, multifactorial disease. While there is increasing evidence that dysregulated T cells play a central role in PD pathogenesis, elucidation of the pathomechanical changes in related signaling is still in its beginnings. We employed time-resolved RNA expression upon the activation of peripheral CD4+ T cells to track and functionally relate changes on cellular signaling in representative cases of patients at different stages of PD. While only few miRNAs showed time-course related expression changes in PD, we identified groups of genes with significantly altered expression for each different time window. Towards a further understanding of the functional consequences, we highlighted pathways with decreased or increased activity in PD, including the most prominent altered IL-17 pathway. Flow cytometric analyses showed not only an increased prevalence of Th17 cells but also a specific subtype of IL-17 producing γδ-T cells, indicating a previously unknown role in PD pathogenesis.
Collapse
|
10
|
Liu B, Hu J, Zhao H, Zhao L, Pan S. MicroRNA-155-5p Contributes to 5-Fluorouracil Resistance Through Down-Regulating TP53INP1 in Oral Squamous Cell Carcinoma. Front Oncol 2022; 11:706095. [PMID: 35070952 PMCID: PMC8770267 DOI: 10.3389/fonc.2021.706095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
The anticancer drug 5-fluorouracil (5-FU) resistance is a major obstacle to reducing the effectiveness of cancer treatment, and its detailed mechanism has not been fully elucidated. Here, in 5-FU-resistant human oral squamous cell carcinoma (OSCC) HSC3 cells (HSC3/5-FU), the levels of 21 miRNA candidates were detected using RT-PCR and miR-155-5p level increased strikingly in HSC3/5-FU cells compared to HSC3 cells. Compared with HSC3 cells, the CCK-8 assay showed that the HSC3/5-FU cells transfected with miR-155-5p inhibitors decreased 5-FU IC50. Ectopic expression of miR-155-5p in HSC3 and HSC4 cells increased 5-FU IC50 (CCK-8 assay), migration (wound-healing and transwell assays) and invasion (transwell assay) abilities. Seven miR-155-5p target candidates were discovered by miRNA prediction algorithms (miRDB, Targetscan, and miRWalk), and the RT-PCR results showed that in HSC3/5-FU cells TP53INP1 was of the lowest mRNA expression level compared with HSC3 cells. The RT-PCR and Western blotting assays showed that ectopic expression of miR-155-5p in HSC3 and HSC4 cells decreased TP53INP1 expression level. Furthermore, the luciferase reporter and RNA pull-down assays determined the interference effect of miR-155-5p on TP53INP1 expression. The enhancement of cell viability (CCK-8 assay), migration (wound-healing and transwell assays) and invasion (transwell assay) by miR-155-5p after 5-FU treatment was reversed by TP53INP1 overexpression. After treatment with 5-FU, HSC3-miR-155-5p tumor-bearing nude mice presented growing tumors, while HSC3-TP53INP1 group possessed shrinking tumors. In conclusion, these results lead to the proposal that miR-155-5p enhances 5-FU resistance by decreasing TP53INP1 expression in OSCC.
Collapse
Affiliation(s)
- Bowen Liu
- Outpatient Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Jingchao Hu
- Department of Periodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Han Zhao
- Multi-disciplinary Treatment Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Li Zhao
- Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Shiyuan Pan
- Department of Dentistry, Chongqing Huamei Plastic Surgery Hospital, Chongqing, China
| |
Collapse
|
11
|
Raigon Ponferrada A, Guerrero Orriach JL, Molina Ruiz JC, Romero Molina S, Gómez Luque A, Cruz Mañas J. Breast Cancer and Anaesthesia: Genetic Influence. Int J Mol Sci 2021; 22:7653. [PMID: 34299272 PMCID: PMC8307639 DOI: 10.3390/ijms22147653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is the leading cause of mortality in women. It is a heterogeneous disease with a high degree of inter-subject variability even in patients with the same type of tumor, with individualized medicine having acquired significant relevance in this field. The clinical and morphological heterogeneity of the different types of breast tumors has led to a diversity of staging and classification systems. Thus, these tumors show wide variability in genetic expression and prognostic biomarkers. Surgical treatment is essential in the management of these patients. However, the perioperative period has been found to significantly influence survival and cancer recurrence. There is growing interest in the pro-tumoral effect of different anaesthetic and analgesic agents used intraoperatively and their relationship with metastatic progression. There is cumulative evidence of the influence of anaesthetic techniques on the physiopathological mechanisms of survival and growth of the residual neoplastic cells released during surgery. Prospective randomized clinical trials are needed to obtain quality evidence on the relationship between cancer and anaesthesia. This document summarizes the evidence currently available about the effects of the anaesthetic agents and techniques used in primary cancer surgery and long-term oncologic outcomes, and the biomolecular mechanisms involved in their interaction.
Collapse
Affiliation(s)
- Aida Raigon Ponferrada
- Institute of Biomedical Research in Malaga (IBIMA), 29010 Malaga, Spain; (A.R.P.); (A.G.L.)
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| | - Jose Luis Guerrero Orriach
- Institute of Biomedical Research in Malaga (IBIMA), 29010 Malaga, Spain; (A.R.P.); (A.G.L.)
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| | - Juan Carlos Molina Ruiz
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| | - Salvador Romero Molina
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| | - Aurelio Gómez Luque
- Institute of Biomedical Research in Malaga (IBIMA), 29010 Malaga, Spain; (A.R.P.); (A.G.L.)
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| | - Jose Cruz Mañas
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| |
Collapse
|
12
|
Abstract
Cancer stem cells (CSCs) represent a small subpopulation of cells found within tumors that exhibit properties of self-renewal, like normal stem cells. CSCs have been defined as a crucial factor involved in driving cancer relapse, chemoresistance and metastasis. Prominin-1 (CD133) is one of the most well-characterized markers of CSCs in various tumor types, including hepatocellular carcinoma (HCC). CD133+ cells have been demonstrated to be involved in metastasis, tumorigenesis, tumor recurrence, and resistance to treatment in HCC. CD133-related clinical prognosis prediction, and targeted therapy have highlighted the clinical significance of CD133 in HCC. However, there remains controversy over the role of CD133 in experimental and clinical research involving HCC. In this article, we summarize the fundamental cell biology of CD133 in HCC cells and discuss the important characteristics of CD133+ in HCC cells. Furthermore, the prognostic value of CD133, and therapeutic strategies for its targeting in HCC, is also reviewed.
Collapse
Affiliation(s)
- Fengchao Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanzhi Qian
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Cancer Stem Cells Are Possible Key Players in Regulating Anti-Tumor Immune Responses: The Role of Immunomodulating Molecules and MicroRNAs. Cancers (Basel) 2021; 13:cancers13071674. [PMID: 33918136 PMCID: PMC8037840 DOI: 10.3390/cancers13071674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary This review provides a critical overview of the state of the art of the characterization of the immunological profile of a rare component of the tumors, denominated cancer stem cells (CSCs) or cancer initiating cells (CICs). These cells are endowed with the ability to form and propagate tumors and resistance to therapies, including the most innovative approaches. These investigations contribute to understanding the mechanisms regulating the interaction of CSCs/CICs with the immune system and identifying novel therapeutic approaches to render these cells visible and susceptible to immune responses. Abstract Cancer cells endowed with stemness properties and representing a rare population of cells within malignant lesions have been isolated from tumors with different histological origins. These cells, denominated as cancer stem cells (CSCs) or cancer initiating cells (CICs), are responsible for tumor initiation, progression and resistance to therapies, including immunotherapy. The dynamic crosstalk of CSCs/CICs with the tumor microenvironment orchestrates their fate and plasticity as well as their immunogenicity. CSCs/CICs, as observed in multiple studies, display either the aberrant expression of immunomodulatory molecules or suboptimal levels of molecules involved in antigen processing and presentation, leading to immune evasion. MicroRNAs (miRNAs) that can regulate either stemness properties or their immunological profile, with in some cases dual functions, can provide insights into these mechanisms and possible interventions to develop novel therapeutic strategies targeting CSCs/CICs and reverting their immunogenicity. In this review, we provide an overview of the immunoregulatory features of CSCs/CICs including miRNA profiles involved in the regulation of the interplay between stemness and immunological properties.
Collapse
|
14
|
Abstract
This review provides epidemiological and translational evidence for milk and dairy intake as critical risk factors in the pathogenesis of hepatocellular carcinoma (HCC). Large epidemiological studies in the United States and Europe identified total dairy, milk and butter intake with the exception of yogurt as independent risk factors of HCC. Enhanced activity of mechanistic target of rapamycin complex 1 (mTORC1) is a hallmark of HCC promoted by hepatitis B virus (HBV) and hepatitis C virus (HCV). mTORC1 is also activated by milk protein-induced synthesis of hepatic insulin-like growth factor 1 (IGF-1) and branched-chain amino acids (BCAAs), abundant constituents of milk proteins. Over the last decades, annual milk protein-derived BCAA intake increased 3 to 5 times in Western countries. In synergy with HBV- and HCV-induced secretion of hepatocyte-derived exosomes enriched in microRNA-21 (miR-21) and miR-155, exosomes of pasteurized milk as well deliver these oncogenic miRs to the human liver. Thus, milk exosomes operate in a comparable fashion to HBV- or HCV- induced exosomes. Milk-derived miRs synergistically enhance IGF-1-AKT-mTORC1 signaling and promote mTORC1-dependent translation, a meaningful mechanism during the postnatal growth phase, but a long-term adverse effect promoting the development of HCC. Both, dietary BCAA abundance combined with oncogenic milk exosome exposure persistently overstimulate hepatic mTORC1. Chronic alcohol consumption as well as type 2 diabetes mellitus (T2DM), two HCC-related conditions, increase BCAA plasma levels. In HCC, mTORC1 is further hyperactivated due to RAB1 mutations as well as impaired hepatic BCAA catabolism, a metabolic hallmark of T2DM. The potential HCC-preventive effect of yogurt may be caused by lactobacilli-mediated degradation of BCAAs, inhibition of branched-chain α-ketoacid dehydrogenase kinase via production of intestinal medium-chain fatty acids as well as degradation of milk exosomes including their oncogenic miRs. A restriction of total animal protein intake realized by a vegetable-based diet is recommended for the prevention of HCC.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
15
|
Liu L, Borlak J. Advances in Liver Cancer Stem Cell Isolation and their Characterization. Stem Cell Rev Rep 2021; 17:1215-1238. [PMID: 33432485 DOI: 10.1007/s12015-020-10114-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
Over the last decade research on cancer stem cells (CSC) significantly contributed to a better understanding of tumor biology. Given their similarity to normal stem cells, i.e. self-renewal and pluripotency the need arises to develop robust protocols for the isolation and characterization of CSCs. As with other malignancies, hepatic tumors are composed of a heterogeneous population of cells including liver cancer stem cells (LCSC). Yet, a precise understanding of why stem cells become cancerous is still lacking. There is unmet need to develop robust protocols for the successful isolation of LCSCs from human tissue resection material as to assist in the development of molecular targeted therapies. Here we review the research progress made in the isolation and characterization of LCSCs by considering a wide range of cell surface markers and sorting methods, as applied to side populations, microsphere cultures and the gradient centrifugation method. We emphasize the different fluorescence activated cell sorting methods and the possibility to enrich LCSCs by immunomagnetic beads. We review the specificity of functional assays by considering ABCG transporter and ALDH1 enzyme activities and evaluate the in vivo tumorigenicity of LCSCs in highly sensitive bioassays. Finally, we evaluate different LCSC markers in association with viral and non-viral liver disease and explore the potential of novel drug delivery systems targeting CD133, EpCAM, CD13 and CD90 for the development of molecular targeted therapies. Graphical Abstract.
Collapse
Affiliation(s)
- Lu Liu
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
16
|
Warrier S, Patil M, Bhansali S, Varier L, Sethi G. Designing precision medicine panels for drug refractory cancers targeting cancer stemness traits. Biochim Biophys Acta Rev Cancer 2020; 1875:188475. [PMID: 33188876 DOI: 10.1016/j.bbcan.2020.188475] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
Cancer is one amongst the major causes of death today and cancer biology is one of the most well researched fields in medicine. The driving force behind cancer is considered to be a minor subpopulation of cells, the cancer stem cells (CSCs). Similar to other stem cells, these cells are self-renewing and proliferating but CSCs are also difficult to target by chemo- or radio-therapies. Cancer stem cells are known to be present in most of the cancer subgroups such as carcinoma, sarcoma, myeloma, leukemia, lymphomas and mixed cancer types. There is a wide gamut of factors attributed to the stemness of cancers, ranging from dysregulated signaling pathways, and activation of enzymes aiding immune evasion, to conducive tumor microenvironment, to name a few. The defining outcome of the increased presence of CSCs is tumor metastasis and relapse. Predictive medicine approach based on the plethora of CSC markers would be a move towards precision medicine to specifically identify CSC-rich tumors. In this review, we discuss the cancer subtypes and the role of different CSC specific markers in these varying subtypes. We also categorize the CSC markers based their defining trait contributing to stemness. This review thus provides a comprehensive approach to catalogue a predictive set of markers to identify the resistant and refractory cancer stem cell population within different tumor subtypes, so as to facilitate better prognosis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India; Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
| | - Manasi Patil
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - Sanyukta Bhansali
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117 600, Singapore
| |
Collapse
|
17
|
Li J, Zhu Y. Recent Advances in Liver Cancer Stem Cells: Non-coding RNAs, Oncogenes and Oncoproteins. Front Cell Dev Biol 2020; 8:548335. [PMID: 33117795 PMCID: PMC7575754 DOI: 10.3389/fcell.2020.548335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide, with high morbidity, relapse, metastasis and mortality rates. Although liver surgical resection, transplantation, chemotherapy, radiotherapy and some molecular targeted therapeutics may prolong the survival of HCC patients to a certain degree, the curative effect is still poor, primarily because of tumor recurrence and the drug resistance of HCC cells. Liver cancer stem cells (LCSCs), also known as liver tumor-initiating cells, represent one small subset of cancer cells that are responsible for disease recurrence, drug resistance and death. Therefore, understanding the regulatory mechanism of LCSCs in HCC is of vital importance. Thus, new studies that present gene regulation strategies to control LCSC differentiation and replication are under development. In this review, we provide an update on the latest advances in experimental studies on non-coding RNAs (ncRNAs), oncogenes and oncoproteins. All the articles addressed the crosstalk between different ncRNAs, oncogenes and oncoproteins, as well as their upstream and downstream products targeting LCSCs. In this review, we summarize three pathways, the Wnt/β-catenin signaling pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, and interleukin 6/Janus kinase 2/signal transducer and activator of transcription 3 (IL6/JAK2/STAT3) signaling pathway, and their targeting gene, c-Myc. Furthermore, we conclude that octamer 4 (OCT4) and Nanog are two important functional genes that play a pivotal role in LCSC regulation and HCC prognosis.
Collapse
Affiliation(s)
- Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Liver Disease Center of Integrated Traditional and Western Medicine, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
18
|
Huang Y, Zhang J, Li H, Peng H, Gu M, Wang H. miR-96 regulates liver tumor-initiating cells expansion by targeting TP53INP1 and predicts Sorafenib resistance. J Cancer 2020; 11:6545-6555. [PMID: 33046975 PMCID: PMC7545665 DOI: 10.7150/jca.48333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/10/2020] [Indexed: 01/02/2023] Open
Abstract
Liver tumor-initiating cells (T-ICs) contribute to tumorigenesis, progression, recurrence and drug resistance of hepatocellular carcinoma (HCC). However, the underlying mechanism for the propagation of liver T-ICs remains unclear. In the present study, our finding shows that miR-96 is upregulated in liver T-ICs. Functional studies revealed that forced miR-96 promotes liver T-ICs self-renewal and tumorigenesis. Conversely, knockdown miR-96 inhibits liver T-ICs self-renewal and tumorigenesis. Mechanistically, miR-96 downregulates TP53INP1 via its mRNA 3'UTR in liver T-ICs. Furthermore, the miR-96 expression determines the responses of hepatoma cells to sorafenib treatment. Analysis of patient cohorts and patient-derived xenografts (PDXs) further demonstrate that the miR-96 may predict sorafenib benefits in HCC patients. Our findings revealed the crucial role of the miR-96 in liver T-ICs expansion and sorafenib response, rendering miR-96 as an optimal target for the prevention and intervention of HCC.
Collapse
Affiliation(s)
- Yonggang Huang
- Department of Hepatic surgery, Kunshan Hospital of Traditional Chinese Medicine. Kunshan, Jiangsu Province, 215300, China
| | - Jin Zhang
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - HengYu Li
- Department of General surgery, First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, China
| | - Huiping Peng
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine. Kunshan, Jiangsu Province, 215300, China
| | - Maolin Gu
- Department of Hepatic surgery, Kunshan Hospital of Traditional Chinese Medicine. Kunshan, Jiangsu Province, 215300, China
| | - Hengjie Wang
- Department of Hepatic surgery, Kunshan Hospital of Traditional Chinese Medicine. Kunshan, Jiangsu Province, 215300, China
| |
Collapse
|
19
|
Fochi S, Ciminale V, Trabetti E, Bertazzoni U, D’Agostino DM, Zipeto D, Romanelli MG. NF-κB and MicroRNA Deregulation Mediated by HTLV-1 Tax and HBZ. Pathogens 2019; 8:E290. [PMID: 31835460 PMCID: PMC6963194 DOI: 10.3390/pathogens8040290] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022] Open
Abstract
The risk of developing adult T-cell leukemia/lymphoma (ATLL) in individuals infected with human T-cell lymphotropic virus 1 (HTLV-1) is about 3-5%. The mechanisms by which the virus triggers this aggressive cancer are still an area of intensive investigation. The viral protein Tax-1, together with additional regulatory proteins, in particular HTLV-1 basic leucine zipper factor (HBZ), are recognized as relevant viral factors required for both viral replication and transformation of infected cells. Tax-1 deregulates several cellular pathways affecting the cell cycle, survival, and proliferation. The effects of Tax-1 on the NF-κB pathway have been thoroughly studied. Recent studies also revealed the impact of Tax-1 and HBZ on microRNA expression. In this review, we summarize the recent progress in understanding the contribution of HTLV-1 Tax- and HBZ-mediated deregulation of NF-κB and the microRNA regulatory network to HTLV-1 pathogenesis.
Collapse
Affiliation(s)
- Stefania Fochi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| | - Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy;
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Elisabetta Trabetti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| | - Umberto Bertazzoni
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| | | | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| |
Collapse
|
20
|
Zhang W, Ji W, Zhao X. MiR-155 promotes anaplastic thyroid cancer progression by directly targeting SOCS1. BMC Cancer 2019; 19:1093. [PMID: 31718618 PMCID: PMC6852915 DOI: 10.1186/s12885-019-6319-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/31/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Anaplastic thyroid cancer (ATC) is considered to be a rare type of thyroid cancer but takes up the most important proportion of thyroid cancer-related deaths. Therefore, the development of molecular targeted therapy is an exciting strategy in the management of ATC. METHODS miR-155 and SOCS1 expression were measured by qRT-PCR as well as western blot analysis. 8305c and FRO cells were transfected and cultured for apoptosis assays, transwell, MTT on miR-155 or SOCS1 suppression and overexpression. Dual-luciferase reporter assays and SOCS1 restoration experimentswas implemented for define the relation between SOCS1 and miR-155. In addition, the correlation between miR-155 expression and patients' clinicopathological features were also explored. RESULTS Aberrant miR-155 and SOCS1 expression and inverse correlation were found in ATC samples. In addition, it indicated that miR-155 expression correlated with cervical metastasis as well as extrathyroidal invasion. Moreover, we demonstrated that miR-155 inhibited 8305c and FRO cells apoptosis, promoted proliferation, invasion and migration. Furthermore, miR-155 inhibition was associated with a significant overexpression of SOCS1. Additionally, luciferase reporter assays presented that miR-155 could bind to SOCS1 3'-UTR, influencing its stability negatively and finally lowering SOCS1 levels. Moreover, it was illustrated that the impacts of miR-155 suppression were reversed by the inhibition of SOCS1 on cell proliferation, apoptosis as well as invasion. CONCLUSIONS Aberrant miR-155/SOCS1 expression has been included in ATC progression: miR-155 overexpression leads to SOCS1 suppression and develops ATC progression. Thus, miR-155 has been considered to be an underlying therapeutic target for ATC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, 110004, China
| | - Wenyue Ji
- Department of Otorhinolaryngology Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Xudong Zhao
- Department of Otorhinolaryngology Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
21
|
Yao J, Lin J, He L, Huang J, Liu Q. TNF-α/miR-155 axis induces the transformation of osteosarcoma cancer stem cells independent of TP53INP1. Gene 2019; 726:144224. [PMID: 31669646 DOI: 10.1016/j.gene.2019.144224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023]
Abstract
MicroRNA-155 (miR-155) has been identified to be overexpressed in various human cancers including osteosarcoma. However, whether the up-regulation of miR-155 is associated with osteosarcoma cancer stem cells (CSCs) is not well understood. In the present study, we showed that miR-155 induced the acquisition of stem-like features in U2OS osteosarcoma cells by increasing the expression of both CSCs surface markers (CD24, CD90, CD133) and CSC-related transcriptional factors (Nanog, SOX2, Oct4, Bim-1). Inflammatory factor TNF-α upregulated the miR-155 expression in U2OS cells and formed a feedback regulatory loop with miR-155. Furthermore, TNF-α/miR-155 axis promoted the cell proliferation, invasion and epithelial-mesenchymal transition (EMT) process in a TP53INP1 independent manner. We also revealed that TNF-α/miR-155 axis induced osteosarcoma CSCs transformation via ERK signaling pathway. These results indicate a crucial role of miR-155 in the acquisition of osteosarcoma CSC phenotype and miR-155 may serve as a potential target in future osteosarcoma therapy.
Collapse
Affiliation(s)
- Jinzhi Yao
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Jianguang Lin
- Department of Medical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Lijiang He
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Jiemiao Huang
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Qiaoling Liu
- Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China.
| |
Collapse
|
22
|
Jiang X, Liu F, Wang Y, Gao J. Secreted protein acidic and rich in cysteine promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells and acquisition of cancerstem cell phenotypes. J Gastroenterol Hepatol 2019; 34:1860-1868. [PMID: 31041810 DOI: 10.1111/jgh.14692] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/04/2019] [Accepted: 04/26/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein that plays a significant role in tumor development. SPARC has been indicated that promotes tumorigenesis, metastasis, and poor prognosis in prostate cancer and lung cancer. Therefore, we sought to investigate the molecular mechanisms of SPARC in regulating hepatocellular carcinoma (HCC). METHODS We used spheroids cultured in serum-free culture medium to obtain liver cancer stem cells. Flow cytometric analysis was performed to investigate percentage of CD133+ cells in liver cancer cells. Real-time polymerase chain reaction and western blot were used to assess gene expression in cell lines. Transwell and wound healing assays were performed to indicate cell migration of HCC. RESULTS Secreted protein acidic and rich in cysteine was upregulated in spheres formation in HCC cells. Overexpression of SPARC enhanced the ability to form tumor spheres and increased CD133 and Oct4 expressions. Besides, SPARC promoted the migration and epithelial-mesenchymal transition in HCC cells. Importantly, SPARC overexpression stimulated the formation of subcutaneous tumors in nude mice. CONCLUSIONS Our findings suggest that SPARC overexpression promotes tumor growth, inducing epithelial-mesenchymal transition and acquisition of a stem cell phenotype. What is more, research elucidating the biological mechanisms of SPARC may be beneficial to liver cancer treatment.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Fengchao Liu
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yiying Wang
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jian Gao
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Wei X, You X, Zhang J, Zhou C. MicroRNA-1305 Inhibits the Stemness of LCSCs and Tumorigenesis by Repressing the UBE2T-Dependent Akt-Signaling Pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:721-732. [PMID: 31128423 PMCID: PMC6535505 DOI: 10.1016/j.omtn.2019.04.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 01/06/2023]
Abstract
MicroRNAs (miRNAs) are involved in the maintenance of the cancer stem cell (CSC) phenotype by binding to genes and proteins that modulate cell proliferation and/or cell apoptosis. In our study, we aimed to investigate the role of miR-1305 in the proliferation and self-renewal of liver CSCs (LCSCs) via the ubiquitin-conjugating enzyme E2T (UBE2T)-mediated Akt-signaling pathway. Differentially expressed genes in human hepatocellular carcinoma (HCC) were obtained by in silico analysis. The relationship between miR-1305 and UBE2T was verified by dual luciferase reporter gene assay. qRT-PCR and western blot analysis were performed to determine the expression of UBE2T, the Akt-signaling pathway, and stemness-related factors in LCSCs. In addition, miR-1305 disrupted the activation of the Akt-signaling pathway by targeting UBE2T, and, ultimately, it repressed the sphere formation, colony formation, and proliferation, as well as tumorigenicity of LCSCs. In summary, miR-1305 targeted UBE2T to inhibit the Akt-signaling pathway, thereby suppressing the self-renewal and tumorigenicity of LCSCs. Those findings may provide an enhanced understanding of miR-1305 as a therapeutic target to limit the progression of LCSCs.
Collapse
Affiliation(s)
- Xiaoyong Wei
- Department of Hepatobiliary Surgery, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, P.R. China
| | - Xiaolong You
- Department of Hepatobiliary Surgery, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, P.R. China
| | - Jianlong Zhang
- Department of Hepatobiliary Surgery, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, P.R. China
| | - Cuncai Zhou
- Department of Hepatobiliary Surgery, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, P.R. China.
| |
Collapse
|
24
|
Ullmann P, Nurmik M, Begaj R, Haan S, Letellier E. Hypoxia- and MicroRNA-Induced Metabolic Reprogramming of Tumor-Initiating Cells. Cells 2019; 8:E528. [PMID: 31159361 PMCID: PMC6627778 DOI: 10.3390/cells8060528] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC), the second most common cause of cancer mortality in the Western world, is a highly heterogeneous disease that is driven by a rare subpopulation of tumorigenic cells, known as cancer stem cells (CSCs) or tumor-initiating cells (TICs). Over the past few years, a plethora of different approaches, aimed at identifying and eradicating these self-renewing TICs, have been described. A focus on the metabolic and bioenergetic differences between TICs and less aggressive differentiated cancer cells has thereby emerged as a promising strategy to specifically target the tumorigenic cell compartment. Extrinsic factors, such as nutrient availability or tumor hypoxia, are known to influence the metabolic state of TICs. In this review, we aim to summarize the current knowledge on environmental stress factors and how they affect the metabolism of TICs, with a special focus on microRNA (miRNA)- and hypoxia-induced effects on colon TICs.
Collapse
Affiliation(s)
- Pit Ullmann
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| | - Martin Nurmik
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| | - Rubens Begaj
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| | - Serge Haan
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| |
Collapse
|
25
|
Aghajani M, Mansoori B, Mohammadi A, Asadzadeh Z, Baradaran B. New emerging roles of CD133 in cancer stem cell: Signaling pathway and miRNA regulation. J Cell Physiol 2019; 234:21642-21661. [PMID: 31102292 DOI: 10.1002/jcp.28824] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSC) are rare immortal cells within a tumor that are able to initiate tumor progression, development, and resistance. Advances studies show that, like normal stem cells, CSCs can be both self-renewed and given rise to many cell types, therefore form tumors. A number of cell surface markers, such as CD44, CD24, and CD133 are frequently used to identify CSCs. CD133, a transmembrane glycoprotein, either alone or in collaboration with other markers, has been mainly considered to identify CSCs from different solid tumors. However, the exactness of CD133 as a cancer stem cell biomarker has not been approved yet. The clinical importance of CD133 is as a CSC marker in many cancers. Also, it contributes to shorter survival, tumor progression, and tumor recurrence. The expression of CD133 is controlled by many extracellular or intracellular factors, such as tumor microenvironment, epigenetic factors, signaling pathways, and miRNAs. In this study, it was attempted to determine: 1) CD133 function; 2) the role of CD133 in cancer; 3) CD133 regulation; 4) the therapeutic role of CD133 in cancers.
Collapse
Affiliation(s)
- Marjan Aghajani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Li N, Cui T, Guo W, Wang D, Mao L. MiR-155-5p accelerates the metastasis of cervical cancer cell via targeting TP53INP1. Onco Targets Ther 2019; 12:3181-3196. [PMID: 31118671 PMCID: PMC6500876 DOI: 10.2147/ott.s193097] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/13/2019] [Indexed: 12/27/2022] Open
Abstract
Background: The dysregulation of microRNAs has been implicated in the progression of different malignancies. Herein, we sought to identify the precise roles of miR-155-5p in the progression of cervical cancer. Materials and methods: The expressions of miR-155-5p in cervical carcinoma cells and clinical tissues were assessed using qRT-PCR analysis. The functions of miR-155-5p on the growth of cervical cancer cell were investigated using MTT and colony formation. The Transwell and wound closure assays were selected to explore the influence of miR-155-5p on the invasion and migration of cervical cancer cell. The effect of miR-155-5p on cervical carcinoma cell growth and metastasis in vivo was investigated using xenograft model and experimental lung metastasis model. Bioinformatics analysis and luciferase reporter assay were applied to identify that tumor protein p53-inducible nuclear protein 1 (TP53INP1) was the target of miR-155-5p. Results: MiR-155-5p was significantly upregulated in cervical cancer tissue than that in control normal tissue. Downexpression of miR-155-5p decreased the growth, migration as well as invasiveness abilities of cervical cancer cell in vitro whereas overregulation of miR-155-5p caused the opposite outcomes. In addition, the in vivo mice xenograft model suggested that downexpression of miR-155-5p restrained the progression of cervical cancer cell whereas overexpression of miR-155-5p caused opposite outcomes. Furthermore, we revealed that TP53INP1 was the target of miR-155-5p and the level of TP53INP1 was inversely associated with miR-155-5p level in cervical carcinoma. Furthermore, TP53INP1 knockdown mimicked the influence of miR-155-5p on cervical cancer proliferation, migration and invasion phenotypes. Finally, overexpression of TP53INP1 impaired the promote effect of miR-155-5p on cervical cancer cell and downregulation of TP53INP1 counteracted the suppressive impact of miR-155-5p on the aggressiveness of cervical cancer cell. Conclusion: Our study indicated that miR-155-5p regulated the development of cervical cancer cell by regulating the expression of TP53INP1.
Collapse
Affiliation(s)
- Ning Li
- Obstetrical Department, Binzhou Central Hospital, Binzhou, Shandong 251700, People's Republic of China
| | - Tao Cui
- Anesthesiology Department, Huimin County Maternal and Child Health Hospital, Binzhou, Shandong, 251700, People's Republic of China
| | - Wenling Guo
- Obstetrical Department, Binzhou Central Hospital, Binzhou, Shandong 251700, People's Republic of China
| | - Dianwei Wang
- Obstetrical Department, Binzhou Central Hospital, Binzhou, Shandong 251700, People's Republic of China
| | - Li Mao
- Gynecology Department, Binzhou Central Hospital, Binzhou, Shandong 251700, People's Republic of China
| |
Collapse
|
27
|
Bayraktar R, Van Roosbroeck K. miR-155 in cancer drug resistance and as target for miRNA-based therapeutics. Cancer Metastasis Rev 2019; 37:33-44. [PMID: 29282605 DOI: 10.1007/s10555-017-9724-7] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Small non-coding microRNAs (miRNAs) are instrumental in physiological processes, such as proliferation, cell cycle, apoptosis, and differentiation, processes which are often disrupted in diseases like cancer. miR-155 is one of the best conserved and multifunctional miRNAs, which is mainly characterized by overexpression in multiple diseases including malignant tumors. Altered expression of miR-155 is found to be associated with various physiological and pathological processes, including hematopoietic lineage differentiation, immune response, inflammation, and tumorigenesis. Furthermore, miR-155 drives therapy resistance mechanisms in various tumor types. Therefore, miR-155-mediated signaling pathways became a potential target for the molecular treatment of cancer. In this review, we summarize the current findings of miR-155 in hematopoietic lineage differentiation, the immune response, inflammation, and cancer therapy resistance. Furthermore, we discuss the potential of miR-155-based therapeutic approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Recep Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1881 Holcombe Boulevard, Unit 1950, Houston, TX, 77054, USA
| | - Katrien Van Roosbroeck
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1881 Holcombe Boulevard, Unit 1950, Houston, TX, 77054, USA.
| |
Collapse
|
28
|
Yan K, Fu Y, Zhu N, Wang Z, Hong JL, Li Y, Li WJ, Zhang HB, Song JH. Repression of lncRNA NEAT1 enhances the antitumor activity of CD8 +T cells against hepatocellular carcinoma via regulating miR-155/Tim-3. Int J Biochem Cell Biol 2019; 110:1-8. [PMID: 30710754 DOI: 10.1016/j.biocel.2019.01.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/07/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Immunotherapy is a promising method for the treatment of hepatocellular carcinoma (HCC), in which CD8+T cells play a key role. The influence of long noncoding RNA (lncRNA) nuclear-enriched autosomal transcript 1(NEAT1) on the antitumor activity of CD8+T cells was clarified in this study. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from HCC patients, and the expressions of NEAT1 and Tim-3 were determined by qRT-PCR and western blot, respectively. CD8+T cell apoptosis and cell percentage were analyzed via flow cytometry. The cytolysis activity of CD8+T cells against HCC cells was examined. RNA immunoprecipitation (RIP) and RNA pull-down assay were performed to explore the interaction between NEAT1 and miR-155. RESULTS NEAT1 and Tim-3 were up-regulated in the PBMCs of patients with HCC (n = 20) compared with healthy subjects (n = 20). Down-regulation of NEAT1 restrained CD8+T cell apoptosis and enhanced the cytolysis activity, while interference of miR-155 showed the opposite effects by up-regulating Tim-3. Binding and interaction between NEAT1 and miR-155 were validated in CD8+T cells. Down-regulation of NEAT1 restrained CD8+T cell apoptosis and enhanced the cytolysis activity through the miR-155/Tim-3 pathway. Repression of NEAT1 suppressed tumor growth in HCC mice. CONCLUSION Via modulating the miR-155/Tim-3 pathway, repression of NEAT1 restrained CD8+T cell apoptosis and enhanced the cytolysis activity against HCC, implying an effective target for improving the outcome of immunotherapy.
Collapse
Affiliation(s)
- Kai Yan
- Fifth Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, China
| | - Yong Fu
- Fifth Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, China
| | - Nan Zhu
- Fifth Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, China
| | - Zhuo Wang
- Fifth Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, China
| | - Jin-Ling Hong
- Department of Hepatology, Shanghai Putuo District Central Hospital, Shanghai 200062, China
| | - Yao Li
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Wei-Jing Li
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Hai-Bin Zhang
- Fifth Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, China.
| | - Jing-Hai Song
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Beijing 100730, China.
| |
Collapse
|
29
|
Li N, Zhu Y. Targeting liver cancer stem cells for the treatment of hepatocellular carcinoma. Therap Adv Gastroenterol 2019; 12:1756284818821560. [PMID: 30719075 PMCID: PMC6348509 DOI: 10.1177/1756284818821560] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/15/2018] [Indexed: 02/04/2023] Open
Abstract
Liver cancer is one of the most common malignant tumors and prognosis remains poor. It has been increasingly recognized that liver cancer stem cells (LCSCs) are responsible for the carcinogenesis, recurrence, metastasis and chemoresistance of hepatocellular carcinoma (HCC). Targeting LCSCs is promising to be a new direction for the treatment of HCC. Herein, we summarize the potentially therapeutic targets in LCSCs at the level of genes, molecules and cells, such as knockout of oncogenes or oncoproteins, restoring the silent tumor suppressor genes, inhibition of the transcription factors and regulation of noncoding RNAs (including microRNAs and long noncoding RNAs) in LCSCs at the genetic level; inhibition of markers and blockade of the key signaling pathways of LCSCs at the molecular level; and inhibiting autophagy and application of oncolytic adenoviruses in LCSCs at the cellular level. Moreover, we analyze the potential targets in LCSCs to eliminate chemoresistance of HCC. Thereinto, the suppression of autophagy and Nanog by chloroquine and shRNA respectively may be the most promising targeting approaches. These targets may provide novel therapeutic strategies for the treatment of HCC by targeting LCSCs.
Collapse
Affiliation(s)
- Na Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | | |
Collapse
|
30
|
Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med 2019; 17:3. [PMID: 30602375 PMCID: PMC6317263 DOI: 10.1186/s12967-018-1760-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022] Open
Abstract
Milk consumption is a hallmark of western diet. According to common believes, milk consumption has beneficial effects for human health. Pasteurization of cow's milk protects thermolabile vitamins and other organic compounds including bioactive and bioavailable exosomes and extracellular vesicles in the range of 40-120 nm, which are pivotal mediators of cell communication via systemic transfer of specific micro-ribonucleic acids, mRNAs and regulatory proteins such as transforming growth factor-β. There is compelling evidence that human and bovine milk exosomes play a crucial role for adequate metabolic and immunological programming of the newborn infant at the beginning of extrauterine life. Milk exosomes assist in executing an anabolic, growth-promoting and immunological program confined to the postnatal period in all mammals. However, epidemiological and translational evidence presented in this review indicates that continuous exposure of humans to exosomes of pasteurized milk may confer a substantial risk for the development of chronic diseases of civilization including obesity, type 2 diabetes mellitus, osteoporosis, common cancers (prostate, breast, liver, B-cells) as well as Parkinson's disease. Exosomes of pasteurized milk may represent new pathogens that should not reach the human food chain.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7A, 49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
31
|
Asadzadeh Z, Mansoori B, Mohammadi A, Aghajani M, Haji‐Asgarzadeh K, Safarzadeh E, Mokhtarzadeh A, Duijf PHG, Baradaran B. microRNAs in cancer stem cells: Biology, pathways, and therapeutic opportunities. J Cell Physiol 2018; 234:10002-10017. [DOI: 10.1002/jcp.27885] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee, Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Marjan Aghajani
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | | | - Elham Safarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Department of Microbiology & Immunology Faculty of Medicine, Ardabil University of Medical Sciences Ardabil Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Pascal H. G. Duijf
- Translational Research Institute, University of Queensland Diamantina Institute, The University of Queensland Brisbane Queensland Australia
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
32
|
Wang P, Xu LJ, Qin JJ, Zhang L, Zhuang GH. MicroRNA-155 inversely correlates with esophageal cancer progression through regulating tumor-associated macrophage FGF2 expression. Biochem Biophys Res Commun 2018; 503:452-458. [PMID: 29660336 DOI: 10.1016/j.bbrc.2018.04.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 11/26/2022]
Abstract
Esophageal cancer (EC) is one of the most common malignancies with high incidence and mortality. Tumor-associated macrophages (TAMs) in the tumor microenvironment have been linked to the accelerated tumor progression. MicroRNAs (miR) are 19-25 nucleotide-long, noncoding RNA molecules, functioning as modulators of gene expression, and mediate a variety of biological functions, including tumor growth. In the present study, the effects and molecular mechanism of miR-155 in TAMs isolated from EC were explored. The expression of miR-155 and fibroblast growth factor-2 (FGF2) in EC tissues and cell lines were analyzed using reverse transcription-quantitative PCR (qRT-PCR) and western blot assays. TAMs were also transfected with the described constructs. Following, the culture medium from TAMs was collected for further analysis. The released FGF2, and inflammatory cytokines were quantified using ELISA. The cell viability, migrated and invaded levels were calculated through Cell Counting kit-8 (CCK8), and transwell analysis. Moreover, human umbilical vein endothelial cells (HUVEC) vasculature formation was determined using matrigel angiogenesis analysis. The results indicated that miR-155 expression was decreased in EC tissues and cell lines, while FGF2 expression was increased in comparison to those in the normal control group. Moreover, miR-155 mimics transfection up-regulated tumor necrosis factor α (TNF-α), interleukin (IL)-12 and inducible nitric oxide synthase (iNOS), while down-regulated IL-10, Arginase-1 (Arg-1) and IL-22 levels in the culture medium from TAMs. And enhancing miR-155 expression in TAMs suppressed the cell viability, migration and invasion of ECA109 cells and reduced the angiogenesis. Nevertheless, over-expressing FGF2 abolished the role of miR-155 in cancer cell survival, migration, invasion as well as angiogenesis. Our findings indicated that miR-155-regulated FGF2 expression from TAMs suppressed EC cell proliferation, migration, invasion and inhibited vasculature formation. Thus, miR-155-modulated FGF2 might be a potential therapeutic target to prevent EC progression.
Collapse
Affiliation(s)
- Peng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, China; College of Public Health and Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Li-Juan Xu
- Department of Clinical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Jie-Jie Qin
- College of Public Health and Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lu Zhang
- College of Public Health and Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Gui-Hua Zhuang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
33
|
|
34
|
Noncoding RNAs in liver cancer stem cells: The big impact of little things. Cancer Lett 2018; 418:51-63. [DOI: 10.1016/j.canlet.2018.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022]
|
35
|
Zuo J, Yu Y, Zhu M, Jing W, Yu M, Chai H, Liang C, Tu J. Inhibition of miR-155, a therapeutic target for breast cancer, prevented in cancer stem cell formation. Cancer Biomark 2018; 21:383-392. [DOI: 10.3233/cbm-170642] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Santos JC, Lima NDS, Sarian LO, Matheu A, Ribeiro ML, Derchain SFM. Exosome-mediated breast cancer chemoresistance via miR-155 transfer. Sci Rep 2018; 8:829. [PMID: 29339789 PMCID: PMC5770414 DOI: 10.1038/s41598-018-19339-5] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/27/2017] [Indexed: 12/16/2022] Open
Abstract
Breast cancer remains the most prevalent cause of cancer mortality in woman worldwide due to the metastatic process and therapy resistance. Resistance against cancer therapy is partially attributed to cancer stem cells (CSCs). These cells arise from epithelial cells undergoing epithelial-to-mesenchymal transition (EMT) and might be responsible for tumor recurrence. In this study, we reported the relevance of miR-155 upregulation in chemoresistant cells associated with EMT. Notably, we found miR-155 induction in exosomes isolated from CSCs and resistant cells, followed by resistant cells’ exosome transfer to the recipient sensitive cells. Functionally, miR-155 mimic assay showed an enrichment in miR-155 from exosome concomitant with miR-155 exosome transfer to breast cancer cells. In parallel to these effects, we also observed EMT change in miR-155 transfected cells. The chemoresistance phenotype transfer to sensitive cells and the migration capability was analyzed by MTT and scratch assays and our results suggest that exosomes may intermediate resistance and migration capacity to sensitive cells partly through exosome transfer of miR-155. Taken together, our findings establish the significance of exosome-mediate miR-155 chemoresistance in breast cancer cells, with implications for targeting miR-155 signaling as a possible therapeutic strategy.
Collapse
Affiliation(s)
- Juliana Carvalho Santos
- Women's Health Hospital "Prof Dr José Aristodemo Pinotti" (CAISM), State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Natália da Silva Lima
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University, São Francisco University, Bragança Paulista, SP, Brazil
| | - Luis Otavio Sarian
- Women's Health Hospital "Prof Dr José Aristodemo Pinotti" (CAISM), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Marcelo Lima Ribeiro
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University, São Francisco University, Bragança Paulista, SP, Brazil.
| | | |
Collapse
|
37
|
Al-Haidari AA, Syk I, Thorlacius H. MiR-155-5p positively regulates CCL17-induced colon cancer cell migration by targeting RhoA. Oncotarget 2017; 8:14887-14896. [PMID: 28146427 PMCID: PMC5362452 DOI: 10.18632/oncotarget.14841] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/16/2017] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer is the second most common cause of cancer-related death, which is due to migration of tumor cells to distant sites of metastasis. Accumulating data indicate that mciroRNAs play an important role in several aspects of colon cancer cell biology. Herein, we examined the role of miR-155-5p in colon cancer cell migration induced by the CCL17-CCR4 axis in HT-29 colon cancer cells. We found that miR-155-5p knockdown in serum starved colon cancer cells decreased CCL17-induced cell chemotaxis. Moreover, knocking down miR-155-5p markedly decreased CCL17-provoked activation of RhoA in colon cancer cells. Bioinformatics analysis predicted two putative binding sites in the AU-rich element at the 3'-UTR of RhoA mRNA. MiR-155-5p binding to RhoA mRNA was verified using a target site blocker and functionally validated by RNA immunoprecipitation assays, showing that miR-155-5p-dependent regulation of RhoA mRNA is mediated by AU-rich elements present in the 3'-UTR region. Taken together, these results show that miR-155-5p positively regulates RhoA mRNA levels and translation as well as cell migration in serum starved colon cancer cells and indicate that targeting miR-155-5p might be a useful strategy to antagonize colon cancer metastasis.
Collapse
Affiliation(s)
- Amr A Al-Haidari
- Department of Clinical Sciences, Section of Surgery, Lund University, 20502 Malmö, Sweden
| | - Ingvar Syk
- Department of Clinical Sciences, Section of Surgery, Lund University, 20502 Malmö, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences, Section of Surgery, Lund University, 20502 Malmö, Sweden
| |
Collapse
|
38
|
Liu C, Sun Z, Xu Z, Liu T, Pan T, Li S. Down-regulation of microRNA-155 promotes selenium deficiency-induced apoptosis by tumor necrosis factor receptor superfamily member 1B in the broiler spleen. Oncotarget 2017; 8:58513-58525. [PMID: 28938575 PMCID: PMC5601671 DOI: 10.18632/oncotarget.17222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/22/2017] [Indexed: 12/18/2022] Open
Abstract
The aim of this work was to explore the microRNA profile and the effect of microRNA-155 on apoptosis in the spleen of selenium-deficient broilers. We replicated the splenic-apoptotic model in selenium-deficient broilers. In vitro, microRNA-155 oligonucleotides were transfected into lymphocytes and subsequently treated with H2O2. We observed that selenium deficiency altered the microRNA profile and decreased the expression of microRNA-155 in the broiler spleens. Tumor necrosis factor receptor superfamily member 1B was verified as a target of microRNA-155 in the splenocytes. Morphological changes, increased levels of tumor necrosis factor receptor superfamily member 1B, c-Jun N-terminal kinase, Bak, Bax, Cyt-c, caspase9 and caspase3 and decreased levels of Bcl-2 demonstrated that selenium deficiency induced apoptosis in the spleen tissues. In vitro, microRNA-155 m inhibited the levels of ROS and reduced apoptosis compared with microRNA-155i in the lymphocytes. These results suggested that the reduced levels of microRNA-155 due to selenium deficiency could promote oxidative stress-induced apoptosis by increased tumor necrosis factor receptor superfamily member 1B in splenic cells.
Collapse
Affiliation(s)
- Ci Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhepeng Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhe Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Tianqi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Tingru Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
39
|
Kong X, Liu F, Gao J. MiR-155 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells through the activation of PI3K/SGK3/β-catenin signaling pathways. Oncotarget 2016; 7:66051-66060. [PMID: 27602769 PMCID: PMC5323213 DOI: 10.18632/oncotarget.11800] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/24/2016] [Indexed: 01/23/2023] Open
Abstract
Oncogenic mutations in PIK3CA, the gene encoding the catalytic subunit of phosphoinositide 3-kinase (PI3K), occur with high frequency in hepatocellular carcinoma (HCC). The protein kinase Akt is considered to be the primary effector of PI3K, but there is evidence to suggest that serum and glucocorticoid kinase 3 (SGK3) acts in an Akt-independent manner downstream of PI3K. In this report, we found that SGK3 promotes epithelial-mesenchymal transition (EMT) and reduces phosphorylation-dependent degradation of β-catenin in HCC cells. We determined that miR-155, previously shown to promote EMT, stimulates the expression of SGK3 by targeting and repressing P85α, thereby removing its inhibitory effect on PI3K-AKT signaling. These findings suggest that miR-155 promotes EMT and metastatic properties in HCC cells through activation of PI3K/SGK3/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Xin Kong
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Fengchao Liu
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jian Gao
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
40
|
miRNA-regulated cancer stem cells: understanding the property and the role of miRNA in carcinogenesis. Tumour Biol 2016; 37:13039-13048. [DOI: 10.1007/s13277-016-5156-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/12/2016] [Indexed: 12/14/2022] Open
|
41
|
Vasilatou D, Sioulas AD, Pappa V, Papanikolaou IS, Triantafyllou K, Dimitriadis GD, Papageorgiou SG. The role of miRNAs and epigenetic mechanisms in primary gastric mucosa-associated lymphoid tissue lymphoma. Future Oncol 2016; 12:1587-1593. [PMID: 27079806 DOI: 10.2217/fon-2016-0038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/01/2016] [Indexed: 12/28/2022] Open
Abstract
Gastric mucosa-associated lymphoid tissue (MALT) lymphoma is a rare low-grade B-cell non-Hodgkin lymphoma associated with Helicobacter pylori infection and the subsequent chronic inflammation. Significant progress in understanding the pathogenesis of the disease has already been made. However, the exact molecular pathways of lymphomagenesis remain unclear. Furthermore, difficulties regarding accurate diagnosis of gastric MALT lymphoma and its discrimination from gastritis or other lymphoma subtypes arise. Recent studies evaluate the role of miRNAs and epigenetic alterations on MALT lymphoma pathogenesis and prognosis. This review critically summarizes the most important data on the role of miRNAs and epigenetics in MALT lymphomas pathogenesis, prognosis and treatment.
Collapse
Affiliation(s)
- Diamantina Vasilatou
- Second Department of Internal Medicine & Research Institute, 'Attikon' University General Hospital, Medical School, University of Athens, Haidari, Greece
| | - Athanasios D Sioulas
- Second Department of Internal Medicine & Research Institute, 'Attikon' University General Hospital, Medical School, University of Athens, Haidari, Greece
| | - Vasiliki Pappa
- Second Department of Internal Medicine & Research Institute, 'Attikon' University General Hospital, Medical School, University of Athens, Haidari, Greece
| | - Ioannis S Papanikolaou
- Second Department of Internal Medicine & Research Institute, 'Attikon' University General Hospital, Medical School, University of Athens, Haidari, Greece
| | - Konstantinos Triantafyllou
- Second Department of Internal Medicine & Research Institute, 'Attikon' University General Hospital, Medical School, University of Athens, Haidari, Greece
| | - George D Dimitriadis
- Second Department of Internal Medicine & Research Institute, 'Attikon' University General Hospital, Medical School, University of Athens, Haidari, Greece
| | - Sotirios G Papageorgiou
- Second Department of Internal Medicine & Research Institute, 'Attikon' University General Hospital, Medical School, University of Athens, Haidari, Greece
| |
Collapse
|
42
|
The Therapeutic Targets of miRNA in Hepatic Cancer Stem Cells. Stem Cells Int 2016; 2016:1065230. [PMID: 27118975 PMCID: PMC4826947 DOI: 10.1155/2016/1065230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide malignancy and the third leading cause of cancer death in patients. Several studies demonstrated that hepatic cancer stem cells (HCSCs), also called tumor-initiating cells, are involved in regulation of HCC initiation, tumor progression, metastasis development, and drug resistance. Despite the extensive research, the underlying mechanisms by which HCSCs are regulated remain still unclear. MicroRNAs (miRNAs) are able to regulate a lot of biological processes such as self-renewal and pluripotency of HCSCs, representing a new promising strategy for treatment of HCC chemotherapy-resistant tumors. In this review, we synthesize the latest findings on therapeutic regulation of HCSCs by miRNAs, in order to highlight the perspective of novel miRNA-based anticancer therapies for HCC treatment.
Collapse
|
43
|
He W, Huang H, Xie Q, Wang Z, Fan Y, Kong B, Huang D, Xiao Y. MiR-155 Knockout in Fibroblasts Improves Cardiac Remodeling by Targeting Tumor Protein p53-Inducible Nuclear Protein 1. J Cardiovasc Pharmacol Ther 2015; 21:423-35. [PMID: 26589288 DOI: 10.1177/1074248415616188] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/28/2015] [Indexed: 01/08/2023]
Abstract
Cardiac remodeling caused by acute myocardial infarction (AMI) represents a major challenge for heart failure research. MiR-155 has been identified as a key mediator of cardiac inflammation and hypertrophy. In this study, we investigate the role of miR-155 in cardiac remodeling induced by AMI. We demonstrate that miR-155 expressed in cardiac fibroblasts is a potent contributor to cardiac remodeling. We reveal that in vivo, miR-155 knockout improves left ventricular function, reduces infarct size, and attenuates collagen deposition, whereas overexpression of miR-155 produces the opposite effects. MiR-155 knockout also inhibits cardiac fibroblast proliferation and differentiation into myofibroblasts. In addition, downregulation of tumor protein p53-inducible nuclear protein 1 (TP53INP1) by small interfering RNA reverses the effects of miR-155 knockout on cardiac fibroblasts. Our data reveal that knockout of miR-155 in cardiac fibroblasts improves cardiac remodeling by targeting TP53INP1, which may be a novel treatment strategy for cardiac remodeling.
Collapse
Affiliation(s)
- Wangwei He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Qiang Xie
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, PR China
| | - Zhiqiang Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yang Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Dan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yali Xiao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| |
Collapse
|
44
|
Yamamoto K, Ito S, Hanafusa H, Shimizu K, Ouchida M. Uncovering Direct Targets of MiR-19a Involved in Lung Cancer Progression. PLoS One 2015; 10:e0137887. [PMID: 26367773 PMCID: PMC4569347 DOI: 10.1371/journal.pone.0137887] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
Micro RNAs (miRNAs) regulate the expression of target genes posttranscriptionally by pairing incompletely with mRNA in a sequence-specific manner. About 30% of human genes are regulated by miRNAs, and a single miRNA is capable of reducing the production of hundreds of proteins by means of incomplete pairing upon miRNA-mRNA binding. Lately, evidence implicating miRNAs in the development of lung cancers has been emerging. In particular, miR-19a, which is highly expressed in malignant lung cancer cells, is considered the key miRNA for tumorigenesis. However, its direct targets remain underreported. In the present study, we focused on six potential miR-19a target genes selected by miRNA target prediction software. To evaluate these genes as direct miR-19a target genes, we performed luciferase, pull-down, and western blot assays. The luciferase activity of plasmids with each miR-19a-binding site was observed to decrease, while increased luciferase activity was observed in the presence of anti-miR-19a locked nucleic acid (LNA). The pull-down assay showed biotinylated miR-19a to bind to AGO2 protein and to four of six potential target mRNAs. Western blot analysis showed that the expression levels of the four genes changed depending on treatment with miR-19a mimic or anti-miR-19a-LNA. Finally, FOXP1, TP53INP1, TNFAIP3, and TUSC2 were identified as miR-19a targets. To examine the function of these four target genes in lung cancer cells, LK79 (which has high miR-19a expression) and A549 (which has low miR-19a expression) were used. The expression of the four target proteins was higher in A549 than in LK79 cells. The four miR-19a target cDNA expression vectors suppressed cell viability, colony formation, migration, and invasion of A549 and LK79 cells, but LK79 cells transfected with FOXP1 and TP53INP1 cDNAs showed no difference compared to the control cells in the invasion assay.
Collapse
Affiliation(s)
- Kumiko Yamamoto
- Department of Molecular Genetics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Sachio Ito
- Department of Molecular Genetics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Hiroko Hanafusa
- Department of Molecular Genetics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Kenji Shimizu
- Department of Molecular Genetics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Mamoru Ouchida
- Department of Molecular Genetics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
- * E-mail:
| |
Collapse
|
45
|
Sarkar N, Chakravarty R. Hepatitis B Virus Infection, MicroRNAs and Liver Disease. Int J Mol Sci 2015; 16:17746-62. [PMID: 26247932 PMCID: PMC4581219 DOI: 10.3390/ijms160817746] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) attacks the liver and can cause both acute as well as chronic liver diseases which might lead to liver cirrhosis and hepatocellular carcinoma. Regardless of the availability of a vaccine and numerous treatment options, HBV is a major cause of morbidity and mortality across the world. Recently, microRNAs (miRNAs) have emerged as important modulators of gene function. Studies on the role of miRNA in the regulation of hepatitis B virus gene expression have been the focus of modern antiviral research. miRNAs can regulate viral replication and pathogenesis in a number of different ways, which includefacilitation, direct or indirect inhibition, activation of immune response, epigenetic modulation, etc. Nevertheless, these mechanisms can appropriately be used with a diagnosticand/or therapeutic approach. The present review is an attempt to classify specific miRNAs that are reported to be associated with various aspects of hepatitis B biology, in order to precisely present the participation of individual miRNAs in multiple aspects relating to HBV.
Collapse
Affiliation(s)
- Neelakshi Sarkar
- ICMR Virus Unit, Kolkata, ID & BG Hospital Campus, Kolkata-700010, India.
| | - Runu Chakravarty
- ICMR Virus Unit, Kolkata, ID & BG Hospital Campus, Kolkata-700010, India.
| |
Collapse
|
46
|
Saadi H, Seillier M, Carrier A. The stress protein TP53INP1 plays a tumor suppressive role by regulating metabolic homeostasis. Biochimie 2015. [PMID: 26225460 DOI: 10.1016/j.biochi.2015.07.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the recent years, we have provided evidence that Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) is a key stress protein with antioxidant-associated tumor suppressive function. The TP53INP1 gene, which is highly conserved in mammals, is over-expressed during stress responses including inflammation. This gene encodes two protein isoforms with nuclear or cytoplasmic subcellular localization depending on the context. TP53INP1 contributes to stress responses, thus preventing stress-induced dysfunctions leading to pathologies such as cancer. Two major mechanisms by which TP53INP1 functions have been unveiled. First, in the nucleus, TP53INP1 was shown to regulate the transcriptional activity of p53 and p73 by direct interaction, and to mediate the antioxidant activity of p53. Second, independently of p53, TP53INP1 contributes to autophagy and more particularly mitophagy through direct interaction with molecular actors of autophagy. TP53INP1 is thus required for the homeostasis of the mitochondrial compartment, and is therefore involved in the regulation of energetic metabolism. Finally, the antioxidant function of TP53INP1 stems from the control of mitochondrial reactive oxygen species production. In conclusion, TP53INP1 is a multifaceted protein endowed with multiple functions, including metabolic regulation, as is its main functional partner p53.
Collapse
Affiliation(s)
- Houda Saadi
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France
| | - Marion Seillier
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France
| | - Alice Carrier
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France.
| |
Collapse
|
47
|
Abstract
Human T-cell leukemia virus (HTLV)-1 is a human retrovirus and the etiological agent of adult T-cell leukemia/lymphoma (ATLL), a fatal malignancy of CD4/CD25+ T lymphocytes. In recent years, cellular as well as virus-encoded microRNA (miRNA) have been shown to deregulate signaling pathways to favor virus life cycle. HTLV-1 does not encode miRNA, but several studies have demonstrated that cellular miRNA expression is affected in infected cells. Distinct mechanisms such as transcriptional, epigenetic or interference with miRNA processing machinery have been involved. This article reviews the current knowledge of the role of cellular microRNAs in virus infection, replication, immune escape and pathogenesis of HTLV-1.
Collapse
|