1
|
Mukherjee P, Dutta J, Roy M, Thakur TK, Mitra A. Plant growth-promoting rhizobacterial secondary metabolites in augmenting heavy metal(loid) phytoremediation: An integrated green in situ ecorestorative technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55851-55894. [PMID: 39251536 DOI: 10.1007/s11356-024-34706-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/17/2022] [Indexed: 09/11/2024]
Abstract
In recent times, increased geogenic and human-centric activities have caused significant heavy metal(loid) (HM) contamination of soil, adversely impacting environmental, plant, and human health. Phytoremediation is an evolving, cost-effective, environment-friendly, in situ technology that employs indigenous/exotic plant species as natural purifiers to remove toxic HM(s) from deteriorated ambient soil. Interestingly, the plant's rhizomicrobiome is pivotal in promoting overall plant nutrition, health, and phytoremediation. Certain secondary metabolites produced by plant growth-promoting rhizobacteria (PGPR) directly participate in HM bioremediation through chelation/mobilization/sequestration/bioadsorption/bioaccumulation, thus altering metal(loid) bioavailability for their uptake, accumulation, and translocation by plants. Moreover, the metallotolerance of the PGPR and the host plant is another critical factor for the successful phytoremediation of metal(loid)-polluted soil. Among the phytotechniques available for HM remediation, phytoextraction/phytoaccumulation (HM mobilization, uptake, and accumulation within the different plant tissues) and phytosequestration/phytostabilization (HM immobilization within the soil) have gained momentum in recent years. Natural metal(loid)-hyperaccumulating plants have the potential to assimilate increased levels of metal(loid)s, and several such species have already been identified as potential candidates for HM phytoremediation. Furthermore, the development of transgenic rhizobacterial and/or plant strains with enhanced environmental adaptability and metal(loid) uptake ability using genetic engineering might open new avenues in PGPR-assisted phytoremediation technologies. With the use of the Geographic Information System (GIS) for identifying metal(loid)-impacted lands and an appropriate combination of normal/transgenic (hyper)accumulator plant(s) and rhizobacterial inoculant(s), it is possible to develop efficient integrated phytobial remediation strategies in boosting the clean-up process over vast regions of HM-contaminated sites and eventually restore ecosystem health.
Collapse
Affiliation(s)
- Pritam Mukherjee
- Department of Oceanography, Techno India University, West Bengal, EM 4/1 Sector V, Salt Lake, Kolkata, 700091, West Bengal, India.
| | - Joystu Dutta
- Department of Environmental Science, University Teaching Department, Sant Gahira Guru University, Ambikapur, 497001, Chhattisgarh, India
| | - Madhumita Roy
- Department of Microbiology, Bose Institute, P-1/12, CIT Road, Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Tarun Kumar Thakur
- Department of Environmental Science, Indira Gandhi National Tribal University, Amarkantak, 484886, Madhya Pradesh, India
| | - Abhijit Mitra
- Department of Marine Science, University of Calcutta, 35 B. C. Road, Kolkata, 700019, West Bengal, India
| |
Collapse
|
2
|
Langrand J, Lounès-Hadj Sahraoui A, Duclercq J, Raveau R, Laruelle F, Bert V, Facon N, Tisserant B, Fontaine J. Coriander ( Coriandrum sativum) Cultivation Combined with Arbuscular Mycorrhizal Fungi Inoculation and Steel Slag Application Influences Trace Elements-Polluted Soil Bacterial Functioning. PLANTS (BASEL, SWITZERLAND) 2023; 12:618. [PMID: 36771702 PMCID: PMC9920375 DOI: 10.3390/plants12030618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The cultivation of aromatic plants for the extraction of essential oils has been presented as an innovative and economically viable alternative for the remediation of areas polluted with trace elements (TE). Therefore, this study focuses on the contribution of the cultivation of coriander and the use of arbuscular mycorrhizal fungi (AMF) in combination with mineral amendments (steel slag) on the bacterial function of the rhizosphere, an aspect that is currently poorly understood and studied. The introduction of soil amendments, such as steel slag or mycorrhizal inoculum, had no significant effect on coriander growth. However, steel slag changed the structure of the bacterial community in the rhizosphere without affecting microbial function. In fact, Actinobacteria were significantly less abundant under slag-amended conditions, while the relative proportion of Gemmatimonadota increased. On the other hand, the planting of coriander affects the bacterial community structure and significantly increased the bacterial functional richness of the amended soil. Overall, these results show that planting coriander most affected the structure and functioning of bacterial communities in the TE-polluted soils and reversed the effects of mineral amendments on rhizosphere bacterial communities and their activities. This study highlights the potential of coriander, especially in combination with steel slag, for phytomanagement of TE-polluted soils, by improving soil quality and health.
Collapse
Affiliation(s)
- Julien Langrand
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France
| | - Jérôme Duclercq
- Unité Écologie et Dynamique des Systèmes Anthropisés (EDYSAN UMR CNRS 7058 CNRS), Université de Picardie Jules Verne, UFR des Sciences, 80029 Amiens, France
| | - Robin Raveau
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR Santé et Agroécologie du Vignoble (SAVE), Bordeaux Sciences Agro, ISVV, 33882 Villenave d’Ornon, France
| | - Frédéric Laruelle
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France
| | - Valérie Bert
- Unité Technologies Propres et Economie Circulaire, INERIS, Parc Technologique Alata, BP2, 60550 Verneuil en Halatte, France
| | - Natacha Facon
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France
| | - Benoît Tisserant
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France
| | - Joël Fontaine
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France
| |
Collapse
|
3
|
Li D, Chen J, Zhang X, Shi W, Li J. Structural and functional characteristics of soil microbial communities in response to different ecological risk levels of heavy metals. Front Microbiol 2022; 13:1072389. [PMID: 36569064 PMCID: PMC9772559 DOI: 10.3389/fmicb.2022.1072389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Objective The potential ecological risk index (RI) is the most commonly used method to assess heavy metals (HMs) contamination in soils. However, studies have focused on the response of soil microorganisms to different concentrations, whereas little is known about the responses of the microbial community structures and functions to HMs at different RI levels. Methods Here, we conducted soil microcosms with low (L), medium (M) and high (H) RI levels, depending on the Pb and Cd concentrations, were conducted. The original soil was used as the control (CK). High-throughput sequencing, qPCR, and Biolog plate approaches were applied to investigate the microbial community structures, abundance, diversity, metabolic capacity, functional genes, and community assembly processes. Result The abundance and alpha diversity indices for the bacteria at different RI levels were significantly lower than those of the CK. Meanwhile, the abundance and ACE index for the fungi increased significantly with RI levels. Acidobacteria, Basidiomycota and Planctomycetes were enriched as the RI level increased. Keystone taxa and co-occurrence pattern analysis showed that rare taxa play a vital role in the stability and function of the microbial community at different RI levels. Network analysis indicates that not only did the complexity and vulnerability of microbial community decrease as risk levels increased, but that the lowest number of keystone taxa was found at the H level. However, the microbial community showed enhanced intraspecific cooperation to adapt to the HMs stress. The Biolog plate data suggested that the average well color development (AWCD) reduced significantly with RI levels in bacteria, whereas the fungal AWCD was dramatically reduced only at the H level. The functional diversity indices and gene abundance for the microorganisms at the H level were significantly lower than those the CK. In addition, microbial community assembly tended to be more stochastic with an increase in RI levels. Conclusion Our results provide new insight into the ecological impacts of HMs on the soil microbiome at different risk levels, and will aid in future risk assessments for Pb and Cd contamination.
Collapse
|
4
|
Lara E, Singer D, Geisen S. Discrepancies between prokaryotes and eukaryotes need to be considered in soil DNA-based studies. Environ Microbiol 2022; 24:3829-3839. [PMID: 35437903 PMCID: PMC9790305 DOI: 10.1111/1462-2920.16019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/30/2022]
Abstract
Metabarcoding approaches are exponentially increasing our understanding of soil biodiversity, with a major focus on the bacterial part of the microbiome. Part of the soil diversity are also eukaryotes that include fungi, algae, protists and Metazoa. Nowadays, soil eukaryotes are targeted with the same approaches developed for bacteria and archaea (prokaryotes). However, fundamental differences exist between domains. After providing a short historical overview of the developments of metabarcoding applied to environmental microbiology, we compile the most important differences between domains that prevent direct method transfers between prokaryotic and eukaryotic soil metabarcoding approaches, currently dominated by short-read sequencing. These include the existence of divergent diversity concepts and the variations in eukaryotic morphology that affect sampling and DNA extraction. Furthermore, eukaryotes experienced much more variable evolutionary rates than prokaryotes, which prevent capturing the entire eukaryotic diversity in a soil with a single amplification protocol fit for short-read sequencing. In the final part we focus on future potentials for optimization of eukaryotic metabarcoding that include superior possibility of functionally characterizing eukaryotes and to extend the current information obtained, such as by adding a real quantitative component. This review should optimize future metabarcoding approaches targeting soil eukaryotes and kickstart this promising research direction.
Collapse
Affiliation(s)
- Enrique Lara
- Real Jardín Botánico‐CSIC, Plaza de Murillo 2Madrid28014Spain
| | - David Singer
- UMR CNRS 6112 LPG‐BIAFAngers University, 2 Boulevard LavoisierAngers49045France
| | - Stefan Geisen
- Laboratory of NematologyWageningen UniversityWageningen6700 AAThe Netherlands
| |
Collapse
|
5
|
Bhattacharyya C, Imchen M, Mukherjee T, Haldar S, Mondal S, Mukherji S, Haldar A, Kumavath R, Ghosh A. Rhizosphere impact bacterial community structure in the tea (Camellia sinensis (L.) O. Kuntze.) estates of Darjeeling, India. Environ Microbiol 2021; 24:2716-2731. [PMID: 34913573 DOI: 10.1111/1462-2920.15874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
Abstract
India contributes 28% of the world's tea production, and the Darjeeling tea of India is a world-famous tea variety known for its unique quality, flavor, and aroma. This study analyzed the spatial distribution of bacterial communities in the tea rhizosphere of six different tea estates at different altitudes. The organic carbon, total nitrogen, and available phosphate were higher in the rhizosphere soils than the bulk soils, irrespective of the sites. Alpha and beta diversities were significantly (p<0.05) higher in the bulk soil than in the rhizosphere. Among the identified phyla, the predominant ones were Proteobacteria, Actinobacteria, and Acidobacteria. At the genus level, only 4 out of 23 predominant genera (>1% relative abundance) could be classified viz. Candidatus Solibacter (5.36±0.36%), Rhodoplanes (4.87±0.3%), Candidatus Koribacter (2.3±0.67%), Prevotella (1.49±0.26%). The rhizosphere effect was prominent evident from the significant depletion of more ASVs (n=39) compared to enrichment (n=11). The functional genes also exhibit a similar trend with the enrichment of N2 fixation genes, disease suppression, and Acetoine synthesis. Our study reports that the rhizobiome of tea is highly selective by reducing the alpha and beta diversity while enriching the significant functional genes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chandrima Bhattacharyya
- Department of Biochemistry, Bose Institute, P1/12 C.I.T, Scheme VIIM, Kolkata, 700054, West Bengal, India
| | - Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya P.O, Kasaragod, Kerala, 671316, India
| | - Triparna Mukherjee
- Department of Biochemistry, Bose Institute, P1/12 C.I.T, Scheme VIIM, Kolkata, 700054, West Bengal, India
| | - Shyamalina Haldar
- Department of Biochemistry, Asutosh College, University, of Calcutta, Kolkata, 700026, India
| | - Sangita Mondal
- Department of Biochemistry, Bose Institute, P1/12 C.I.T, Scheme VIIM, Kolkata, 700054, West Bengal, India
| | - Shayantan Mukherji
- Department of Biochemistry, Bose Institute, P1/12 C.I.T, Scheme VIIM, Kolkata, 700054, West Bengal, India
| | - Anwesha Haldar
- Department of Geography, East Calcutta Girls' College, under West Bengal State University, Lake Town, Kolkata, 700089, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya P.O, Kasaragod, Kerala, 671316, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute, P1/12 C.I.T, Scheme VIIM, Kolkata, 700054, West Bengal, India
| |
Collapse
|
6
|
Ducey TF, Sigua GC, Novak JM, Ippolito JA, Spokas KA, Johnson MG. Microbial Response to Phytostabilization in Mining Impacted Soils Using Maize in Conjunction with Biochar and Compost. Microorganisms 2021; 9:2545. [PMID: 34946145 PMCID: PMC8707346 DOI: 10.3390/microorganisms9122545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Even after remediation, mining impacted soils can leave behind a landscape inhospitable to plant growth and containing residual heavy metals. While phytostabilization can be used to restore such sites by limiting heavy metal spread, it is reliant on soil capable of supporting plant growth. Manure-based biochars, coupled with compost, have demonstrated the ability to improve soil growth conditions in mine impacted soils, however there is a paucity of information regarding their influence on resident microbial populations. The objective of this study was to elucidate the impact of these soil amendments on microbial community structure and function in mine impacted soils placed under phytostabilization management with maize. To this aim, a combination of phospholipid fatty acid (PLFA) and enzymatic analyses were performed. Results indicate that microbial biomass is significantly increased upon addition of biochar and compost, with maximal microbial biomass achieved with 5% poultry litter biochar and compost (62.82 nmol g-1 dry soil). Microbial community structure was impacted by biochar type, rate of application, and compost addition, and influenced by pH (r2 = 0.778), EC (r2 = 0.467), and Mg soil concentrations (r2 = 0.453). In three of the four enzymes analyzed, poultry litter biochar treatments were observed with increased activity rates that were often significantly greater than the unamended control. Overall, enzyme activities rates were influenced by biochar type and rate, and addition of compost. These results suggest that using a combination of biochar and compost can be utilized as a management tool to support phytostabilization strategies in mining impacted soils.
Collapse
Affiliation(s)
- Thomas F. Ducey
- Coastal Plains Soil, Water, and Plant Research Center, ARS-USDA, Florence, SC 29501, USA; (G.C.S.); (J.M.N.)
| | - Gilbert C. Sigua
- Coastal Plains Soil, Water, and Plant Research Center, ARS-USDA, Florence, SC 29501, USA; (G.C.S.); (J.M.N.)
| | - Jeffrey M. Novak
- Coastal Plains Soil, Water, and Plant Research Center, ARS-USDA, Florence, SC 29501, USA; (G.C.S.); (J.M.N.)
| | - James A. Ippolito
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Kurt A. Spokas
- National Forage Seed Production Research Center, ARS-USDA, St. Paul, MN 55105, USA;
| | - Mark G. Johnson
- Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, United States Environmental Protection Agency, Corvallis, OR 97333, USA;
| |
Collapse
|
7
|
Reiß F, Kiefer N, Noll M, Kalkhof S. Application, release, ecotoxicological assessment of biocide in building materials and its soil microbial response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112707. [PMID: 34461316 DOI: 10.1016/j.ecoenv.2021.112707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Biocides are used in building materials to protect the building against microbial colonization and biodeterioration. However, these biocides are introduced by gradual leaching into soils in proximity of the buildings. This review discusses the aspects and characteristics of biocides from building materials in terms of (i) in-situ leaching and simulation thereof in-vitro and in-field tests, (ii) persistence, as well as photolytic and biodegradation, and its influence on toxicological evaluation, and (iii) evaluation of terrestrial toxicity by conventional ecotoxicological tests and novel holistic testing approaches. These aspects are influenced by multiple parameters, out of which water availability, physicochemical properties of microhabitats, combination of biocidal building materials, soil parameters, and composition of the soil microbiome are of utmost relevance. Deeper understanding of this multiparametric system and development of comprehensive characterization methodologies remains crucial, as to facilitate realistic assessment of the environmental impact of biocides used in construction materials and the corresponding degradation byproducts.
Collapse
Affiliation(s)
- Fabienne Reiß
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany
| | - Nadine Kiefer
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany
| | - Matthias Noll
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany; Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany.
| | - Stefan Kalkhof
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany; Proteomics Unit, Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany.
| |
Collapse
|
8
|
Usharani B, Vasudevan N. Sewage Treatment through Constructed Wetland System Tailed by Nanocomposite Clay Filter: A Clean Green Initiative. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2021. [DOI: 10.18052/www.scipress.com/ilns.83.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sewage treatment through constructed wetland is an ecofriendly and sustainable approach proven effective worldwide. Constructed wetland with appropriate species is capable of eliminating all pollutants in sewage, except pathogen removal. An additional polishing treatment is required to eliminate pathogen. Optimization of HLR in CWS was executed by applying first order kinetics. Nanocomposite clay filter with economically viable materials was synthesized and disinfection ability was evaluated. A novel approach integrating constructed wetland system tailed by nanocomposite clay filter was designed. Control was setup with constructed wetland system devoid of plants integrated with clay filter devoid of nanoparticles. The constructed wetland system devoid of plants was used as plants play a vital role in the removal of pollutants. The quality of the influent for (n=20) BOD, COD, TKN, TP, TSS, TDS, SO4, Cl, lead and iron were 248, 345, 26, 4.8, 350, 450, 50, 48, 0.2, 5 mg/L respectively. The quality of effluent in the control was 145, 225, 18, 3.8, 185, 345, 31, 30, 0.6, 2 mg/L for BOD,COD, TKN, TP, TSS, TDS, SO4, Cl, lead and iron respectively. While in the test, 10, 30, 2, 1, 30, 128, 13, 12, BDL, BDL mg/L for BOD, COD, TKN, TP,TSS, TDS, SO4, Cl, lead and iron respectively. The inlet concentration of T.C, F.C and E.coli were 42.1x106-6.3x108, 4.9x105-14.4x106 and 7.8x103-3.8x105 respectively. The pathogen reduction in log removal for test and control units were 5.4 and 1.1 for T.C, 4.4 and 1.2 for F.C and 3 and 1 for E.coli. Thus it is a clean green initiative combating the limitations of disinfection surpassing the existing barriers.
Collapse
|
9
|
Usharani B, Vasudevan N. Sewage Treatment through Constructed Wetland System Tailed by Nanocomposite Clay Filter: A Clean Green Initiative. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2021. [DOI: 10.56431/p-6jwscu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sewage treatment through constructed wetland is an ecofriendly and sustainable approach proven effective worldwide. Constructed wetland with appropriate species is capable of eliminating all pollutants in sewage, except pathogen removal. An additional polishing treatment is required to eliminate pathogen. Optimization of HLR in CWS was executed by applying first order kinetics. Nanocomposite clay filter with economically viable materials was synthesized and disinfection ability was evaluated. A novel approach integrating constructed wetland system tailed by nanocomposite clay filter was designed. Control was setup with constructed wetland system devoid of plants integrated with clay filter devoid of nanoparticles. The constructed wetland system devoid of plants was used as plants play a vital role in the removal of pollutants. The quality of the influent for (n=20) BOD, COD, TKN, TP, TSS, TDS, SO4, Cl, lead and iron were 248, 345, 26, 4.8, 350, 450, 50, 48, 0.2, 5 mg/L respectively. The quality of effluent in the control was 145, 225, 18, 3.8, 185, 345, 31, 30, 0.6, 2 mg/L for BOD,COD, TKN, TP, TSS, TDS, SO4, Cl, lead and iron respectively. While in the test, 10, 30, 2, 1, 30, 128, 13, 12, BDL, BDL mg/L for BOD, COD, TKN, TP,TSS, TDS, SO4, Cl, lead and iron respectively. The inlet concentration of T.C, F.C and E.coli were 42.1x106-6.3x108, 4.9x105-14.4x106 and 7.8x103-3.8x105 respectively. The pathogen reduction in log removal for test and control units were 5.4 and 1.1 for T.C, 4.4 and 1.2 for F.C and 3 and 1 for E.coli. Thus it is a clean green initiative combating the limitations of disinfection surpassing the existing barriers.
Collapse
|
10
|
Martínez-Toledo Á, González-Mille DJ, García-Arreola ME, Cruz-Santiago O, Trejo-Acevedo A, Ilizaliturri-Hernández CA. Patterns in utilization of carbon sources in soil microbial communities contaminated with mine solid wastes from San Luis Potosi, Mexico. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111493. [PMID: 33120261 DOI: 10.1016/j.ecoenv.2020.111493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 09/14/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
In San Luis Potosí, Mexico, the exploitation of minerals has historically been carried out as an activity that has left in its path environmental liabilities, with high concentrations of heavy metals. These metals have undergone weathering by rain and wind and have moved closer to inhabited locations as is the case of Cerro de San Pedro (CSP) and Villa de la Paz (VDP). The objective of this study is to show the biological alteration of soils due to the presence of heavy metals and metalloids like Cadmium (Cd), Copper (Cu), Lead (Pb) and Arsenic (As) and to find the relationship between contamination and risk indexes. Soil samples were obtained from sites with historical records of mining activity and their surroundings. Several analyses were performed, such as pH levels, organic matter, electrical conductivity, clays, heavy metals and As. Moreover, Community Level Physiological profiling (CLPP) were conducted. The obtained evidence showed high levels of contamination by As and heavy metals in both sites (CSP: 6485.1 mg/Kg of Pb and pH of 4.4; VDP: 7188.2 mg/Kg of As and pH of 7.8). According to the Metal Pollution Index (MPI), 607.0 in CSP and 1050.5 in VDP, presented a high environmental risk, apart from, risk to human health (SQGQI) 35.8 in CSP and 131.5 in VDP. At the same time, CLPPs showed that microbiological communities were selective in taking up substrate groups, in the following order: Carbohydrates > Polymers > Carboxylic acids > Amino acids > Amines/Amides. However, a positive correlation in CSP was only found between both indexes and Amines/Amides (r = 0.46, p < 0.05), and in VDP the D-Galactonic acid-γ-Lactone with the MPI (r = 0.49, p < 0.05), and with the SQGQI (r = 0.45, p < 0.05). Although this behavior was not homogeneous, it was possible to find negative correlations between both indexes and the AWCD with other substrates, influenced by the physicochemical characteristics presented in each studied site. Consequently, according to our findings, a combined effect between the physicochemical characteristics, As, and heavy metals took place, on the metabolic activity, causing alterations to soil functions.
Collapse
Affiliation(s)
- Ángeles Martínez-Toledo
- Facultad de Medicina-Centro de Investigación Aplicada en Ambiente y Salud, Universidad Autónoma de San Luis Potosí, Coordinación para la Aplicación de la Ciencia y la Tecnología (CIACyT-CIAAS), San Luis Potosí, México
| | - Donaji J González-Mille
- Cátedras Consejo Nacional de Ciencia y Tecnología (CONACyT), Universidad Autónoma de San Luis Potosí, México
| | | | - Omar Cruz-Santiago
- Facultad de Medicina-Centro de Investigación Aplicada en Ambiente y Salud, Universidad Autónoma de San Luis Potosí, Coordinación para la Aplicación de la Ciencia y la Tecnología (CIACyT-CIAAS), San Luis Potosí, México
| | - Antonio Trejo-Acevedo
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública (CRISP-INSP), Tapachula, Chiapas, México
| | - César A Ilizaliturri-Hernández
- Facultad de Medicina-Centro de Investigación Aplicada en Ambiente y Salud, Universidad Autónoma de San Luis Potosí, Coordinación para la Aplicación de la Ciencia y la Tecnología (CIACyT-CIAAS), San Luis Potosí, México.
| |
Collapse
|
11
|
Variation and succession of microbial communities under the conditions of persistent heavy metal and their survival mechanism. Microb Pathog 2021; 150:104713. [DOI: 10.1016/j.micpath.2020.104713] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022]
|
12
|
Muratova AY, Gorelova SV, Sungurtseva IY, Zelenova NA. Rhizospheric microbiomes of Sorghum bicolor grown on soils with anthropogenic polyelement anomalies. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202303008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Comparative study was made of the rhizospheree microbiomes of two cultivars of sorghum (Sorghum bicolor cvs. Sucro 506 and Biomass 133) grown on soils with anthropogenic polyelement anomalies and on a background (control) soil. The study used traditional culture-based and culture-independent metagenomic approaches. In soils contaminated with heavy metals, we found decreased numbers of culturable bacteria and quantitative changes in the populations of actinomycetes and micromycetes. The relative abundance of the families whose members were able to resist heavy metals was found to increase in the rhizospheric communities. The taxonomic profile of the microbial communities at the phylum level did not differ significantly between cultivars. The Shannon diversity and the abundance of actinomycete families in the rhizosphere of cv. Biomass 133were greater than those for cv. Sucro 506. Significant differences were found between cultivars for the number of rhizospheric microorganisms resistant to heavy metals.
Collapse
|
13
|
Health Risk Assessment in Agricultural Soil Potentially Contaminated by Geogenic Thallium: Influence of Plant Species on Metal Mobility in Soil-Plant System. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10060890] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In agricultural soils, thallium (Tl) of geogenic origin may represent a potential risk for human health, mainly via ingestion of food crops. In this work, a pot experiment was carried out to evaluate (1) the bioavailability of Tl and other potentially toxic elements (PTEs) in an agricultural soil with naturally occurring Tl; (2) the uptake and accumulation of PTEs in Lactuca sativa L. var. acephala, Diplotaxis tenuifolia L. DC and Silene latifolia Poir; (3) the health risks arising from plant and soil ingestion by different subpopulations and dermal contact of soil by farmers. In soil, only Tl and Pb pseudototal contents were above Italian screening values. Nevertheless, the promptly bioavailable contents of all PTEs were always below internationally recognized trigger values. Plants affected PTE bioavailability in soil by their rhizodepositions and accumulated PTEs in their shoots. Acceptable risks (hazard index < 1) arose from dietary intake of both L. sativa L., D. tenuifolia L. and dermal contact of soil by farmers. Significant health risks can derive from the intake of S. latifolia Poir. (accumulating high Tl concentrations), in particular by children (HI = 74). In conclusion, an adequate management and crop selection are needed to profitably exploit soils with geogenic Tl for agricultural purposes.
Collapse
|
14
|
Azolla filiculoides L. as a source of metal-tolerant microorganisms. PLoS One 2020; 15:e0232699. [PMID: 32374760 PMCID: PMC7202617 DOI: 10.1371/journal.pone.0232699] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
The metal hyperaccumulator Azolla filiculoides is accompanied by a microbiome potentially supporting plant during exposition to heavy metals. We hypothesized that the microbiome exposition to selected heavy metals will reveal metal tolerant strains. We used Next Generation Sequencing technique to identify possible metal tolerant strains isolated from the metal-treated plant (Pb, Cd, Cr(VI), Ni, Au, Ag). The main dominants were Cyanobacteria and Proteobacteria constituting together more than 97% of all reads. Metal treatment led to changes in the composition of the microbiome and showed significantly higher richness in the Pb-, Cd- and Cr-treated plant in comparison with other (95–105 versus 36–44). In these treatments the share of subdominant Actinobacteria (0.4–0.8%), Firmicutes (0.5–0.9%) and Bacteroidetes (0.2–0.9%) were higher than in non-treated plant (respectively: 0.02, 0.2 and 0.001%) and Ni-, Au- and Ag-treatments (respectively: <0.4%, <0.2% and up to 0.2%). The exception was Au-treatment displaying the abundance 1.86% of Bacteroidetes. In addition, possible metal tolerant genera, namely: Acinetobacter, Asticcacaulis, Anabaena, Bacillus, Brevundimonas, Burkholderia, Dyella, Methyloversatilis, Rhizobium and Staphylococcus, which form the core microbiome, were recognized by combining their abundance in all samples with literature data. Additionally, the presence of known metal tolerant genera was confirmed: Mucilaginibacter, Pseudomonas, Mycobacterium, Corynebacterium, Stenotrophomonas, Clostridium, Micrococcus, Achromobacter, Geobacter, Flavobacterium, Arthrobacter and Delftia. We have evidenced that A. filiculoides possess a microbiome whose representatives belong to metal-resistant species which makes the fern the source of biotechnologically useful microorganisms for remediation processes.
Collapse
|
15
|
Zadel U, Nesme J, Michalke B, Vestergaard G, Płaza GA, Schröder P, Radl V, Schloter M. Changes induced by heavy metals in the plant-associated microbiome of Miscanthus x giganteus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134433. [PMID: 31818597 DOI: 10.1016/j.scitotenv.2019.134433] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Miscanthus x giganteus is a high biomass producing plant with tolerance to heavy metals. This makes Miscanthus interesting to be used for phytoremediation of heavy metal contaminated areas coupled with energy production. Since plant performance in metal polluted areas is impaired, their growth and phytoremediation effect can be improved with bacterial assistance. To identify positive and negative responders of M. x giganteus associated microbiome influenced by Cd, Pb and Zn stress compared to non-contaminated controls, we designed a greenhouse experiment. Structure of the bacterial community in three rhizocompartments, namely rhizosphere, rhizoplane and root endosphere was analysed using an isolation independent molecular approach based on 16S rRNA gene barcoding. Furthermore, quantitative PCR (qPCR) was used for bacterial biomass estimation. Our results indicated that biomass and total bacterial diversity in rhizosphere, rhizoplane and root endosphere did not significantly change despite of substantial root uptake of heavy metals. Overall, we detected 6621 OTUs, from which 171 were affected by metal addition. Whereas Streptomyces and Amycolatopsis taxa were negatively affected by the heavy metal treatment in endosphere, taxa assigned to Luteolibacter in rhizosphere and rhizoplane (log2 fold change 1.9-4.1) and Micromonospora in endosphere (log2 fold change 10.2) were found to be significantly enriched and highly abundant (0.1-3.7% relative abundance) under heavy metal stress. Those taxa might be of key importance for M. x giganteus performance under heavy metal pollution and might be interesting candidates for the development of new bioinocula in the future to promote plant growth and phytoremediation in heavy metal contaminated soils.
Collapse
Affiliation(s)
- Urška Zadel
- Helmholtz Zentrum München, Research Unit Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Joseph Nesme
- Helmholtz Zentrum München, Research Unit Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; University of Copenhagen, Institute for Microbiology, Universitetsparken 15, 2100 Copenhagen, Denmark.
| | - Bernhard Michalke
- Helmholtz Zentrum München, Research Unit Analytical Biogeochemistry, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Gisle Vestergaard
- Helmholtz Zentrum München, Research Unit Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Technical University of Denmark, Section of Bioinformatics, Department of Health Technology, 2800 Kgs. Lyngby, Denmark.
| | - Grażyna A Płaza
- Institute for Ecology of Industrial Areas, Department of Environmental Microbiology, 6 Kossutha Street, 40-844 Katowice, Poland.
| | - Peter Schröder
- Helmholtz Zentrum München, Research Unit Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Viviane Radl
- Helmholtz Zentrum München, Research Unit Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Michael Schloter
- Helmholtz Zentrum München, Research Unit Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Technical University of Munich, Chair for Soil Ecology, Emil-Ramann-Straße 2, 85354 Freising, Germany.
| |
Collapse
|
16
|
Stefanowicz AM, Kapusta P, Zubek S, Stanek M, Woch MW. Soil organic matter prevails over heavy metal pollution and vegetation as a factor shaping soil microbial communities at historical Zn-Pb mining sites. CHEMOSPHERE 2020; 240:124922. [PMID: 31563718 DOI: 10.1016/j.chemosphere.2019.124922] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/06/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
This study examined the effects of soil heavy metals, macronutrients, texture and pH as well as plant species richness and composition on soil respiration, enzymatic activity, microbial biomass, metabolic quotient (qCO2) and arbuscular mycorrhizal fungi (AMF) at sites of historical Zn-Pb mining. The study was conducted both on a large scale (65 heaps scattered over the area of 750 km2) and on a small scale (25 plots along two 48 m transects extending from heaps to adjacent fallow fields). Total concentrations of metals exceeded 400 (Cd), 20,000 (Pb) and 80,000 (Zn) mg kg-1 at the most polluted sites. Although they decreased along the heap-fallow direction, they still remained above environmental standards in fallow soils. In contrast, some soluble metal forms increased with the increasing distance from heaps. Soil organic matter had the strongest positive effect on most microbial parameters. Total and/or available heavy metals exhibited significant negative effects on microbial biomass, enzymatic activity and AMF, and a positive effect on qCO2. Organic matter alleviated negative effects of heavy metals on microorganisms; they were not observed where the increase in the contamination was accompanied by the increase in organic matter content. Plant species richness affected positively enzymatic activity and mycorrhization level. Plant species composition possibly contributed to the formation of soil microbial communities, but its effect was entangled in that of heavy metals as plant communities changed along pollution gradients (from metal-tolerant grasslands dominated by Festuca ovina to calcareous grasslands and ruderal communities at less polluted sites).
Collapse
Affiliation(s)
- Anna M Stefanowicz
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland.
| | - Paweł Kapusta
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland.
| | - Szymon Zubek
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland.
| | - Małgorzata Stanek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland.
| | - Marcin W Woch
- Institute of Biology, Pedagogical University of Kraków, Podchorążych 2, 31-054, Kraków, Poland.
| |
Collapse
|
17
|
Burges A, Fievet V, Oustriere N, Epelde L, Garbisu C, Becerril JM, Mench M. Long-term phytomanagement with compost and a sunflower - Tobacco rotation influences the structural microbial diversity of a Cu-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134529. [PMID: 31693956 DOI: 10.1016/j.scitotenv.2019.134529] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
At a former wood preservation site contaminated with Cu, various phytomanagement options have been assessed in the last decade through physicochemical, ecotoxicological and biological assays. In a field trial at this site, phytomanagement with a crop rotation based on tobacco and sunflower, combined with the incorporation of compost and dolomitic limestone, has proved to be efficient in Cu-associated risk mitigation, ecological soil functions recovery and net gain of economic and social benefits. To demonstrate the long-term effectiveness and sustainability of phytomanagement, we assessed here the influence of this remediation option on the diversity, composition and structure of microbial communities over time, through a metabarcoding approach. After 9 years of phytomanagement, no overall effect was identified on microbial diversity; the soil amendments, notably the repeated compost application, led to shifts in soil microbial populations. This phytomanagement option induced changes in the composition of soil microbial communities, promoting the growth of microbial groups belonging to Alphaproteobacteria, many being involved in N cycling. Populations of Nitrososphaeria, which are crucial in nitrification, as well as taxa from phyla Planctomycetacia, Chloroflexi and Gemmatimonadetes, which are tolerant to metal contamination and adapted to oligotrophic soil conditions, decreased in amended phytomanaged plots. Our study provides an insight into population dynamics within soil microbial communities under long-term phytomanagement, in line with the assessment of soil ecological functions and their recovery.
Collapse
Affiliation(s)
- Aritz Burges
- UMR BIOGECO INRA 1202, University of Bordeaux, Bât. B2, allée Geoffroy St-Hilaire, F-33615 Pessac Cedex, France; University of the Basque Country (UPV/EHU), Department of Plant Biology and Ecology, P.O. Box 644, E-48080 Bilbao, Spain.
| | - Virgil Fievet
- UMR BIOGECO INRA 1202, University of Bordeaux, Bât. B2, allée Geoffroy St-Hilaire, F-33615 Pessac Cedex, France
| | - Nadège Oustriere
- Laboratoire Génie Civil et Géoenvironnement (LGCGE), Yncréa Hauts-de-France, Institut Supérieur d'Agriculture, 48 Bld Vauban, 59046 Lille Cedex, France
| | - Lur Epelde
- NEIKER-Tecnalia, Department of Ecology and Natural Resources, Soil Microbial Ecology Group, c/ Berreaga 1, E-48160 Derio, Spain
| | - Carlos Garbisu
- NEIKER-Tecnalia, Department of Ecology and Natural Resources, Soil Microbial Ecology Group, c/ Berreaga 1, E-48160 Derio, Spain
| | - Jose María Becerril
- University of the Basque Country (UPV/EHU), Department of Plant Biology and Ecology, P.O. Box 644, E-48080 Bilbao, Spain
| | - Michel Mench
- UMR BIOGECO INRA 1202, University of Bordeaux, Bât. B2, allée Geoffroy St-Hilaire, F-33615 Pessac Cedex, France
| |
Collapse
|
18
|
Chen C, Wang X, Wang J. Phytoremediation of cadmium-contaminated soil by Sorghum bicolor and the variation of microbial community. CHEMOSPHERE 2019; 235:985-994. [PMID: 31561315 DOI: 10.1016/j.chemosphere.2019.07.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/24/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
In this paper, the growth of S. bicolor in Cd-polluted sandy clay loam soil in north China, Cd accumulation in plant and the corresponding soil microbial community were characterized when the plant matured (140 d of growth). Cadmium promoted the growth of mature S. bicolor with higher height and heavier dry mass, especially at the spiked level of 1 mg kg-1 soil (P < 0.05). The higher microbial diversity was found under Cd stress at the spiked level of 15 mg kg-1, which basically corresponded with its influence on the plant growth. High-throughput sequencing data demonstrated that the predominant bacterial phyla include Proteobacteria (35.99% for Cd-polluted soil and 35.22% for the control soil), Chloroflexi (21.33% and 20.58%), Actinobacteria (12.00% and 12.89%), Acidobacteria (7.47% and 11.14%), Bacteroidetes (7.37% and 6.96%), Gemmatimonadetes (5.60% and 6.65%), Firmicutes (2.82% and 1.86%), Planctomycetes (2.47% and 0.95%), Saccharibacteria (1.26% and 1.11%). The predominant fungal phyla was Ascomycota, with the relative abundance of 89.96% for the control soil and 86.2% for the Cd-polluted soil. S. bicolor could grow well in sandy clay loam soil in northern China at low Cd lvel, but it could not accumulate cadmium at higher cadmium level. S. bicolor could be used for phytoextraction of cadmium from the lightly Cd-polluted soil.
Collapse
Affiliation(s)
- Can Chen
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China.
| | - Xu Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China.
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
19
|
Khan AR, Reichmann LG, Ibal JC, Shin JH, Liu Y, Collins H, LePage B, Terry N. Variation in pickleweed root-associated microbial communities at different locations of a saline solid waste management unit contaminated with petroleum hydrocarbons. PLoS One 2019; 14:e0222901. [PMID: 31581244 PMCID: PMC6776359 DOI: 10.1371/journal.pone.0222901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/10/2019] [Indexed: 12/03/2022] Open
Abstract
The main purpose of this study was to explore the potential influences of pickleweed vegetation on the abundance, diversity and metabolic activities of microbial communities in four distinct areas of a petroleum-contaminated solid waste management unit (SWMU) located in Contra Costa County, northern California. The four areas sampled include two central areas, one of which is central vegetated (CV) and one unvegetated (UV), and two peripheral vegetated areas, one of which is located to the west side of the SWMU (V-West) and one located to the east side (V-East). Measurements were made of total petroleum hydrocarbons (TPH), polyaromatic hydrocarbons (PAH), soil physicochemical properties, and various aspects of microbial communities including metabolic activities, microbial abundances (PLFAs), diversity and composition based on amplicon sequencing. The peripheral V-East and V-West sites had 10-times lower electrical conductivity (EC) than that of the CV and UV sites. The high salinity levels of the CV and UV sites were associated with significant reductions in bacterial and fungal abundances (PLFA) when compared to V-East but not when compared to V-West. TPH levels of CV and UV were not significantly different from those of V-West but were substantially lower than V-East TPH (19,311 mg/kg of dry soil), the high value of which may have been associated with a pipeline that ran through the area. Microbial activities (in terms of soil respiration and the activities of three soil enzymes, i.e., urease, lipase, and phosphatase) were greatest in the vegetated sites compared to the UV site. The prokaryotic community was not diverse as revealed by the Shannon index with no significant variation among the four groups of samples. However, the fungal community of the peripheral sites, V-East and V-West had significantly higher OTU richness and Shannon index. Structure of prokaryotic communities inhabiting the rhizosphere of pickleweed plants at the three sites differed significantly and were also different from those found in the UV region of the central site according to pairwise, global PERMANOVA and ANOSIM analyses. The differences in OTU-based rhizosphere-associated bacterial and fungal communities’ composition were explained mainly by the changes in soil EC and pH. The results suggest that saline TPH-contaminated areas that are vegetated with pickleweed are likely to have increased abundances, diversity and metabolic activities in the rhizosphere compared to unvegetated areas, even in the presence of high salinity.
Collapse
Affiliation(s)
- Abdur Rahim Khan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States of America
- * E-mail: (NT); , (ARK)
| | - L. G. Reichmann
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States of America
| | - J. C. Ibal
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - J. H. Shin
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Y. Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States of America
| | - H. Collins
- USDA-ARS Grassland Soil and Water Research Laboratory, Temple, TX, United States of America
| | - B. LePage
- Pacific Gas and Electric Company, San Ramon, CA, United States of America
- The Academy of Natural Science, Philadelphia, PA, United States of America
| | - N. Terry
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States of America
- * E-mail: (NT); , (ARK)
| |
Collapse
|
20
|
Lin W, Lin M, Zhou H, Wu H, Li Z, Lin W. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS One 2019; 14:e0217018. [PMID: 31136614 PMCID: PMC6538140 DOI: 10.1371/journal.pone.0217018] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
Sustainable agriculture is an important global issue. The use of organic fertilizers can enhance crop yield and soil properties while restraining pests and diseases. The objective of this study was to assess the effects of long-term use of chemical and organic fertilizers on tea and rhizosphere soil properties in tea orchards. Inductively coupled plasma mass spectrometry (ICP-MS) and high-throughput sequencing technology analyses were used to investigate heavy metals content and bacterial composition in rhizosphere soils. Our results indicated that organic fertilizer treatment significantly decreased Cu, Pb and Cd contents in rhizosphere soil sample. The results also showed that treatment with organic fertilizer significantly decreased the contents of Cd, Pb and As in tea leaves. Furthermore, organic fertilizer significantly increased the amino acids content of tea and the pH of the soil. The use of organic fertilizer significantly increased in the relative abundance of Burkholderiales, Myxococcales, Streptomycetales, Nitrospirales, Ktedonobacterales, Acidobacteriales, Gemmatimonadales, and Solibacterales, and decreased the abundance of Pseudonocardiales, Frankiales, Rhizobiales, and Xanthomonadales. In conclusion, organic fertilizer can help to shape the microbial composition and recruit beneficial bacteria into the rhizosphere of tea, leading to improved tea quality and reduced heavy metals content in rhizosphere soil and tea leaves.
Collapse
Affiliation(s)
- Weiwei Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Manhong Lin
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education / College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongyan Zhou
- Fujian Vocational College of Agriculture, Fuzhou, China
| | - Hongmiao Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhaowei Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (WL); (ZL)
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education / College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (WL); (ZL)
| |
Collapse
|
21
|
Rehman K, Imran A, Amin I, Afzal M. Enhancement of oil field-produced wastewater remediation by bacterially-augmented floating treatment wetlands. CHEMOSPHERE 2019; 217:576-583. [PMID: 30445402 DOI: 10.1016/j.chemosphere.2018.11.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/24/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
Plants and bacteria individually as well as in synergism with each other hold a great potential to degrade a wide range of environmental pollutants. Floating treatment wetlands (FTWs) is an efficient and low-cost technology that uses the synergistic interaction between plant roots and microbes for in situ remediation of wastewater. The present study aims to assess the feasibility of FTW-based remediation of oil field-produced wastewater using an interaction between two plant species, Typha domingensis and Leptochloa fusca, in partnership with a consortium of crude oil-degrading bacterial species, Bacillus subtilis LORI66, Klebsiella sp. LCRI87, Acinetobacter Junii TYRH47, and Acinetobacter sp. BRSI56. All the treatments reduced contaminant levels, but T. domingensis, in combination with bacterial inoculation, exhibited the highest reduction in hydrocarbon (95%), COD (90%), and BOD content (93%) as compared to L. fusca. This combination maximally promoted increases in fresh biomass (31%), dry biomass (52%), and length (25%) of plants as well. This effect was further signified by the persistence of bacteria (40%) and considerable abundance (27%) and expression (28.5%) of the alkB gene in the rhizoplane of T. domingensis in comparison to that of L. fusca. The study, therefore, suggests that T. domingensis, in combination with bacterial consortium, has significant potential for treatment of oil field-produced water and can be exploited on large scale in FTWs.
Collapse
Affiliation(s)
- Khadeeja Rehman
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Asma Imran
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Imran Amin
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Muhammad Afzal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
| |
Collapse
|
22
|
McTee M, Bullington L, Rillig MC, Ramsey PW. Do soil bacterial communities respond differently to abrupt or gradual additions of copper? FEMS Microbiol Ecol 2019; 95:5142696. [PMID: 30351419 PMCID: PMC6579733 DOI: 10.1093/femsec/fiy212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022] Open
Abstract
Many experiments that measure the response of microbial communities to heavy metals increase metal concentrations abruptly in the soil. However, it is unclear whether abrupt additions mimic the gradual and often long-term accumulation of these metals in the environment where microbial populations may adapt. In a greenhouse experiment that lasted 26 months, we tested whether bacterial communities and soil respiration differed between soils that received an abrupt or a gradual addition of copper or no copper at all. Bacterial richness and other diversity indices were consistently lower in the abrupt treatment compared to the ambient treatment that received no copper. The abrupt addition of copper yielded different initial bacterial communities than the gradual addition; however, these communities appeared to converge once copper concentrations were approximately equal. Soil respiration in the abrupt treatment was initially suppressed but recovered after four months. Afterwards, respiration in both the gradual and abrupt treatments wavered between being below or equal to the ambient treatment. Overall, our study indicates that gradual and abrupt additions of copper can yield similar bacterial communities and respiration, but these responses may drastically vary until copper concentrations are equal.
Collapse
Affiliation(s)
- Michael McTee
- MPG Ranch, 19400 Lower Woodchuck Rd, Florence, MT 59833, USA
| | | | - Matthias C Rillig
- Institut für Biologie - Ökologie der Pflanzen, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195 Berlin, Germany
| | - Philip W Ramsey
- MPG Ranch, 19400 Lower Woodchuck Rd, Florence, MT 59833, USA
| |
Collapse
|
23
|
Luo Z, Ma J, Chen F, Li X, Zhang S. Effects of Pb Smelting on the Soil Bacterial Community near a Secondary Lead Plant. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15051030. [PMID: 29783785 PMCID: PMC5982069 DOI: 10.3390/ijerph15051030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/13/2018] [Accepted: 05/17/2018] [Indexed: 02/08/2023]
Abstract
Secondary lead smelting is a widespread industrial activity which has exacerbated Pb or Cd contamination of soil and water across the world. Soil physicochemical properties, soil enzyme activities, heavy metal concentrations, and bacterial diversity near a secondary lead plant in Xuzhou, China were examined in this study. The results showed that secondary lead smelting activities influenced nearby soils. Soil acidification decreased one order of magnitude, with a mean value of 7.3. Soil organic matter also showed a downward trend, while potassium and nitrogen appeared to accumulate. Soil urease and protease activity increased in samples with greater heavy metal pollution, but overall the soil microbial biodiversity decreased. Soil heavy metal concentration-especially Pb and Cd-greatly exceeded the concentrations of Chinese Environmental Quality Standard for Soils (GB 15618-1995). Some environmental factors-such as pH, organic matter, enzyme activity, and the concentration of heavy metals-significantly affected bacterial diversity: compared with the control site, the Chao1 estimator decreased about 50%, while the Shannon diversity index dropped approximately 20%. Moreover, some genera have significant relationships with heavy metal concentration-such as Ramlibacter with Zn and Steroidobacter with Cd-which might act as bio-indicators for soil remediation. These results will provide a new insight in the future for reclaiming soil contaminants caused by secondary lead smelting.
Collapse
Affiliation(s)
- Zhanbin Luo
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China.
| | - Jing Ma
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China.
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China.
- Amap, Inra, Cnrs, Ird, Cirad, University of Montpellier, 34090 Montpellier, France.
| | - Fu Chen
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China.
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China.
| | - Xiaoxiao Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China.
| | - Shaoliang Zhang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China.
| |
Collapse
|
24
|
Guidi Nissim W, Palm E, Mancuso S, Azzarello E. Trace element phytoextraction from contaminated soil: a case study under Mediterranean climate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9114-9131. [PMID: 29340860 DOI: 10.1007/s11356-018-1197-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
The current field study aims to assess the suitability of four different plant species (i.e. poplar, willow, hemp and alfalfa) to be used for trace element (TE) (i.e. Cd, Cu, Ni, Pb and Zn) phytoextraction under hot-arid Mediterranean climate conditions. Plants were grown for two consecutive years on a moderate TE contaminated soil, supplied with water and mineral nutrients. The growth and physiological parameters were assessed throughout the trial to compare the response of plants to the environmental pollution, and TE uptake rates were measured for aboveground plant tissues. The phytoextraction rate for each species was expressed as a function of aboveground biomass yield and the TE uptake and translocation within the plant. Alfalfa played a significant role in reducing extractable Ni (60.6%) and Zn (46%) in the soil, whereas hemp reduced 32% of extractable Cd and 46% of extractable Pb; poplar decreased extractable Cd (37%), Ni (49%), Pb (46%) and Zn (63%); and willow reduced the extractable Zn (73%) compared to the beginning of the trial. No change in total TE content was observed; however, poplar and willow were able to extract and accumulate the highest amount of Zn (3200 and 5200 g ha-1 year-1 respectively) and Cu (182 and 116 g ha-1 year-1), whereas hemp, with 36 g ha-1 year-1, showed the best phytoextraction potential for Pb. Overall, we found a positive correlation between the phytoextraction rate and biomass yield, extractable TE concentration and translocation factor (TF) and a negative relationship with Ca concentration in the soil.
Collapse
Affiliation(s)
- Werther Guidi Nissim
- Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, Viale delle Idee 30, 50019, Sesto Fiorentino, Italy.
| | - Emily Palm
- Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, Viale delle Idee 30, 50019, Sesto Fiorentino, Italy
| | - Stefano Mancuso
- Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, Viale delle Idee 30, 50019, Sesto Fiorentino, Italy
| | - Elisa Azzarello
- Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, Viale delle Idee 30, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
25
|
Ridl J, Suman J, Fraraccio S, Hradilova M, Strejcek M, Cajthaml T, Zubrova A, Macek T, Strnad H, Uhlik O. Complete genome sequence of Pseudomonas alcaliphila JAB1 (=DSM 26533), a versatile degrader of organic pollutants. Stand Genomic Sci 2018; 13:3. [PMID: 29435100 PMCID: PMC5796565 DOI: 10.1186/s40793-017-0306-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/06/2017] [Indexed: 12/25/2022] Open
Abstract
In this study, following its isolation from contaminated soil, the genomic sequence of Pseudomonas alcaliphila strain JAB1 (=DSM 26533), a biphenyl-degrading bacterium, is reported and analyzed in relation to its extensive degradative capabilities. The P. alcaliphila JAB1 genome (GenBank accession no. CP016162) consists of a single 5.34 Mbp-long chromosome with a GC content of 62.5%. Gene function was assigned to 3816 of the 4908 predicted genes. The genome harbors a bph gene cluster, permitting degradation of biphenyl and many congeners of polychlorinated biphenyls (PCBs), a ben gene cluster, enabling benzoate and its derivatives to be degraded, and phe gene cluster, which permits phenol degradation. In addition, P. alcaliphila JAB1 is capable of cometabolically degrading cis-1,2-dichloroethylene (cDCE) when grown on phenol. The strain carries both catechol and protocatechuate branches of the β-ketoadipate pathway, which is used to funnel the pollutants to the central metabolism. Furthermore, we propose that clustering of MALDI-TOF MS spectra with closest phylogenetic relatives should be used when taxonomically classifying the isolated bacterium; this, together with 16S rRNA gene sequence and chemotaxonomic data analyses, enables more precise identification of the culture at the species level.
Collapse
Affiliation(s)
- Jakub Ridl
- 1Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jachym Suman
- 2Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Serena Fraraccio
- 2Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Miluse Hradilova
- 1Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Michal Strejcek
- 2Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomas Cajthaml
- 3Laboratory of Environmental Biotechnology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrea Zubrova
- 2Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomas Macek
- 2Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Hynek Strnad
- 1Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ondrej Uhlik
- 2Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
26
|
Touceda-González M, Prieto-Fernández Á, Renella G, Giagnoni L, Sessitsch A, Brader G, Kumpiene J, Dimitriou I, Eriksson J, Friesl-Hanl W, Galazka R, Janssen J, Mench M, Müller I, Neu S, Puschenreiter M, Siebielec G, Vangronsveld J, Kidd PS. Microbial community structure and activity in trace element-contaminated soils phytomanaged by Gentle Remediation Options (GRO). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:237-251. [PMID: 28802993 DOI: 10.1016/j.envpol.2017.07.097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Gentle remediation options (GRO) are based on the combined use of plants, associated microorganisms and soil amendments, which can potentially restore soil functions and quality. We studied the effects of three GRO (aided-phytostabilisation, in situ stabilisation and phytoexclusion, and aided-phytoextraction) on the soil microbial biomass and respiration, the activities of hydrolase enzymes involved in the biogeochemical cycles of C, N, P, and S, and bacterial community structure of trace element contaminated soils (TECS) from six field trials across Europe. Community structure was studied using denaturing gradient gel electrophoresis (DGGE) fingerprinting of Bacteria, α- and β-Proteobacteria, Actinobacteria and Streptomycetaceae, and sequencing of DGGE bands characteristic of specific treatments. The number of copies of genes involved in ammonia oxidation and denitrification were determined by qPCR. Phytomanagement increased soil microbial biomass at three sites and respiration at the Biogeco site (France). Enzyme activities were consistently higher in treated soils compared to untreated soils at the Biogeco site. At this site, microbial biomass increased from 696 to 2352 mg ATP kg-1 soil, respiration increased from 7.4 to 40.1 mg C-CO2 kg-1 soil d-1, and enzyme activities were 2-11-fold higher in treated soils compared to untreated soil. Phytomanagement induced shifts in the bacterial community structure at both, the total community and functional group levels, and generally increased the number of copies of genes involved in the N cycle (nirK, nirS, nosZ, and amoA). The influence of the main soil physico-chemical properties and trace element availability were assessed and eventual site-specific effects elucidated. Overall, our results demonstrate that phytomanagement of TECS influences soil biological activity in the long term.
Collapse
Affiliation(s)
- M Touceda-González
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Aptdo. 122, Santiago de Compostela 15780, Spain.
| | - Á Prieto-Fernández
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Aptdo. 122, Santiago de Compostela 15780, Spain
| | - G Renella
- University of Florence, Department of Agrifood Production and Environmental Sciences, P.le delle Cascine 18, I-50144 Florence, Italy
| | - L Giagnoni
- University of Florence, Department of Agrifood Production and Environmental Sciences, P.le delle Cascine 18, I-50144 Florence, Italy
| | - A Sessitsch
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, 3430 Tulln, Austria
| | - G Brader
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, 3430 Tulln, Austria
| | - J Kumpiene
- Luleå University of Technology, Waste Science & Technology, SE-97187 Luleå, Sweden
| | - I Dimitriou
- Swedish University of Agriculture Sciences, Department of Crop Production Ecology, SE-750 07 Uppsala, Sweden
| | - J Eriksson
- Swedish University of Agriculture Sciences, Department of Soil and Environment, SE-750 07 Uppsala, 17, Sweden
| | - W Friesl-Hanl
- AIT Austrian Institute of Technology GmbH, Center for Energy, 3430 Tulln, Austria
| | - R Galazka
- Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
| | - J Janssen
- Hasselt University, Centre for Environmental Sciences, 23 Agoralaan building D, B-3590 Diepenbeek, Belgium
| | - M Mench
- BIOGECO, INRA, Univ. Bordeaux, 33615 Pessac, France
| | - I Müller
- Saxon State Office for Environment, Agriculture and Geology, Pillnitzer Platz 3, 01326 Dresden Pillnitz, Germany
| | - S Neu
- Saxon State Office for Environment, Agriculture and Geology, Pillnitzer Platz 3, 01326 Dresden Pillnitz, Germany
| | - M Puschenreiter
- University of Natural Resources and Life Sciences Vienna - BOKU, Department of Forest and Soil Sciences, 3430 Tulln, Austria
| | - G Siebielec
- Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
| | - J Vangronsveld
- Hasselt University, Centre for Environmental Sciences, 23 Agoralaan building D, B-3590 Diepenbeek, Belgium
| | - P S Kidd
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Aptdo. 122, Santiago de Compostela 15780, Spain
| |
Collapse
|
27
|
Iffis B, St-Arnaud M, Hijri M. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities. FRONTIERS IN PLANT SCIENCE 2017; 8:1381. [PMID: 28848583 PMCID: PMC5550799 DOI: 10.3389/fpls.2017.01381] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/25/2017] [Indexed: 05/30/2023]
Abstract
Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species (Solidago canadensis, Populus balsamifera, and Lycopus europaeus) growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF) spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP) concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate or degrade the PHPs present in the soil.
Collapse
|
28
|
Doolette CL, Gupta VVSR, Lu Y, Payne JL, Batstone DJ, Kirby JK, Navarro DA, McLaughlin MJ. Quantifying the Sensitivity of Soil Microbial Communities to Silver Sulfide Nanoparticles Using Metagenome Sequencing. PLoS One 2016; 11:e0161979. [PMID: 27575719 PMCID: PMC5004803 DOI: 10.1371/journal.pone.0161979] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/15/2016] [Indexed: 12/22/2022] Open
Abstract
Soils are a sink for sulfidised-silver nanoparticles (Ag2S-NPs), yet there are limited ecotoxicity data for their effects on microbial communities. Conventional toxicity tests typically target a single test species or function, which does not reflect the broader community response. Using a combination of quantitative PCR, 16S rRNA amplicon sequencing and species sensitivity distribution (SSD) methods, we have developed a new approach to calculate silver-based NP toxicity thresholds (HCx, hazardous concentrations) that are protective of specific members (operational taxonomic units, OTUs) of the soil microbial community. At the HC20 (80% of species protected), soil OTUs were significantly less sensitive to Ag2S-NPs compared to AgNPs and Ag+ (5.9, 1.4 and 1.4 mg Ag kg-1, respectively). However at more conservative HC values, there were no significant differences. These trends in OTU responses matched with those seen in a specific microbial function (rate of nitrification) and amoA-bacteria gene abundance. This study provides a novel molecular-based framework for quantifying the effect of a toxicant on whole soil microbial communities while still determining sensitive genera/species. Methods and results described here provide a benchmark for microbial community ecotoxicological studies and we recommend that future revisions of Soil Quality Guidelines for AgNPs and other such toxicants consider this approach.
Collapse
Affiliation(s)
- Casey L. Doolette
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, Australia
- * E-mail:
| | | | - Yang Lu
- Advanced Water Management Centre (AWMC), The University of Queensland, St. Lucia, Australia
| | - Justin L. Payne
- School of Natural and Built Environments, University of South Australia, Adelaide, Australia
| | - Damien J. Batstone
- Advanced Water Management Centre (AWMC), The University of Queensland, St. Lucia, Australia
| | - Jason K. Kirby
- CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies Research Program, Adelaide, Australia
| | - Divina A. Navarro
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, Australia
- CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies Research Program, Adelaide, Australia
| | - Mike J. McLaughlin
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, Australia
- CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies Research Program, Adelaide, Australia
| |
Collapse
|
29
|
Bourceret A, Cébron A, Tisserant E, Poupin P, Bauda P, Beguiristain T, Leyval C. The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters. MICROBIAL ECOLOGY 2016; 71:711-724. [PMID: 26440298 DOI: 10.1007/s00248-015-0682-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Industrial wasteland soils with aged PAH and heavy metal contaminations are environments where pollutant toxicity has been maintained for decades. Although the communities may be well adapted to the presence of stressors, knowledge about microbial diversity in such soils is scarce. Soil microbial community dynamics can be driven by the presence of plants, but the impact of plant development on selection or diversification of microorganisms in these soils has not been established yet. To test these hypotheses, aged-contaminated soil samples from a field trial were collected. Plots planted with alfalfa were compared to bare soil plots, and bacterial and fungal diversity and abundance were assessed after 2 and 6 years. Using pyrosequencing of 16S rRNA gene and ITS amplicons, we showed that the bacterial community was dominated by Proteobacteria, Actinobacteria, and Bacteroidetes and was characterized by low Acidobacteria abundance, while the fungal community was mainly represented by members of the Ascomycota. The short-term toxic impact of pollutants usually reduces the microbial diversity, yet in our samples bacterial and fungal species richness and diversity was high suggesting that the community structure and diversity adapted to the contaminated soil over decades. The presence of plants induced higher bacterial and fungal diversity than in bare soil. It also increased the relative abundance of bacterial members of the Actinomycetales, Rhizobiales, and Xanthomonadales orders and of most fungal orders. Multivariate analysis showed correlations between microbial community structure and heavy metal and PAH concentrations over time, but also with edaphic parameters (C/N, pH, phosphorus, and nitrogen concentrations).
Collapse
Affiliation(s)
- Amélia Bourceret
- CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, BP70239, 54506, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, BP 70239, 54506, Vandoeuvre-lès-Nancy, France
| | - Aurélie Cébron
- CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, BP70239, 54506, Vandoeuvre-lès-Nancy, France.
- Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, BP 70239, 54506, Vandoeuvre-lès-Nancy, France.
| | - Emilie Tisserant
- INRA, IAM UMR1136, Centre INRA de Nancy, 54280, Champenoux, France
| | - Pascal Poupin
- Université de Lorraine, LIEC UMR7360, Campus Bridoux-Rue du Général Delestraint, 57070, Metz Borny, France
- CNRS, LIEC UMR7360, Campus Bridoux-Rue du Général Delestraint, 57070, Metz Borny, France
| | - Pascale Bauda
- Université de Lorraine, LIEC UMR7360, Campus Bridoux-Rue du Général Delestraint, 57070, Metz Borny, France
- CNRS, LIEC UMR7360, Campus Bridoux-Rue du Général Delestraint, 57070, Metz Borny, France
| | - Thierry Beguiristain
- CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, BP70239, 54506, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, BP 70239, 54506, Vandoeuvre-lès-Nancy, France
| | - Corinne Leyval
- CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, BP70239, 54506, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, BP 70239, 54506, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
30
|
Valentim dos Santos J, Varón-López M, Fonsêca Sousa Soares CR, Lopes Leal P, Siqueira JO, de Souza Moreira FM. Biological attributes of rehabilitated soils contaminated with heavy metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6735-6748. [PMID: 26662102 DOI: 10.1007/s11356-015-5904-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
This study aimed to evaluate the effects of two rehabilitation systems in sites contaminated by Zn, Cu, Pb, and Cd on biological soil attributes [microbial biomass carbon (Cmic), basal and induced respiration, enzymatic activities, microorganism plate count, and bacterial and fungal community diversity and structure by denaturing gradient gel electrophoresis (DGGE)]. These systems (S1 and S2) consisted of excavation (trenching) and replacement of contaminated soil by uncontaminated soil in rows with Eucalyptus camaldulensis planting (S1-R and S2-R), free of understory vegetation (S1-BR), or completely covered by Brachiaria decumbens (S2-BR) in between rows. A contaminated, non-rehabilitated (NR) site and two contamination-free sites [Cerrado (C) and pasture (P)] were used as controls. Cmic, densities of bacteria and actinobacteria, and enzymatic activities (β-glucosidase, acid phosphatase, and urease) were significantly higher in the rehabilitated sites of system 2 (S2-R and S2-BR). However, even under high heavy metal contents (S1-R), the rehabilitation with eucalyptus was also effective. DGGE analysis revealed similarity in the diversity and structure of bacteria and fungi communities between rehabilitated sites and C site (uncontaminated). Principal component analysis showed clustering of rehabilitated sites (S2-R and S2-BR) with contamination-free sites, and S1-R was intermediate between the most and least contaminated sites, demonstrating that the soil replacement and revegetation improved the biological condition of the soil. The attributes that most explained these clustering were bacterial density, acid phosphatase, β-glucosidase, fungal and actinobacterial densities, Cmic, and induced respiration.
Collapse
Affiliation(s)
- Jessé Valentim dos Santos
- Agricultural Microbiology Postgraduate Program, Department of Biology, Federal University of Lavras, Postal Box 3037, CEP 37200-000, Lavras, MG, Brazil
| | - Maryeimy Varón-López
- Agricultural Microbiology Postgraduate Program, Department of Biology, Federal University of Lavras, Postal Box 3037, CEP 37200-000, Lavras, MG, Brazil
| | - Cláudio Roberto Fonsêca Sousa Soares
- Department of Soil Science-Sector of Biology, Microbiology and Biological Processes Laboratory, Federal University of Lavras, Postal Box 3037, CEP 37200-000, Lavras, MG, Brazil
- Sector of Biology, Soil Microbiology Laboratory, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Postal Box 476, Florianópolis, SC, 88040-900, Brazil
| | - Patrícia Lopes Leal
- Department of Soil Science-Sector of Biology, Microbiology and Biological Processes Laboratory, Federal University of Lavras, Postal Box 3037, CEP 37200-000, Lavras, MG, Brazil
| | - José Oswaldo Siqueira
- Department of Soil Science-Sector of Biology, Microbiology and Biological Processes Laboratory, Federal University of Lavras, Postal Box 3037, CEP 37200-000, Lavras, MG, Brazil
- Vale Technological Institute, Rua Boaventura da Silva, 955, Nazaré, Belem, PA, 60055-090, Brazil
| | - Fatima Maria de Souza Moreira
- Department of Soil Science-Sector of Biology, Microbiology and Biological Processes Laboratory, Federal University of Lavras, Postal Box 3037, CEP 37200-000, Lavras, MG, Brazil.
| |
Collapse
|
31
|
Zhou ZF, Liu YR, Sun GX, Zheng YM. Responses of soil ammonia oxidizers to a short-term severe mercury stress. J Environ Sci (China) 2015; 38:8-13. [PMID: 26702963 DOI: 10.1016/j.jes.2015.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 06/05/2023]
Abstract
The responses of soil ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) to mercury (Hg) stress were investigated through a short-term incubation experiment. Treated with four different concentrations of Hg (CK, Hg25, Hg50, and Hg100, denoting 0, 25, 50, and 100mgHg/kg dry soil, respectively), samples were harvested after 3, 7, and 28day incubation. Results showed that the soil potential nitrification rate (PNR) was significantly inhibited by Hg stress during the incubation. However, lower abundances of AOA (the highest in CK: 9.20×10(7)copies/g dry soil; the lowest in Hg50: 2.68×10(7)copies/g dry soil) and AOB (the highest in CK: 2.68×10(7)copies/g dry soil; the lowest in Hg50: 7.49×10(6)copies/g dry soil) were observed only at day 28 of incubation (P<0.05). Moreover, only the community structure of soil AOB obviously shifted under Hg stress as seen through DGGE profiles, which revealed that 2-3 distinct AOB bands emerged in the Hg treatments at day 28. In summary, soil PNR might be a very useful parameter to assess acute Hg stress on soil ecosystems, and the community structure of soil AOB might be a realistic biological indicator for the assessment of heavy metal stress on soil ecosystems in the future.
Collapse
Affiliation(s)
- Zhi-Feng Zhou
- College of Resources and Environment, Southwest University, Chongqing 400716, China.
| | - Yu-Rong Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guo-Xin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuan-Ming Zheng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
32
|
Sharaff M, Archana G. Assessment of microbial communities in mung bean (Vigna radiata) rhizosphere upon exposure to phytotoxic levels of Copper. J Basic Microbiol 2015; 55:1299-307. [DOI: 10.1002/jobm.201400927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/16/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Murali Sharaff
- Department of Microbiology & Biotechnology Centre; Faculty of Science; The Maharaja Sayajirao University of Baroda; Vadodara Gujarat India
| | - G. Archana
- Department of Microbiology & Biotechnology Centre; Faculty of Science; The Maharaja Sayajirao University of Baroda; Vadodara Gujarat India
| |
Collapse
|
33
|
Deng L, Zeng G, Fan C, Lu L, Chen X, Chen M, Wu H, He X, He Y. Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil. Appl Microbiol Biotechnol 2015; 99:8259-69. [DOI: 10.1007/s00253-015-6662-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 11/24/2022]
|
34
|
Wang X, Mavrodi DV, Ke L, Mavrodi OV, Yang M, Thomashow LS, Zheng N, Weller DM, Zhang J. Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils. Microb Biotechnol 2015; 8:404-18. [PMID: 25219642 PMCID: PMC4408174 DOI: 10.1111/1751-7915.12158] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/19/2014] [Accepted: 07/24/2014] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to inventory the types of plant growth-promoting rhizobacteria (PGPR) present in the rhizosphere of plants grown in soils contaminated with heavy metals, recalcitrant organics, petroleum sewage or salinity in China. We screened 1223 isolates for antifungal activity and about 24% inhibited Rhizoctonia solani or Sclerotinia sclerotiorum. Twenty-four strains inhibitory to R. solani, Gaeumannomyces graminis var. tritici and/or S. sclerotiorum and representing the dominant morphotypes were assayed for PGPR activity. Seven strains contained phlD, prnD, pltC or phzF genes and produced the antibiotics 2,4-diacetylphloroglucinol, pyrrolnitrin, pyoluteorin and phenazines respectively. Six strains contained acdS, which encodes 1-aminocyclopropane-1-carboxylic acid deaminase. Phylogenetic analysis of 16S rDNA and phlD, phzF and acdS genes demonstrated that some strains identified as Pseudomonas were similar to model PGPR strains Pseudomonas protegens Pf-5, Pseudomonas chlororaphis subsp. aureofaciens 30-84 and P. brassicacearum Q8r1-96. Pseudomonas protegens- and P. chlororaphis-like strains had the greatest biocontrol activity against Rhizoctonia root rot and take-all of wheat. Pseudomonas protegens and P. brassicacearum-like strains showed the greatest promotion of canola growth. Our results indicate that strains from contaminated soils are similar to well-described PGPR found in agricultural soils worldwide.
Collapse
Affiliation(s)
- Xuefei Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, Hubei, 430070, China
- Department of Plant Pathology, Washington State UniversityPullman, WA, 99164-6430, USA
| | - Dmitri V Mavrodi
- Department of Biological Sciences, The University of Southern MississippiHattiesburg, MS, 39406, USA
| | - Linfeng Ke
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, Hubei, 430070, China
| | - Olga V Mavrodi
- Department of Plant Pathology, Washington State UniversityPullman, WA, 99164-6430, USA
| | - Mingming Yang
- Department of Plant Pathology, Washington State UniversityPullman, WA, 99164-6430, USA
| | - Linda S Thomashow
- Agricultural Research Service, Root Disease and Biological Control Research Unit, United States Department of AgriculturePullman, WA, 99164-6430, USA
| | - Na Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, Hubei, 430070, China
| | - David M Weller
- Agricultural Research Service, Root Disease and Biological Control Research Unit, United States Department of AgriculturePullman, WA, 99164-6430, USA
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, Hubei, 430070, China
| |
Collapse
|
35
|
Cavalca L, Corsini A, Canzi E, Zanchi R. Rhizobacterial communities associated with spontaneous plant species in long-term arsenic contaminated soils. World J Microbiol Biotechnol 2015; 31:735-46. [PMID: 25700744 DOI: 10.1007/s11274-015-1826-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
Abstract
The microbial community composition in three soil fractions (bulk soil, rhizosphere and rhizoplane) of the root-soil system of a thistle, Cirsium arvense, and of a tufted hair grass, Deschampsia caespitosa, was investigated. The two spontaneous wild plant species were predominant in two Italian lands contaminated since centuries by arsenic and at present show high levels of arsenic (from 215 to 12,500 mg kg(-1)). In order to better understand how the rhizobacterial ecosystem responds to a long-term arsenic contamination in term of composition and functioning, culture-independent techniques (DAPI counts, fluorescence in situ hybridization and denaturing gradient gel electrophoresis analysis) along with cultivation-based methods were applied. Microbial community structure was qualitatively similar in the two root-soil systems, but some quantitative differences were observed. Bacteria of the α-, β-, and γ-subclasses of the Proteobacteria were dominant in all fractions, while the subdominant groups (Cytophagaceae, gram-positive spore-forming, and filamentous bacteria) were significantly more abundant in the root-soil system of D. caespitosa. As regards to arsenic resistant strains, Firmicutes, Actinobacteria, Enterobacteria and γ-Proteobacteria were isolated from soil system of both plants. Our results suggest that the response to a high level of arsenic contamination governed the rhizosphere microbial community structure together with the soil structure and the plant host type effects. Data from this study can provide better understanding of complex bacterial communities in metal-polluted soils, as well as useful information of indigenous bacterial strains with potential application to soil remediation.
Collapse
Affiliation(s)
- Lucia Cavalca
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | | | | | | |
Collapse
|
36
|
Actinobacteria occurrence and their metabolic characteristics in the nickel-contaminated soil sample. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0451-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Valentín-Vargas A, Root RA, Neilson JW, Chorover J, Maier RM. Environmental factors influencing the structural dynamics of soil microbial communities during assisted phytostabilization of acid-generating mine tailings: a mesocosm experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 500-501:314-24. [PMID: 25237788 PMCID: PMC4253589 DOI: 10.1016/j.scitotenv.2014.08.107] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 04/13/2023]
Abstract
Compost-assisted phytostabilization has recently emerged as a robust alternative for reclamation of metalliferous mine tailings. Previous studies suggest that root-associated microbes may be important for facilitating plant establishment on the tailings, yet little is known about the long-term dynamics of microbial communities during reclamation. A mechanistic understanding of microbial community dynamics in tailings ecosystems undergoing remediation is critical because these dynamics profoundly influence both the biogeochemical weathering of tailings and the sustainability of a plant cover. Here we monitor the dynamics of soil microbial communities (i.e. bacteria, fungi, archaea) during a 12-month mesocosm study that included 4 treatments: 2 unplanted controls (unamended and compost-amended tailings) and 2 compost-amended seeded tailings treatments. Bacterial, fungal and archaeal communities responded distinctively to the revegetation process and concurrent changes in environmental conditions and pore water chemistry. Compost addition significantly increased microbial diversity and had an immediate and relatively long-lasting buffering-effect on pH, allowing plants to germinate and thrive during the early stages of the experiment. However, the compost buffering capacity diminished after six months and acidification took over as the major factor affecting plant survival and microbial community structure. Immediate changes in bacterial communities were observed following plant establishment, whereas fungal communities showed a delayed response that apparently correlated with the pH decline. Fluctuations in cobalt pore water concentrations, in particular, had a significant effect on the structure of all three microbial groups, which may be linked to the role of cobalt in metal detoxification pathways. The present study represents, to our knowledge, the first documentation of the dynamics of the three major microbial groups during revegetation of compost-amended, metalliferous mine tailings.
Collapse
Affiliation(s)
- Alexis Valentín-Vargas
- Department of Soil, Water and Environmental Science, 429 Shantz Bldg. #38, 1177 E. Fourth Street, University of Arizona, Tucson, AZ 85721-0038, USA.
| | - Robert A Root
- Department of Soil, Water and Environmental Science, 429 Shantz Bldg. #38, 1177 E. Fourth Street, University of Arizona, Tucson, AZ 85721-0038, USA.
| | - Julia W Neilson
- Department of Soil, Water and Environmental Science, 429 Shantz Bldg. #38, 1177 E. Fourth Street, University of Arizona, Tucson, AZ 85721-0038, USA.
| | - Jon Chorover
- Department of Soil, Water and Environmental Science, 429 Shantz Bldg. #38, 1177 E. Fourth Street, University of Arizona, Tucson, AZ 85721-0038, USA.
| | - Raina M Maier
- Department of Soil, Water and Environmental Science, 429 Shantz Bldg. #38, 1177 E. Fourth Street, University of Arizona, Tucson, AZ 85721-0038, USA.
| |
Collapse
|
38
|
Effects of dietary microencapsulated sodium butyrate on growth, intestinal mucosal morphology, immune response and adhesive bacteria in juvenile common carp (Cyprinus carpio) pre-fed with or without oxidised oil. Br J Nutr 2014; 112:15-29. [DOI: 10.1017/s0007114514000610] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aim of the present study was to investigate the effects of different dietary sustained-release microencapsulated sodium butyrate (MSB) products (0 (non-supplement), 1·5 and 3·0 h) for a control or oxidised soyabean oil (SBO) diet on fish production, intestinal mucosal condition, immunity and intestinal bacteria in juvenile common carp (Cyprinus carpio). Dietary MSB increased weight gain and reduced the feed conversion ratio within the control and oxidised SBO groups. Gut mucosa was damaged in the oxidised SBO group fed without MSB, in contrast to a normal appearance found in fish fed the MSB1·5 and MSB3·0 diets in the oxidised SBO group. Microvillus density increased in fish fed the MSB1·5 and MSB3·0 diets in the oxidised SBO group (P< 0·001); however, microvillus density was affected by the different pre-fed diets in the midgut (P< 0·001) and by the different sustained-release times of MSB in the distal gut (DG) (P= 0·003). The interaction between the pre-fed diets and the sustained-release times of dietary MSB was significant for the relative gene expression levels of gut heat shock protein-70 (HSP70), pro-inflammatory cytokines (IL-1β and TNF-α) and anti-inflammatory cytokines (transforming growth factor-β) within each gut segment, except for HSP70 in the DG and IL-1β in the foregut. Modulation of adherent bacterial communities within each gut segment investigated was not obvious when the common carp were fed the diets with MSB, as similarity coefficients of >0·79 were observed. These results indicated that MSB can be used as a dietary supplement to repair or prevent intestinal damage in carp fed oxidised SBO.
Collapse
|
39
|
Hložková K, Suman J, Strnad H, Ruml T, Paces V, Kotrba P. Characterization of pbt genes conferring increased Pb2+ and Cd2+ tolerance upon Achromobacter xylosoxidans A8. Res Microbiol 2013; 164:1009-18. [PMID: 24125695 DOI: 10.1016/j.resmic.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
Abstract
The cluster of pbtTFYRABC genes is carried by plasmid pA81. Its elimination from Achromobacter xylosoxidans A8 resulted in increased sensitivity towards Pb(2+) and Cd(2+). Predicted pbtTRABC products share strong similarities with Pb(2+) uptake transporter PbrT, transcriptional regulator PbrR, metal efflux P1-ATPases PbrA and CadA, undecaprenyl pyrophosphatase PbrB and its signal peptidase PbrC from Cupriavidus metallidurans CH34. Expression of pbtABC or pbtA in a metal-sensitive Escherichia coli GG48 rendered the strain Pb(2+)-, Cd(2+)- and Zn(2+)-tolerant and caused decreased accumulation of the metal ions. Accumulation of Pb(2+), but not of Cd(2+) or Zn(2+), was promoted in E. coli expressing pbtT. Additional genes of the pbt cluster are pbtF and pbtY, which encode the cation diffusion facilitator (CDF)-like transporter and a putative fatty acid hydroxylase of unknown function, respectively. Expression of pbtF did not confer increased metal tolerance upon E. coli GG48, although the protein showed measurable Pb(2+)-efflux activity. Unlike the pbtT promoter, promoters of pbtABC, pbtF and pbtY contain features characteristic of promoters controlled by metal-responsive transcriptional regulators of the MerR family. Upregulation of pbtABC, pbtF and pbtY upon Pb(2+), Cd(2+) and Zn(2+) exposure was confirmed in wild-type Achromobacter xylosoxidans A8. Gel shift assays proved binding of purified PbtR to the respective promoters.
Collapse
Affiliation(s)
- Kateřina Hložková
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 3, CZ-166 28 Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
40
|
Aoyama M, Tanaka R. Effects of Heavy Metal Pollution of Apple Orchard Surface Soils Associated with Past Use of Metal-Based Pesticides on Soil Microbial Biomass and Microbial Communities. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jep.2013.44a005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Sepehri M, Khodaverdiloo H, Zarei M. Fungi and Their Role in Phytoremediation of Heavy Metal-Contaminated Soils. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/978-3-642-33811-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
42
|
Ollivier J, Wanat N, Austruy A, Hitmi A, Joussein E, Welzl G, Munch JC, Schloter M. Abundance and diversity of ammonia-oxidizing prokaryotes in the root-rhizosphere complex of Miscanthus × giganteus grown in heavy metal-contaminated soils. MICROBIAL ECOLOGY 2012; 64:1038-1046. [PMID: 22688859 DOI: 10.1007/s00248-012-0078-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/23/2012] [Indexed: 06/01/2023]
Abstract
Mine wastes have been considered as a source of heavy metal (HM) contamination in the environment and negatively impact many important ecosystem services provided by soils. Plants like Miscanthus, which tolerate high HM concentrations in soil, are often used for phytoremediation and provide the possibility to use these soils at least for the production of energy crops. However, it is not clear if plant growth at these sites is limited by the availability of nutrients, mainly nitrogen, as microbes in soil might be affected by the contaminant. Therefore, in this study, we investigated in a greenhouse experiment the response of ammonia-oxidizing microbes in the root-rhizosphere complex of Miscanthus × giganteus grown in soils with different levels of long-term arsenic (As) and lead (Pb) contamination. Quantitative PCR of the ammonia monooxigenease gene (amoA) was performed to assess the abundance of ammonia-oxidizing bacteria (AOB) and archaea (AOA) at two different points of plant growth. Furthermore, bulk soil samples before planting were analyzed. In addition, terminal restriction fragment length polymorphism (T-RFLP) analysis was used to investigate the diversity of archaeal amoA amplicons. Whereas high concentrations of As and Pb in soil (83 and 15 g/kg, respectively) resulted independent from plant growth in a clear reduction of AOA and AOB compared to the control soils with lower HM contents, in soils with contamination levels of 10 g/kg As and 0.2 g/kg Pb, only AOB were negatively affected in bulk soil samples. Diversity analysis of archaeal amoA genes revealed clear differences in T-RFLP patterns in response to the degree of HM contamination. Therefore, our results could clearly prove the different response patterns of AOA and AOB in HM-contaminated soils and the development of archaeal amoA phylotypes which are more tolerant towards HMs in soil samples from the areas that were impacted the most by mining waste, which could contribute to functional redundancy of ammonia-oxidizing microbes in soils and stability of nitrification pattern.
Collapse
Affiliation(s)
- Julien Ollivier
- Technical University Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0491-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
44
|
Liu Y, Zhou T, Crowley D, Li L, Liu D, Zheng J, Yu X, Pan G, Hussain Q, Zhang X, Zheng J. Decline in topsoil microbial quotient, fungal abundance and C utilization efficiency of rice paddies under heavy metal pollution across South China. PLoS One 2012; 7:e38858. [PMID: 22701725 PMCID: PMC3372496 DOI: 10.1371/journal.pone.0038858] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/11/2012] [Indexed: 11/18/2022] Open
Abstract
Agricultural soils have been increasingly subject to heavy metal pollution worldwide. However, the impacts on soil microbial community structure and activity of field soils have been not yet well characterized. Topsoil samples were collected from heavy metal polluted (PS) and their background (BGS) fields of rice paddies in four sites across South China in 2009. Changes with metal pollution relative to the BGS in the size and community structure of soil microorganisms were examined with multiple microbiological assays of biomass carbon (MBC) and nitrogen (MBN) measurement, plate counting of culturable colonies and phospholipids fatty acids (PLFAs) analysis along with denaturing gradient gel electrophoresis (DGGE) profile of 16S rRNA and 18S rRNA gene and real-time PCR assay. In addition, a 7-day lab incubation under constantly 25°C was conducted to further track the changes in metabolic activity. While the decrease under metal pollution in MBC and MBN, as well as in culturable population size, total PLFA contents and DGGE band numbers of bacteria were not significantly and consistently seen, a significant reduction was indeed observed under metal pollution in microbial quotient, in culturable fungal population size and in ratio of fungal to bacterial PLFAs consistently across the sites by an extent ranging from 6% to 74%. Moreover, a consistently significant increase in metabolic quotient was observed by up to 68% under pollution across the sites. These observations supported a shift of microbial community with decline in its abundance, decrease in fungal proportion and thus in C utilization efficiency under pollution in the soils. In addition, ratios of microbial quotient, of fungal to bacterial and qCO2 are proved better indicative of heavy metal impacts on microbial community structure and activity. The potential effects of these changes on C cycling and CO2 production in the polluted rice paddies deserve further field studies.
Collapse
Affiliation(s)
- Yongzhuo Liu
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Jiangsu Nanjing, China
| | - Tong Zhou
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Jiangsu Nanjing, China
| | - David Crowley
- Department of Environmental Sciences, University of California Riverside, Riverside, California, United States of America
| | - Lianqing Li
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Jiangsu Nanjing, China
| | - Dawen Liu
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Jiangsu Nanjing, China
| | - Jinwei Zheng
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Jiangsu Nanjing, China
| | - Xinyan Yu
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Jiangsu Nanjing, China
| | - Genxing Pan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Jiangsu Nanjing, China
- * E-mail:
| | - Qaiser Hussain
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Jiangsu Nanjing, China
- Department of Soil Science and Soil Water Conservation, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Xuhui Zhang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Jiangsu Nanjing, China
| | - Jufeng Zheng
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Jiangsu Nanjing, China
| |
Collapse
|
45
|
Jackson TA, Muir DCG. Mass-dependent and mass-independent variations in the isotope composition of mercury in a sediment core from a lake polluted by emissions from the combustion of coal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 417-418:189-203. [PMID: 22265602 DOI: 10.1016/j.scitotenv.2011.12.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 05/31/2023]
Abstract
A dated sediment core from a lake polluted with mercury (Hg), other heavy metals, and arsenic (As) from coal-burning power plants was analysed to test the hypothesis that power plant emissions have distinctive Hg isotope signatures which may be preserved in sediments but are altered by natural processes. Coal and fly ash were also analysed. The research yielded evidence for mass-dependent and mass-independent fractionation of Hg isotopes (MDF and MIF, respectively) by combustion and flue gas reactions in the power plants and natural processes in the lake. Power plant pollution and earlier pollution attributable to domestic coal burning produced a characteristic isotope signature indicative of depletion in lighter isotopes by MDF and enrichment in (199)Hg and (201)Hg by MIF, suggesting loss of isotopically light gaseous Hg(0) and reactions of Hg with free radicals at the sources of pollution; but coal and fly ash data showed that combustion imparted a different signature to the ash, corroborating chemical evidence that reactive gaseous Hg(II), not particulate Hg(II), was the principal Hg fraction deposited in the lake. Moreover, the core data imply alteration of the anthropogenic isotope signature by microbially mediated MDF and MIF, with alteration of the microbial activities themselves by toxic effects of As and metals from the emissions. Effects of metals on isotope fractionation increased with the stability constants and ligand field stabilisation energies of metal complexes, suggesting inhibition of microbial enzymes and metal binding by microbial carrier molecules. The importance of fractionation by natural (possibly microbial) processes is also indicated by depletion in (199)Hg and (201)Hg owing to MIF in sediments predating local pollution. In brief, the isotope signature of the polluted sediment is probably the net result of abiotic reactions at the sources of pollution, microbial activities in the lake, and effects of toxic pollutants on the microflora.
Collapse
Affiliation(s)
- Togwell A Jackson
- Aquatic Ecosystem Protection Research Division, Water Science & Technology Directorate, Environment Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, PO Box 5050, Burlington, Ontario, Canada L7R 4A6.
| | | |
Collapse
|
46
|
Coyle DR, Zalesny JA, Zalesny RS, Wiese AH. Irrigating poplar energy crops with landfill leachate negatively affects soil micro- and meso-fauna. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2011; 13:845-858. [PMID: 21972508 DOI: 10.1080/15226514.2011.552927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization. Populus selections are ideal for such systems given their fast growth, extensive root systems, and high water usage rates. Maintaining ecological sustainability (i.e., the capacity for an ecosystem to maintain its function and retain its biodiversity over time) during tree establishment and development is an important component of plantation success, especially for belowground faunal populations. To determine the impact of solid waste leachate on soil micro- and meso-fauna, we compared soilfrom eight different Populus clones receiving municipal solid waste landfill leachate irrigation with clones receiving fertilized (N, P K) well water irrigation. Microfauna (i.e., nematodes) communities were more diverse in control soils. Mesofauna (i.e., insects) were associated with all clones; however, they were four times more abundant around trees found within the control plot than those that received leachate treatments. Nematode and insect abundance varied among Populus clones yet insect diversity was greater in the leachate-treated soils. Phytotechnologies must allow for soil faunal sustainability, as upsetting this balance could lead to great reductions in phytotechnology efficacy.
Collapse
Affiliation(s)
- David R Coyle
- University of Wisconsin, Department of Entomology, Madison, Wisconsin, USA.
| | | | | | | |
Collapse
|
47
|
Effect of genetically modified poplars on soil microbial communities during the phytoremediation of waste mine tailings. Appl Environ Microbiol 2011; 77:7611-9. [PMID: 21890678 DOI: 10.1128/aem.06102-11] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The application of transgenic plants to clean up environmental pollution caused by the wastes of heavy metal mining is a promising method for removing metal pollutants from soils. However, the effect of using genetically modified organisms for phytoremediation is a poorly researched topic in terms of microbial community structures, despite the important role of microorganisms in the health of soil. In this study, a comparative analysis of the bacterial and archaeal communities found in the rhizosphere of genetically modified (GM) versus wild-type (WT) poplar was conducted on trees at different growth stages (i.e., the rhizospheres of 1.5-, 2.5-, and 3-year-old poplars) that were cultivated on contaminated soils together with nonplanted control soil. Based on the results of DNA pyrosequencing, poplar type and growth stages were associated with directional changes in the structure of the microbial community. The rate of change was faster in GM poplars than in WT poplars, but the microbial communities were identical in the 3-year-old poplars. This phenomenon may arise because of a higher rate and greater extent of metal accumulation in GM poplars than in naturally occurring plants, which resulted in greater changes in soil environments and hence the microbial habitat.
Collapse
|
48
|
Liu L, Wu L, Li N, Luo Y, Li S, Li Z, Han C, Jiang Y, Christie P. Rhizosphere concentrations of zinc and cadmium in a metal contaminated soil after repeated phytoextraction by Sedum plumbizincicola. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2011; 13:750-764. [PMID: 21972516 DOI: 10.1080/15226514.2010.525558] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A growth chamber pot experiment and a field plot experiment were conducted with the installation of rhizobags to study the effects of repeated phytoextraction by Sedum plumbizincicola on the bioavailability of Cd and Zn in the rhizosphere and bulk soil Repeated phytoextraction gave significantly lower Cd and Zn concentrations in both rhizosphere and bulk soil solutions compared with soil without repeated phytoextraction. The depletion rates of NH40Ac-extractable Zn in rhizosphere soil in each treatment (L-PS, L-NPS, H-PS, and H-NPS) were 59.7, 18.0, 16.3, and 18.6%, respectively. For NH40Ac-extractable Cd, the depletion rates in treatments L-PS, L-NPS, H-PS, and H-NPS were 6.67, 29.4, 40.3, and 41.4%, respectively. Plant shoot biomass decreased in the order H-PS > H-NPS > L-PS > L-NPS, with dry weights of 0.56, 0.42, 1.43, and 1.21 g pot(-1), respectively. Plant Cd uptake increased with increasing aqua-regia extractable metal concentrations. The NH4OAc extraction procedure was satisfactory to predict the bioavailability of Cd and Zn in rhizosphere soil in terms of shoot uptake by S. plumbizincicola with positive correlation coefficients of 0.545 (p < 0.05) and 0.452 (p < 0.05), respectively. The field study results show a slight decrease in water soluble and NH4OAc-extractable metals, a trend similar to that found in the pot experiment.
Collapse
Affiliation(s)
- Ling Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
HASSAN SAADELDIN, BOON EVA, ST-ARNAUD MARC, HIJRI MOHAMED. Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Mol Ecol 2011; 20:3469-83. [DOI: 10.1111/j.1365-294x.2011.05142.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Marrengane Z, Kumar SKS, Pillay L, Bux F. Rapid quantification and analysis of genetic diversity among Gordonia populations in foaming activated sludge plants. J Basic Microbiol 2011; 51:415-23. [DOI: 10.1002/jobm.201000213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 12/21/2010] [Indexed: 11/11/2022]
|