1
|
Akbar Aly AB, Shanmugaraj B, Ramalingam S. Industrial applications of Phanerochaete chrysosporium lignin-degrading enzymes: current status, production challenges, and future directions. World J Microbiol Biotechnol 2025; 41:171. [PMID: 40341513 DOI: 10.1007/s11274-025-04388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/27/2025] [Indexed: 05/10/2025]
Abstract
Phanerochaete chrysosporium (Pc) is a white-rot fungus recognized for its highly efficient lignin-degrading enzymes (LDEs), including lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase. These oxidative enzymes possess transformative capabilities across multiple industrial applications, such as biopulping, biofuel production, bioremediation and for the treatment of industrial wastewater. However, the commercial use of these enzymes is limited due to time-consuming scale-up procedures in native hosts, instability in industrial environments, and high production costs. The recent developments in recombinant expression systems, particularly those employing microbial and plant platforms provide promising opportunities to enhance enzyme yield, stability, and reduce the cost. Despite these advancements, significant challenges remain, which include the formation of inclusion bodies, the need for nutrient and co-factor supplementation, and the development of effective purification strategies. Modern advancements in protein engineering, such as site-directed mutation and in silico approaches, may hold significant promise in addressing the challenges posed by pH optimization, which is prominent in wild-type enzymes. This review examines the current industrial applications of P. chrysosporium ligninolytic enzymes, highlights production bottlenecks in several hosts, and discusses the strategies to enhance their commercial viability of these enzymes.
Collapse
Affiliation(s)
- Abdul Basith Akbar Aly
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Balamurugan Shanmugaraj
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
- Centre for Natural Products and Functional Foods, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
2
|
Qi Y, Qin Q, Ma J, Wang B, Jin C, Fang W. Unveiling the thermotolerance mechanism of Pichia kudriavzevii LC375240 through transcriptomic and genetic analyses. BMC Biol 2025; 23:55. [PMID: 39988652 PMCID: PMC11849260 DOI: 10.1186/s12915-025-02159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Thermotolerance is a critical trait for yeasts employed in industrial settings, and the utilization of unconventional yeasts has gained notable attention in recent years. However, the mechanisms underlying thermotolerance in unconventional yeasts, particularly Pichia spp., remain insufficiently elucidated. RESULTS This study focuses on the thermotolerance of a non-traditional yeast strain Pichia kudriavzevii LC375240, renowned for its remarkable thermotolerance. Through transcriptomic analysis of both short-term and long-term heat shock exposures, we uncovered an intricate regulatory response in P. kudriavzevii. During long-term heat treatment, the yeast exhibited elevated expression of genes involved in the tricarboxylic acid (TCA) cycle and suppressed expression of genes in the pentose phosphate pathway (PPP). Additionally, long-term heat treatment led to an upregulation of heat shock proteins (HSPs) and an increase in trehalose, glutathione (GSH), and superoxide dismutase (SOD) levels, along with a reduction in the intracellular NADPH/NADP+ ratio and pyruvate content. These changes collectively contribute to the thermotolerance of P. kudriavzevii. CRISPR-Cas9-mediated knockout experiments further highlighted the critical roles of HSPs, antioxidases, and the trehalose metabolic pathway in the yeast's response to high temperatures. CONCLUSIONS Taken together, this study demonstrates that P. kudriavzevii adapts to thermal stress through a combination of enhanced TCA cycle, reduced PPP, increased HSPs, trehalose, GSH, and SOD levels. These findings provide a comprehensive understanding of the molecular mechanisms underlying thermotolerance in P. kudriavzevii.
Collapse
Affiliation(s)
- Yanhua Qi
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
- State Key Laboratory of Non-food Biomass Energy Technology, Nanning, Guangxi, 530007, China
| | - Qijian Qin
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
- State Key Laboratory of Non-food Biomass Energy Technology, Nanning, Guangxi, 530007, China
| | - Jiayin Ma
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Wang
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China.
- State Key Laboratory of Non-food Biomass Energy Technology, Nanning, Guangxi, 530007, China.
| | - Cheng Jin
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China.
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wenxia Fang
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China.
- State Key Laboratory of Non-food Biomass Energy Technology, Nanning, Guangxi, 530007, China.
| |
Collapse
|
3
|
Yook S, Alper HS. Recent advances in genetic engineering and chemical production in yeast species. FEMS Yeast Res 2025; 25:foaf009. [PMID: 40082732 PMCID: PMC11963765 DOI: 10.1093/femsyr/foaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025] Open
Abstract
Yeasts have emerged as well-suited microbial cell factory for the sustainable production of biofuels, organic acids, terpenoids, and specialty chemicals. This ability is bolstered by advances in genetic engineering tools, including CRISPR-Cas systems and modular cloning in both conventional (Saccharomyces cerevisiae) and non-conventional (Yarrowia lipolytica, Rhodotorula toruloides, Candida krusei) yeasts. Additionally, genome-scale metabolic models and machine learning approaches have accelerated efforts to create a broad range of compounds that help reduce dependency on fossil fuels, mitigate climate change, and offer sustainable alternatives to petrochemical-derived counterparts. In this review, we highlight the cutting-edge genetic tools driving yeast metabolic engineering and then explore the diverse applications of yeast-based platforms for producing value-added products. Collectively, this review underscores the pivotal role of yeast biotechnology in efforts to build a sustainable bioeconomy.
Collapse
Affiliation(s)
- Sangdo Yook
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, United States
| |
Collapse
|
4
|
Hou S, Yang S, Bai W. Multi-gene precision editing tool using CRISPR-Cas12a/Cpf1 system in Ogataea polymorpha. Microb Cell Fact 2025; 24:28. [PMID: 39838422 PMCID: PMC11748851 DOI: 10.1186/s12934-025-02654-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Ogataea polymorpha, a non-conventional methylotrophic yeast, has demonstrated significant potential for heterologous protein expression and the production of high-value chemicals and biopharmaceuticals. However, the lack of precise and efficient genome editing tools severely hinders the construction of cell factories. Although the CARISP-Cas9 system has been established in Ogataea polymorpha, the gene editing efficiency, especially for multiple genes edition, needs to be further improved. RESULTS In this study, we developed an efficient CRISPR-Cpf1-mediated genome editing system in O. polymorpha that exhibited high editing efficiency for single gene (98.1 ± 1.7%), duplex genes (93.9 ± 2.4%), and triplex genes (94.0 ± 6.0%). Additionally, by knocking out non-homologous end joining (NHEJ) related genes, homologous recombination (HR) efficiency was increased from less than 30% to 90 ~ 100%, significantly enhancing precise genome editing capabilities. The increased HR rates enabled over 90% integration efficiency of triplex genes, as well as over 90% deletion rates of large DNA fragments up to 20 kb. Furthermore, using this developed CRISPR-Cpf1 system, triple genes were precisely integrated into the genome by one-step, enabling lycopene production in O. polymorpha. CONCLUSIONS This novel multiplexed genome-editing tool mediated by CRISPR-Cpf1 can realize the deletion and integration of multiple genes, which holds great promise for accelerating engineering efforts on this non-conventional methylotrophic yeast for metabolic engineering and genomic evolution towards its application as an industrial cell factory.
Collapse
Affiliation(s)
- Senqin Hou
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shibin Yang
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Wenqin Bai
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
5
|
Wang Y, Wang Y, Cui J, Wu C, Yu B, Wang L. Non-conventional yeasts: promising cell factories for organic acid bioproduction. Trends Biotechnol 2025:S0167-7799(24)00364-0. [PMID: 39799011 DOI: 10.1016/j.tibtech.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/15/2025]
Abstract
Microbial production of organic acids has been hindered by the poor acid tolerance of microorganisms and the high costs of waste salt reprocessing. The robustness of non-conventional microorganisms in an acidic environment makes it possible to produce organic acids at low pH and greatly simplifies downstream processing. In this review we discuss the environmental adaptability features of non-conventional yeasts, as well as the latest developments in genomic engineering strategies that have facilitated metabolic engineering of these strains. We also use selected examples of three-carbon (C3), C4, and C6 organic acids to illustrate the ongoing efforts and challenges of using non-conventional yeasts for organic acid production. This review provides theoretical guidance for the construction of highly robust organic acid producers.
Collapse
Affiliation(s)
- Yupeng Wang
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Wang
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiakai Cui
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Chenchen Wu
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Yu
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Limin Wang
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
6
|
Tobin EE, Collins JH, Marsan CB, Nadeau GT, Mori K, Lipzen A, Mondo S, Grigoriev IV, Young EM. Omics-driven onboarding of the carotenoid producing red yeast Xanthophyllomyces dendrorhous CBS 6938. Appl Microbiol Biotechnol 2024; 108:547. [PMID: 39731599 DOI: 10.1007/s00253-024-13379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024]
Abstract
Transcriptomics is a powerful approach for functional genomics and systems biology, yet it can also be used for genetic part discovery. Here, we derive constitutive and light-regulated promoters directly from transcriptomics data of the basidiomycete red yeast Xanthophyllomyces dendrorhous CBS 6938 (anamorph Phaffia rhodozyma) and use these promoters with other genetic elements to create a modular synthetic biology parts collection for this organism. X. dendrorhous is currently the sole biotechnologically relevant yeast in the Tremellomycete class-it produces large amounts of astaxanthin, especially under oxidative stress and exposure to light. Thus, we performed transcriptomics on X. dendrorhous under different wavelengths of light (red, green, blue, and ultraviolet) and oxidative stress. Differential gene expression analysis (DGE) revealed that terpenoid biosynthesis was primarily upregulated by light through crtI, while oxidative stress upregulated several genes in the pathway. Further gene ontology (GO) analysis revealed a complex survival response to ultraviolet (UV) where X. dendrorhous upregulates aromatic amino acid and tetraterpenoid biosynthesis and downregulates central carbon metabolism and respiration. The DGE data was also used to identify 26 constitutive and regulated genes, and then, putative promoters for each of the 26 genes were derived from the genome. Simultaneously, a modular cloning system for X. dendrorhous was developed, including integration sites, terminators, selection markers, and reporters. Each of the 26 putative promoters were integrated into the genome and characterized by luciferase assay in the dark and under UV light. The putative constitutive promoters were constitutive in the synthetic genetic context, but so were many of the putative regulated promoters. Notably, one putative promoter, derived from a hypothetical gene, showed ninefold activation upon UV exposure. Thus, this study reveals metabolic pathway regulation and develops a genetic parts collection for X. dendrorhous from transcriptomic data. Therefore, this study demonstrates that combining systems biology and synthetic biology into an omics-to-parts workflow can simultaneously provide useful biological insight and genetic tools for nonconventional microbes, particularly those without a related model organism. This approach can enhance current efforts to engineer diverse microbes. KEY POINTS: • Transcriptomics revealed further insights into the photobiology of X. dendrorhous, specifically metabolic nodes that are transcriptionally regulated by light. • A modular genetic part collection was developed, including 26 constitutive and regulated promoters derived from the transcriptomics of X. dendrorhous. • Omics-to-parts can be applied to nonconventional microbes for rapid "onboarding".
Collapse
Affiliation(s)
- Emma E Tobin
- Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Joseph H Collins
- Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Celeste B Marsan
- Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Gillian T Nadeau
- Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Kim Mori
- Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stephen Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Eric M Young
- Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
7
|
Molina-Vera C, Morales-Tlalpan V, Chavez-Vega A, Uribe-López J, Trujillo-Barrientos J, Campos-Guillén J, Chávez-Servín JL, García-Gasca T, Saldaña C. The Killer Saccharomyces cerevisiae Toxin: From Origin to Biomedical Research. Microorganisms 2024; 12:2481. [PMID: 39770684 PMCID: PMC11727844 DOI: 10.3390/microorganisms12122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 01/16/2025] Open
Abstract
The killer systems of S. cerevisiae are defined by the co-infection of two viral agents, an M virus and a helper virus. Each killer toxin is determined by the type of M virus (ScV-M1, ScV-M2, ScV-M28, and ScV-Mlus), which encodes a specific toxin (K1, K2, K28, and Klus). Since their discovery, interest in their potential use as antimicrobial agents has driven research into the mechanisms of action of these toxins on susceptible cells. This review provides an overview of the key aspects of killer toxins, including their origin and the evolutionary implications surrounding the viruses involved in the killer system, as well as their potential applications in the biomedical field and as a biological control strategy. Special attention is given to the mechanisms of action described to date for the various S. cerevisiae killer toxins.
Collapse
Affiliation(s)
- Carlos Molina-Vera
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
| | - Verónica Morales-Tlalpan
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
- National Laboratory for Advanced Scientific Visualization (LAVIS-FCN-UAQ), Querétaro 76230, Mexico
| | - Amairani Chavez-Vega
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
| | - Jennifer Uribe-López
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
| | - Jessica Trujillo-Barrientos
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
| | - Juan Campos-Guillén
- Faculty of Chemistry, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76320, Mexico; (J.C.-G.); (J.L.C.-S.)
| | - Jorge Luis Chávez-Servín
- Faculty of Chemistry, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76320, Mexico; (J.C.-G.); (J.L.C.-S.)
| | - Teresa García-Gasca
- Molecular Biology Laboratory, Facultad de Ciencias Naturales, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76230, Mexico;
| | - Carlos Saldaña
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
- National Laboratory for Advanced Scientific Visualization (LAVIS-FCN-UAQ), Querétaro 76230, Mexico
| |
Collapse
|
8
|
Hu M, Ge J, Jiang Y, Sun X, Guo D, Gu Y. Advances and perspectives in genetic expression and operation for the oleaginous yeast Yarrowia lipolytica. Synth Syst Biotechnol 2024; 9:618-626. [PMID: 38784195 PMCID: PMC11109602 DOI: 10.1016/j.synbio.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
The utilization of industrial biomanufacturing has emerged as a viable and sustainable alternative to fossil-based resources for producing functional chemicals. Moreover, advancements in synthetic biology have created new opportunities for the development of innovative cell factories. Notably, Yarrowia lipolytica, an oleaginous yeast that is generally regarded as safe, possesses several advantageous characteristics, including the ability to utilize inexpensive renewable carbon sources, well-established genetic backgrounds, and mature genetic manipulation methods. Consequently, there is increasing interest in manipulating the metabolism of this yeast to enhance its potential as a biomanufacturing platform. Here, we reviewed the latest developments in genetic expression strategies and manipulation tools related to Y. lipolytica, particularly focusing on gene expression, chromosomal operation, CRISPR-based tool, and dynamic biosensors. The purpose of this review is to serve as a valuable reference for those interested in the development of a Y. lipolytica microbial factory.
Collapse
Affiliation(s)
- Mengchen Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jianyue Ge
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yaru Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Dongshen Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
9
|
Xie L, Yu W, Gao J, Wang H, Zhou YJ. Ogataea polymorpha as a next-generation chassis for industrial biotechnology. Trends Biotechnol 2024; 42:1363-1378. [PMID: 38622041 DOI: 10.1016/j.tibtech.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
Ogataea (Hansenula) polymorpha is a nonconventional yeast with some unique characteristics, including fast growth, thermostability, and broad substrate spectrum. Other than common applications for protein production, O. polymorpha is attracting interest for chemical and protein production from methanol; a promising feedstock for the next-generation biomanufacturing due to its abundant sources and excellent characteristics. Benefiting from the development of synthetic biology, it has been engineered to produce value-added chemicals by extensively rewiring cellular metabolism. This Review discusses recently developed synthetic biology tools of O. polymorpha. The advances of chemicals production and systems biology were reviewed comprehensively. Finally, we look ahead to the developments of biomanufacturing in O. polymorpha to make an overall understanding of this chassis for academia and industry.
Collapse
Affiliation(s)
- Linfeng Xie
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
| | - Haoyu Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China.
| |
Collapse
|
10
|
Vercauteren S, Fiesack S, Maroc L, Verstraeten N, Dewachter L, Michiels J, Vonesch SC. The rise and future of CRISPR-based approaches for high-throughput genomics. FEMS Microbiol Rev 2024; 48:fuae020. [PMID: 39085047 PMCID: PMC11409895 DOI: 10.1093/femsre/fuae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) has revolutionized the field of genome editing. To circumvent the permanent modifications made by traditional CRISPR techniques and facilitate the study of both essential and nonessential genes, CRISPR interference (CRISPRi) was developed. This gene-silencing technique employs a deactivated Cas effector protein and a guide RNA to block transcription initiation or elongation. Continuous improvements and a better understanding of the mechanism of CRISPRi have expanded its scope, facilitating genome-wide high-throughput screens to investigate the genetic basis of phenotypes. Additionally, emerging CRISPR-based alternatives have further expanded the possibilities for genetic screening. This review delves into the mechanism of CRISPRi, compares it with other high-throughput gene-perturbation techniques, and highlights its superior capacities for studying complex microbial traits. We also explore the evolution of CRISPRi, emphasizing enhancements that have increased its capabilities, including multiplexing, inducibility, titratability, predictable knockdown efficacy, and adaptability to nonmodel microorganisms. Beyond CRISPRi, we discuss CRISPR activation, RNA-targeting CRISPR systems, and single-nucleotide resolution perturbation techniques for their potential in genome-wide high-throughput screens in microorganisms. Collectively, this review gives a comprehensive overview of the general workflow of a genome-wide CRISPRi screen, with an extensive discussion of strengths and weaknesses, future directions, and potential alternatives.
Collapse
Affiliation(s)
- Silke Vercauteren
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Simon Fiesack
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Laetitia Maroc
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Natalie Verstraeten
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Liselot Dewachter
- de Duve Institute, Université catholique de Louvain, Hippokrateslaan 75, 1200 Brussels, Belgium
| | - Jan Michiels
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Sibylle C Vonesch
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| |
Collapse
|
11
|
Ji L, Xu S, Zhang Y, Cheng H. Screening of broad-host expression promoters for shuttle expression vectors in non-conventional yeasts and bacteria. Microb Cell Fact 2024; 23:230. [PMID: 39152436 PMCID: PMC11330142 DOI: 10.1186/s12934-024-02506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Non-conventional yeasts and bacteria gain significance in synthetic biology for their unique metabolic capabilities in converting low-cost renewable feedstocks into valuable products. Improving metabolic pathways and increasing bioproduct yields remain dependent on the strategically use of various promoters in these microbes. The development of broad-spectrum promoter libraries with varying strengths for different hosts is attractive for biosynthetic engineers. RESULTS In this study, five Yarrowia lipolytica constitutive promoters (yl.hp4d, yl.FBA1in, yl.TEF1, yl.TDH1, yl.EXP1) and five Kluyveromyces marxianus constitutive promoters (km.PDC1, km.FBA1, km.TEF1, km.TDH3, km.ENO1) were selected to construct promoter-reporter vectors, utilizing α-amylase and red fluorescent protein (RFP) as reporter genes. The promoters' strengths were systematically characterized across Y. lipolytica, K. marxianus, Pichia pastoris, Escherichia coli, and Corynebacterium glutamicum. We discovered that five K. marxianus promoters can all express genes in Y. lipolytica and that five Y. lipolytica promoters can all express genes in K. marxianus with variable expression strengths. Significantly, the yl.TEF1 and km.TEF1 yeast promoters exhibited their adaptability in P. pastoris, E. coli, and C. glutamicum. In yeast P. pastoris, the yl.TEF1 promoter exhibited substantial expression of both amylase and RFP. In bacteria E. coli and C. glutamicum, the eukaryotic km.TEF1 promoter demonstrated robust expression of RFP. Significantly, in E. coli, The RFP expression strength of the km.TEF1 promoter reached ∼20% of the T7 promoter. CONCLUSION Non-conventional yeast promoters with diverse and cross-domain applicability have great potential for developing innovative and dynamic regulated systems that can effectively manage carbon flux and enhance target bioproduct synthesis across diverse microbial hosts.
Collapse
Affiliation(s)
- Liyun Ji
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Li J, Wu T, Wang J, Chen Y, Zhang W, Cai L, Lai S, Hu K, Jin W. Dual auxotrophy coupled red labeling strategy for efficient genome editing in Saccharomyces cerevisiae. Fungal Genet Biol 2024; 173:103910. [PMID: 38897560 DOI: 10.1016/j.fgb.2024.103910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
The homologous recombination strategy has a long history of editing Saccharomyces cerevisiae target genes. The application of CRISPR/Cas9 strategy to editing target genes in S. cerevisiae has also received a lot of attention in recent years. All findings seem to indicate that editing relevant target genes in S. cerevisiae is an extremely easy event. In this study, we systematically analyzed the advantages and disadvantages of homologous recombination (HR) strategy, CRISPR/Cas9 strategy, and CRISPR/Cas9 combined homology-mediated repair (CRISPR/Case9-HDR) strategy in knocking out BY4742 ade2. Our data showed that when the ade2 was knocked out by HR strategy, a large number of clones appeared to be off-target, and 10 %-80 % of the so-called knockout clones obtained were heteroclones. When the CRISPR/Cas9 strategy was applied, 60% of clones were off-target and the rest were all heteroclones. Interestingly, most of the cells were edited successfully, but at least 60 % of the clones were heteroclones, when the CRISPR/Cas9-HDR strategy was employed. Our results clearly showed that the emergence of heteroclone seems inevitable regardless of the strategies used for editing BY4742 ade2. Given the characteristics of BY4742 defective in ade2 showing red on the YPD plate, we attempted to build an efficient yeast gene editing strategy, in which the CRISPR/Cas9 combines homology-mediated repair template carrying an ade2 expression cassette, BY4742(ade2Δ0) as the start strain. We used this strategy to successfully achieve 100 % knockout efficiency of trp1, indicating that technical challenges of how to easily screen out pure knockout clones without color phenotype have been solved. Our data showed in this study not only establishes an efficient yeast gene knockout strategy with dual auxotrophy coupled red labeling but also provides new ideas and references for the knockout of target genes in the monokaryotic mycelium of macrofungi.
Collapse
Affiliation(s)
- Jianhua Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Taorui Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Jialong Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Youlong Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Wenxin Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Lijun Cai
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Shufang Lai
- Fujian Edible Fungi Technical Popolarized Station, Fuzhou 350001, People's Republic of China
| | - Kaihui Hu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Gutian 352200, People's Republic of China
| | - Wensong Jin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Gutian 352200, People's Republic of China.
| |
Collapse
|
13
|
Liu T, Zhou S, Wang T, Teng Y. Cyberbiosecurity: Advancements in DNA-based information security. BIOSAFETY AND HEALTH 2024; 6:251-256. [PMID: 40078663 PMCID: PMC11895033 DOI: 10.1016/j.bsheal.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 03/14/2025] Open
Abstract
Synthetic biology is a crucial component of the "cyber-biological revolution" in this new industrial revolution. Owing to breakthroughs in synthetic biology, deoxyribonucleic acid (DNA), the storehouse of hereditary material in biological systems, can now be used as a medium for storage (synthesis) and reading (sequencing) of information. However, integrating synthetic biology with computerization has also caused cyberbiosecurity concerns, encompassing biosecurity and information security issues. Malicious codes intended to attack computer systems can be stored as artificially synthesized DNA fragments, which can be released during DNA sequencing and decoding and attack computer and network systems. As these cyberbiosecurity threats become increasingly realistic, spreading awareness and information about how they can be prevented and controlled is crucial. This review aims to address this need by offering crucial theoretical backing for cyberbiosecurity research and raising awareness of risk mitigation and control measures in information security, biosecurity, and national security.
Collapse
Affiliation(s)
- Tuoyu Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Sijie Zhou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yue Teng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
14
|
Xiao D, Driller M, Dielentheis‐Frenken M, Haala F, Kohl P, Stein K, Blank LM, Tiso T. Advances in Aureobasidium research: Paving the path to industrial utilization. Microb Biotechnol 2024; 17:e14535. [PMID: 39075758 PMCID: PMC11286673 DOI: 10.1111/1751-7915.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
We here explore the potential of the fungal genus Aureobasidium as a prototype for a microbial chassis for industrial biotechnology in the context of a developing circular bioeconomy. The study emphasizes the physiological advantages of Aureobasidium, including its polyextremotolerance, broad substrate spectrum, and diverse product range, making it a promising candidate for cost-effective and sustainable industrial processes. In the second part, recent advances in genetic tool development, as well as approaches for up-scaled fermentation, are described. This review adds to the growing body of scientific literature on this remarkable fungus and reveals its potential for future use in the biotechnological industry.
Collapse
Affiliation(s)
- Difan Xiao
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Marielle Driller
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Marie Dielentheis‐Frenken
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Frederick Haala
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Philipp Kohl
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Karla Stein
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Lars M. Blank
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Till Tiso
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
15
|
Dalvie NC, Lorgeree TR, Yang Y, Rodriguez-Aponte SA, Whittaker CA, Hinckley JA, Clark JJ, Del Rosario AM, Love KR, Love JC. CRISPR-Cas9 knockout screen informs efficient reduction of the Komagataella phaffii secretome. Microb Cell Fact 2024; 23:217. [PMID: 39085844 PMCID: PMC11293167 DOI: 10.1186/s12934-024-02466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The yeast Komagataella phaffii is widely used for manufacturing recombinant proteins, but secreted titers of recombinant proteins could be improved by genetic engineering. In this study, we hypothesized that cellular resources could be redirected from production of endogenous proteins to production of recombinant proteins by deleting unneeded endogenous proteins. In non-model microorganisms such as K. phaffii, however, genetic engineering is limited by lack gene annotation and knowledge of gene essentiality. RESULTS We identified a set of endogenous secreted proteins in K. phaffii by mass spectrometry and signal peptide prediction. Our efforts to disrupt these genes were hindered by limited annotation of essential genes. To predict essential genes, therefore, we designed, transformed, and sequenced a pooled library of guide RNAs for CRISPR-Cas9-mediated knockout of all endogenous secreted proteins. We then used predicted gene essentiality to guide iterative disruptions of up to 11 non-essential genes. Engineered strains exhibited a ~20× increase in the production of human serum albumin and a twofold increase in the production of a monoclonal antibody. CONCLUSIONS We demonstrated that disruption of as few as six genes can increase production of recombinant proteins. Further reduction of the endogenous proteome of K. phaffii may further improve strain performance. The pooled library of secretome-targeted guides for CRISPR-Cas9 and knowledge of gene essentiality reported here will facilitate future efforts to engineer K. phaffii for production of other recombinant proteins and enzymes.
Collapse
Affiliation(s)
- Neil C Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Timothy R Lorgeree
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Yuchen Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Sergio A Rodriguez-Aponte
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Charles A Whittaker
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Joshua A Hinckley
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - John J Clark
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Amanda M Del Rosario
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Kerry R Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA.
| | - J Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA.
| |
Collapse
|
16
|
Meier S, Wang KC, Sannelli F, Hoof JB, Wendland J, Jensen PR. Visualizing Metabolism in Biotechnologically Important Yeasts with dDNP NMR Reveals Evolutionary Strategies and Glycolytic Logic. Anal Chem 2024; 96:10901-10910. [PMID: 38938197 DOI: 10.1021/acs.analchem.4c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Saccharomyces cerevisiae has long been a pillar of biotechnological production and basic research. More recently, strides to exploit the functional repertoire of nonconventional yeasts for biotechnological production have been made. Genomes and genetic tools for these yeasts are not always available, and yeast genomics alone may be insufficient to determine the functional features in yeast metabolism. Hence, functional assays of metabolism, ideally in the living cell, are best suited to characterize the cellular biochemistry of such yeasts. Advanced in cell NMR methods can allow the direct observation of carbohydrate influx into central metabolism on a seconds time scale: dDNP NMR spectroscopy temporarily enhances the nuclear spin polarization of substrates by more than 4 orders of magnitude prior to functional assays probing central metabolism. We use various dDNP enhanced carbohydrates for in-cell NMR to compare the metabolism of S. cerevisiae and nonconventional yeasts, with an emphasis on the wine yeast Hanseniaspora uvarum. In-cell observations indicated more rapid exhaustion of free cytosolic NAD+ in H. uvarum and alternative routes for pyruvate conversion, in particular, rapid amination to alanine. In-cell observations indicated that S. cerevisiae outcompetes other biotechnologically relevant yeasts by rapid ethanol formation due to the efficient adaptation of cofactor pools and the removal of competing reactions from the cytosol. By contrast, other yeasts were better poised to use redox neutral processes that avoided CO2-emission. Beyond visualizing the different cellular strategies for arriving at redox neutral end points, in-cell dDNP NMR probing showed that glycolytic logic is more conserved: nontoxic precursors of cellular building blocks formed high-population intermediates in the influx of glucose into the central metabolism of eight different biotechnologically important yeasts. Unsupervised clustering validated that the observation of rapid intracellular chemistry is a viable means to functionally classify biotechnologically important organisms.
Collapse
Affiliation(s)
- Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Ke-Chuan Wang
- Department of Health Technology Technical University of Denmark, Elektrovej 349, 2800 Kgs. Lyngby, Denmark
| | - Francesca Sannelli
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Jakob Blæsbjerg Hoof
- Department of Bioengineering, Technical University of Denmark, Søltofts Plads 223, 2800 Kgs. Lyngby, Denmark
| | - Jürgen Wendland
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Pernille Rose Jensen
- Department of Health Technology Technical University of Denmark, Elektrovej 349, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
17
|
Augustin MA, Hartley CJ, Maloney G, Tyndall S. Innovation in precision fermentation for food ingredients. Crit Rev Food Sci Nutr 2024; 64:6218-6238. [PMID: 36640107 DOI: 10.1080/10408398.2023.2166014] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A transformation in our food production system is being enabled by the convergence of advances in genome-based technologies and traditional fermentation. Science at the intersection of synthetic biology, fermentation, downstream processing for product recovery, and food science is needed to support technology development for the production of fermentation-derived food ingredients. The business and markets for fermentation-derived ingredients, including policy and regulations are discussed. A patent landscape of fermentation for the production of alternative proteins, lipids and carbohydrates for the food industry is provided. The science relating to strain engineering, fermentation, downstream processing, and food ingredient functionality that underpins developments in precision fermentation for the production of proteins, fats and oligosaccharides is examined. The production of sustainably-produced precision fermentation-derived ingredients and their introduction into the market require a transdisciplinary approach with multistakeholder engagement. Successful innovation in fermentation-derived ingredients will help feed the world more sustainably.
Collapse
|
18
|
Feng J, Wang Q, Qin Z, Guo X, Fu H, Yang ST, Wang J. Development of inducible promoters for regulating gene expression in Clostridium tyrobutyricum for biobutanol production. Biotechnol Bioeng 2024; 121:1518-1531. [PMID: 38548678 DOI: 10.1002/bit.28701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 04/14/2024]
Abstract
Clostridium tyrobutyricum is an anaerobe known for its ability to produce short-chain fatty acids, alcohols, and esters. We aimed to develop inducible promoters for fine-tuning gene expression in C. tyrobutyricum. Synthetic inducible promoters were created by employing an Escherichia coli lac operator to regulate the thiolase promoter (PCathl) from Clostridium acetobutylicum, with the best one (LacI-Pto4s) showing a 5.86-fold dynamic range with isopropyl β- d-thiogalactoside (IPTG) induction. A LT-Pt7 system with a dynamic range of 11.6-fold was then created by combining LacI-Pto4s with a T7 expression system composing of RNA polymerase (T7RNAP) and Pt7lac promoter. Furthermore, two inducible expression systems BgaR-PbgaLA and BgaR-PbgaLB with a dynamic range of ~40-fold were developed by optimizing a lactose-inducible expression system from Clostridium perfringens with modified 5' untranslated region (5' UTR) and ribosome-binding site (RBS). BgaR-PbgaLB was then used to regulate the expressions of a bifunctional aldehyde/alcohol dehydrogenase encoded by adhE2 and butyryl-CoA/acetate Co-A transferase encoded by cat1 in C. tyrobutyricum wild type and Δcat1::adhE2, respectively, demonstrating its efficient inducible gene regulation. The regulated cat1 expression also confirmed that the Cat1-catalyzed reaction was responsible for acetate assimilation in C. tyrobutyricum. The inducible promoters offer new tools for tuning gene expression in C. tyrobutyricum for industrial applications.
Collapse
Affiliation(s)
- Jun Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Qingke Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Zhen Qin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Xiaolong Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
19
|
Ren X, Liu M, Yue M, Zeng W, Zhou S, Zhou J, Xu S. Metabolic Pathway Coupled with Fermentation Process Optimization for High-Level Production of Retinol in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8664-8673. [PMID: 38564669 DOI: 10.1021/acs.jafc.4c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Retinol is a lipid-soluble form of vitamin A that is crucial for human visual and immune functions. The production of retinol through microbial fermentation has been the focus of recent exploration. However, the obtained titer remains limited and the product is often a mixture of retinal, retinol, and retinoic acid, necessitating purification. To achieve efficient biosynthesis of retinol in Yarrowia lipolytica, we improved the metabolic flux of β-carotene to provide sufficient precursors for retinol in this study. Coupled with the optimization of the expression level of β-carotene 15,15'-dioxygenase, de novo production of retinol was achieved. Furthermore, Tween 80 was used as an extractant and butylated hydroxytoluene as an antioxidant to extract intracellular retinol and prevent retinol oxidation, respectively. This strategy significantly increased the level of retinol production. By optimizing the enzymes converting retinal to retinol, the proportion of extracellular retinol in the produced retinoids reached 100%, totaling 1042.3 mg/L. Finally, total retinol production reached 5.4 g/L through fed-batch fermentation in a 5 L bioreactor, comprising 4.2 g/L extracellular retinol and 1.2 g/L intracellular retinol. This achievement represents the highest reported titer so far and advances the industrial production of retinol.
Collapse
Affiliation(s)
- Xuefeng Ren
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mengsu Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mingyu Yue
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shenghu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
Dong G, Zhao Y, Ding W, Xu S, Zhang Q, Zhao H, Shi S. Metabolic engineering of Saccharomyces cerevisiae for de novo production of odd-numbered medium-chain fatty acids. Metab Eng 2024; 82:100-109. [PMID: 38325640 DOI: 10.1016/j.ymben.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Odd-numbered fatty acids (FAs) have been widely used in nutrition, agriculture, and chemical industries. Recently, some studies showed that they could be produced from bacteria or yeast, but the products are almost exclusively odd-numbered long-chain FAs. Here we report the design and construction of two biosynthetic pathways in Saccharomyces cerevisiae for de novo production of odd-numbered medium-chain fatty acids (OMFAs) via ricinoleic acid and 10-hydroxystearic acid, respectively. The production of OMFAs was enabled by introducing a hydroxy fatty acid cleavage pathway, including an alcohol dehydrogenase from Micrococcus luteus, a Baeyer-Villiger monooxygenase from Pseudomonas putida, and a lipase from Pseudomonas fluorescens. These OMFA biosynthetic pathways were optimized by eliminating the rate-limiting step, generating heptanoic acid, 11-hydroxyundec-9-enoic acid, nonanoic acid, and 9-hydroxynonanoic acid at 7.83 mg/L, 9.68 mg/L, 9.43 mg/L and 13.48 mg/L, respectively. This work demonstrates the biological production of OMFAs in a sustainable manner in S. cerevisiae.
Collapse
Affiliation(s)
- Genlai Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; Key Laboratory of Natural Products, Henan Academy of Sciences, Zhengzhou, 450002, China
| | - Ying Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wentao Ding
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qi Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
21
|
Ning Y, Liu M, Ru Z, Zeng W, Liu S, Zhou J. Efficient synthesis of squalene by cytoplasmic-peroxisomal engineering and regulating lipid metabolism in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2024; 395:130379. [PMID: 38281547 DOI: 10.1016/j.biortech.2024.130379] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Squalene, a high-value acyclic triterpenoid compound, is broadly used in the food and medical industries. Although the large acetyl-CoA pool and hydrophobic space of Yarrowia lipolytica are suitable for the accumulation of squalene, the current production level in Y. lipolytica is still not sufficient for industrial production. In this study, two rounds of multicopy integration of genes encoding key enzymes were performed to enhance squalene anabolic flux in the cytoplasm. Furthermore, the mevalonate pathway was imported into peroxisomes through the compartmentalization strategy, and the production of squalene was significantly increased. By augmenting the acetyl-CoA supply in peroxisomes and the cytoplasm, the squalene was boosted to 2549.1 mg/L. Finally, the squalene production reached 51.2 g/L by fed-batch fermentation in a 5-L bioreactor. This is the highest squalene production reported to date for microbial production, and this study lays the foundation for the synthesis of steroids and squalene derivatives.
Collapse
Affiliation(s)
- Yang Ning
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mengsu Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ziyun Ru
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
22
|
Lu M, Billerbeck S. Improving homology-directed repair by small molecule agents for genetic engineering in unconventional yeast?-Learning from the engineering of mammalian systems. Microb Biotechnol 2024; 17:e14398. [PMID: 38376092 PMCID: PMC10878012 DOI: 10.1111/1751-7915.14398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
The ability to precisely edit genomes by deleting or adding genetic information enables the study of biological functions and the building of efficient cell factories. In many unconventional yeasts, such as those promising new hosts for cell factory design but also human pathogenic yeasts and food spoilers, this progress has been limited by the fact that most yeasts favour non-homologous end joining (NHEJ) over homologous recombination (HR) as a DNA repair mechanism, impairing genetic access to these hosts. In mammalian cells, small molecules that either inhibit proteins involved in NHEJ, enhance protein function in HR, or arrest the cell cycle in HR-dominant phases are regarded as promising agents for the simple and transient increase of HR-mediated genome editing without the need for a priori host engineering. Only a few of these chemicals have been applied to the engineering of yeast, although the targeted proteins are mostly conserved, making chemical agents a yet-underexplored area for enhancing yeast engineering. Here, we consolidate knowledge of the available small molecules that have been used to improve HR efficiency in mammalian cells and the few ones that have been used in yeast. We include available high-throughput-compatible NHEJ/HR quantification assays that could be used to screen for and isolate yeast-specific inhibitors.
Collapse
Affiliation(s)
- Min Lu
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
23
|
Hooe SL, Smith AD, Dean SN, Breger JC, Ellis GA, Medintz IL. Multienzymatic Cascades and Nanomaterial Scaffolding-A Potential Way Forward for the Efficient Biosynthesis of Novel Chemical Products. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309963. [PMID: 37944537 DOI: 10.1002/adma.202309963] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Synthetic biology is touted as the next industrial revolution as it promises access to greener biocatalytic syntheses to replace many industrial organic chemistries. Here, it is shown to what synthetic biology can offer in the form of multienzyme cascades for the synthesis of the most basic of new materials-chemicals, including especially designer chemical products and their analogs. Since achieving this is predicated on dramatically expanding the chemical space that enzymes access, such chemistry will probably be undertaken in cell-free or minimalist formats to overcome the inherent toxicity of non-natural substrates to living cells. Laying out relevant aspects that need to be considered in the design of multi-enzymatic cascades for these purposes is begun. Representative multienzymatic cascades are critically reviewed, which have been specifically developed for the synthesis of compounds that have either been made only by traditional organic synthesis along with those cascades utilized for novel compound syntheses. Lastly, an overview of strategies that look toward exploiting bio/nanomaterials for accessing channeling and other nanoscale materials phenomena in vitro to direct novel enzymatic biosynthesis and improve catalytic efficiency is provided. Finally, a perspective on what is needed for this field to develop in the short and long term is presented.
Collapse
Affiliation(s)
- Shelby L Hooe
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
- National Research Council, Washington, DC, 20001, USA
| | - Aaron D Smith
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Scott N Dean
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Joyce C Breger
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Gregory A Ellis
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| |
Collapse
|
24
|
González-Hernández JC, Ramírez-Conejo JD, García-Aguirre YP. Comparative analysis of β-glucosidase activity in non-conventional yeasts. AN ACAD BRAS CIENC 2023; 95:e20221118. [PMID: 38055563 DOI: 10.1590/0001-3765202320221118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/08/2022] [Indexed: 12/08/2023] Open
Abstract
The objective of this study was to evaluate the β-glucosidase activity in the non-conventional yeasts under cellulose, glucose and sucrose substrates. The participation of the enzyme β-glucosidase and its contribution to the enzymatic degradation of tannins is known. Within the classification of tannins are ellagitannins, molecules of gallic acid and ellagic acid, which are considered as nutraceutical compounds due to the properties that they present and that they can be used in the design of food and new drugs, synthesis of materials with antimicrobial capacity. The extracellular β-glucosidase activity was mainly presented in the Candida and Pichia strains, being the glucose and sucrose media the most capable for inducing the activity that showed maximum values with P. pastoris in glucose (0.1682±0.00 µmol/min mg protein), and C. utilis in cellulose (0.1129±0.1349 µmol/min mg of protein), and sucrose (0.0657±0.0214 µmol/min mg protein). Additionally, I. terricola and P. kluyvery stood out in a qualitative cellulose degradation approach measured by Congo red method (9.60±0.04 mm and 9.20±0.05 mm respectively). These indicate that P. pastoris and C. utilis have potential as β-glucosidase producers, especially when growing under complex carbon sources for biomass conversion, new biofuels production and polyphenol degradation with more manageable bioreactor process.
Collapse
Affiliation(s)
- Juan Carlos González-Hernández
- Tecnológico Nacional de México/Instituto Tecnológico de Morelia, Av. Tecnológico 1500, Col. Lomas de Santiaguito, C.P. 58120, Morelia, Michoacán, México
| | - Juan David Ramírez-Conejo
- Tecnológico Nacional de México/Instituto Tecnológico de Morelia, Av. Tecnológico 1500, Col. Lomas de Santiaguito, C.P. 58120, Morelia, Michoacán, México
| | - Yolanda Patricia García-Aguirre
- Tecnológico Nacional de México/Instituto Tecnológico de Morelia, Av. Tecnológico 1500, Col. Lomas de Santiaguito, C.P. 58120, Morelia, Michoacán, México
| |
Collapse
|
25
|
Bai W, Huang M, Li C, Li J. The biological principles and advanced applications of DSB repair in CRISPR-mediated yeast genome editing. Synth Syst Biotechnol 2023; 8:584-596. [PMID: 37711546 PMCID: PMC10497738 DOI: 10.1016/j.synbio.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
To improve the performance of yeast cell factories for industrial production, extensive CRISPR-mediated genome editing systems have been applied by artificially creating double-strand breaks (DSBs) to introduce mutations with the assistance of intracellular DSB repair. Diverse strategies of DSB repair are required to meet various demands, including precise editing or random editing with customized gRNAs or a gRNA library. Although most yeasts remodeling techniques have shown rewarding performance in laboratory verification, industrial yeast strain manipulation relies only on very limited strategies. Here, we comprehensively reviewed the molecular mechanisms underlying recent industrial applications to provide new insights into DSB cleavage and repair pathways in both Saccharomyces cerevisiae and other unconventional yeast species. The discussion of DSB repair covers the most frequently used homologous recombination (HR) and nonhomologous end joining (NHEJ) strategies to the less well-studied illegitimate recombination (IR) pathways, such as single-strand annealing (SSA) and microhomology-mediated end joining (MMEJ). Various CRISPR-based genome editing tools and corresponding gene editing efficiencies are described. Finally, we summarize recently developed CRISPR-based strategies that use optimized DSB repair for genome-scale editing, providing a direction for further development of yeast genome editing.
Collapse
Affiliation(s)
- Wenxin Bai
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, PR China
- The BIT-QUB International Joint Laboratory in Synthetic Biology, Beijing, 100081, PR China
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, David Keir Building, Queen's University Belfast, Stranmillis Road, Northern Ireland, BT9 5AG, Belfast, United Kingdom
- The BIT-QUB International Joint Laboratory in Synthetic Biology, Beijing, 100081, PR China
| | - Chun Li
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, PR China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Jun Li
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, PR China
- The BIT-QUB International Joint Laboratory in Synthetic Biology, Beijing, 100081, PR China
| |
Collapse
|
26
|
Luo Z, Shi JT, Chen XL, Chen J, Liu F, Wei LJ, Hua Q. Iterative gene integration mediated by 26S rDNA and non-homologous end joining for the efficient production of lycopene in Yarrowia lipolytica. BIORESOUR BIOPROCESS 2023; 10:83. [PMID: 38647953 PMCID: PMC10992032 DOI: 10.1186/s40643-023-00697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/23/2023] [Indexed: 04/25/2024] Open
Abstract
Because of its potent antioxidant effects, lycopene has been used in various industries including, but not limited to, food, medical, and cosmetic industries. Yarrowia lipolytica, a non-conventional yeast species, is a promising chassis due to its natural mevalonate (MVA) pathway, abundant precursor acetyl coenzyme A content, and oleaginous properties. Several gene editing tools have been developed for Y. lipolytica along with engineering strategies for tetraterpenoid production. In this study, we engineered Y. lipolytica following multi-level strategies for efficient lycopene accumulation. We first evaluated the performance of the key lycopene biosynthetic genes crtE, crtB, and crtI, expressed via ribosomal DNA (rDNA) mediated multicopy random integration in the HMG1- and GGS1-overexpressing background strain. Further improvement in lycopene production was achieved by overexpressing the key genes for MVA synthesis via non-homologous end joining (NHEJ) mediated multi-round iterative transformation. Efficient strategies in the MVA and lipid synthesis pathways were combined to improve lycopene production with a yield of 430.5 mg/L. This strain produced 121 mg/g dry cell weight of lycopene in a 5-L fed-batch fermentation system. Our findings demonstrated iterative gene integration mediated by 26S rDNA and NHEJ for the efficient production of lycopene in Y. lipolytica. These strategies can be applied to induce Y. lipolytica to produce other tetraterpenoids.
Collapse
Affiliation(s)
- Zhen Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jiang-Ting Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Xin-Liang Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jun Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
27
|
Cardoso SL, Souza PM, Rodrigues K, Mota IDS, Filho EF, Fávaro LCDL, Saldanha-Araujo F, Homem-de-Mello M, Pessoa A, Silveira D, Fonseca-Bazzo YM, Magalhães PO. l-Asparaginase Type II from Fusarium proliferatum: Heterologous Expression and In Silico Analysis. Pharmaceutics 2023; 15:2352. [PMID: 37765320 PMCID: PMC10534586 DOI: 10.3390/pharmaceutics15092352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The search for new drug-producing microorganisms is one of the most promising situations in current world scientific scenarios. The use of molecular biology as well as the cloning of protein and compound genes is already well established as the gold standard method of increasing productivity. Aiming at this increase in productivity, this work aims at the cloning, purification and in silico analysis of l-asparaginase from Fusarium proliferatum in Komagataella phaffii (Pichia pastoris) protein expression systems. The l-asparaginase gene (NCBI OQ439985) has been cloned into Pichia pastoris strains. Enzyme production was analyzed via the quantification of aspartic B-hydroxamate, followed by purification on a DEAE FF ion exchange column. The in silico analysis was proposed based on the combined use of various technological tools. The enzymatic activity found intracellularly was 2.84 IU/g. A purification factor of 1.18 was observed. The in silico analysis revealed the position of five important amino acid residues for enzymatic activity, and likewise, it was possible to predict a monomeric structure with a C-score of 1.59. The production of the enzyme l-asparaginase from F. proliferatum in P. pastoris was demonstrated in this work, being of great importance for the analysis of new methodologies in search of the production of important drugs in therapy.
Collapse
Affiliation(s)
- Samuel Leite Cardoso
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| | - Paula Monteiro Souza
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| | - Kelly Rodrigues
- Brazilian Agricultural Research Corporation—EMBRAPA Agroenergia, Brasilia 70770-901, Brazil; (K.R.); (L.C.d.L.F.)
| | - Isabella de Souza Mota
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| | | | - Léia Cecilia de Lima Fávaro
- Brazilian Agricultural Research Corporation—EMBRAPA Agroenergia, Brasilia 70770-901, Brazil; (K.R.); (L.C.d.L.F.)
| | - Felipe Saldanha-Araujo
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| | - Mauricio Homem-de-Mello
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Dâmaris Silveira
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| | - Yris Maria Fonseca-Bazzo
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| | - Pérola Oliveira Magalhães
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| |
Collapse
|
28
|
Pyne ME, Bagley JA, Narcross L, Kevvai K, Exley K, Davies M, Wang Q, Whiteway M, Martin VJJ. Screening non-conventional yeasts for acid tolerance and engineering Pichia occidentalis for production of muconic acid. Nat Commun 2023; 14:5294. [PMID: 37652930 PMCID: PMC10471774 DOI: 10.1038/s41467-023-41064-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Saccharomyces cerevisiae is a workhorse of industrial biotechnology owing to the organism's prominence in alcohol fermentation and the suite of sophisticated genetic tools available to manipulate its metabolism. However, S. cerevisiae is not suited to overproduce many bulk bioproducts, as toxicity constrains production at high titers. Here, we employ a high-throughput assay to screen 108 publicly accessible yeast strains for tolerance to 20 g L-1 adipic acid (AA), a nylon precursor. We identify 15 tolerant yeasts and select Pichia occidentalis for production of cis,cis-muconic acid (CCM), the precursor to AA. By developing a genome editing toolkit for P. occidentalis, we demonstrate fed-batch production of CCM with a maximum titer (38.8 g L-1), yield (0.134 g g-1 glucose) and productivity (0.511 g L-1 h-1) that surpasses all metrics achieved using S. cerevisiae. This work brings us closer to the industrial bioproduction of AA and underscores the importance of host selection in bioprocessing.
Collapse
Affiliation(s)
- Michael E Pyne
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Department of Biology, University of Western Ontario, Ontario, Canada
| | - James A Bagley
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
| | - Lauren Narcross
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Amyris, Inc., Emeryville, CA, USA
| | - Kaspar Kevvai
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Pivot Bio, Berkeley, CA, USA
| | - Kealan Exley
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Novo Nordisk Foundation Center for Biosustainability, Lyngby, Denmark
| | - Meghan Davies
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- BenchSci, Toronto, ON, Canada
| | | | - Malcolm Whiteway
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
| | - Vincent J J Martin
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada.
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, H4B 1R6, Canada.
| |
Collapse
|
29
|
Waoo AA, Singh S, Pandey A, Kant G, Choure K, Amesho KT, Srivastava S. Microbial exopolysaccharides in the biomedical and pharmaceutical industries. Heliyon 2023; 9:e18613. [PMID: 37593641 PMCID: PMC10432183 DOI: 10.1016/j.heliyon.2023.e18613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
The most significant and renewable class of polymeric materials are extracellular exopolysaccharides (EPSs) produced by microorganisms. Because of their diverse chemical and structural makeup, EPSs play a variety of functions in a variety of industries, including the agricultural industry, dairy industry, biofilms, cosmetics, and others, demonstrating their biotechnological significance. EPSs are typically utilized in high-value applications, and current research has focused heavily on them because of their biocompatibility, biodegradability, and compatibility with both people and the environment. Due to their high production costs, only a few microbial EPSs have been commercially successful. The emergence of financial barriers and the growing significance of microbial EPSs in industrial and medical biotechnology has increased interest in exopolysaccharides. Since exopolysaccharides can be altered in a variety of ways, their use is expected to increase across a wide range of industries in the coming years. This review introduces some significant EPSs and their composites while concentrating on their biomedical uses.
Collapse
Affiliation(s)
| | - Sukhendra Singh
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, India
| | - Ashutosh Pandey
- Department of Biotechnology, AKS University, Satna, India
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Gaurav Kant
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Kamlesh Choure
- Department of Biotechnology, AKS University, Satna, India
| | - Kassian T.T. Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia
- Destinies Biomass Energy and Farming Pty Ltd, P.O. Box 7387, Swakomund, Namibia
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
30
|
Qiu Y, Lei P, Wang R, Sun L, Luo Z, Li S, Xu H. Kluyveromyces as promising yeast cell factories for industrial bioproduction: From bio-functional design to applications. Biotechnol Adv 2023; 64:108125. [PMID: 36870581 DOI: 10.1016/j.biotechadv.2023.108125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
As the two most widely used Kluyveromyces yeast, Kluyveromyces marxianus and K. lactis have gained increasing attention as microbial chassis in biocatalysts, biomanufacturing and the utilization of low-cost raw materials owing to their high suitability to these applications. However, due to slow progress in the development of molecular genetic manipulation tools and synthetic biology strategies, Kluyveromyces yeast cell factories as biological manufacturing platforms have not been fully developed. In this review, we provide a comprehensive overview of the attractive characteristics and applications of Kluyveromyces cell factories, with special emphasis on the development of molecular genetic manipulation tools and systems engineering strategies for synthetic biology. In addition, future avenues in the development of Kluyveromyces cell factories for the utilization of simple carbon compounds as substrates, the dynamic regulation of metabolic pathways, and for rapid directed evolution of robust strains are proposed. We expect that more synthetic systems, synthetic biology tools and metabolic engineering strategies will adapt to and optimize for Kluyveromyces cell factories to achieve green biofabrication of multiple products with higher efficiency.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhengshan Luo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
31
|
Badura J, van Wyk N, Zimmer K, Pretorius IS, von Wallbrunn C, Wendland J. PCR-based gene targeting in Hanseniaspora uvarum. FEMS Yeast Res 2023; 23:foad034. [PMID: 37500280 DOI: 10.1093/femsyr/foad034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/09/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
Lack of gene-function analyses tools limits studying the biology of Hanseniaspora uvarum, one of the most abundant yeasts on grapes and in must. We investigated a rapid PCR-based gene targeting approach for one-step gene replacement in this diploid yeast. To this end, we generated and validated two synthetic antibiotic resistance genes, pFA-hygXL and pFA-clnXL, providing resistance against hygromycin and nourseothricin, respectively, for use with H. uvarum. Addition of short flanking-homology regions of 56-80 bp to these selection markers via PCR was sufficient to promote gene targeting. We report here the deletion of the H. uvarum LEU2 and LYS2 genes with these marker genes via two rounds of consecutive transformations, each resulting in the generation of auxotrophic strains (leu2/leu2; lys2/lys2). The hereby constructed leucine auxotrophic leu2/leu2 strain was subsequently complemented in a targeted manner, thereby further validating this approach. PCR-based gene targeting in H. uvarum was less efficient than in Saccharomyces cerevisiae. However, this approach, combined with the availability of two marker genes, provides essential tools for directed gene manipulations in H. uvarum.
Collapse
Affiliation(s)
- Jennifer Badura
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Niël van Wyk
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| | - Kerstin Zimmer
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Isak S Pretorius
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| | - Christian von Wallbrunn
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Jürgen Wendland
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| |
Collapse
|
32
|
Bartolo-Aguilar Y, Chávez-Cabrera C, Flores-Cotera LB, Badillo-Corona JA, Oliver-Salvador C, Marsch R. The potential of cold-shock promoters for the expression of recombinant proteins in microbes and mammalian cells. J Genet Eng Biotechnol 2022; 20:173. [PMID: 36580173 PMCID: PMC9800685 DOI: 10.1186/s43141-022-00455-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Low-temperature expression of recombinant proteins may be advantageous to support their proper folding and preserve bioactivity. The generation of expression vectors regulated under cold conditions can improve the expression of some target proteins that are difficult to express in different expression systems. The cspA encodes the major cold-shock protein from Escherichia coli (CspA). The promoter of cspA has been widely used to develop cold shock-inducible expression platforms in E. coli. Moreover, it is often necessary to employ expression systems other than bacteria, particularly when recombinant proteins require complex post-translational modifications. Currently, there are no commercial platforms available for expressing target genes by cold shock in eukaryotic cells. Consequently, genetic elements that respond to cold shock offer the possibility of developing novel cold-inducible expression platforms, particularly suitable for yeasts, and mammalian cells. CONCLUSIONS This review covers the importance of the cellular response to low temperatures and the prospective use of cold-sensitive promoters to direct the expression of recombinant proteins. This concept may contribute to renewing interest in applying white technologies to produce recombinant proteins that are difficult to express.
Collapse
Affiliation(s)
- Yaneth Bartolo-Aguilar
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Cipriano Chávez-Cabrera
- Colegio de Estudios Científicos y Tecnológicos del Estado de Michoacán, CECyTE Michoacán, Héroes de la Revolución S/N, Col. Centro, 61880, Churumuco de Morelos, Michoacán, Mexico.
| | - Luis Bernardo Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Jesús Agustín Badillo-Corona
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Carmen Oliver-Salvador
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Rodolfo Marsch
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| |
Collapse
|
33
|
Wang DN, Feng J, Yu CX, Zhang XK, Chen J, Wei LJ, Liu Z, Ouyang L, Zhang L, Hua Q, Liu F. Integrated pathway engineering and transcriptome analysis for improved astaxanthin biosynthesis in Yarrowia lipolytica. Synth Syst Biotechnol 2022; 7:1133-1141. [PMID: 36092272 PMCID: PMC9428815 DOI: 10.1016/j.synbio.2022.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Astaxanthin is a high value carotenoid with a broad range of commercial applications due to its superior antioxidant properties. In this study, β-carotene-producing Yarrowia lipolytica XK17 constructed in the lab was employed for astaxanthin biosynthesis. The catalytic effects of β-carotene ketolase CrtW and β-carotene hydroxylase CrtZ from various species were investigated. The PspCrtW from Paracoccus sp. and HpCrtZ# from Haematococcus pluvialis were confirmed to be the best combination in converting β-carotene. Several key bottlenecks in biomass and astaxanthin biosynthesis were effectively eliminated by optimizing the expression of the above enzymes and restoring uracil/leucine biosynthesis. In addition, the effects of astaxanthin biosynthesis on cell metabolism were investigated by integrated analysis of pathway modification and transcriptome information. After further optimization, strain DN30 was able to synthesize up to 730.3 mg/L astaxanthin in laboratory 5-L fermenter. This study provides a good metabolic strategy and a sustainable development platform for high-value carotenoid production.
Collapse
Affiliation(s)
- Dan-Ni Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Jie Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Chen-Xi Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Xin-Kai Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Jun Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| |
Collapse
|
34
|
Sibirny AA. Metabolic engineering of non-conventional yeasts for construction of the advanced producers of biofuels and high-value chemicals. BBA ADVANCES 2022; 3:100071. [PMID: 37082251 PMCID: PMC10074886 DOI: 10.1016/j.bbadva.2022.100071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Non-conventional yeasts, i.e. yeasts different from Saccharomyces cerevisiae, represent heterogenous group of unicellular fungi consisting of near 1500 species. Some of these species have interesting and sometimes unique properties like ability to grow on methanol, n-alkanes, ferment pentose sugars xylose and l-arabinose, grow at high temperatures (50°С and more), overproduce riboflavin (vitamin B2) and others. These unique properties are important for development of basic science; moreover, some of them possess also significant applied interest for elaboration of new biotechnologies. Current paper represents review of the recent own results and of those of other authors in the field of non-conventional yeast study for construction of the advanced producers of biofuels (ethanol, isobutanol) from lignocellulosic sugars glucose and xylose or crude glycerol (Ogataea polymorpha, Magnusiomyces magnusii) and vitamin B2 (riboflavin) from glucose and cheese whey (Candida famata).
Collapse
Affiliation(s)
- Andriy A. Sibirny
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, Lviv 79005 Ukraine
- University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601 Poland
- Corresponding author at: Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, Lviv 79005 Ukraine.
| |
Collapse
|
35
|
Samuel SY, Wang HMD, Huang MY, Cheng YS, Chen JR, Li WH, Chang JJ. Safety Assessment of 3S, 3'S Astaxanthin Derived from Metabolically Engineered K. marxianus. Antioxidants (Basel) 2022; 11:2288. [PMID: 36421474 PMCID: PMC9687027 DOI: 10.3390/antiox11112288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/06/2023] Open
Abstract
Previous reviews have already explored the safety and bioavailability of astaxanthin, as well as its beneficial effects on human body. The great commercial potential in a variety of industries, such as the pharmaceutical and health supplement industries, has led to a skyrocketing demand for natural astaxanthin. In this study, we have successfully optimized the astaxanthin yield up to 12.8 mg/g DCW in a probiotic yeast and purity to 97%. We also verified that it is the desired free-form 3S, 3'S configurational stereoisomer by NMR and FITR that can significantly increase the bioavailability of astaxanthin. In addition, we have proven that our extracted astaxanthin crystals have higher antioxidant capabilities compared with natural esterified astaxanthin from H. pluvialis. We also screened for potential adverse effects of the pure astaxanthin crystals extracted from the engineered probiotic yeast by dosing SD rats with 6, 12, and 24 mg/kg/day of astaxanthin crystals via oral gavages for a 13-week period and have found no significant biological differences between the control and treatment groups in rats of both genders, further confirming the safety of astaxanthin crystals. This study demonstrates that developing metabolically engineered microorganisms provides a safe and feasible approach for the bio-based production of many beneficial compounds, including astaxanthin.
Collapse
Affiliation(s)
- Sabrina Yeo Samuel
- Trade Wind Biotech Co., Ltd., Taipei 11574, Taiwan
- Institute of Molecular Medicine, National Taiwan University, Taipei 10051, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40447, Taiwan
| | - Meng-Yuan Huang
- Department of Life Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yu-Shen Cheng
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
- College of Future, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| | | | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Jui-Jen Chang
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40447, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
36
|
Wegat V, Fabarius JT, Sieber V. Synthetic methylotrophic yeasts for the sustainable fuel and chemical production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:113. [PMID: 36273178 PMCID: PMC9587593 DOI: 10.1186/s13068-022-02210-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022]
Abstract
Global energy-related emissions, in particular carbon dioxide, are rapidly increasing. Without immediate and strong reductions across all sectors, limiting global warming to 1.5 °C and thus mitigating climate change is beyond reach. In addition to the expansion of renewable energies and the increase in energy efficiency, the so-called Carbon Capture and Utilization technologies represent an innovative approach for closing the carbon cycle and establishing a circular economy. One option is to combine CO2 capture with microbial C1 fermentation. C1-molecules, such as methanol or formate are considered as attractive alternative feedstock for biotechnological processes due to their sustainable production using only CO2, water and renewable energy. Native methylotrophic microorganisms can utilize these feedstock for the production of value-added compounds. Currently, constraints exist regarding the understanding of methylotrophic metabolism and the available genetic engineering tools are limited. For this reason, the development of synthetic methylotrophic cell factories based on the integration of natural or artificial methanol assimilation pathways in biotechnologically relevant microorganisms is receiving special attention. Yeasts like Saccharomyces cerevisiae and Yarrowia lipolytica are capable of producing important products from sugar-based feedstock and the switch to produce these in the future from methanol is important in order to realize a CO2-based economy that is independent from land use. Here, we review historical biotechnological applications, the metabolism and the characteristics of methylotrophic yeasts. Various studies demonstrated the production of a broad set of promising products from fine chemicals to bulk chemicals by applying methylotrophic yeasts. Regarding synthetic methylotrophy, the deep understanding of the methylotrophic metabolism serves as the basis for microbial strain engineering and paves the way towards a CO2-based circular bioeconomy. We highlight design aspects of synthetic methylotrophy and discuss the resulting chances and challenges using non-conventional yeasts as host organisms. We conclude that the road towards synthetic methylotrophic yeasts can only be achieved through a combination of methods (e.g., metabolic engineering and adaptive laboratory evolution). Furthermore, we presume that the installation of metabolic regeneration cycles such as supporting carbon re-entry towards the pentose phosphate pathway from C1-metabolism is a pivotal target for synthetic methylotrophy.
Collapse
Affiliation(s)
- Vanessa Wegat
- grid.469831.10000 0000 9186 607XFraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing branch Biocat, Schulgasse 11a, 94315 Straubing, Germany ,grid.6936.a0000000123222966Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
| | - Jonathan T. Fabarius
- grid.469831.10000 0000 9186 607XFraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing branch Biocat, Schulgasse 11a, 94315 Straubing, Germany
| | - Volker Sieber
- grid.469831.10000 0000 9186 607XFraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing branch Biocat, Schulgasse 11a, 94315 Straubing, Germany ,grid.6936.a0000000123222966Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
| |
Collapse
|
37
|
Wanarska M, Krajewska-Przybyszewska E, Wicka-Grochocka M, Cieśliński H, Pawlak-Szukalska A, Białkowska AM, Turkiewicz M, Florczak T, Gromek E, Krysiak J, Filipowicz N. A New Expression System Based on Psychrotolerant Debaryomyces macquariensis Yeast and Its Application to the Production of Cold-Active β-d-Galactosidase from Paracoccus sp. 32d. Int J Mol Sci 2022; 23:ijms231911691. [PMID: 36232994 PMCID: PMC9569826 DOI: 10.3390/ijms231911691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Yeasts provide attractive host/vector systems for heterologous gene expression. The currently used yeast-based expression platforms include mesophilic and thermotolerant species. A eukaryotic expression system working at low temperatures could be particularly useful for the production of thermolabile proteins and proteins that tend to form insoluble aggregates. For this purpose, an expression system based on an Antarctic psychrotolerant yeast Debaryomyces macquariensis strain D50 that is capable of growing at temperatures ranging from 0 to 30 °C has been developed. The optimal physical culture conditions for D. macquariensis D50 in a fermenter are as follows: temperature 20 °C, pH 5.5, aeration rate of 1.5 vvm, and a stirring speed of 300 rpm. Four integrative plasmid vectors equipped with an expression cassette containing the constitutive GAP promoter and CYC1 transcriptional terminator from D. macquariensis D50 were constructed and used to clone and express a gene-encoding cold-active β-d-galactosidase of Paracoccus sp. 32d. The yield was 1150 U/L of recombinant yeast culture. Recombinant D. macquariensis D50 strains were mitotically stable under both selective and non-selective conditions. The D. macquariensis D50 host/vector system has been successfully utilized for the synthesis of heterologous thermolabile protein, and it can be an alternative to other microbial expression systems.
Collapse
Affiliation(s)
- Marta Wanarska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
- Correspondence:
| | - Ewelina Krajewska-Przybyszewska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Monika Wicka-Grochocka
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Hubert Cieśliński
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Anna Pawlak-Szukalska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Aneta M. Białkowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-573 Lodz, Poland
| | - Marianna Turkiewicz
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-573 Lodz, Poland
| | - Tomasz Florczak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-573 Lodz, Poland
| | - Ewa Gromek
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-573 Lodz, Poland
| | - Joanna Krysiak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-573 Lodz, Poland
| | - Natalia Filipowicz
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
38
|
Liu X, Cui Z, Su T, Lu X, Hou J, Qi Q. Identification of genome integration sites for developing a CRISPR-based gene expression toolkit in Yarrowia lipolytica. Microb Biotechnol 2022; 15:2223-2234. [PMID: 35436041 PMCID: PMC9328735 DOI: 10.1111/1751-7915.14060] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
With the rapid development of synthetic biology, the oleaginous yeast Yarrowia lipolytica has become an attractive microorganism for chemical production. To better optimize and reroute metabolic pathways, we have expanded the CRISPR-based gene expression toolkit of Y. lipolytica. By sorting the integration sites associated with high expression, new neutral integration sites associated with high expression and high integration efficiency were identified. Diverse genetic components, including promoters and terminators, were also characterized to expand the expression range. We found that in addition to promoters, the newly characterized terminators exhibited large variations in gene expression. These genetic components and integration sites were then used to regulate genes involved in the lycopene biosynthesis pathway, and different levels of lycopene production were achieved. The CRISPR-based gene expression toolkit developed in this study will facilitate the genetic engineering of Y. lipolytica.
Collapse
Affiliation(s)
- Xiaoqin Liu
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| | - Zhiyong Cui
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| | - Tianyuan Su
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| | - Xuemei Lu
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| | - Jin Hou
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| | - Qingsheng Qi
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| |
Collapse
|
39
|
Baldera-Aguayo PA, Lee A, Cornish VW. High-Titer Production of the Fungal Anhydrotetracycline, TAN-1612, in Engineered Yeasts. ACS Synth Biol 2022; 11:2429-2444. [PMID: 35699947 PMCID: PMC9480237 DOI: 10.1021/acssynbio.2c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antibiotic resistance is a growing global health threat, demanding urgent responses. Tetracyclines, a widely used antibiotic class, are increasingly succumbing to antibiotic resistance; generating novel analogues is therefore a top priority for public health. Fungal tetracyclines provide structural and enzymatic diversity for novel tetracycline analogue production in tractable heterologous hosts, like yeasts, to combat antibiotic-resistant pathogens. Here, we successfully engineered Saccharomyces cerevisiae (baker's yeast) and Saccharomyces boulardii (probiotic yeast) to produce the nonantibiotic fungal anhydrotetracycline, TAN-1612, in synthetic defined media─necessary for clean purifications─through heterologously expressing TAN-1612 genes mined from the fungus, Aspergillus niger ATCC 1015. This was accomplished via (i) a promoter library-based combinatorial pathway optimization of the biosynthetic TAN-1612 genes coexpressed with a putative TAN-1612 efflux pump, reducing TAN-1612 toxicity in yeasts while simultaneously increasing supernatant titers and (ii) the development of a medium-throughput UV-visible spectrophotometric assay that facilitates TAN-1612 combinatorial library screening. Through this multipronged approach, we optimized TAN-1612 production, yielding an over 450-fold increase compared to previously reported S. cerevisiae yields. TAN-1612 is an important tetracycline analogue precursor, and we thus present the first step toward generating novel tetracycline analogue therapeutics to combat current and emerging antibiotic resistance. We also report the first heterologous production of a fungal polyketide, like TAN-1612, in the probiotic S. boulardii. This highlights that engineered S. boulardii can biosynthesize complex natural products like tetracyclines, setting the stage to equip probiotic yeasts with synthetic therapeutic functionalities to generate living therapeutics or biocontrol agents for clinical and agricultural applications.
Collapse
Affiliation(s)
- Pedro A Baldera-Aguayo
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, New York 10032, United States
- Department of Chemistry, Columbia University, 550 W 120th Street, Northwest Corner Building 1206, New York, New York 10027, United States
| | - Arden Lee
- Department of Chemistry, Columbia University, 550 W 120th Street, Northwest Corner Building 1206, New York, New York 10027, United States
| | - Virginia W Cornish
- Department of Chemistry, Columbia University, 550 W 120th Street, Northwest Corner Building 1206, New York, New York 10027, United States
- Department of Systems Biology, Columbia University Irving Cancer Research Center, 1130 St. Nicholas Avenue, New York, New York 10032, United States
| |
Collapse
|
40
|
Integrated bioinformatics, modelling, and gene expression analysis of the putative pentose transporter from Candida tropicalis during xylose fermentation with and without glucose addition. Appl Microbiol Biotechnol 2022; 106:4587-4606. [PMID: 35708749 DOI: 10.1007/s00253-022-12005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
The transport of substrates across the cell membrane plays an essential role in nutrient assimilation by yeasts. The establishment of an efficient microbial cell factory, based on the maximum use of available carbon sources, can generate new technologies that allow the full use of lignocellulosic constituents. These technologies are of interest because they could promote the formation of added-value products with economic feasibility. In silico analyses were performed to investigate gene sequences capable of encoding xylose transporter proteins in the Candida tropicalis genome. The current study identified 11 putative transport proteins that have not yet been functionally characterized. A phylogenetic tree highlighted the potential C. tropicalis xylose-transporter proteins CtXUT1, CtXUT4, CtSTL1, CtSTL2, and CtGXT2, which were homologous to previously characterized and reported xylose transporters. Their expression was quantified through real-time qPCR at defined times, determined through a kinetic analysis of the microbial growth curve in the absence/presence of glucose supplemented with xylose as the main carbon source. The results indicated different mRNA expression levels for each gene. CtXUT1 mRNA expression was only found in the absence of glucose in the medium. Maximum CtXUT1 expression was observed in intervals of the highest xylose consumption (21 to 36 h) that corresponded to consumption rates of 1.02 and 0.82 g/L/h in the formulated media, with xylose as the only carbon source and with glucose addition. These observations indicate that CtXUT1 is an important xylose transporter in C. tropicalis. KEY POINTS: • Putative xylose transporter proteins were identified in Candida tropicalis; • The glucose concentration in the cultivation medium plays a key role in xylose transporter regulation; • The transporter gene CtXUT1 has an important role in xylose consumption by Candida tropicalis.
Collapse
|
41
|
Wefelmeier K, Ebert BE, Blank LM, Schmitz S. Mix and Match: Promoters and Terminators for Tuning Gene Expression in the Methylotrophic Yeast Ogataea polymorpha. Front Bioeng Biotechnol 2022; 10:876316. [PMID: 35620471 PMCID: PMC9127203 DOI: 10.3389/fbioe.2022.876316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
The yeast Ogataea polymorpha is an upcoming host for bio-manufacturing due to its unique physiological properties, including its broad substrate spectrum, and particularly its ability to utilize methanol as the sole carbon and energy source. However, metabolic engineering tools for O. polymorpha are still rare. In this study we characterized the influence of 6 promoters and 15 terminators on gene expression throughout batch cultivations with glucose, glycerol, and methanol as carbon sources as well as mixes of these carbon sources. For this characterization, a short half-life Green Fluorescent Protein (GFP) variant was chosen, which allows a precise temporal resolution of gene expression. Our promoter studies revealed how different promoters do not only influence the expression strength but also the timepoint of maximal expression. For example, the expression strength of the catalase promoter (pCAT) and the methanol oxidase promoter (pMOX) are comparable on methanol, but the maximum expression level of the pCAT is reached more than 24 h earlier. By varying the terminators, a 6-fold difference in gene expression was achieved with the MOX terminator boosting gene expression on all carbon sources by around 50% compared to the second-strongest terminator. It was shown that this exceptional increase in gene expression is achieved by the MOX terminator stabilizing the mRNA, which results in an increased transcript level in the cells. We further found that different pairing of promoters and terminators or the expression of a different gene (β-galactosidase gene) did not influence the performance of the genetic parts. Consequently, it is possible to mix and match promoters and terminators as independent elements to tune gene expression in O. polymorpha.
Collapse
Affiliation(s)
- Katrin Wefelmeier
- IAMB-Institute of Applied Microbiology, ABBt, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Birgitta E Ebert
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Lars M Blank
- IAMB-Institute of Applied Microbiology, ABBt, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Simone Schmitz
- IAMB-Institute of Applied Microbiology, ABBt, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
42
|
Li M, Zhang J, Bai Q, Fang L, Song H, Cao Y. Non-homologous End Joining-Mediated Insertional Mutagenesis Reveals a Novel Target for Enhancing Fatty Alcohols Production in Yarrowia lipolytica. Front Microbiol 2022; 13:898884. [PMID: 35547152 PMCID: PMC9082995 DOI: 10.3389/fmicb.2022.898884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Non-homologous end joining (NHEJ)-mediated integration is effective in generating random mutagenesis to identify beneficial gene targets in the whole genome, which can significantly promote the performance of the strains. Here, a novel target leading to higher protein synthesis was identified by NHEJ-mediated integration that seriously improved fatty alcohols biosynthesis in Yarrowia lipolytica. One batch of strains transformed with fatty acyl-CoA reductase gene (FAR) showed significant differences (up to 70.53-fold) in fatty alcohol production. Whole-genome sequencing of the high-yield strain demonstrated that a new target YALI0_A00913g ("A1 gene") was disrupted by NHEJ-mediated integration of partial carrier DNA, and reverse engineering of the A1 gene disruption (YlΔA1-FAR) recovered the fatty alcohol overproduction phenotype. Transcriptome analysis of YlΔA1-FAR strain revealed A1 disruption led to strengthened protein synthesis process that was confirmed by sfGFP gene expression, which may account for enhanced cell viability and improved biosynthesis of fatty alcohols. This study identified a novel target that facilitated synthesis capacity and provided new insights into unlocking biosynthetic potential for future genetic engineering in Y. lipolytica.
Collapse
Affiliation(s)
- Mengxu Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Jinlai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Qiuyan Bai
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Lixia Fang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| |
Collapse
|
43
|
Wang K, Shi TQ, Lin L, Wei P, Ledesma-Amaro R, Ji XJ, Huang H. Advances in synthetic biology tools paving the way for the biomanufacturing of unusual fatty acids using the Yarrowia lipolytica chassis. Biotechnol Adv 2022; 59:107984. [DOI: 10.1016/j.biotechadv.2022.107984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022]
|
44
|
Jiang YQ, Lin JP. Recent progress in strategies for steroid production in yeasts. World J Microbiol Biotechnol 2022; 38:93. [PMID: 35441962 DOI: 10.1007/s11274-022-03276-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
As essential structural molecules of fungal cell membrane, ergosterol is not only an important component of fungal growth and stress-resistance but also a key precursor for manufacturing steroid drugs of pharmaceutical or agricultural significance. So far, ergosterol biosynthesis in yeast has been elucidated elaborately, and efforts have been made to increase ergosterol production through regulation of ergosterol metabolism and storage. Furthermore, the same intermediates shared by yeasts and animals or plants make the construction of heterologous sterol pathways in yeast a promising approach to synthesize valuable steroids, such as phytosteroids and animal steroid hormones. During these challenging processes, several obstacles have arisen and been combated with great endeavors. This paper reviews recent research progress of yeast metabolic engineering for improving the production of ergosterol and heterologous steroids. The remaining tactics are also discussed.
Collapse
Affiliation(s)
- Yi-Qi Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jian-Ping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
45
|
Bilal M, Ji L, Xu Y, Xu S, Lin Y, Iqbal HMN, Cheng H. Bioprospecting Kluyveromyces marxianus as a Robust Host for Industrial Biotechnology. Front Bioeng Biotechnol 2022; 10:851768. [PMID: 35519613 PMCID: PMC9065261 DOI: 10.3389/fbioe.2022.851768] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Kluyveromyces marxianus is an emerging non-conventional food-grade yeast that is generally isolated from diverse habitats, like kefir grain, fermented dairy products, sugar industry sewage, plants, and sisal leaves. A unique set of beneficial traits, such as fastest growth, thermotolerance, and broad substrate spectrum (i.e., hemi-cellulose hydrolysates, xylose, l-arabinose, d-mannose, galactose, maltose, sugar syrup molasses, cellobiose, and dairy industry) makes this yeast a particularly attractive host for applications in a variety of food and biotechnology industries. In contrast to Saccharomyces cerevisiae, most of the K. marxianus strains are apparently Crabtree-negative or having aerobic-respiring characteristics, and unlikely to endure aerobic alcoholic fermentation. This is a desirable phenotype for the large-scale biosynthesis of products associated with biomass formation because the formation of ethanol as an undesirable byproduct can be evaded under aerobic conditions. Herein, we discuss the current insight into the potential applications of K. marxianus as a robust yeast cell factory to produce various industrially pertinent enzymes, bioethanol, cell proteins, probiotic, fructose, and fructo-oligosaccharides, and vaccines, with excellent natural features. Moreover, the biotechnological improvement and development of new biotechnological tools, particularly CRISPR-Cas9-assisted precise genome editing in K. marxianus are delineated. Lastly, the ongoing challenges, concluding remarks, and future prospects for expanding the scope of K. marxianus utilization in modern biotechnology, food, feed, and pharmaceutical industries are also thoroughly vetted. In conclusion, it is critical to apprehend knowledge gaps around genes, metabolic pathways, key enzymes, and regulation for gaining a complete insight into the mechanism for producing relevant metabolites by K. marxianus.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Liyun Ji
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yirong Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuping Lin
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
46
|
Sun ML, Shi TQ, Lin L, Ledesma-Amaro R, Ji XJ. Advancing Yarrowia lipolytica as a superior biomanufacturing platform by tuning gene expression using promoter engineering. BIORESOURCE TECHNOLOGY 2022; 347:126717. [PMID: 35031438 DOI: 10.1016/j.biortech.2022.126717] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Yarrowia lipolytica is recognized as an excellent non-conventional yeast in the field of biomanufacturing, where it is used as a host to produce oleochemicals, terpenes, organic acids, polyols and recombinant proteins. Consequently, metabolic engineering of this yeast is becoming increasingly popular to advance it as a superior biomanufacturing platform, of which promoters are the most basic elements for tuning gene expression. Endogenous promoters of Yarrowia lipolytica were reviewed, which are the basis for promoter engineering. The engineering strategies, such as hybrid promoter engineering, intron enhancement promoter engineering, and transcription factor-based inducible promoter engineering are described. Additionally, the applications of Yarrowia lipolytica promoter engineering to rationally reconstruct biosynthetic gene clusters and improve the genome-editing efficiency of the CRISPR-Cas systems were reviewed. Finally, research needs and future directions for promoter engineering are also discussed in this review.
Collapse
Affiliation(s)
- Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
47
|
Liu X, Liu M, Zhang J, Chang Y, Cui Z, Ji B, Nielsen J, Qi Q, Hou J. Mapping of Nonhomologous End Joining-Mediated Integration Facilitates Genome-Scale Trackable Mutagenesis in Yarrowia lipolytica. ACS Synth Biol 2022; 11:216-227. [PMID: 34958561 DOI: 10.1021/acssynbio.1c00390] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genome-scale mutagenesis, phenotypic screening, and tracking the causal mutations is a powerful approach for genetic analysis. However, classic mutagenesis approaches require extensive effort to identify causal mutations. It is desirable to demonstrate a powerful approach for rapid trackable mutagenesis. Here, we mapped the distribution of nonhomologous end joining (NHEJ)-mediated integration for the first time and demonstrated that it can be used for constructing the genome-scale trackable mutagenesis library in Yarrowia lipolytica. The sequencing of 9.15 × 105 insertions showed that NHEJ-mediated integration inserted DNA randomly across the chromosomes, and the transcriptional regulatory regions exhibited integration preference. The insertions were located in both nucleosome-occupancy regions and nucleosome-free regions. Using NHEJ-mediated integration to construct the genome-scale mutagenesis library, the new targets that improved β-carotene biosynthesis and acetic acid tolerance were identified rapidly. This mutagenesis approach is readily applicable to other organisms with strong NHEJ preference and will contribute to cell factory construction.
Collapse
Affiliation(s)
- Xiaoqin Liu
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Mengmeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Jin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Yizhao Chang
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
- BioInnovation Institute, 2200 Copenhagen N, Denmark
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| |
Collapse
|
48
|
Tang R, Wen Q, Li M, Zhang W, Wang Z, Yang J. Recent Advances in the Biosynthesis of Farnesene Using Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15468-15483. [PMID: 34905684 DOI: 10.1021/acs.jafc.1c06022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Farnesene, as an important sesquiterpene isoprenoid polymer of acetyl-CoA, is a renewable feedstock for diesel fuel, polymers, and cosmetics. It has been widely applied in agriculture, medicine, energy, and other fields. In recent years, farnesene biosynthesis is considered a green and economical approach because of its mild reaction conditions, low environmental pollution, and sustainability. Metabolic engineering has been widely applied to construct cell factories for farnesene biosynthesis. In this paper, the research progress, common problems, and strategies of farnesene biosynthesis are reviewed. They are mainly described from the perspectives of the current status of farnesene biosynthesis in different host cells, optimization of the metabolic pathway for farnesene biosynthesis, and key enzymes for farnesene biosynthesis. Furthermore, the challenges and prospects for future farnesene biosynthesis are discussed.
Collapse
Affiliation(s)
- Ruohao Tang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Qifeng Wen
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Meijie Li
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Wei Zhang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Zhaobao Wang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Jianming Yang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| |
Collapse
|
49
|
Bai Q, Cheng S, Zhang J, Li M, Cao Y, Yuan Y. Establishment of genomic library technology mediated by non-homologous end joining mechanism in Yarrowia lipolytica. SCIENCE CHINA. LIFE SCIENCES 2021; 64:2114-2128. [PMID: 33660223 DOI: 10.1007/s11427-020-1885-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/28/2021] [Indexed: 12/28/2022]
Abstract
Genomic variants libraries are conducive to obtain dominant strains with desirable phenotypic traits. The non-homologous end joining (NHEJ), which enables foreign DNA fragments to be randomly integrated into different chromosomal sites, shows prominent capability in genomic libraries construction. In this study, we established an efficient NHEJ-mediated genomic library technology in Yarrowia lipolytica through regulation of NHEJ repair process, employment of defective Ura marker and optimization of iterative transformations, which enhanced genes integration efficiency by 4.67, 22.74 and 1.87 times, respectively. We further applied this technology to create high lycopene producing strains by multi-integration of heterologous genes of CrtE, CrtB and CrtI, with 23.8 times higher production than rDNA integration through homologous recombination (HR). The NHEJ-mediated genomic library technology also achieved random and scattered integration of loxP and vox sites, with the copy number up to 65 and 53, respectively, creating potential for further application of recombinase mediated genome rearrangement in Y. lipolytica. This work provides a high-efficient NHEJ-mediated genomic library technology, which enables random and scattered genomic integration of multiple heterologous fragments and rapid generation of diverse strains with superior phenotypes within 96 h. This novel technology also lays an excellent foundation for the development of other genetic technologies in Y. lipolytica.
Collapse
Affiliation(s)
- Qiuyan Bai
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Shuai Cheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Jinlai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Mengxu Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
50
|
Zhai X, Ji L, Gao J, Zhou YJ. Characterizing methanol metabolism-related promoters for metabolic engineering of Ogataea polymorpha. Appl Microbiol Biotechnol 2021; 105:8761-8769. [PMID: 34748038 DOI: 10.1007/s00253-021-11665-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 01/24/2023]
Abstract
Promoters play an important role in regulating gene expression, and construction of microbial cell factories requires multiple promoters for balancing the metabolic pathways. However, there are only a limited number of characterized promoters for gene expression in the methylotrophic yeast Ogataea polymorpha, which hampers the extensive harnessing of this important yeast toward a cell factory. Here we characterized the promoters of methanol utilization pathway, precursor supply pathway, and reactive oxygen species (ROS) defense system, by using a green fluorescence protein variant (GFPUV) as a quantification signal. Finally, the characterized promoters were used for tuning a fatty alcohol biosynthetic pathway in O. polymorpha and realized fatty alcohol production from methanol. This promoter box should be helpful for gene expression and pathway optimization in the methylotrophic yeast O. polymorpha. KEY POINTS : • 22 promoters related to methanol metabolism were characterized in O. polymorpha. • Promoter truncation resulted shorter and compact promoters. • Promoters with various strengths were used for regulating a fatty alcohol biosynthesis from methanol.
Collapse
Affiliation(s)
- Xiaoxin Zhai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, People's Republic of China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Lulu Ji
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, People's Republic of China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, People's Republic of China. .,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China. .,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| |
Collapse
|