1
|
Deng Y, Lei J, Luo X, Wang SP, Tan HM, Zhang JY, Wu DT. Prospects of Ganoderma polysaccharides: Structural features, structure-function relationships, and quality evaluation. Int J Biol Macromol 2025; 309:142836. [PMID: 40187470 DOI: 10.1016/j.ijbiomac.2025.142836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Polysaccharides, the primary bioactive compounds found in Ganoderma, are responsible for a multitude of biological activities. The bioactivity of Ganoderma polysaccharides (GPs) closely correlates to their physicochemical properties. Consequently, the accurate characterization and quantification of GPs are essential for the quality control of these compounds. Regrettably, the complex structural features of GPs have limited research on the relationships between their structures and bioactivities. In addition, a lack of appropriate quality assessment methods has impeded the regulation and application of GPs and related products. Therefore, it is essential to conduct extensive studies to develop reliable for quality control methods based on their pharmacological activities. This review aims to comprehensively and systematically outline the structural features, structure-activity relationships and quality control methods of GPs, thereby supporting their potential value in pharmaceuticals and functional foods. The insights presented in this review will significantly contribute to the research and potential applications of GPs.
Collapse
Affiliation(s)
- Yong Deng
- School of pharmacy, Zunyi Medical University, Zunyi 563000, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Jing Lei
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xiao Luo
- Chengdu Institute for Drug Control, NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine, Chengdu 610045, Sichuan, China
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Huai-Mei Tan
- Department of Pharmacy, Zunyi Medical And Pharmaceutical College, Zunyi 563006, China
| | - Jian-Yong Zhang
- School of pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Ding-Tao Wu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| |
Collapse
|
2
|
Fu H, Yang X, Han S, Wang K, Wang H. Functional characterization of Ganoderma lucidum polysaccharide and the mechanism of inducing tomato resistance to Tomato yellow leaf curl virus. Int J Biol Macromol 2025; 303:140617. [PMID: 39904440 DOI: 10.1016/j.ijbiomac.2025.140617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
Using functional polysaccharides as elicitors to induce plant disease resistance has emerged as an effective plant protection strategy. In this study, we found that crude polysaccharides derived from by-products of Ganoderma lucidum can effectively prevent and control the Tomato Yellow Leaf Curl Virus (TYLCV). As a result, we isolated and purified a homogeneous polysaccharide known as glucan-like peptide (GLP1), from crude polysaccharide of G. lucidum and explored the mechanism behind GLP1's ability to induce resistance in tomatoes against TYLCV. Analysis of the monosaccharide composition and high-performance gel permeation chromatography (HPGPC) revealed that GLP1 is solely composed of glucose, with molecular weight (Mw), 7.367 KDa, a number-average molecular weight (Mn) of 6.876 KDa, and peak molecular weight (Mp) values 7.505 KDa. Fourier transform infrared spectroscopy indicated that GLP1 may have a pyranose structure with an α-glycosidic bond. Plant hormones play a crucial role in disease resistance, and we found that GLP1 affects hormone levels in tomato plants by increasing jasmonic acid (JA) and ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC). Additionally, GLP1 promoting the expression of genes associated with the ethylene signaling pathway. When inhibitors of ethylene synthesis blocked ethylene signaling, the resistance of tomato to TYLCV was significantly reduced. These findings suggest that ethylene signaling is involved in GLP1-induced tomato resistance and likely interacts with other pathways to contribute to this resistance.
Collapse
Affiliation(s)
- Haoran Fu
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiu Yang
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shuangshuang Han
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Kaiyun Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hongyan Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
3
|
Wang M, Chen D, Liu J, Huang T, Du Y, Ming S, Zong S. Isolation, characterization and palliative effect of D-gal-induced liver injury of Stropharia rugosoannulata exopolysaccharide. Int J Biol Macromol 2025; 308:142457. [PMID: 40147650 DOI: 10.1016/j.ijbiomac.2025.142457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
In this study, a homogeneous polysaccharide component, namely SREP-1, was purified from Stropharia rugosoannulata fermentation broth. SREP-1 was identified as a novel water-soluble neutral polysaccharide, with a molecular weight of 9.6 kDa. Monosaccharide composition analysis showed that SREP-1 was composed of glucose, galactose and mannose in a molar ratio of 78.6: 13.6: 7.8. The primary structure was elucidated through FT-IR, methylation analysis and NMR spectroscopy, revealing a backbone of →4)-α-D-Glcp-(1 → and →4,6)-α-D-Glcp-(1 → residues, and →6)-α-D-Galp-(1→, β-D-Manp-(1 → and α-D-Glcp-(→1 residues for the branched chains. Results indicated that SREP-1 possessed an amorphous globular-like structure, good thermally stability and triple-helix conformation in water. In vivo results showed that SREP-1 reversed D-galactose (D-gal)-induced body weight and organ indexes decrease, and alleviated liver damage according to improved histopathology and declined indicators in serum. Amelioration of oxidative stress and abnormal inflammation of aging liver might be due to the elevated nuclear factor-erythroid 2-related factor 2 (Nrf2) expression and decreased that of nuclear factor-κB p65 (NF-κB p65). Interestingly, the beneficial effects of SREP-1 were abolished after pretreatment with antibiotics. Our findings demonstrated that the role of SREP-1 in attenuating aging-related liver injury might involve the regulation of Nrf2-NF-κB signaling pathway and its prebiotic effect.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Tiantian Huang
- Jiangsu Alphay Bio-technology Co., Ltd., Nantong 226009, China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Song Ming
- Jiangsu Zhongnongke Food Engineering Co., Ltd, Suqian 223814, China
| | - Shuai Zong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
4
|
Li J, Miao Y, Guo C, Tang Y, Xin S, Fan Z, Su Y, Li Q. Ultrasound combined mechanical wall-breaking extraction of new Ganoderma leucocontextum polysaccharides and their application as a structural and functional improver in set fat-free goat yogurt production. Food Chem 2025; 468:142374. [PMID: 39674011 DOI: 10.1016/j.foodchem.2024.142374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Herein, we investigate the yield, micro-structures, rheological properties and bioactivities of new Ganoderma leucocontextum polysaccharide (GLPUBE) obtained from Kangding via ultrasound combined mechanical wall-breaking extraction (UBE), and examine the effect of GLPUBE as a structural and functional improver on the physicochemical, sensory, aromatic, water-holding capacity (WHC), textural, rheological, micro-structural and protein structural properties, and bioactivities of set fat-free goat yogurt (set-FGY). Through response surface optimisation, the extracted GLPUBE achieved a maximum yield of 2.18 %, showing good apparent viscosity and elastic behaviour in 3 % aqueous solution as well as good micro-structure and significant anti-oxidant and anti-diabetic activities. The presence of 0.12 % GLPUBE significantly improved the WHC, pH, acidity, textural and rheological properties, protein concentration and secondary structure, but had no effect on the protein primary structure in set-FGY production. The addition of 0.12 % GLPUBE had an excellent ability in promoting sensory acceptance; total solid, and total polyphenol contents, WHC, pH, acidity, texture, free amino acid contents, viscosity, rheology and aroma properties; enhancing anti-oxidant and anti-diabetic abilities; inhibiting protein degradation; and maintaining the micro-structure and stability of the primary and secondary structures of protein complex of set-FGY during 21 days of storage. Therefore, GLPUBE can be used as an innovative structural and functional improver in set fat-free yogurt industry.
Collapse
Affiliation(s)
- Jiaxin Li
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Yuzhi Miao
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China.
| | - Caifu Guo
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Ying Tang
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Songling Xin
- Sichuan Cuisine Development and Research Center, Sichuan Tourism University, Chengdu 610100, China
| | - Zixi Fan
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Yanqiu Su
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Qi Li
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| |
Collapse
|
5
|
Yang Y, Ren P, Sun Y, Li J, Zhou X, Zhang H, He C, Dai H, Guan L. Structure elucidation and molecular mechanism of an immunomodulatory polysaccharide from Nostoc commune. Int J Biol Macromol 2024; 283:137435. [PMID: 39537070 DOI: 10.1016/j.ijbiomac.2024.137435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Nostoc commune Vaucher, a terrestrial and benthic blue-green alga, widely used in food and medicine worldwide. N. commune Polysaccharides (NCVP) have excellent biological activities, especially immunomodulatory, hypoglycemic and anti-tumor activities. However, the mechanism and structure-activity relationship of NCVP has been less studied. In this study, based on methylation and NMR results, a novel polysaccharide NCVP2 with 135 kDa, containing→4)-α-D-Galp-(1→, → 4)-β-D-Glcp-(1→, and →4)-α-D-Xylp-(1→ residues as the backbon, was sequentially purified from N.commune by DEAE-52 and Sephadex G-100 column. NCVP2 (50 μg/mL) exhibited the strong in vitro immunomodulatory activity by promoting the generation of nitric oxide (NO) and reactive oxygen species (ROS). A total of 2048 differentially expressed genes (DEGs) were identified by RNA-seq, including 1019 down-regulated genes and 1065 up-regulated genes. These DEGs were mainly enriched in the immune-related biological processes, involving in Mitogen-activated protein kinase (MAPK) and Toll-like receptor (TLR) signaling pathways by GO and KEGG enrichment analysis. Furthermore, Western blot results proved NCVP2 could recognize TLR2 and TLR4/MD2, and regulate TLR7/IRF7, MAPK and PI3K/AKT signaling pathways. In summary, a novel polysaccharide NCVP2 from N.commune was proposed to exhibit significant immunomodulatory effects with multiple-paths and targets, and has great potential in the development of healthy foods such as immunomodulators.
Collapse
Affiliation(s)
- Yiting Yang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ping Ren
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ying Sun
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Junyi Li
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xinjun Zhou
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Haipeng Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Chengguang He
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Huining Dai
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Lili Guan
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China.
| |
Collapse
|
6
|
Yang Q, Chang SL, Tian YM, Li W, Ren JL. Glucan polysaccharides isolated from Lactarius hatsudake Tanaka mushroom: Structural characterization and in vitro bioactivities. Carbohydr Polym 2024; 337:122171. [PMID: 38710561 DOI: 10.1016/j.carbpol.2024.122171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
Commercially available mushroom polysaccharides have found widespread use as adjuvant tumor treatments. However, the bioactivity of polysaccharides in Lactarius hatsudake Tanaka (L. hatsudake), a mushroom with both edible and medicinal uses, remains relatively unexplored. To address this gap, five L. hatsudake polysaccharides with varying molecular weights were isolated, named LHP-1 (898 kDa), LHP-2 (677 kDa), LHP-3 (385 kDa), LHP-4 (20 kDa), and LHP-5 (4.9 kDa). Gas chromatography-mass spectrometry, nuclear magnetic resonance, and atomic force microscopy, etc., were employed to determine their structural characteristics. The results confirmed that spherical aggregates with amorphous flexible fiber chains dominated the conformation of the LHP. LHP-1 and LHP-2 were identified as glucans with α-(1,4)-Glcp as the main chain; LHP-3 and LHP-4 were classified as galactans with varying molecular weights but with α-(1,6)-Galp as the main chain; LHP-5 was a glucan with β-(1,3)-Glcp as the main chain and β-(1,6)-Glcp connecting to the side chains. Significant differences were observed in inhibiting tumor cell cytotoxicity and the antioxidant activity of the LHPs, with LHP-5 and LHP-4 identified as the principal bioactive components. These findings provide a theoretical foundation for the valuable use of L. hatsudake and emphasize the potential application of LHPs in therapeutic tumor treatments.
Collapse
Affiliation(s)
- Qiao Yang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Song-Lin Chang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yi-Ming Tian
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Wang Li
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Jia-Li Ren
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| |
Collapse
|
7
|
Elnahas MO, Elkhateeb WA, Daba GM. Nutritive profile, pharmaceutical potentials, and structural analysis of multifunctional bioactive fungal polysaccharides-A review. Int J Biol Macromol 2024; 266:130893. [PMID: 38493817 DOI: 10.1016/j.ijbiomac.2024.130893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/05/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Asian nations have long used edible fungi as food and medicine. Polysaccharides are among the main building units of the cell walls of fungi. Fungal polysaccharides have been documented in the medicinal and industrial sectors as products with a vast array of various biological activities and applications such as antitumor, antioxidant, anticancer, immunomodulation, and antiviral activities, etc. The goal of this review is to give insights into the various biological activities of mushroom polysaccharides and their potential as a medicine for human health. The extraction, purity, and structural analysis of fungal polysaccharides were also reviewed in this work. Also, future prospective, and challenges for fungal polysaccharides in pharmaceutical applications can be found in this review. Overall, this review serves as a valuable resource in exploring the therapeutic potential and applications of fungal polysaccharides. By building upon the existing knowledge base and addressing critical research gaps, researchers can find new opportunities for utilizing fungal polysaccharides as valuable therapeutic agents and functional ingredients in pharmaceuticals, nutraceuticals, and biotechnology.
Collapse
Affiliation(s)
- Marwa O Elnahas
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Waill A Elkhateeb
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ghoson M Daba
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
8
|
Li Z, Wang M, Yang Z. Structural characterization, anti-tumor and immunomodulatory activity of intracellular polysaccharide from Armillaria luteo-virens. Carbohydr Res 2023; 534:108945. [PMID: 37738818 DOI: 10.1016/j.carres.2023.108945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 07/28/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Armillaria luteo-virens (A. luteo-virens) is a kind of edible fungus mainly exists in Qinghai-Tibet of China, but at present only very few studies focus on the bioactivities of its polysaccharides. This study aimed to purify and characterize the structure features of a novel intracellular polysaccharide (ALP-A) derived from A. luteo-virens and explore its potential anti-tumor and immunomodulatory activities. Through systematic separation and purification, we obtained a homogeneous ALP-A with an average molecular weight of 23693Da. Structural analysis indicated that ALP-A was mainly composed of glucose and mannose with a molar ratio of 6.02:1. The repeating unit of ALP-A was →4) -α-D-Glcp-(1→ backbone with α-Glcp-(1→ and α-Manp-(6→ side chains which branched at O-2 position. The anti-tumor assays in vivo suggested that ALP-A could effectively restrain S180 solid tumor growth, protect immune organs and promote the secretion of cytokines (IL2, IL6 and TNF-α) in serum. Besides, in vitro immunomodulatory assays indicated that ALP-A could improve proliferation, phagocytic capacity and raise the level of NO and cytokines in Raw264.7 cells. These results demonstrate that ALP-A which possess potential antitumor and immunomodulatory abilities can be developed as a new functional food.
Collapse
Affiliation(s)
- Zhang Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Miao Wang
- Laboratory Animal Center, West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Zhirong Yang
- Key Laboratory of Biological Resource and Ecological Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
9
|
Cadar E, Negreanu-Pirjol T, Pascale C, Sirbu R, Prasacu I, Negreanu-Pirjol BS, Tomescu CL, Ionescu AM. Natural Bio-Compounds from Ganoderma lucidum and Their Beneficial Biological Actions for Anticancer Application: A Review. Antioxidants (Basel) 2023; 12:1907. [PMID: 38001761 PMCID: PMC10669212 DOI: 10.3390/antiox12111907] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Ganoderma lucidum (G. lucidum) has been known for many centuries in Asian countries under different names, varying depending on the country. The objective of this review is to investigate the scientific research on the natural active bio-compounds in extracts obtained from G. lucidum with significant biological actions in the treatment of cancer. This review presents the classes of bio-compounds existing in G. lucidum that have been reported over time in the main databases and have shown important biological actions in the treatment of cancer. The results highlight the fact that G. lucidum possesses important bioactive compounds such as polysaccharides, triterpenoids, sterols, proteins, nucleotides, fatty acids, vitamins, and minerals, which have been demonstrated to exhibit multiple anticancer effects, namely immunomodulatory, anti-proliferative, cytotoxic, and antioxidant action. The potential health benefits of G. lucidum are systematized based on biological actions. The findings present evidence regarding the lack of certainty about the effects of G. lucidum bio-compounds in treating different forms of cancer, which may be due to the use of different types of Ganoderma formulations, differences in the study populations, or due to drug-disease interactions. In the future, larger clinical trials are needed to clarify the potential benefits of pharmaceutical preparations of G. lucidum, standardized by the known active components in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; (E.C.); (B.-S.N.-P.)
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; (E.C.); (B.-S.N.-P.)
- Academy of Romanian Scientists, Ilfov Street, No. 3, 050044 Bucharest, Romania
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania;
| | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania;
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020956 Bucharest, Romania;
| | - Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania; (E.C.); (B.-S.N.-P.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Tomis Bvd., No. 145, 900591 Constanta, Romania
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| |
Collapse
|
10
|
Yu F, Teng Y, Li J, Yang S, Zhang Z, He Y, Yang H, Ding CF, Zhou P. Effects of a Ganoderma lucidum Proteoglycan on Type 2 Diabetic Rats and the Recovery of Rat Pancreatic Islets. ACS OMEGA 2023; 8:17304-17316. [PMID: 37214729 PMCID: PMC10193549 DOI: 10.1021/acsomega.3c02200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023]
Abstract
Type 2 diabetes (T2D) results from both insulin resistance and pancreatic β-cell dysfunction. A natural proteoglycan extracted from Ganoderma lucidum, namely, FYGL, has been demonstrated to be capable of ameliorating insulin resistance in previous work. In this work, a T2D rat model induced by streptozocin (STZ) and a high-fat diet was used to investigate the effects of FYGL on pancreatic functions, and the transcriptomics of the rat pancreas was used to investigate the biological processes (BP) and signal pathways influenced by FYGL on the gene basis. Furthermore, the results of transcriptomics were verified both by histopathological analyses and protein expression. The studies showed that FYGL positively regulated T2D-related BP and signaling pathways and recovered the pancreatic function, therefore ameliorating hyperglycemia and hyperlipidemia in vivo. Importantly, the recovery of the pancreatic function suggested a crucial strategy to radically treat T2D.
Collapse
Affiliation(s)
- Fanzhen Yu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yilong Teng
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jiaqi Li
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Shutong Yang
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Zeng Zhang
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P. R. China
| | - Yanming He
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P. R. China
| | - Hongjie Yang
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P. R. China
| | - Chuan-Fan Ding
- Zhejiang
Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular
Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ping Zhou
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
11
|
Liu J, Zhang J, Feng J, Tang C, Yan M, Zhou S, Chen W, Wang W, Liu Y. Multiple Fingerprint-Activity Relationship Assessment of Immunomodulatory Polysaccharides from Ganoderma lucidum Based on Chemometric Methods. Molecules 2023; 28:molecules28072913. [PMID: 37049676 PMCID: PMC10096448 DOI: 10.3390/molecules28072913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Polysaccharides with molecular weights ranging from 1.75 × 103 to 1.14 × 104 g/mol were obtained from the fruit bodies of Ganoderma lucidum. The multiple fingerprints and macrophage immunostimulatory activity of these fractions were analyzed as well as the fingerprint-activity relationship. The correlation analysis of molecular weight and immune activity demonstrated that polysaccharides with molecular weights of 4.27 × 103~5.27 × 103 and 1 × 104~1.14 × 104 g/mol were the main active fractions. Moreover, the results showed that galactose, mannose, and glucuronic acid were positively related to immunostimulatory activity. Additionally, partial least-squares regression and grey correlation degree analyses indicated that three peaks (P2, P3, P8) in the oligosaccharide fragment fingerprint significantly affected the immune activity of the polysaccharides. Hence, these ingredients associated with activity could be considered as markers to assess Ganoderma lucidum polysaccharides and their related products, and the study also provides a reference for research on the spectrum-effect relationship of polysaccharides in the future.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Jie Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Chuanhong Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Mengqiu Yan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wenhan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| |
Collapse
|
12
|
Gao J, Xu X, Yu X, Fu Y, Zhang H, Gu S, Cao D, Guo Q, Xu L, Ding J. Quantitatively relating magnetic resonance T1 and T2 to glycosaminoglycan and collagen concentrations mediated by penetrated contrast agents and biomacromolecule-bound water. Regen Biomater 2023; 10:rbad035. [PMID: 37206162 PMCID: PMC10191676 DOI: 10.1093/rb/rbad035] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 05/21/2023] Open
Abstract
Magnetic resonance imaging (MRI) is a promising non-invasive method to assess cartilage regeneration based on the quantitative relationship between MRI features and concentrations of the major components in the extracellular matrix (ECM). To this end, in vitro experiments are performed to investigate the relationship and reveal the underlying mechanism. A series of collagen (COL) and glycosaminoglycan (GAG) solutions at different concentrations are prepared, and T1 and T2 relaxation times are measured with or without a contrast agent (Gd-DTPA2-) by MRI. Fourier transform infrared spectrometry is also used to measure the contents of biomacromolecule-bound water and other water, allowing theoretical derivation of the relationship between biomacromolecules and the resulting T2 values. It has been revealed that the MRI signal in the biomacromolecule aqueous systems is mainly influenced by the protons in hydrogens of biomacromolecule-bound water, which we divide into inner-bound water and outer-bound water. We have also found that COL results in higher sensitivity of bound water than GAG in T2 mapping. Owing to the charge effect, GAG regulates the penetration of the contrast agent during dialysis and has a more significant effect on T1 values than COL. Considering that COL and GAG are the most abundant biomacromolecules in the cartilage, this study is particularly useful for the real-time MRI-guided assessment of cartilage regeneration. A clinical case is reported as an in vivo demonstration, which is consistent with our in vitro results. The established quantitative relation plays a critical academic role in establishing an international standard ISO/TS24560-1:2022 'Clinical evaluation of regenerative knee articular cartilage using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping' drafted by us and approved by International Standard Organization.
Collapse
Affiliation(s)
- Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xian Xu
- Correspondence address. E-mail: (X.X.); (J.D.)
| | - Xiaoye Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Ye Fu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Siyi Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Dinglingge Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries of PLA, Beijing 100853, China
| | - Liming Xu
- Institute for Medical Device Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | | |
Collapse
|
13
|
Yang L, Kang Y, Dai H, Wang X, Xie M, Liu J, Gao C, Sun H, Ao T, Chen W. Differential responses of polysaccharides and antioxidant enzymes in alleviating cadmium toxicity of tuber traditional Chinese medicinal materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60832-60842. [PMID: 35437654 DOI: 10.1007/s11356-022-20136-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Polygonatum cyrtonema Hua (PC) and Bletilla striata (BS) are widely used and planted as tuber traditional Chinese medicinal materials (TCMMs). Cadmium (Cd) is one of the major causes of soil pollution and challenge to the quality and safety of TCMMs. Understanding the absorption and distribution of Cd is important for addressing the risks posed by its residues. As a result, the higher Cd translocation factor (TF) results in the lower Cd bioconcentration factor (BCF) in the PC tuber than that of BS attributed to a lower Cd concentration in the PC tuber, which guaranteed its safe utilization and edible safety under 1 mg·kg-1 Cd soil. Cd stress overall activated peroxidase (POD), catalase (CAT), and water-extractable polysaccharides in PC (PCP1) to exhibit better antioxidation, while the superoxide dismutase (SOD) in BS increased by approximately 206-277% to alleviate more severe oxidative damage. Particularly, Cd induced an increase in PCP1 higher than that of water-extractable polysaccharides of BS (BSP1) by approximately 335% to 1351%. PC exhibited effective strategies for alleviating Cd toxicity, including transferring Cd to nonmedicinal parts, increasing polysaccharides, and synergistically activating the enzymatic antioxidant system. This study expands the application for the safe utilization of low-Cd contaminated soil and provides novel insights for tuber TCMMs to alleviate Cd toxicity.
Collapse
Affiliation(s)
- Li Yang
- College of Architecture and Environment, Sichuan University, No. 24, South section 1, 1st Ring Rd, Chengdu, 610065, China
| | - Yuchen Kang
- College of Architecture and Environment, Sichuan University, No. 24, South section 1, 1st Ring Rd, Chengdu, 610065, China
| | - Haibo Dai
- College of Architecture and Environment, Sichuan University, No. 24, South section 1, 1st Ring Rd, Chengdu, 610065, China
| | - Xiaoqin Wang
- College of Architecture and Environment, Sichuan University, No. 24, South section 1, 1st Ring Rd, Chengdu, 610065, China
| | - Mengdi Xie
- College of Architecture and Environment, Sichuan University, No. 24, South section 1, 1st Ring Rd, Chengdu, 610065, China
| | - Jiaxin Liu
- College of Architecture and Environment, Sichuan University, No. 24, South section 1, 1st Ring Rd, Chengdu, 610065, China
| | - Cheng Gao
- College of Water Resource and Hydropower, Sichuan University, Chengdu, 610065, China
| | - Hui Sun
- College of Architecture and Environment, Sichuan University, No. 24, South section 1, 1st Ring Rd, Chengdu, 610065, China
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, No. 24, South section 1, 1st Ring Rd, Chengdu, 610065, China
- College of Water Resource and Hydropower, Sichuan University, Chengdu, 610065, China
| | - Wenqing Chen
- College of Architecture and Environment, Sichuan University, No. 24, South section 1, 1st Ring Rd, Chengdu, 610065, China.
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, No. 24, South section 1, 1st Ring Rd, Chengdu, 610065, China.
| |
Collapse
|
14
|
Liang J, Zhao M, Xie S, Peng D, An M, Chen Y, Li P, Du B. Effect of steam explosion pretreatment on polysaccharide isolated from Poria cocos: Structure and immunostimulatory activity. J Food Biochem 2022; 46:e14355. [PMID: 35892192 DOI: 10.1111/jfbc.14355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 12/01/2022]
Abstract
This study aimed to examine the effects of steam explosion (SE) pretreatment on the structural characteristics and immunostimulatory activity of polysaccharide from Poria cocos. Results showed that the average molecular weights of native polysaccharide (PCP) and SE-pretreated polysaccharide (SEPCP) were 18.67 and 6.52 kDa, respectively. PCP and SEPCP shared the same profiles of monosaccharides (mannose, glucose, galactose, and fucose) in different composition ratios, that is, PCP in a molar percentage of 13.5:33:40.3:13.2 and SEPCP in a molar percentage of 2.1:90.3:5.8:1.8. The surface structure of PCP showed smooth and densely spherical particles, whereas SEPCP had a rough surface and porous honeycomb structure. The main linkage types of PCP comprised 1,6-α-d-Galp, 1,2,6-α-d-Glcp, and T-α-d-Manp, whereas SEPCP primarily contained 1,3-β-d-Glcp backbone and T-β-d-Glcp branches. Compared with PCP, we further revealed that SEPCP had a better immune enhancement on the phagocytic ability, NO production, and the secretion levels of TNF-α and IL-6 in RAW 264.7 cells. Collectively, our observations supported that SE pretreatment could help to change the structure and improve the immunostimulatory activity of polysaccharide from P. cocos. PRACTICAL APPLICATIONS: SE technology is extensively used to extract bioactive components with improved yields owing to this technology's benefits of low energy consumption and high efficiency. SE pretreatment was found to contribute to the destruction of cell-wall structure, which could help to enhance the extraction yields of P. cocos polysaccharide (PCP). Meanwhile, SE pretreatment also could change the structural features and improve the immunostimulatory activity of PCP. This study revealed that more bioactive PCP with strengthened immunoregulatory effect was obtained pretreated by SE. This study was able to provide the effective information on the application of steam explosion technology to promote the further development and utilization of PCP in the pharmaceutical and functional food fields.
Collapse
Affiliation(s)
- Jiehua Liang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Minhao Zhao
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Siwei Xie
- College of Mathematics and Information, South China Agricultural University, Guangzhou, China
| | - Dong Peng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Miaoqing An
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yang Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Qiu Z, Qiao Y, Zhang B, Sun-Waterhouse D, Zheng Z. Bioactive polysaccharides and oligosaccharides from garlic (Allium sativum L.): Production, physicochemical and biological properties, and structure-function relationships. Compr Rev Food Sci Food Saf 2022; 21:3033-3095. [PMID: 35765769 DOI: 10.1111/1541-4337.12972] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023]
Abstract
Garlic is a common food, and many of its biological functions are attributed to its components including functional carbohydrates. Garlic polysaccharides and oligosaccharides as main components are understudied but have future value due to the growing demand for bioactive polysaccharides/oligosaccharides from natural sources. Garlic polysaccharides have molecular weights of 1 × 103 to 2 × 106 Da, containing small amounts of pectins and fructooligosaccharides and large amounts of inulin-type fructans ((2→1)-linked β-d-Fruf backbones alone or with attached (2→6)-linked β-d-Fruf branched chains). This article provides a detailed review of research progress and identifies knowledge gaps in extraction, production, composition, molecular characteristics, structural features, physicochemical properties, bioactivities, and structure-function relationships of garlic polysaccharides/oligosaccharides. Whether the extraction processes, synthesis approaches, and modification methods established for other non-garlic polysaccharides are also effective for garlic polysaccharides/oligosaccharides (to preserve their desired molecular structures and bioactivities) requires verification. The metabolic processes of ingested garlic polysaccharides/oligosaccharides (as food ingredients/dietary supplements), their modes of action in healthy humans or populations with chronic conditions, and molecular/chain organization-bioactivity relationships remain unclear. Future research directions related to garlic polysaccharides/oligosaccharides are discussed.
Collapse
Affiliation(s)
- Zhichang Qiu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yiteng Qiao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bin Zhang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Zhenjia Zheng
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
16
|
Production Ganoderma lucidum extract nanoparticles by expansion of supercritical fluid solution and evaluation of the antioxidant ability. Sci Rep 2022; 12:9904. [PMID: 35701498 PMCID: PMC9198024 DOI: 10.1038/s41598-022-13727-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/26/2022] [Indexed: 11/09/2022] Open
Abstract
Due to the growing human tendency to treat with natural substances, fungi such as Ganoderma lucidum can be a good source to meet this need. Effectiveness, ease of use and a rich source of active ingredients such as ganoderic acids have caused G. lucidum to be considered in the pharmaceutical and food industries. In this project, G. lucidum was applied to extraction using supercritical carbon dioxide. Then expansion of supercritical fluid solution (ESS) was used as, novel, repeatable and green method to yield nanoparticles from G.lucidum extract. The response surface method was used to improve the Extraction efficiency, antioxidant activity, and improving the nanoparticles production status. Optimal conditions were observed at the extraction step by setting pressure at 27.5 MPa, dynamic time of 46 min, and modifier volume of 162 μL. The optimum point for the production of nanoparticles was obtained as follows: pressure drop at 25 MPa, 20 min for collection time, and 40° C for temperature. Under these conditions, the size and count were 86.13 nm, and 98, respectively. Nanoparticles were analyzed by FESM and, the DPPH was used for antioxidant activity evaluation. The LC-MS identified various ganoderic acids from G.lucidum that are famous to be highly oxygenated triterpenoids.
Collapse
|
17
|
Kuang MT, Xu JY, Li JY, Yang L, Hou B, Zhao Q, Hu JM. Purification, structural characterization and immunomodulatory activities of a polysaccharide from the fruiting body of Morchella sextelata. Int J Biol Macromol 2022; 213:394-403. [PMID: 35588979 DOI: 10.1016/j.ijbiomac.2022.05.096] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/18/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023]
Abstract
A novel polysaccharide (MSP-1) was isolated from the fruiting body of Morchella sextelata and purified using DEAE-52 and Sephadex G-75. The molecular weight of MSP-1 was 1.17 × 104 Da, as detected by HPLC analysis. The monosaccharide composition of MSP-1 was mannose and glucose at a ratio of 1.00: 1.25. Methylation and NMR results revealed that the backbone of MSP-1 was composed of →4)-β-D-Manp-(1→, →4)-β-D-Glcp-(1→, →4)-α-D-Glcp-(1→, and →4, 6)-α-D-Glcp-(1→. SEM images of MSP-1 presented a dense network structure with porous characterizations. The immunomodulatory activities of MSP-1 were evaluated using RAW264.7 cells, and the results showed that MSP-1 promoted proliferative and phagocytic activity and increased the production of NO, TNF-α and IL-6. These results indicated that MSP-1 exhibited significant immunomodulatory activities.
Collapse
Affiliation(s)
- Meng-Ting Kuang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jing-Yue Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jin-Yu Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Liu Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Bo Hou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Qi Zhao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
18
|
Feng Y, Qiu Y, Duan Y, He Y, Xiang H, Sun W, Zhang H, Ma H. Characterization, antioxidant, antineoplastic and immune activities of selenium modified Sagittaria sagittifolia L. polysaccharides. Food Res Int 2022; 153:110913. [DOI: 10.1016/j.foodres.2021.110913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/18/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023]
|
19
|
Verhoeven J, Keller D, Verbruggen S, Abboud KY, Venema K. A blend of 3 mushrooms dose-dependently increases butyrate production by the gut microbiota. Benef Microbes 2021; 12:601-612. [PMID: 34590532 DOI: 10.3920/bm2021.0015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gut microbiota has been indicated to play a crucial role in health and disease. Apart from changes in composition between healthy individuals and those with a disease or disorder, it has become clear that also microbial activity is important for health. For instance, butyrate has been proven to be beneficial for health, because, amongst others, it is a substrate for the colonocytes, and modulates the host's immune system and metabolism. Here, we studied the effect of a blend of three mushrooms (Ganoderma lucidum GL AM P-38, Grifola frondosa GF AM P36 and Pleurotus ostreatus PO AM-GP37)) on gut microbiota composition and activity in a validated, dynamic, computer-controlled in vitro model of the colon (TIM-2). Predigested mushroom blend at three doses (0.5, 1.0 and 1.5 g/day of ingested mushroom blend) was fed to a pooled microbiota of healthy adults for 72 h, and samples were taken every day for microbiota composition (sequencing of amplicons of the V3-V4 region of the 16S rRNA gene) and activity (short-chain fatty acid (SCFA) production). The butyrate producing genera Lachnospiraceae UCG-004, Lachnoclostridium, Ruminococcaceae UCG-002 and Ruminococcaceae NK4A214-group are all dose-dependently increased when the mushroom blend was fed. Entirely in line with the increase of these butyrate-producers, the cumulative amount of butyrate also dose-dependently increased, to roughly twice the amount compared to the control (medium without mushroom blend) on the high-dose mushroom blend. Butyrate proportionally made up 53.1% of the total SCFA upon feeding the high-dose mushroom blend, compared to 27% on the control medium. In conclusion, the (polysaccharides in the) mushroom blend led to substantial increase in butyrate by the gut microbiota. These results warrant future mechanistic research on the mushroom blend, as butyrate is considered to be one of the microbial metabolites that contributes to health, by increasing barrier function and modulating inflammation.
Collapse
Affiliation(s)
- J Verhoeven
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, Villafloraweg 1, 5928 SZ Venlo, the Netherlands
| | - D Keller
- Keller Consulting Group, 2417 Beachwood Blvd., Beachwood, OH 44122, USA
| | - S Verbruggen
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, Villafloraweg 1, 5928 SZ Venlo, the Netherlands
| | - K Youssef Abboud
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, Villafloraweg 1, 5928 SZ Venlo, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, Villafloraweg 1, 5928 SZ Venlo, the Netherlands
| |
Collapse
|
20
|
Yu F, Wang Y, Teng Y, Yang S, He Y, Zhang Z, Yang H, Ding CF, Zhou P. Interaction and Inhibition of a Ganoderma lucidum Proteoglycan on PTP1B Activity for Anti-diabetes. ACS OMEGA 2021; 6:29804-29813. [PMID: 34778653 PMCID: PMC8582033 DOI: 10.1021/acsomega.1c04244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/18/2021] [Indexed: 05/05/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and an effective target for the treatment of type 2 diabetes (T2D). A natural hyperbranched proteoglycan extracted from Ganoderma lucidum, namely, Fudan-Yueyang G. Lucidum (FYGL), was demonstrated capable of inhibiting the activity of PTP1B. Here, to identify the effective active components of FYGL, three different components, the polysaccharide FYGL-1, proteoglycans FYGL-2, and FYGL-3, were isolated from FYGL, and then, the protein moiety of FYGL-3 was further separated, namely, FYGL-3-P. Their abilities to enhance the glucose uptake in cells and inhibit the activity of PTP1B were compared. The inhibitory mechanisms were systematically explored by spectroscopic methods and MD simulations. The results showed that FYGL-3 and FYGL-3-P significantly enhanced the insulin-provoked glucose uptake in insulin-resistant HepG2 cells, detected by the glucose oxidase method. Also, the FYGL-3-P protein moiety in FYGL played an essential role in inhibiting the activity of PTP1B. A strong, enthalpy-driven, and multitargeted interaction by electrostatic forces between PTP1B and FYGL-3-P dramatically inhibited the catalytic activity of PTP1B. These results provided deep insights into the molecular mechanisms of FYGL inhibiting the activity of PTP1B and structurally helped researchers seek natural PTP1B inhibitors.
Collapse
Affiliation(s)
- Fanzhen Yu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yingxin Wang
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yilong Teng
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Shutong Yang
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Yanming He
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P. R. China
| | - Zeng Zhang
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P. R. China
| | - Hongjie Yang
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P. R. China
| | - Chuan-Fan Ding
- Department
of Chemistry, Fudan University, Shanghai 200433, China
- Zhejiang
Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular
Analysis, Institute of Mass Spectrometry, School of Material Science
and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ping Zhou
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- . Phone/Fax: (+86)021-31244038
| |
Collapse
|
21
|
The thermodynamic and kinetic mechanisms of a Ganoderma lucidum proteoglycan inhibiting hIAPP amyloidosis. Biophys Chem 2021; 280:106702. [PMID: 34741991 DOI: 10.1016/j.bpc.2021.106702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/17/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
Ganoderma lucidum is a valuable medicinal herbal which has been reported to prevent type 2 diabetes (T2D). A natural hyperbranched proteoglycan extracted from Ganoderma lucidum, namely, FYGL, has been demonstrated to inhibit the amyloidosis of human islet amyloid polypeptide (hIAPP) previously by our lab. However, the effective active components and the mechanisms of FYGL in inhibiting hIAPP amyloidosis are unknown. To identify the effective active components, different components from FYGL were isolated: the polysaccharide FYGL-1, the proteoglycans of FYGL-2 and FYGL-3. We further separated and sequenced the protein moieties of FYGL-2 and FYGL-3, namely, FYGL-2-P and FYGL-3-P, respectively, and compared their abilities to inhibit hIAPP amyloidosis, and systematically explored the inhibitory mechanisms by spectroscopy, microscopy and molecular dynamic simulation methods. Results showed that the protein moieties of FYGL played essential roles in inhibiting hIAPP amyloidosis. The strong, specific, and enthalpy-driven interaction by π-π stacking and electrostatic forces between hIAPP and FYGL-3-P dramatically inhibited hIAPP amyloidosis. These results suggested that FYGL-3-P had enormous potential to prevent hIAPP misfolding-induced diabetes and structurally helped researchers to seek or design inhibitors against polypeptide amyloidosis.
Collapse
|
22
|
Shi X, Cheng W, Wang Q, Zhang J, Wang C, Li M, Zhao D, Wang D, An Q. Exploring the Protective and Reparative Mechanisms of G. lucidum Polysaccharides Against H 2O 2-Induced Oxidative Stress in Human Skin Fibroblasts. Clin Cosmet Investig Dermatol 2021; 14:1481-1496. [PMID: 34703264 PMCID: PMC8525518 DOI: 10.2147/ccid.s334527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Ganoderma lucidum (G. lucidum) is one of China's traditional medicinal materials. G. lucidum polysaccharide has a wide range of promising pharmacological applications. However, there are many kinds of G. lucidum and they contain different kinds of polysaccharides. The biological mechanism through which Ganoderma lucidum polysaccharides (GLP) is able to protect human skin fibroblasts (HSFs) from H2O2-induced oxidative damage is still unclear. METHODS Six polysaccharides were obtained from G. lucidum to evaluate their free radical scavenging ability (DPPH free radical, ABTS free radical, hydroxyl-free radical, superoxide anion-free radical) in vitro, and their protective and reparative effects on oxidative damage induced by H2O2 in human skin fibroblasts. One polysaccharide was selected to detect oxidative damage markers and gene expression in the Keap1-Nrf2/ARE signaling pathway in HSFs. RESULTS All six polysaccharides showed the ability to scavenge free radicals and enhance the tolerance of human skin fibroblasts to H2O2 damage. Among them, GLP1 was selected and separated into two components (GLP1I and GLP1II). The results showed that GLP1, GLP1I and GLPII could significantly reduce the levels of reactive oxygen species (ROS) and malondialdehyde (MDA). The protective effect of GLP1II was stronger than that of positive control vitamin C. In addition, GLP1, GLP1I and GLP1II could significantly increase the levels of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). And GLP1I works best in both ways. Meanwhile, Nrf2, a key regulator of keAP1-NRF2/ARE signaling pathway, was activated, while Keap1, a negative regulator, was inhibited, thus promoting the expression of downstream antioxidant enzyme genes (GSTs, GCLs, Nqo1, and Ho-1). CONCLUSION The results showed that GLP could protect human skin fibroblasts from oxidative damage caused by H2O2 peroxide by enhancing enzyme activity and activating Keap1-Nrf2/ARE signaling pathway. GLP will act as a natural antioxidant to protect the skin from oxidative stress damage.
Collapse
Affiliation(s)
- Xiuqin Shi
- Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- Yunnan Baiyao Group Co., Ltd, Kunming, 650000, People’s Republic of China
| | - Wenjing Cheng
- Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Qian Wang
- Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Jiachan Zhang
- Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Changtao Wang
- Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Meng Li
- Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Dan Zhao
- Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Dongdong Wang
- Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Quan An
- Yunnan Baiyao Group Co., Ltd, Kunming, 650000, People’s Republic of China
| |
Collapse
|
23
|
Naa Yarley OP, Kojo AB, Felix Adom T, Zhou C, Yu X, Henrietta A, Matthew Makafui O, Reuben Essel A, Richard O. Subcritical Ethanol-Water and ionic liquid extraction systems coupled with multi-frequency ultrasound in the extraction and purification of polysaccharides. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1987470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Otu Phyllis Naa Yarley
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
- Faculty of Applied Sciences, Department of Science Laboratory Technology, Accra Technical University, Accra, Ghana
| | - Azumah Bright Kojo
- Faculty of Applied Sciences, Department of Science Laboratory Technology, Accra Technical University, Accra, Ghana
| | - Telfer Felix Adom
- School of Engineering, Department of Food Process Engineering, University of Ghana, Legon, Ghana
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Xiaojie Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Agyapong Henrietta
- Faculty of Applied Sciences, Department of Science Laboratory Technology, Accra Technical University, Accra, Ghana
| | - Oklu Matthew Makafui
- Faculty of Applied Sciences, Department of Science Laboratory Technology, Accra Technical University, Accra, Ghana
| | - Arhin Reuben Essel
- Faculty of Applied Sciences, Department of Science Laboratory Technology, Accra Technical University, Accra, Ghana
| | - Osae Richard
- School of Applied Science and Technology, Department of Food and Postharvest Technology, Cape Coast Technical University, Cape Coast, Ghana
| |
Collapse
|
24
|
Wu X, Huang J, Wang J, Xu Y, Yang X, Sun M, Shi J. Multi-Pharmaceutical Activities of Chinese Herbal Polysaccharides in the Treatment of Pulmonary Fibrosis: Concept and Future Prospects. Front Pharmacol 2021; 12:707491. [PMID: 34489700 PMCID: PMC8418122 DOI: 10.3389/fphar.2021.707491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary fibrosis is a fatal chronic progressive respiratory disease, characterized by continuous scarring of the lung parenchyma, leading to respiratory failure and death. The incidence of PF has increased over time. There are drugs, yet, there are some limitations. Hence, it is of importance to find new therapies and new drugs to replace the treatment of pulmonary fibrosis. In recent years, there have been a great number of research reports on the treatment of traditional Chinese medicine polysaccharides in various system fields. Among them, the treatment of PF has also gained extensive attention. This review summarized the source of polysaccharides, the drug activity of traditional Chinese medicine, and the protective effects on targets of Pulmonary fibrosis. We hope it can inspire researchers to design and develop polysaccharides, serving as a reference for potential clinical therapeutic drugs.
Collapse
Affiliation(s)
- Xianbo Wu
- School of Sports Medicine and Health, Chegdu Sport University, Chengdu, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yihua Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chegdu Sport University, Chengdu, China
| | - Minghan Sun
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
25
|
Peroxidase-Like Platinum Clusters Synthesized by Ganoderma lucidum Polysaccharide for Sensitively Colorimetric Detection of Dopamine. Molecules 2021; 26:molecules26092738. [PMID: 34066584 PMCID: PMC8125108 DOI: 10.3390/molecules26092738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022] Open
Abstract
The sensitive and selective detection of dopamine (DA) is very important for the early diagnosis of DA-related diseases. In this study, we reported the colorimetric detection of DA using Ganoderma lucidum polysaccharide (GLP) stabilized platinum nanoclusters (Ptn-GLP NCs). When Pt600-GLP NCs was added, 3,3’,5,5’-tetramethylbenzidine (TMB) was rapidly catalyzed and oxidized to blue oxTMB, indicating the peroxidase-like activity of Pt600-GLP NCs. The catalytic reaction on the substrate TMB followed the Michaelis-Menton kinetics with the ping-pong mechanism. The mechanism of the colorimetric reaction was mainly due to the formation of hydroxyl radical (•OH). Furthermore, the catalytic reaction of Pt600-GLP NCs was used in the colorimetric detection of DA. The linear range for DA was 1–100 μM and the detection limit was 0.66 μM. The sensitive detection of DA using Pt-GLP NCs with peroxidase-like activity offers a simple and practical method that may have great potential applications in the biotechnology field.
Collapse
|
26
|
Structural characterization and immunomodulatory activity of a water-soluble polysaccharide from Ganoderma leucocontextum fruiting bodies. Carbohydr Polym 2020; 249:116874. [DOI: 10.1016/j.carbpol.2020.116874] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022]
|
27
|
Chen RR, Li YJ, Chen JJ, Lu CL. A review for natural polysaccharides with anti-pulmonary fibrosis properties, which may benefit to patients infected by 2019-nCoV. Carbohydr Polym 2020; 247:116740. [PMID: 32829859 PMCID: PMC7340049 DOI: 10.1016/j.carbpol.2020.116740] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/19/2020] [Accepted: 07/04/2020] [Indexed: 01/05/2023]
Abstract
Pulmonary fibrosis (PF) is a lung disease with highly heterogeneous and mortality rate, but its therapeutic options are now still limited. Corona virus disease 2019 (COVID-19) has been characterized by WHO as a pandemic, and the global number of confirmed COVID-19 cases has been more than 8.0 million. It is strongly supported for that PF should be one of the major complications in COVID-19 patients by the evidences of epidemiology, viral immunology and current clinical researches. The anti-PF properties of naturally occurring polysaccharides have attracted increasing attention in last two decades, but is still lack of a comprehensively understanding. In present review, the resources, structural features, anti-PF activities, and underlying mechanisms of these polysaccharides are summarized and analyzed, which was expected to provide a scientific evidence supporting the application of polysaccharides for preventing or treating PF in COVID-19 patients.
Collapse
|
28
|
Gu J, Zhang H, Zhang J, Wen C, Zhou J, Yao H, He Y, Ma H, Duan Y. Optimization, characterization, rheological study and immune activities of polysaccharide from Sagittaria sagittifolia L. Carbohydr Polym 2020; 246:116595. [DOI: 10.1016/j.carbpol.2020.116595] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
|
29
|
ZHENG HG, CHEN JC, WENG MJ, AHMAD I, ZHOU CQ. Structural characterization and bioactivities of a polysaccharide from the stalk residue of Pleurotus eryngii. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.08619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | | | - Ijaz AHMAD
- Food & Biotechnology Research Center, Pakistan
| | - Chun-Quan ZHOU
- Fujian University of Traditional Chinese Medicine, China
| |
Collapse
|
30
|
Ji X, Hou C, Yan Y, Shi M, Liu Y. Comparison of structural characterization and antioxidant activity of polysaccharides from jujube (Ziziphus jujuba Mill.) fruit. Int J Biol Macromol 2020; 149:1008-1018. [DOI: 10.1016/j.ijbiomac.2020.02.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/24/2023]
|
31
|
Ren Y, Bai Y, Zhang Z, Cai W, Del Rio Flores A. The Preparation and Structure Analysis Methods of Natural Polysaccharides of Plants and Fungi: A Review of Recent Development. Molecules 2019; 24:molecules24173122. [PMID: 31466265 PMCID: PMC6749352 DOI: 10.3390/molecules24173122] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 01/12/2023] Open
Abstract
Polysaccharides are ubiquitous biomolecules found in nature that contain various biological and pharmacological activities that are employed in functional foods and therapeutic agents. Natural polysaccharides are obtained mainly by extraction and purification, which may serve as reliable procedures to enhance the quality and the yield of polysaccharide products. Moreover, structural analysis of polysaccharides proves to be promising and crucial for elucidating structure–activity relationships. Therefore, this report summarizes the recent developments and applications in extraction, separation, purification, and structural analysis of polysaccharides of plants and fungi.
Collapse
Affiliation(s)
- Yan Ren
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China.
| | - Yueping Bai
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Zhidan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
32
|
Liang C, Tian D, Liu Y, Li H, Zhu J, Li M, Xin M, Xia J. Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: Ganoderic acids A, C2, D, F, DM, X and Y. Eur J Med Chem 2019; 174:130-141. [PMID: 31035236 DOI: 10.1016/j.ejmech.2019.04.039] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 01/25/2023]
Abstract
Ganoderma lucidum is a multi-purpose plant medicine that is homologous to functional food. The most attractive properties of G. lucidum are its immunomodulatory and antitumour activities, which are mainly attributed to the following two major active components: G. lucidum polysaccharides and G. lucidum triterpenoids (GLTs). GLTs are effective as supplemental therapies and improve health when combined with other medications to treat hepatitis, fatigue syndrome, and prostate cancer. However, research investigating the mechanism and application of G. lucidum or GLTs in the treatment of diseases remains preliminary in terms of both the utilization efficacy and product type. This review offers comprehensive insight into the pharmacological activities of GLTs and their potential applications in the development of functional foods and nutraceuticals. Specifically, 83 GLTs were selected, and their molecular structures and chemical formulas were described. We also describe 7 ganoderic acids that are currently at different stages of clinical trials (ganoderic acids A, C2, D, F, DM, X and Y). The related pharmacodynamic mechanisms and targeted signalling proteins were further analysed. Notably, the specific relationship between autophagy and apoptosis induced by ganoderic acid DM is summarized here for the first time.
Collapse
Affiliation(s)
- Chengyuan Liang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Danni Tian
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yuzhi Liu
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Han Li
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Jialiang Zhu
- National Institutes for Food and Drug Control, Beijing, 100050, PR China.
| | - Min Li
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, PR China.
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Juan Xia
- Laboratory of Hematologic Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, PR China.
| |
Collapse
|
33
|
Zhang J, Chen M, Wen C, Zhou J, Gu J, Duan Y, Zhang H, Ren X, Ma H. Structural characterization and immunostimulatory activity of a novel polysaccharide isolated with subcritical water from Sagittaria sagittifolia L. Int J Biol Macromol 2019; 133:11-20. [PMID: 30986467 DOI: 10.1016/j.ijbiomac.2019.04.077] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 01/07/2023]
Abstract
In the present study, we obtained polysaccharides from Sagittaria sagittifolia L. (SSP) with subcritical water extraction (SWE). Two water-soluble polysaccharides (SSP-W1 and SSP-S1) from the acquired SSP were isolated with DEAE-52 and Sephadex G-100. Besides, the structural characteristics and immunostimulatory activity were also investigated. The results showed that both SSP-W1 and SSP-S1 were homogeneous polysaccharides and the molecular weight was 62.03 KDa and 15.2 KDa, respectively. In addition, both SSP-W1 and SSP-S1 are heteropolysaccharides. Moreover, FT-IR analysis showed that SSP-W1 was α-pyranose polysaccharide, while SSP-S1 was a typical β-pyranose polysaccharide. Congo red staining showed that there was no triple helix structure in both SSP-W1 and SSP-S1. Furthermore, both SSP-W1 and SSP-S1 could promote the proliferation, production of NO, and secretion of TNF-α and IL-10 of macrophages RAW 264.7, significantly. Therefore, the polysaccharides extracted from Sagittaria sagittifolia L. with SWE have the potential to be used as immunoreactive agent in medicine and functional foods.
Collapse
Affiliation(s)
- Jixian Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chaoting Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jie Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinyan Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
34
|
Yang D, Zhou Z, Zhang L. An overview of fungal glycan-based therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:135-163. [PMID: 31030746 DOI: 10.1016/bs.pmbts.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Edible medicinal mushrooms have been traditionally used for health promotion and longevity in China and other East Asian countries for centuries. Structural and pharmacological studies revealed that fungal glycans show multiple physiological and healthy promoting effects including immunomodulation, anti-tumor, anti-aging, anti-oxidation, hypoglycemic, hypolipidemic, anti-radiation, and other effects. Fungal glycans isolated from different kinds of medicinal mushrooms are partially purified and clinically tested. Without serious safety concerns of mostly glycans from edible mushrooms and/or the cultured mycelium, eight of them are approved by Chinese Food and Drug Administration (SFDA) and used clinically in China since 1980s. In this chapter, 185 independent studies involving in biochemical, pharmacological and clinical studies of fungal glycans during the past four decades (1977-2019) from PubMed, CNKI (China National Knowledge Infrastructure) and Wanfang databases are summarized. In future, understanding the fungal glycan-based drugs at molecular biological level would be needed to comprehend the clinical efficacy of glycan-based drugs.
Collapse
Affiliation(s)
- Dandan Yang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Zijing Zhou
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
35
|
Wang PP, Huang Q, Chen C, You LJ, Liu RH, Luo ZG, Zhao MM, Fu X. The chemical structure and biological activities of a novel polysaccharide obtained from Fructus Mori and its zinc derivative. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
36
|
Zhang S, Pang G, Chen C, Qin J, Yu H, Liu Y, Zhang X, Song Z, Zhao J, Wang F, Wang Y, Zhang LW. Effective cancer immunotherapy by Ganoderma lucidum polysaccharide-gold nanocomposites through dendritic cell activation and memory T cell response. Carbohydr Polym 2019; 205:192-202. [DOI: 10.1016/j.carbpol.2018.10.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/26/2022]
|
37
|
Zhang J, Liu Y, Tang Q, Zhou S, Feng J, Chen H. Polysaccharide of Ganoderma and Its Bioactivities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1181:107-134. [PMID: 31677141 DOI: 10.1007/978-981-13-9867-4_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ganoderma, named lingzhi in China, has been used for centuries as drug and nutraceutical to treat diseases. Based on our research and other literatures, the chapter summarizes the progress of preparation, structural features and properties, bioactivities of Ganoderma polysaccharides. The aim is to provide a comprehensive source of information for researchers and consumers of Ganoderma, so they can better understand Ganoderma polysaccharides and their biological activities. In addition, more clinical studies should be carried out to meet the criteria for new drug development, and more convincing scientific data should be provided. In addition, on the basis of a large number of studies on Ganoderma polysaccharides, we suggest that more clinical studies should be carried out so that Ganoderma can be better recognized and applied all over the world.
Collapse
Affiliation(s)
- Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qingjiu Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jie Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hongyu Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
38
|
Ren G, Xu L, Lu T, Yin J. Structural characterization and antiviral activity of lentinan from Lentinus edodes mycelia against infectious hematopoietic necrosis virus. Int J Biol Macromol 2018; 115:1202-1210. [DOI: 10.1016/j.ijbiomac.2018.04.132] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/25/2017] [Accepted: 04/24/2018] [Indexed: 12/20/2022]
|
39
|
Li Q, Zhang F, Chen G, Chen Y, Zhang W, Mao G, Zhao T, Zhang M, Yang L, Wu X. Purification, characterization and immunomodulatory activity of a novel polysaccharide from Grifola frondosa. Int J Biol Macromol 2018; 111:1293-1303. [DOI: 10.1016/j.ijbiomac.2018.01.090] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/27/2017] [Accepted: 01/13/2018] [Indexed: 12/17/2022]
|
40
|
Zhao B, Liu J, Chen X, Zhang J, Wang J. Purification, structure and anti-oxidation of polysaccharides from the fruit of Nitraria tangutorum Bobr. RSC Adv 2018; 8:11731-11743. [PMID: 35542817 PMCID: PMC9079049 DOI: 10.1039/c8ra01125g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/21/2018] [Indexed: 11/30/2022] Open
Abstract
In this paper, polysaccharides were extracted from the fruits of Nitraria tangutorum Bobr. (NTWP) using a hot water extraction method and extraction conditions were optimized by RSM. The optimal conditions were determined as follows: extraction time 7 h, extraction temperature 60 °C, ratio of water to raw material 15 : 1, and with these conditions, the yield was 14.01 ± 0.11%. After purification using DEAE-cellulose column and Sephadex G-200 column, NTWP-II was successfully obtained. The results of GC-MS and SEC-LLS analysis suggested that monosaccharide composition of NTWP-II was composed of Rha, Ara, Man, Glc and Gal with the molar ratio of 1.14 : 2.5 : 3.00 : 2.69 : 5.28 and Mw, Mw/Mn and Rz 2.29 × 105, 1.32, 15.22. The detailed structure of NTWP-II was characterized by FT-IR, NMR. Based on these analyses, the structure of the repeating unit of NTWP-II was established. Antioxidant activity of NTWP-II, evaluated in vitro, indicates that NTWP-II has good potential as a natural antioxidant used in the food industry.![]()
Collapse
Affiliation(s)
- Baotang Zhao
- College of Food Science and Engineering
- Gansu Agricultural University
- Lanzhou
- China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants
| | - Jing Liu
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants
- Northwest Normal University
- Lanzhou 730070
- China
| | - Xin Chen
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants
- Northwest Normal University
- Lanzhou 730070
- China
| | - Ji Zhang
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants
- Northwest Normal University
- Lanzhou 730070
- China
| | - Junlong Wang
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants
- Northwest Normal University
- Lanzhou 730070
- China
| |
Collapse
|
41
|
Mushrooms: Isolation and Purification of Exopolysaccharides. Fungal Biol 2018. [DOI: 10.1007/978-3-030-02622-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Freitas F, Torres CAV, Reis MAM. Engineering aspects of microbial exopolysaccharide production. BIORESOURCE TECHNOLOGY 2017; 245:1674-1683. [PMID: 28554522 DOI: 10.1016/j.biortech.2017.05.092] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Although the ability to secrete exopolysaccharides (EPS) is widespread among microorganisms, only a few bacterial (e.g. xanthan, levan, dextran) and fungal (e.g. pullulan) EPS have reached full commercialization. During the last years, other microbial EPS producers have been the subject of extensive research, including endophytes, extremophiles, microalgae and Cyanobacteria, as well as mixed microbial consortia. Those studies have demonstrated the great potential of such microbial systems to generate biopolymers with novel chemical structures and distinctive functional properties. In this work, an overview of the bioprocesses developed for EPS production by the wide diversity of reported microbial producers is presented, including their development and scale-up. Bottlenecks that currently hinder microbial EPS development are identified, along with future prospects for further advancement.
Collapse
Affiliation(s)
- Filomena Freitas
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Cristiana A V Torres
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Maria A M Reis
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
43
|
Protective effects of a G. lucidum proteoglycan on INS-1 cells against IAPP-induced apoptosis via attenuating endoplasmic reticulum stress and modulating CHOP/JNK pathways. Int J Biol Macromol 2017; 106:893-900. [PMID: 28893685 DOI: 10.1016/j.ijbiomac.2017.08.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 01/09/2023]
Abstract
Fudan-Yueyang-G. lucidum (FYGL) is a water-soluble macromolecular proteoglycan extracted from Ganoderma lucidum which has been used for health promotion for a long time in China. The aim of this study was to investigate the protective effects of FYGL on INS-1 rat insulinoma beta cells against IAPP-induced cell apoptosis, as well as the underlying mechanisms. The results showed that apoptotic cells were significantly increased when incubated with islet amyloid polypeptide (IAPP). However, cytotoxicity of IAPP was significantly attenuated by co-incubation of the cells with FYGL. The results of RT-PCR showed that mRNA expression of caspase-3, caspase-12 and C/EBP homologous protein (CHOP) in IAPP-treated cells were inhibited by FYGL. Moreover, FYGL significantly prevented the IAPP-induced abnormal expression of inositol-requiring protein-1α (IRE1α), protein kinase RNA (PKR)-like ER kinase (PERK), activating transcription factor 6 (ATF6), as well as suppressed the activation of CHOP and c-Jun N-terminal kinase (JNK). Taken together, our results suggest that FYGL protects INS-1 pancreatic beta cells against IAPP-induced apoptosis through attenuating endoplasmic reticulum stress (ERS) and modulating CHOP/JNK pathways.
Collapse
|
44
|
Zhang ZP, Shen CC, Gao FL, Wei H, Ren DF, Lu J. Isolation, Purification and Structural Characterization of Two Novel Water-Soluble Polysaccharides from Anredera cordifolia. Molecules 2017; 22:E1276. [PMID: 28769023 PMCID: PMC6152394 DOI: 10.3390/molecules22081276] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/23/2017] [Accepted: 07/29/2017] [Indexed: 01/01/2023] Open
Abstract
Anredera cordifolia, a climber and member of the Basellaceae family, has long been a traditional medicine used for the treatment of hyperglycemia in China. Two water-soluble polysaccharides, ACP1-1 and ACP2-1, were isolated from A. cordifolia seeds by hot water extraction. The two fractions, ACP1-1 and ACP2-1 with molecular weights of 46.78 kDa ± 0.03 and 586.8 kDa ± 0.05, respectively, were purified by chromatography. ACP1-1 contained mannose, glucose, galactose in a molar ratio of 1.08:4.65:1.75, whereas ACP2-1 contained arabinose, ribose, galactose, glucose, mannose in a molar ratio of 0.9:0.4:0.5:1.2:0.9. Based on methylation analysis, ultraviolet and Fourier transform-infrared spectroscopy, and periodate oxidation the main backbone chain of ACP1-1 contained (1→3,6)-galacturonopyranosyl residues interspersed with (1→4)-residues and (1→3)-mannopyranosyl residues. The main backbone chain of ACP2-1 contained (1→3)-galacturonopyranosyl residues interspersed with (1→4)-glucopyranosyl residues.
Collapse
Affiliation(s)
- Zhi-Peng Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, China.
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food & Fermentation Industries, 100015 Beijing, China.
| | - Can-Can Shen
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, China.
| | - Fu-Li Gao
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, China.
| | - Hui Wei
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, China.
| | - Di-Feng Ren
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, China.
| | - Jun Lu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food & Fermentation Industries, 100015 Beijing, China.
| |
Collapse
|
45
|
Wang Q, Wang F, Xu Z, Ding Z. Bioactive Mushroom Polysaccharides: A Review on Monosaccharide Composition, Biosynthesis and Regulation. Molecules 2017; 22:E955. [PMID: 28608797 PMCID: PMC6152739 DOI: 10.3390/molecules22060955] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 06/05/2017] [Indexed: 11/22/2022] Open
Abstract
Mushrooms are widely distributed around the world and are heavily consumed because of their nutritional value and medicinal properties. Polysaccharides (PSs) are an important component of mushrooms, a major factor in their bioactive properties, and have been intensively studied during the past two decades. Monosaccharide composition/combinations are important determinants of PS bioactivities. This review summarizes: (i) monosaccharide composition/combinations in various mushroom PSs, and their relationships with PS bioactivities; (ii) possible biosynthetic pathways of mushroom PSs and effects of key enzymes on monosaccharide composition; (iii) regulation strategies in PS biosynthesis, and prospects for controllable biosynthesis of PSs with enhanced bioactivities.
Collapse
Affiliation(s)
- Qiong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.
| | - Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhenghong Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
46
|
Li X, Wang L, Wang Z. Structural characterization and antioxidant activity of polysaccharide from Hohenbuehelia serotina. Int J Biol Macromol 2017; 98:59-66. [DOI: 10.1016/j.ijbiomac.2016.12.089] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 11/25/2016] [Accepted: 12/30/2016] [Indexed: 01/01/2023]
|
47
|
Kumari B, DAS P, Kumari R. Accelerated processing of solitary and clustered abasic site DNA damage lesions by APE1 in the presence of aqueous extract of Ganoderma lucidum. J Biosci 2017; 41:265-75. [PMID: 27240987 DOI: 10.1007/s12038-016-9614-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stimulatory effect of the aqueous extract of G. lucidum, a basidiomycetes class fungus in the APE1-enzyme-mediated processing of solitary and bistranded clustered abasic sites DNA damages is presented. Abasic sites are considered the most common type of DNA damage lesions. Our study shows enhanced activity of APE1 in the processing of abasic sites in the presence of the polysaccharides fraction of G. lucidum. Remarkable increase in the amount of single-strand breaks (SSBs) and double-strand breaks (DSBs) from solitary and bistranded clustered abasic sites respectively with APE1 in the presence of the extract was found. This trend is maintained when abasic sites in DNA oligomers are exposed to fibroblast cell extracts in the presence of the extract. While DNA conformational alteration is negligible, APE1 enzyme shows characteristic changes in the alpha helix and beta strand ratio after incubation with G. lucidum extract. The enhanced reactivity of APE1 at the molecular level in the presence of G. lucidium is attributed to this effect. This study potentially amplifies the scope of the use of G. lucidum, which was earlier shown to have only reactive oxygen species (ROS) scavenging properties with regards to DNA damage inhibition.
Collapse
|
48
|
Characterization of Polysaccharides with Antioxidant and Hepatoprotective Activities from the Edible Mushroom Oudemansiella radicata. Molecules 2017; 22:molecules22020234. [PMID: 28165422 PMCID: PMC6155583 DOI: 10.3390/molecules22020234] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/22/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023] Open
Abstract
The preliminary structure, in vitro antioxidant and in vivo hepatoprotective activities of water-soluble polysaccharides (ORWP) and alkali-soluble polysaccharides (ORAP), prepared from the mushroom Oudemansiella radicata, were investigated. Both ORWP and ORAP were heteropolysaccharides with mannose, glucose and galactose being the main monosaccharide components. Regarding the antioxidant activities, ORWP and ORAP showed effective 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, hydrogen peroxide scavenging activity and lipid peroxidation inhibitory effects, as well as moderate reducing power and Fe2+ chelating activity. For the hepatoprotective activity, administration of ORWP and ORAP prevented the increase in serum alanine aminotransferase and aspartate aminotransferase activities in a carbon tetrachloride-induced acute liver damage model, suppressed hepatic malondialdehyde formation and stimulated the activities of hepatic superoxide dismutase and glutathione peroxidase. Thus, we speculate that ORWP and ORAP may protect the liver from CCl₄-induced hepatic damage via antioxidant mechanisms.
Collapse
|
49
|
Li S, Dai S, Shah NP. Sulfonation and Antioxidative Evaluation of Polysaccharides from Pleurotus Mushroom and Streptococcus thermophilus Bacteria: A Review. Compr Rev Food Sci Food Saf 2017; 16:282-294. [PMID: 33371533 DOI: 10.1111/1541-4337.12252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 11/29/2022]
Abstract
Human beings are equipped with antioxidant defense systems to neutralize free radicals as free radicals could damage macromolecules, subsequently resulting in serious diseases. Researchers have been attracted to search for potential natural antioxidants to reduce oxidative damage. Pleurotus and Streptococcus thermophilus have been chosen as sources of sustainable bioactive compounds that have been consumed for thousands of years. Polysaccharides are important bioactive components produced by Pleurotus mushrooms and Streptococcus thermophilus bacteria. Additionally, there is a continued interest in sulfonation of crude polysaccharides from both sources, since sulfonation has been found to improve or create new bioactive properties in polysaccharides. Both crude and sulfated polysaccharides with good antioxidant capacities have great potential for the further development as commercial products. This review focuses on characterization, sulfonation methods, and antioxidant capacity evaluations of polysaccharides from Pleurotus and S. thermophilus. Common antioxidant capacity assays, including the mechanisms underlying each assay, and various experimental procedures are also discussed.
Collapse
Affiliation(s)
- Siqian Li
- Food and Nutritional Science, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Rd., Hong Kong
| | - Shuhong Dai
- Food and Nutritional Science, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Rd., Hong Kong
| | - Nagendra Prasad Shah
- Food and Nutritional Science, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Rd., Hong Kong
| |
Collapse
|
50
|
Chen J, Shi Y, He L, Hao H, Wang B, Zheng Y, Hu C. Protective roles of polysaccharides from Ganoderma lucidum on bleomycin-induced pulmonary fibrosis in rats. Int J Biol Macromol 2016; 92:278-281. [DOI: 10.1016/j.ijbiomac.2016.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/17/2016] [Accepted: 07/02/2016] [Indexed: 12/11/2022]
|